
www.EBooksWorld.ir

Architecting Modern Java EE Applications

Designing lightweight, business-oriented enterprise applications in
the age of cloud, containers, and Java EE 8

www.EBooksWorld.ir

Sebastian Daschner

BIRMINGHAM - MUMBAI

www.EBooksWorld.ir

Architecting Modern Java EE
Applications

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained in
this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate use
of capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

First published: October 2017

www.EBooksWorld.ir

Production reference: 1051017

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78839-385-0

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

Credits

Author

Sebastian Daschner

Copy Editor

Safis Editing

Reviewer

Melissa McKay

Project Coordinator

Vaidehi Sawant

Commissioning Editor

Proofreader

www.EBooksWorld.ir

Aaron Lazar Safis Editing

Acquisition Editor

Alok Dhuri

Indexer

Aishwarya Gangawane

Content Development Editor

Rohit Kumar Singh

Graphics

Abhinash Sahu

Technical Editor

Pavan Ramchandani

Production Coordinator

Nilesh Mohite

www.EBooksWorld.ir

www.EBooksWorld.ir

Foreword
Languages in our industry come and go, and the pace at which hip new
languages come out only seems to increase. Every year, new languages come
out and each has the colossal job of building an entire ecosystem around itself
before the next new darling language comes and steals all the fickle early
adopters. As each trend waxes and wanes, so do the ecosystems built around
them.

Those of us who invest heavily in these trending ecosystems are often bitten
by a common set of problems that lead to failures at the business level, losing
project momentum due to the inability to find and hire developers. The new
solutions presented are often the same old idea, but with a youthful
misunderstanding of the problem space that leads to real performance and
reliability problems. As the ecosystem matures, the act of recognizing and
realigning to the true complexity of systems often results in severe
incompatibilities. Tooling choices are often narrow or buggy, or they simply
never materialize.

The unbeatable source of strength of the Java ecosystem over the last 20
years has been its standards, Java EE being chief among them. There have
been 53 Java Specification Requests (JSRs) completed under the Java EE
umbrella, ranging from XML parsing to JSON parsing, Servlets to JAX-RS,
binary protocols to RESTful protocols, front-end technologies such as JSF or
MVC, APIs for marshaling data to XML (JAX-B) or JSON (JSON-B) . The
breadth of specifications is so wide that even if you do not think of yourself
as a Java EE user, if you are a Java developer, you are definitely leveraging it
in some way. With an estimate of 9 million Java developers worldwide, this
is a stable and experienced talent pool.

Major deployments of Java EE range from Walmart, the world's largest
retailer and third largest employer, to NASA’s SOFIA program, scanning
space at 40,000 feet. While the developer community is large and the
corporations that use it are larger, the modern Java EE runtimes are

www.EBooksWorld.ir

incredibly small. Walmart and NASA, for example, use Apache TomEE, an
implementation that is 35 MB on disk, boots in a second and consumes less
that 30 MB of memory. This low profile is indicative of all modern
implementations including WildFly, Payara, and LibertyProfile. The Java EE
tools, cloud and IDE landscape is filled with competitive choices, almost too
many to track. The 200+ person company ZeroTurnaround, for example, is
built on a product that added instant deploy options to Java EE servers.

With such an expansive ecosystem that has almost 20 years of history, truly
getting to the essence of what makes Java EE great today and how to put it
into practice for today’s Microservices world can be a challenge. It’s all too
easy to find very informed, but ultimately dated information from 2, 5, and
10 years back. The authoritative tone of one article one date can directly
conflict with equally authoritative, but ultimately contrarian perspective of
another author on a different year. In fact, a challenge almost unique to Java
EE is its history. Few technologies last long enough and evolve so much.

This book, like the author himself, represents a new generation of Java EE.
The chapters in this book guide the reader through the journey of leveraging
Java EE in the context of today’s Microservice and Containerized world.
Less of a reference manual for API syntax, the perspectives and techniques in
this book reflect real-world experience from someone who has recently gone
through the journey themselves, meticulously annotated the obstacles, and
has them ready to share. From packaging to testing to cloud usage, this book
is an ideal companion to both new and more experienced developers who are
looking for an earned insight bigger than an API to help them realign their
thinking to architect modern applications in Java EE.

David Blevins
Founder and CEO, Tomitribe

www.EBooksWorld.ir

About the Author
Sebastian Daschner is a Java freelancer working as a consultant and trainer
and is enthusiastic about programming and Java (EE). He participates in the
JCP, helping to form future Java EE standards, serving in the JSR 370 and
374 Expert Groups, and collaborating on various open source projects. For
his contributions to the Java community and ecosystem, he was recognized
with the titles Java Champion and Oracle Developer Champion.

Sebastian is a regular speaker at international IT conferences, such as
JavaLand, JavaOne, and Jfokus. He won the JavaOne Rockstar award at
JavaOne 2016. Together with Java community manager, Steve Chin, he has
traveled to dozens of conferences and Java User Groups on motorbike. Steve
and Sebastian have launched JOnsen, a Java unconference held at a hot
spring in the countryside of Japan.

www.EBooksWorld.ir

Acknowledgments
There are many people whom I had the privilege to meet during my career,
and who had a great impact not only on my work but also this book and
without whom this would not have been possible. This list of people grows
and grows every year. All of them are indirectly helped shaping this book,
which I immensely appreciate.

There are a few friends who had a direct impact on this book and whom I
particularly want to thank.

Kirk Pepperdine, for his tireless aspiration to myth-bust the world of software
performance and for the permission to use jPDM. His invaluable experience
not only vastly improved the quality of this book but also greatly educated
me personally.

Melissa McKay, for her tireless reviews, being eager (and crazy) enough to
review this whole book, what greatly improved the quality, for sharing her
experience in Enterprise Java, and not least for inspiration and motivation.

David Blevins, for sharing the passion in the topic of Java EE and writing the
foreword to this book.

Andy Gumbrecht, for help not only in the topic of enterprise testing but also
the English language.

Markus Eisele, for igniting the spark of this work.

Philipp Brunenberg, for creating constructive inspiration and not least, tons
of motivation through weeks of writing.

www.EBooksWorld.ir

About the Reviewer
Melissa McKay has been a software developer, for the last 15 years in the
private sector working with various types of applications, both in a
contracting capacity for external clients and on enterprise products. Her
current focus is on creating Java server applications used in the
communications and video industry. Her interests include clustered systems,
and she has a particular passion for solving issues with concurrency and
multithreaded applications.

Melissa regularly attends the JCrete unconference in Crete, Greece, and had
the pleasure of attending the initial launch of the JOnsen unconference in
Japan. She enjoys volunteering for technology events for kids including
JavaOne4Kids and JCrete4Kids. She is a member of the Content Committee
for JavaOne 2017 and an active member of the Denver Java User Group.

www.EBooksWorld.ir

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub
.com.

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.P
acktPub.comand as a print book customer, you are entitled to a discount on the
eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and
offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full
access to all Packt books and video courses, as well as industry-leading tools
to help you plan your personal development and advance your career.

www.EBooksWorld.ir

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.EBooksWorld.ir

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on
this book's Amazon page at https://www.amazon.com/dp/1788393856.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks
and videos in exchange for their valuable feedback. Help us be relentless in
improving our products!

www.EBooksWorld.ir

https://www.amazon.com/dp/1788393856

A Cyrine Ben Ayed, pour ta compréhension, ton indéfectible soutien et ton
infinie patience. Ce livre t'est dédié.

www.EBooksWorld.ir

Table of Contents
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Introduction
New demands in enterprise systems
Modern way of realizing enterprise systems
Relevance of Java EE in modern systems
Java EE 8 update and roadmap
Java Community Process
What to expect in the book

2. Designing and Structuring Java Enterprise Applications
The purpose of enterprise applications

What developers should focus on
Meeting customer's demands

Outer enterprise project structure
Business and team structures
Software projects contents

Application source code
Software structures
Version control systems
Binaries
Build systems

Single versus multi-module projects
Illusion of reusability

Technical dependencies
Organizational challenges

www.EBooksWorld.ir

Reusability considerations
Project artifacts
One project per artifact
Build systems for Java EE

Apache Maven
Gradle

Structuring for modern frontend technologies
Enter JavaScript frameworks
Organizing modern frontends

Enterprise project code structure
Situation in enterprise projects
Horizontal versus vertical layering
Business-driven structure
Designing reasonable modules
Realizing package structures

Package contents
Horizontal package layering
Flat module package
Entity Control Boundary

Packages
Package access

Don't over-enforce architecture
Summary

3. Implementing Modern Java Enterprise Applications
Use case boundaries
Core domain components of modern Java EE

EJB and CDI - differentiation and integration
CDI producers
Emitting domain events
Scopes

Patterns in Java EE
Design patterns revisited

Singleton
Abstract factory
Factory method
Object pool
Decorator
Facade

www.EBooksWorld.ir

Proxy
Observer
Strategy
Further patterns

Domain-Driven Design
Services
Entities
Value objects
Aggregates
Repositories
Factories
Domain event

External and cross-cutting concerns in enterprise applications
Communication with external systems

How to choose communication technology
Synchronous HTTP communication

Representational State Transfer
Java API for RESTful web services
Mapping HTTP content types
Validating requests
Mapping errors
Accessing external systems
Stability when consuming HTTP
Accessing Hypermedia REST services

Asynchronous communication and messaging
Asynchronous HTTP communication
Message-oriented communication
Server-sent events
WebSocket

Connecting enterprise technology
Database systems

Integrating RDBMS systems
Mapping domain models
Integrating database systems
Transactions

Relational databases versus NoSQL
Cross-cutting concerns

www.EBooksWorld.ir

Configuring applications
Caching

Flow of execution
Synchronous execution
Asynchronous execution

Asynchronous EJB methods
Managed Executor Service
Asynchronous CDI events
Scopes in asynchronicity
Timed execution
Asynchronous and reactive JAX-RS

Concepts and design principles of modern Java EE
Preserving maintainable code with high quality
Summary

4. Lightweight Java EE
Lightweight enterprise technology
Why Java EE standards?
Convention over configuration
Dependency management of Java EE projects
Lightweight way of packaging applications
Java EE application servers
One application per application server
Summary

5. Container and Cloud Environments with Java EE
Motivations and goals

Infrastructure as code
Stability and production readiness

Containers
Java EE in the container
Container orchestration frameworks
Realizing container orchestration
Java EE in orchestrated containers

Connecting external services
Configuring orchestrated applications

12-factor applications and Java EE
Have one codebase tracked in revision control, many deploys
Explicitly declare and isolate dependencies

www.EBooksWorld.ir

Store config in the environment
Treat backing services as attached resources
Strictly separate build and run stages
Execute the app as one or more stateless processes
Export services via port binding
Scale out via the process model
Maximize robustness with fast startup and graceful shutdown
Keep development, staging, and production as similar as possible
Treat logs as event streams
Run admin/management tasks as one-off processes

Cloud, Cloud native, and their benefits
Cloud native

Summary
6. Application Development Workflows

Motivation and goals of productive development workflows
Realizing development workflows

Version control everything
Building binaries

Java artifacts
Artifact versions
Building containers

Quality assurance
Deployment

Configuration
Credentials

Data migration
Adding database structures
Changing database structures
Removing database structures
Implementing migration

Testing
Build metadata
Going to production
Branching models
Technology
Pipeline-as-code

Workflows with Java EE

www.EBooksWorld.ir

Continuous Delivery culture and team habits
Responsibility
Check in early and often
Immediately fixing issues
Visibility
Improve continuously

Summary
7. Testing

The necessity of tests
Requirements of well-crafted tests

Predictability
Isolation
Reliability
Fast execution
Automation
Maintainability

What to test
Definition of test scopes

Unit tests
Component tests
Integration tests
System tests
Performance tests
Stress tests

Implementing tests
Unit tests

Implementation
Technology

Component tests
Motivation
Implementation
Delegating test components
Technology

Integration tests
Embedded containers
Embedded databases
Running integration tests

Code level integration tests versus system tests

www.EBooksWorld.ir

Shortcomings of integration tests
Shortcomings of system tests
Conclusion

System tests
Managing test scenarios
Simulating external concerns
Designing system tests

Deploying and controlling external mocks
Performance tests

Motivation
Key performance indicators
Developing performance tests
Insights

Running tests locally
Maintaining test data and scenarios

Importance of maintainable tests
Signs of lack of test quality
Test code quality
Test technology support

Summary
8. Microservices and System Architecture

Motivations behind distributed systems
Challenges of distribution

Communication overhead
Performance overhead
Organizational overhead

How to design systems landscapes
Context maps and bounded contexts
Separation of concerns
Teams
Project life cycles

How to design system interfaces
API considerations
Interface management

Change-resilient APIs
Breaking the business logic
Hypermedia REST and versioning

Documenting boundaries

www.EBooksWorld.ir

Consistency versus scalability
Event sourcing, event-driven architectures, and CQRS

Shortcomings of CRUD-based systems
Scalability
Competing transactions
Reproducibility

Event sourcing
Benefits

Eventually consistent real world
Event-driven architectures

Eventual consistency in event-driven architectures
Enter CQRS

Principles
Design
Benefits
Shortcomings

Communication
Microservice architectures

Sharing data and technology in enterprises
Shared-nothing architectures
Interdependent systems
12-factor and cloud native applications
When to use and when not to use microservices

Implementing microservices with Java EE
Zero-dependency applications
Application servers
Implementing application boundaries
Implementing CQRS

System interfaces
Example scenario using Apache Kafka
Integrating Java EE

CDI events
Event handlers
State representation
Consuming Kafka messages
Producing Kafka messages
Application boundaries

Integrating further CQRS concepts

www.EBooksWorld.ir

Java EE in the age of distribution
Discovering services
Communicating resiliently

Validating responses
Breaking timeouts and circuits
Bulkheads
Shaking hands and pushing back

More on being resilient
Summary

9. Monitoring, Performance, and Logging
Business metrics

Collecting business metrics
Emitting metrics

Enter Prometheus
Realization with Java EE
Integrating the environment

Meeting performance requirements in distributed systems
Service level agreements
Achieving SLAs in distributed systems

Tackling performance issues
Theory of constraints
Identifying performance regression with jPDM

Subsystems
Actors
Application
JVM
Operating system and hardware

jPDM instances - production situations
Analyzing the jPDM instances

Dominating consumer - OS
Dominating consumer - none
Dominating consumer - JVM
Dominating consumer - application

Conclusion
Technical metrics

Types of technical metrics
High frequency monitoring versus sampling
Collecting technical metrics

www.EBooksWorld.ir

Boundary metrics
Logging and tracing

Shortcomings of traditional logging
Performance
Log levels
Log format
Amounts of data
Obfuscation
The concerns of applications
Wrong choice of technology

Logging in a containerized world
Journaling
Tracing

Tracing in a modern world
Typical performance issues

Logging and memory consumption
Premature optimization
Relational databases
Communication
Threading and pooling

Performance testing
Summary

10. Security
Lessons learned from the past
Security in a modern world

Security principles
Encrypt communication
Delegate security concerns
Treat user credentials properly
Avoid storing credentials in version control
Include tests

Possibilities and solutions
Encrypted communication
Protocol-based authentication
Decentralized security
Proxies
Integration in modern environments

Implementing security in Java EE applications

www.EBooksWorld.ir

Transparent security
Servlets
Java principals and roles
JASPIC
Security API

Authentication mechanisms
Identity stores
Custom security
Accessing security information

Summary
11. Conclusion

Motivations in enterprise development
Cloud and Continuous Delivery
Relevance of Java EE
API updates introduced in Java EE 8

CDI 2.0
JAX-RS 2.1
JSON-B 1.0
JSON-P 1.1
Bean Validation 2.0
JPA 2.2
Security 1.0
Servlet 4.0
JSF 2.3

JCP and participation
MicroProfile
Eclipse Enterprise for Java

12. Appendix: Links and further resources

www.EBooksWorld.ir

Preface
Java EE 8 brings with it a load of features, mainly targeting newer
architectures such as microservices, modernized security APIs, and cloud
deployments. This book will teach you to design and develop modern,
business-oriented applications using Java EE 8. It shows how to structure
systems and applications, and how design patterns and Domain-Driven
Design aspects are realized in the age of Java EE 8. You will learn about the
concepts and principles behind Java EE applications and how they affect
communication, persistence, technical and cross-cutting concerns, and
asynchronous behavior.

This book focuses on solving business problems and meeting customer
demands in the enterprise world. It covers how to create enterprise
applications with reasonable technology choices, free of cargo-cult and over-
engineering. The aspects shown in this book not only demonstrate how to
realize a certain solution, but also explain its motivation and reasoning.

With the help of this book, you will understand the principles of modern Java
EE and how to realize effective architectures. You will gain knowledge of
how to design enterprise software in the age of automation, Continuous
Delivery, and cloud platforms. You will also learn about the reasoning and
motivation behind state-of-the-art enterprise Java technology, which focuses
on business.

www.EBooksWorld.ir

What this book covers
Chapter 1, Introduction, introduces Java EE enterprise applications and why
Java EE is (still) relevant in modern systems.

Chapter 2, Designing and Structuring Java Enterprise Applications, shows how
to design the structure of an enterprise application using examples, keeping
design enterprise applications with business use cases in mind.

Chapter 3, Implementing Modern Java Enterprise Applications, covers how to
implement modern Java EE applications and why that technology choice is
still relevant today.

Chapter 4, Lightweight Java EE, teaches you how to realize lightweight Java
EE applications with a small footprint and minimal third-party dependencies.

Chapter 5, Container and Cloud Environments with Java EE, explains how to
leverage the benefits of containers and modern environments, how to
integrate enterprise applications, and how this movement encourages
productive development workflows.

Chapter 6, Application Development Workflows, covers the key points for fast
development pipelines and high software quality, from Continuous Delivery
to automated testing and DevOps.

Chapter 7, Testing, as the name suggests, covers the topic of testing, which
helps enable you to ensure high quality in software development automated
testing with reasonable coverage.

Chapter 8, Microservices and System Architecture, shows the key points of how
to design systems after the project and company circumstances, how to
construct applications and their interfaces, and when microservice
architectures make sense.

Chapter 9, Security, covers how to realize and integrate security concerns in

www.EBooksWorld.ir

today's environments.

Chapter 10, Monitoring, Performance, and Logging, covers why traditional
logging is harmful, how to investigate performance issues, and how to
monitor the business and technical aspects of an application.

Appendix, Conclusion, recapitulates and summarizes the contents of the book,
including giving advice and motivation.

www.EBooksWorld.ir

What you need for this book
To execute and perform the code examples given in the book, you will
require the following tools configured in your system:

NetBeans, IntelliJ or Eclipse IDE
GlassFish Server
Apache Maven
Docker
Jenkins
Gradle

www.EBooksWorld.ir

Who this book is for
This book is for experienced Java EE developers who aspire to become the
architects of enterprise-grade applications, or for software architects who
would like to leverage Java EE to create effective blueprints of applications.

www.EBooksWorld.ir

Conventions
In this book, you will find a number of text styles that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are
shown as follows: "The EJB is annotated using @Startup."

A block of code is set as follows:

 @PreDestroy

 public void closeClient() {

 client.close();

 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 private Client client;

 private List<WebTarget> targets;

 @Resource

 ManagedExecutorService mes;

In order to increase simplicity and readability, some code examples are
shortened to their essence. Java import statements are only included for new
types and code parts that are insignificant to the example are omitted using
three dots (...).

Any command-line input or output is written as follows:

mvn -v

New terms and important words are shown in bold.

www.EBooksWorld.ir

Reader feedback
Feedback from our readers is always welcome. Let us know what you think
about this book-what you liked or disliked. Reader feedback is important for
us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/author
s.

www.EBooksWorld.ir

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of
things to help you to get the most from your purchase.

www.EBooksWorld.ir

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and
password.

2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktP
ublishing/Architecting-Modern-Java-EE-Applications. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/PacktPublis
hing/. Check them out!

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Architecting-Modern-Java-EE-Applications
https://github.com/PacktPublishing/

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books-maybe a
mistake in the text or the code-we would be grateful if you could report this
to us. By doing so, you can save other readers from frustration and help us
improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing
errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.EBooksWorld.ir

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across
all media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works in any form on
the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

www.EBooksWorld.ir

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.EBooksWorld.ir

Introduction
Compared to the past, we see a lot of new demands in enterprise software. It
is no longer sufficient to just develop some piece of software and deploy it to
an application server. Or maybe it never was.

www.EBooksWorld.ir

New demands in enterprise systems
The world moves faster than ever. And moving fast is one of the most
important criteria of today's IT companies. We see companies that can adapt
to the real world and the customer's needs with high velocity. The expected
time to market of features has shrunk from years and months to weeks and
less. In order to cope with this, companies not only need to introduce new
technology or throw more money at their business problem, but also rethink
and refactor the way they operate at the core of their IT.

What does move fast mean in this context? What aspect does this include?
And which methods and technology support this?

Moving fast is all about quickly adapting to the needs of the market and
customers. If a new feature is desired or looks promising, how long does it
take to get from the initial idea to the feature being in the user's hands? If new
infrastructure is required, how long does it take from that decision to the
running hardware? And do not forget, if a certain piece of software is
developed with all that velocity, is there automated quality control in place
that ensures everything will work as expected and not break the existing
functionality?

In software development, most of these questions lead to Continuous
Delivery and automation. Software that is being developed needs to be built,
tested, and shipped in an automated, fast, reliable, and reproducible way. A
reliable, automated process not only leads to quicker turnarounds but
ultimately higher quality. Automated quality control, such as software tests,
are part of the process. In modern software development, Continuous
Delivery, automation, and proper testing are some of the most important
principles.

Traditionally, infrastructure was a big bottleneck in most companies. Smaller
companies often struggled to provide new infrastructure with a limited
budget. Bigger companies mostly fail to implement fast and productive

www.EBooksWorld.ir

processes. For big corporations, in most of the cases the issue is not the
budget but the implementation of the processes. It is not untypical to wait
days and weeks for new infrastructure, due to approvals and overly complex
processes that technically could have been finished in a matter of minutes.

Therefore, application infrastructure and how it is designed is an important
aspect. Chapter 5, Container and Cloud Environments with Java EE, will show
you the topic of modern cloud environments. Actually, we will see that it's
not so much about whether cloud service providers are being used. Fast and
productive processes certainly can be implemented with on-premises
hardware. Rather, it is more a question of whether processes are implemented
properly, using well-suited technologies.

Modern infrastructure needs to be set up in a matter of minutes, in an
automated, fast, reproducible, and reliable way. It should adapt to changing
demands without great effort. To meet this criterion, infrastructure should be
defined as code, either with procedural scripts or in declarative descriptors.
We will see how infrastructure as code impacts software development
workflows and which technologies support it.

These demands will impact the way teams operate. It is no longer sufficient
for development teams to just develop and let the operational teams deal with
running the software and facing potential issues on production. This practice
always leads to tensions and finger pointing once critical errors occurred in
production. Instead, the common goal should be to deliver software that
fulfills a purpose. By defining the required infrastructure and configuration as
code, development and operations teams will naturally move together. This
DevOps movement, a compound of development and operations, aims
toward accountability of the software team as a whole. Everybody involved is
responsible for customers being able to use proper software. This is more an
organizational challenge than a technical one.

On a technical aspect, Continuous Delivery, as well as the 12-factor and
cloud native buzzwords attempted to meet these demands. The 12-factor and
cloud native approaches describe how modern enterprise applications should
be developed. They define requirements, not only for the development

www.EBooksWorld.ir

processes but also for the way applications are run. We will look into these
approaches, modern cloud environments, and where Java EE supports us,
later in this book.

www.EBooksWorld.ir

Modern way of realizing enterprise
systems
Now we will look at how enterprise software projects are being developed.

Following the approach of meeting the needs of real-world customers, we
will face the question of the purpose of the application that we want to
develop. The motivations and purposes of the enterprise systems need to be
clear before immediately going into technology details. Otherwise, software
is just being developed for the sake of developing software. Sadly, this is the
case way too often. By focusing on business logic and the principles of
Domain-Driven Design, as wonderfully described in the book by Eric Evans,
we will ensure that the software we are building will meet the business
demands.

Only after the application's purpose and responsibility is clear to the
stakeholders, can we focus on the technological aspects. Teams should favor
technologies that can not only implement the business use cases appropriately
but also reduce the amount of work and overhead. Developers should be able
to focus on the business, not the framework and technology. Good
frameworks support solving business problems in a lean way and don't want
the developer's attention themselves.

The chosen technology should also support productive development
workflows as much as possible. This not only includes automation and fast
development turnarounds but also the ability to embrace modern
infrastructure, such as Linux containers. In Chapter 4, Lightweight Java EE, and
Chapter 5, Container and Cloud Environments with Java EE, we will have a
closer look into the nuts and bolts of modern environments and how Java EE
supports them.

www.EBooksWorld.ir

Relevance of Java EE in modern
systems
Let's talk about Java EE since this is the topic of this book and it is relevant in
enterprise systems.

Java EE and J2EE are being used heavily, especially in bigger companies.
One of the advantages was always that the platform consists of standards that
guarantee to be backwards compatible with older versions. Even old J2EE
applications are guaranteed to still function in the future. This was always a
big benefit for companies that are planning for the long term. Applications
that are developed against the Java EE API can run on all Java EE application
servers. Vendor-independent applications enable companies to build future-
proof software that doesn't lock it into a specific solution. This turned out to
be a sound decision that ultimately led to a mindset of the enterprise industry
that standards, or de facto standards which everybody agrees upon, improve
the overall situation.

Compared to the J2EE world, a lot has changed in Java EE. The
programming model is totally different, much leaner, and more productive.
This was drastically changed when the name switched from J2EE to Java EE
5, and especially since EE 6. We will have a look at the modern way of
developing Java enterprise in Chapter 3, Implementing Modern Java Enterprise
Applications. We will see what architectural approaches and programming
models are being used and how the platform leverages development
productivity much more than in the past. Hopefully, the idea of why Java EE
now provides a modern solution to develop enterprise applications will
become clear.

Right now, bringing this message out to the industry is actually more of a
marketing and political challenge than a technical one. We still see tons of
developers and architects who still consider Java EE to be the cumbersome,
heavyweight enterprise solution of the J2EE age, which required a lot of

www.EBooksWorld.ir

time, effort, and XML. Enterprise JavaBeans (EJB), as well as application
servers, have a particularly bad reputation due to their past. This is why a lot
of engineers are biased toward that technology. Compared to other enterprise
solutions, Java EE never saw much marketing targeted at developers.

In Chapter 4, Lightweight Java EE, we will see why modern Java EE is actually
one of the most lightweight enterprise solutions. We will define the term
lightweight aspects and see why the Java EE platform is more relevant than
ever, especially in modern cloud and container environments. The impression
the IT industry has of a particular technology is important for its success. I
hope this chapter will shed some light into this topic.

Companies have usually chosen Java EE mostly because of its reliability and
backwards compatibility. I personally favor Java EE because of its
productivity and ease of use. In Chapter 4, Lightweight Java EE, and Chapter 5,
Container and Cloud Environments with Java EE, we will cover more about
this. In this book, I would like to show the readers why Java EE is a solution
well-suited to today's enterprise demands. I will also show the technologies
and standards, not in every detail, but rather how they are integrated with
each other. I believe that focusing on the integrational part leads to a better
understanding in how to effectively craft enterprise applications.

www.EBooksWorld.ir

Java EE 8 update and roadmap
Let's have a very high-level overview of what has happened in Java EE
version 8. The goal of this version is to improve the developer's experience
even more, to streamline the API usage further, and to make Java EE ready
for new demands in cloud environments. We saw two completely new JSRs,
JSON-B (Java API for JSON Binding) and Security, together with
improvements in existing standards. In particular, introducing JSON-B
simplifies the integration of JSON HTTP APIs in a vendor-independent way.

The direction of Java EE is to improve the development of enterprise
applications in regard to modern environments and circumstances. It turns out
that modern environments are not only compatible with Java EE but
encourage approaches that have been part of the platform for years. Examples
are the separation of the API from the implementation, or application server
monitoring.

On the long-term roadmap, there is better support for modern monitoring,
health-checks, and resilience. Currently, these aspects have to be integrated in
a few lines of codes, as we will see in later chapters. The long-term goal is to
make that integration more straightforward. Java EE aims to let developers
focus on what they should focus on - solving business problems.

www.EBooksWorld.ir

Java Community Process
What makes Java EE platform unique is the process of how it is specified.
The standards of Java EE are developed as part of the Java Community
Process (JCP). The JCP is a prime example of an industry that actively
encourages participation in defining standards, not only from the few
engineers involved but anybody interested in that technology. The platform
comprises standards in the form of Java Specification Requests (JSR).
These JSRs are not only relevant for Java and Java EE but also for
technologies that build upon them, such as the Spring framework. Ultimately,
the real world experience of these other technologies then again help shaping
new JSRs.

During application development, and especially when encountering potential
issues, the written specifications that emerge from the JSRs are extremely
beneficial. The vendors who support the enterprise platform are required to
provide the implementation in the way it's specified in these standards. That
said, the specification documents inform both the vendors and developers as
to how the technology will work. If some functionality is not met, the
vendors are required to fix these issues in their implementations. This also
means that developers, in theory, only have to learn and know these
technologies, no vendor-specific details.

Every developer can participate in the Java Community Process to help in
shaping the future of Java and Java EE. The Expert Groups who define the
specific standards welcome constructive feedback from anybody interested in
the topic, even if they're not active members of the JCP. Other than this,
you're able to have a peek into the next versions of the standards even before
they're released. These two facts are very interesting for architects and
companies. There is not only insight into where the direction will go but also
the possibility to contribute and make an impact.

These motivations were also two of the reasons why I personally specialized
in Java EE. I have a background of enterprise development with the Spring

www.EBooksWorld.ir

framework. Besides the fact that both technologies are very similar in terms
of the programming model, I especially valued the power of the CDI standard
as well as the possibility to seamlessly use all of the technologies within the
platform. I started to look into the specific JSRs that are part of the enterprise
platform and started to contribute and provide feedback on features that were
standardized back then. At the time of writing this book, I'm part of two
Expert Groups, JAX-RS 2.1 and JSON-P 1.1. Helping to define these
standards improved my knowledge in enterprise systems a lot. You are
naturally obliged to dive deep into the topics, motivations, and solutions of
the specific technology that you help standardize. And of course, it is
somewhat satisfying to know that you helped in working on standards in the
IT industry. I can only encourage developers to participate in the JCP,
looking into what's currently developed, and to contribute and provide
feedback to the Expert Groups.

www.EBooksWorld.ir

What to expect in the book
I've decided to write this book about the things I learned in the past working
on Java enterprise systems of all kinds. My motivation is to show you what a
modern Java EE approach looks like. This, of course, first of all aims toward
developing enterprise applications themselves, and modern programming
models. I try to build up an impression as to how Java EE is used in the age
of EE 8 and where the platform shines. There are new design patterns and
paradigms being used that have emerged from modern framework
approaches. If you were familiar with the J2EE world, you will hopefully see
the advantage of modern Java EE. I try to show which of the old paradigms,
constraints, and considerations that made J2EE sometimes being disliked
among developers are not true anymore and can be discarded. Besides this,
the book is an attempt to spread some enthusiasm and explain why I am
convinced that Java Enterprise serves the purpose of realizing enterprise
applications well.

That said, you, the reader, don't need prior knowledge of the J2EE world and
patterns and best practices thereof. In particular, the programming model so
different that I'm convinced it makes sense to showcase today's approach
from a green field.

It you have built and designed J2EE applications, this is great. You will see
what the challenges with past J2EE design patterns were, particularly when in
the modern world, our domain can focus on business demands first and not
the technology used to implement it. This is especially true when we follow
the approaches of Domain-Driven Design. You will notice how many
cumbersome and painful aspects of J2EE systems in the past can be
eradicated in modern Java EE. The simplicity and power of the Java EE
platform may inspire you to rethink certain approaches that we have done so
far. Maybe you can try to take a mental step back to have a fresh, unbiased
view on the technology.

This book is meant for software engineers, developers and architects who

www.EBooksWorld.ir

design and build enterprise applications. In the book, I will mostly use the
term developers or engineers. That said, I am convinced that architects should
also, from time to time, the more the better, touch source code and get their
hands dirty with technology. This is not only to support other developers in
the team but also important for themselves to get more real-world experience.
In the same way all developers should have at least a basic understanding of
the system's architecture and the reasoning for the architectural choices.
Again, the better this mutual understanding is, the better will the
communication and development function in the projects.

Modern enterprise application development touches much more than just the
sole development. As we are seeing, new demands of enterprise applications,
engineers care about development workflows, cloud environments,
containers, and container orchestration frameworks. We will cover whether
and how Java Enterprise fits into this world and what approaches and best
practices there are that support this. This will tackle the topics of Continuous
Delivery and automated testing, why they have such importance, and how
they integrate with Java EE. We will also cover container technologies, such
as Docker, and orchestration frameworks such as Kubernetes. In today's
enterprise world it's important to show how a technology such as Java EE
supports these areas.

Microservice architecture is a big topic, another of today's hypes. We will
look at what microservices are about, and if and how they can be realized
with Java EE. The topics of security, logging, performance, and monitoring
will also be covered later in this book. I will point out what architects should
know and be aware of in today's enterprise software world. The used choices
of technology, especially when it comes to modern solutions that support
applications; for example, in the areas of 12-factor or cloud native
applications, serve as examples as to what would be chosen as of today.
However, it is much more important to understand what the concepts and
motivations behind these technologies are. Used technology changes day by
day, principles and concepts or computer science live much longer.

For all of the subjects that I cover in this book, my approach is to show the
motivations and reasoning behind solutions first, and then how they are

www.EBooksWorld.ir

applied and implemented in Java EE second. I believe that simply teaching a
certain technology may certainly help developers in their daily jobs but they
will not fully embrace the solution until the motivations behind it are
completely understood. This is why I will also start with the motivations
behind enterprise applications in general.

There is a lot of functionality included in Java EE, even more if you look into
the past. This book does not aim to represent a full Java EE reference work.
Rather, it is intended to provide real world experience as well as
recommendations, call them best practices, tackling typical scenarios with
pragmatic solutions. Now, please lean back and enjoy the journey through a
modern enterprise software world.

www.EBooksWorld.ir

Designing and Structuring Java
Enterprise Applications
Every piece of software is designed in a certain way. The design includes the
architecture of the system, structure of the projects, and structure and quality
of the code. It can either communicate the intentions well or obfuscate them.
Engineers need to design an enterprise application or system, before it is
implemented. In order to do that, the purpose and motivations of the software
need to be clear.

This chapter will cover:

What aspects to focus on when developing software
Project build structures and Java EE build systems
How to structure enterprise projects modules
How to realize module package structures

www.EBooksWorld.ir

The purpose of enterprise
applications
Behind every action, be it in daily life, big organizations, or software
projects, there should be a reason. We humans need reasons why we are
doing things. In enterprise software development, there is no difference.

When we build software applications, the first question asked should be
why?. Why is this piece of software needed? Why is it reasonable or required
to spend time and effort to develop a solution? And why should the company
care about developing that solution itself?

In other words, what is the application's purpose? What problem is this piece
of software trying to solve? Do we want the application to implement an
important business process? Will it generate revenue? Is it going to gather
revenue directly, for example by selling products, or indirectly by marketing,
supporting customers, or business processes? Are there other possibilities to
support customers, employees, or business processes?

These and other questions target the application's business goals. Generally
speaking, every piece of software needs a justification in the overall picture
before we invest time and effort into it.

The most obvious legitimization is to implement necessary business use
cases. These use cases bring certain value for the overall business and will
sooner or later realize features and generate revenue. At the end of the day,
the software should achieve the goal of implementing the business use cases
as best as possible.

www.EBooksWorld.ir

What developers should focus on
Therefore, software developers as well as project managers should first focus
on meeting the business concerns and implementing the use cases.

This clearly sounds obvious, but too often the focus of enterprise projects
starts drifting away into other concerns. Developer effort is spent on
implementation details or features that have little benefit for solving the
actual problem. How many logging implementations, home-grown enterprise
frameworks, or over-engineered levels of abstractions have we seen in the
past?

Non-functional requirements, quality of software, and so-called cross-cutting
concerns are in fact an important aspect of software development. But the
first and main focus of all engineering effort should be directed to meeting
the business requirements and developing software that actually has a
purpose.

www.EBooksWorld.ir

Meeting customer's demands
We have the following questions:

What is the application's business purpose?
What are the most important features that users care about?
Which aspects will generate revenue?

The answers to these questions should be known to the stakeholders. If not,
then the correct way would be to take a step back, look at the overall picture
of the software landscape, and reconsider the software's right to exist. Not in
all cases the motivation will be purely business-driven. There are, in fact, a
lot of cases where we will implement solutions that do not directly generate
revenue but do so indirectly, by supporting others. These cases are certainly
necessary and we will cover them and the general topic of how to construct
reasonable system landscapes in Chapter 8, Microservices and System
Architecture.

Besides these supporting software systems, we focus on business aspects.
Having this main goal in mind, the first thing to address is how to model the
business use cases and transform them into software. Only after that, the use
cases are implemented using certain technologies.

These priorities will also reflect the customer demands. The application's
stakeholders care about software that fulfills its purpose.

Software engineers tend to see this differently. They care about
implementation details and the elegance of solutions. Engineers are often
passionate about certain technologies and spend much time and effort
choosing the right solutions as well as implementing them well. This includes
a lot of technical cross-cutting concerns, such as logging, and so-called over-
engineering, which is not mandatory for the business domain. Embracing
software craftsmanship certainly has its importance and is essential for
writing better software, but many times it is orthogonal to the client's

www.EBooksWorld.ir

motivations. Before spending time and effort with implementation details,
engineers should be aware of the client's demands first.

Project timeline requirements are another aspect to consider. Software teams
weigh business use cases against the quality of technical solutions. They tend
to postpone required software tests or quality measures in order to meet
deadlines. The technology used to implement the business application should
support effective and pragmatic development.

When seeing the enterprise world through the eyes of a paying customer or a
manager with limited time and budget, software engineers will likely
understand their priorities. Caring about revenue-generating use cases first is
mandatory. Technical necessities beyond these are seen by customers and
managers as a necessary evil.

The rest of this book will show you how to meet and balance these two
motivations with Java EE.

www.EBooksWorld.ir

Outer enterprise project structure
Having the goal of business use cases in mind, let's move our focus a bit
more down to earth to real-world enterprise projects. In later chapters, we
will see what methods are there to help us reflecting the business domains in
the architecture in a suitable way.

www.EBooksWorld.ir

Business and team structures
Software projects are usually developed by a team of engineers, software
developers, or architects. For simplicity, we will call them developers.
Software developers, architects, testers, and all kind of engineers should
arguably program from time to time.

However, in most situations we have several people working simultaneously
on a software project. This already requires us to take a few things into
account, mainly communication and organizational overhead. When we look
at the structure within organizations with several teams working on multiple
projects, or temporarily even the same project, we deal with even more
challenges.

The Conway's law claims that:

Organizations which design systems [...] are constrained to produce designs
which are copies of the communication structures of these organizations.

- Melvin Conway

That being said, the way in which the teams are organized and communicate
with each other will inevitably leak into software design. The organization
chart of developers and their effective communication structures has to be
considered when constructing software projects. We will have a detailed look
into how to construct several distributed systems and more specific
microservices in Chapter 8, Microservices and System Architecture.

Even in a single project owned by a team of few developers, there will likely
be multiple features and bug fixes being developed simultaneously. This fact
impacts how we plan the iterations, organize, and integrate source code, and
build and deploy runnable software. In particular Chapter 6, Application
Development Workflows and Chapter 7, Testing will cover this topic.

www.EBooksWorld.ir

Software projects contents
Enterprise software projects include several artifacts necessary to build and
ship applications. Let's have a closer look at them.

www.EBooksWorld.ir

Application source code
First of all, all enterprise applications, like probably any application, are
written in source code. The source code is arguably the most important part
of our software project. It represents the application and all its functionality at
its core and can be seen as the single source of truth of software behavior.

The project's sources are separated into code that runs on production and test
code to verify the application's behavior. The technologies as well as the
quality demands will vary for test and production code. In Chapter 7, Testing,
we will deeply cover the technologies and structures of software tests. Apart
from that chapter, the focus of this book lies on production code, which is
shipped and which handles the business logic.

www.EBooksWorld.ir

Software structures
The software project organizes the source code in certain structures. In Java
projects, we have the possibility to cluster components and responsibilities
into Java packages and project modules, respectively:

Structuring these components is obviously less a technical rather than an
architectural necessity. Code that is packaged arbitrarily would technically
run equally well. However, this structure helps engineers understanding the
software and its responsibilities. By clustering software components that
fulfill coherent features, we increase cohesion and achieve a better
organization of the source code.

This and the next chapter will discuss the benefits of Domain-Driven Design,

www.EBooksWorld.ir

described in the book by Eric Evans, and the why and how to organize code
in business-driven packages. For now, let's record that we group coherent
components that form logical features into logical packages or project
modules.

Java SE 9 comes with the possibility of shipping modules as Java 9 modules.
These modules are, in essence, similar to the JAR files with the ability to
declare dependencies and usages restrictions of other modules. Since this
book is targeted for Java EE 8 and since the fact that the usage of Java 9
modules hasn't spread yet in real-world projects, we will cover only Java
packages and project modules.

Breaking the structure of software projects further down, the next smaller unit
of software components is a Java class. Classes and the responsibilities
thereof encapsulate single functionalities in the domain. They are ideally
loosely coupled and show a high cohesion.

A lot has been written about clean code practices and representing
functionality in source code. The book Clean Code by Robert C. Martin, for
example, explains methods such as proper naming or refactoring, that help
achieve well-crafted source code in packages, classes and methods.

www.EBooksWorld.ir

Version control systems
The source code is kept under version control, since most software projects
require coordination of simultaneous code changes, made by multiple
developers. Version control systems (VCS) have established themselves as
mandatory to reliably coordinate, track, and comprehend changes in software
systems.

There are a lot of choices of version control systems, such as Git, Subversion,
Mercurial or CVS. In the last years, distributed revision control systems,
particularly Git, have been widely accepted as the state-of-the-art tools. They
use a so-called hash tree, or Merkle tree to store and resolve individual
commits, which enables efficient diffs and merges.

Distributed VCS enables developers to work with project repositories in
distributed ways, without constantly requiring a network connection. Every
workstation has its own repository, which includes the full history and is
eventually synchronized with the central project repository.

As of writing this book, the vast majority of software projects use Git as
version control system.

www.EBooksWorld.ir

Binaries
The VCS project repository should only contain the sources that are produced
and maintained by developers. Certainly, enterprise applications will have to
be deployed as some kind of binary artifacts. Only these shippable binaries
can be executed as runnable software. The binaries are ultimately the
outcome of the development and build process.

In the Java world this means that the Java source code is compiled to portable
bytecode and is usually packaged as Web Application Archive (WAR) or
Java Archive (JAR), respectively. WAR or JAR files comprise all classes
and files required to ship an application, framework dependency, or library.
The Java Virtual Machine (JVM) finally executes the bytecode and
together with that, our business functionality.

In enterprise projects the deployment artifacts, the WAR or JAR files, are
either deployed to an application container or already ship the container
themselves. The application container is needed, since beside their distilled
business logic, enterprise applications will have to integrate additional
concerns, such as application life cycle or communication in various forms.
For example, a web application that implements certain logic but is not
addressable over HTTP communication has little value. In Java Enterprise,
the application container is responsible for providing this integration. The
packaged application contains the distilled business logic and is deployed to a
server, which takes care of the rest.

In recent years, more Linux container technologies such as Docker have
emerged. This carries the ideas of shippable binaries even further. The binary
then not only contains the packaged Java application, but all components
required to run the application. This, for examples, includes an application
server, the Java Virtual Machine, and required operating system binaries. We
will discuss the topic of shipping and deploying enterprise applications,
especially regarding container technology, in Chapter 4, Lightweight Java EE.

www.EBooksWorld.ir

The binaries are produced as part of the software build process. It enables to
reliably recreate all binaries from the repository's sources. Therefore, the
binaries should not be kept under version control. The same is true for
generated source code. In the past, for example, JAX-WS classes which are
required for SOAP communication were usually generated from descriptor
files. Generated source code is created during the build process and should
also not be kept under version control. The idea is to keep only the distilled
source code in the repository and no artifacts that can be derived from it.

www.EBooksWorld.ir

Build systems
The build process is first of all responsible for compiling the sources of a
Java software project into bytecode. This happens every time changes have
been made to the project. All modern build systems ship with useful
conventions to minimize the required configuration.

In the enterprise world, with all its different frameworks and libraries, an
important step is to organize and define all dependencies on APIs and
implementations. Build tools such as Apache Maven or Gradle support
developers by including powerful dependency resolution mechanisms. The
build tool adds all the dependencies with the corresponding versions required
to compile or run the application, respectively. This simplyfies to setup the
project among multiple developers. It also enables repeatable builds.

Packaging the compiled classes and their dependencies into deployment
artifacts is also part of the build process. Depending on the used technology
the artifacts are packaged as WAR or JAR files. Chapter 4, Lightweight Java
EE will discuss the different ways of packaging Java enterprise applications
together with their pros and cons.

The topics, Gradle and Apache Maven, will discuss the implementation and
differences of the two main build systems in more depth.

www.EBooksWorld.ir

Single versus multi-module projects
As said before, we can organize the application's source code in Java
packages and project modules, respectively. Project modules group related
functionality together into separately buildable sub-projects. They are usually
specified by the build systems.

At first, the motivations behind splitting up project modules are quite
understandable. Grouping Java code and packages into related modules
creates a clearer view for the developers, enables a better structure, and
increases cohesion.

Another reason for multi-modules is build time performance. The more
complex our software project becomes the longer it will take to compile and
package it into artifacts. Developers mostly touch few locations in the
projects at a time. Therefore, the idea is to not always rebuild the whole
project, but only the modules necessary in order to apply the desired changes.
This is an advertised advantage of the Gradle build system, to save time by
rebuilding only what has changed.

Another argument for this practice is the possibility of reusing certain sub-
modules in several projects. By building sub-projects into self-sufficient
artifacts we could possibly take and include a sub-artifact in another software
project. For example, a common practice is to design a model module that
contains the entities of the business domain, usually as standalone plain old
Java objects (POJOs). This model would be packaged to a JAR file and
reused as a dependency in other enterprise projects.

There are, however, some drawbacks, or rather, illusions to this practice.

www.EBooksWorld.ir

Illusion of reusability
We have to remind ourselves that software projects are built by teams of
developers and the project structure will therefore adhere to their
communication structures. Reusing certain modules within several projects
requires quite a bit of coordination.

www.EBooksWorld.ir

Technical dependencies
A project's module that is subject to be reused has to meet specific criteria.
First of all the technology of the shared modules has to match the target
project. This sounds obvious, but has quite some implications on the
implementation details. Especially used libraries and frameworks will
inevitably cause the involved modules to be coupled and dependent on the
specific technology. For example, model classes in Java EE typically contain
annotations from APIs such as JPA that need to be available in all dependent
modules.

Third-party dependencies with specific versions that are required for a shared
module to function correctly have even more technical impact. These
dependencies then have to be available at runtime and must not collide with
other dependencies or versions thereof. This can cause a lot of headache with
colliding dependencies that are already available on the server. The same
holds true for implementation details that contain implicit dependencies.

A typical example of this is JSON mapping libraries such as Jackson or
Gson. A lot of third-party dependencies use these libraries in specific
versions that might collide with other dependencies or versions at runtime.
Another example is logging implementations such as Logback or Log4j.

In general, shared models should be as self-sufficient as possible or at least
contain only stable dependencies that won't likely drift into these issues. A
good example for a very stable dependency is the Java EE API. Because of
the backwards-compatible nature of the Enterprise Edition, usage of the API
and resulting functionality won't break if a newer version is introduced.

But even if the Java EE API is the only dependency of shared modules, it will
bind the model to a specific version and reduce the freedom to change.

www.EBooksWorld.ir

Organizational challenges
Shared technology and dependencies come with organizational challenges.
The greater the number of developers and teams, respectively, the bigger the
impact of used technology and dependencies. Teams have to agree upon
certain technology, used frameworks and libraries and versions thereof.

If a single teams want to change something in this graph of dependencies or
some of the used technologies, this change requires a lot of coordination and
overhead. Chapter 8, Microservices and System Architecture, covers this topic
of sharing code and artifacts within several systems and whether this is
advisable or not.

www.EBooksWorld.ir

Reusability considerations
The trade-off is always reusability and having to deal with these issues versus
simplicity and potential duplication. Depending on the level of self-
sufficiency, the choice will be made toward one or the other. Generally
speaking, the cost of coordinating dependencies, versions, and technology,
outweighs the benefits of avoiding redundancy.

An important question to be asked, however, is how the projects modules are
layered either vertically or horizontally. An example for horizontal layering is
the typical three-tier architecture of clustering into a presentation, business
and data layer. Vertical layering means to group functionality based on their
business domain. Examples would be modules for accounts, orders or
articles, including all technical requirements such as HTTP endpoints or
database access. Both types of modules can potentially be reused.

In reality horizontal layered modules like models are more likely subject to
be shared among other projects. These types of modules naturally have a
smaller variety of dependencies, ideally zero. On the contrary, vertical
layered modules will contain implementation details and expect certain
circumstances, for example, how the container is configured. And again, it
depends a lot on the technology being used within the modules that are
subject to share.

www.EBooksWorld.ir

Project artifacts
Let's take a step back and look at the deployment artifacts of our enterprise
application. Typically, an application results in a single artifact that will run
our software. Even with several multi-modules being used at the end of the
day, these will boil down to a single or few artifacts. So, in most of the cases
all of this structure is flattened again into single JAR or WAR files. Looking
at the reusability of modules, which is not necessarily being given, this raises
the question of whether we need several modules per project at all. At the end
of the day, introducing and managing sub-projects, vertical or horizontal, will
require certain developer effort.

It is true that splitting up the code base can improve build performance if
only sub-projects that have been changed are rebuilt. However, in the sub-
chapters Apache Maven and Gradle and Chapter 4, Lightweight Java EE we
will see that building a single reasonably designed project into a single
artifact is sufficiently fast and that there are usually other aspects responsible
for making builds slow.

www.EBooksWorld.ir

One project per artifact
It is advisable to package the enterprise project into a single deployment
artifact that emerges from a single project module. The number and structure
of deployment artifacts then maps the structure of the software projects. If
other artifacts emerge from the project, they are organized in separate project
modules as well. This enables an understandable and lightweight project
structure.

Usually, an enterprise project will result in a shippable JAR or WAR file,
originating from a single project module. Yet sometimes, we do have good
reasons to create modules that are shared among projects. These are then
sensibly crafted as own project modules that build own artifacts, for example
JAR files.

There are still other motivations for multi-module projects. System tests that
verify a deployed enterprise application from the outside don't necessarily
have dependencies on the production code. It makes sense, in some
situations, to organize these tests in separate project modules that are part of a
multi-module project.

Another example is frontend technologies that are just loosely coupled to the
backend application. With modern client-centric JavaScript frameworks
being used more and more, the coupling to the backend also decreases. The
workflow and life cycle of developing frontends can vary from the backend
application. Therefore, it can make sense to split the technology into several
sub-projects or even several software projects. The topic, Structuring for
modern frontend technologies, covers how to tackle these situations.

These situations, however, also fit the concept of mapping artifacts in the
broader sense to project modules. A system test project is used and executed
separately from the production code. Developing and building the frontend
project could equally be differ from the backend part. There may be some
other situations where it is advisable as well.

www.EBooksWorld.ir

Build systems for Java EE
The project modules are specified as modules of the build system. Whether
we can follow the straightforward way of having a single project or multiple
projects; for example, motivated by system tests, we will build and execute
them as part of the build process.

A good build system needs to ship certain features. The main task of it is to
compile the sources and package the binaries as artifacts. Required
dependencies are also resolved and used for compilation or packaged,
respectively. There are several scopes where dependencies are required, such
as during compilation, testing, or runtime. Different scope definition specify
whether dependencies are shipped with the artifact.

The project should be built in a reliable, reproducible way. Several builds
with identical project contents and build configuration must produce the same
results. This is important for implementing Continuous Delivery (CD)
pipelines, which enable reproducible builds. That said the build system must
be able to run on a Continuous Integration (CI) server, such as Jenkins or
TeamCity. This requires the software to ship a command-line interface,
especially for Unix-based systems. Chapter 6, Application Development
Workflows, will show the motivations behind Continuous Delivery.

The build system will be used by software engineers working on various
environments and operating systems, which should be supported as well. For
JVM-based build systems this portability is usually given. It may be the case
that projects have specific requirements such as native code that needs to be
built on specific environments. For Java enterprise applications, however,
this is usually not the case.

In general the build process should run as fast as possible. Booting up and
configuring the build system should not require much time. The longer the
build takes the higher the turnaround times and the slower the feedback
engineers get from the build pipeline. In Chapter 4, Lightweight Java EE, we

www.EBooksWorld.ir

will cover more of this topic.

At the time of writing, Apache Maven is the most used build system well
known to the majority of Java developers.

Maven is a Java-based build system configured by XML. It's projects are
defined by a so-called project object model (POM). Maven makes use of a
convention over configuration approach that minimizes the required
configuration. The default configuration is well suited for Java applications.

Another build tool with high usage is Gradle. Gradle is a build tool that offers
a Groovy-based Domain-Specific Language (DSL) to configure fully
extensible and scriptable project builds. Since Groovy is a full programming
language Gradle build scripts are naturally powerful and flexible.

Both Gradle and Maven include a sophisticated dependency management and
are well suited to build Java-based projects. There are certainly still other
build systems, such as SBT, however, Gradle and Maven are, by far, the
most-used ones and will be covered in the following section.

www.EBooksWorld.ir

Apache Maven
Apache Maven is widely used in Java-based projects and known to the vast
majority of enterprise developers. The wide-spread usage and the familiarity
of this tool is certainly a benefit.

Maven is based on a convention over configuration approach which
simplifies straightforward use cases. Maven's configuration, however, does
not always provide flexibility. In fact, this inflexibility is sometimes a feature.
Since it's cumbersome to change the default Maven project structure and
build process, most of the Java enterprise projects come in a very similar and
familiar way. New developers easily find their way through the project's
build configuration.

The following snippet shows a typical example of a Maven project structure:

This will seem familiar to the majority of enterprise Java developers. This
example web application is packaged as a WAR file.

One of the shortcomings of Apache Maven is its somewhat nontransparent
way of defining used build plugins and dependencies thereof. Using the
default build convention without explicitly specifying versions for plugins
such as the Maven Compiler Plugin can result in unwanted changes of used
versions. This violates the principle of repeatable builds.

www.EBooksWorld.ir

Because of this, projects that require reproducibility often explicitly specify
and override the plugin dependency versions in the POMs. By doing so,
projects will be built using the same versions all the time, even if the default
plugin versions change.

Super POM definitions are another common solution to specify exact plugin
versions. Project POMs can inherit from parent projects and reduce
boilerplate plugin definitions.

Developers can use the effective POM view that shows the resulting POM,
after applying the default configuration and potential inheritance.

A typical issue with Maven POMs is that enterprise projects very often
overuse the XML definitions. They prematurely introduce plugins or
configuration that already would be covered by the build conventions. The
following snippet shows the minimum POM requirements for a Java EE 8
project:

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.cars</groupId>

 <artifactId>car-manufacture</artifactId>

 <version>1.0.1</version>

 <packaging>war</packaging>

 <dependencies>

 <dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-api</artifactId>

 <version>8.0</version>

 <scope>provided</scope>

 </dependency>

 </dependencies>

 <build>

 <finalName>car-manufacture</finalName>

 </build>

 <properties>

 <maven.compiler.source>1.8</maven.compiler.source>

 <maven.compiler.target>1.8</maven.compiler.target>

 <failOnMissingWebXml>false</failOnMissingWebXml>

 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 </properties>

</project>

www.EBooksWorld.ir

The car manufacture application is built into a WAR artifact. The finalName
overrides the implied name of the WAR file, here resulting in car-
manufacture.war.

The specified Java EE 8 API is the only production dependency that a
straightforward enterprise solution requires. Chapter 4, Lightweight Java EE
will deeply cover the topic of project dependencies and their impact.

The provided properties tag removes the need to explicitly configure the build
plugins. Maven plugins per convention uses properties for configuration.
Specifying these will reconfigure the used plugin without needing to
explicitly declare the full definitions.

The properties cause the project to be built using Java SE 8, with all source
files considered to be encoded as UTF-8. The WAR file doesn't need to ship a
web.xml deployment descriptor; this is why we instruct Maven not to fail the
build on a missing descriptor. In the past, the Servlet API required
deployment descriptors in order to configure and map the application's
Servlets. Since the advent of Servlet API version 3, web.xml descriptors are not
necessarily required anymore; Servlets are configurable using annotations.

Maven defines its build process in several phases, such as compile, test, or
package. Depending on the chosen phase, multiple steps will be executed.
For example, triggering the package phase will compile the main as well as
test sources, run the test cases, and package all classes and resources into the
artifact.

The Maven build commands are triggered in the IDE or the mvn command
line, for example, as mvn package. This command triggers the package phase,
resulting in a packaged artifact. More details on phases and functionality of
Apache Maven can be found under its official documentation.

www.EBooksWorld.ir

Gradle
At the time of writing, Gradle is less commonly used in Java enterprise
projects than Apache Maven. This may be due to enterprise developers often
being unfamiliar with dynamic JVM languages such as Groovy, which
Gradle uses as its build script language. However, writing Gradle build files
doesn't require deep knowledge of Groovy.

Gradle comes with quite a few benefits, most importantly its flexibility.
Developers can leverage the full power of a programming language in order
to define and potentially customize the project build.

Gradle will keep a daemon running in the background, that is being reused
after the first build, to speed up subsequent build executions. It also keeps
track of build inputs and outputs, whether changes have been made since the
last build execution. This enables the system to cache steps and decrease the
development build time.

However, depending on the complexity of the project and its used
dependencies this optimization might not even be required. Chapter 4,
Lightweight Java EE will cover the impact of project dependencies and zero-
dependency applications.

The following snippet shows the build structure of a Gradle project:

www.EBooksWorld.ir

As you can see, the structure is quite similar to Maven projects, with the
difference being that built binaries are per default placed into the build
directory.

It's common for Gradle projects to include a wrapper script for environments
that have no Gradle installations.

The following code demonstrates an example of a build.script file:

plugins {

 id 'war'

}

repositories {

 mavenCentral()

}

dependencies {

 providedCompile 'javax:javaee-api:8.0'

}

Gradle build tasks are triggered via the command line, using gradle or the
provided wrapper scripts. Executing gradle build, for example, is the analog of
mvn package, compiling the sources, executing tests and building the artifact.

There are certain benefits of having a fully-fledged programming language
defining the build files. With the build scripts being treated as code,

www.EBooksWorld.ir

developers are encouraged to apply clean code principles for definitions that
become too complex. Sophisticated build steps can, for example, be
refactored into several, readable methods.

However, this power also brings the danger of over-engineering the build. As
said, the inflexibility of Apache Maven can be considered a feature; the
possibility of easily customizing build scripts eventually leads to build
definitions that are very specific to the project. Compared to Maven, overly-
customized builds can be an obstacle for developers who are unfamiliar with
the project.

Experience shows that the vast majority of enterprise project builds are quite
similar. This raises the question of whether the flexibility Gradle provides is
required. Projects that don't have any special requirements, unlike for
example product development, are sufficiently covered using Maven as build
system.

The rest of this book will thus use Maven when a build system is required as
an example. All code examples, however, are equally well suited to use
Gradle.

www.EBooksWorld.ir

Structuring for modern frontend
technologies
After shedding light on modern build systems for enterprise systems, let's
have a look at how to integrate frontend technologies into the backend.

Traditionally, this was pretty straightforward. The frontend of web
applications were, in most of the cases, server-side rendered HTML pages,
powered by JSP or JSF. The HTML was crafted on the server on demand,
that is, on request, and returned to the client. In order to realize that, the JSP
or JSF pages, respectively, have to reside on the backend. Therefore, the
whole enterprise application would be shipped and deployed as single
artifact.

www.EBooksWorld.ir

Enter JavaScript frameworks
With new frontend technologies, basically sophisticated JavaScript
frameworks, and especially single page applications, this premise has
changed quite a bit. The web frontend frameworks became more and more
client-centric and included much more business logic than in the past. On the
server side this meant that the interaction between backend and frontend
moved from fine grained methods to more coarse grained, business use case
methods.

So, the more client-centric and powerful the JavaScript frameworks became,
the more the communication between frontend and backend went from
tightly coupled requests and responses to a more API-like usage, typically
JSON via HTTP. This also meant that the server-side became more client-
agnostic. For example, communicating solely via RESTful-like, JSON-format
APIs enables native or mobile clients such as smartphones to use the same
API like the frontend does.

We have seen this movement in a lot of enterprise projects. However, one
could argue about the relevance of putting more and more logic into the client
side or whether a hybrid solution of having some parts rendered on the
server-side and some on the client-side is more appropriate. Without going
too much into this topic, let us look at a few key points.

Preparation of data or content will be performed faster on the server-side.
There are more capabilities and resources available than on the client. The
server can also utilize features such as caching and use the advantage of
seeing the whole picture.

Sophisticated frontend technologies often include a navigation logic that
makes use of so-called hashbang pages. An example of a hashbang page
URL is /car-manufacture/#!/cars/1234. These pages, for example, car 1234, do
not reside on the server, but are only rendered on the client-side. The URL of
that sub-page is determined after the hash-sign, which is not taken into

www.EBooksWorld.ir

account while requesting resources over HTTP. That means that the client
requests a generic entry page that then does the whole navigation logic
including rendering sub-pages. This clearly reduces the number of requests,
but has the drawback that the server cannot support preparing or pre-
rendering content; everything happens on the client-side. There have been big
companies such as Twitter that originally pursued this approach but went
away from it again, due to this reason. In particular, viewing these pages on
mobile devices comes with certain challenges. With potential slow mobile
connections and less computing power, rendering and executing sophisticated
client-logic on these devices do take longer than displaying pre-rendered
HTML.

Compared to statically typed, high-level languages such as Java, JavaScript
frontends do have the issue that dynamically typed languages introduce more
potential errors while programming that would have been prevented by a
compiler. Because of this reason, we have seen more sophisticated frontend
technologies such as TypeScript emerging, which introduced static types and
higher language features that are processed into JavaScript again.

www.EBooksWorld.ir

Organizing modern frontends
However, no matter which specific frontend technology is chosen, enterprise
projects do have more sophisticated frontends than in the past. This comes
with new challenges of how to organize the daily development work.
Typically the work cycles of the frontend and the backend will vary slightly.
Some developers will typically see themselves more on the backend and
others more on the frontend side. Even if the team solely consists of full-stack
developers, some de-facto roles are likely to emerge over time.

Depending on the used technology it therefore makes sense to separate the
frontend into a single project. As said before, as soon as some part of the
software is shipped individually or has different life cycles than the rest, it
makes sense to create a dedicated project module.

If the frontend technology can be deployed without any backend
dependencies other than the HTTP usage, organizing the project is pretty
straightforward. The project can be built and deployed on a web server
individually and will use one or several backends from the client side. This
project then only consists of static resources, such as HTML, JavaScript, or
CSS files, which are transferred to the client and executed there. There will
be no tight technical dependencies to the used backends, besides the HTTP
API.

This aspect clearly has to be communicated well upfront during development,
as well as documented on the backend side. Typically, the backend defines
HTTP resources that serve required content in JSON format, which can
optionally be filtered by query parameters if necessary. The reason behind the
JSON format being popular is that JavaScript client code can use the
response directly as JavaScript objects without any other transformation
required.

If the frontend will be deployed together with the backend as a single artifact
the project structure requires more coordination. The artifact contains both

www.EBooksWorld.ir

layers of technology and compiles and packages both at build time. During
development this combination isn't necessarily helpful if the cycles of
developing the frontend vary from the backend side. A programmer currently
focusing on the frontend side probably doesn't want to build the backend part
each and every time. The same is true with the backend technology waiting
for potentially slow JavaScript compilation and packaging.

In these cases, it makes sense to split the project into several modules that can
be built individually. What has proven itself well is to package the frontend
module as an individual module and to introduce it as a dependency of the
backend module, which then will package it altogether. By doing this, the
frontend module clearly can be built individually, whereas a backend
developer can rebuild the backend part as well by using their latest version of
the frontend. Therefore, build times are reduced on both sides.

To realize this feature, the Servlet API can deliver static resources that are
packed not only in the archive, but also in contained JAR files. Resources
that reside under META-INF/resources of a JAR file that is contained in the WAR
file, are delivered by the Servlet container, as well. The frontend project
contains all its required frontend technology, framework and tools, and builds
a separate JAR file.

This enables developers to separate the frontend from the backend project to
adapt to different life cycles.

The rest of this book will focus on the backend technology and business use
cases that are accessible via machine to machine communication such as web
services.

www.EBooksWorld.ir

Enterprise project code structure
After seeing how we can organize our enterprise project structure, let's have a
closer look at the detailed structure within a project. Assuming we have
modeled an enterprise system that is reasonable in size and responsibility, we
now map the concerns of the project into code structures.

Previously, we have discussed vertical versus horizontal module layers. This
is precisely one of the aspects we need to look into when structuring the
project.

www.EBooksWorld.ir

Situation in enterprise projects
The structure of typical enterprise projects has traditionally been a three-tier
architecture. Three-tiers means three technically motivated layers, namely the
presentation, business, and data layer. That being said, the project is
organized horizontally, with three sub-modules, or packages, respectively.

The idea is to separate concerns from the data layer, from the business layer,
and both of them from the presentation layers, as well. Functionality on a
lower layer can therefore not have any dependencies on a higher layer, only
the other way around. The business layer cannot use functionality of the
presentation layer, only vice versa. The same is true for the data layer not
depending on the business layer.

Each technically motivated layer or module has its own internal
dependencies, that cannot be used from the outside as well. For example,
only the data layer would be able to use the database, no direct invocations
from the business layer would be possible.

Another motivation is to be able to swap implementation details without
impacting other layers. If the database technology would be changed in favor
of another, that would in theory not affect the other two layers, since the data
layer encapsulates these details. The same is true if the presentation
technology changes. In fact, even several presentation layers can be
developed with all of them using the same business layer components, at least
if the layers are organized as separate modules.

We have seen heated discussions, mostly from high-level architects, about
the necessity of organizing and separating responsibilities by technical
concerns. However, there are some drawbacks from this approach.

www.EBooksWorld.ir

Horizontal versus vertical layering
Clean code is all about code that aims to be understood by humans not
machines. The same holds true for designing domains and organizing
responsibilities. We want to find structures that easily tell the engineers what
the project is all about.

The challenge with structuring by technical concerns at already high layers of
abstractions is that the purpose and domain of the software gets obfuscated
and hidden in lower layers of abstraction. When someone unfamiliar with the
project looks at the code structure the first thing that they see are the three
technical layers, although names and numbers might differ in some cases.
This will at least look familiar to them, but it tells nothing about the actual
domain.

Software engineers seek to understand domain modules, not necessarily
technical layers.

For example, when touching the accounts functionality, developers regard
everything related to the accounts domain, not all the database access classes
at once. Other than that, developers hardly search for all database access
classes, but for that single class which handles that logic of their current
domain.

The same is true when changes have to be made to the system. Changes in
functionality are more likely to affect all technical layers of a single or a few
business domains, but hardly all classes of a single technical layer at once.
For example, changing a field to the user account likely affects the user
model, database accesses, business use cases, and even the presentation logic,
but not necessarily all the other model classes as well.

To make the idea what aspects developers are interested in more clearer, let
me give another example. Imagine a family organized their clothes in a single
big wardrobe. They could cluster all pants from all family members in a

www.EBooksWorld.ir

single drawer, as well as separate drawers for all socks and all shirts,
respectively. But the family members won't likely search for all pants at once
when they try to dress. Rather than this, they're just interested in their
individual clothes, be it pants, shirts, socks, or something else. Therefore, it
would make sense for them to organize by several areas of the wardrobe first,
one per family member and then structuring by technical clothes aspects
second, ideally following a similar structure. The same can be seen for
software responsibilities.

www.EBooksWorld.ir

Business-driven structure
Uncle Bob once wrote about Screaming Architectures that should aim to at
first tell the engineer what the whole enterprise project is about. The idea was
that when looking at blueprints of buildings and seeing the structure and the
detailed interior you immediately can tell: this is a house, this is a library,
this is a train station. The same should hold true for software systems. You
should be able to look at the project structure and be able to say: this is an
accounting system, this is a book store inventory system, this is an order
management system. Is this the case for the most projects we have? Or, does
looking at the highest level of modules and packages rather tell us: this is a
Spring application, this system has a presentation, business and data layer,
this system uses a Hazelcast cache?

The technical implementations are certainly important to us developers. But
again, the first thing that we focus on is business concerns. Following this
approach, these aspects should be reflected in the project and module
structure as well.

Most importantly, this means our domain should be reflected in the
application structure. Just by looking at the highest hierarchy of package
names should give a good idea of what the software is trying to do. We
therefore layer after business concerns first, implementation details second.

Blueprint plans for buildings will also first build up a picture what the
building is about, how the rooms are separated, and where doors and
windows are located. Then, as a secondary priority they may specify used
materials, bricks, and types of concrete being used.

As an outlook for microservices consider the following: designing vertical
modules enables the team to split up the application into a system of several
applications much more easily. Looking at the module dependencies, for
example through static code analysis, provides a picture of where the
integration points between the systems would be. These integration points

www.EBooksWorld.ir

would emerge in some form of communication between the applications. In
theory, we can then take that single module, plus minimal plumbing, and
package it as a separate, self-sufficient application.

A point on names: by using the term modules we, by now, focus on business
driven modules that are realized in Java packages and sub-packages, not
build project modules. The term modules then serves more as a concept, less
as a strict technical realization.

www.EBooksWorld.ir

Designing reasonable modules
More down to earth, how do we find reasonably sized and structured
modules?

Putting business concerns first, a good start is to draw overviews of all the
responsibilities and use cases of the application. This may be part of a
brainstorming session, ideally together with business domain experts if that
step hasn't been done before. What are the application's responsibilities?
What business motivated use cases do we have? Which coherent
functionality can be seen? The answers to these questions already give a good
idea which modules are likely to be represented, without focusing on external
systems, implementation details, or framework choices.

In this step we also already consider dependencies between these business
concerns. Dependencies are helpful indicators of whether modules should be
split up or, especially when circular dependencies are found, should be
merged together. Constructing these overview diagrams, starting from a
higher level and working the way down in several iterations will give a
clearer image of what the business contents of the application are. Generally
speaking, the identified modules should match well with the business aspects
identified by the domain experts.

To give an example, an online shopping application could identify modules
for users, recommendation, articles, payment, and shipping. These would be
reflected as the base domain modules:

www.EBooksWorld.ir

The identified modules represent the base Java packages in our application.

It makes sense to put some effort into these considerations. However, as
always, any definitive structure or implementation, no matter whether on code
or module level, should be able to be changed later on. New requirements
might emerge or there might be a better understanding later on, once the
developers start to deep dive into the domain. Iterative refactoring, no matter
on which level, will improve the quality of the system.

Chapter 8, Microservices and System Architecture, will show similar
motivations and methodologies when designing systems that comprise
distributed applications. Particularly, the Domain-Driven Design approaches
of bounded contexts and context maps will be discussed.

www.EBooksWorld.ir

Realizing package structures
Assuming we found appropriate base Java packages to start with. Now, how
do you realize the inner package structure, that is, which sub-packages to
use?

www.EBooksWorld.ir

Package contents
At first let's have a look at the contents of a vertically sliced module. Since it
is modeled after business concerns, the module will include everything
necessary to fulfill certain functionality.

First of all, the module includes technical entry points for use cases such as
HTTP endpoints, presentation framework controllers, or JMS endpoints.
These classes and methods usually make use of Java EE principles, such as
inversion of control, to be called from the container as soon as some
communication hits the application.

The functionalities that initiate the actual use cases are the next and equally
important concern. They usually differ from the technical endpoints such that
they don't contain any communication logic. The business use case
boundaries are the entry point of our domain logic. They are implemented as
managed beans, usually Stateless Sessions Beans, EJBs in other words, or
CDI managed beans.

The boundaries initiate and implement the business logic. In cases where the
logic of a use case consists of just a few steps the boundary can sufficiently
contain the whole logic in the business method or private methods in the class
definition. Then no other delegate is required. For the vast majority of use
cases the boundary would delegate logic to corresponding services. These
delegates have finer-grained responsibilities. Depending on the domain this
includes implementing detailed business logic or accessing external systems
such as databases. Following Domain-Driven Design language, these classes
include services, transaction scripts, factories, and repositories.

The next type of objects are all classes that typically would be considered as
model content, such as entities, value objects, and transfer objects. These
classes represent the entities in the domain, but also can, and should,
implement business logic. Examples are entity beans that are managed in the
database, other POJOs, and enumerations.

www.EBooksWorld.ir

In some cases the package might also contain cross-cutting concerns such as
interceptors with business or technical responsibilities. All these types of
components now have to be organized within a module.

www.EBooksWorld.ir

Horizontal package layering
If we were to organize the module contents, our first attempt probably would
be to design the inner package structure by technical layering. Slicing up by
business concerns first and technical ones second at least sounds reasonable.

In the users package this would mean to have sub-packages such as
controller, business or core, model, data and client, respectively. By
following this approach, we split up responsibilities inside the users package
by their technical categories. In order to be consistent, all the other modules
and packages in the project would have similar packages, depending on their
contents. The idea is similar to a three-tier architecture, but inside of the
domain modules.

One of the sub-packages would be considered to be the technical entry point,
for instance controller. This package would contain the communication
endpoints initiating the use case logic and serve as entry point outside of the
application. The following shows the structure of a horizontally organized
users package:

www.EBooksWorld.ir

This structure is realized in Java packages as follows:

www.EBooksWorld.ir

Flat module package
An even simpler and more straightforward approach to organize module
contents is to directly put all related classes into this module package in a flat
hierarchy. For the users package this means to place all classes, including user
related use case entry points, user database access code, potential external
system functionality, and the user entity classes themselves, directly into this
package.

Depending on the complexity of the modules this can be a clean and
straightforward approach or it can become too unorganized over time.
Especially entities, value objects, and transfer objects can reach a number of
classes that, if put into a single package, drastically reduce clarity and
overview. However, it makes a lot of sense to start with this approach and
refactor later.

The following shows the package structure of an example users package:

A benefit of this approach is that it's well supported by the Java language. By
default Java classes and methods come with package-private visibility. This
fact together with organizing all classes in one place leverages encapsulations
and visibility practices. Components, that are desired to be accessible from
outside of the package, get public visibility; all classes and methods that are
only accessed from within this package define package-private visibility. The
package can therefore encapsulate all internal concerns.

www.EBooksWorld.ir

Entity Control Boundary
Coping with the number of classes in the module package, there is another
approach similar to technical layering, but with fewer and clearer defined
packages. The idea is to structure due to what is a use case boundary of the
module, which are subsequent business logic components, and which are
entity classes.

This focuses on organizing module packages by their responsibilities, but
with fewer technical details at the top package layer, compared to horizontal
layering. The boundary package contains the use cases initiators, the
boundaries, which are accessed from the outside of the system. These classes
typically represent HTTP endpoints, message driven beans, frontend related
controllers, or simply Enterprise Java Beans. They will implement the
business driven use cases and optionally delegate to subsequent classes
residing in the optional control package. The entity package contains all the
nouns in the module, domain entities or transfer objects.

Ivar Jacobson has formed the term Entity Control Boundary for following
way of organizing modules:

www.EBooksWorld.ir

Packages
Let's have a closer look at the boundary package. The idea was that all
business use cases called from the frontend or outside of the system are
initiated here. Invocations for creation, update, or deletion of users, first land
in classes residing in this package. Depending on the complexity of the use
cases, the boundary either completely handles the logic itself or delegates into
the control before becoming too complex.

For a Java enterprise application, classes in the boundary package are
implemented as managed beans. As mentioned before, typically EJBs are
used here.

If the logic in the boundary becomes too complex and not manageable within
a single class anymore, we refactor the logic into delegates that are used in
the boundary. These delegates or controls are placed in the control package.
They typically fulfill more detailed business logic or handle database or
external system access by acting within the technical transaction that was
initiated in the boundary.

This structure increases cohesion and reusability and honors the single
responsibility principle. The structure of the business use case becomes more
readable, once we introduce these abstraction layers. You can start by looking
at the boundary as the entry point of the use case, and retrace every delegated
step one after another.

In Domain-Driven Design language, the contents of the control package
includes services, transaction scripts, factories and repositories. However, the
existence of a control package for business use cases is optional.

At the heart of our domain we have all entities and value objects. These,
together with transfer objects, build up the model of our domain module, the
objects that a use case typically deals with. They are organized within the
entity package, the last one of the Entity Control Boundary pattern.

www.EBooksWorld.ir

Now, what about presentation-related components and cross-cutting concerns
such as Interceptors or framework plumbing logic? Fortunately, in a modern
Java EE project required framework plumbing is kept within limits as we will
see in Chapter 3, Implementing Modern Java Enterprise Applications. The few
things that are required, for example bootstrapping JAX-RS with the
application activator class, are placed in the root package of our project or in
a specific platform package. The same is true for cross-cutting concerns such
as technically motivated interceptors that are not bound to a specific module,
but the application as a whole. The number of these classes is typically not
too high; if so, then a dedicated package makes sense. The danger of having
such a platform package is that it naturally tempts developers to put other
components in there as well. This place is just meant for the few platform
specific classes; everything else should reside in its own business motivated
module package.

The following is an example of the users module, using the Entity Control
Boundary pattern:

www.EBooksWorld.ir

Package access
Not all accesses from every package of the Entity Control Boundary pattern
are allowed or make sense, respectively. In general, the logic flow starts at
the boundary, going down to the control and entity package. The boundary
package therefore, has dependencies to both the control, if existent, and the
entity package. Using boundaries of other modules are not allowed and won't
make sense, since the boundary represents a business use case. Accessing
another boundary would mean to invoke something that should be a separate,
standalone use case. Therefore boundaries can only go down the hierarchy to
controls.

However, dependencies and invocations from boundaries to controls of other
modules are allowed and do make sense in some cases. Developers have to
pay attention that the transaction scopes are still chosen correctly when
accessing components from other modules. When accessing controls of other
modules, it will also happen that they work with or return entities of that
foreign module. This happens for more than trivial use cases and won't be an
issue, as long as care is taken where the responsibilities are placed, and that
the controls and entities are being used correctly.

Controls may access controls of other modules and their own and foreign
entities. For the same reason as with boundaries, it makes no sense that a
control invokes functionality of any boundary. This would be equivalent to
starting new top-level business use cases within a running use case.

Entities are only allowed to depend on other entities. In some cases it will be
necessary to have imports on controls, for example, if JPA entity listeners or
JSON-B type converters exist that can implement sophisticated logic. These
technically motivated cases are the exception where it should be allowed for
simplicity to import these classes. Ideally, these entity supporting
components, such as entity listeners or converters should reside directly in
the entity package. Due to other dependencies and usage of delegates this
premise cannot always be fulfilled, which should not lead to overly complex

www.EBooksWorld.ir

technical workarounds.

This also brings us to another more general topic.

www.EBooksWorld.ir

Don't over-enforce architecture
Whichever architectural pattern you choose, the main priority of the
application should be the business domain. This is true for both finding
reasonable, domain-motivated modules, but also how to structure the
packages within a module, so that developers can work with it with least
effort.

This is one important thing to note: developers should be able to work on the
project without too complex or overly enforced structures and architectures.
We have seen too many examples in the past that deliberately used
technically driven layers or overly strict patterns, just to match the book and
fulfill certain constraints. But these constraints are often self-motivated and
don't fulfill any higher purpose. We should sensibly reconsider what is
required and what just bloats the development processes. Search for the term
cargo cult programming when you have the time, and you will find an
interesting real-world story of following rules and rituals without questioning
their purpose.

Therefore, don't over-complicate or over-enforce architecture. If there is a
simple and straightforward way that fulfills what currently is required, just go
for it. This is not only true for premature refactoring, but also for architectural
design. If putting a few classes in a single, well-named package serves the
purpose and clearly documents the reasoning, why not? If a business use case
boundary class can already fulfill the whole, simple logic, why introduce
empty delegates?

The trade-off of following an architectural pattern, even if not required in all
places, is consistency versus simplicity. Having all packages, modules, and
projects showing the same patterns and structure shows a picture familiar to
developers. However, in Chapter 8, Microservices and System Architecture we
will see that in greater detail, ultimately, consistency is a goal that isn't likely
to be achieved within the whole organization, or even single projects. The
benefits of crafting something simpler and eventually more flexible

www.EBooksWorld.ir

outweighs uniformity in many cases.

The same is true for overly trying to encapsulate the implementation using
technical layers. It is definitely the case that modules as well as classes
should encapsulate implementation details and provide clean and clear
interfaces. However, these responsibilities can and should be contained in
single, ideally self-sufficient packages or classes. Packaging the module's
concerns by technical terms ultimately exposes the details to the rest of the
module, for example, that a database or a client to an external system is being
used. Organizing by domain motivation first, enables us to encapsulate
functionality into single points of responsibility, transparent to the rest of the
modules or application.

In order to prevent accidental misuse of a way of packaging, the easiest and
most transparent way is to introduce static code analysis. Package imports in
classes and whole packages can be scanned and analyzed to detect and
prevent unwanted dependencies. This represents a security measurement,
similar to test cases, to avoid careless mistakes. Static code analyses will
typically run as an extended part of the build process on the Continuous
Integration server, as they may take some time to build. In Chapter 6,
Application Development Workflows we will cover this topic in more depth.

www.EBooksWorld.ir

Summary
Enterprise software should be built with the main priority to solve business
problems, leading to business-driven applications and technology rather than
to technology-driven solutions. The business use cases are what ultimately
will generate revenue for the company.

If possible, enterprise applications should be developed in one build project
per artifact, kept under version control. Splitting up a project into several,
independent build modules that are in the end boiled down to a single artifact,
doesn't add much value. For the coarse project structure it's advisable to
structure the software modules vertically, not horizontally. This means to
structure by business rather than technical concerns. Looking at the project
structure should immediately tell developers what the project's domain and
responsibilities are about.

An individual application module can, in the simplest way, be designed as a
single, flat Java package. This is advisable if the number of classes per
module is small. For more complex modules it makes sense to add another
hierarchical layer using patterns such as Entity Control Boundary.

Software engineers should be reminded not to over-enforce software
architecture. Well-thought-out design and bureaucratic organization certainly
support developers a lot in crafting high quality software. Still, there is
always a happy medium between reasonable design and over-engineering.

After seeing the course structure of enterprise projects and how to design
modules, let's dive down one level to how to realize project modules. The
following chapter will show you what it takes to implement enterprise
applications with Java EE.

www.EBooksWorld.ir

Implementing Modern Java
Enterprise Applications
Now after we saw what components are contained in projects and modules
and how to find and construct reasonably sized modules and packages, let's
get more down to earth and discuss the topic of Java EE. It certainly makes
sense to think about the business concerns first and follow the practices of
Domain-Driven Design to identify bounded context and modules with all the
contents of our domain.

Let's see how to realize the identified business modules and use cases.

This chapter will cover:

How to implement application use case boundaries
What the Java EE core domain components are
Design patterns and Domain-Driven Design with Java EE
Application communication
How to integrate persistence
Technical cross-cutting concerns and asynchronous behavior
Concepts and principles of Java EE
How to achieve maintainable code

www.EBooksWorld.ir

Use case boundaries
Organizing packages after domain concerns leads us to an architectural
structure, where the actual business, rather than technical details are reflected.

The business use cases handle all logic required to fulfill the business
purpose, using all our module contents. They act as a starting point into the
application's domain. The use cases are exposed and invoked via the system
boundaries. The enterprise systems offers communication interfaces to the
outside world, mostly via web services or web-based frontends, that invoke
the business functionalities.

When starting a new project, it makes sense to start with the domain logic
first, indifferent to system boundaries or any technical implementation
details. This contains constructing all contents of the domain, designing
types, dependencies and responsibilities, and prototyping these into code. As
we will see in this chapter, the actual domain logic is implemented primarily
in plain Java. The initial model can be self-sufficient and tested solely using
code level tests. After a sufficiently matured domain model has been found,
we target the remaining technical concerns that are outside of the domain
module, such as accessing databases or external systems, as well as system
endpoints.

In a Java EE application, a boundary is implemented using managed beans,
that is, Enterprise JavaBeans (EJB) or Contexts and Dependency
Injection for Java (CDI) managed beans. The topic EJB and CDI - 
differenciation and integration will show the differences and significance of
these technologies.

Depending on the complexity of the individual use cases, we introduce
delegates which are realized as CDI managed beans or EJBs, as well,
depending on the requirements. These delegates reside in the control
package. Entities are realized as POJOs, optionally annotated to integrate
technical functionality such as specifying the database mapping or

www.EBooksWorld.ir

serialization.

www.EBooksWorld.ir

Core domain components of
modern Java EE
Plain Java together with CDI and EJB form the core domain components of a
modern Java EE application. Why is it called core domain? As mentioned,
we want to pay attention to the actual business. There are aspects,
components, and functionality that serve the business purpose at their core,
whereas others just support, make the business domain accessible, or fulfill
other technical requirements.

Java EE ships with many APIs that support realizing dozens of technical
requirements. Most of them are technically motivated though. The biggest
advantage of the Java EE platform, however, is that clean Java business logic
can be implemented with minimal code impact of the technology. The APIs
required for that are mainly CDI and EJB. Other APIs, that are required for
technical motivations, such as JPA, JAX-RS, JSON-P, and many others, are
introduced with a secondary priority.

Managed beans, no matter whether CDI or EJB, are implemented as
annotated Java classes, without any technical super classes or interfaces
required. In the past, this was called the no-interface view. Nowadays this is
the default case. Extending classes obscure the picture on the domain and
also come with other shortcomings when it comes to testability. A modern
framework integrates itself as simply and as lean as possible.

www.EBooksWorld.ir

EJB and CDI - differentiation and
integration
Now the question is, whether to use EJBs or CDI managed beans.

In general, EJBs ship more functionality that is already usable out of the box.
CDI managed beans offer a somewhat lighter alternative. What are the main
differences between these technologies and how does it affect the developer's
work?

The first difference are the scopes. EJB session beans are either stateless, that
is, active during the duration of the client request, stateful, that is, active
during the lifespan of a client's HTTP session, or singletons. CDI managed
beans come with similar scopes plus more possibilities, such as adding
custom scopes and the default dependent scope which is active depending on
the lifespan of its injection point. The topic Scopes will handle bean scopes
more detailed.

Another difference between EJBs and CDI beans is that EJBs implicitly
comprise certain cross-cutting concerns, such as monitoring, transactions,
exception handling, and managing concurrency for singleton beans. For
example, calling an EJB business method implicitly starts a technical
transaction, which is active during the method execution and which integrates
datasources or external systems.

Also, stateless EJBs are pooled after usage. This means that after a stateless
session bean's business method has been invoked, the bean instance can and
will be reused from the container. Due to this fact, EJBs perform a little better
than CDI beans, which are instantiated every time their scope requires it.

Practically, the technical differences don't impact the developer's work too
much. Besides using different annotations, both technologies can be used in
the same look and feel. The direction of Java EE moves toward a more open

www.EBooksWorld.ir

choice of these two; for instance, since Java EE 8 it's possible to handle
asynchronous events solely with CDI, not just EJB.

The integration of functionality that CDI provides is, however, one of the
biggest features of the Java EE APIs. Just alone dependency injection, CDI
producers, and events are effective means to tackle various situations.

The single most used CDI feature is dependency injection using the @Inject
annotation. The injection is built in such a way that no matter which Java EE
technology manages the beans, it just works for developers. You can mix and
match CDI beans and EJBs with all scopes; the framework will take care of
which beans are instantiated or used in which scope, respectively. This
enables a flexible usage, such as cases when beans with a shorter scope are
injected into longer scoped beans; for example, when a session scoped bean
is injected into a singleton.

This feature supports the business domain in such a way that boundaries and
controls can just inject required dependencies without worrying about
instantiating or managing them.

The following code demonstrates how a boundary implemented as stateless
session bean injects the required controls.

import javax.ejb.Stateless;

import javax.inject.Inject;

@Stateless

public class CarManufacturer {

 @Inject

 CarFactory carFactory;

 @Inject

 CarStorage carStorage;

 public Car manufactureCar(Specification spec) {

 Car car = carFactory.createCar(spec);

 carStorage.store(car);

 return car;

 }

}

The CarManufacturer class represents a stateless EJB. The injected CarFactory and
CarStorage beans are realized as dependent scoped CDI beans that will be

www.EBooksWorld.ir

instantiated and injected into the EJB. The Java EE platforms simplifies
dependency resolution by enabling to use @Inject to inject any project-specific
beans. This was not always the case; In the past, the @EJB annotation was used
to inject EJBs. @Inject simplifies the usage within Java EE.

Attentive readers may have noticed the field-based injection with package-
private Java scopes. Field-based injection has the least impact on the contents
of a class - since a custom constructor can be avoided. Package-private
visibility enables developers to set and inject dependencies in a test scope.
We will cover this topic and potential alternatives in Chapter 7, Testing.

www.EBooksWorld.ir

CDI producers
CDI producers are another Java EE feature that is especially helpful to realize
factories of all kinds of sorts. The producers, mostly realized as producer
methods, provide the object that can be injected in other managed beans. This
decouples creation and configuration logic from the usage. Producers are
helpful when custom types other than managed bean types need to be
injected.

The following shows the definition of a CDI producer method:

import javax.enterprise.inject.Produces;

public class CarFactoryProducer {

 @Produces

 public CarFactory exposeCarFactory() {

 CarFactory factory = new BMWCarFactory();

 // use custom logic

 return factory;

 }

}

The exposed CarFactory type can simply be injected using @Inject, as seen
previously in the CarManufacturer example. CDI invokes the exposeCarFactory()
method once a CarFactory instance is required and inserts the returned object
into the injection point.

These techniques already cover most of the requirements for the core domain
logic use cases.

www.EBooksWorld.ir

Emitting domain events
CDI provides an eventing feature for cases where business functionality
needs to be decoupled even more. Beans can fire event objects, which act as
payloads and which are handled in event observers. By emitting and handling
CDI events, we decouple the main business logic from side aspects of
handling the event. This idea particularly matches use cases, where the
business domain already comprises the concept of events. By default, CDI
events are handled in a synchronous way; interrupting the execution at the
point where they are fired. CDI events can also be handled asynchronously or
at specific points in the life cycle of the technical transaction.

The following code demonstrates how to define and fire CDI events as part of
a business use case:

import javax.enterprise.event.Event;

@Stateless

public class CarManufacturer {

 @Inject

 CarFactory carFactory;

 @Inject

 Event<CarCreated> carCreated;

 public Car manufactureCar(Specification spec) {

 Car car = carFactory.createCar(spec);

 carCreated.fire(new CarCreated(spec));

 return car;

 }

}

The CarCreated event is immutable and contains information that is relevant to
the domain event, such as the car specification. The event is handled in the
CreatedCarListener class, which resides in the control package:

import javax.enterprise.event.Observes;

public class CreatedCarListener {

 public void onCarCreated(@Observes CarCreated event) {

 Specification spec = event.getSpecification();

 // handle event

www.EBooksWorld.ir

 }

}

The listener is therefore decoupled from the main business logic. The CDI
container will take care of connecting the event handling functionality and
synchronously calling the onCarCreated() method.

The topic Flow of execution, shows how events can be fired and handled
asynchronously or alternatively at specific points in the life cycle of the
transaction.

CDI events are a way how to decouple the definition of domain events from
handling them. The event handler logic can be changed or enhanced without
touching the car manufacturer component.

www.EBooksWorld.ir

Scopes
Bean scopes are quite important for the cases when state is kept in the
application for longer than the duration of a single request.

If the whole business process can be implemented in a stateless way, by just
executing some logic and discarding all state afterwards, scope definitions are
pretty straightforward. Stateless session beans with dependent scoped CDI
beans already fulfill a lot of these cases.

The EJB singleton scope and the CDI application scope, respectively, are
used quite frequently as well. Single instances of a bean type are a
straightforward way to store or cache information that have a long lifespan.
Besides all the sophisticated caching technology, a singleton containing
simple collections or maps with managed concurrency is still the most simple
way to design application-specific, volatile stores. Singletons also provide a
single point of responsibility for functionality that for some reason needs to
be accessed in a restricted way.

The last scope of both EJBs and CDI beans is the session scope, which is
bound to the client's HTTP session. Beans of this scope will be active and
reused with all their states as long as the user's session is active. However,
storing session data in stateful beans introduces the challenge that clients
need to reconnect to the same application server again. This is certainly
possible but prevents designing stateless applications which are easier to
manage. If the application becomes unavailable, all temporary session data is
lost as well. In modern enterprise applications, state is typically kept in the
database or in caches for optimization purposes. Therefore, session scoped
beans aren't used too much anymore.

CDI managed beans come with more built-in scopes, namely the
conversation scope or the default dependent scope. There are also
possibilities for adding custom scopes for special requirements. However,
experience shows that the built-in scopes are usually sufficient for the

www.EBooksWorld.ir

majority of enterprise applications. The CDI specification provides further
information how to extend the platform and develop custom scopes.

As you have seen, we can already achieve a lot with these Java EE core
components. Before looking into integration technologies, such as HTTP
communication or database access, let's have a closer look into design
patterns used in our core domain.

www.EBooksWorld.ir

Patterns in Java EE
A lot has been written about design patterns. The most prominent and always
recited example is the well-known book Design Patterns by the Gang of
Four (GoF). It describes common situations in software design that are
solved using specific implementation patterns.

Whereas the design and motivation for specific patterns are still valid today,
the actual implementation may have changed, especially in the enterprise
area. Besides the well-known design patterns which are applicable for all
kind of applications, there are also a lot of enterprise-related patterns that
have emerged. In particular, a variety of J2EE-related enterprise patterns
came up in the past. Since we are in the age of Java EE 8, not J2EE anymore,
there are now easier ways to implement various patterns which tackle specific
situations.

www.EBooksWorld.ir

Design patterns revisited
The design patterns described in the GoF book are categorized into
creational, structural, and behavioral patterns. Each of the patterns describe a
typical challenge in software and shows a way to tackle and solve those
situations. They represent implementation blueprints and are not dependent
on any specific technology. That is why the idea of each of these patterns can
be realized without precisely matching the described implementation. In the
modern world of Java SE 8 and EE 8, we have more language features
available than was the case in the past. I want to show some of the Gang of
Four design patterns, their motivations, and how they can be realized in Java
EE.

www.EBooksWorld.ir

Singleton
The singleton pattern is a well-known pattern or, as some would argue, anti-
pattern. Singletons have only one single instance per class within the whole
application. The motivation for this pattern is the capability of storing states
as well as being able to coordinate actions at a central place. Singletons
definitely have their right to exist. If a certain state needs to be shared reliably
among several consumers, a single point of entry is definitely the simplest
solution.

However, there are some points to be aware of. Having a single point of
responsibility also introduces concurrency that needs to be managed.
Therefore, singletons need to be thread-safe. That said, we should keep in
mind that singletons naturally don't scale, since there's only one instance. The
more synchronization we introduce due to the contained data structure, the
less our class will scale for concurrent access. However, depending on the
use case, this might or might not be a issue.

The GoF book describes a static singleton instance that is managed in the
singleton class. In Java EE the concept of singletons is directly built into
EJBs with singleton session beans and CDIs with the application scope.
These definitions will create one managed bean that is used in all clients.

The following demonstrates an example of a singleton EJB:

import javax.ejb.Singleton;

@Singleton

public class CarStorage {

 private final Map<String, Car> cars = new HashMap<>();

 public void store(Car car) {

 cars.put(car.getId(), car);

 }

}

There is some difference in whether we implement singletons using EJB
singleton sessions beans or CDI application scoped beans.

www.EBooksWorld.ir

By default, the container manages the concurrency of EJB singletons. This
ensures that only one public business method is executed at a time. The
behavior can be changed by providing the @Lock annotation which declares
methods either as write-lock or read-lock, respectively, where the beans acts
as a read-write lock. All EJB singleton business methods are implicitly write-
locked. The following shows an example of using an EJB with container
managed concurrency and lock annotations:

import javax.ejb.Lock;

import javax.ejb.LockType;

@Singleton

public class CarStorage {

 private final Map<String, Car> cars = new HashMap<>();

 @Lock

 public void store(Car car) {

 cars.put(car.getId(), car);

 }

 @Lock(LockType.READ)

 public Car retrieve(String id) {

 return cars.get(id);

 }

}

The concurrency can also switched off using bean managed concurrency.
Then the bean will be called concurrently and the implementation itself has to
ensure thread-safety. Using a thread-safe data structure, for example, doesn't
require the EJB singleton to manage concurrent accesses. The business
methods of the EJB instance will then be called in parallel, similarly to CDI
application scoped beans:

import javax.ejb.ConcurrencyManagement;

import javax.ejb.ConcurrencyManagementType;

@Singleton

@ConcurrencyManagement(ConcurrencyManagementType.BEAN)

public class CarStorage {

 private final Map<String, Car> cars = new ConcurrentHashMap<>();

 public void store(Car car) {

 cars.put(car.getId(), car);

 }

 public Car retrieve(String id) {

 return cars.get(id);

 }

}

www.EBooksWorld.ir

CDI application scoped beans don't restrict concurrent access and the
implementation always has to deal with concurrency itself.

These solutions tackle situations where a singleton is required; for example, a
state that needs to be shared in-memory in the whole application.

CDI application scoped beans or EJB singletons with bean managed
concurrency and thread-safe data structures provide an application-wide, non-
clustered in-memory cache that scale really well. If distribution is not
required this is a simplest yet elegant solution.

Another widely used scenario for EJB singletons is the ability to invoke a
single process at application startup. By declaring the @Startup annotation, the
bean will be instantiated and prepared at application startup, invoking the
@PostConstruct method. Startup processes can be defined for all EJBs, but using
singletons we can realize processes that need to be set up exactly once.

www.EBooksWorld.ir

Abstract factory
The GoF abstract factory pattern aims to separate the creation of objects from
their usage. Creating complex objects may involve knowledge about certain
prerequisites, implementation details, or which implementation class to be
used. Factories help us creating these objects without deep knowledge about
the internals. Later in this chapter, we will talk about Domain-Driven Design
factories, which are closely related to this pattern. The motivations are the
same. Abstract factories aim toward having several implementations of an
abstract type where the factory itself is also an abstract type. The users of the
functionality develop against interfaces, whereas the concrete factory will
produce and return the concrete instances.

There may be an abstract GermanCarFactory with concrete implementations as
BMWFactory and PorscheFactory. Both car factories may produce some
implementation of GermanCar, be it a BMWCar or PorscheCar, respectively. The client
that just wants to have some German car won't care about which actual
implementation class the factory will use.

In the Java EE world, we already have a powerful functionality that is in fact
a factory framework, namely CDI. CDI provides tons of features to create
and inject instances of certain types. Whereas the motivations and outcome
are the same, the implementation differs in detail. In fact, there are many
ways to realize abstract factories, depending on the use case. Let's have a
look at a few of them.

A managed bean can inject instances that are concrete or abstract and even
parameterized types. If we want to have only one instance in our current
bean, we directly inject a GermanCar:

@Stateless

public class CarEnthusiast {

 @Inject

 GermanCar car;

 ...

www.EBooksWorld.ir

}

Having multiple implementations of the GermanCar type would lead to a
dependency resolving exception at this point since the container cannot know
which actual car to inject. To resolve this issue, we can introduce qualifiers
that explicitly ask for a specific type. We could use the available @Named
qualifier with defined string values; however, doing so won't introduce
typesafety. CDI gives us the possibility to specify our own typesafe qualifiers
that will match our use case:

@BMW

public class BMWCar implements GermanCar {

 ...

}

@Porsche

public class PorscheCar implements GermanCar {

 ...

}

Qualifiers are custom runtime-retention annotations, themselves annotated
with @Qualifier and typically @Documented:

import javax.inject.Qualifier;

import java.lang.annotation.Documented;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

@Qualifier

@Documented

@Retention(RetentionPolicy.RUNTIME)

public @interface BMW {

}

The qualifiers are specified at the injection point. They qualify the injected
type and decouple the injection from the actual type being used:

@Stateless

public class CarEnthusiast {

 @Inject

 @BMW

 GermanCar car;

 ...

}

Obtaining an instance of CarEnthusiast will now create and inject a dependent-
scoped BMWCar, since this type matches the injection point.

www.EBooksWorld.ir

We could now even define a sub-type of a BMW car, that will be used
without changing the injection point. This is realized by specializing the
BMWCar type with a different implementation. The ElectricBMWCar type sub-classes
BMWCar and specifies the @Specializes annotation:

import javax.enterprise.inject.Specializes;

@Specializes

public class ElectricBMWCar extends BMWCar {

 ...

}

Specialized beans inherit the types and qualifiers of their parent type and will
be transparently used instead of the parent type. In this example, injecting a
GermanCar with @BMW qualifier will provide you an instance of ElectricBMWCar.

However, to be closer to the design pattern described in the book, we could
also define a car factory type used to create several cars as desired:

public interface GermanCarManufacturer {

 GermanCar manufactureCar();

}

This car factory is implemented with different specifics:

@BMW

public class BMWCarManufacturer implements GermanCarManufacturer {

 @Override

 public GermanCar manufactureCar() {

 return new BMWCar();

 }

}

@Porsche

public class PorscheCarManufacturer implements GermanCarManufacturer {

 @Override

 public GermanCar manufactureCar() {

 return new PorscheCar();

 }

}

Doing so, the client would now inject and use a manufacturer directly to
create new German cars:

@Stateless

public class CarEnthusiast {

www.EBooksWorld.ir

 @Inject

 @BMW

 GermanCarManufacturer carManufacturer;

 // create German cars

}

Injecting types that are explicitly defined and qualified, such as our two
German cars, provides a lot of flexibility for implementations.

www.EBooksWorld.ir

Factory method
To understand the factory method, let's look into another pattern that has
similar motivations, but which is realized differently. Factory methods define
factories that are implemented as methods on specific types. There is no
single class responsible for creating certain instances; rather, the creation
becomes the responsibility of the factory method which is defined as part of a
domain class.

For example, let's consider a car that uses its recorded trips to generate a
driver's logbook. It perfectly makes sense to include a createDriverLog() method
in the car type which returns a logbook value type, since the class itself can
provide the logic in a self-sufficient manner. These solutions would be
implemented purely in Java without any frameworks or annotations required:

public class Car {

 ...

 public LogBook createDriverLog() {

 // create logbook statement

 }

}

As we will see later in this chapter, Domain-Driven Design factories don't
distinguish between abstract factories and factory methods. They are more
directed toward the motivations of the domain. In some cases, it makes sense
to encapsulate factories as methods together with other responsibilities of a
class. In other cases, where creation logic is that particular, single points of
responsibility in form of separate classes are more appropriate. Generally
speaking, putting the creation logic into domain types is desirable since it
may make use of other functionalities and properties of that domain class.

Let's have a look at CDI producers. Producers are defined as methods or
fields that are used dynamically to look up and inject instances of certain
types. We have full flexibility of what values a field contains or a method
returns, respectively. We can equally specify qualifiers to ensure that the

www.EBooksWorld.ir

producers don't collide with other potentially produced types. The beans that
defines the producer method can also contain further properties that is used in
the producer:

import javax.enterprise.inject.Produces;

public class BMWCarManufacturer {

 ...

 @Produces

 @BMW

 public GermanCar manufactureCar() {

 // use properties

 ...

 }

}

This matches the idea of factory methods implemented as CDI producers.

The scope of the produced instances needs to be considered. As any other
CDI managed bean, the producers are by default dependent scoped. The
scope defines the life cycle of managed beans and how they are injected. It
affects how often the producer method will be invoked. For the default scope,
the method is invoked once per injected instance when the calling managed
bean is instantiated. Every time the bean that injects the produced value is
injected, the producer method will be called. If that bean has a longer
lifetime, the producer method won't be invoked again for that duration.

Later in this chapter, we will see more sophisticated usages of CDI
producers.

www.EBooksWorld.ir

Object pool
The object pool design pattern was designed for performance optimization.
The motivation behind pools is to avoid to constantly create new instances of
required objects and dependencies, by retaining them in a pool of objects for
a longer period of time. A required instance is retrieved from this pool of
objects and released after usage.

This concept is already built into Java EE containers in different forms. As
mentioned earlier, stateless session beans are pooled. This is the reason why
they perform exceptionally well. However, developers have to be aware of
the fact that instances are being reused; instances must not retain any state
after they have been used. The container keeps a pool of these instances.

Another example is the pooling of database connections. Database
connections are rather expensive to initiate and it makes sense to keep a few
of them alive for later use. Depending on the persistence implementation,
these connections are reused once a new query is requested.

Threads are also pooled in enterprise applications. In a Java server
environment, a client request typically results in a Java thread that handles
the logic. After handling the request, the threads will be reused again. Thread
pool configuration as well as having different pools is an important topic for
further performance optimization. We will cover this topic in Chapter 9,
Monitoring, Performance, and Logging.

Developers won't typically implement the object pool pattern themselves.
The container already includes this pattern for instances, threads, and
databases. The application developer implicitly uses these available features.

www.EBooksWorld.ir

Decorator
Another well-known design pattern is the decorator pattern. This pattern
allows us to add behavior to an object without affecting other objects of that
class. Quite often this behavior is composable with several subtypes.

A good example is food. Everybody has their own preferences in tastes and
compositions. Let's take coffee as an example. We can drink just plain black
coffee, with milk, with sugar, with both milk and sugar, or even with syrup,
cream, or whatever will be popular in the future. And that's not taking into
account the different ways of how to brew coffee.

The following shows a realization of the decorator pattern using plain Java.

We specify the following Coffee type which can be decorated using the sub-
type CoffeeGarnish:

public interface Coffee {

 double getCaffeine();

 double getCalories();

}

public class CoffeeGarnish implements Coffee {

 private final Coffee coffee;

 protected CoffeeGarnish(Coffee coffee) {

 this.coffee = coffee;

 }

 @Override

 public double getCaffeine() {

 return coffee.getCaffeine();

 }

 @Override

 public double getCalories() {

 return coffee.getCalories();

 }

}

The default coffee garnish just delegates to its parent coffee. There may be
several implementations of a coffee:

www.EBooksWorld.ir

public class BlackCoffee implements Coffee {

 @Override

 public double getCaffeine() {

 return 100.0;

 }

 @Override

 public double getCalories() {

 return 0;

 }

}

Besides regular black coffee, we also specify some garnishes:

public class MilkCoffee extends CoffeeGarnish {

 protected MilkCoffee(Coffee coffee) {

 super(coffee);

 }

 @Override

 public double getCalories() {

 return super.getCalories() + 20.0;

 }

}

public class SugarCoffee extends CoffeeGarnish {

 protected SugarCoffee(Coffee coffee) {

 super(coffee);

 }

 @Override

 public double getCalories() {

 return super.getCalories() + 30.0;

 }

}

public class CreamCoffee extends CoffeeGarnish {

 protected CreamCoffee(Coffee coffee) {

 super(coffee);

 }

 @Override

 public double getCalories() {

 return super.getCalories() + 100.0;

 }

}

Using the coffee types, we can compose our desired coffee with its specific
behavior:

Coffee coffee = new CreamCoffee(new SugarCoffee(new BlackCoffee()));

coffee.getCaffeine(); // 100.0

coffee.getCalories(); // 130.0

www.EBooksWorld.ir

An example for the decorator pattern in the JDK is the InputStream class with
the possibility to add specific behavior for files, byte arrays, and so on.

In Java EE, we again make use of CDI which ships with a decorator
functionality. Decorators add specific behavior to a bean. Invocations on an
injected bean call the decorator instead of the actual bean; the decorator adds
specific behavior and delegates to the bean instance. The original bean type
becomes a so-called delegate of the decorator:

public interface CoffeeMaker {

 void makeCoffee();

}

public class FilterCoffeeMaker implements CoffeeMaker {

 @Override

 public void makeCoffee() {

 // brew coffee

 }

}

The delegate type must be an interface. The CountingCoffeeMaker decorates the
existing coffee maker functionality:

import javax.decorator.Decorator;

import javax.decorator.Delegate;

import javax.enterprise.inject.Any;

@Decorator

public class CountingCoffeeMaker implements CoffeeMaker {

 private static final int MAX_COFFEES = 3;

 private int count;

 @Inject

 @Any

 @Delegate

 CoffeeMaker coffeeMaker;

 @Override

 public void makeCoffee() {

 if (count >= MAX_COFFEES)

 throw new IllegalStateException("Reached maximum coffee limit.");

 count++;

 coffeeMaker.makeCoffee();

 }

}

The decorator functionality is activated via the beans.xml descriptor.

<?xml version="1.0" encoding="UTF-8"?>

www.EBooksWorld.ir

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"

 bean-discovery-mode="all">

 <decorators>

 <class>com.example.coffee.CountingCoffeeMaker</class>

 </decorators>

</beans>

After activating the decorator, injected instances of the CoffeeMaker type use the
decorated functionality instead. This happens without changing the original
implementation:

public class CoffeeConsumer {

 @Inject

 CoffeeMaker coffeeMaker;

 ...

}

Managed beans can have several decorators. If necessary, ordering can be
specified on the decorators using the Java EE @Priority annotation.

This CDI functionality applies to managed beans. Depending on whether we
want to add additional behavior to our domain model classes or the services
involved, we will use the pattern either with plain Java, as described first, or
by using CDI decorators.

www.EBooksWorld.ir

Facade
The facade design pattern is used to provide a clean and simple interface to
certain functionalities. Encapsulation and abstraction layers are certainly
among the most important principles for writing code. We introduce facades
which encapsulate complex functionality or legacy components that are
cumbersome to use, into simpler interfaces. A facade is therefore a prime
example for abstraction.

Let's consider a rather complex setup in a coffee shop. There are grinders,
coffee machines, scales, and various tools in use that all need to be
configured accordingly:

public class BaristaCoffeeShop {

 private BeanStore beanStore;

 private Grinder grinder;

 private EspressoMachine espressoMachine;

 private Scale scale;

 private Thermometer thermometer;

 private Hygrometer hygrometer;

 public GroundBeans grindBeans(Beans beans, double weight) { ... }

 public Beans fetchBeans(BeanType type) { ... }

 public double getTemperature() { ... }

 public double getHumidity() { ... }

 public Coffee makeEspresso(GroundBeans beans, Settings settings) { ... }

}

One could certainly argue that this class already needs refactoring. However,
legacy classes may not be changeable easily. We will introduce a barista that
acts as a facade:

@Stateless

public class Barista {

 @Inject

 BaristaCoffeeShop coffeeShop;

 public Coffee makeCoffee() {

 // check temperature & humidity

 // calculate amount of beans & machine settings

www.EBooksWorld.ir

 // fetch & grind beans

 // operate espresso machine

 }

}

In the Java EE world, the most prominent example of facades are boundaries
implemented with EJBs. They provide the facade to the business use cases
that are part of our business domain. Besides that, facades can be
implemented using all kinds of managed beans. Facades delegate and
orchestrate complex logic appropriately. Well-chosen abstractions improve
the software design and are an aim to strive for.

www.EBooksWorld.ir

Proxy
The proxy design pattern is probably the most obvious one that is included in
Java EE. Injected bean references contain in almost all cases not a reference
to the actual instance, but a proxy. Proxies are thin wrappers around instances
that can add certain functionalities. The client doesn't even notice that it
interacts with a proxy instead of the actual object.

Proxies enable the cross-cutting functionality which is required in an
enterprise environment, such as interceptors, transactions, logging, or
monitoring. They are also required to perform dependency injection in the
first place.

Application developers typically don't use the proxy pattern directly.
However, it is recommended to understand how the proxy pattern works in
general and how it's used in the Java EE platform in particular.

www.EBooksWorld.ir

Observer
The observer design pattern describes how an object manages and notifies
observers in case of change in the overall state. Observers register themselves
at the subject and will be notified later on. The notification of observers can
happen in a synchronous or asynchronous way.

As seen before, CDI includes an eventing functionality, which implements
the observer pattern. Developers do not need to handle the registration and
notification logic themselves; they just declare the loose coupling using
annotation. As shown in the topic Core domain components of modern Java
EE, the Event<T> type and @Observes annotations declare the event publishing
and observation. In the topic Flow of execution, we will cover asynchronous
CDI events.

www.EBooksWorld.ir

Strategy
The strategy design pattern is used to dynamically choose an implementation
algorithm, a strategy, at runtime. The pattern is used, for example, to select
different business algorithms depending on the circumstances.

We have several possibilities to make use of the strategy pattern, depending
on the situation. We can define different implementations of an algorithm as
separate classes. Java SE 8 includes the functionality of lambda methods and
method references that can be used as a lightweight strategy implementation:

import java.util.function.Function;

public class Greeter {

 private Function<String, String> strategy;

 String greet(String name) {

 return strategy.apply(name) + ", my name is Duke";

 }

 public static void main(String[] args) {

 Greeter greeter = new Greeter();

 Function<String, String> formalGreeting = name -> "Dear " + name;

 Function<String, String> informalGreeting = name -> "Hey " + name;

 greeter.strategy = formalGreeting;

 String greeting = greeter.greet("Java");

 System.out.println(greeting);

 }

}

The example shows that functional interfaces can be used to dynamically
define strategies that are applied and chosen at runtime.

In a Java EE environment, we can again make use of CDI dependency
injection. To showcase that CDI supports any Java type, we will use the same
example with a strategy that is represented by a functional interface. The
greeting strategy is represented by the Function type:

public class Greeter {

www.EBooksWorld.ir

 @Inject

 Function<String, String> greetingStrategy;

 public String greet(String name) {

 return greetingStrategy.apply(name);

 }

}

A CDI producer method dynamically selects the greeting strategy:

public class GreetingStrategyExposer {

 private Function<String, String> formalGreeting = name -> "Dear " + name;

 private Function<String, String> informalGreeting = name -> "Hey " + name;

 @Produces

 public Function<String, String> exposeStrategy() {

 // select a strategy

 ...

 return strategy;

 }

}

In order to complete the example, let's introduce specific classes for the
algorithm implementations. CDI is able to inject all instances of a certain
type that can dynamically be selected.

The GreetingStrategy type is selectable after daytime appropriateness:

public interface GreetingStrategy {

 boolean isAppropriate(LocalTime localTime);

 String greet(String name);

}

public class MorningGreetingStrategy implements GreetingStrategy {

 @Override

 public boolean isAppropriate(LocalTime localTime) {

 ...

 }

 @Override

 public String greet(String name) {

 return "Good morning, " + name;

 }

}

public class AfternoonGreetingStrategy implements GreetingStrategy { ... }

public class EveningGreetingStrategy implements GreetingStrategy { ... }

The CDI producer can inject all possible GreetingStrategy instances and select
based on their specification:

www.EBooksWorld.ir

public class GreetingStrategySelector {

 @Inject

 @Any

 Instance<GreetingStrategy> strategies;

 @Produces

 public Function<String, String> exposeStrategy() {

 for (GreetingStrategy strategy : strategies) {

 if (strategy.isAppropriate(LocalTime.now()))

 return strategy::greet;

 }

 throw new IllegalStateException("Couldn't find an appropriate greeting");

 }

}

The @Any qualifier implicitly exists on any managed bean. Injection points
with the Instance type and this qualifier inject all instances that match the
corresponding type, here GreetingStrategy. The Instance type allows us to
dynamically obtain and qualify instances of a certain type. It implements an
iterator over all eligible types.

By providing custom selection logic, we chose an appropriate strategy that is
then injected into the greeter.

CDI allows several ways to specify and choose different strategies.
Depending on the situation, dependency injection can be used to separate the
selection logic from the usage.

www.EBooksWorld.ir

Further patterns
Besides the mentioned patterns that are implemented with specific Java EE
functionalities, there are other design patterns that still are implemented with
pure Java, as described in the GoF book. The presented list is certainly not
complete, but includes design patterns that are usually being used in
enterprise projects.

There are some design patterns that are at the core of Java EE, such as the
proxy pattern. Another example is the mediator pattern that encapsulates
communication between a set of objects. For example, to design loosely
coupled communication, we would not implement this pattern ourselves
rather than use API functionality that implements it internally, such as CDI
events.

There are many other patterns that aren't used much by the Java EE API, but
would be implemented using plain Java. Depending on the actual case, CDI
could be used to support the creation and instantiation of objects. Examples
for these patterns are prototype, builder, adapter, bridge, composite,
flyweight, chain of responsibility, state, and visitor.

Again if we look into the Enterprise API, we will find, for example, the
builder pattern being heavily used in the JSON-P API. I refer to the Design
Patterns book by the Gang of Four, for further usage and patterns.

www.EBooksWorld.ir

Domain-Driven Design
Now we have seen how the GoF design patterns are implemented in the age
of Java EE. Besides that, I want to point out some patterns and concepts that
are applied in our core domain before continuing to more purely technical
concerns. The book Domain-Driven Design by Eric Evans, extensively
describes these patterns and concepts that support constructing software
models that match the actual business domain as accurately as possible. In
particular, the importance of communicating with domain experts, sharing a
common, ubiquitous domain language, deeply understanding the underlying
domain model, and gradually refactoring it, is pointed out. Domain-Driven
Design also introduces certain concepts in the software world, such as
repositories, services, factories, or aggregates.

Now the question arises as to whether and how these concepts are realizable
with Java Enterprise? Domain-Driven Design always aims to include
important aspects of the application directly into the domain model rather
than just outside as part of a service or transaction script. We will see how
this fact plays well with EJBs or CDI managed beans.

www.EBooksWorld.ir

Services
The Domain-Driven Design language defines the concept of a service.
Services are responsible for orchestrating various business logic processes.
Typically, they are an entry point for use cases and create or manage objects
of the domain model. Services hold the single business process steps
together.

If you map this concept with the idea and contents of the Entity Control
Boundary packaging, you will see that it fulfills the same purpose as
boundaries or controls, respectively. In Java EE, these services would
therefore be implemented as EJBs or CDI managed beans. Services that
represent the entry point of a use case are implemented as boundaries;
whereas services that orchestrate further business logic, access databases or
external systems represent controls.

www.EBooksWorld.ir

Entities
Domain-Driven Design also defines so-called entities. As the name already
suggests, an entity represents a business domain entity in essence. These
entities are identifiable instances of a concept deeply contained in the specific
domain. Users, articles, and cars are examples of such entities. It is important
to the domain that the entities can be separately identified. It makes a
difference whether user John Doe or user John Smith invoked some use case.
This aspect distinguishes entities from value objects.

Entities, as well as other model objects, are implemented as plain Java
classes. For the sole business domain to function, there is no framework
support required. Ideally, entities already encapsulate certain business logic
that is self-contained within the entity type. That means that we will not only
model simple POJOs with properties plus getter and setter methods but also
business relevant methods that operate on that entity. Integrating business
logic directly at the core of the business entities increases cohesion,
understanding, and embraces the single responsibility principle.

Typically, entities as well as other domain model types, are persisted in a
database. Java EE does support object-relational mapping with JPA which is
used to persist and retrieve objects and object hierarchies. In fact, the JPA
annotation used to declare entity types is called @Entity. In a later sub-chapter,
we will see in detail how JPA supports to persist domain model types with
minimal disruption on the model classes.

www.EBooksWorld.ir

Value objects
Types of the business domain that do not form identifiable entities but only
specific values are called value objects. Value objects are preferably
immutable and therefore reusable, since the content can't change. Java
enumerations are a good example of this. Any objects where identity doesn't
matter will be realized as value objects. For example, for Java enumerations it
doesn't matter which instance of Status.ACCEPTED is returned, here there is even
only one enum instance which is used in all places. The same is true for a lot
of types in the domain, such as addresses. As long as the value of the address
pointing to 42 Wallaby Way, Sydney remains the same, it doesn't matter
which address instance we refer to.

Depending on whether the set of values is finite, value objects are either
modeled as enumerations or POJOs, ideally immutable. Immutability
represents the concept of value objects and reduces the probability of
potential errors. Changing a mutable object that is shared by multiple
locations can lead to unplanned side effects.

As value objects are not identified directly they also won't be persisted and
managed directly in a database. They certainly can be persisted indirectly, as
part of a graph of objects, referenced from an entity or aggregate. JPA
supports managing persistence of objects that are not entities or aggregates.

www.EBooksWorld.ir

Aggregates
Aggregates represent a concept in the Domain-Driven Design language,
which is sometimes confusing to developers. Aggregates are complex models
that consist of several entities or value objects, respectively, which form a
whole. For consistency reasons, this conglomerate of objects should be
accessed and managed as a whole as well. Accessing methods of some
contained objects directly could lead to inconsistencies and potential errors.
The idea behind aggregates it to represent a root objects for all operations. A
good example is a car consisting of four wheels, an engine, a chassis, and so
on. Whenever some operation, such as drive is required, it will be invoked on
the whole car, potentially involving several objects at once.

Aggregates are entities that also define the root of an object hierarchy. They
are implemented as plain Java classes containing business domain
functionality and holding reference onto entities and value objects,
respectively.

Therefore, aggregates can be persisted using JPA as well. All persistence
operations are invoked on the aggregate, the root object, and cascaded to its
contained objects. JPA supports persistence of complex object hierarchies, as
we will see in later sub-chapters.

www.EBooksWorld.ir

Repositories
Speaking of database access Domain-Driven Design defines repositories that
will manage persistence and consistency of entities. The motivation behind
repositories was to have a single point of responsibility that enables the
domain model to be persistent with consistency in mind. Defining these
functionalities should not clutter the domain model code with persistence
implementation details. Therefore, Domain-Driven Design defines the
concept of repositories which encapsulate these operations in a self-sufficient
and consistent way.

The repositories are the entry point for persistence operations for a specific
entity type. Since only instances of aggregates and entities need to be
identified, only these types require repositories.

In Java EE and JPA, there is already a functionality that matches the idea of
repositories well, JPA's EntityManager. The entity manager is used to persist,
retrieve, and manage objects that are defined as entities or potential object
hierarchies thereof. The fact that the JPA managed objects need to be
identifiable entities perfectly fits the constraints set by the Domain-Driven
Design idea of entities.

The entity manager is injected and used in managed beans. This matches the
idea that services, either as boundaries or controls, are meant to orchestrate
the business use case, here by invoking the entity manager to provide the
persistence of the entities.

www.EBooksWorld.ir

Factories
The motivation behind Domain-Driven Design factories is that creating
domain objects can require logic and constraints that are more complex than
just calling a constructor. Creation of consistent domain objects may need to
perform validations or complex processes. Therefore, we define the creation
logic in specific methods or classes that encapsulate this logic from the rest of
the domain.

This is the same motivation behind the abstract factory and factory method
design patterns discussed earlier. Therefore, the same realization using CDI
features hold true here as well. The CDI specification is in fact a factory
functionality.

Domain object factories can also be implemented as methods being part of
another domain model class such as an entity. These solutions would be
implemented purely in Java without any frameworks or annotations required.
The car driver's logbook functionality discussed in the factory method design
pattern is a good example for a factory method being included in a domain
entity. If the domain class itself can provide the logic in a self-sufficient
manner it perfectly makes sense to include the factory logic there as well.

www.EBooksWorld.ir

Domain event
Domain events represent events that are relevant to the business domain.
They usually emerge from business use cases and have specific domain
semantics. Examples for domain events are UserLoggedIn, ActiclePurchased, or
CoffeeBrewFinished.

Domain events are typically implemented as value objects containing the
required information. In Java, we realize events as immutable POJOs. Events
happened in the past and can't be changed later on, so it is highly
recommended to make them immutable. As seen before, we can use the CDI
events functionality to publish and observe events with loose coupling. In
CDI, all Java types can be used to be published as events. The concept of
domain events is therefore a business definition rather than a technical one.

Domain events are particularly important for event sourcing and event-driven
architectures, which we will extensively discuss in Chapter 8, Microservices
and System Architecture.

www.EBooksWorld.ir

External and cross-cutting concerns
in enterprise applications
Now we have seen the concepts and implementations necessary to realize
domain logic in our application. In theory it's already sufficient to implement
standalone business logic; however, the use cases won't provide much value
to the customer if they can't be accessed from outside of the system.

Therefore, let's have a look at technically motivated external and cross-
cutting concerns. These are functionalities that are not at the core of the
business domain, but that need to be fulfilled as well. Examples for
technically motivated concerns are accessing external systems or databases,
configuring the application, or caching.

www.EBooksWorld.ir

Communication with external
systems
Communicating to the outside world is one of the most important technical
aspects of an enterprise application. Without that communication, the
application will hardly bring any value to the customer.

www.EBooksWorld.ir

How to choose communication
technology
When enterprise systems require communication, the question of which
communication protocols and technologies to use arises. There are many
forms of synchronous and asynchronous communications to choose from.
There are some considerations to make upfront.

Which communication technology is supported by the chosen languages and
frameworks? Are there any existing systems that require a certain form of
communication? Do the systems exchange information in a synchronous or
asynchronous way? What solution is the team of engineers familiar with?
Does the system reside in an environment where high performance is crucial?

Looking from a business perspective again, communication between systems
is necessary and should not get in the way of implementing a business use
case. That said, exchanging information should at first be implemented in a
straightforward way, matching the specific domain, regardless of whether the
communication is performed synchronously or asynchronously. These
considerations have a big impact not only on the actual implementation, but
also as to whether the whole use case matches the chosen solution. Therefore,
this is one of the first questions to be asked, whether the communication
happens in a synchronous or asynchronous way. Synchronous
communication ensures consistency and ordering of the exchanged
information. However, it also comes with less performance compared to
asynchronous calls and will not scale infinitely. Asynchronous
communication leads to looser coupling of the systems involved, increases
the overall performance as well as overhead and enables scenarios where
systems are not reliably available all the time. For reasons of simplicity
enterprise applications typically use synchronous communication, and also in
regard to consistency.

The chosen way of communication needs to be supported not only by the

www.EBooksWorld.ir

language and frameworks, but also the environments and tools being used.
Does the environment and network setup make any constraints on the
communication? In fact, this was one of the reasons why the SOAP protocol
was widely chosen in the past; being able to be transmitted over network port
80, which was permitted by the majority of network configurations. Tool
support, especially during development and for debugging purposes is
another important aspect. This is the reason why HTTP in general is widely
used.

In the Java world, arguably most of the communication solutions out there
are supported, either natively, such as HTTP, or by third-party libraries. This
is certainly not the case with other technologies. This was, for example, one
of the issues with the SOAP protocol. Implementation of the SOAP protocol
was effectively only seen in Java and .NET applications. Other technologies
typically chose different forms of communication.

Performance of the communication technology is an issue to consider, not
only in high performance environments. Exchanging information over the
network always introduces a huge overhead compared to both inter- or intra-
process communication. The question is how big that overhead is. This
essentially regards the density of information and the performance of
processing messages or payloads. Is the information exchanged in a binary or
plain text format? Which format does the content type represent? Generally
speaking, binary formats with high information density and low verbosity
perform better and transmit less data sizes, but are also harder to debug and
comprehend.

Another important aspect is the flexibility of the communication solution.
The chosen technology should not constrain the exchange of information too
much. Ideally, the protocol supports different ways of communicating; for
example, both synchronous and asynchronous communication, binary
formats, or Hypermedia. Since our application's main concerns is the
business logic, the chosen technology can ideally adapt to the overall
requirements.

In today's systems, the communication protocol with the greatest usage is

www.EBooksWorld.ir

HTTP. There are several reasons for this. HTTP is well supported by all
kinds of language platforms, frameworks, and libraries. The variety of tool
choices is extremely high and the protocol is well known to most software
engineers. HTTP does not make many constraints on how it is used and can
therefore be applied to all kinds of information exchange. It can be used to
realize both synchronous or asynchronous communication, Hypermedia, or
straightforward invocations of remote functionality, such as remote procedure
calls. However, HTTP does encourage certain usage. We will discuss
semantic HTTP, remote procedure calls and REST in the next topic.

There are communication protocols that are, not necessarily, but typically,
built on top of HTTP. The most prominent example from the past was SOAP;
a more recent example is gRPC. Both protocols implement a remote
procedure call approach. Remote procedure calls represent a straightforward
form of calling a function of another system over the wire. The function
needs to be specified with input and output values. SOAP realized these
remote procedure calls in the XML format whereas gRPC uses binary
protocol buffers to serialize data structures.

Depending on what the business requirements are in terms of synchronous or
asynchronous behavior of the communication, it is highly recommended to
implement the behavior consistently. In general, you should avoid mixing
synchronous or asynchronous behavior. Wrapping services that contain
asynchronous logic in a synchronous way doesn't make sense. The caller will
be blocked until the asynchronous process is completed and the whole
functionality will not scale. On the contrary, it sometimes makes sense to use
asynchronous communication in order to encapsulate long-running
synchronous processes. This includes external systems which cannot be
changed or legacy applications. The client component will connect to the
system in a separate thread, allowing the calling thread to continue
immediately. The client thread either blocks until the synchronous process
has finished or makes use of polling. However, it is preferred to model the
systems and the style of communication after what makes sense for the
business requirements.

There are quite a few protocols and formats of communications to choose

www.EBooksWorld.ir

from, a lot of them are proprietary. It is advisable for engineers to be aware of
the different concepts and ways of communicating in general.
Communication technology changes but the principles of exchanging data are
timeless. As of writing this book, HTTP is the most widespread
communication protocol being used. This is arguably one of the most
important technologies to implement, it is well-understood, and has a great
tooling support.

www.EBooksWorld.ir

Synchronous HTTP communication
Most of today's synchronous communication within enterprise systems is
realized via HTTP. Enterprise applications expose HTTP endpoints that are
accessed by the clients. These endpoints are typically in the form of web
services or web frontends as HTML over HTTP.

Web services can be designed and specified in various ways. In the simplest
form, we just want to call a function of another system over the wire. That
function needs to be specified with input and output values. These functions
or remote procedure calls (RPC) are in this case realized over HTTP,
typically using an XML format that specifies the parameter arguments. In the
age of J2EE, these types of web services were pretty common. The most
prominent example for this was the SOAP protocol which is implemented
with the JAX-WS standard. However, the SOAP protocol and its XML
format was quite cumbersome to use and not well supported by other
languages other than Java and .NET.

In today's system, the REST architectural style with its concept and
constraints is used far more often.

www.EBooksWorld.ir

Representational State Transfer
The ideas and constraints of Representational State Transfer (REST), as
initiated by Roy T. Fielding, provide an architectural style of web services
that in many ways suit the needs of enterprise applications better. The ideas
lead to systems that are coupled more loosely with interfaces that are
accessed from various clients in a uniform and straightforward way.

The REST constraint of a uniform interface requires the resources to be
identified in requests using the URI in web-based systems. The resources
represent our domain entities; for example, users or articles which are
individually identified by URLs of the enterprise application. That said, the
URLs no longer represent RPC methods, but actual domain entities. These
representations are modified in a uniform way, in HTTP using the HTTP
methods such as GET, POST, DELETE, PATCH, or PUT. The entities may
be represented in different formats that are requested by the client, such as
XML or JSON. If supported by the server, clients are free to choose whether
they access the specific user in its XML or JSON representation.

Another aspect of the uniform interface constraint is to make use of
Hypermedia as the engine of the application state. Hypermedia means linking
resources that are related together using hyperlinks. REST resources that are
transferred to the client can include links to other resources with semantic
link relations. If some user includes information about their manager, that
information can be serialized using a link to the resource of the second user,
the manager.

The following shows an example for a book representation with Hypermedia
links included in a JSON response:

{

 "name": "Java",

 "author": "Duke",

 "isbn": "123-2-34-456789-0",

 "_links": {

 "self": "https://api.example.com/books/12345",

 "author": "https://api.example.com/authors/2345",

www.EBooksWorld.ir

 "related-books": "https://api.example.com/books/12345/related"

 }

}

In websites designed for humans, these links are one of the main aspects. In a
Hypermedia API, these links are used by the REST clients to navigate
through the API. The concept of discoverability decreases coupling and
increases evolvability of the systems involved. If this concept is fully
embraced, clients only need to know an entry point of the API and discover
the available resources using semantic link relations, such as related-books.
They will follow the known relations using the provided URLs.

In most REST APIs, it's not sufficient for clients to only follow links and
fetch resource representation using the HTTP GET method. Information is
exchanged using HTTP methods that change state such as POST or PUT and
request bodies which contain the payload. Hypermedia supports these so-
called actions as well, using Hypermedia controls. Actions describe not only
the target URL, but also the HTTP method and required information to send.

The following demonstrates a more sophisticated Hypermedia example using
the concept of actions. This example shows the Siren content type and is
meant to give you an idea of potential contents of Hypermedia responses:

{

 "class": ["book"],

 "properties": {

 "isbn": "123-2-34-456789-0",

 "name": "Java",

 "author": "Duke",

 "availability": "IN_STOCK",

 "price": 29.99

 }

 "actions": [

 {

 "name": "add-to-cart",

 "title": "Add Book to cart",

 "method": "POST",

 "href": "http://api.example.com/shopping-cart",

 "type": "application/json",

 "fields": [

 { "name": "isbn", "type": "text" },

 { "name": "quantity", "type": "number" }

]

 }

],

 "links": [

 { "rel": ["self"], "href": "http://api.example.com/books/1234" }

]

www.EBooksWorld.ir

}

This is one example of a content type that enables Hypermedia controls. At
the time of writing this book, none of the hypermedia-enabled content type
such as Siren, HAL, or JSON-LD has emerged as a standard or de facto
standard yet. However, this Siren content type should sufficiently
communicate the concepts of links and actions.

Using Hypermedia decouples the client from the server. First of all, the
responsibility of URLs solely reside on the server side. Clients cannot make
any assumption how the URLs are created; for example, that the book
resource resides under /books/1234, which is constructed from the path /books/
plus the book ID. We have seen many of these assumption that duplicate
URL logic into the clients in real-world projects.

The next aspect that is decoupled is how state is changed on the server. For
example, the instruction that clients need to POST a JSON content type to
/shopping-cart with a certain JSON structure is no longer baked into the client,
but retrieved dynamically. The client will only refer to the Hypermedia action
using its relation or name, here add-to-cart, and the information provided in
the action. By using this approach, the client only needs to know the business
meaning of the add-to-cart action and the origin of the required ISBN and
quantity field. This is certainly client logic. The field values could be
retrieved from the resource representation itself or from a client process. For
example, the quantity of books could be presented as a drop-down field in the
UI.

Another potential of using Hypermedia is to decouple business logic from the
client. By using links and actions to direct the client to available resources,
the information contained in the available links and actions is used to
implicitly tell clients which use cases are possible with the current state of the
system. For example, assuming that only books which have a certain
availability can be added to the shopping cart. Clients that implement this
behavior, that is, only showing an add-to-cart button for these situations,
need to be aware of this logic. The client functionality then will check
whether the book availability meets the criteria, and so on. Technically, this
business logic should reside on the server-side only. By dynamically

www.EBooksWorld.ir

providing links and actions to available resources, the server dictates which
functionality is possible under the current state. The add-to-cart action would
then only be included if the book can actually be added to the cart. The client
logic therefore is simplified to checking whether links and actions with
known relations or names, respectively, are included. Therefore, the client
only displays an active add-to-cart button if the corresponding action is
provided in the response.

Together with the advent of Java EE, the REST architectural style gained
more and more attention. While most web services out there don't implement
all of the constraints that the REST architectural style defines, especially
Hypermedia, they are mostly considered as REST services.

For more information about REST constraints, I refer you to the dissertation
of Roy T. Fielding's Architectural Styles and the Design of Network-based
Software Architectures.

www.EBooksWorld.ir

Java API for RESTful web services
In Java EE, the Java API for RESTful web services (JAX-RS) is used to
both define and access REST services. JAX-RS is widely used in the Java
ecosystem, even by other enterprise technologies. Developers especially like
the declarative development model that makes it easy to develop REST
services in a productive way.

So-called JAX-RS resources specify REST resources which will be available
under a certain URL. The JAX-RS resources are methods in a resource class
that implement the business logic once the URL is accessed with a specific
HTTP method. The following shows an example of a JAX-RS resource class
for users:

import javax.ws.rs.Path;

import javax.ws.rs.GET;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("users")

@Produces(MediaType.APPLICATION_JSON)

public class UsersResource {

 @Inject

 UserStore userStore;

 @GET

 public List<User> getUsers() {

 return userStore.getUsers();

 }

}

The getUsers() method is the JAX-RS resource method that will be invoked by
the container once the HTTP call GET .../users is performed by a client. The
list of users is then returned to the client in the JSON format, that is, as a
JSON array containing JSON objects for each of the users. That is specified
via the @Produces annotation that will here implicitly use the Java API for
JSON Binding (JSON-B) to map Java types to their corresponding JSON
representation.

Here you can see the inversion of control principle at work. We don't have to

www.EBooksWorld.ir

wire up or register the URL ourselves, the declaration using the @Path
annotation is sufficient. The same is true for mapping Java types into
representations such as JSON. We specify in a declarative way which
representation formats we want to provide. The rest is handled by the
container. The JAX-RS implementation also takes care of the required HTTP
communication. By returning an object, here the list of users, JAX-RS
implicitly assumes the HTTP status code 200 OK, which is returned to the client
together with our JSON representation.

In order to register JAX-RS resources to the container, the application can
ship a sub-class of Application which bootstraps the JAX-RS runtime.
Annotating this class with @ApplicationPath automatically registers the provided
path as Servlet. The following shows a JAX-RS configuration class which is
sufficient for the vast majority of use cases:

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

@ApplicationPath("resources")

public class JAXRSConfiguration extends Application {

 // no configuration required

}

JAX-RS, as well as the other standards in the Java EE umbrella, make use of
the convention over configuration principle. The default behavior of this
REST resource is plausibly sufficient for most of the use cases. If not, then
the default behavior can always be overridden with custom logic. This is the
reason why JAX-RS, among others, provides a productive programming
model. The default cases are realizable very quickly with the option to
enhance further.

Let's look at a more comprehensive example. Assuming we want to create a
new user in the system that is provided by a client using our REST service.
Following HTTP semantics, that action would be a POST request to the user's
resource, since we are creating a new resource that may not be identified yet.
The difference between the POST and the PUT method is that the latter is
omnipotent, only changing the accessed resource with the provided
representation, whereas POST will create new resources in the form of new
URLs. This is the case here. We are creating a new user that will be

www.EBooksWorld.ir

identifiable with a new, generated URL. If the resource for the new user is
created, the client should be directed toward that URL. For creating
resources, this is typically realized with the 201 Created status code, which
indicates that a new resource has been created successfully, and the Location
header, which contains the URL where the resource will be found.

In order to fulfill that requirement, we have to provide more information in
our JAX-RS resource. The following demonstrates how this is accomplished
in the createUser() method:

import javax.ws.rs.Consumes;

import javax.ws.rs.PathParam;

import javax.ws.rs.POST;

import javax.ws.rs.core.Context;

import javax.ws.rs.core.Response;

import javax.ws.rs.core.UriInfo;

@Path("users")

@Produces(MediaType.APPLICATION_JSON)

@Consumes(MediaType.APPLICATION_JSON)

public class UsersResource {

 @Inject

 UserStore userStore;

 @Context

 UriInfo uriInfo;

 @GET

 public List<User> getUsers() {

 return userStore.getUsers();

 }

 @GET

 @Path("{id}")

 public User getUser(@PathParam("id") long id) {

 return userStore.getUser(id);

 }

 @POST

 public Response createUser(User user) {

 long id = userStore.create(user);

 URI userUri = uriInfo.getBaseUriBuilder()

 .path(UsersResource.class)

 .path(UsersResource.class, "getUser")

 .build(id);

 return Response.created(userUri).build();

 }

}

We make use of the UriInfo feature included in JAX-RS, so that we don't need

www.EBooksWorld.ir

to repeat ourselves when constructing the new URL. That feature uses the
path information which is already present in the annotations of our resource
class. The Response method is used to specify the actual HTTP response using
a builder pattern approach. JAX-RS notices that the return type of our method
is now a response specification and will respond to the client appropriately.
By this approach, we have full control and flexibility as to what the response
to the client looks like.

As you can see, these methods are the entry point to our business use cases.
We inject the UserStore boundary which in our case is implemented as EJB,
providing the logic to return the list of users and creating new users,
respectively.

JAX-RS provides a productive and straightforward way to expose business
functionality with RESTful web services. Developers don't have to write any
low-level HTTP plumbing if the default behavior is sufficient.

www.EBooksWorld.ir

Mapping HTTP content types
With the same mindset of giving developers as much productivity as
possible, Java EE includes standards to transparently map POJOs to JSON or
XML. The example you saw with JAX-RS implicitly used JSON-B to map
our User types to JSON objects and arrays, respectively.

This again uses the principle of convention over configuration. If nothing is
else specified JSON-B assumes to map the POJO properties directly as JSON
object key-value pairs. The user's id was present in the JSON output as well.

The same holds true for the Java Architecture for XML Binding (JAXB)
and its XML binding, which was included in Java EE much earlier than
JSON-B. Both standards support a declarative configuration approach using
annotations that are placed on the mapped Java types. If we're about to
change the JSON representation of the type, we annotate the corresponding
fields:

import javax.json.bind.annotation.JsonbProperty;

import javax.json.bind.annotation.JsonbTransient;

public class User {

 @JsonbTransient

 private long id;

 @JsonbProperty("username")

 private String name;

 ...

}

If we want to implement more sophisticated resource mapping, such as in the
Hypermedia book examples shown before, we can do so using the declarative
mapping approach. For instance, to map the links into the books resource, we
can use a map containing links and link relations:

public class Book {

 @JsonbTransient

 private long id;

www.EBooksWorld.ir

 private String name;

 private String author;

 private String isbn;

 @JsonbProperty("_links")

 private Map<String, URI> links;

 ...

}

These links are set in the JAX-RS resource appropriately:

@Path("books")

@Produces(MediaType.APPLICATION_JSON)

public class BooksResource {

 @Inject

 BookStore bookStore;

 @Context

 UriInfo uriInfo;

 @GET

 public List<Book> getBooks() {

 List<Book> books = bookStore.getBooks();

 books.forEach(this::addLinks);

 return books;

 }

 @GET

 @Path("{id}")

 public Book getBook(@PathParam("id") long id) {

 Book book = bookStore.getBook(id);

 addLinks(book);

 return book;

 }

 private void addLinks(Book book) {

 URI selfUri = uriInfo.getBaseUriBuilder()

 .path(BooksResource.class)

 .path(BooksResource.class, "getBook")

 .build(book.getId());

 book.getLinks().put("self", selfUri);

 // other links

 }

}

The output of the list of books will look similar to the following:

[

 {

 "name": "Java",

 "author": "Duke",

 "isbn": "123-2-34-456789-0",

 "_links": {

 "self": "https://api.example.com/books/12345",

 "author": "https://api.example.com/authors/2345",

www.EBooksWorld.ir

 "related-books": "https://api.example.com/books/12345/related"

 }

 },

 ...

]

Using this approach, we can now programmatically introduce links with
relations that are used and being followed within the client. However, using a
Hypermedia approach pretty quickly reaches the point where a declarative
mapping introduces too much overhead on the model. The map of links and
relations already is not part of the business domain, but a technical necessity
and should therefore be questioned. We could introduce transfer object types
that separate the technical mapping from the domain model. But this would
certainly introduce a lot of duplication and clutter our project with a number
of classes that serve no value to the business.

Another challenge to be faced is the flexibility that Hypermedia requires.
Even for simpler examples that make use of Hypermedia controls, we want to
specify and include links and actions depending on the current state of the
system. It's in the nature of Hypermedia to control the flow of clients and
direct them to certain resources. For example, a client response should only
include the action to place an order if a book is in stock or certain credit is on
their account. This requires the response mapping to be changeable on
demand. Since a declarative mapping can't be changed easily at runtime, we
would need a more flexible approach.

Since Java EE 7, there is the Java API for JSON Processing (JSON-P)
standard which provides programmatic mapping of JSON structures in a
builder pattern-like fashion. We can simply invoke the builder types
JsonObjectBuilder or JsonArrayBuilder to create arbitrary complex structures:

import javax.json.Json;

import javax.json.JsonObject;

...

JsonObject object = Json.createObjectBuilder()

 .add("hello", Json.createArrayBuilder()

 .add("hello")

 .build())

 .add("key", "value")

 .build();

The resulting JSON object looks as follows:

www.EBooksWorld.ir

{

 "hello": [

 "hello"

],

 "key": "value"

}

Especially in situations where we need a lot of flexibility such as in
Hypermedia this approach is quite helpful. The JSON-P standard, as well as
JSON-B or JAXB, seamlessly integrates with JAX-RS. JAX-RS resource
methods that return JSON-P types, such as JsonObject, will automatically
return the JSON content type together with the corresponding response. No
further configuration is required. Let's have a look how the example
containing resource links is implemented using JSON-P.

import javax.json.JsonArray;

import javax.json.stream.JsonCollectors;

@Path("books")

public class BooksResource {

 @Inject

 BookStore bookStore;

 @Context

 UriInfo uriInfo;

 @GET

 public JsonArray getBooks() {

 return bookStore.getBooks().stream()

 .map(this::buildBookJson)

 .collect(JsonCollectors.toJsonArray());

 }

 @GET

 @Path("{id}")

 public JsonObject getBook(@PathParam("id") long id) {

 Book book = bookStore.getBook(id);

 return buildBookJson(book);

 }

 private JsonObject buildBookJson(Book book) {

 URI selfUri = uriInfo.getBaseUriBuilder()

 .path(BooksResource.class)

 .path(BooksResource.class, "getBook")

 .build(book.getId());

 URI authorUri = ...

 return Json.createObjectBuilder()

 .add("name", book.getName())

 .add("author", book.getName())

 .add("isbn", book.getName())

 .add("_links", Json.createObjectBuilder()

 .add("self", selfUri.toString())

www.EBooksWorld.ir

 .add("author", authorUri.toString()))

 .build();

 }

}

The JSON-P objects are created dynamically using a builder pattern
approach. We have full flexibility over the desired output. This approach of
using JSON-P is also advisable if a communication needs a representation of
an entity different to the current model. In the past, projects always
introduced transfer objects or DTOs for this purpose. Here the JSON-P
objects are in fact transfer objects. By using this approach, we eliminate the
need for another class that also duplicates the majority of structures of the
model entity.

However, there is also some duplication in this example. The property names
of the resulting JSON objects are now provided by strings. To refactor that
example a little bit, we would introduce a single point of responsibility, such
as a managed bean responsible for creating the JSON-P objects from the
model entities.

This bean, for example EntityBuilder, would be injected in this and other JAX-
RS resource classes. Then the duplication is still existent, but encapsulated in
that single point of responsibility and reused from multiple resource classes.
The following code shows an example EntityBuilder for books and potentially
other objects to be mapped to JSON.

public class EntityBuilder {

 public JsonObject buildForBook(Book book, URI selfUri) {

 return Json.createObjectBuilder()

 ...

 }

}

If the representation to some endpoint or external system differs from our
model, we won't be able to fully avoid duplication without other downsides.
By using this approach, we decouple the mapping logic from the model and
have full flexibility. The mapping of the POJO properties happens in the
builder pattern invocations. Compared to introducing separate transfer object
classes and mapping them in another functionality, this results in less
obfuscation and ultimately less code.

www.EBooksWorld.ir

Let's take up on the Hypermedia example using the add-to-cart Siren actions
again. This example gave an idea of the potential content of Hypermedia
responses. For responses like these, the output needs to be dynamic and
flexible, depending on the application's state. Now we can imagine the
flexibility and strength of a programmatic mapping approach such as JSON-
P. This output is not really feasible using declarative POJO mapping, which
would introduce a quite complex graph of objects. In Java EE, it is advisable
to either use JSON-P in a single responsibility or a third-party dependency
for the desired content type.

For mapping Java objects into JSON or XML payloads, JAXB, JSON-B, and
JSON-P offers seamless integration into other Java EE standards, such as
JAX-RS. Besides the integration into JAX-RS that we just saw we can also
integrate CDI injection; this interoperability holds true as for all modern Java
EE standards.

JSON-B type adapters enable to map custom Java types that are unknown to
JSON-B. They transform custom Java types into known and mappable types.
A typical example is serializing references to objects as identifiers:

import javax.json.bind.annotation.JsonbTypeAdapter;

public class Employee {

 @JsonbTransient

 private long id;

 private String name;

 private String email;

 @JsonbTypeAdapter(value = OrganizationTypeAdapter.class)

 private Organization organization;

 ...

}

The type adapter specified on the organization field is used to represent the
reference as the organization's ID. To resolve that reference, we need to look
up valid organizations. This functionality can be simply injected into the
JSON-B type adapter:

import javax.json.bind.adapter.JsonbAdapter;

public class OrganizationTypeAdapter implements JsonbAdapter<Organization, String> {

www.EBooksWorld.ir

 @Inject

 OrganizationStore organizationStore;

 @Override

 public String adaptToJson(Organization organization) {

 return String.valueOf(organization.getId());

 }

 @Override

 public Organization adaptFromJson(String string) {

 long id = Long.parseLong(string);

 Organization organization = organizationStore.getOrganization(id);

 if (organization == null)

 throw new IllegalArgumentException("Could not find organization for ID " + string);

 return organization;

 }

}

This example already shows the benefit of having several standards that work
well with each other. Developers can simply use and integrate the
functionalities without spending time on configuration and plumbing.

www.EBooksWorld.ir

Validating requests
JAX-RS offers an integration of HTTP endpoints into our system. This
includes mapping of requests and responses into Java types of our
application. However, the client requests need to be validated in order to
prevent misuse of the system.

The Bean Validation standard provides validation of all kind of sorts. The
idea is to declare validation constraints, such as this field must not be null,
this integer must not be negative or this salary raise must align with the
company policies, to Java types and properties. The standard already ships
the typically required technically motivated constraints. Custom constraints,
especially those that are motivated by the business functionality and
validation, can be added as well. This becomes interesting not only from a
technical, but a domain perspective. Validation logic that is motivated by the
domain can be implemented using this standard.

The validation is activated by annotating method parameters, return types, or
properties with @Valid. Whereas validation can be applied in many points in
the application, it is particularly important to endpoints. Annotating a JAX-
RS resource method parameter with @Valid will validate the request body or
parameter, respectively. If the validation fails, JAX-RS automatically
responds to the HTTP request with a status code indicating a client error.

The following demonstrates the integration of a user validation:

import javax.validation.Valid;

import javax.validation.constraints.NotNull;

@Path("users")

@Produces(MediaType.APPLICATION_JSON)

@Consumes(MediaType.APPLICATION_JSON)

public class UsersResource {

 ...

 @POST

 public Response createUser(@Valid @NotNull User user) {

 ...

 }

www.EBooksWorld.ir

}

The user type is annotated with validation constraints:

import javax.validation.constraints.Email;

import javax.validation.constraints.NotBlank;

public class User {

 @JsonbTransient

 private long id;

 @NotBlank

 private String name;

 @Email

 private String email;

 ...

}

The annotations placed on the JAX-RS method tell the implementation to
validate the request body as soon as a client request arrives. The request body
must be available, not null, and valid following the configuration of the user
type. The user's name property is constrained to not be blank; that is, it
should not be null or not just containing whitespace, respectively. The user's
email property has to comply with a valid email address format. These
constraints are enforced when validating a user object.

Internally, a Validator included in Bean Validation validates the objects. The
validator will throw ConstraintViolationExceptions if the validation fails. This
validator functionality can also be obtained by dependency injection and
called programmatically. JAX-RS automatically calls the validator and sends
an appropriate response to the client if the validation fails.

This example would fail on illegal HTTP POST invocations to the /users/
resource, such as providing user representations without a name. This results
in 400 Bad Request status codes, the JAX-RS default behavior for failed client
validations.

If the clients need more information about why a request was declined, the
default behavior can be extended. The violation exceptions which are thrown
by the validator can be mapped to HTTP responses with the JAX-RS
exception mapper functionality. Exception mappers handle exceptions that

www.EBooksWorld.ir

are thrown from JAX-RS resource methods to appropriate client responses.
The following demonstrates an example of such an ExceptionMapper for
ConstraintViolationExceptions:

import javax.validation.ConstraintViolationException;

import javax.ws.rs.ext.ExceptionMapper;

import javax.ws.rs.ext.Provider;

@Provider

public class ValidationExceptionMapper implements ExceptionMapper<ConstraintViolationException>

 @Override

 public Response toResponse(ConstraintViolationException exception) {

 Response.ResponseBuilder builder = Response.status(Response.Status.BAD_REQUEST);

 exception.getConstraintViolations()

 .forEach(v -> {

 builder.header("Error-Description", ...);

 });

 return builder.build();

 }

}

Exception mappers are providers for the JAX-RS runtime. Providers are
either configured programmatically in the JAX-RS base application class or,
as shown here, in a declarative way using the @Provider annotation. The JAX-
RS runtime will scan the classes for providers and apply them automatically.

The exception mapper is registered for the given exception type and sub-
types. All the constraint violation exceptions thrown by a JAX-RS resource
method here are mapped to a client response including a basic description of
which fields caused the validation to fail. The violation messages are a
functionality of Bean Validation providing human readable, global messages.

If the built-in validation constraints are not sufficient for the validation,
custom validation constraints can be used. This is especially required for
validation rules that are specific to the domain. For example, usernames
could need more sophisticated validation based on the current state of the
system. In this example, the usernames must not be taken when creating new
users. Other constraints on the format or allowed characters could be set as
well, obviously:

public class User {

 @JsonbTransient

 private long id;

www.EBooksWorld.ir

 @NotBlank

 @UserNameNotTaken

 private String name;

 @Email

 private String email;

 ...

}

The @UserNameNotTaken annotation is a custom validation constraint defined by
our application. Validation constraints delegate to a constraint validator, the
actual class that performs the validation. Constraint validators have access to
the annotated object, such as the class or field in this case. The custom
functionality checks whether the provided object is valid. The validation
method can use the ConstraintValidatorContext to control custom violations
including messages and further information.

The following shows the custom constraint definition:

import javax.validation.Constraint;

import javax.validation.Payload;

@Constraint(validatedBy = UserNameNotTakenValidator.class)

@Documented

@Retention(RUNTIME)

@Target({METHOD, FIELD, ANNOTATION_TYPE, CONSTRUCTOR, PARAMETER, TYPE_USE})

public @interface UserNameNotTaken {

 String message() default "";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

}

Our constraint is validated by the UserNameNotTakenValidator class:

import javax.validation.ConstraintValidator;

import javax.validation.ConstraintValidatorContext;

public class UserNameNotTakenValidator implements ConstraintValidator<UserNameNotTaken, String>

 @Inject

 UserStore userStore;

 public void initialize(UserNameNotTaken constraint) {

 // nothing to do

 }

 public boolean isValid(String string, ConstraintValidatorContext context) {

 return !userStore.isNameTaken(string);

 }

}

www.EBooksWorld.ir

As with other standards, constraint validators can use dependency injection to
use managed beans. This is very often required for custom validation logic
that makes calls to controls. In this example, the validator injects the UserStore.
Once again, we can reuse different standards within the Java EE umbrella.

Custom validation constraints are very often motivated by the business
domain. It can make sense to encapsulate complex, composed validation
logic into such custom constraints. When applied, this approach also
leverages the single responsibility principle, separating the validation logic
into a single validator rather than spreading them in atomic constraints.

Bean Validation offers more complex functionality for scenarios where
different ways of validation are required for the same types. Therefore, the
concept of groups is used to group certain constraints together into groups
which can possibly be validated individually. For more information on this, I
refer the reader to the Bean Validation specification.

As shown previously, HTTP JSON payloads can also be mapped in JAX-RS
using the JSON-P standard. This is also true for HTTP request bodies. The
request bodies parameters can be provided as JSON-P types containing JSON
structures that are read dynamically. As well as for response bodies, it makes
sense to represent request bodies using JSON-P types if the object structure
differs from the model types or needs more flexibility, respectively. For this
scenario, validation of the provided objects is even more important, since the
JSON-P structures can be arbitrary. To rely on certain JSON properties being
existent on the request object, these objects are validated using a custom
validation constraint.

Since JSON-P objects are built programmatically and there are no pre-
defined types, programmers have no way of annotating fields in the same
way as for Java types. Therefore, custom validation constraints are used on
the request body parameters that are bound to a custom validator. The custom
constraints define the structure of a valid JSON object for the specific request
bodies. The following code shows the integration of a validated JSON-P type
in a JAX-RS resource method:

@Path("users")

www.EBooksWorld.ir

@Produces(MediaType.APPLICATION_JSON)

@Consumes(MediaType.APPLICATION_JSON)

public class UsersResource {

 ...

 @POST

 public Response createUser(@Valid @ValidUser JsonObject json) {

 User user = readUser(json);

 long id = userStore.create(user);

 ...

 }

 private User readUser(JsonObject object) {

 ...

 }

}

The custom validation constraint ValidUser references the used constraint
validator. Since the structure of the provided JSON-P objects is arbitrary, the
validator has to check for the presence and type of properties:

@Constraint(validatedBy = ValidUserValidator.class)

@Documented

@Retention(RUNTIME)

@Target({METHOD, FIELD, ANNOTATION_TYPE, CONSTRUCTOR, PARAMETER, TYPE_USE})

public @interface ValidUser {

 String message() default "";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

}

The custom constraint validator is applicable on JSON-P types, as well:

public class ValidUserValidator implements ConstraintValidator<ValidUser, JsonObject>

 public void initialize(ValidUser constraint) {

 // nothing to do

 }

 public boolean isValid(JsonObject json, ConstraintValidatorContext context) {

 ...

 }

}

After the provided JSON-P object has been validated, the defined properties
can safely be extracted. This example showcases how the flexible,
programmatic types are integrated and validated in JAX-RS methods. The
resource class extracts the request body into a domain entity type and uses the

www.EBooksWorld.ir

boundary to invoke the business use case.

www.EBooksWorld.ir

Mapping errors
As we have seen in the last examples, JAX-RS provides the ability to map
exceptions to custom responses. This is a helpful functionality to implement
transparent custom error handling without impacting the production code
workflow.

A common issue when dealing with EJBs is that any thrown exception will
be wrapped in an EJBException when accessed by any non-EJB context; for
example, a request scoped JAX-RS resource. This makes exception handling
quite cumbersome, as the EJBException would have to be unwrapped to inspect
the cause.

By annotating custom exception types with @ApplicationException, the cause will
not be wrapped:

import javax.ejb.ApplicationException;

@ApplicationException

public class GreetingException extends RuntimeException {

 public GreetingException(String message) {

 super(message);

 }

}

Calling an EJB that throws the GreetingException will not result in a wrapped
EJBException and produce the exception type directly. The application can then
define a JAX-RS exception mapper for the actual GreetingException type,
similar to the one mapping constraint violations.

Specifying @ApplicationException(rollback = true) will furthermore cause the
container to roll back an active transaction when the exception occurs.

www.EBooksWorld.ir

Accessing external systems
We have now seen how our business domain is accessed from the outside via
HTTP.

In order to perform the business logic, the majority of enterprise applications
need to access other external systems as well. External systems don't include
databases that are owned by our application. Usually external systems are
external to the application's domain. They reside in another bounded context.

In order to access external HTTP services, we integrate a client component
into our project, usually as a separate control. This control class encapsulates
the functionality required to communicate with the external system. It is
advisable to carefully construct the interface and not to mix domain concerns
with communication implementation details. These details include potential
payload mappings, the communication protocol, HTTP information if HTTP
is being used, and any other aspect not relevant to the core domain.

JAX-RS ships with a sophisticated client feature that accesses HTTP services
in a productive way. It provides the same type mapping functionalities as it
does for resource classes. The following code represents a control that
accesses an external system to order coffee beans:

import javax.annotation.PostConstruct;

import javax.annotation.PreDestroy;

import javax.enterprise.context.ApplicationScoped;

import javax.ws.rs.client.*;

import java.util.concurrent.TimeUnit;

@ApplicationScoped

public class CoffeePurchaser {

 private Client client;

 private WebTarget target;

 @PostConstruct

 private void initClient() {

 client = ClientBuilder.newClient();

 target = client.target("http://coffee.example.com/beans/purchases/");

 }

 public OrderId purchaseBeans(BeanType type) {

www.EBooksWorld.ir

 // construct purchase payload from type

 Purchase purchase = ...

 BeanOrder beanOrder = target

 .request(MediaType.APPLICATION_JSON_TYPE)

 .post(Entity.json(purchase))

 .readEntity(BeanOrder.class);

 return beanOrder.getId();

 }

 @PreDestroy

 public void closeClient() {

 client.close();

 }

}

The JAX-RS client is built and configured by the client builder and uses web
targets to access URLs. These targets can be modified using a URI builder
functionality, similar to the one in the JAX-RS resources. Targets are used to
build new invocations that represent the actual HTTP invocations. The
invocations can be configured in regard to HTTP information, such as
content types, headers, as well as specifics of mapped Java types.

In this example, the target that points to the external URL builds a new
request for the JSON content type with a HTTP POST method. The returned
JSON structure is expected to be mappable to a BeanOrder object. The client
performs further logic to extract the necessary information.

The client instance will be closed properly on container shutdown in the
@PreDestroy-method to prevent resource leaks.

www.EBooksWorld.ir

Stability when consuming HTTP
This example, however, lacks some aspects in regard to resilience. Calling
this client control without further consideration could lead to unwanted
behavior.

The client request blocks until the HTTP invocation either returned
successfully or the connection timed-out. The HTTP connection timeout
configuration depends on the JAX-RS implementation, which is set to infinite
blocking in some technologies. For resilient clients, this is obviously not
acceptable. A connection could wait forever, blocking the thread and, in a
worst-case scenario, could block the whole application if all available threads
are stuck at that location, waiting for their individual HTTP connection to
finish. To prevent this scenario, we configure the client to use custom
connection timeouts.

The timeout values depend on the application, especially the network
configuration to the external system. It varies what are reasonable values for
HTTP timeouts. To get sensible timeout values, it is advisable to gather
statistics about the latency to the external system. For systems where load and
network latency vary a lot, for example e-commerce systems with selective
high utilization during certain seasons, the nature of variations should be
considered.

The HTTP connect timeout is the maximum time allowed until a connection
has been established. Its value should be small. The HTTP read timeout
specifies how long to wait to read data. Its value depends on the nature of the
external service being consumed. Following the gathered statistics, a good
starting point for configuring the read timeout is to calculate the mean
response times plus three times the standard deviation. We will cover the
topic of performance and service backpressure in Chapter 9, Monitoring,
Performance, and Logging.

The following shows how to configure both the HTTP connect and read

www.EBooksWorld.ir

timeout:

@ApplicationScoped

public class CoffeePurchaser {

 ...

 @PostConstruct

 private void initClient() {

 client = ClientBuilder.newBuilder()

 .connectTimeout(100, TimeUnit.MILLISECONDS)

 .readTimeout(2, TimeUnit.SECONDS)

 .build();

 target = client.target("http://coffee.example.com/beans/purchases/");

 }

 ...

}

Client invocations can result in potential errors. The external service could
respond with an unexpected status code, an unexpected response, or no
response at all.This needs to be considered when implementing client
components.

The readResponse() client call expects the response to be of the HTTP status
code SUCCESSFUL family and the response body to be mappable into the given
Java type from the requested content type. If something goes wrong, a
RuntimeException is thrown. Runtime exceptions enable engineers to write code
without obfuscating try-catch blocks, but also require them to be aware of the
potential errors.

The client method could catch the runtime exceptions in order to prevent
them from being thrown to the calling domain service. There is also another,
leaner possibility using interceptors. Interceptors provide cross-cutting
functionalities that are applied without being tightly coupled to the decorated
functionality. For example, this client method should intentionally return null
when the external system could not deliver a reasonable response.

The following demonstrates an interceptor that intercepts method invocations
and applies this behavior on occurred exceptions. This interceptor is
integrated by annotating the method of the CoffeePurchaser control:

import javax.interceptor.AroundInvoke;

import javax.interceptor.Interceptor;

www.EBooksWorld.ir

import javax.interceptor.InvocationContext;

@Interceptor

public class FailureToNullInterceptor {

 @AroundInvoke

 public Object aroundInvoke(InvocationContext context) {

 try {

 return context.proceed();

 } catch (Exception e) {

 ...

 return null;

 }

 }

}

The purchaseBean() method is annotated with
@Interceptors(FailureToNullInterceptor.class). This activates the cross-cutting
concerns for that method.

In regard to resilience, the client functionality could include further logic. If
several systems are available, the client can retry failed invocations on a
different system. Then, only as a last resort, the invocation would fail without
a result.

In the topic, Cross-cutting concerns, we will see how to implement further
cross-cutting concerns.

www.EBooksWorld.ir

Accessing Hypermedia REST
services
HTTP web services that apply REST constraints, especially in regard to
Hypermedia, need more sophisticated logic on the client side. Services direct
clients to corresponding resources that need to be accessed in certain ways.
Hypermedia decouples services and enables API features such as evolvability
and discovery, but also require more dynamic and logic on the client side.

The Siren content type example earlier gives an impression of how service
responses direct REST clients to available subsequent calls. Assume the
client retrieves the response of an order and wants to follow the add-to-cart
action:

{

 ... example as shown before

 ... properties of book resource

 "actions": [

 {

 "name": "add-to-cart",

 "title": "Add Book to cart",

 "method": "POST",

 "href": "http://api.example.com/shopping-cart",

 "type": "application/json",

 "fields": [

 { "name": "isbn", "type": "text" },

 { "name": "quantity", "type": "number" }

]

 }

],

 "links": ...

}

The client is only coupled to the knowledge of what business meaning the
add-to-cart action has and how to provide the field value information for
ISBN and quantity. This is certainly client domain logic that needs to be
implemented. The information on how the subsequent resource, the shopping
cart, is accessed, using which HTTP method, and what content type is now
dynamic and not baked into the client.

www.EBooksWorld.ir

In order to add a book to the shopping cart, the client will first access the
book's resource. The add-to-cart use case is called subsequently, extracting
the information of the specified Hypermedia action. The information for the
required fields needs to be provided by the invocation. The client then
accesses the second resource, using the information provided both by the
REST service and the invocation by the control:

public class BookClient {

 @Inject

 EntityMapper entityMapper;

 public Book retrieveBook(URI uri) {

 Entity book = retrieveEntity(uri);

 return entityMapper.decodeBook(uri, book.getProperties());

 }

 public void addToCart(Book book, int quantity) {

 Entity bookEntity = retrieveEntity(book.getUri());

 JsonObjectBuilder properties = Json.createObjectBuilder();

 properties.add("quantity", quantity);

 Entity entity = entityMapper.encodeBook(book);

 entity.getProperties().forEach(properties::add);

 performAction(bookEntity, "add-to-cart", properties.build());

 }

 private Entity retrieveEntity(URI uri) {

 ...

 }

 private void performAction(Entity entity, String actionName,

 JsonObject properties) {

 ...

 }

}

The Entity type encapsulates information of the Hypermedia entity types. The
EntityMapper is responsible for mapping the content type into domain models
and vice versa. In this example, all the required fields for the action result
from the properties of the resource plus the provided quantity parameter. To
enable a certain dynamic, all entity properties are added into a map and are
provided to the performAction() method. Depending on the action specified by
the server, the required fields are extracted from this map. If more fields are
required, the client logic obviously has to change.

It certainly makes sense to encapsulate logic for accessing Hypermedia

www.EBooksWorld.ir

services as well as mapping domain models to a content types into separate
delegates. Functionality for accessing REST services could also sensibly be
replaced by a library.

You might notice how the URI has now leaked into the public interface of the
client class. This was not accidental, but required to identify resources over
several use case calls. That said, the URIs move into the business domain as
general identifier of resources. Since the logic of how URLs are created from
technical IDs reside on the client side, the whole URL of an entity resource
becomes the identifier. However, when designing client controls, engineers
should take care of the public interface. In particular, no information about
the communication to the external system should leak into the domain. Using
Hypermedia supports this approach well. All the required transport
information is retrieved and used dynamically. The navigation logic that
follows Hypermedia responses resides in the client control.

This example aims to give the reader an idea how a client uses Hypermedia
REST services.

www.EBooksWorld.ir

Asynchronous communication and
messaging
Asynchronous communication leads to looser coupling of the systems. It
generally increases the overall responsiveness as well as overhead and
enables scenarios where systems are not reliably available all the time. There
exist many forms of how to design asynchronous communication, on a
conceptual or technical level. Asynchronous communication doesn't imply
that there can't be synchronous calls on a technical level. The business
process can be built in an asynchronous way that models one or several
synchronous invocations that are not performed or handled immediately. For
example, an API can offer synchronous methods to create long-running
processes that are frequently polled for updates later on.

On a technical level, asynchronous communication is usually designed in a
message-oriented way implemented using message queues or the publish-
subscribe pattern. Applications only directly communicate with a message
queue or a broker, respectively, and messages are not directly passed to a
specific receiver.

Let's have a look at the various ways to accomplish asynchronous
communication.

www.EBooksWorld.ir

Asynchronous HTTP
communication
The request response model of HTTP communication usually involves
synchronous communication. A client requests a resource at a server and
blocks until the response has been transmitted. Asynchronous communication
using HTTP is therefore typically archived on a conceptual basis. The
synchronous HTTP invocations can trigger long-running business processes.
The external system can then either notify the caller by another mechanism
later on or offer functionality for polling for updates.

For example, a sophisticated user management system offers methods to
create users. Assume users need to be registered and legitimized in external
systems as part of a longer-running, asynchronous business process. The
application would then offer an HTTP functionality, such as POST /users/,
which starts the process to create new users. However, invoking that use case
does not guarantee that the user will be created and registered successfully.
The response of that HTTP endpoint would only acknowledge the attempt to
create a new user; for example, by the 202 Accepted status code. This indicates
that the request has been accepted, but has not necessarily been processed
completely. The Location header field could be used to direct to the resource
where the client can poll for updates on the partly-finished user.

On a technical level, HTTP does not only support synchronous invocations.
In Sub-chapter Server-sent events, we will have a look at server-sent events
as an example of a HTTP standard using asynchronous message-oriented
communication.

www.EBooksWorld.ir

Message-oriented communication
Message-oriented communication exchanges information in asynchronously
sent messages, usually implemented using message queues or the publish-
subscribe pattern. It offers the advantage of decoupling systems since
applications only directly communicate with the message queue or the
broker, respectively. The decoupling not only affects dependencies on
systems and used technology, but also the nature of communication by
decoupling business processes by the asynchronous messages.

Message queues are queues where messages are sent to that are consumed
later by one consumer at a time. In enterprise systems, message queues are
typically realized in a message-oriented middleware (MOM). We have seen
these MOM solutions quite regularly in the past with message queue systems
such as ActiveMQ, RabbitMQ, or WebSphere MQ.

The publish-subscribe pattern describes consumers that subscribe to a topic
and receive messages that are published to the topic. The subscribers register
for the topic and receives messages that are sent by the publisher. This
concept scales well for a bigger number of peers involved. Message-oriented
middleware typically can be used to take advantages of both message
queuing and publish-subscribe approaches.

However, as well as for asynchronous communication in general, message-
oriented solutions also have certain shortcomings. The reliable delivery of
messages is a first aspect to be aware of is. Producers send the messages in an
asynchronous, fire and forget fashion. Engineers have to be aware of the
defined and supported semantics of message delivery, whether a message will
be received at most once, at least once, or exactly once. Choosing technology
that supports certain delivery semantics, especially exactly once semantics, 
will have an impact on scalability and throughput. In Chapter 8, Microservices
and System Architecture we will cover that topic in detail when discussing
event-driven applications.

www.EBooksWorld.ir

For Java EE applications, the Java Message Service (JMS) API can be used
to integrate message-oriented middleware solutions. The JMS API supports
solutions for both message queuing and publish-subscribe approaches. It only
defines interfaces and is implemented with the actual message-oriented
middleware solutions.

However, the JMS API does not have a high developer acceptance and, at the
time of writing, is arguably not used that much in current systems. Compared
to other standards, the programming model is not that straightforward and
productive. Another trend in message-oriented communication is that instead
of traditional MOM solutions, more lightweight solutions are gaining
popularity. As of today, a lot of these message-oriented solutions are
integrated using proprietary APIs. An example of such a solution is Apache
Kafka, which utilizes both message queuing and the publish-subscribe model.
Chapter 8, Microservices and System Architecture shows the integration of
Apache Kafka as an example of a MOM solution into Java EE applications.

www.EBooksWorld.ir

Server-sent events
Server-sent events (SSE) is an example of an asynchronous, HTTP-based,
publish-subscribe technology. It offers an easy-to-use one-way streaming
communication protocol. Clients can register for a topic by requesting a
HTTP resource that leaves an open connection. The server sends messages to
connected clients over these active HTTP connections. Clients cannot directly
communicate back, but can only open and close connections to the streaming
endpoint. This lightweight solution fits use cases with broadcast updates,
such as social media updates, stock prices, or news feeds.

The server pushes UTF-8 text-based data as content type text/event-stream to
clients who previously registered for the topics. The following shows the
format of the events:

data: This is a message

event: namedmessage

data: This message has an event name

id: 10

data: This message has an id which will be sent as

 'last event ID' if the client reconnects

The fact that server-sent events are based on HTTP makes them easy to
integrate in existing networks or developer tools. SSE natively support event
IDs and reconnects. Clients that reconnect to a streaming endpoint provide
the last received event ID to continue subscribing where they left off.

JAX-RS supports server-sent events on both the server-side and client-side.
SSE streaming endpoints are defined using JAX-RS resources as follows:

import javax.ws.rs.DefaultValue;

import javax.ws.rs.HeaderParam;

import javax.ws.rs.InternalServerErrorException;

import javax.ws.rs.core.HttpHeaders;

import javax.ws.rs.sse.*;

@Path("events-examples")

@Singleton

public class EventsResource {

www.EBooksWorld.ir

 @Context

 Sse sse;

 private SseBroadcaster sseBroadcaster;

 private int lastEventId;

 private List<String> messages = new ArrayList<>();

 @PostConstruct

 public void initSse() {

 sseBroadcaster = sse.newBroadcaster();

 sseBroadcaster.onError((o, e) -> {

 ...

 });

 }

 @GET

 @Lock(READ)

 @Produces(MediaType.SERVER_SENT_EVENTS)

 public void itemEvents(@HeaderParam(HttpHeaders.LAST_EVENT_ID_HEADER)

 @DefaultValue("-1") int lastEventId,

 @Context SseEventSink eventSink) {

 if (lastEventId >= 0)

 replayLastMessages(lastEventId, eventSink);

 sseBroadcaster.register(eventSink);

 }

 private void replayLastMessages(int lastEventId, SseEventSink eventSink) {

 try {

 for (int i = lastEventId; i < messages.size(); i++) {

 eventSink.send(createEvent(messages.get(i), i + 1));

 }

 } catch (Exception e) {

 throw new InternalServerErrorException("Could not replay messages ", e);

 }

 }

 private OutboundSseEvent createEvent(String message, int id) {

 return sse.newEventBuilder().id(String.valueOf(id)).data(message).build();

 }

 @Lock(WRITE)

 public void onEvent(@Observes DomainEvent domainEvent) {

 String message = domainEvent.getContents();

 messages.add(message);

 OutboundSseEvent event = createEvent(message, ++lastEventId);

 sseBroadcaster.broadcast(event);

 }

}

The text/event-stream content type is used for Server-sent events. The
registered SseEventSink instructs JAX-RS to keep the client connection open for
future events sent through the broadcaster. The SSE standard defines that the
Last-Event-ID header controls where the event stream will continue. In this

www.EBooksWorld.ir

example, the server will resend the messages that have been published while
clients were disconnected.

The itemEvents() method implements the streaming registration and
immediately resends missing events to that client if required. After the output
is registered the client, together will all other active clients, will receive
future messages that are created using Sse.

The asynchronous integration into our enterprise application happens via the
observed DomainEvent. Every time a CDI event of this type is fired somewhere
in the application, active SSE clients will receive a message.

JAX-RS also supports the ability to consume SSE. SseEventSource offers a
functionality to open a connection to an SSE endpoint. It registers an event
listener that is called as soon as a message arrives:

import java.util.function.Consumer;

public class SseClient {

 private final WebTarget target = ClientBuilder.newClient().target("...");

 private SseEventSource eventSource;

 public void connect(Consumer<String> dataConsumer) {

 eventSource = SseEventSource.target(target).build();

 eventSource.register(

 item -> dataConsumer.accept(item.readData()),

 Throwable::printStackTrace,

 () -> System.out.println("completed"));

 eventSource.open();

 }

 public void disconnect() {

 if (eventSource != null)

 eventSource.close();

 }

}

After the SseEventSource successfully opens the connection, the current thread
continues. The listener, in this case, dataConsumer#accept, will be called as soon
as events arrive. SseEventSource will handle all required handling defined by the
SSE standard. This includes, for example, reconnecting after connection loss
and sending a Last-Event-ID header.

www.EBooksWorld.ir

Clients also have the possibility for more sophisticated solutions with
manually controlling headers and reconnects. Therefore the SseEventInput type
is requested with the text/event-stream content type from a conventional web
target. For more information, please refer to the JAX-RS specification.

Server-sent events offer an easy-to-use one-way streaming solution over
HTTP that integrates itself well into the Java EE technology.

www.EBooksWorld.ir

WebSocket
Server-sent events compete with the more powerful WebSocket technology
which supports bi-directional communication. WebSocket which has been
standardized by the IETF is another example for message-oriented, publish-
subscribe communication. It was intended to be used in browser-based
applications, but can be used for any client-server exchange of messages.
WebSocket usually uses the same ports as the HTTP endpoints, but with its
own TCP-based protocol.

WebSocket is supported in Java EE as part of the Java API for WebSocket.
It includes server, and client-side support.

The programming model for server-side endpoint definitions again matches
the overall Java EE picture. Endpoints can be defined using a programmatic
or declarative, annotation-driven approach. The latter defines annotations that
are added on endpoint classes, similar to the programming model of JAX-RS
resources:

import javax.websocket.*;

import javax.websocket.server.ServerEndpoint;

@ServerEndpoint(value = "/chat", decoders = ChatMessageDecoder.class, encoders = ChatMessageEncoder.class)

public class ChatServer {

 @Inject

 ChatHandler chatHandler;

 @OnOpen

 public void openSession(Session session) {

 ...

 }

 @OnMessage

 public void onMessage(ChatMessage message, Session session) {

 chatHandler.store(message);

 }

 @OnClose

 public void closeSession(Session session) {

 ...

 }

}

www.EBooksWorld.ir

The annotated methods of the server endpoint class will be called on initiated
sessions, arriving messages and closing connections, respectively. The
sessions represent the conversation between two endpoints.

WebSocket endpoints can define decoders and encoders, respectively, in
order to map custom Java types to binary or plain text data and vice versa.
This example specifies a custom type for chat messages which is mapped
using custom decoders and encoders. Similar to JAX-RS, WebSocket ships
with default serialization capabilities for usual serializable Java types such as
strings. The following code demonstrates an encoder for our custom domain
type:

import javax.websocket.EncodeException;

import javax.websocket.Encoder;

import javax.websocket.EndpointConfig;

public class ChatMessageEncoder implements Encoder.Binary<ChatMessage> {

 @Override

 public ByteBuffer encode(ChatMessage object) throws EncodeException {

 ...

 }

 ...

}

These types correspond to the MessageBodyWriter and MessageBodyReader types in
the JAX-RS standard. The following shows the corresponding message
decoder:

import javax.websocket.DecodeException;

import javax.websocket.Decoder;

import javax.websocket.EndpointConfig;

public class ChatMessageDecoder implements Decoder.Binary<ChatMessage> {

 @Override

 public ChatMessage decode(ByteBuffer bytes) throws DecodeException {

 ...

 }

 ...

}

Client endpoints are defined similarly to server endpoints. The difference is
that only WebSocket servers listen to new connection on a path.

www.EBooksWorld.ir

The client functionality of the WebSocket API can not only be used in an
enterprise environment, but also in Java SE applications. The same is true for
JAX-RS on the client-side. Implementing a WebSocket client endpoint is left
as an exercise to the reader.

WebSocket, as well as server-sent events, offers well-integrated, message-
oriented technologies. What applications choose to use, of course, highly
depends on the business requirements, existing environments, and the nature
of the communication.

www.EBooksWorld.ir

Connecting enterprise technology
Some external enterprise systems that need to be integrated from an
application don't offer standard interfaces or Java APIs. Legacy systems as
well as other systems being used within the organization may fall under this
category. The Java EE Connector Architecture (JCA) API can integrate
these so-called Enterprise Information Systems (EIS) into Java EE
applications. Examples of EISs include transaction processing systems,
messaging systems, or proprietary databases.

JCA resource adapters are deployable EE components that integrate
information systems into the application. They include contracts such as
connections, transactions, security, or life cycle management. The
information system can be integrated better into the application compared to
other connection technologies. Resource adapters are packaged as Resource
Adapter Archives (RAR) and can be accessed within the application using
the functionality of the javax.resource package and its sub-packages. Some EIS
vendors provide resource adapters for their systems. For developing and
deploying resource adapters, refer to the JCA specification.

JCA offers a variety of integration possibilities for external information
systems. However, the standard is not widely used and has not a high
acceptance by enterprise engineers. Developing resource adapters is quite
cumbersome, the JCA API is not well known among developers, and
companies usually choose to integrate systems in other ways. In fact, it
should be considered whether the effort of writing resource adapters is
preferred over integrating information systems using other integration
technology. Other solutions include integration frameworks such as Apache
Camel or Mule ESB.

www.EBooksWorld.ir

Database systems
The majority of enterprise applications use database systems as their
persistence. Databases are at the core of the enterprise system, containing the
application's data. As of today, data is already one the most important
commodities. Companies spend a lot of time and effort gathering, securing,
and using data.

There are several ways in which a state is represented in enterprise systems;
however, relational databases are still the most popular. The concepts and
usages are well understood and well integrated in enterprise technology.

www.EBooksWorld.ir

Integrating RDBMS systems
The Java Persistence API (JPA) is used to integrate relational database
systems into enterprise applications. Compared to outdated approaches of the
J2EE era, JPA integrates well with domain models built after the concepts of
Domain-Driven Design. Persisting entities does not introduce much overhead
and does not set many constraints on the model. This enables constructing the
domain model first, focusing on business aspects, and integrating the
persistence layer afterwards.

Persistence is integrated into the domain as a necessary part of handling the
business use case. Depending on the complexity of use cases, the persistence
functionality is invoked either in dedicated controls or directly in the
boundary. Domain-Driven Design defines the concept of repositories which,
as mentioned before, matches the responsibilities of JPA's entity manager
well. The entity manager is used to obtain, manage, and persist entities and to
perform queries. Its interface was abstracted with the intention to be used in a
general way.

In the J2EE era, the data access object (DAO) pattern was used heavily. The
motivation behind this pattern was to abstract and encapsulate functionality
to access data. This includes the type of the accessed storage system, such as
RDBMSs, object-oriented databases, LDAP systems, or files. Whereas the
reasoning certainly makes sense, following the pattern in times of Java EE is
not required for the majority of use cases.

Most enterprise applications use relational databases that support both SQL
and JDBC. JPA already abstracts RDBMS systems so that engineers usually
don't deal with vendor specifics. Changing the nature of the used storage
system to something other than a RDBMS will impact the application's code
anyway. Mapping domain entity types into storage does not require the use of
transfer objects anymore, since JPA integrates well into domain models.
Directly mapping domain entity types is a productive approach to integrate
persistence without much overhead. For straightforward use cases, such as

www.EBooksWorld.ir

persisting and retrieving entities, a DAO approach is therefore not required.
However, for complex database queries involved, it does make sense to
encapsulate that functionality into separate controls. These repositories then
contain the whole persistence for the specific entity types. It is advisable
though to start with a straightforward approach and only refactor the
persistence into a single point of responsibility if the complexity increases.

Boundaries or controls, respectively, obtain an entity manager to manage the
persistence of entities. The following shows how to integrate an entity
manager into a boundary:

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

@Stateless

public class PersonAdministration {

 @PersistenceContext

 EntityManager entityManager;

 public void createPerson(Person person) {

 entityManager.persist(person);

 }

 public void updateAddress(long personId, Address newAddress) {

 Person person = entityManager.find(Person.class, personId);

 if (person == null)

 throw new IllegalArgumentException("Could not find person with ID " + personId);

 person.setAddress(newAddress);

 }

}

The persist() operation on creating new persons makes the person a managed
entity. It will be added into the database once the transaction commits and
can be obtained later using its assigned ID. The updateAddress() method
showcases this. A person entity is retrieved using its ID into a managed
entity. All changes in the entity; for example, changing its address will be
synchronized into the database at transaction commit time.

www.EBooksWorld.ir

Mapping domain models
As mentioned before, entities, aggregates, and value objects are integrated
with JPA without introducing many constraints on the model. Entities as well
as aggregates, are represented as JPA entities:

import javax.persistence.*;

@Entity

@Table(name = "persons")

public class Person {

 @Id

 @GeneratedValue

 private long id;

 @Basic(optional = false)

 private String name;

 @Embedded

 private Address address;

 ...

}

@Embeddable

public class Address {

 @Basic(optional = false)

 private String streetName;

 @Basic(optional = false)

 private String postalCode;

 @Basic(optional = false)

 private String city;

 ...

}

The person type is an entity. It needs to be identifiable using an ID that will
be the primary key in the persons table. Every property is mapped into the
database in a certain way, depending on the nature of the type and relation.
The person's name is a simple text-based column.

The address is a value object that is not identifiable. From a domain
perspective, it does not matter which address we refer to, as long as the
values match. Therefore the address is not an entity and thus is not mapped

www.EBooksWorld.ir

into JPA as such. Value objects can be implemented via JPA embeddable
types. The properties of these types will be mapped to additional columns in
the table of the entity that refers to them. Since the person entity includes a
specific address value, the address properties will be part of the persons table.

Root aggregates that consist of several entities can be realized by configuring
the relations to be mapped in appropriate database columns and tables,
respectively. For example, a car consists of an engine, one or more seats, a
chassis, and many other parts. Some of them are entities that potentially can
be identified and accessed as individual objects. The car manufacturer can
identify the whole car or just the engine and repair or replace it accordingly.
The database mapping can be placed on top of this existing domain model as
well.

The following code snippets show the car domain entity, including JPA
mapping:

import javax.persistence.CascadeType;

import javax.persistence.OneToMany;

import javax.persistence.OneToOne;

@Entity

@Table(name = "cars")

public class Car {

 @Id

 @GeneratedValue

 private long id;

 @OneToOne(optional = false, cascade = CascadeType.ALL)

 private Engine engine;

 @OneToMany(cascade = CascadeType.ALL)

 private Set<Seat> seats = new HashSet<>();

 ...

}

The seats are included in a collection. The HashSet is instantiated for new Car
instances; Java collections that are null should be avoided.

The engine represents another entity in our domain:

import javax.persistence.EnumType;

import javax.persistence.Enumerated;

@Entity

www.EBooksWorld.ir

@Table(name = "engines")

public class Engine {

 @Id

 @GeneratedValue

 private long id;

 @Basic(optional = false)

 @Enumerated(EnumType.STRING)

 private EngineType type;

 private double ccm;

 ...

}

The car seats represent entities as well, identifiable by their ID:

@Entity

@Table(name = "seats")

public class Seat {

 @Id

 @GeneratedValue

 private long id;

 @Basic(optional = false)

 @Enumerated(EnumType.STRING)

 private SeatMaterial material;

 @Basic(optional = false)

 @Enumerated(EnumType.STRING)

 private SeatShape shape;

 ...

}

All entities, referenced from other entities or standalone, need to be managed
in the persistence context. If the engine of a car is replaced by a new entity,
this needs to be persisted separately as well. The persist operations are either
called explicitly on the individual entities or cascaded from object
hierarchies. The cascades are specified on the entity relations. The following
code shows the two approaches of persisting a new car engine from a service:

public void replaceEngine(long carIdentifier, Engine engine) {

 Car car = entityManager.find(Car.class, carIdentifier);

 car.replaceEngine(engine);

 // car is already managed, engine needs to be persisted

 entityManager.persist(engine);

}

After loading the car from its identifier, it is a managed entity. The engine

www.EBooksWorld.ir

still needs to be persisted. The first approach persists the engine explicitly in
the service.

The second approach cascades a merge operation, that also handles new
entities, from the car aggregate:

public void replaceEngine(long carIdentifier, Engine engine) {

 Car car = entityManager.find(Car.class, carIdentifier);

 car.replaceEngine(engine);

 // merge operation is applied on the car and all cascading relations

 entityManager.merge(car);

}

It is highly advisable to apply the latter approach. Aggregate roots are
responsible to maintain an integer and consistent state of the overall state.
The integrity is achieved more reliably when all operations are initiated and
cascaded from the root entity.

www.EBooksWorld.ir

Integrating database systems
An entity manager manages persistent entities within a persistence context. It
uses a single persistence unit that corresponds to a database instance.
Persistence units include all managed entities, entity managers, and mapping
configurations. If only one database instance is accessed then the entity
manager can be obtained directly, as shown in the previous example. The
persistence context annotation then refers to the sole persistence unit.

Persistence units are specified in the persistence.xml descriptor file, which
resides under the META-INF directory. This is one of the few cases in modern
Java EE where XML-based configuration is used. The persistence descriptor
defines the persistence unit and optional configuration. The datasource is
referenced only by its JNDI name in order to separate the configuration for
accessing the database instance from the application. The actual configuration
of the datasource is specified in the application server. If the application
server contains only one application that uses a single database, developers
can use the application server's default datasource. In that case, the
datasource name can be omitted.

The following snippet shows an example persistence.xml file showing a single
persistence unit using the default datasource:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence

 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_2.xsd">

 <persistence-unit name="vehicle" transaction-type="JTA">

 </persistence-unit>

</persistence>

This example is already sufficient for a majority of enterprise applications.

The next snippet demonstrates a persistence.xml file containing several
persistence unit definitions for multiple datasources:

<?xml version="1.0" encoding="UTF-8"?>

www.EBooksWorld.ir

<persistence version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence

 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_2.xsd">

 <persistence-unit name="vehicle" transaction-type="JTA">

 <jta-data-source>jdbc/VehicleDB</jta-data-source>

 </persistence-unit>

 <persistence-unit name="order" transaction-type="JTA">

 <jta-data-source>jdbc/OrderDB</jta-data-source>

 </persistence-unit>

</persistence>

Injecting entity managers need to reference the desired persistence unit by its
name. Entity managers always correspond to a single persistence context that
uses a single persistence unit. The following CarManagement definition shows the
previous example in an environment of several persistence units:

@Stateless

public class CarManagement {

 @PersistenceContext(unitName = "vehicle")

 EntityManager entityManager;

 public void replaceEngine(long carIdentifier, Engine engine) {

 Car car = entityManager.find(Car.class, carIdentifier);

 car.replaceEngine(engine);

 // merge operation is applied on the car and all cascading relations

 entityManager.merge(car);

 }

}

Optionally, injection of specific entity managers can be simplified by using
CDI producer fields. By explicitly emitting entity managers using custom
qualifiers, injection can be implemented in a typesafe way:

public class EntityManagerExposer {

 @Produces

 @VehicleDB

 @PersistenceContext(unitName = "vehicle")

 private EntityManager vehicleEntityManager;

 @Produces

 @OrderDB

 @PersistenceContext(unitName = "order")

 private EntityManager orderEntityManager;

}

The emitted entity managers can be injected, now using @Inject and the
typesafe qualifier:

www.EBooksWorld.ir

public class CarManagement {

 @Inject

 @VehicleDB

 EntityManager entityManager;

 ...

}

This approach can simplify usage in environments where different entity
managers are injected in many locations.

There are also other possible approaches to map domain models to databases.
Database mapping can also be defined in XML files. However, past
approaches in J2EE, have shown that declarative configuration using
annotations allows a more productive usage. Annotating domain models also
provides a better overview.

www.EBooksWorld.ir

Transactions
Persistence operations need to be performed in a transaction context.
Managed entities that are modified are synchronized into the datasource at
transaction commit time. Therefore, a transaction spans the modifying action,
and typically the whole business use case.

If the boundary is implemented as EJB, a transaction is active during the
business method execution by default. This matches the typical scenarios for
JPA persistence being involved in the application.

The same behavior is realized with CDI managed beans that annotate their
methods with @Transactional. Transactional boundaries specify a specific
behavior once the business method is entered. By default, this behavior
defines that a transaction is REQUIRED; that is, a transaction is either created or
reused if the calling context is already executed within an active transaction.

REQUIRES_NEW behavior will always start a new transaction that is executed
individually and resumes a potential previous transaction once the method
and the new transaction has completed. This is useful for longer-running
business processes that handle a great amount of data that can be processed in
several, individual transactions.

Other transaction behavior is possible as well, such as enforcing an already
active transaction or not supporting transactions at all. This is configured by
annotating business methods with @Transactional. EJBs implicitly define
REQUIRED transactions.

RDBMS systems integrate well into Java EE applications. Following
convention over configuration, the typical use cases are implemented in a
productive way.

www.EBooksWorld.ir

Relational databases versus NoSQL
In the past years, a lot has happened in database technology, especially with
regard to distribution. Traditional relational databases are, however, still the
most used choice as of today. Their most significant characteristics are the
table-based data schemas and the transactional behavior.

NoSQL (non SQL or not only SQL) database systems provide data in other
forms than relational tables. These forms include document stores, key-value
stores, column-oriented stores, and graph databases. Most of them
compromise consistency in favor of availability, scalability, and network
partition tolerance. The idea behind NoSQL not making use of full support of
relational table structures, ACID transactions (Atomicity, Consistency,
Isolation, Durability), and foreign keys as well as table joins, was to support
horizontal scalability. This goes back to the well-known CAP theorem. The
CAP theorem (Consistency, Availability, Partition tolerance) claims that it
is impossible for distributed datastores to guarantee at most two of the three
specified constraints. Since distributed networks do not operate reliably
(partition tolerance), systems can basically choose whether they want to
guarantee consistency or horizontal scalability. Most NoSQL databases
choose scalability over consistency. This fact needs to be considered when
choosing a datastore technology.

The reason behind NoSQL systems lays in the shortcomings of relational
databases. The biggest issue is that relational databases supporting ACID
don't scale well horizontally. Database systems are at the core of the
enterprise system, usually accessed by multiple application servers. Data that
needs to be updated consistently needs to be synchronized in a central place.
This synchronization happens in the technical transaction of the business use
case. Database systems that are replicated and should both retain consistency
would need to maintain distributed transactions in-between themselves.
However, distributed transactions do not scale and arguably do not reliably
work in every solution.

www.EBooksWorld.ir

Still, relational database systems scale well enough for the majority of
enterprise applications. If horizontal scalability becomes an issue so that a
centralized database is not an option anymore, one solution is to split up
persistence using approaches such as event-driven architectures. We will
cover that topic in detail in Chapter 8, Microservices and System Architecture.

NoSQL databases also have some shortcomings, especially with regard to
transactional behavior. It highly depends on the business requirements of the
application as to whether data needs to be persistent in a transactional
approach. Experience shows that in almost all enterprise systems at least
some parts of persistence demand reliability; that is, transactions. However,
sometimes there are different categories of data. Whereas certain domain
models are more crucial and require transactional handling, other data may be
recalculated or regenerated; for example, statistics, recommendations, or
cached data. For the latter type of data, NoSQL datastores may be a good
choice.

At the time of writing, no NoSQL system has emerged as a standard or de
facto standard yet. Many of them also vary widely in their concepts and
usages. There is also no standard targeting NoSQL included in Java EE 8.

Therefore, accessing NoSQL systems is usually realized using the Java APIs
provided by the vendors. These make use of lower level standards such as
JDBC or their proprietary APIs.

www.EBooksWorld.ir

Cross-cutting concerns
Enterprise applications require some technically motivated cross-cutting
concerns. Examples of these are transactions, logging, caching, resilience,
monitoring, security, and other non-functional requirements. Even for
systems that solely target business, use cases need some amount of technical
plumbing.

We just saw in the handling of transactions, an example of a non-functional
cross-cutting concern. Java EE doesn't require much time and effort spent by
engineers to integrate transactional behavior. The same is true for other cross-
cutting concerns.

Java EE interceptors is a prime example for cross-cutting concerns.
Following the concept of aspect-oriented programming, the implementation
of the cross-cutting concern is separated from the decorated functionality.
Methods of managed beans can be decorated to define interceptors, which
interrupt the execution and perform the desired task. Interceptors have full
control over the execution of the intercepted method including returned
values and thrown exceptions. To match the idea of other APIs, interceptors
are integrated in a lightweight fashion, not setting many constraints on the
decorated functionality.

The previous example of transparently handling errors in a HTTP client class
showed the usage of an interceptor. Business methods also can be decorated
using custom interceptor bindings. The following demonstrates a business
motivated process tracking aspect realized via custom annotations:

@Stateless

public class CarManufacturer {

 ...

 @Tracked(ProcessTracker.Category.MANUFACTURER)

 public Car manufactureCar(Specification spec) {

 ...

 }

}

www.EBooksWorld.ir

The Tracked annotation defines a so-called interceptor binding. The annotation
parameter represents a non-binding value that configures the interceptor:

import javax.enterprise.util.Nonbinding;

import javax.interceptor.InterceptorBinding;

@InterceptorBinding

@Inherited

@Documented

@Target({TYPE, METHOD})

@Retention(RUNTIME)

public @interface Tracked {

 @Nonbinding

 ProcessTracker.Category value();

}

The interceptor is activated via the binding annotation:

import javax.annotation.Priority;

@Tracked(ProcessTracker.Category.UNUSED)

@Interceptor

@Priority(Interceptor.Priority.APPLICATION)

public class TrackingInterceptor {

 @Inject

 ProcessTracker processTracker;

 @AroundInvoke

 public Object aroundInvoke(InvocationContext context) throws Exception {

 Tracked tracked = resolveAnnotation(context);

 if (tracked != null) {

 ProcessTracker.Category category = tracked.value();

 processTracker.track(category);

 }

 return context.proceed();

 }

 private Tracked resolveAnnotation(InvocationContext context) {

 Function<AnnotatedElement, Tracked> extractor = c -> c.getAnnotation(Tracked.class);

 Method method = context.getMethod();

 Tracked tracked = extractor.apply(method);

 return tracked != null ? tracked : extractor.apply(method.getDeclaringClass());

 }

}

By default, interceptors bound via interceptor bindings are not enabled. An
interceptor must either be explicitly enabled via specifying a priority via
@Priority, like demonstrated in this example. Another possibility is to activate
it in the beans.xml descriptor.

www.EBooksWorld.ir

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"

 bean-discovery-mode="all">

 <interceptors>

 <class>com.example.cars.processes.TrackingInterceptor</class>

 </interceptors>

</beans>

Interceptors can use reflection to retrieve potential annotation parameters,
such as the process tracking category in the example. Interceptor bindings
can be placed either on method or class level.

Interceptors decorate behavior on methods without tightly coupling them.
They especially make sense for scenarios where the cross-cutting aspects
need to be added to a lot of functionality.

Interceptors are similar to CDI decorators. Both concepts decorate managed
beans with custom behavior that is encapsulated in a different place. The
difference is that decorators are meant to be used for decorating business
logic, which is also mostly specific to the decorated bean. Interceptors,
however, are mostly used for technical concerns. They offer a broader usage,
making it possible to annotate all kind of beans. Both concepts are a helpful
functionality to realize cross-cutting aspects.

www.EBooksWorld.ir

Configuring applications
Application behavior that cannot be hardcoded but needs to be defined
dynamically is realized via configuration. It depends on the application and
the nature of the dynamic behavior how the configuration is implemented.

What aspects need to be configurable? Is it sufficient to define configuration
files that are already part of the shipped artifact? Does the packaged
application need to be configurable from the outside? Is there a requirement
for changing behavior during runtime?

Configuration that does not need to change after the application has been
built can easily be implemented in the project itself, that is, in the source
code. Assuming we require more flexibility.

In a Java environment, the arguably most straightforward way is to provide
property files that contain key-value pairs of configuration values. The
configured values need to be retrieved in order to be used in the code. It
certainly is possible to write Java components that programmatically provide
property values. In a Java EE environment, dependency injection will be used
to retrieve such components. At the time of writing, no Java EE standard
supports out-of-the-box configuration yet. However, using CDI features
provide this functionality in a few lines of code. The following shows a
possible solution, that enables to inject configuration values identified by
keys:

@Stateless

public class CarManufacturer {

 @Inject

 @Config("car.default.color")

 String defaultColor;

 public Car manufactureCar(Specification spec) {

 // use defaultColor

 }

}

In order to unambiguously inject configuration values, for example, provided

www.EBooksWorld.ir

as strings, qualifier such as @Config are required. This custom qualifier is
defined in our application. The goal is to inject values identified by the
provided key:

@Qualifier

@Documented

@Retention(RUNTIME)

public @interface Config {

 @Nonbinding

 String value();

}

A CDI producer is responsible for retrieving and providing specific
configuration values:

import javax.enterprise.inject.spi.InjectionPoint;

import java.io.*;

import java.util.Properties;

@ApplicationScoped

public class ConfigurationExposer {

 private final Properties properties = new Properties();

 @PostConstruct

 private void initProperties() {

 try (InputStream inputStream = ConfigurationExposer.class

 .getResourceAsStream("/application.properties")) {

 properties.load(inputStream);

 } catch (IOException e) {

 throw new IllegalStateException("Could not init configuration", e);

 }

 }

 @Produces

 @Config("")

 public String exposeConfig(InjectionPoint injectionPoint) {

 Config config = injectionPoint.getAnnotated().getAnnotation(Config.class);

 if (config != null)

 return properties.getProperty(config.value());

 return null;

 }

}

The reference key in the @Config annotation is a non-binding attribute since all
injected values are handled by our CDI producer method. The InjectionPoint
provided by CDI contains information about the location where the
dependency injection is specified. The producer retrieves the annotation with
the actual configuration key and uses it to look up the configured property.
The properties file application.properties is expected to reside in the classpath.

www.EBooksWorld.ir

This approach comprises configuration values that need to be available at
runtime. Since the properties map is initiated once, the values will not change
after they have been loaded. The configuration exposer bean is application-
scoped to only load the required values into the properties map once.

If a scenario requires changing the configuration at runtime, the producer
method would have to reload the configuration file. The scope of the
producer method defines the life cycle of the configured value, how often the
method will be called.

This example implements configuration using plain Java EE. There are some
third-party CDI extensions available that provide similar, as well as more
sophisticated, functionality. At the time of writing, an often used example for
such a solution is Apache Deltaspike.

Besides the enterprise technology, an important aspect to consider, as well, is
the environment in which the container runs; especially, as container
technologies set certain constraint on the runtime environment. Chapter 5,
Container and Cloud Environments with Java EE covers the topic of modern
environments and their impact on the Java EE runtime, including how to
design dynamic configuration.

The power of CDI producers lays in their flexibility. Any source of
configuration can easily be attached to expose configured values.

www.EBooksWorld.ir

Caching
Caching is a technically motivated cross-cutting concern that becomes
interesting once applications face issues in performance, such as slow
external systems, expensive and cachable calculations, or huge amount of
data. In general, caching aims to lower response times by storing data that is
costly to retrieve in a potentially faster cache. A typical example is to hold
responses of external systems or databases in memory.

Before implementing caching, a question that needs to be asked is whether a
cache is required or even possible. Some data doesn't qualify for being
cached, such as data that needs to be calculated on demand. If the situation
and data is potentially eligible for caching, it depends on the situation if
another solution other than caching is possible. Caching introduces
duplication and the possibility of receiving outdated information and,
generally speaking, for the majority of enterprise applications, should be
avoided. For example, if database operations are too slow, it is advisable to
consider whether other means, such as indexing, can help.

It depends a lot on the situation and what caching solutions are required. In
general, caching directly in memory in the application already solves a lot of
scenarios.

The most straightforward way of caching information is in a single place in
the application. Singleton beans perfectly fit this scenario. A data structure
that naturally fits the purpose of a cache is a Java Map type.

The CarStorage code snippet presented earlier, represents a singleton EJB with
bean-managed concurrency containing a thread-safe map to store data. This
storage is injected and used in other managed beans:

@Singleton

@ConcurrencyManagement(ConcurrencyManagementType.BEAN)

public class CarStorage {

 private final Map<String, Car> cars = new ConcurrentHashMap<>();

www.EBooksWorld.ir

 public void store(Car car) {

 cars.put(car.getId(), car);

 }

 public Car retrieve(String id) {

 return cars.get(id);

 }

}

If more flexibility is required, for example pre-loading cache contents from a
file, the bean can control the life cycle using post-construct and pre-destroy
methods. To guarantee functionality to be executed during application startup
time, the EJB is annotated using @Startup:

@Singleton

@Startup

@ConcurrencyManagement(ConcurrencyManagementType.BEAN)

public class CarStorage {

 ...

 @PostConstruct

 private void loadStorage() {

 // load contents from file

 }

 @PreDestroy

 private void writeStorage() {

 // write contents to file

 }

}

Interceptor can be used for adding cache in a transparent way, without
needing to programmatically inject and use a cache. The interceptor
interrupts the execution before a business method is being called and will
return cached values instead. The most prominent example for this is the
CacheResult functionality of the Java Temporary Caching API (JCache).
JCache is a standard that is targeted for Java EE but, as of writing this book,
not included in the umbrella specification. For applications that add the
JCache functionality, the eligible business methods are annotated with
@CacheResult and transparently being served by a specific cache.

JCache, in general, provides sophisticated caching capabilities for scenarios
where simple Java EE solutions are not sufficient. This includes distributed
caching provided by JCache implementations. As of today, caching solutions
typically being used are Hazelcast, Infinispan, or Ehcache. This is
especially the case when several caches need to be integrated with specific

www.EBooksWorld.ir

concerns, such as cache eviction. JCache, and its implementations, provide
powerful solutions.

www.EBooksWorld.ir

Flow of execution
Business processes that run in enterprise applications describe certain flows
of process executions. For use cases that are triggered, this either includes a
synchronous request-response approach or asynchronous handling of the
triggered process.

Use case invocations run in a separate thread, one thread per request or
invocation, respectively. The threads are created by the container and pooled
for reuse once the invocation has been handled successfully. By default, the
business processes defined in the application classes, as well as cross-cutting
concerns, such as transactions, run sequentially.

www.EBooksWorld.ir

Synchronous execution
For a typical use case triggered by a HTTP request and involving a database
query this works as follows. The request thread handles the request that goes
into the boundary; for example, a JAX-RS UsersResource, by the inversion of
control principle, the JAX-RS resource method is called by the container. The
resource injects and uses a UserManagement EJB, which is also invoked indirectly
by the container. All operations executed by the proxies happen in
synchronous terms. The EJB will use an entity manager to store a new User
entity and as soon as the business method that initiated the currently active
transaction returns, the container will try to commit the transaction to the
database. Depending on the transaction result, the boundary resource method
resumes and constructs the client response. All this happens synchronously
while the client call blocks and waits for the response.

Synchronous execution includes the handling of synchronous CDI events.
Events decouple firing domain events from handling them; however, the
event handling is performed synchronously. There are several kinds of
transactional observer methods. By specifying the transaction phase, the
event will be handled at transaction commit time, either before completion,
after completion, only after a failed transaction, or after a successful
transaction, respectively. By default, or when no transaction is active, CDI
events are handled immediately when they are fired. This enables engineers
to implement sophisticated solutions; for example, involving events that
happen only after entities have been added to the database successfully.
Again, in all cases, this handling is executed synchronously.

www.EBooksWorld.ir

Asynchronous execution
Whereas the synchronous flow of execution fulfills a lot of business use
cases, other scenarios need asynchronous behavior. The Java EE environment
sets a few constraints to the application in regard to threading. The container
manages and pools resources and threads. External concurrency utilities
outside of the container are not aware of these threads. Therefore, the
application's code is not supposed to start and manage own threads, but to use
Java EE functionality to do so. There are several APIs that natively support
asynchronicity.

www.EBooksWorld.ir

Asynchronous EJB methods
A straightforward way to invoke asynchronous behavior is to annotate an
EJB business method, or the EJB class, with @Asynchronous. Invocations to these
methods immediately return, optionally with a Future response type. They are
executed in a separate, container-managed thread. This usage works well for
simple scenarios but is limited to EJBs:

import javax.ejb.Asynchronous;

@Asynchronous

@Stateless

public class Calculator {

 public void calculatePi(long decimalPlaces) {

 // this may run for a long time

 }

}

www.EBooksWorld.ir

Managed Executor Service
For asynchronous execution in CDI managed beans or by using Java SE
concurrency utilities, Java EE includes container-managed versions of
ExecutorService and ScheduledExecutorService functionality. These are used to
execute asynchronous tasks in container-managed threads. Instances of
ManagedExecutorService and ManagedScheduledExecutorService are injected into the
application's code. These instances can be used to execute their own runnable
logic; however, they shine when combined together with Java SE
concurrency utilities such as completable futures. The following shows the
creation of completable futures using container-managed threads:

import javax.annotation.Resource;

import javax.enterprise.concurrent.ManagedExecutorService;

import java.util.Random;

import java.util.concurrent.CompletableFuture;

@Stateless

public class Calculator {

 @Resource

 ManagedExecutorService mes;

 public CompletableFuture<Double> calculateRandomPi(int maxDecimalPlaces) {

 return CompletableFuture.supplyAsync(() -> new Random().nextInt(maxDecimalPlaces) + 1,

 .thenApply(this::calculatePi);

 }

 private double calculatePi(long decimalPlaces) {

 ...

 }

}

The calculator bean returns a value of type completable future of double that
may still be calculated while the calling context resumes. The future can be
asked whether the calculation has finished. It can also be combined into
subsequent executions. No matter where new threads are required in an
enterprise application, Java EE functionality should be used to manage them.

www.EBooksWorld.ir

Asynchronous CDI events
CDI events can also be handled in an asynchronous way. The same holds true
that the container will provide a thread for executing the event handling. To
define asynchronous event handlers, the method is annotated with
@ObservesAsync and the event is fired using the fireAsync() method. The next code
snippets demonstrate asynchronous CDI events:

@Stateless

public class CarManufacturer {

 @Inject

 CarFactory carFactory;

 @Inject

 Event<CarCreated> carCreated;

 public Car manufactureCar(Specification spec) {

 Car car = carFactory.createCar(spec);

 carCreated.fireAsync(new CarCreated(spec));

 return car;

 }

}

The event handler is called in an own, container-managed thread:

import javax.enterprise.event.ObservesAsync;

public class CreatedCarListener {

 public void onCarCreated(@ObservesAsync CarCreated event) {

 // handle event asynchronously

 }

}

For backwards compatibility reasons, synchronous CDI events can also be
handled in an EJB asynchronous method. Therefore, the events and handlers
are defined in a synchronous way, but the handler method is an EJB business
method annotated with @Asynchronous. Before asynchronous events were added
to the CDI standard in Java EE 8, this was the only way to provide this
feature. To avoid confusion, this implementation should be avoided in Java
EE 8 and newer.

www.EBooksWorld.ir

Scopes in asynchronicity
Since the container cannot make any assumption on how long asynchronous
tasks may run, usage of scopes is limited. Request-scoped or session-scoped
beans that were available as the asynchronous task started are not guaranteed
to be active during the whole execution; the request and session may have
ended a long time ago. Threads that are running asynchronous tasks, for
example, provided by a managed executor service or asynchronous events,
can therefore not access the request-scoped or session-scoped bean instances
that were active during the originating invocation. This also includes
accessing references to injected instances, for example, in lambda methods
that are part of the originating synchronous execution.

This has to be taken into account when modeling asynchronous tasks. All
invocation-specific information needs to be provided at task start time. An
asynchronous task can, however, have its own instances of scoped beans.

www.EBooksWorld.ir

Timed execution
Business use cases cannot only be invoked from the outside, for example, by
a HTTP request, but also emerge from the inside of the application, by a job
that runs at a defined time.

In the Unix world, cron jobs are a well-known functionality to trigger
periodic jobs. EJBs provide similar possibilities using EJB timers. Timers
invoke business methods based on a recurring pattern or after a specific time.
The following shows the definition of a scheduled timer that times out every
10 minutes:

import javax.ejb.Schedule;

import javax.ejb.Startup;

@Singleton

@Startup

public class PeriodicJob {

 @Schedule(minute = "*/10", hour = "*", persistent = false)

 public void executeJob() {

 // this is executed every 10 minutes

 }

}

All EJBs, singleton, stateful, or stateless beans can define timers. However,
in the majority of use cases it makes sense to define timers on singleton
beans. The timeout is invoked on all active beans and it usually is desired to
invoke the scheduled job reliably; that is, on a singleton bean. For the same
reason this example defines the EJB to be active during application startup.
This guarantees that the timer is executed from the beginning.

Timers can be defined as persistent, which extends their lifetime beyond the
JVM life cycle. The container is responsible for keeping timers persistent,
usually in a database. Persistent timers that would have been executed while
an application is unavailable are triggered at startup. This also enables the
possibility to share timers across multiple instances. Persistent timers
together with corresponding server configuration are a straightforward
solution for business processes that need to be executed exactly once across

www.EBooksWorld.ir

multiple servers.

The timers that are automatically created using the @Schedule annotation are
specified using Unix-like cron expressions. For more flexibility, EJB timers
are defined programmatically using the container-provided timer service that
creates Timers and @Timeout callback methods.

Periodic or delayed jobs can also be defined outside EJB beans using the
container-managed scheduled executor service. A
ManagedScheduledExecutorService instance that executes tasks after a specified
delay or periodically is injectable into managed beans. Executing these tasks
will happen using container-managed threads:

@ApplicationScoped

public class Periodic {

 @Resource

 ManagedScheduledExecutorService mses;

 public void startAsyncJobs() {

 mses.schedule(this::execute, 10, TimeUnit.SECONDS);

 mses.scheduleAtFixedRate(this::execute, 60, 10, TimeUnit.SECONDS);

 }

 private void execute() {

 ...

 }

}

Invoking startAsyncJobs() will cause execute() to run in a managed thread, 10
seconds after the invocation and continuously, every 10 seconds, after an
initial minute has passed.

www.EBooksWorld.ir

Asynchronous and reactive JAX-RS
JAX-RS supports asynchronous behavior to not unnecessarily block request
threads on the server-side. Even if an HTTP connection is currently waiting
for a response, the request thread could potentially handle other requests
while the long-running process on the server is handled. Request threads are
pooled by the container and this pool only has a certain size. In order to not
unnecessarily occupy a request thread, JAX-RS asynchronous resource
methods submit tasks that are executed while the request thread returns and is
free to be reused again. The HTTP connection is being resumed and
responded after the asynchronous task has been finished or when a timeout
occurs. The following code shows an asynchronous JAX-RS resource
method:

@Path("users")

@Consumes(MediaType.APPLICATION_JSON)

public class UsersResource {

 @Resource

 ManagedExecutorService mes;

 ...

 @POST

 public CompletionStage<Response> createUserAsync(User user) {

 return CompletableFuture.supplyAsync(() -> createUser(user), mes);

 }

 private Response createUser(User user) {

 userStore.create(user);

 return Response.accepted().build();

 }

}

For the request thread not to be occupied for too long, the JAX-RS method
needs to return fast. This is due to the resource method being called from the
container using inversion of control. The completion stage's result will be
used to resume the client connection once processing has finished.

Returning completion stages is a fairly recent approach in the JAX-RS API.
If a timeout declaration, together with more flexibility on the asynchronous

www.EBooksWorld.ir

response, is required, the AsyncResponse type can be injected into the method.
The following code snippet demonstrates this approach.

import javax.ws.rs.container.AsyncResponse;

import javax.ws.rs.container.Suspended;

@Path("users")

@Consumes(MediaType.APPLICATION_JSON)

public class UsersResource {

 @Resource

 ManagedExecutorService mes;

 ...

 @POST

 public void createUserAsync(User user, @Suspended AsyncResponse response) {

 response.setTimeout(5, TimeUnit.SECONDS);

 response.setTimeoutHandler(r ->

 r.resume(Response.status(Response.Status.SERVICE_UNAVAILABLE).build()

 mes.execute(() -> response.resume(createUser(user)));

 }

}

Using custom timeouts, the client request will not wait infinitely, only until
either the result is completed or the invocation timed out. The calculation,
however, will continue since it's executed asynchronously.

For JAX-RS resources being implemented as EJBs, @Asynchronous business
methods can be used to omit the asynchronous invocation using an executor
service.

The JAX-RS client also supports asynchronous behavior. Depending on the
requirements, it makes sense to not block during HTTP invocations. A
previous example showed how to set timeouts on client requests. For long
running and especially parallel external system calls, asynchronous and
reactive behavior provides benefits.

Imagine several backends that provide weather information. The client
component accesses all of them and provides the average weather forecast.
Accessing the systems ideally happens in parallel.

import java.util.stream.Collectors;

@ApplicationScoped

www.EBooksWorld.ir

public class WeatherForecast {

 private Client client;

 private List<WebTarget> targets;

 @Resource

 ManagedExecutorService mes;

 @PostConstruct

 private void initClient() {

 client = ClientBuilder.newClient();

 targets = ...

 }

 public Forecast getAverageForecast() {

 return invokeTargetsAsync()

 .stream()

 .map(CompletableFuture::join)

 .reduce(this::calculateAverage)

 .orElseThrow(() -> new IllegalStateException("No weather service available"));

 }

 private List<CompletableFuture<Forecast>> invokeTargetsAsync() {

 return targets.stream()

 .map(t -> CompletableFuture.supplyAsync(() -> t

 .request(MediaType.APPLICATION_JSON_TYPE)

 .get(Forecast.class), mes))

 .collect(Collectors.toList());

 }

 private Forecast calculateAverage(Forecast first, Forecast second) {

 ...

 }

 @PreDestroy

 public void closeClient() {

 client.close();

 }

}

The invokeTargetsAsync() method invokes the available targets asynchronously,
using the managed executor service. The CompletableFuture handles are returned
and used to calculate the average results. Calling the join() method will block
until the invocation has finished and will deliver the individual results.

By invoking the available targets asynchronously, they call and wait for the
potentially slow resource in parallel. Waiting for the weather service
resources then only takes as long as the slowest response, not the sum of all
responses.

The latest version of JAX-RS natively supports completion stages, which
reduces boilerplate code in the applications. Similar to using completable

www.EBooksWorld.ir

futures, the invocation immediately returns a completion stage instance for
further usage. The following demonstrates reactive JAX-RS client
functionality using the rx() invocation:

public Forecast getAverageForecast() {

 return invokeTargetsAsync()

 .stream()

 .reduce((l, r) -> l.thenCombine(r, this::calculateAverage))

 .map(s -> s.toCompletableFuture().join())

 .orElseThrow(() -> new IllegalStateException("No weather service available"));

}

private List<CompletionStage<Forecast>> invokeTargetsAsync() {

 return targets.stream()

 .map(t -> t

 .request(MediaType.APPLICATION_JSON_TYPE)

 .rx()

 .get(Forecast.class))

 .collect(Collectors.toList());

}

The preceding example doesn't require to lookup the managed executor
service. The JAX-RS client will manage this internally.

Before the rx() method was introduced, the client contained an explicit async()
invocation that behaves similarly, but only returns Futures. The reactive client
approach usually fits the need in projects better.

As seen before, we are using the container-managed executor service since
we're in a Java EE environment.

www.EBooksWorld.ir

Concepts and design principles of
modern Java EE
The Java EE API is built around conventions and design principles that are
present throughout the whole set of standards. Software engineers will find
familiar API patterns and approaches while developing applications. Java EE
aims to maintain consistent API usage.

For applications that focus on business use cases first, the most important
principle of the technology is not getting in the way. As mentioned earlier,
engineers should be able to focus on solving business problems, not spending
the majority of their time dealing with technology or framework concerns.
Ideally, the domain logic is implemented using plain Java and enhanced with
annotations and aspects that enable enterprise environments without affecting
or obfuscating the domain code. This implies that the technology doesn't need
much engineer attention by enforcing overly complex constraints. In the past,
J2EE required many of these overly-complex solutions. Managed beans as
well as persistent beans needed to implement interfaces or extend base
classes. This obfuscates the domain logic and complicates testability.

In the age of Java EE, the domain logic is implemented in plain Java classes
annotated with annotations that tell the container runtime how to apply the
enterprise concerns. Clean code practices often suggest writing code for
delectability, not reusability. Java EE supports this approach. If for some
reason the technology needs to be replaced and the domain logic extracted,
this is possible by simply removing the corresponding annotations.

As we will see in Chapter 7, Testing the programming approach highly supports
testability, since for the developers, the majority of Java EE specifics are not
more than annotations.

A design principle that is existent throughout the whole API is inversion of
control (IoC), in other words, don't call us, we'll call you. We see this

www.EBooksWorld.ir

especially in application boundaries such as JAX-RS resources. The resource
methods are defined by annotation Java methods that are later invoked by the
container in the correct context. The same holds true for dependency injection
that needs to resolve producers or include cross-cutting concerns such as
interceptors. Application developers can focus on implementing the logic and
defining relationships and leave the actual plumbing to the container.
Another, not that obvious example, is declaring the mapping of Java objects
to JSON and back via JSON-B annotations. The objects are mapped
implicitly in a declarative approach, not necessarily in an explicit,
programmatic way.

Another principle that enables engineers to use the technology in a productive
way is convention over configuration. By default, Java EE defines specific
behavior that matches the majority of use cases. If that is not sufficient or
doesn't match the requirements, behavior can be overridden, often at several
levels.

There are countless examples of convention over configuration. JAX-RS
resource methods mapping Java functionality into HTTP responses is one
such method. If JAX-RS's default behavior regarding responses is not
adequate, the Response return type can be used. Another example is the
specification of managed beans that is usually realized using annotations. To
override this behavior, the beans.xml XML descriptor can be used. The
welcoming aspect for developers is that in a modern Java EE world,
enterprise applications are developed in a pragmatic and highly productive
way that does not usually require at lot of XML usage like in the past.

In terms of developer productivity, another important design principle of Java
EE is that the platform requires the container to integrate the different
standards. As soon as containers support a specific set of APIs, which is the
case if the whole Java EE API is supported, it is also required that
implementations of the APIs enable straightforward integration of other
APIs. A good example is that JAX-RS resources are able to use JSON-B
mapping and Bean Validation without explicit configuration other than
annotations. In previous examples, we saw how functionalities that are
defined in separate standards can be used together without additional effort

www.EBooksWorld.ir

required. This is also one of the biggest advantages of the Java EE platform.
The umbrella specification ensures that the specific standards play well
together. Developers can rely on certain features and implementation being
provided by the application server.

www.EBooksWorld.ir

Preserving maintainable code with
high quality
Developers generally agree that code quality is a goal to strive for. Yet not all
technology supports this ambition equally well.

As mentioned from the start, the business logic should be the main focus of
applications. If changes in the business logic or new knowledge after working
in the domain emerge, the domain model, as well as the source code, needs to
be refactored. Iterative refactoring is a necessity to achieve and maintain high
quality of the modeled domain as well as the source code in general. Domain-
Driven Design describes this effort of deepening the understanding of the
business knowledge.

A lot has been written on refactoring at the code level. After the business
logic has initially been represented into the code and verified by tests,
developers should spend some time and effort to rethink and improve the first
attempt. This includes identifier names, methods, and classes. Especially,
naming, layers of abstractions and single points of responsibility are
important aspects.

Following the reasoning of Domain-Driven Design, the business domain
should fit its code representations as much as possible. This includes,
especially, the language of the domain; that is, how developers and business
experts talk about certain features. The goal of the whole team is to find a
uniform, ubiquitous language that is used and well represented not only in
discussions and presentation slides, but also in the code. Refinement of
business knowledge will happen in an iterative approach. As well as
refactoring at the code level, this approach implies that an initial model won't
perfectly match all the requirements from the beginning.

Therefore, the technology being used should support changes in the model
and code. Too many restrictions become hard to change later on.

www.EBooksWorld.ir

For application development in general, but especially for refactoring, it is
crucial to have a sufficient coverage of automated software tests. As soon as
the code is changed, regression tests ensure that no business functionality has
accidentally been damaged. Sufficient test cases thus support refactoring
attempts, giving engineers clarity as to whether functionality still works as
expected after it has been touched. The technology should ideally support
testability by not constraining code structures. Chapter 7, Testing will cover that
topic in detail.

In order to achieve refactorability, loose coupling is favored over tight
coupling. All functionality that explicitly invokes or requires other
components needs to be touched if either of those change. Java EE supports
loose coupling in several aspects; for example, dependency injection,
eventing, or cross-cutting concerns, such as interceptors. All of these simplify
code changes.

There are some tools and methods that measure the quality. Especially, static
code analysis can gather information about complexity, coupling,
relationships of classes and packages, and implementation in general. These
means can help engineers to identify potential issues and provide an overall
picture of the software project. Chapter 6, Application Development Workflows
covers how to verify code quality in an automated way.

In general, it is advisable to refactor and improve the code quality constantly.
Software projects are often driven to implement new functionality that
generates revenue instead of improving existing functionality. The issue with
that is that refactoring and improving quality is often seen to not provide any
benefit from the business perspective. This is, of course, not true. In order to
achieve a steady velocity and to integrate new features with satisfying
quality, it is absolutely necessary to reconsider existing features. Ideally
periodical refactor cycles are already built into the project schedule.
Experience shows that project managers are often not aware of this issue.
However, it is a responsibility of the software engineer team to address the
relevance of quality.

www.EBooksWorld.ir

Summary
Engineers are advised to focus on the domain and business logic first, by
starting from the use case boundaries and stepping down the abstraction
layers. Java EE core domain components, namely EJBs, CDI, CDI producers
and events, are used to implement the plain business logic. Other Java EE
APIs are mainly used to support the business logic in technical necessities.
As we have seen, Java EE implements and encourages numerous software
design patterns as well as the approaches of Domain-Driven Design in
modern ways.

We have seen how to choose and implement communication, in both
synchronous and asynchronous ways. The communication technology
depends on the business requirements. Especially HTTP is widely used and
well-supported in Java EE via JAX-RS. REST is a prime example of an
communication protocol architectural style that supports to loosely couple
system.

Java EE ships with functionality that implements and enables technical cross-
cutting concerns such as managed persistence, configuration, or caching.
Especially the use of CDI realizes various technically-motivated use cases.
Required asynchronous behavior can be implemented in different ways.
Applications should not manage own threading or concurrency management,
rather than use Java EE features. Container-managed executor services,
asynchronous CDI events, or EJB timers are examples that should be used
instead.

The concepts and principles of the Java EE platform support developing
enterprise applications with focusing on business logic. Especially the lean
integration of different standards, inversion of control, convention over
configuration, and the principle of not getting in the way, support this aspect.
Engineers should aim to maintain high code quality, not only by code level
refactoring, but also by refining the business logic and the ubiquitous
language the teams share. Refining code quality as well as suitability of the

www.EBooksWorld.ir

domain model happens in iterative steps.

Therefore, technology should support changes in model and code and not
putting too many restrictions onto solutions. Java EE supports this by
minimizing the framework impact on the business code and by enabling to
loosely couple functionality. Teams should be aware of refactoring together
with automated testing being a necessity of high quality software.

The following chapter will cover what other aspects make the Java EE a
modern and suitable platform for developing enterprise applications. We will
see what deployment approaches are advisable and how to lay the foundation
for productive development workflows.

www.EBooksWorld.ir

Lightweight Java EE
Lightweight Java EE. Is that even possible? In the past, J2EE applications
and especially application servers have been considered a heavyweight and
cumbersome technology. And up to some degree deservedly so. APIs were
quite unwieldy to use. There was a lot of XML configuration required, which
eventually led to the use of XDoclet, a tool used to generate XML based on
meta information put into JavaDoc comments. Application servers were also
cumbersome to work with, especially with regard to startup and deployment
times.

However, since the name change to Java EE and especially since version 6,
these assumptions are not true anymore. Annotations were introduced, which
originally emerged from the XDoclet-motivated JavaDoc tags. And a lot has
happened to improve the productivity and developer experience.

This chapter will cover the following topics:

What makes a technology lightweight
Why Java EE standards help reducing work
How to choose project dependencies and archive formats
The benefits of zero-dependency enterprise applications
Modern Java EE application servers
The one application per application server approach

www.EBooksWorld.ir

Lightweight enterprise technology
What makes a technology lightweight? And how lightweight, productive and
relevant is Java EE in the age of containers and cloud?

One of the most important aspects of a lightweight technology is the
productivity and effectiveness it enables. The time the development team
spends is precious and expensive and the less time spent on overhead the
better. This includes developing glue code, building projects, writing and
executing tests, and deploying software, on both local and remote
environments. Ideally, engineers can spend as much time as possible on
implementing revenue-generating business functionality.

A technology should therefore not add much overhead on top of the business
use cases. Technical cross-cutting concerns are certainly necessary but should
be kept to a minimum. In the previous chapter, we have seen how Java EE
enables developers to implement business use cases in a productive way.
Project artifact builds and deployments should in the same way aim to
minimize the required time and effort.

This and the following chapter will show how Java EE supports crafting
productive development workflows.

www.EBooksWorld.ir

Why Java EE standards?
One of the principles of Java EE is to provide a productive enterprise API. As
seen in the Concepts and design principles of modern Java EE section in the
previous chapter, one of the biggest advantages is the ability to integrate
different standards without developer-side configuration required. The Java
EE umbrella requires the different standards to work well together. The
enterprise container has to meet this requirement. The software engineers
only develop against the APIs and let the application server do the hard
integration work.

Following the convention over configuration approach, using different,
integrated standards that are part of the umbrella specification doesn't require
initial configuration. As seen in various examples previously, the
technologies that have emerged from different standards within Java EE work
well with each other. We have seen examples such as using JSON-B to
automatically map objects to JSON in JAX-RS resources; integrating Bean
Validation into JAX-RS and therefore HTTP responses by introducing a
single annotation; injecting managed beans into instances defined by other
standards, such as Bean Validation validators or JSON-B type adapters; or
managing technical transactions that span JPA database operations in EJBs.

What is the alternative to using an umbrella standard that embraces various
reusable technologies? Well, to introduce vendor-specific frameworks with
third-party dependencies that need to be wired together with manual
developer work involved. One of the biggest advantages of the Java EE API
is having the whole variety of technology right at the developer's fingertips;
providing productive integration and saving developers time for focusing on
business use cases.

www.EBooksWorld.ir

Convention over configuration
Pursuing the idea of convention over configuration, further, enterprise
applications can be developed without any initial configuration required. The
APIs provide default behavior that matches the majority of use cases.
Engineer are only required to put extra effort in if that behavior is not
sufficient.

This implies that in today's world, enterprise projects can be set up with
minimal configuration involved. The days of extensive XML configuration
are over. Especially, applications that don't ship web frontend technology can
keep XML files to a minimum.

Let's start with a simple example of an application that offers REST
endpoints, and accesses databases and external systems. REST endpoints are
integrated by JAX-RS that internally uses servlets to handle requests. Servlets
traditionally are configured using the web.xml deployment descriptor file
residing under WEB-INF. However, JAX-RS ships a shortcut by sub-classing
Application, annotated with @ApplicationPath, as shown in the previous chapter.
This registers a JAX-RS application servlet for the provided path. At startup
time, the project will be scanned for JAX-RS related classes such as
resources or providers. After the application has been started, the REST
endpoints are available to handle requests even without a provided web.xml
file.

Managed beans are traditionally configured using a beans.xml configuration
file. In web archive applications this file also resides under WEB-INF.
Nowadays, it is primarily used to specify the bean discovery mode, that is,
which CDI beans are considered per default. It's advisable to configure the
bean-discovery-mode of all, not just annotated beans. The beans.xml file can override
CDI bean composition of all sorts, such as interceptors, alternatives,
decorators, and so on. As the CDI specification states, for the simplest
example it's sufficient for this file to be empty.

www.EBooksWorld.ir

The JPA persistence units are configured using the persistence.xml file under
META-INF. As previously shown, it comprises the datasource definitions that are
used in the the application. Mapping JPA entities to database tables is
configured via annotations in domain model classes. This approach keeps the
concerns in a single place and minimizes XML usage.

For the majority of enterprise applications that don't include a web frontend,
this amount of configuration is already sufficient. Frontend technologies such
as JSF are usually configured via web.xml and faces-config.xml or if required, via
additional, implementation-specific files.

In the past, vendor-specific configuration files, such as jboss-web.xml or
glassfish-web.xml, were quite common. In a modern Java EE world, the
majority of applications don't require these workarounds anymore. In order to
allow portability, it is highly advisable to implement features using standard
APIs first and only if this is not possible within reasonable effort to go with
vendor-specific features. Experience with legacy projects showed that this
approach leads to better manageable situations. Unlike vendor-specific
features, Java EE standards are guaranteed to continue to work in the future.

At application startup, the container scans the available classes for
annotations and known types. Managed beans, resources, entities, extensions,
and cross-cutting concerns are discovered and configured appropriately. This
mechanism is a great benefit for developers. They don't need to explicitly
specify required classes in configuration files but can rely on the server's
discovery; inversion of control at its best.

www.EBooksWorld.ir

Dependency management of Java
EE projects
The dependency management of an enterprise project targets the
dependencies that are added on top of the JDK. This includes dependencies
that are required during compilation, tests, and at runtime. In a Java
enterprise project, the Java EE API is required with provided dependency
scope. Since the APIs are available on the application server, they don't have
to be included in the packaged archive. The provided Java EE API therefore
doesn't have an implication on the package size.

Real-world enterprise projects usually include more dependencies than this.
Typical examples for third-party dependencies include logging frameworks
such as Slf4j, Log4j, or Logback, JSON mapping frameworks such as
Jackson, or general purpose libraries such as Apache Commons. There are
several issues with these dependencies.

First of all, third-party dependencies are usually not provided, thus increasing
the size of the artifact. This doesn't sound that harmful, but has some
implications that we'll see later. The more dependencies are added to the
resulting artifact, the longer the build will take. Build systems need to copy
potentially big dependencies into the artifact each and every time the project
is built. As we will see in Chapter 6, Application Development Workflows,
project builds need to be as fast as possible. Every dependency added to the
package increases the turnaround time.

Potential collisions of dependencies and their versions represent an even
bigger challenge. This includes both packaged dependencies and transitive
dependencies as well as libraries that already exist on the application server.
For example, logging frameworks are often already present in the container's
classpath, potentially in a different version. Different versions being used
introduce potential issues with the aggregate of libraries being there.
Experience shows that implicit dependencies that are added transitively

www.EBooksWorld.ir

represent the biggest challenge in this regard.

Aside from technical reasons, there are some other aspects to consider before
lightheadedly introducing dependencies to a software project. Dependency
licenses, for example, can become an issue when developing a software
product that is shipped to customers. It's not only required that the company
is permitted to use certain dependencies, but also that involved licenses are
compatible to each other, when shipped in a software package. The simplest
way to meet licensing criteria is to avoid dependencies, at least, if they serve
no business purpose. Engineers should make similar consideration in regard
to security, especially for software being developed for sectors with high
demands in security.

I was once involved in a firefighter job responsible for updating versions of
used frameworks in an enterprise project. The project included a lot of build
dependencies. With all its included third-party dependencies, the project
runtime eventually contained all known logging frameworks. The same was
true for JSON mapping frameworks, which introduced a lot of version
conflicts and runtime dependency mismatches. This was before the advent of
JSON-B and JSON-P. We spent most of the time configuring the project
build, untangling and excluding the transitive dependencies from the project
artifact. This is a typical issue when using third-party libraries. The price for
saving project code is to spend time and effort configuring the project build
and potentially untangling dependencies, especially if they introduce a lot of
transitive functionality.

By managing build dependencies, engineers focus on aspects that are
insignificant to the business use cases. The question to be asked is whether it
pays off to save some lines of code, when at the same time we introduce
dependencies. Experience shows that the trade-off of duplication versus
lightweightness, such as in dependency-free projects, is too often in favor of
avoiding duplication. A prime example for this are projects that introduce the
whole Apache Commons library to use a functionality that could have been
realized with a few lines of code.

Whereas it's good practice to not reinvent the wheel by developing own

www.EBooksWorld.ir

versions of functionality that could be reused, the consequences also have to
be considered. Experience shows that introduced dependencies are quite
often neglected and only utilized marginally. Most of them serve little
business value.

When engineers inspect code quality, for example using code analysis tools,
what also should be considered is the ratio of dependencies and project code
that target business use cases versus plumbing. There is a straightforward
method that can be applied for dependencies. Before a third-party
dependency is introduced, consider a few questions. Does adding the
functionality add value to the business? How much project code does it save?
How big is the impact on the resulting artifact?

For example, imagine part of the use case of the car manufacture application
is to communicate with specific factory software using a proprietary Java
API. Obviously, the communication is crucial to fulfill the business purpose
and it makes a lot of sense to include this dependency in the project. On the
contrary, adding a different logging framework hardly improves the
application's business value. Furthermore, Chapter 9, Monitoring, Performance,
and Logging will discuss the issues with traditional logging.

However, in order not to unnecessarily increase the build size, crucial
dependencies can be installed on the application server and be declared as
provided in the project's build.

In the first chapter, we saw the difficulties with shared business dependencies
such as shared models. Ideally, applications are as self-sufficient as possible.
Chapter 8, Microservices and System Architecture will deep-dive into self-
contained systems and the motivation for architectures that share nothing.

In regard to technical dependencies, however, the Java EE API already
includes the technology that the majority of enterprise applications need.
Ideally, engineers develop zero-dependency Java EE applications that are
packaged as thin deployment artifacts containing the application-relevant
classes only. If some use cases require third-party dependencies, they can be
installed in the container. The goal is to have a light footprint of deployment

www.EBooksWorld.ir

artifacts.

For production code, this means that only provided dependencies are
included, ideally, only the Java EE API. Test dependencies, however, are a
different story; software tests require some additional technology. Chapter 7,
Testing covers the required dependencies for the test scope.

www.EBooksWorld.ir

Lightweight way of packaging
applications
The approach of zero-dependency applications simplifies many project build
concerns. There is no need to manage third-party dependencies with regard to
versions or collisions since there aren't any included.

What other aspects does this approach simplify? Project builds, no matter
whether Gradle or Maven are being used, always show the best performance
when nothing needs to be added to the artifact. The resulting size of the
packages directly impacts the build time. In the case of zero-dependency
applications, only the compiled classes are included, that is, only the actual
business logic. Therefore, the resulting build times are as minimal as they
will get. All build time is spent on compiling the project's classes, running the
test cases, and packaging the classes into a thin deployment artifact. Building
this approach should happen in seconds. Yes, seconds. As a general rule,
every project build that takes more than 10 seconds should be reconsidered.

This rule, of course, puts certain pressure on project builds. It naturally
requires to avoid including any larger dependency or implementation; these
should be provided by the application server. Test run times are usually
another aspect that prevents fast builds. Chapter 7, Testing, will shed light on
how to develop tests in an effective way.

Fast builds are one benefit of crafting zero-dependency applications. Another
implication is fast artifact transmission. Built artifacts, such as WAR or JAR
files, are usually kept in an artifact repository for later use, for example,
Sonatype Nexus or JFrog Artifactory. Transmitting these artifacts over the
wire greatly speeds up if only a few kilobytes of data are involved. This
applies to all sorts of artifact deployment. No matter where the built archives
are shipped to, smaller footprints always pay off especially when workflows
are executed often, as it is the case for Continuous Delivery.

www.EBooksWorld.ir

The goal of reconsidering practices and stripping everything which does not
provide value also targets the way of packaging applications. Traditionally,
enterprise applications have been shipped as EAR files. The structure of these
included a web archive, a WAR file, and one or more enterprise JARs.
Enterprise JAR archives contained the business logic, usually implemented in
EJBs. The web archive contained the web services and frontend technology
communicating with the business logic using local or remote EJBs. However,
this separation is not necessary, as all components are shipped on a single
server instance.

Packaging several technical concerns in several sub-archives is not required
anymore. All business logic as well as web services and cross-cutting
concerns are packaged into a single WAR file. This greatly simplifies the
project setup as well as the build process. Applications don't have to be
zipped in multiple hierarchies just to be unzipped on a single server instance
again. WAR files containing the required business code deployed in a
container is the best implementation of thin artifacts. Because of this reason,
deploying thin WAR files is faster than the corresponding EAR files.

The following demonstrates the contents of a thin web application artifact
with typical components:

www.EBooksWorld.ir

The deployment artifact only contains classes that are required to implement
the business use case, no technology-specific implementation, and only
minimal configuration. Especially, there are no library JAR files included.

The architecture of the Java EE platform encourages lightweight artifacts.
This is due to the platform separating the API from the implementations.
Developers only program against the API; the application server implements
the API. This makes it possible to ship only the business logic, which
includes certain aspects in lightweight artifacts. Besides the obvious benefits
of avoiding dependency collisions and building vendor-independent
solutions, this approach also enables fast deployments. The less content the
artifacts include, the less unpacking needs to be done on the container side.
Therefore, it's highly advisable to package enterprise applications into a
single WAR file.

In the last year, we have seen more and more interest in shipping enterprise
applications as fat JARs, that is, shipping the application together with the

www.EBooksWorld.ir

implementation. The approaches of fat deployment artifacts have usually
been used in enterprise frameworks such as the Spring Framework. The
motivation behind these approaches is that the versions of the required
dependencies and frameworks are explicitly specified and shipped together
with the business logic. Fat deployment artifacts can be created as fat WARs,
which are deployed on a servlet container, or fat JARs started as standalone,
executable JARs. A Java EE application packaged as fat JAR therefore ships
the enterprise container together with the application in an executable JAR.
However, as stated before, the build, shipping, and deployment times
increase greatly if third-party dependencies are added to the artifact.

Experience shows that explicitly shipping the enterprise implementation
together with the application is in most cases not technically but business-
politically motivated. Operational environments within companies that are
inflexible regarding application server and Java installations, especially
regarding version upgrades, in some cases force developers to find
workarounds. Enterprise applications that are built using newer technology
cannot be deployed on older, existing server installations. Sometimes, the
business-politically easier solution is to ignore the existing installations
altogether and to directly execute the standalone JAR, which only requires a
certain Java version. However, whereas these solutions are certainly justified,
the technically more reasonable solutions would be to package applications
into thin deployment artifacts. Interestingly, as we will see in the next
chapter, shipping software in Linux containers holds the advantages of both
approaches.

There is another interesting approach that enables to ship the whole
application as an executable package and to keep fast workflows of thin
deployments. Several application server vendors provide the solution to ship
a custom application container as executable JAR that deploys the thin
application as additional argument at startup time. By doing so, the whole
package of both artifacts includes the business logic as well as the
implementation and is started as a standalone application. The application is
still separated from its runtime and packaged as thin artifact, as a so-called
hollow JAR or WAR file. This approach especially makes sense if the
addressed flexibility is required without the use of Linux containers.

www.EBooksWorld.ir

As a conclusion, it is highly advisable to build thin deployment artifacts,
ideally thin WAR files. If this approach does not work for business-political
reasons, hollow JARs can provide a reasonable workaround. However, as we
will see in the next chapter, container technologies such as Docker don't
require to make use of executable JAR approaches and provide the same
benefits.

www.EBooksWorld.ir

Java EE application servers
What else makes an enterprise technology lightweight besides the
productiveness of the API? What about the runtime, the enterprise container?

Developers often complained about J2EE application servers being too slow,
too cumbersome, and unwieldy to use. Installation sizes and memory
consumption were quite high. Typically, a lot of applications ran on a server
instance in parallel with being redeployed individually. This approach
sometimes introduced additional challenges, such as classloader hierarchy
issues.

Modern application servers are far from this negative image. Most of them
have been heavily optimized for startup and deployment time. Especially,
server-internal module approaches such as Open Service Gateway Initiative
(OSGi) tackled the necessity of supporting the full Java EE API by loading
required modules on demand and greatly speeding up operations. In terms of
resource usage, application servers also greatly improved compared to the
past. A modern container consumes less memory than a running browser
instance on a desktop computer. For example, an Apache TomEE instance
starts up in one second, consumes less than 40 megabytes on disk and less
than 30 megabytes of memory.

The performance overhead of managed beans is equally negligible. In fact,
compared to CDI managed beans and other frameworks such as Spring
Framework, stateless EJBs show the best results. This is due to the fact that
stateless session beans are pooled and reused after their business methods
have been invoked.

Besides that, application servers manage pools of connections and threads
and they enable engineers to gather statistics and performance insights out of
the box. The container is responsible for providing monitoring for these
aspects. DevOps engineers have the possibility to directly use this data
without introducing custom metrics.

www.EBooksWorld.ir

Besides these aspects, the application servers also manage the bean instances
and life cycles, resources, and database transactions, as we have seen in the
previous chapter.

This is the point of having an application container. It does the required work
to run an enterprise application in production; the software engineers are
responsible for dealing with the business logic. The container provides and
manages the required resources and is forced by the standards to provide
insights into deployed applications. Due to the vendors that put a lot of effort
into optimizing the required technologies, the resource overhead can be kept
low.

Application servers' installation sizes are still somewhat bigger than other
enterprise frameworks. As of writing this book, vendors are striving to
provide smaller, on-demand runtimes tailored for the application's needs. The
MicroProfile initiative includes several application server vendors that
define additional enterprise profiles complementary to the Java EE umbrella.
These profiles are assembled from Java EE standards as well. This is a very
interesting approach for developers since it doesn't require any change on the
application side. The runtime, that is, the set of standards included, will be
fitted to what the application needs in order to fulfill its business logic.

www.EBooksWorld.ir

One application per application
server
Traditionally, with big installation sizes and long startup times, application
servers have been used to deploy several, if not dozens of, enterprise
applications. A server instance was shared among several teams, sometimes a
whole company. This comes with certain inflexibility, similar to shared
application models. Teams cannot simply choose newer JDK or server
versions, or restart or reconfigure the application server without coordinating
with other teams. This naturally inhibits fast and productive processes, and
complicates Continuous Delivery.

In terms of team working methods, and project and application life cycles,
the easiest approach therefore is to deploy an application on a dedicated
application server. The DevOps team has full control over its version,
configuration, and life cycle. This approach simplifies processes and avoids
potential issues such as collisions with other teams and used technology.
Issues with hierarchical classloading that deploying several applications
could introduce are avoided as well.

An application server certainly represents quite a construct for just a single
application. However, as we have seen previously, the installation sizes of
application servers have already decreased compared to the past. Apart from
that, developers should care more about the sizes of the deployment artifacts,
since these are the moving parts of the development workflow. In a
Continuous Delivery approach, the application is potentially built and
packaged many times a day. The longer the time spent on the project build
and transmitting artifacts, the longer the turnaround times. This affects each
and every build and can add up to a lot of overhead during a day. The
application server is not installed and shipped that often. Therefore, it is
advisable to deploy an application to a single, dedicated Java EE server:

www.EBooksWorld.ir

In the next chapter, we will see how container technologies such as Docker
support this approach. Shipping the application, including the whole stack
down to the operating system as a container, encourages the approach of one
application per application server.

www.EBooksWorld.ir

Summary
The seamless integration of multiple Java EE standards with the convention
over configuration approach minimizes the amount of boilerplate work
developers have to do. The configuration of modern enterprise applications is
thus kept to a minimum. Especially the default conventions, which work for
the majority of enterprise applications and the possibility of overriding
configuration only if required, increases the developer's productivity.

Enterprise applications should minimize their dependencies ideally to only
the provided Java EE API. The third-party dependencies should only be
added if they are a business necessity and not a technical one.

Java EE applications should be packaged as thin WAR files, following a
zero-dependency approach. This has a positive impact on the time spend to
build as well as to publish the application.

Modern Java EE applications are far from the negative image of heavyweight
J2EE runtimes. They start up and deploy fast and try to reduce the memory
impact. Whereas application servers might not be the most lightweight
runtime out there, they ship with enough benefits for enterprise applications
such as integrating technology or managing life cycles, connections,
transactions, or threads, that would have to be implemented otherwise.

In order to simplify application life cycles and deployments it's advisable to
deploy one application per application server. This gets rid of a few potential
challenges and perfectly fits into a modern world of container technologies.
The next chapter will show you this modern world in the age of cloud
platforms, what container technologies are about and how Java EE fits into
this picture.

www.EBooksWorld.ir

Container and Cloud Environments
with Java EE
The last years have shown a lot of interest in container as well as cloud
technology. The vast majority of companies building software is at least
considering migrating environments to these modern approaches. In all of my
recent projects these technologies have been a point of discussion. Especially,
introducing container orchestration technologies greatly affects the way how
applications are run.

What are the benefits of container technologies? And why should companies
care about the cloud? It seems a lot of these concerns are used as buzzwords,
as a silver bullet approach. This chapter will examine the motivations behind
these technologies. We will also see if and how the Java EE platform is ready
for this new world.

This chapter will cover:

How infrastructure as code supports operations
Container technologies and orchestration
Why especially Java EE fits these technologies
Cloud platforms and their motivations
12-factor, cloud native enterprise applications

www.EBooksWorld.ir

Motivations and goals
What are the motivations behind containers, container orchestration, and
cloud environments? Why do we see such momentum in this area?

Traditionally, enterprise application deployment worked something like the
following. Application developers implemented some business logic and built
the application into a packaged artifact. This artifact was deployed manually
on an application server that was managed manually as well. During
deployment or reconfiguration of the server, the application usually faced a
downtime.

Naturally, this approach is a rather high-risk process. Human, manual tasks
are error-prone and are not guaranteed to be executed in the same manner
each and every time. Humans are rather bad at executing automated,
repetitive work. Processes such as installing application servers, operating
systems and servers in general, require precise documentation, especially for
future reproducibility.

In the past, tasks for operation teams typically were ordered using a ticket
system and performed manually. By doing so, installation and configuration
of servers held the risk of transforming the system into a non-reproducible
state. Setting up a new environment identical to the current one required a lot
of manual investigation.

Operational tasks need to be automated and reproducible. Installing a new
server, operating system or runtime should always execute in exactly the
same manner. Automated processes not only speed up the execution but
introduce transparency, revealing which precise steps have been executed.
Reinstalling environments should produce exactly the same runtime
including all configuration and setup as before.

This also includes deployment and configuration of the application. Instead
of manually building and shipping applications, Continuous Integration

www.EBooksWorld.ir

servers are in charge of building software in an automated, reliable, and
reproducible way. CI servers act as golden source of truth for software
builds. The artifacts produced there are deployed on all involved
environments. A software artifact is built once, on the Continuous Integration
server, and then verified in integration and end-to-end tests, until it ends up in
production. The same application binary that is deployed to production is
therefore reliably tested upfront.

Another very important aspect is to be explicit in the software versions that
are being used. This includes all used software dependencies, from the
application server and Java runtime, down to the operating system and its
binaries. Rebuilding or reinstalling software should result in exactly the same
state each and every time. Software dependencies are a complex subject
which comes with a lot of possibilities for potentials errors. Applications are
tested to work properly on specific environments with specific configurations
and dependencies. In order to guarantee that the application will work as
expected, it is shipped in exactly that configuration that has been verified
before.

This aspect also implies that test and staging environments which are used to
verify the application's behavior should be as similar to production as
possible. In theory this constraint sounds reasonable. From experience the
used environments vary quite a lot from production in terms of software
versions being used, network configuration, databases, external systems,
number of server instances, and so on. In order to test applications properly
these differences should be erased as much as possible. In section Containers
we will see how container technology supports us here.

www.EBooksWorld.ir

Infrastructure as code
A logical conclusion to enable reproducible environments is to make use of
infrastructure as code (IaC). The idea is that all required steps,
configuration, and versions are explicitly defined as code. These code
definitions are directly used to configure the infrastructure. Infrastructure as
code can be implemented in a procedural form, such as scripts, or in a
declarative way. The latter approach specifies the desired target state and is
executed using additional tooling. No matter which approach is preferred, the
point is that the whole environment is specified as code, being executed in an
automated, reliable, and reproducible way, always producing the same
results.

In any way, the approach implies that the manual steps are kept to a
minimum. The easiest form of infrastructure as code are shell scripts. The
scripts should be executed from soup to nuts without human involvement.
The same holds true for all IaC solutions.

Naturally the responsibility of installing and configuring environments moves
from an operations team more toward developers. Since the development
team sets certain requirements on the required runtime it makes sense for all
engineering teams to work together. This is the idea behind the DevOps
movement. In the past the mindset and method of operating too often was
that application developers implemented software and literally passed the
software and responsibilities toward operations - without further involvement
on their side. Potential errors in production primarily concerned the
operations team. This unfortunate process not only leads to tensions between
engineering teams but ultimately lower quality. However, the overall goal
should be to deliver high quality software that fulfills a purpose.

This goal requires the accountability of application developers. By defining
all required infrastructure, configuration, and software as code, all
engineering teams naturally move together. DevOps aims toward
accountability of the software team as a whole. Infrastructure as code is a

www.EBooksWorld.ir

prerequisite which increases reproducibility, automation, and ultimately
software quality.

In the topic Containers and Container orchestration frameworks, we will see
how the presented technologies implement IaC.

www.EBooksWorld.ir

Stability and production readiness
The practices of Continuous Delivery include what needs to be done in order
to increase the quality and value of the software. This includes the stability of
the application. Reconfiguring and redeploying software does not have to
result in any downtime. New features and bugfixes do not have to be shipped
exclusively during maintenance windows. Ideally the enterprise software can
continuously improve and move forward.

A zero downtime approach involves a certain effort. In order to avoid an
application being unavailable, at least one other instance of the software
needs to be present at a time. A load balancer or proxy server upfront needs
to direct the traffic to an available instance. Blue-green deployments make
use this technique:

The application instances including their databases are replicated and proxied
by a load balancer. The involved applications typically represent different
software versions. Switching the traffic from the blue to the green path and
vice versa instantly changes the version, without any downtime. Other forms
of blue-green deployments can include scenarios of multiple application
instances that are all configured to use the same database instance.

This approach obviously does not have to be realized using some shiny new
technology. We have seen blue-green deployments that enable zero-
downtime in the past using home-grown solutions. However, modern

www.EBooksWorld.ir

technologies support these techniques increasing stability, quality, and
production-readiness out of the box without much engineering effort
required.

www.EBooksWorld.ir

Containers
The last years have shown a lot of interest in Linux container technology.
Technically this approach is not that new. Linux operating systems such as
Solaris supported containers a long time ago. However, Docker made a the
breakthrough in this technology by providing features to build, manage and
ship containers in a uniform way.

What is the difference between containers and virtual machines (VMs) and
what makes containers that interesting?

Virtual machines act like a computer in a computer. They allow the runtime
to be easily managed from the outside such as creating, starting, stopping,
and distributing machines in a fast and ideally automated way. If new servers
need to be setup, a blueprint, an image, of the required type can be deployed
without installing software from scratch every time. Snapshots of running
environments can be taken to easily backup the current state.

In many ways containers behave like virtual machines. They are separated
from the host as well as other containers, run in their own network with their
own file system and potentially own resources. The difference is that virtual
machines run on a hardware abstraction layer, emulating a computer
including operating system, whereas containers run directly in the host's
kernel. Unlike other kernel processes, containers are separated from the rest
of the system using operating system functionality. They manage their own
file system. Therefore, containers behave like separate machines but with
native performance without the overhead of an abstraction layer. The
performance of virtual machines is naturally decreased by their abstraction.
Whereas virtual machines provide full flexibility in choosing operating
systems, containers will always run in the same kernel and therefore in the
same version as the host operating system. Containers therefore do not ship
their own Linux kernel and can be minimized to their required binaries.

Container technologies such as Docker provide functionality to build, run,

www.EBooksWorld.ir

and distribute containers in a uniform way. Docker defines building container
images as IaC which again enables automation, reliability, and reprocibility.
Dockerfiles define all the steps that are required to install the application
including its dependencies, for example, an application container and the
Java runtime. Each step in the Dockerfile corresponds to a command that is
executed at image build time. Once a container is started from an image it
should contain everything which is required to fulfill its task.

Containers usually contain a single Unix process which represents a running
service, for example an application server, a web server, or a database. If an
enterprise system consists of several running servers, they run in individual
containers.

One of the biggest advantages of Docker containers is that they make use of a
copy-on-write file system. Every build step, as well as every running
container later on, operates on a layered file system, which does not change
its layers but only adds new layers on top. Built images therefore comprise
multiple layers.

Containers that are created from images are always started with the same
initial state. Running containers potentially modify files as new, temporary
layers in the file system, which are discarded as soon as the containers are
stopped. By default, Docker containers are therefore stateless runtime
environments. This encourages the idea of reproducibility. Every persistent
behavior needs to be defined explicitly.

The multiple layers are beneficial when rebuilding and redistributing images.
Docker caches intermediate layers and only rebuilds and retransmits what has
been changed.

For example, an image build may consist of multiple steps. System binaries
are added first, then the Java runtime, an application server, and finally our
application. When changes are made to the application and a new build is
required, only the last step is re-executed; the previous steps are cached. The
same is true for transmitting images over the wire. Only the layers that have
been changed and that are not yet existent on the target registry, are actually

www.EBooksWorld.ir

retransmitted.

The following illustrates the layers of a Docker image and their individual
distribution:

Docker images are either built from scratch, that is from an empty starting
point, or built upon an existing base image. There are tons of base images
available, for all major Linux distributions containing package managers, for
typical environment stacks as well as for Java-based images. Base images are
a way to build upon a common ground and provide basic functionality for all
resulting images. For example, it makes sense to use a base image including a
Java runtime installation. If this image needs to be updated, for example, to
fix security issues, all dependent images can be rebuilt and receive the new
contents by updating the base image version. As said before, software builds
need to be repeatable. Therefore we always need to specify explicit versions
for software artifacts such as images.

Containers that are started from previously built Docker images need access
to these images. They are distributed using Docker registries such as the
publicly available DockerHub or company-internal registries to distribute
own images. Locally built images are pushed to these registries and retrieved
on the environments that will start new containers later on.

www.EBooksWorld.ir

Java EE in the container
As it turns out the approach of a layered file system matches Java EE's
approach of separating the application from the runtime. Thin deployment
artifacts only contain the actual business logic, the part which changes and
which is rebuilt each and every time. These artifacts are deployed onto an
enterprise container which does not change that often. Docker container
images are built step-by-step, layer-by-layer. Building an enterprise
application image includes an operating system base image, a Java runtime,
an application server and finally the application. If only the application layer
changes, only this step will have to be re-executed and retransmitted - all the
other layers are touched only once and then cached.

Thin deployment artifacts leverage the advantages of layers since only a
matter of kilobytes has to be rebuilt and redistributed, respectively.
Therefore, zero-dependency applications is the advisable way of using
containers.

As seen in the previous chapter, it makes sense to deploy one application per
application server. Containers execute a single process which in this case is
the application server containing the application. The application server
therefore needs to run on a dedicated container that is included in the
container as well. Both the application server and the application are added at
image build time. Potential configuration, for example regarding datasources,
pooling, or server modules, is also made during build time, usually by adding
custom configuration files. Since the container is owned by the single
application these components are configured without affecting anything else.

Once a container is started from the image it should already contain
everything that is required to fulfill its job. The application as well as all
required configuration must already be present. Therefore, applications are
not deployed on a previously running container anymore but added during the
image build time, to be present at container runtime. This is usually achieved
by placing the deployment artifact into the container's auto-deployment

www.EBooksWorld.ir

directory. As soon as the configured application server starts, the application
is deployed.

The container image is built only once and then executed on all the
environments. Following the idea of reproducible artifacts before, the same
artifacts that run in production have to be tested upfront. Therefore the same
Docker image that has been verified will be published to production.

But what if applications are configured differently in various environments?
What if different external systems or databases need to be communicated
with? In order to not interfere with several environments, at least the used
database instances will differ. Applications shipped in containers are started
from the same image but sometimes still need some variations.

Docker offers the possibility of changing several aspects of running
containers. This includes networking, adding volumes, that is, injecting files
and directories that reside on the Docker host, or adding Unix environment
variables. The environment differences are added by the container
orchestration from outside of the container. The images are only built once
for a specific version, used and potentially modified in different
environments. This brings the big advantage that these configuration
differences are not modeled into the application rather than managed from the
outside. The same is true for networking and connecting applications and
external systems, which we will see in the coming sections.

Linux containers, by the way, solve the business-politically motivated issue
of shipping the application together with the implementation in a single
package for the reason of flexibility. Since containers include the runtime and
all dependencies required, including the Java runtime, the infrastructure only
has to provide a Docker runtime. All used technology including the versions
are the responsibility of the development team.

The following code snippet shows the definition of a Dockerfile building an
enterprise application hello-cloud onto a WildFly base image.

FROM jboss/wildfly:10.0.0.Final

COPY target/hello-cloud.war /opt/jboss/wildfly/standalone/deployments/

www.EBooksWorld.ir

The Dockerfile specifies the jboss/wildfly base image in a specific version
which already contains a Java 8 runtime and the WildFly application server.
It resides in the application's project directory, pointing to the hello-cloud.war
archive which was previously built by a Maven build. The WAR file is
copied to WildFly's auto-deployment directory and will be available at that
location at container runtime. The jboss/wildfly base image already specifies a
run command, how to run the application server, which is inherited by the
Dockerfile. Therefore it doesn't have to specify a command as well. After a
Docker build the resulting image will contain everything from the
jboss/wildfly base image including the hello-cloud application. This matches
the same approach of installing a WildFly application server from scratch and
adding the WAR file to the auto-deployment directory. When distributing the
built image, only the added layer including the thin WAR file needs to be
transmitted.

The deployment model of the Java EE platform fits the container world.
Separating the application for the enterprise container leverage the use of
copy-on-write file systems, minimizing the time spent on builds, distribution,
or deployments.

www.EBooksWorld.ir

Container orchestration
frameworks
Let's go up one abstraction layer from containers. Containers include
everything required to run specific services as stateless, self-contained
artifacts. However, the containers need to be orchestrated to run in the correct
network, being able to communicate with other services and being started
with the correct configuration, if required. The straightforward approach is to
develop home-grown scripts that run the required containers. However, in
order to realize a more flexible solution that also enables production-
readiness such as zero-downtime, the use of container orchestration
frameworks is advisable.

Container orchestration frameworks such as Kubernetes, DC/OS or Docker
Compose are not only responsible to run containers, but to orchestrate,
connect and configure them appropriately. The same motivations and
principles apply that are true for container technologies as well: automation,
reproducibility and IaC. Software engineers define the desired target state as
code and let the orchestration tool reliably setup the environments as
required.

Before going into a specific orchestration solution, let's have a closer look at
the rough concepts.

Orchestration frameworks enable us to connect multiple containers together.
This usually involves service lookup using logic names via DNS. If multiple
physical hosts are used, the framework resolves IP addresses over these
nodes. Ideally an application running in a container just connects to an
external system using a logical service name that is resolved by the container
orchestration. For example, a car manufacturing application using the vehicle
database connects using the vehicle-db hostname. This hostname is then
resolved via DNS, depending on the environment which the application runs
in. Connecting via logical names reduces the required configuration in the

www.EBooksWorld.ir

application code, since the configured connection is always the same. The
orchestration just connects the desired instance.

This is true for all offered systems. Applications, databases, and other servers
are abstracted to logical service names which are accessed and resolved
during runtime.

Configuring containers depending on their environment is another aspect that
orchestration frameworks solve. In general it's advisable to reduce the
required configuration in applications. However, there are cases where some
configuration effort is required. It is the framework's responsibility to provide
container configuration by dynamically injecting files or environment
variables depending on the circumstances.

The production-readiness features that some of the container orchestration
frameworks offer represent one of their biggest advantages. Ongoing
development of an application triggers new project builds and result in new
container image versions. The running containers need to be replaced by
containers that are started from these new versions. In order to avoid
downtime the container orchestration swaps the running containers using a
zero-downtime deployment approach.

In the same way, container orchestration makes it possible to increase the
workload by scaling up the number of container instances. In the past, certain
applications ran on multiple instances simultaneously. If the number of
instances needed to be increased, more application servers had to be
provisioned. In a container world the same goal is achieved by simply
starting more of the stateless application containers. The developers increase
the configured number of container replicas; the orchestration framework
implements this change by starting more container instances.

In order to run containers in production some orchestration aspects have to be
considered. Experience shows that some companies tend to build their own
solutions rather than using de facto standard technology. However, container
orchestration frameworks already solve these issues well and it is highly
advisable to at least consider them.

www.EBooksWorld.ir

Realizing container orchestration
We've now seen which challenges container orchestration framework tackle.
This section will show you the core concepts of Kubernetes, a solution
originally developed by Google to run their workloads. At the time of writing
this book Kubernetes has a enormous momentum and is also the basis for
other orchestration solutions such as OpenShift by RedHat. I chose this
solution because of its popularity but also because I believe that it does the
job of orchestration very well. However, the important point is less about
comprehending the chosen technology rather than the motivations and
concepts behind it.

Kubernetes runs and manages Linux containers in a cluster of nodes. The
Kubernetes master node orchestrates the worker nodes which do the actual
work, that is, to run the containers. The software engineers control the cluster
using the API provided by the master node, via a web-based GUI or
command-line tool.

The running cluster consists of so-called resources of a specific type. The
core resource types of Kubernetes are pods, deployments, and services. A
pod is an atomic workload unit, running one or more Linux container. This
means the application runs in a pod.

The pods can be started and managed as standalone, single resources.
However, it makes a lot of sense to not directly specify separate pods but to
define a deployment, which encapsulates and manages running pods.
Deployments enable the functionality that provide production-readiness such
as upscaling and downscaling of pods or rolling updates. They are
responsible for reliably running our applications in the specified versions.

A system defines services in order to connect to running applications from
outside of the cluster or within other containers. The services provide the
logical abstraction described in the last section that embraces a set of pods.
All pods that run a specific application are abstracted by a single service

www.EBooksWorld.ir

which directs the traffic onto active pods. The combination of services
routing to active pods and deployments managing the rolling update of
versions enables zero-downtime deployments. Applications are always
accessed using services which direct to corresponding pods.

All core resources are unique within a Kubernetes namespace. Namespaces
encapsulate aggregates of resources and can be used to model different
environments. For example, services that point to external systems outside of
the cluster can be configured differently in different namespaces. The
applications that use the external systems always use the same logical service
name which are directed to different endpoints.

Kubernetes supports resources definition as IaC using JSON or YAML files.
The YAML format is a human-readable data serialization format, a superset
of JSON. It became the de facto standard within Kubernetes.

The following code snippet shows the definition of a service of the hello-cloud
application:

kind: Service

apiVersion: v1

metadata:

 name: hello-cloud

spec:

 selector:

 app: hello-cloud

 ports:

 - port: 8080

The example specifies a service which directs traffic on port 8080 toward
hello-cloud pods that are defined by the deployment.

The following shows the hello-cloud deployment:

kind: Deployment

apiVersion: apps/v1beta1

metadata:

 name: hello-cloud

spec:

 replicas: 1

 template:

 metadata:

www.EBooksWorld.ir

 labels:

 app: hello-cloud

 spec:

 containers:

 - name: hello-cloud

 image: docker.example.com/hello-cloud:1

 imagePullPolicy: IfNotPresent

 livenessProbe:

 httpGet:

 path: /

 port: 8080

 readinessProbe:

 httpGet:

 path: /hello-cloud/resources/hello

 port: 8080

 restartPolicy: Always

The deployment specifies one pod from the given template with the provided
Docker image. As soon as the deployment is created Kubernetes tries to
satisfy the pod specifications by starting a container from the image and
testing the container's health using the specified probes.

The container image docker.example.com/hello-cloud:1 includes the enterprise
application which was built and distributed to a Docker registry earlier.

All these resource definitions are applied to the Kubernetes cluster by either
using the web-based GUI or the CLI.

After creating both the deployment and the service, the hello-cloud
application is accessible from within the cluster via the service. To be
accessed from the outside of the cluster a route needs to be defined, for
example using an ingress. Ingress resources route traffic to services using
specific rules. The following shows an example ingress resource that makes
the hello-cloud service available:

kind: Ingress

apiVersion: extensions/v1beta1

metadata:

 name: hello-cloud

spec:

 rules:

 - host: hello.example.com

 http:

 paths:

 - path: /

 backend:

 serviceName: hello-cloud

www.EBooksWorld.ir

 servicePort: 8080

These resources now specify the whole application, which is deployed onto a
Kubernetes cluster, accessible from the outside and abstracted in a logical
service inside of the cluster. If other applications need to communicate with
the application, they can do so via the Kubernetes-internal, resolvable hello-
cloud DNS hostname and port 8080.

The following diagram shows an example setup of the hello-cloud
application with a replica of three pods that runs in a Kubernetes cluster of
two nodes:

Besides service lookup using logical names, some applications still need
additional configuration. Therefore Kubernetes as well as other orchestration
technology has the possibility of inserting files and environment variables
into the container dynamically at runtime. The concept of config maps, key-
value-based configuration is used for this. The contents of config maps can
be made available as files, dynamically mounted into a container. The
following defines an example config map, specifying the contents of a
properties file:

kind: ConfigMap

apiVersion: v1

www.EBooksWorld.ir

metadata:

 name: hello-cloud-config

data:

 application.properties: |

 hello.greeting=Hello from Kubernetes

 hello.name=Java EE

The config map is being used to mount the contents as files into containers.
The config map's keys will be used as file names, mounted into a directory,
with the value representing the file contents. The pod definitions specify the
usage of config maps mounted as volumes. The following shows the previous
deployment definition of the hello-cloud application, using hello-cloud-config
in a mounted volume:

kind: Deployment

apiVersion: apps/v1beta1

metadata:

 name: hello-cloud

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: hello-cloud

 spec:

 containers:

 - name: hello-cloud

 image: docker.example.com/hello-cloud:1

 imagePullPolicy: IfNotPresent

 volumeMounts:

 - name: config-volume

 mountPath: /opt/config

 livenessProbe:

 httpGet:

 path: /

 port: 8080

 readinessProbe:

 httpGet:

 path: /hello-cloud/resources/hello

 port: 8080

 volumes:

 - name: config-volume

 configMap:

 name: hello-cloud-config

 restartPolicy: Always

The deployment defines a volume which references to the hello-cloud-config
config map. The volume is mounted to the path /opt/config resulting in all
key-value pairs of the config map being inserted as files in this directory.
With the config map demonstrated previously this would result in a

www.EBooksWorld.ir

application.properties file containing the entries for keys hello.greeting and
hello.name. The application expects that at runtime the file resides under this
location.

Separate environments will specify different contents of the config maps,
depending on the desired configuration values. Configuring applications
using dynamic files is one approach. It is also possible to inject and override
specific environment variables. The following code snippet demonstrates this
example as well. This approach is advisable when the number of
configuration values is limited:

similar to previous example

...

 image: docker.example.com/hello-cloud:1

 imagePullPolicy: IfNotPresent

 env:

 - name: GREETING_HELLO_NAME

 valueFrom:

 configMapRef:

 name: hello-cloud-config

 key: hello.name

 livenessProbe:

...

Applications need to configure credentials, used for example to authorize
against external systems or as database accesses. These credentials are ideally
configured in a different place than uncritical configuration values. Besides
config maps, Kubernetes therefore also includes the concept of secrets. These
are similar to config maps, also representing key-value pairs, but obfuscated
for humans as Base64-encoded data. Secrets and their contents are typically
not serialized as infrastructure as code since the credentials should not have
unrestricted access.

A common practice is to make credentials accessible in containers using
environment variables. The following code snippet shows how to include a
value configured in secret hello-cloud-secret into the hello-cloud application:

similar to previous example

...

 image: docker.example.com/hello-cloud:1

 imagePullPolicy: IfNotPresent

 env:

 - name: TOP_SECRET

 valueFrom:

 secretKeyRef:

www.EBooksWorld.ir

 name: hello-cloud-secret

 key: topsecret

 livenessProbe:

...

The environment variable TOP_SECRET is created from referencing the topsecret
key in secret hello-cloud-secret. This environment variable is available at
container runtime and can be used from the running process.

Some applications packaged in containers cannot solely run as stateless
applications. Databases are a typical example of this. Since containers are
discarded after their processes have exited, the contents of their file system
are also gone. Services such as databases need persistent state though. To
solve this issue Kubernetes includes persistent volumes. As the name
suggests these volumes are available beyond the life cycle of the pods.
Persistent volumes dynamically make files and directories available which
are used within the pod and retain after it has exited.

Persistent volumes are backed by network attached storage or cloud storage
offerings, depending on the cluster installation. They make it possible to run
storage services such as databases in container orchestration clusters as well.
However, as a general advise, persistent state in containers should be
avoided.

The YAML IaC definitions are kept under version control in the application
repository. The next chapter covers how to apply the file contents to a
Kubernetes cluster as part of a Continuous Delivery pipeline.

www.EBooksWorld.ir

Java EE in orchestrated containers
The orchestration framework orchestrates and integrates enterprise
applications in clustered environments. It takes a lot of work off the used
application technology. Container orchestration also vastly simplifies how to
configure applications and how to connect to external services. This section
will showcase this.

www.EBooksWorld.ir

Connecting external services
Client controls require URLs to connect against in order to integrate external
services. The URLs traditionally have been configured in files, which
potentially differed in various environments. In an orchestrated environment
the application can resolve external services using a logical name, via DNS.
The following code snippet shows how to connect against the cloud
processor application:

@ApplicationScoped

public class HelloCloudProcessor {

 private Client client;

 private WebTarget target;

 @PostConstruct

 private void initClient() {

 client = ClientBuilder...

 target = client.target("http://cloud-processor:8080/processor/resources/hello");

 }

 public String processGreeting() {

 ...

 }

}

The same holds true for other URLs, for example datasources definitions.
The application server configuration can simply point to the name of the
database service and use it to resolve the corresponding instance at runtime.

www.EBooksWorld.ir

Configuring orchestrated
applications
Resolving services by logical names already eliminates a lot of configuration
in the application. Since the same container image is being used in all
environments, potentially different configuration needs to be inserted from
the orchestration environment. As shown in the previous example,
Kubernetes config maps tackle this situation. The hello-cloud application
expects that at runtime a properties file will reside under
/opt/config/application.properties. The project code will therefore access this
location. The following demonstrates the integration of the properties file
using a CDI producer:

public class HelloGreeter {

 @Inject

 @Config("hello.greeting")

 String greeting;

 @Inject

 @Config("hello.name")

 String greetingName;

 public String processGreeting() {

 return greeting + ", " + greetingName;

 }

}

The CDI producer is defined similarly to the configuration example shown
previously:

@ApplicationScoped

public class ConfigurationExposer {

 private final Properties properties = new Properties();

 @PostConstruct

 private void initProperties() {

 try (InputStream inputStream =

 new FileInputStream("/opt/config/application.properties")) {

 properties.load(inputStream);

 } catch (IOException e) {

 throw new IllegalStateException("Could not init configuration", e);

 }

www.EBooksWorld.ir

 }

 @Produces

 @Config("")

 public String exposeConfig(InjectionPoint injectionPoint) {

 Config config = injectionPoint.getAnnotated().getAnnotation(Config.class);

 if (config != null)

 return properties.getProperty(config.value());

 return null;

 }

}

The definition of the @Config qualifier is similar to the previous example in Cha
pter 3, Implementing Modern Java Enterprise Applications. The application
loads the contents of the properties file into the properties map and produces
the configured values using CDI. All managed beans can inject these values
which emerge from the Kubernetes config map.

In order to realize secret configuration values, Kubernetes includes the
concept of secrets as previously shown. A common practice is to make the
contents of the secrets accessible in containers using environment variables.

Java applications use the System.getenv() method to access environment
variables. This functionality is used for both secrets and config map values,
respectively.

The demonstrated approaches and examples enable an enterprise application
to be deployed, managed, and configured in a container orchestration cluster.
They are sufficient for the majority of use cases.

www.EBooksWorld.ir

12-factor applications and Java EE
As of writing this book, 12-factor applications has emerged as a way of
developing Software as a Service (SaaS) applications. The 12-factor
application approach define 12 software development principles. The
motivations behind these principles aim to minimize time and effort, avoid
software erosion, and embrace Continuous Delivery and cloud platforms.

In other words the 12-factors aim to to implement enterprise applications in a
modern way. Some of the principles sound obvious to most engineers, while
others seem to contradict the common practice of building enterprise
applications.

The list of the 12-factors includes:

I. Have one codebase tracked in revision control, many deploys
II. Explicitly declare and isolate dependencies
III. Store config in the environment
IV. Treat backing services as attached resources
V. Strictly separate build and run stages
VI. Execute the app as one or more stateless processes
VII. Export services via port binding
VIII. Scale out via the process model
IX. Maximize robustness with fast startup and graceful shutdown
X. Keep development, staging, and production as similar as possible
XI. Treat logs as event streams
XII. Run admin/management tasks as one-off processes

The following explains the motivations of each principle and its realization
with Java EE.

www.EBooksWorld.ir

Have one codebase tracked in
revision control, many deploys
This principle sounds pretty obvious to software engineers, declaring that a
software code should be kept under version control, a single repository, even
for multiple deploys. Deploys relate to software instances, running on
specific environments. Therefore the codebase of a single application is
tracked in a single repository, not several codebases per application or vice
versa, containing all specifications for potentially different environments.

This principle leverages developer productivity since all information is found
under one repository. It is indifferent to the chosen technology and therefore
supported by Java EE applications, as well.

The repository should contain all source files that are required to build and
run the enterprise application. Besides Java sources and configuration files,
this includes infrastructure as code.

www.EBooksWorld.ir

Explicitly declare and isolate
dependencies
Software dependencies and their versions that are required in order to run the
application must be specified explicitly. This includes not only dependencies
which the application is programmed against, for example third-party APIs,
but also implicit dependencies on the Java runtime or operating system,
respectively. Explicitly specifying the required versions leads to far less
compatibility issues in production. A composition of software versions is
sufficiently tested during the development workflow. Dependency versions
that differ when rebuilding binaries introduce potential issues. It is therefore
advisable to explicitly declare all software versions to reduce probability of
error and enable reproducibility.

Container technology simplifies this principle by explicitly specifying all
software installation steps. Versions of used base images should be explicitly
declared, so that image rebuilds result in the same result. The Docker latest
tag should therefore be avoided in favor of definite versions. All software
installations specified in Dockerfiles should point to explicit versions as well.
Docker rebuilds, with or without cache, should produce the same outcome.

Java applications specify their dependencies using build systems. The first
chapter already covered what is necessary to enable reproducible builds using
both Maven and Gradle. In Java EE applications these dependencies are
ideally minimized to the Java EE API.

Whenever possible, it's advisable to specify explicit dependency versions, not
just latest ones. Only software using explicit versions can be tested reliably.

Isolating dependencies is a necessity for distributed development throughout
the software team. Software artifacts should be accessible via well-defined
processes, for example artifact repositories. Dependencies, which are added
during the software build, no matter whether Java runtime installations, Java

www.EBooksWorld.ir

artifacts, or operating system components, need to be distributed from a
central place. Repositories such as Maven Central, DockerHub or
company-internal repositories enable this approach.

www.EBooksWorld.ir

Store config in the environment
Application configuration, that differ for separate environments, such as
databases, external systems, or credentials, need to be existent at runtime.
This configuration should not be reflected in the source code but dynamically
modifiable from outside of the application. This implies that configuration is
retrieved via files, environment variables or other external concerns.

Container technology and orchestration frameworks support these approaches
as previously shown. Configuration for different environments, such as test,
staging, and production is stored in Kubernetes config maps and dynamically
used in pods in volumes or environment variables.

The 12-factor principles state that an application "[...] stores config in
environment variables". Environment variables are a straightforward way of
inserting specific variations that is supported by all kinds of technology.
However, if configuring the application involves a lot of individual
configuration values, engineers may consider to use configuration files
contained in container volumes, instead.

www.EBooksWorld.ir

Treat backing services as attached
resources
Databases and external systems that are accessed in the application are called
resources. It should make no difference to the system where an external
service or database is part of the application. The resources should be
attached to the application in a loosely coupled way. External systems and
databases should be able to be replaced by new instances without affecting
the application.

Applications abstract the accessed external system, first of all in the
communication technology being used. Communication via HTTP or JDBC,
for example, abstracts the implementations and enables systems to be
replaced by others. By doing so, applications are only coupled to their
contract: the communication protocol and defined schemas. JPA, JAX-RS,
and JSON-B are examples that support this approach.

Container orchestration frameworks take this approach even further and
abstract services into logic names. As shown previously applications can use
service names as hostnames, resolved by DNS.

In general, application developers should loosely couple systems together,
ideally only depending on protocols and schemas. At a code level backing
services are abstracted into own components, such as individual controls with
clean interfaces. This minimizes changes if attached resources change.

www.EBooksWorld.ir

Strictly separate build and run
stages
This principle advises to separate the application build, the deployment, and
the run processes. This is a well-known approach to Java enterprise
developers. Application binaries are built, deployed, and run in separate
steps. Software or configuration changes happen in the source code or in the
deployment step, respectively, and not directly in production. The
deployment step brings application binaries and potential configuration
together. Well-defined change and release management processes keep the
integrity of the enterprise software.

For the vast majority of software projects, it is common practice to separate
these steps and orchestrate stages in a Continuous Integration server. This is
necessary to ensure reliability and reproducibility. Chapter 6, Application
Development Workflows covers this topic in depth.

www.EBooksWorld.ir

Execute the app as one or more
stateless processes
Ideally, applications run as stateless processes where every use case is
executed self-sufficiently, without affecting other running processes.
Potential state is either stored in an attached resource such as a database or
discarded. Session state that lives longer than a single request is therefore a
violation of this principle. The challenge with traditional user session state is
that it only resides in a local application instance and not accessible from
other instances. The need for so-called sticky sessions on load balancers is an
indicator for not having a stateless application.

A lot of modern technology supports this approach. Docker containers with
their copy-on-write file system are an example. Stopped containers will be
discarded and therefore all of their state is gone as well. Stateless EJBs are
based on a similar motivation. However, instances of stateless session beans
are pooled and reused, therefore developers need to ensure that no state
retains after the business use case invocations.

Enterprise applications should be able to be restarted from scratch without
affecting their behavior. This also implies that applications share no state
except via well-defined attached resources.

www.EBooksWorld.ir

Export services via port binding
Web applications are traditionally deployed to a certain software stack. Java
enterprise applications for examples are deployed to an enterprise or Servlet
container whereas server-side scripting languages such as PHP run on top of
a web server. The applications therefore depend on their immediate runtime.

This 12-factor principle advise to develop self-sufficient applications that
expose their functionality via network ports. Since web-based enterprise
applications will communicate via the network, binding services to ports is
the way of least coupling.

Java EE applications that run in a container support this approach, only
exporting a port which is used to communicate with the application.
Containers only depend on the Linux kernel, the application runtime is
therefore transparent. Container orchestration frameworks leverage this idea,
connecting services to pods via logical names and ports, as shown in a
previous example. Java EE supports the use of containers and therefore this
principle as well.

www.EBooksWorld.ir

Scale out via the process model
Modern applications as well as their environments should enable scalability
when the workload on them increases. Applications ideally are able to scale
out horizontally, rather than just vertically. The difference is that scaling
horizontally aims to adds more individual, self-contained nodes to the
software whereas scaling vertically increases the resources on single nodes or
processes. However, scaling vertically is limited, since resources on physical
nodes cannot be increased infinitely.

12-factor applications describe the procedure of adding concurrency to the
software with adding more self-contained, shared-nothing processes.
Workloads should be distributable within several physical hosts, by
increasing the number of processes. The processes represent the request or
worker threads who handle the system's workload.

This approach shows the necessity of implementing stateless application in a
shared-nothing manner. Containers that run stateless Java enterprise
applications enable the system to scale out. Kubernetes managed scalability
in deployments via managing the number of replicas.

The bottleneck of enterprise applications, however, is typically not the
application instances rather than central databases. Chapter 8, Microservices
and System Architecture and Chapter 9, Monitoring, Performance, and Logging
cover the topics of scalability in distributed systems as well as performance
in Java EE projects in general.

www.EBooksWorld.ir

Maximize robustness with fast
startup and graceful shutdown
Chapter 4, Lightweight Java EE already showed the necessity of fast
turnarounds. This principle of 12-factor applications requires technology that
enables velocity and elasticity. In order to rapidly scale up, the software
should startup in a matter of seconds, making it possible to tackle a growing
workload.

Application shutdowns should gracefully finish in-flight requests and
properly close all open connections and resources. Especially requests and
transactions that are executed while the shutdown signal occurs should be
finished properly not to maliciously abort client use cases. In a Unix process
approach shutdown signals are sent as SIGTERM signals. Linux containers are
stopped in the same way, giving the container process a chance to shutdown
properly. When building container images, developers should pay attention
that the process handles Unix signals properly, resulting in a graceful
shutdown of the application server when it receives a SIGTERM signal.

Java EE supports both fast startups and graceful shutdowns. As shown
previously, modern application servers start up and deploy applications in a
matter of seconds.

Since the application servers manage beans, resources, pooling, and
threading, they take care of closing the resources properly at JVM shutdown.
The developers don't need to take care of this aspect themselves. Beans that
manage custom resources or handles that need to be closed, use pre-destroy
methods to implemented proper closing. The following shows a client control
using a JAX-RS client handle which is closed on server shutdown:

@ApplicationScoped

public class CoffeePurchaser {

 private Client client;

www.EBooksWorld.ir

 ...

 @PreDestroy

 public void closeClient() {

 client.close();

 }

}

The platform guarantees that the pre-destroy methods of all managed beans
are called once the application server shuts down.

www.EBooksWorld.ir

Keep development, staging, and
production as similar as possible
This 12-factor principle aims to minimize differences between environments.

Enterprise applications traditionally have quite some differences between the
environments of the development process. There are development
environments, maybe several of them, such as local workstations or dedicated
server environments and finally there is the production environment. These
environments differ in regard of time when software artifacts in certain
versions and configuration are deployed during the development process. The
longer the time span of simultaneously having different versions in the set of
environments the greater this difference becomes.

There is also a difference in teams and people. Traditionally software
developers maintain their own development environment while an operations
team takes care of production. This introduces potential gaps in
communication, processes, and used technology.

The technical difference between environments contains the biggest risk.
Development or test environments that use different tools, technology,
external services and configuration than production introduce the risk that
these differences will lead to errors. Software is tested automatically on these
environments before going to production. Every difference from production
that is not tested can and eventually will introduce bugs that could have been
prevented. The same is true for exchanging tools, backend services, or used
stacks for lightweight alternatives in development or local environments.

It is therefore advisable to keep the environments as similar as possible.
Especially, container technologies and orchestration frameworks highly
support this approach. As we saw previously, differences in configuration,
services, and technology are minimized or at least explicitly defined via the
environment. Ideally, software landscapes are identical on development, test

www.EBooksWorld.ir

environments, staging, and production. If that is not possible, service
abstractions as well as environment-managed configuration support to
manage the differences.

The difference in time and people is tackled by usage of Continuous
Delivery, not just from a technical but also organizational point of view. The
overall time to production should be as small as possible, enabling fast
delivery of features and bug fixes. Implementing Continuous Delivery
naturally moves teams and responsibilities together. The DevOps movement
describes how all engineers are responsible for the overall software. This
leads to a culture where all teams closely work together or merge into single
teams of software engineers.

www.EBooksWorld.ir

Treat logs as event streams
Enterprise applications traditionally write logs to log files on disk. Some
engineers argue that this information is one of the most important insights
into the application. The software project usually includes configuration of
the contents and format of these logfiles. However, storing log data in log
files is first of all just an output format, usually having a single log event per
line.

This principle of 12-factor applications argues that logging should be treated
as a stream of log events, that are emitted by the application. Applications
should, however, not concern themselves with routing and storing the log file
into specific output formats. Instead they log to the process' standard output.
The standard out is captured and processed by the runtime environment.

This approach is uncommon to most enterprise developers with all logging
frameworks, output formats and tools being around. However, environments
where a lot of services run in parallel need to capture and process log events
externally anyway. Solutions such as Elasticsearch, Logstash, and Kibana
have proven themselves well to process and comprehend complex situations
with log events from several sources. Storing log events in log files not
necessarily supports these approaches.

Logging to the application's standard out not only simplifies development,
since routing and storing is not a responsibility of the application anymore. It
also reduces the need for external dependencies, such as logging frameworks.
Zero-dependency applications support this approach. The environment such
as a container orchestration framework takes care of capturing and routing
the event stream. In Chapter 9, Monitoring, Performance, and Logging, we will
cover the topic of logging, its necessity and shortcomings.

www.EBooksWorld.ir

Run admin/management tasks as
one-off processes
This principle describes that administrative or management tasks should be
executed as separate short-lived processes. The technology ideally supports
command execution in a shell that operates on the running environment.

Although containers encapsulate Unix processes, they provide additional
functionality to execute single commands or to open a remote shell into the
container. Engineers can therefore execute the management and
administration scripts provided by the Java EE application server. Still, in
Java EE applications, the number of required administration and management
tasks are limited. A Container runs the application server process, which
auto-deploys the application; no further application life cycle management is
required.

Administrative tasks are usually required for debugging and troubleshooting
purposes. Therefore containers and container orchestration frameworks offer
possibilities to open remote shells into the containers or execute one-time
commands. Apart from that, the Chapter 9, Monitoring, Performance, and
Logging will show you what is necessary to gather further monitoring
information about enterprise applications.

The motivations of the 12-factors are to develop stateless, scalable enterprise
applications that embrace Continuous Delivery and modern environment
platforms, optimize time and effort spent in development and try to avoid
software erosion. 12-factor application have a clean contract with their
underlying system and ideally declarative infrastructure definitions.

www.EBooksWorld.ir

Cloud, Cloud native, and their
benefits
As of writing this book, there is a lot of interest in cloud platforms. We
currently see big companies moving their IT infrastructure into cloud
offerings. But what benefits does the cloud have to offer?.

First of all, we have to be aware that modern environments do not necessarily
have to run on top of a cloud platform. All the benefits of container
technology and container orchestration frameworks can equally be achieved
using company-internal infrastructure. On premise installations of platforms
such as Kubernetes or OpenShift at first provide the same advantages for
software teams. In fact, one of the biggest benefits of container runtimes is to
abstract the environment where the containers are running. Why are cloud
platforms interesting for companies then?

As mentioned in the beginning of this book, the software world is moving
faster than ever. The key for companies to keep pace with the trends in their
business is to embrace agility and velocity in terms of moving fast. The time
to market of new products and features thereof need to be as short as
possible. Moving in iterative steps, adapting to customers' needs and
continuously improving software meets this demand. In order to realize this
goal, IT infrastructure, as well as all other aspects of software engineering,
needs to be fast and flexible. New environments should be setup via
automated, reliable and reproducible processes. The same principles for
continuous software delivery apply to server environments. Cloud platforms
offer this possibility.

Companies that want to embrace agility and to adapt to their customers'
demands need to ask themselves the question: How long does it take to
provision new environments? This is the prerequisite of being able to adapt
quickly. Provisioning whole new environments should be a matter of
minutes, should not require overly complex processes and ideally no human

www.EBooksWorld.ir

intervention. As said before it is definitely possible to realize such
approaches on premises. Cloud offerings, however, offer these benefits out of
the box with sufficient, scalable resources. Infrastructure as a Service
(IaaS) or Platform as a Service (PaaS) offerings take a lot of work off the
hands of companies, enabling them to focus on building their products.

Still, big companies are often skeptical when it comes to cloud services,
especially in terms of data security. Interestingly, experience of projects
shows that when comparing infrastructure environments down to earth, cloud
platforms run by sophisticated enterprises offer more secure environments
than most on premises. Cloud platform providers put a lot of time and effort
into building proper solutions. Especially combining cloud platform offerings
with orchestration solutions, such as Docker Compose, Kubernetes, or
OpenShift hold a lot of potential.

Interestingly, one of the main arguments of companies to move their IT into
the cloud is because of economic reasons. From experience, a lot of
companies want to save costs by using cloud platforms. In fact, when taking
the whole process of migrating and transforming environments, teams,
technology, and most of all know-how, into account, on premises solutions
are usually still cheaper. However, the main advantage of cloud offerings is
flexibility and the ability to move fast. If an IT company maintains a well-
orchestrated landscape, including automation, reliable and reproducible
processes, it is advisable to keep, and continuously improve, this approach.
That said, the question about modern environments is less about whether to
use cloud platforms than about processes, team mindsets, and reasonable
technology.

www.EBooksWorld.ir

Cloud native
Besides the interest in cloud technology there is a lot of interest in the term
cloud native which describes applications that, besides following the 12-
factors, have a strong relationship to cloud platforms. Cloud native and 12-
factor applications are not synonymous; rather than cloud native includes the
12-factors, among other things.

Cloud native applications are designed to run on cloud PaaS offerings with
all their benefits and challenges, embrace container technology and elastic
scalability. They are built with the claim to provide modern, scalable,
stateless and resilient applications, manageable within modern orchestration
environments. Unlike the term native suggests, applications that follow this
approach do not necessarily have to be built as green-field projects that
support cloud technology from day one.

Important aspects for cloud native applications beyond the 12-factors are
monitoring and application health concerns, which can be summarized as
telemetry. Telemetry for enterprise applications include responsiveness,
monitoring, domain-specific insights, health checks, and debugging. As we
have seen previously, container orchestration supports us at least with the last
two concerns: health checks and debugging. Running applications are probed
whether they are still alive and healthy. Debugging and troubleshooting is
possible by evaluating the log event streams, connecting into the running
containers or executing processes.

Application monitoring need to be exposed by the running container. This
requires a bit more effort from software developers. Domain-specific metrics
need to be defined by the business experts first. It depends which metrics are
interesting to business departments and will be exposed by the application.
Technical metrics are gathered from the running application as well. Chapter 9,
Monitoring, Performance, and Logging covers the topic of monitoring in
regard to modern environments.

www.EBooksWorld.ir

Another aspect that the 12-factors don't include are APIs and security thereof.
SaaS applications communicate via exposed APIs that have to be made
known to other teams of developers. The nature and structure of web services
needs to be documented and agreed upon during development. This is
especially the case when HTTP APIs don't implement Hypermedia. The
applications need to know the nature and structure of exchanged
information - ideally as early as possible in the development process. This
also covers authentication and authorization. Application developers should
be aware of security mechanisms they need to address before communicating
to other services. In general it is not advisable to only think of security
aspects after development. Chapter 10, Security covers this topic concerning
cloud environments and integration into Java EE applications.

In order to build an umbrella for all technologies that embrace cloud
platforms, the Cloud Native Computing Foundation was formed by several
software vendors. It is part of the Linux Foundation, representing an
foundation for cloud native Open Source Software. It contains technology
that orchestrates, manages, monitors, traces or in some other way supports
containerized microservices running in modern environments. As of writing
this book, examples for technology projects being part of the Cloud Native
Computing Foundation are Kubernetes, Prometheus, OpenTracing, or
containerd.

www.EBooksWorld.ir

Summary
Operational tasks need to be automated. Setting up application environments
should always produce the same outcome, including installations, network,
and configuration. Container technologies as well as infrastructure as code
support this by defining, automating and distributing software installations
and configuration. They fulfill the necessity of rebuilding software and
systems in a fast and reproducible way.

Infrastructure as code definitions specify the required infrastructure together
with all dependencies as part of the application code, kept under version
control. This approach supports the ideas behind the DevOps movement. The
responsibilities of not only defining the application but also its runtime with
all requirements move different teams together. It should be a responsibility
of all engineers to deliver quality software that serves a business purpose.

Container technologies such as Docker provides functionality to build,
manage, and ship containers in a uniform way. Docker's copy-on-write
layered file system enables us to minimize build and publishing times by only
re-executing steps that have changed. Java EE zero-dependency applications
encourage the use of container technology by separating the application logic
from its implementation. The changing layer therefore only contains business
code.

Container orchestration frameworks such as Kubernetes manage containers in
their life cycle, network, and external configuration. They are responsible to
lookup services, provide production readiness such as zero-downtime
deployments and scale up and down application instances. Container
orchestration supports infrastructure as code definitions, that contain the
configuration of the whole runtime environment required by the application.

The 12-factor and cloud native approaches aim to develop modern enterprise
applications with minimal time and effort, avoiding software erosion, and
supporting Continuous Delivery and cloud platforms. The 12-factor

www.EBooksWorld.ir

principles target software dependencies, configuration, dependent services,
runtime environments, logging and administration processes. Similarly, cloud
native applications aim to build enterprise software that works well on cloud
platforms, supporting monitoring, resilience, application health, and security.
Since these approaches are not bound to a specific technology, they are
realizable using Java EE. We have seen the motivations why to follow these
principles.

The following chapter will show you how to build productive application
development workflows, that are based on container technologies.

www.EBooksWorld.ir

Application Development
Workflows
kIn the previous chapter, we saw the necessity for software companies to
move fast. This has an impact on the infrastructure and runtime environments
and on the way teams of engineers are working together. The motivations
behind modern environments are scalability, flexibility and minimizing time
and effort.

Development workflows are even more important than the infrastructure
alone. The whole process of writing source code until the running application
is in production should be specified in a reasonable and productive way.
Again, moving fast in a fast-moving world implies that these processes run
automated and reliably with as little human intervention as possible.

This chapter will cover the following topics:

The motivations and necessity of Continuous Delivery
The contents of a productive pipeline
How to automate all steps involved
How to sustainably ensure and improve software quality
The required team culture and habits

www.EBooksWorld.ir

Motivation and goals of productive
development workflows
Moving fast in terms of development workflows aims to enable fast feedback
by fast turnarounds. In order to increase productivity, developers who work
on the application's behavior need to verify the implemented features and bug
fixes in a timely manner. This includes the time spent on builds, software
tests, and deployments.

The key to productive workflows is automation. Software engineers should
spend as much time as possible on designing, implementing, and discussing
business logic and as little as possible on cross-cutting concerns and
repetitive tasks. Computers are designed for quickly and reliably performing
deterministic, straightforward tasks. Humans, however, are better at
designing, thinking, and brainstorming creative and complex tasks. Simple,
straightforward processes that don't require a lot of decision-making should
therefore be performed by software.

Build systems are a good start. They automate compiling, resolving
dependencies, and packaging of software projects. Continuous Integration
servers take this approach further. They orchestrate the whole development
workflow from building artifacts to automated testing and deployments.
Continuous Integration servers are the golden source of truth of software
delivery. They continuously integrate the work of all developers in a central
place, making sure the project is in a shippable state.

Continuous Delivery continues the approach of Continuous Integration by
automatically shipping the built software to certain environments on each
build. Since software changes have to be verified properly before they go to
production, applications are first deployed to test and staging environments.
All deployment actions have to make sure the environment is prepared and
configured and rolled out properly. Automated and manual end-to-end tests
make sure the software works as expected. Deployment to production is then

www.EBooksWorld.ir

done in a half-automated way by triggering the automated deployment
manually.

The difference between Continuous Delivery and Continuous Deployment is
that the latter automatically deploys each committed software version to
production, if the quality requirements are met, of course.

All these approaches minimize the developer intervention required, minimize
turnaround times, and improve productivity.

Ideally, the Continuous Delivery approach supports not only rollouts but also
reliable rollbacks. Software versions, although verified before, sometimes
need to be rolled back for some reason. In such a situation, there is either the
way of rolling forward, for example, by committing a new version that will
undo the recent changes, or by rolling back to the working state.

As mentioned earlier, software should be built in a reliable way. All versions
of used technology, such as build dependencies or application servers, are
specified explicitly. Rebuilt applications and containers produce the same
result. In the same way, pipeline steps of development workflows should
result in the same outcome. It is crucial that the same application artifact that
has been verified in test environments is deployed to production later on.
Later in this chapter, we cover how to achieve reproducible, repeatable, and
independent builds.

In terms of reliability, automated processes are an important aspect as well.
Especially, deployments that are executed by software rather than human
intervention are far less prone to error. All necessary pipeline steps are well
defined and implicitly verified each and every time they are executed. This
builds confidence into the automated processes, ultimately more than
executing processes manually.

Verification and testing are important prerequisites of Continuous Delivery.
Experience shows that the vast majority of software tests can be executed in
an automated way. The next chapter will cover this topic in depth. Besides
testing, quality assurance also covers the software quality of the project in
regard to architecture and code quality.

www.EBooksWorld.ir

Continuous Delivery workflows include all steps necessary in order to build,
test, ship, and deploy software in a productive and automated way. Let's see
how to build effective workflows.

www.EBooksWorld.ir

Realizing development workflows
Continuous Delivery pipelines consist of several pipeline build steps that are
executed in sequence or in parallel, respectively. All the steps are executed as
part of a single build. Builds are usually triggered by committing or rather
pushing code changes into version control.

The following examines the aspects of a Continuous Delivery pipeline. These
general steps are indifferent to the used technology.

The following diagram shows a high-level overview of a simplified
Continuous Delivery pipeline. The steps are executed in a Continuous
Integration server and use external repositories such as version control,
artifact, and container repositories:

www.EBooksWorld.ir

Version control everything
Developers agree that source code should be kept under version control.
Distributed version controls such as Git have been widely accepted as state-
of-the-art tools. However, as mentioned earlier, besides application source
code, there are more assets to track.

The motivation behind infrastructure as code is to keep all artifacts needed to
ship the application in one central place. All changes made to the application,
configuration, or environment are represented as code and checked in to the
repository. Infrastructure as code leverages reproduciblity and automation.
Taking this approach further also includes the definition of Continuous
Delivery pipelines as code. The Pipeline as code section will cover this
approach with the widely used Jenkins server as an example.

As we have seen in the previous chapter, the first principle of 12-factor
applications is in fact to keep all files and artifacts needed to build and run
the application in one repository.

The first step of the Continuous Delivery pipeline is to check out a specific
commit from the version control repository. Teams that use distributed
version control systems need to synchronize the desired state to a centralized
repository. The Continuous Integration server takes the state of a specific
commit in history to start the build process.

The reason behind taking a specific commit version rather than just the latest
state is to enable reproducibility. Rebuilding the same build version can only
reliably result in the same outcome if the build is based on a specific commit.
This is only possible if the build originated from checking-in to version
control with a particular commit. Check-in actions usually trigger builds from
the corresponding commit version.

Checking out the state of the repository provides all sources and files
necessary. The next step is to build the software artifacts.

www.EBooksWorld.ir

Building binaries
As we have seen in the first chapter, the term binaries includes all executable
artifacts that run the enterprise application. The project repository only
contains source code and files and artifacts required by the infrastructure. The
binaries are built by the Continuous Integration server.

A step in the pipeline is responsible for building these binaries and making
them accessible in a reliable way.

www.EBooksWorld.ir

Java artifacts
In Java EE, binaries first of all include the packaged enterprise application in
form of an archive. Following the approach of zero-dependency applications
results in building and packaging the project into a thin WAR file, containing
only the application's business logic. This build action includes to resolve
required dependencies, compile Java sources, and package the binary classes
and other files into the archive. The WAR files are the first produced artifact
within the build pipeline.

The application artifacts are built using build systems such as Maven or
Gradle, which are installed and executed on the CI server. Usually, the
project build already executes basic code level tests. Tests that are executed
on code level without requiring a container runtime can verify the behavior of
classes and components early in the pipeline. The Continuous Delivery
approach of failing fast and breaking the build as early as possible minimizes
turnaround times.

If required, build systems can publish the artifacts onto an artifact repository.
Artifact repositories, such as Sonatype Nexus or JFrog Artifactory, save
the built artifact versions for later retrieval. However, if the application is
shipped in Linux containers, the artifact doesn't necessarily have to be
deployed onto a repository.

As shown in Chapter 2, Designing and Structuring Java Enterprise
Applications, a Java project is built using Maven via the command mvn package.
The package phase compiles all Java production sources, compiles and
executes the test sources, and packages the application in our case, to a WAR
file. The CI server executes a build system command similar to this to build
the artifact in its local workspace directory. The artifact can be deployed to an
artifact repository, for example, using the mvn deploy command, to be used in
subsequent steps; or it will be taken directly from the workspace directory.

www.EBooksWorld.ir

Artifact versions
As mentioned earlier, the build systems need to produce artifacts in a reliable
way. This requires that Java artifacts are built and archived with a distinct
version, which is identifiable later on. Software tests verify specific versions
of enterprise applications. Later deployments need to refer the identical
versions in later build steps as well. Being able to identify and refer to
distinct artifact versions is necessary. This is true for all binaries.

One of the 12-factor principles is to explicitly declare dependencies, not only
for dependencies being used but also in regard to their versions. As
mentioned earlier, the same holds true for container builds. Specified Docker
base images as well as installed software should be explicitly, uniquely
identified by their versions.

It is quite common, however, to specify Java builds as snapshot versions, for
example, 0.1-SNAPSHOT. A snapshot, as opposed to a release version, represents
a software state which is currently being developed. Dependency resolution
always attempts to include the latest snapshot when several snapshot versions
are existent, comparable to the Docker latest tag. The workflow behind
snapshots is to release the snapshot version to a uniquely numbered version,
once the level of development is sufficient.

However, snapshot versioning contradicts the idea of Continuous Delivery. In
CD pipelines every commit is a potential candidate for production
deployment. Snapshot versions are naturally not meant to be deployed on
production. This implies that the workflow would need to change the
snapshot to a release version, once the software version has been sufficiently
verified. However, once built, Java artifacts are not meant to be changed. The
same artifact that has been verified should be used for deployment.
Therefore, snapshot versions do not fit Continuous Delivery pipelines.

Following the widely adopted approach of semantic versioning, application
developers need to take care of their versions in regard to backward-

www.EBooksWorld.ir

compatibility. A semantic versioning describes software versions such as
1.1.0, 1.0.0-beta, or 1.0.1+b102. In order to represent versions that are both
eligible for Continuous Delivery and provide semantic versioning metadata,
properly numbered versions with unique build metadata are a good solution.
An example is 1.0.1+b102, for major version 1, minor version 0, patch version 1,
and build number 102. The part after the plus sign represents the optional
build metadata. Even if the semantic version was not changed in between a
number of builds, the produced artifacts are still identifiable. The artifacts can
be published to an artifact repository and retrieved via these version numbers
later on.

This versioning approach targets enterprise application projects rather than
products. Products which have multiple shipped and supported versions at a
time, require to have more complex versioning workflows.

At the time of writing, there isn't a de facto standard for versioning containers
yet. Some companies follow a semantic versioning approach whereas others
exclusively use CI server build numbers or commit hashes. All of these
approaches are valid, as long as container images aren't rebuilt or distributed
using the same tag twice. A single build must result in a distinct container
image version.

www.EBooksWorld.ir

Building containers
Container images also represent binaries, since they contain the running
application, including runtime and operating system binaries. In order to
build container images, base images and all artifacts that are added at build
time need to be present. If they don't already exist on the build environment,
base images are retrieved implicitly.

For each build step defined in the Dockerfile, an image layer is added on top
of the previous layer. Last but not least, the application that was built just
before is added to the container image build. As shown previously, Java EE
application containers consist of an installed and configured application
server that auto-deploys the web archive at runtime.

This image build is orchestrated by the CI server as part of the pipeline. One
solution is to have the Docker runtime installed, in the same way as the
Maven build system. The pipeline step then simply invokes an image build
similar to docker build -t docker.example.com/hello-cloud:1 . in the job workspace
directory. The Docker image build, for example, takes the WAR file under
Maven's target directory and adds it into the container.

The built image is tagged with an image name and unique tag, depending on
the build number or some other unique information. Docker image names
imply the registry they will be pushed to. An image identifier such as
docker.example.com/hello-cloud:1 will implicitly be transmitted from and to the
host docker.example.com. The pipeline pushes the image to the Docker registry in
most cases, a company-specific registry.

Depending on the company's workflow, Docker images can be re-tagged as
part of the pipeline as well. For example, special tags such as the latest tag
can refer to the actual latest built versions and so on. This is accomplished by
explicitly re-tagging the image, so that two identifiers point to the same
image. Unlike Java archives, Docker images can be re-tagged without
changing their contents. The second tag needs to be pushed to the repository,

www.EBooksWorld.ir

as well. However, the rest of this chapter will show you that it's not required
to refer to images using latest versions, such as the Docker latest tag. In fact,
similar to snapshot versioning it's advisable to avoid latest versions. Being
explicit in all artifact versions is less prone to error.

Some engineers argue that running Docker builds inside the CI server may
not be the best idea if the CI server itself runs as a Docker container. Docker
image builds start temporarily running containers. It is certainly possible to
either run containers in a container or connect the runtime to another Docker
host, without opening the whole platform to potential security concerns.
However, some companies choose to build the images outside of the CI
server instead. For example, OpenShift, a PaaS built on top of Kubernetes,
provides build functionality that comprises a CI server as well as image
builds. It is therefore possible to orchestrate image builds from the CI server
which are then built in the OpenShift platform. This provides an alternative to
building container images directly on the CI server.

www.EBooksWorld.ir

Quality assurance
The Java artifact build already performs some basic quality assurance. It
executes included code level tests, such as unit tests. A reasonable pipeline
consists of several test scopes and scenarios, all with slightly different
strengths and weaknesses. The included unit tests operate at code level and
can be executed without any further running environment. They aim to verify
the behavior of the individual classes and components and provide fast
feedback in case of test failures. We will see in the next chapter that unit tests
need to run self-sufficiently and fast.

Test results are usually recorded from the CI server for visibility and
monitoring reasons. Making the outcome of the pipeline steps visible is an
important aspect of Continuous Delivery. The CI server can track the number
of passed unit tests and show trends over time.

There are build system plugins available that track the code coverage of the
executed tests. The coverage shows which parts of the code base have been
executed during the test runs. Generally speaking, a greater code coverage is
desirable. However, a high percentage of coverage alone tells nothing about
the quality of tests and coverage of test assertions. The test results, together
with their coverage, are just one of a few quality characteristics.

Source code can already provide a lot of information about the software's
quality. So-called static code analysis performs certain quality checks on the
static source code files of the project without executing them. This analysis
gathers information about code statements, class and method sizes,
dependencies between classes and packages, and complexity of methods.
Static code analysis can already find potential errors in the source code, such
as resources that are not properly closed.

SonarQube is one of the most well-known code quality tools. It provides
information about the quality of software projects by correlating the results of
different analysis methods, such as static code analysis or test coverage. The

www.EBooksWorld.ir

merged information is used to provide helpful quality metrics for software
engineers and architects. For example, which methods are complex but at the
same time sufficiently tested? Which components and classes are the biggest
in size and complexity and therefore candidates to be refactored? Which
packages have cyclic dependencies and likely contain components that
should be merged together? How does the test coverage evolve over time?
How many code analysis warnings and errors are there and how does this
number evolve over time?

It's advisable to follow some basic guidelines regarding static code analysis.
Some metrics just give insights in terms of rough ideas about the software
quality. Test coverage is such an example. A project with high coverage does
not necessarily imply well-tested software; the assertion statements could be
impractical or insufficient. However, the trend of test coverage does give an
idea about the quality, for example, whether software tests are added for new
and existing functionality and bug fixes.

There are also metrics that should be strictly followed. Code analysis
warnings and errors are one of these. Warnings and errors tell engineers
about code style and quality violations. They are indicators about issues that
need to be fixed.

First of all, there should be no such things as compilation or analysis
warnings. Either the build passes the quality checks sufficiently, a green
traffic light; or the quality is not sufficient for deployment, a red traffic light.
There is nothing reasonable in between. Software teams need to clarify which
issues are plausible and to be resolved and which aren't. Warnings that
indicate minor issues in the project therefore are treated as errors; if there is a
good reason to resolve them, then the engineers have to, otherwise the build
should fail. If the detected error or warning represents a false positive, it
won't be resolved; instead, it has to be ignored by the process. In that case,
the build is successful.

Following this approach enables a zero-warning policy. Project builds and
analyses that contain a lot of errors and warnings all the time, even if they are
not critical, introduce certain issues. The existing warnings and errors

www.EBooksWorld.ir

obfuscate the quality view of the project. Engineers won't be able to tell on
the first look whether the hundreds of issues are actually issues or not.
Besides that, having a lot of issues already demotivates engineers to fix
newly introduced warnings at all. For example, imagine a house that is in a
terrible condition, with damaged walls and broken windows. Nobody would
care if another window gets broken or not. But a recently broken window of
an otherwise pristine house that has been taken good care of urges the person
in charge to take action. The same is true for software quality checks. If there
are hundreds of warnings already, nobody cares about that last commit's
newly introduced violation. Therefore, the number of project quality violation
should be zero. Errors in builds or code analyses should break the pipeline
build. Either the project code needs to be fixed or the quality rules need to be
adjusted for the issue to be resolved.

Code quality tools such as SonarQube are integrated in a build pipeline step.
Since the quality analysis operates on static input only, the step can easily be
parallelized to the next pipeline steps. If the quality gate does not accept the
result, the build will fail and the engineers need resolve the issue before
continuing development. This is an important aspect to integrate quality into
the pipeline. The analysis should not only give insights but also actively
prevent the execution to force action.

www.EBooksWorld.ir

Deployment
After the binaries have been built and after, or during, the software quality is
being verified, the enterprise application will be deployed. There are usually
several environments for testing purposes, depending on the project
circumstances, such as test or staging and, of course, production. As
mentioned earlier, these environments should be as similar as possible. This
vastly simplifies the deployment process orchestrated by the CI server.

The process of deploying the application generally takes the binaries in the
version that has just been built and deploys them onto the environment.
Depending on what the infrastructure looks like, this can take place using
plain scripts or more sophisticated technology. The principle should be the
same, the binaries as well as the configuration are made available to the
environment in an automated and reliable way. Preparation steps that are
potentially required by the application or the environment will be executed in
this step as well.

Modern environments such as container orchestration frameworks support
infrastructure as code. Infrastructure configuration is captured in files in the
project's repository and applied to all environments at deployment time.
Potential differences, such as Kubernetes config maps contents, are
represented as different manifestations in the repository as well.

Using IaC as well as containers provides even more reliability than home-
grown shell scripts. The application should always be rolled out in an
idempotent way, independent of which state the environment was in. Since
container images contain the whole stack, the outcome is the same as if the
software was installed from scratch. Required environment configuration is
applied from IaC files as well.

New container image versions can be deployed by orchestration frameworks
in many ways. There are certain commands that explicitly set Docker images
used in Kubernetes deployments. However, in order to fulfill the requirement

www.EBooksWorld.ir

of reliability and reproducibility, it makes sense to only edit the infrastructure
as code files and apply them on the cluster. This ensures that the
configuration files stay the single source of truth. The CI server can edit the
image definitions in the IaC files and commit the changes to the VCS
repository.

As seen in the previous chapter, Docker images are specified in Kubernetes
deployment definitions:

deployment definition similar to previous chapter

...

 spec:

 containers:

 - name: hello-cloud

 image: docker.example.com/hello-cloud:1

 imagePullPolicy: IfNotPresent

 livenessProbe:

...

These image definitions are updated within the CI server process and applied
to the Kubernetes cluster. The CI server executes Kubernetes commands via
the kubectl CLI. This is the standard way to communicate with Kubernetes
clusters. kubectl apply -f <file> applies the infrastructure as code contents of a
file or directory containing YAML or JSON definitions. The pipeline step
executes a command similar to this, providing the updated Kubernetes files
which were updated in the project repository.

Following this approach enables that infrastructure as code files both contain
the current state of the environments as well as changes made by engineers.
All updates are rolled out by applying the Kubernetes files in the
corresponding version to the cluster. The cluster aims to satisfy the new
desired state, containing the new image version, and will therefore perform a
rolling update. After triggering this the update, the CI server validates
whether the deployment has been executed successfully. Kubernetes rollout
actions can be followed by commands similar to kubectl rollout status
<deployment>, which waits until the deployment is either rolled out successfully,
or failed.

This procedure is executed on all environments. If single deployment
definitions are used for several environments, the image tag definition only

www.EBooksWorld.ir

has to be updated once, of course.

To give a more concrete example, the following shows a potential
configuration file structure of a Maven project:

The hello-cloud.yaml file contains multiple Kubernetes resource definitions.
This is possible by separating each YAML object definitions with a three-
dashed line (---). It's equally doable to provide separate files for each
resource type, such as deployment.yaml, service.yaml, and so on. Kubernetes can
handle both approaches. The kind type definitions in the YAML objects
indicate the type of the resource.

The previous chapter showed how container orchestration frameworks enable
zero-downtime deployments out of the box. Applying new image versions to
the environments orchestrated by the CI server also accomplishes this goal.
The environments will therefore be able to serve traffic with at least one
active application at a time. This approach is especially important for
production environments.

www.EBooksWorld.ir

Configuration
Ideally, infrastructure as code covers all aspects required to define the whole
environment, including runtimes, networking, and configuration. Using
container technologies and container orchestration greatly supports and
simplifies this approach. As mentioned earlier, confidential content such as
credentials should not be put under version control. This should be
configured manually on the environment by an administrator.

Configuration that differs in several environments can be represented using
multiple files in the project repository. For example, it makes sense to include
subfolders for each environment. The following image shows an example:

The contents of the configmap.yaml file include the specific config map contents
as well as potentially different namespace definitions. As mentioned in the
previous chapter, Kubernetes namespaces are a way to differentiate
environments. The following code shows an example of a specific production
config map:

kind: ConfigMap

apiVersion: v1

metadata:

 name: hello-cloud-config

www.EBooksWorld.ir

 namespace: production

data:

 application.properties: |

 hello.greeting=Hello production

 hello.name=Java EE

www.EBooksWorld.ir

Credentials
Due to security reasons, secret content such as credentials is typically not
included in the project repository. An administrator usually configures them
manually on the specific environments. Similar to other Kubernetes
resources, secrets are bound to a specific namespace.

If a project requires multiple secrets, for example, specific credentials for
various external systems, manually configuring them can become
cumbersome and difficult to keep track of. Configured secrets have to be
documented and tracked in a secure form, external to the project repository.

Another approach is to store encrypted credentials that can be decrypted
using a single master key in the repository. The repository can therefore
safely contain the configured credentials, in encrypted form, and still be safe
from disclosing the secrets. The running application will use the dynamically
provided master key to decrypt the configured credentials. This approach
provides security as well as manageability.

Let's look at a potential solution. Encrypted configuration values can safely
be stored in Kubernetes config maps, since the decrypted values will only be
visible to the container process. The project can define the encrypted
credentials together with other configuration values in the config maps
definitions as code. An administrator adds a secret to each environment,
containing the master key which was used to symmetrically encrypt the
credentials. This master key is provided to the running container, for
example, using environment variables as seen earlier. The running
application uses this single environment variable to decrypt all encrypted
credential values.

Depending on the used technology and algorithm, one solution is to use the
Java EE application to decrypt the credentials directly when loading
properties files. To provide a secure solution using recent encryption
algorithms, the Java Cryptographic Extensions (JCE) should be installed

www.EBooksWorld.ir

in the runtime. Another approach is to decrypt the values before the
application is being deployed.

www.EBooksWorld.ir

Data migration
Applications that use a database to store their state are bound to a specific
database schema. Changes in the schema usually require the application
model to change and vice versa. With an application being actively
developed and a domain model being continuously refined and refactored, the
model will eventually require the database schema to change. New model
classes or properties thereof which are added need to be persisted in the
database as well. Classes and properties that are refactored or removed should
be migrated in the database also, so that the schema doesn't diverge.

However, data migrations are more difficult than code changes. Stateless
applications can simply be replaced by new versions thereof, containing the
new functionality. A database that contains the application's state, however,
needs to carefully migrate the state when the schema changes.

This happens in migration scripts. Relational databases support altering their
tables while keeping the data intact. These scripts are executed before the
new version of the software is deployed, making sure the database schema
matches the application.

There is an important aspect to keep in mind when deploying applications
using a zero-downtime approach. Rolling updates will leave at least one
active instance running in the environment at a time. This results in having
both the old and the new software version active for a short period of time.
The orchestration should take care that the applications are gracefully started
and shut down, respectively, letting in-flight requests finish their work.
Applications that connect to a central database instance will result in several
versions of the application simultaneously accessing the database. This
requires the application to support so-called N-1 compatibility. The current
application version needs to function with the same database schema version
plus and minus one version, respectively.

To support N-1 compatibility, the rolling update approach needs to both

www.EBooksWorld.ir

deploy a new application version and to updates the database schema, making
sure the versions do not differ more than one version. This implies that, the
corresponding database migrations are executed just before the application
deployment takes place. The database schema, as well as the application,
therefore evolves in small migration steps, not in jumps.

This approach, however, is not trivial and involves certain planning and
caution. Especially, application version rollbacks require particular attention.

www.EBooksWorld.ir

Adding database structures
Adding tables or table columns to a database schema is comparatively
straightforward. The new table or column does not collide with older
application versions, since they are unknown to them.

New tables that resulted from new domain entities can simply be added to the
schema, resulting in version N+1.

New table columns that define certain constraints, such as not null or unique,
need to take care of the current state of the table. The old application version
can still write to the table; it will ignore the new column. Therefore,
constraints can not necessarily be satisfied. New columns first need to be
nullable and without further constraints. The new application version has to
deal with empty values in that column, presumably null values, which
originate from the old application version.

Only the next version (N+2) will then, after the current deployment has been
completed, contain the correct constraints. This means that adding a column
that defines constraints needs at least two separate deployments. The first
deployment adds the column and enhances the application's model in a null-
safe way. The second deployment makes sure all contained values fulfill the
column constraints, adds the constraints, and removes the null-safe behavior.
These steps are, of course, only required, if the column target state defines
constraints.

Rollbacks to the old versions work in a similar way. Rolling back to the
intermediate deployment (N+2 to N+1) requires the constraints to be
removed again.

Rolling back to the original state (N+0) would remove the whole column.
However, data migrations should not remove data that is not transferred
somewhere else. Rolling back to the state without the column could also
simply leave the column untouched so as not to lose data. The question the

www.EBooksWorld.ir

business experts have to answer is: What happens with the data that was
added in the meantime? Intentionally not deleting this data could be a
reasonable approach. However, when the column is added again, the rollout
script needs to take already existing columns into consideration.

www.EBooksWorld.ir

Changing database structures
Changing existing database tables or columns is more complex. Whether
columns are renamed or changed in type or constraint, the transitions have to
be executed in several steps. Directly renaming or changing columns would
lead to incompatibilities with the deployed application instances; changes
require intermediate columns.

Let's examine this approach using an example. Assume the car entity has a
property color, which must be set, represented in the database column color.
Assuming it will be refactored to the name chassis color or chassis_color in the
database column.

Similar to the previous approach, the change is executed in several
deployments. The first deployment adds a nullable column chassis_color. The
application code is enhanced to use the new model property. Since the older
application version doesn't know about the property yet, it is not reliably
written from all places during the first deployment. Therefore, the first code
version still reads the color from the old, color column, but writes values to
both the old and new column.

The migration script on the next deployment updates the missing column
values by overwriting the chassis_color column with the color column contents.
By doing this, it is ensured that the new column is populated consistently.
The not null constraint is added to the new column as well. The application
code version will then only read from the new, but still write to both, because
of the short period when the older version is still active.

The next deployment step removes the not null constraint from the color
column. The application code of this version doesn't use the old column
anymore, and both reads and writes to chassis_color.

The next and final deployment then drops the color column. Now all data has
been gradually transferred to the new chassis_color column. The application

www.EBooksWorld.ir

code doesn't include the old model property anymore.

Changing column types or foreign key constraints require similar steps. The
only way to gradually migrate databases with zero-downtime is to migrate in
small steps, using intermediate columns and properties. It is advisable to
perform several commits that only contain these changes to both the
migration scripts and application code.

Similar to the previous approach, rollback migrations have to be executed in
reverse, for both the database scripts and code changes.

www.EBooksWorld.ir

Removing database structures
Removing tables or columns is more straightforward than changing them.
Once certain properties of the domain model are not required anymore, their
usages can be removed from the application.

The first deployment changes the application code to stop reading from the
database column but still to write to it. This is required to ensure that the old
version can still read values other than null.

The next deployment will remove a potential not null constraint from the
database column. The application code stops writing to column. In this step,
occurrences of the model property can already be removed from the code
base.

The final deployment step will drop the column. As mentioned before, it
highly depends on the business use case whether column data should actually
be dropped. Rollback scripts would need to recreate removed columns, which
implies that the previous data is gone.

www.EBooksWorld.ir

Implementing migration
As we have seen, data migrations have to be executed in several steps.
Rollout as well as rollback scripts are executed right before the deployment.
This implies that the application supports N-1 compatibility as well as that
only one deployment is being executed at a time.

The migration process requires to perform several software releases, each of
them consistent in application code and schema migration scripts. Engineers
need to plan their commits accordingly. It's advisable to perform the full
schema migration in a timely manner, to keep the database schema clean and
to ensure that ongoing migrations aren't simply forgotten about.

It's in the nature of the corresponding model refactoring, whether existing
data needs to be kept or can be discarded. Generally speaking, it is advisable
to not throw away data. This means not to drop structures containing data that
doesn't exist somewhere else.

As we have seen in the examples, the migrations will be applied in graceful
steps; especially in regard to database constraints, such as not null or
referential integrity constraints. Migration scripts should be resilient. For
example, the migration should not fail when trying to create already existing
columns. They could already exist from previous rollbacks. In general, it
makes sense to think through and test different rollout and rollback scenarios
upfront.

Engineers need to keep the update time in mind when updating table
contents. Updating huge tables at once will take a non-negligible amount of
time in which the data is potentially locked. This needs to be considered
upfront; ideally, by testing the scripts in a separate database. For huge
amount of data involved, the update steps can be executed in shards, for
example, by partitioning the data by their IDs.

All rollout and rollback migration scripts should reside in the project

www.EBooksWorld.ir

repository. The database schema comprises a schema version that
corresponds to the numbered migration scripts. This version is stored in the
database as metadata together with the current schema state. Before every
deployment, the database schema is migrated to its desired version. Right
after that, the application with a corresponding version is deployed, making
sure that the versions don't differ by more than one.

In a container orchestration framework this means that the database migration
needs to be performed right before the new application version is deployed
via rolling updates. Since there can be many replicas of pods, this process has
to be idempotent. Executing the migration of a database schema to the same
version twice, has to result in the same outcome. Kubernetes pods can define
so-called init containers which execute one-shot processes before the actual
containers start. Init containers run mutually exclusive. They have to exit
successfully before the actual pod container process can be started.

The following code snippet shows an example of initContainer:

...

 spec:

 containers:

 - name: hello-cloud

 image: .../hello-cloud:1

 initContainers:

 - name: migrate-vehicle-db

 image: postgres

 command: ['/migrate.sh', '$VERSION']

...

The preceding example implies that the init container image contains the
correct tooling to connect to the database instance as well as all recent
migration scripts. In order to make this possible, this image is built as part of
the pipeline, as well, including all migration scripts from the repository.

There are, however, many solutions to migrate database schemas. The
important aspect here is that the idempotent migration needs to be executed
upfront, while no second deployment action is being rolled out. The
migration scripts of the corresponding versions would be executed in
ascending or descending order, depending on whether the database schema
version is upgraded or rolled back, until the version matches. After the scripts
have been executed, the metadata version is updated in the database, as well.

www.EBooksWorld.ir

The correlation between code and database versions can be tracked in the
project repository. For example, the most recent rollout script contained in a
commit version corresponds to the required database schema. The Build
metadata section covers the topic of required metadata and where to store it
in more depth.

Since the chosen migration solution highly depends on the project's
technology, there is no silver bullet approach that can be shown here. The
following example gives one possible solution on migration file structure and
execution in pseudo code. It shows migration files for the example of
changing the color column to chassis_color discussed earlier:

The preceding example shows the rollout and rollback scripts that migrate the
database schema version to the desired state. Rollout script 004_remove_color.sql
transposes the schema version to version 4 by removing the color column of
the example shown earlier. The corresponding rollback script 003_add_color.sql
rolls back the schema to version 3, where the color column still existed; in
other words, version 3 contains the color column whereas version 4 doesn't,
with these two migration files being able to roll back and forth.

www.EBooksWorld.ir

The following shows the pseudo code of the script that performs the
migrations. The desired version to migrate to is provided as an argument
when invoking the script:

current_version = select the current schema version stored in the database

if current_version == desired_version

 exit, nothing to do

if current_version < desired_version

 folder = /rollouts/

 script_sequence = range from current_version + 1 to desired_version

if current_version > desired_version

 folder = /rollbacks/

 script_sequence = range from current_version - 1 to desired_version

for i in script_sequence

 execute script in folder/i_*.sql

 update schema version to i

This migration script is executed in the init container before the actual
deployment.

www.EBooksWorld.ir

Testing
Verifying the output of the pipeline steps is one of the most important aspects
in Continuous Delivery. It increases the software quality by detecting
potential errors before going live. Proper verification creates reliability in the
processes. By writing software tests in general and regression tests in
particular, developers become confident in changing and refactoring
functionality. Ultimately, software tests enable us to automate development
processes.

Building binaries already executes code level tests. Other tests contained in
the project may be executed in separate pipeline steps, depending whether
they operate at code level or a running container. End-to-end tests, especially,
require a running environment.

After the application has been deployed on test environments, end-to-end
tests can be executed there. Usually, a project contains several layers of tests,
with separate responsibilities, running in separate steps. There can be a great
variety of tests, depending on the project and used technology. The approach
is always to execute pipeline steps and sufficiently verify the outcome. By
doing so, the risk of breaking new or existing functionality and introducing
potential errors is minimized. Especially, container orchestration frameworks
with their production-ready nature support companies in the goal to ship
scalable, highly available enterprise applications with high quality. Chapter 7,
Testing, covers all different manifestations of testing, including its execution
in Continuous Delivery pipelines.

Failing tests will immediately cause the pipeline to stop and will prevent the
corresponding binary from being used further. This is an important aspect to
enable fast feedback and also to enforce software quality in the process.
Engineers should absolutely avoid to bypass steps of the normal process and
other quick fixes. They contradict the idea of continuous improvement and
building quality into the Continuous Delivery process and ultimately lead to
errors. If a test or quality gate fails, the build has to break and either the

www.EBooksWorld.ir

application's code or the verification has to change.

Failing tests should not only break the build but also provide insights into
why the step failed and record the result. This is part of the build's metadata.

www.EBooksWorld.ir

Build metadata
Build metadata records all information that is gathered during the execution
of the build. Especially, the specific versions of all assets should be tracked
for further reference.

Builds that run from the beginning to the end don't necessarily need further
information. The steps are executed in one run until either the build breaks or
finishes successfully. If, however, specific steps or artifacts are required to be
referenced or re-executed, further information is required.

Artifact versions are the prime example for this necessity. A WAR file and its
contents corresponds to a specific version in the VCS commit history. In
order to track the originating commit from a deployed application, this
information needs to be tracked somewhere. The same is true for container
image versions. In order to identify the origin and contents of a container, the
versions need to be traceable. Database schema versions are another example.
A database schema version matches a specific application version, including
the previous and the next version, by following N-1 compatibility. A
deployment that migrates the database schema needs to know the schema
version to migrate to for the desired application version.

Build metadata is especially required when the process enables rolling out
specific application versions. In general, Continuous Delivery deployments
roll forward to the current repository version. However, especially with
database schemas and migrations involved, the possibility of rolling the
environments to an arbitrary state is a huge benefit. The process in theory
works like this: take this specific application version and perform everything
required in order to run it on this specific environment, no matter whether the
rollout is moving forward or backward.

In order to improve traceability and reproducibility, it is advisable to track
quality information about the build as well. This includes, for example,
results of automated tests, manual tests, or code quality analyses. The

www.EBooksWorld.ir

deployment steps then are able to verify the existence of specific metadata
before deploying.

There are many solutions possible for representing metadata. Some artifact
repositories such as JFrog Artifactory provide the possibility of linking built
artifacts with custom metadata.

Another approach is to use the CI server to track this information. This
sounds like a good fit to store metadata for a build; however, depending on
how the CI server is operated and set up, it is not necessarily advisable to use
it to store persistent data. Old builds can be discarded and lose information.

In general, the number of points of truth, for example, to store artifacts and
information, should be kept low and explicitly defined. Using artifact
repositories for metadata therefore certainly makes sense.

Another, more custom solution, is to use company VCS repositories to track
certain information. The big benefit of using, for example, Git to store
metadata is that it provides full flexibility of the data and structure being
persisted. CI servers already contain functionality to access VCS repositories,
therefore no vendor-specific tooling is required. Repositories can store all
kind of information that are persisted as files, such as recorded test result.

The metadata repository, however implemented, is accessed at various points
in the pipeline, for example, when performing deployments.

www.EBooksWorld.ir

Going to production
The last step in the Continuous Delivery pipeline is deploying to production.
This deployment is either triggered manually or, when sufficient verification
and automated tests are implemented, automatically. The vast majority of
companies use a manually triggered deployment. But even if the pipeline
does not go all the way from the beginning, Continuous Delivery provides
great benefits by automating all steps necessary.

The pipeline then only has two kick-off spots: the initial commit to the
repository that triggers the execution, and the final deployment to production
after all steps have been verified, manually and automatically.

In a container orchestration environment, deploying to production, that is,
either deploying to a separate namespace or a separate cluster, happens in the
same way as deploying to test environments. Since the infrastructure as code
definitions are similar or ideally identical to the ones executed before, this
technology lowers the risk of environment mismatches to production.

www.EBooksWorld.ir

Branching models
Software development processes can make use of different branching models.
Software branches emerge from the same origin and differ in the state of
development to make it possible to develop on multiple development stages
in parallel.

Especially feature branches are a popular approach. Feature branching creates
a separate branch which is used to develop a certain software feature. The
branch is merged into the master branch or trunk after the feature is finished.
The master branch and other branches remain untouched while the feature is
being developed.

Another branching model is to use release branches. Release branches
contain single software releases of a specific version. The idea is to have a
dedicated point for a released version where bug fixes and features can be
added. All changes made to the master branch that apply for the specific
release as well are also made in the release branch.

However, branching models like these contradict the idea of Continuous
Delivery. Feature branches, for example, postpone the integration of features
into the master branch. The longer the integration of new functionality is
delayed, the bigger the possibility for potential merge conflicts. Feature
branches are therefore only advisable in Continuous Delivery pipelines if
they are short-lived and integrated into master in a timely manner.

Release versions and working upon these releases in parallel contradicts the
idea of continuously shipping versions as well. Features that are implemented
are ideally shipped to production as soon as possible.

This is at least the case for enterprise projects. The continuous life cycle
implies that every commit is a potential candidate for production deployment.
It makes sense to integrate and apply the work on the master branch, making
it possible to integrate and deploy features as early as possible, verified by

www.EBooksWorld.ir

automated tests. The branching model of Continuous Delivery and
Continuous Deployment, respectively, therefore is quite straightforward.
Changes are directly applied to the master branch, built, verified, and
deployed by the build pipeline.

It's usually not required to manually tag releases. Every commit in the
Continuous Delivery pipeline implicitly qualifies for being released and
deployed to production, unless the automated verification identifies errors.

The following figure shows the concept of a Continuous Deployment
branching model:

Individual features branches are kept short-lived and are merged back to
master in a timely manner. The releases are implicitly created on successful
builds. Broken builds won't result in a deployment to production.

Products, as well as libraries, however, may advisably have different
branching models. With multiple supported major and minor versions, and
their potential bug fixes, it makes sense to implement branches for separate
release versions. The release version branches, such as v1.0.2 can then be used
to continue support for bug fixes, for example, into v1.0.3, while the major
development continues on a newer version, such as v2.2.0.

www.EBooksWorld.ir

Technology
When designing Continuous Delivery pipelines, the question remains, which
technology to use. This includes not only the CI server itself, but all the tools
used within the development workflow such as version control, artifact
repositories, build systems, and runtime technologies.

What technology is being used depends on the actual requirements and not
least of what the team is familiar with. The following examples will make use
of Jenkins, Git, Maven, Docker, and Kubernetes. As of writing this book
these are widely-used technologies. However, for engineers it's more
important to comprehend the underlying principles and motivations. The
technology is quite interchangeable.

No matter what tools are selected, it's advisable to use the tools for what they
are meant for. Experience shows that tools are quite often being misused for
tasks that would better be executed using different technology. A prime
example for this is the build system, for example Maven. Projects often
define build processes that have more responsibilities than just building the
artifacts.

It makes sense not to mix responsibilities of building containers or deploying
software into the artifact build. These concerns are preferably realized
directly by the Continuous Integration server. Bringing these steps into the
build process unnecessarily couples the build technology to the environment.

It's therefore advisable to use the tools for what they were intended to do, in a
straightforward way. For example, Docker containers are advisably built via
the corresponding Docker binaries rather than build system plugins. Required
abstraction layers are rather added in pipeline as code definitions, as
demonstrated in the following examples.

www.EBooksWorld.ir

Pipeline-as-code
We previously saw the benefits of representing configuration as code,
primarily infrastructure as code files. The same motivations led to pipeline as
code definitions, configuration that specifies the CI server pipeline steps.

In the past, many CI servers such as Jenkins required to be configured
manually. CI server jobs had to be laboriously clicked together to build up
pipelines. Especially, rebuilding pipelines for new applications or feature
branches thereof required cumbersome manual work.

Pipeline as code definitions specify the Continuous Delivery pipeline as part
of the software project. The CI server builds up and executes the pipeline
appropriately, following the script. This vastly simplifies defining and
reusing project build pipelines.

There are a lot of CI servers that support pipeline definitions as code. The
most important aspect is that engineers understand the motivations and
benefits behind this technology. The following shows examples for Jenkins, a
widely used CI server in the Java ecosystem.

Users of Jenkins can craft pipelines in a Jenkinsfile, which is defined using a
Groovy DSL. Groovy is an optionally typed, dynamic JVM language, that
suits well for DSL and scripts. Gradle build scripts use a Groovy DSL, as
well.

The following examples show the steps of a very simple pipeline of a Java
enterprise project. The examples are meant to give a rough understanding of
the executed process. For full information on Jenkinsfiles, their syntax and
semantics, refer to the documentation.

The following shows an example Jenkinsfile, containing a basic pipeline
definition.

node {

www.EBooksWorld.ir

 prepare()

 stage('build') {

 build()

 }

 parallel failFast: false,

 'integration-test': {

 stage('integration-test') {

 integrationTest()

 }

 },

 'analysis': {

 stage('analysis') {

 analysis()

 }

 }

 stage('system-test') {

 systemTest()

 }

 stage('performance-test') {

 performanceTest()

 }

 stage('deploy') {

 deployProduction()

 }

}

// method definitions

The stage definitions refer to steps in the Jenkins pipeline. Since the Groovy
script offers a full-fledged programming language, it is possible and
advisable to apply clean code practices that produce readable code.
Therefore, the contents of the specific steps are refactored to separate
methods, all in the same layer of abstraction.

The prepare() step, for example, encapsulates several executions to fulfill
build prerequisites, such as checking out the build repository. The following
code shows its method definition:

def prepare() {

 deleteCachedDirs()

 checkoutGitRepos()

 prepareMetaInfo()

}

The build stage also encapsulates several sub-steps, from executing the
Maven build, recording metadata and test results, to building the Docker
images. The following code shows its method definition:

www.EBooksWorld.ir

def build() {

 buildMaven()

 testReports()

 publishArtifact()

 addBuildMetaInfo()

 buildPushDocker(dockerImage, 'cars')

 buildPushDocker(databaseMigrationDockerImage, 'cars/deployment/database-migration')

 addDockerMetaInfo()

}

These examples provide insight into how to define and encapsulate specific
behavior into steps. Providing detailed Jenkinsfile examples is beyond the
scope of this book. I will show you the rough steps necessary to give an idea
of what logical executions are required, and how to define them in these
pipeline scripts in a readable, productive way. The actual implementations,
however, heavily depend on the project.

Jenkins pipeline definitions provide the possibility to include so-called
pipeline libraries. These are predefined libraries that contain often-used
functionality to simplify usage and reduce duplication beyond several
projects. It is advisable to outsource certain functionality, especially in regard
to environment specifics, into company-specific library definitions.

The following example shows the deployment of the car manufacture
application to a Kubernetes environment. The deploy() method would be
called from within the build pipeline when deploying a specific image and
database schema version to a Kubernetes namespace:

def deploy(String namespace, String dockerImage, String databaseVersion) {

 echo "deploying $dockerImage to Kubernetes $namespace"

 updateDeploymentImages(dockerImage, namespace, databaseVersion)

 applyDeployment(namespace)

 watchRollout(namespace)

}

def updateDeploymentImages(String dockerImage, String namespace, String databaseVersion) {

 updateImage(dockerImage, 'cars/deployment/$namespace/*.yaml')

 updateDatabaseVersion(databaseVersion 'cars/deployment/$namespace/*.yaml')

 dir('cars') {

 commitPush("[jenkins] updated $namespace image to $dockerImage" +

 " and database version $databaseVersion")

 }

}

def applyDeployment(namespace) {

 sh "kubectl apply --namespace=$namespace -f car-manufacture/deployment/$namespace/"

www.EBooksWorld.ir

}

def watchRollout(namespace) {

 sh "kubectl rollout status --namespace=$namespace deployments car-manufacture"

}

This example updates and commits the Kubernetes YAML definitions in the
VCS repository. The execution applies the infrastructure as code to the
Kubernetes namespace and waits for the deployment to finish.

These examples aim to give the reader an idea of how to integrate Continuous
Delivery pipelines as pipeline as code definitions with a container
orchestration framework such as Kubernetes. As mentioned earlier, it is also
possible to make use of pipeline libraries to encapsulate often-used kubectl
shell commands. Dynamic languages such as Groovy allow engineers to
develop pipeline scripts in a readable way, treating them with the same effort
as other code.

www.EBooksWorld.ir

Workflows with Java EE
The demonstrated examples cover general Java build piplines which are, of
course, applicable to Java EE as well. In fact, using Java Enterprise highly
supports productive development pipelines. Fast builds and therefore fast
developer feedback is crucial to effective Continuous Delivery workflows.

Zero-dependency applications, especially when packaged in containers,
leverage these principles as we have seen in Chapter 4, Lightweight Java EE.
The enterprise application in the packaged artifact or the container layer,
respectively, only contains the business logic that was developed against the
API. The application container provides the implementation.

The Continuous Delivery pipeline benefits from zero-dependency
applications, since the involved build and distribution steps only require short
execution and transmission times, respectively. Artifact builds as well as
container builds run as fast as they can get, with only copying what's
absolutely necessary. In the same way, publishing and deploying artifacts, as
well as container layers, only contain the required business concerns, to
minimize transmission time. This leads to fast turnaround and fast feedback.

Having effective pipelines is crucial to implementing a Continuous Delivery
culture in the development team. Engineers are motivated to check in early
and often, since the pipeline runs fast, provides fast feedback, and increases
the confidence that the software quality is met.

As mentioned earlier, build times should not take more than a few seconds.
Build pipeline executions, including end-to-end tests, should not take more
than a few minutes, ideally even faster.

Putting effort into making builds and pipelines run faster should be a goal of
the engineering team. During a workday, developers often build and check in
the project. Every check-in results in a Continuous Delivery build that is a
potential candidate for production deployment. If this overall process takes

www.EBooksWorld.ir

just, for example, 1 minute longer, all developers in the team wait 1 minute
longer, every time they build the software. One can imagine that this delay
adds up to a big number over time. Developers are tempted to check in less
often if they have to wait for their result.

Improving the stability and performance of the pipeline, therefore, is a long-
term investment in the team's productivity. Tests and steps that provide quick,
helpful feedback by breaking the build faster in case of errors should run as
early as possible. If some end-to-end tests run inevitably longer in time, due
to the nature of the project and the tests, they can be defined in separate
downstream pipelines steps, to not delay feedback of earlier verification.
Steps that can run in parallel, such as static code analyses, should do so, to
speed up the overall execution. Using the modern approaches of Java EE
development greatly supports crafting productive build pipelines.

Still, technology is only one aspect of effective Continuous Delivery.
Introducing Continuous Delivery has an even bigger impact on the
development team's culture. Let's have a closer look into this.

www.EBooksWorld.ir

Continuous Delivery culture and
team habits
Effective Continuous Delivery depends on a healthy team culture. If the team
does not live by the principles and recommendations Continuous Delivery
makes, the best technology doesn't help much. Pipelines that implement
automated deployments have little value if there aren't sufficient software
tests verifying the deployed software. The most eager CI server can't help
much if developers seldom check in their changes, making integration hard
and cumbersome. Full test coverage and code quality checks have no value if
the team doesn't react to failing tests or, in the worst case, set the test
execution to ignore.

www.EBooksWorld.ir

Responsibility
Continuous Delivery starts with being responsible for the software. As
mentioned earlier, for the DevOps movement, it is not sufficient for
developers to just build their software and let other teams deal with potential
errors. The development team that creates and owns the application knows
about its responsibilities, used technologies, and troubleshooting in case of
potential errors.

Imagine a small startup that has only a single developer who responsible for
the application. This person obviously has to deal with all technical issues,
such as development, builds, deployment, and troubleshooting the
application. He or she will have the best knowledge about the application's
internals and will be able to fix potential issues effectively. Obviously, this
single point of responsibility approach is the opposite of scalability and only
works for tiny teams.

In bigger companies, there are more applications, more developers, and more
teams with different responsibilities. The challenge with splitting and shifting
responsibilities is to transfer knowledge. The knowledge is ideally spread
within a team of engineers who closely work on the same software. Like in
small startups, the mantra for developing applications should be: you build it,
you run it. For a single team, this is only possible with the support of central,
well-defined and automated processes. Implementing Continuous Delivery
pipelines implement these processes to reliably ship software.

Managing and refining these processes becomes the responsibility of the
whole team of engineers and is no longer an ops problem. All developers are
equally responsible for building and shipping working software that provides
value to the business. This certainly involves some duties, or team habits.

www.EBooksWorld.ir

Check in early and often
Continuous Delivery has to be lived by the whole team. Developers who
work on features or bug fixes should check in into the master branch early
and often. This is crucial to enable Continuous Integration. The more time
passes before changes are merged into the master branch, the harder the
merging and integration of features becomes. Adding complex functionality
in a big bang contradicts the idea of continuous evolution of software.
Functionality that should not be visible to users yet can be excluded by
feature toggles.

Checking in often encourages developers to write sufficient, automated
software tests from the beginning. This is certainly an effort to make during
development but will always pay off in the long run. While developing a
feature, engineers are aware of its functionality and boundaries. It's far less
effort to include not only unit tests but sophisticated end-to-end tests from the
beginning then it is after the feature has been written.

Especially for less-experienced developers it's important to mention that
committing early, premature versions of features is nothing to be embarrassed
about, but part of the development process. Code which hasn't been
refactored yet and doesn't look perfect, but fulfills the requirements and
provides business value, can be cleaned up in a second run. It's far more
helpful to commit code early in the process than refraining from committing
until the very last minute.

www.EBooksWorld.ir

Immediately fixing issues
Immediately solving build errors is another important team habit to develop.
Tests that fail should not be ignored or postponed but fixed as soon as
possible. Builds that fail often and are not taken good care of decrease the
productivity of all team members. A failing test that makes the project unable
to be built, for example, prevents other developers from integrating and
verifying their features. Still, failing builds due to test failures or quality
violations is a sign that the validation works and is, obviously, much better
than false negatives, that is, mistakenly green builds. It is, however,
important to fix project builds as soon as they fail. Developers should execute
basic and fast verifications, such as building the Java project and executing
code level tests, on their local machines before pushing to the central
repository. They should take care not to misuse the pipeline to find careless
mistakes which unnecessarily disturb other team members.

As mentioned earlier, compiler or code analysis warnings should be treated
as errors that break the build. This introduces a zero-warning policy that
urges engineers to either fix the issue or adjust the validation. Build,
compilation, or code style warnings are therefore also errors that break the
build and need to be fixed as soon as possible.

The team member whose commit caused the build to break should ideally be
the first to look into the root cause. It is, however, a responsibility of the
whole team to keep the pipeline in a healthy state. This goes back to the
whole team being responsible for the whole project. There should not be
exclusive code ownership, that is, parts of the projects which are exclusively
known to a single team member. It will always be the case that developers
who wrote specific functionality have better knowledge about it. Still, in all
cases, the team should be able to work on all areas of the project and fix
potential issues.

www.EBooksWorld.ir

Visibility
The visibility that Continuous Delivery enables is another important aspect.
The whole development process, including commits, builds, verifications,
and deployments, can be tracked and comprehended in a single place. What
visibility aspects are important in a Continuous Delivery pipeline?

First of all, it needs to be represented whether the software is in a shippable
state. This includes the build's health in terms of compilation, tests, and code
analyses. A dashboard or so-called extreme feedback device, such as
physical green and red LEDs, provide a quick overview about it.

A reasonable build visibility ideally does not overload with information if the
build is green but provides clear and direct insight in case of failing builds.
This again follows the principle that there are no such things as warnings in
the build; it either passes successfully and there is nothing else to do or it
breaks and requires action. Dashboards or other devices that provide this
green or red information already provide helpful insights. These visibility
instruments should be accessible to all team members to embrace
collaboration.

However, in order not to disrupt the day-to-day development too much, it
makes sense to notify persons in charge, whose commits caused the build to
break, first. They likely have further knowledge how to fix the build again
without disturbing the work of their teammates if not necessary. CI servers
provide functionality to send emails, use chat communication, or other forms
of notification. This both increases the quality of the software as well as the
developer's productivity.

The information that is gathered during builds can be used to measure the
quality of the software project. This first of all includes build and test results
and code quality metrics, such as test coverage. This information can be
displayed over time to provide insights and trends about the software quality.

www.EBooksWorld.ir

Other very interesting metadata concerns the build pipeline itself. How long
does a build usually take? How many builds are there in a day? How often
does the build fail? What is the most common failure cause? How long does
it take a failing build to be fixed again (time to recover)? The answers to
these questions provide helpful insights about the quality of the Continuous
Delivery process.

The gathered information serves as good starting points to improve the
process further. Visibility of Continuous Delivery not only illuminates the
current project status but can also draw the engineers' attention to certain
hotspots. The overall goal is to continuously improve the software.

www.EBooksWorld.ir

Improve continuously
The whole mindset of Continuous Delivery aims to delivery software with
consistent quality. Automated processes encourage the usage of quality
verifications.

Good software quality, of course, does not come for free. Sufficient test cases
as well as code quality analyses require a certain time and effort. Automation
and continuously improving the quality, however, will, after an initial
threshold, pay off in the long run, and eventually lead to better software.

New features as well as found bugs need to be verified sufficiently during
development in order to ensure that functionality works as expected. By
automating the tests and keeping them as regression, developers can be sure
that no new bugs can disrupt the functionality in the future. The same is true
for code quality analyses. Once the analysis is set up with appropriate rules
and the found errors are eradicated, it ensures that no new violations can find
their way into the software. If new false positive violations emerge, the rules
are adjusted and will prevent new false positives in the future.

Introducing new test scenarios, such as end-to-end tests, also highly supports
this approach. Regression tests decrease the risk of newly introduced bugs
more and more. Again, automation is the key. As we will see in Chapter 7,
Testing, human intervention is helpful for defining reasonable test scenarios.
However, it is crucial to the software quality that these test are then
automated made part of the pipeline. By doing so, the quality is improved
more and more over time.

This, of course, requires the engineers to put a certain priority into quality
improvements. Improving software quality, as well as refactoring, doesn't
provide any immediate benefits for the business. These efforts will, instead,
pay off in the long run - by still being able to produce new features with a
constant velocity or changing existing behavior with certainty that nothing
else breaks.

www.EBooksWorld.ir

Summary
Productive development workflows require fast turnaround times as well as
fast feedback. Automating repetitive tasks minimizes the times spent on
build, tests and deployments. Zero-dependency Java EE applications supports
fast feedback by minimizing build, publish, and deployment times.

It's important to define which category of errors will break the build.
Developers should be aware that a build is either broken, due to legitimate
errors, or passed, without anything to complain about. Warnings that have no
effect on the build outcome have little value.

Data migration is another important topic to consider. Deploying stateless
applications is comparably easy; what needs to be taken into account are the
database schemas that need to match the application code. Rolling updates
together with migration scripts, that rollout modifications in small changes,
enable applications to be deployed with zero-downtime. Applications
therefore need to support N-1 compatibility.

Continuous Delivery depends on a healthy team culture. It's not sufficient to
implement just the technical necessities; all software engineers need to
embrace the principles. Potential build issues, test results, software quality,
and deployment statuses should be visible to the whole software team.

Continuous Delivery processes support to continuously improve the software.
Verification steps that are added, such as automated software tests, run every
time the application is built, enabling regression tests and avoiding specific
bugs to happen twice. This of course requires developers to put effort into the
quality improvement. The effort put into Continuous Delivery will pay off in
the long run.

The following chapter stays in the field of software quality and will cover
testing enterprise applications.

www.EBooksWorld.ir

Testing
As we have seen in the previous chapter, Continuous Delivery pipelines
allow developers to ship software with constant velocity and quality. In order
to meet this quality, automated software tests are required. Engineers that
work on features want to be sure that everything works as expected. This is
even more the case when the software project advances, changes, and
potentially breaks existing behavior. Developers need to be sure that no
unwanted side-effects are introduced.

Ideally, the software tests contained in a build pipeline are sufficient, without
further manual verification, to deploy to production.

This chapter will cover the following topics:

The requirements of software tests
Different test levels and scopes
Unit, component, integration, system, and performance tests
How to run test scenarios locally
How to craft maintainable tests
Required test technology

www.EBooksWorld.ir

The necessity of tests
Tests are necessary to be able to rely on that a certain functionality behaves in
a certain way later in production. In all kinds of manufacturing businesses,
tests are a natural part of the process. A car has countless parts that need to be
tested independently as well as interdependently. Nobody wants to drive a car
which has its first test run on a real street with the actual customer.

Tests simulate production behavior and verify components in a safe
environment. Manufactured parts that break during test runs are something
positive; they have just pointed out potential errors and nothing more than
time and materials is lost. Parts that break in production can cause more
harm.

The same is true for software tests. Test failures are something positive, at
worst they used up some time and effort, at best they prevent potential bugs
from going to production.

As seen previously, tests need to run with the least required human
interaction possible. Humans are good at thinking about reasonable test cases
and crafting creative test scenarios. Computers, however, are better at
executing them. Verifying complex tests is something computers also do
well, after they have been given clear verification instructions. With software
growing more complex over time, the effort of manually verifying behavior
gets bigger and bigger and more prone to error over time. Computers perform
better and more reliably at repetitive tasks.

Reliable automated software tests are a prerequisite of moving fast.
Automated tests can be executed many times, verifying the whole
application. Builds run many times a day, execute all tests every time - even
if only minor changes were introduced - and enable verified versions to go to
production. This would not be feasible with tests executed by humans.

Automated tests increase the reliability of and confidence in the Continuous

www.EBooksWorld.ir

Delivery process. For Continuous Deployment, that is, going directly to
production, sufficient, automated test scenarios are absolutely required. When
all commits are potential candidates for production deployment, all software
behavior must be adequately verified upfront. Without this automated
verification, Continuous Deployment wouldn't be possible.

www.EBooksWorld.ir

Requirements of well-crafted tests
Today's software world has agreed that tests are crucial to working software.
But what makes a good software test? What software components do we have
to test? And, more importantly, how can we develop well-crafted tests?

In general, tests should fulfill the following requirements:

Predictability
Isolation
Reliability
Fast execution
Automation
Maintainability

The following describes these requirements.

www.EBooksWorld.ir

Predictability
First of all, software tests have to be stable, predictable, and reproducible.
The same project circumstances must predictably produce the same test case
outcomes, that is, passing or failing. Tests that sometimes pass and
sometimes fail are not helpful at all. They either distract developers by
providing false positive results or suppress actual bugs with false negative
outcomes.

Circumstances that need to be taken into account are, among others, the
current time, time zones, locales, randomly generated data, and concurrent
execution of other tests that could interfere. The test scenarios should be
predictably and explicitly set up, so that these circumstances have no
influence on the outcome. If the tested functionality is in fact influenced by
these factors, this is a sign that there is a need for additional test scenarios,
considering different configurations.

www.EBooksWorld.ir

Isolation
The requirement of predictability also relates to isolation. Test cases have to
run self-sufficiently, without affecting other tests. Changing and maintaining
test cases should also have no impact on other test scenarios.

Besides leveraging predictability and maintainability, isolating tests also has
an impact on the reproducibility of errors. Complex test scenarios may
contain a lot of concerns and responsibilities that can make it hard to find the
root causes of failing tests. Isolated tests with smaller scope, however, limit
the possibilities of causes and enable developers to find bugs faster.

The several test scopes an enterprise project usually has, which we will see
later in this chapter, also come with several test isolation layers. Tests with a
small scope, such as unit tests, run more isolated than, for example, end-to-
end tests. It certainly makes sense to write test cases in different scopes,
which implies different test isolation layers.

www.EBooksWorld.ir

Reliability
Ideally, software tests of a project reliably test all functionality. The mantra
should be that software that passes the tests is ready for production usage.
This is of course a goal to strive for, for example by continuous
improvement.

Using Continuous Delivery and especially Continuous Deployment requires a
reliable and sufficient test harness. The software tests are the ultimate quality
barrier before production deployment.

Reliable tests that pass should not require any further interaction. Therefore,
they should not output verbose logs if the overall execution was successful.
While a detailed explanation of what happened during execution is very
helpful in failing tests, it becomes distracting in passing runs.

www.EBooksWorld.ir

Fast execution
As said before, tests are required to execute quickly. Fast running tests are a
necessity for development pipelines providing fast feedback. Especially with
the number of tests growing over time by applying continuous improvement,
the only way to keep the pipeline effective is to keep test execution time low.

Typically, test execution spends the most time in starting up the test
technology. Integration tests in particular, which use an embedded container,
consume a lot of startup time. The time spent performing the actual test is in
most cases not such a big issue.

Tests that consume a lot of time contradict the idea of continuous
improvement of quality. The more test cases and scenarios that are added to
the project, the longer the overall test execution and the slower is the
feedback. Especially with the challenges of a fast-moving world, software
tests need to perform as fast as possible. The rest of this chapter will show
you how we can achieve this goal, particularly in regard to end-to-end test
scenarios.

www.EBooksWorld.ir

Automation
Automation is a prerequisite for fast feedback. Continuous Delivery pipeline
steps should run with the least human intervention as possible. The same is
true for test scenarios. Executing software tests and validating their results
should run completely and reliably without human interaction.

The test cases define the functionality's expected behavior and validate the
outcome against it. The test will then reliably pass without additional notice
or fail with a detailed explanation. Passing tests should not require any
further human interaction.

A scenarios with huge or complex test data in particular represent a certain
challenge in automating test cases. In order to deal with this issue, engineers
should craft test cases in a maintainable way.

www.EBooksWorld.ir

Maintainability
Developing test cases is one thing. Keeping efficient test cases with good
coverage when functionality changes is another thing. The challenge with
having poorly-crafted test scenarios is that as soon as production
functionality changes, the tests need to change as well, requiring a lot of time
and effort.

Crafting test cases requires the same attention and effort as production code.
Experience shows that without this effort put in, tests contain a lot of
duplication and multiple responsibilities. In the same way as for production
code, test code requires refactoring.

It should be possible to change or extend test scenarios without much effort
required. In particular the test data that changes needs to be represented
effectively.

Maintainable tests are a prerequisite for enterprise projects that have proper
test coverage and yet are flexible for changes in their business logic. Being
able to adapt in a fast-moving world requires adjustable test scenarios as well.

www.EBooksWorld.ir

What to test
Before we go into the topic of how to craft effective, fast, reliable, automated,
and maintainable test cases, let's have a look at what assets to test. There are
tests on a code layer as well as end-to-end tests. Code layer tests are based on
the project's source code and are usually executed during development and
build time, whereas end-to-end tests, of all kinds, operate on a running
application.

Depending on the test scopes, which we will get to know in the next section,
there are different layers of tests, whether tests operate on classes, multiple
components, enterprise applications, or whole environments. In all cases the
test object needs to be isolated from external concerns. The nature of tests is
that they verify certain behavior under specific conditions. The environment
surrounding the test object, such as the test cases as well as used components,
have to interact with the test object accordingly. The test case will therefore
control the test object. This not only includes tests at code level, but also end-
to-end tests with external systems being simulated and mocked away.

Most importantly, software tests should verify business behavior. The
specified use cases all have to perform certain logic that has to be tested
before production deployment. Software tests should therefore verify that the
application fulfills the business requirements. Special and corner cases need
to be covered as well as negative tests.

For example, testing authentication functionality not only needs to verify that
a user can log in with the correct credentials, but also that they can not log in
using wrong the credentials. A corner case of this example would be to verify
that the authentication component notifies a user whose password is about to
expire as soon as he logs in successfully.

Besides business behavior, technical aspects and cross-cutting components
also need to be tested. Accessed databases and external systems and the form
of the communication is required to be verified on both ends in order to

www.EBooksWorld.ir

guarantee a working team. These concerns are best tested in end-to-end tests.

In all cases the test object should not be modified during the test, but work in
the way as it will in production. This is crucial for crafting reliable tests that
will not alter their behavior later on. For code level tests, this only requires
that the contents of all involved components are the same. For end-to-end
tests, this includes the whole enterprise application as well as the installation
and configuration of the application's runtime.

www.EBooksWorld.ir

Definition of test scopes
There are several test scopes and responsibilities to consider. The following
will introduce the different scopes the rest of this chapter will cover.

Certain namings, such as integation tests, are used ambiguously in various
enterprise projects. This sub-chapter defines consistent test scope names that
are used for the rest of this book.

www.EBooksWorld.ir

Unit tests
Unit tests verify the behavior of individual units of an application. A unit test
usually represents a single class, in some cases a few interdependent classes.

Unit tests operate on code level. They are usually executed in the IDE during
development as well as part of the build process before the application is
packaged. Unit tests have the shortest execution time of all test scopes. They
only execute limited functionality that can be instantiated easily on code
level. Potential dependencies of the units are simulated using mocks or
dummy classes.

www.EBooksWorld.ir

Component tests
Component tests verify the behavior of a coherent component. They span
more than just an individual unit, but still operate on code level. Component
tests aim to integrate several components together, which verify the
interdependent behavior without setting up container environments.

The scope of component tests is to provide more integration than unit tests
without running the application in potentially slow, simulated environments.
Similar to unit tests, they use mocking functionality to delimit and simulate
test boundaries. An embedded or remote enterprise container is not required.

www.EBooksWorld.ir

Integration tests
There is a lot of disagreement as to what integration tests represent and how
they are designed. The aimed integration can happen on various levels.

I will use the term as it is quite widely used in the Java ecosystem and as it is
represented in the Maven conventions. Integration tests run on code level,
providing integration of several units and components, and usually run some
more-or-less complex testing framework. This is the main distinction from
component tests here.

Integration tests have a similar scope as component tests also integrate
several units; however, the focus is on the integration. This integration is
more technology than business related. For example, managed beans can
make use of CDI injection to acquire certain dependencies using qualifiers or
CDI producers. Developers need to verify whether the CDI plumbing has
been done properly, that is, the correct annotations have been used, without
necessarily deploying the application to a server.

Testing frameworks start up an embedded runtime that will build up several
components and run code level tests against them.

Component tests, however, solely focus on the business logic and are limited
to simple dependencies that are easily resolvable without sophisticated
containers. In general, component tests are preferable for testing business use
cases since they contain less moving parts and will run faster.

www.EBooksWorld.ir

System tests
The term system tests is sometimes also used ambiguously. In this context,
the term covers all test cases that run the application or the system as a whole,
verifying use cases in an end-to-end manner. Sometimes the terms acceptance
or integration tests are used respectively. However, this book consistently
uses the term system tests to refer to end-to-end tests.

System tests are quite important to verify that a deployed application works
as expected, including both business logic and technical concerns. Whereas
the majority of business logic should already be covered by unit and
component tests, system tests verify that the overall behavior, including all
external systems, is met. This includes how functionality is integrated and
interacts within the system landscape.

For an application to provide value, it is not sufficient to only include
business logic, but also how that logic is accessed. This needs to be verified
in an end-to-end manner.

Since this book is targeted for backend applications, UI level tests are not
considered here; this includes UI end-to-end tests as well as UI reactiveness
tests. Developers typically develop UI tests using test technology such as
Arquillian Graphene. The system test approaches described in this chapter
are applicable to UI level tests as well.

www.EBooksWorld.ir

Performance tests
Performance tests verify the non-functional aspect of how a system performs
in terms of responsiveness and correct behavior under certain workloads.

It needs to be ensured that an application can provide business value, not only
under laboratory conditions but also in production. In production the load on
the system can vary heavily, depending on the nature of the application and
its use cases. Applications that are publicly available also run the risk of
becoming the target of denial of service attacks.

Performance tests are a helpful tool to detect potential performance issues
that are caused by the application. This includes, for example, resource leaks,
misconfiguration, deadlock situations, or missing timeouts. Putting the
application under simulated workload will bring these issues to light.

However, as we will see in Chapter 9, Monitoring, Performance, and Logging,
performance tests aren't necessarily helpful to predict production
responsiveness or tune an application's performance. They should be used as
a barrier against obvious mistakes, providing fast feedback.

For the rest of this book, I will use the term performance tests to describe
performance as well as load or stress tests that put the application under
performance load.

www.EBooksWorld.ir

Stress tests
Similar to performance tests, stress tests aim to put the system under a certain
stress to verify correct behavior in abnormal situations. Whereas performance
tests mainly target the application's performance in terms of responsibility
and stability, stress tests can cover all aspects and attempts that try to bring
the system down.

This includes invalid calls, neglecting communication contracts, or random,
unexpected events from the environment. This list of tests is non-exhaustive
here and beyond the scope of this book.

However, to give a few examples, stress test may verify against misuse of
HTTP connections, such as SYN flooding, DDoS attacks in general,
unexpected shutdowns of infrastructure, or further, so-called fuzz or monkey
testing.

Creating a sophisticated test harness containing a lot of stress tests would
practically be beyond the scope of most projects. However, for enterprise
projects it makes sense to include a few reasonable stress tests that match the
used environment.

www.EBooksWorld.ir

Implementing tests
After the motivations, requirements, and different scopes, let's have a closer
look at how to craft test cases in Java Enterprise projects.

www.EBooksWorld.ir

Unit tests
Unit tests verify the behavior of individual units of an application. In a Java
EE application, this usually regards single entity, boundary, and control
classes.

In order to unit test a single class, no exhaustive test case should be required.
Ideally, instantiating the test object and setting up minimum dependencies
should be sufficient to be able to invoke and verify its business functionality.

Modern Java EE supports this approach. Java EE components, such as EJBs
as well as CDI managed beans are testable in a straightforward way by
simply instantiating the classes. As we saw previously, modern enterprise
components represent plain Java objects, including annotations, without
extending or implementing technically motivated superclasses or interfaces,
so-called no-interface views.

This allows tests to instantiate EJB or CDI classes and to wire them up as
required. Used delegates such as injected controls that are irrelevant to the
test case are mocked away. By doing so, we define the boundaries of the test
case, what should be tested, and what is not relevant. Mocked delegates
enable to verify the test object interaction.

A mock object simulates behavior of an actual instance of its type. Calling
methods on mocks usually only returns dummy or mock values. Test objects
are not aware that they communicate with a mock object. The behavior of
mocks, as well as the verification of invoked methods, is controlled within
the test scenario.

www.EBooksWorld.ir

Implementation
Let's start with a unit test of a Java EE core component. The CarManufacturer
boundary executes certain business logic and invokes a CarFactory delegate
control:

@Stateless

public class CarManufacturer {

 @Inject

 CarFactory carFactory;

 @PersistenceContext

 EntityManager entityManager;

 public Car manufactureCar(Specification spec) {

 Car car = carFactory.createCar(spec);

 entityManager.merge(car);

 return car;

 }

}

Since the EJB boundary is a plain Java class, it can be instantiated and set up
in a unit test. The most commonly used Java unit test technology is JUnit
together with Mockito for mocking. The following code snippet shows the
car manufacturer test case, instantiating the boundary test object and using
Mockito to mock away used delegates:

import org.junit.Before;

import org.junit.Test;

import static org.assertj.core.api.Assertions.assertThat;

import static org.mockito.ArgumentMatchers.any;

import static org.mockito.Mockito.*;

public class CarManufacturerTest {

 private CarManufacturer testObject;

 @Before

 public void setUp() {

 testObject = new CarManufacturer();

 testObject.carFactory = mock(CarFactory.class);

 testObject.entityManager = mock(EntityManager.class);

 }

 @Test

 public void test() {

 Specification spec = ...

 Car car = ...

www.EBooksWorld.ir

 when(testObject.entityManager.merge(any())).then(a -> a.getArgument(0));

 when(testObject.carFactory.createCar(any())).thenReturn(car);

 assertThat(testObject.manufactureCar(spec)).isEqualTo(car);

 verify(testObject.carFactory).createCar(spec);

 verify(testObject.entityManager).merge(car);

 }

}

The JUnit framework instantiates the CarManufacturerTest test class once during
the test execution.

The @Before method, setUp() here, is executed every time before a @Test method
runs. Similarly, methods annotated with @After run after every test run. The
@BeforeClass and @AfterClass methods, however, are only executed once per test
class, before and after the execution, respectively.

Mockito methods, such as mock(), when(), or verify() are used to create, set up,
and verify mocking behavior, respectively. Mock objects are instructed to
behave in a certain way. After the test execution, they can verify whether
certain functionality has been called on them.

This is an admittedly easy example, but it contains the essence of unit testing
core components. No further custom test runner, neither an embedded
container is required to verify the boundary's behavior. As opposed to custom
runners, the JUnit framework can run unit tests at a very high rate. Hundreds
of examples like these will be executed on modern hardware in no time. The
startup time is short and the rest is just Java code execution, with a tiny
overhead from the testing framework.

Some readers may have noticed the package-private visibility on the
CarManufacturer class. This is due to providing better testability in order to be
able to set the delegate on instantiated classes. Test classes that reside in the
same package as the boundary are able to modify its dependencies. However,
engineers might argue that this violates the encapsulation of the boundary.
Theoretically they're right, but no caller will be able to modify the references
once the components run in an enterprise container. The referenced object is
not the actual delegate, but a proxy thereof, hence the CDI implementation
can prevent misuse. It certainly is possible to inject the mock object using

www.EBooksWorld.ir

reflection or by using constructor-based injection. However, field-based
injection together with directly setting the dependencies in the test cases
provides better readability with the same production behavior. As of today,
many enterprise projects have agreed upon using field dependency injection
with package-private visibility.

Another discussion is whether to use custom JUnit runners such as
MockitoJUnitRunner together with custom mocking annotations or a plain setup
approach, as shown previously. The following code snippet shows a more
dense example using a custom runner:

import org.junit.runner.RunWith;

import org.mockito.InjectMocks;

import org.mockito.Mock;

import org.mockito.junit.MockitoJUnitRunner;

@RunWith(MockitoJUnitRunner.class)

public class CarManufacturerTest {

 @InjectMocks

 private CarManufacturer testObject;

 @Mock

 private CarFactory carFactory;

 @Mock

 private EntityManager entityManager;

 @Test

 public void test() {

 ...

 when(carFactory.createCar(any())).thenReturn(car);

 ...

 verify(carFactory).createCar(spec);

 }

}

Using the custom Mockito runner allows developers to configure tests with
less code as well as to define injections with private visibility in the service
class. Using a plain approach, as shown previously, provides more flexibility
for complex mock scenarios. However, which method to use in order to run
and define Mockito mocks is indeed a question of taste.

Parameterized tests is an additional JUnit functionality to define test cases
that are similar in the scenario, but differ in input and output data. The
manufactureCar() method could be tested with a variety of input data, resulting
in a slightly different outcome. Parameterized test cases enable to develop

www.EBooksWorld.ir

these scenarios more productively. The following code snippet shows an
example of such test cases:

import org.junit.runners.Parameterized;

@RunWith(Parameterized.class)

public class CarManufacturerMassTest {

 private CarManufacturer testObject;

 @Parameterized.Parameter(0)

 public Color chassisColor;

 @Parameterized.Parameter(1)

 public EngineType engineType;

 @Before

 public void setUp() {

 testObject = new CarManufacturer();

 testObject.carFactory = mock(CarFactory.class);

 ...

 }

 @Test

 public void test() {

 // chassisColor & engineType

 ...

 }

 @Parameterized.Parameters(name = "chassis: {0}, engine type: {1}")

 public static Collection<Object[]> testData() {

 return Arrays.asList(

 new Object[]{Color.RED, EngineType.DIESEL, ...},

 new Object[]{Color.BLACK, EngineType.DIESEL, ...}

);

 }

}

Parameterized test classes are instantiated and executed following the data in
the @Parameters test data method. Each element in the returned collection
results in a separate test execution. The test class populates its parameter
properties and continues the text execution as usual. The test data contains
test input parameters as well as expected values.

The benefit of this parameterized approach is that it enables developers to add
new test cases by simply adding another line within the testData() method.
The preceding example shows the combination of a parameterized unit test
using mocks. That combination is only possible using a plain Mockito
approach, as described previously, instead of using MockitoJUnitRunner.

www.EBooksWorld.ir

Technology
These examples use JUnit 4 which, at the time of writing, is the most used
unit testing framework version. Mockito is used to mock objects and it
provides sufficient flexibility for the majority of use cases. In order to assert
conditions, these examples use AssertJ as the test matching library. It
provides functionality to verify the state of objects using productive method-
chaining invocations.

These technologies serve as examples for the required test aspects. The point
here, however, is not to dictate certain functionalities rather it is to showcase
specific, reasonable choices for these test requirements. Other technology that
provides similar functionality and benefits is equally advisable.

A typical example of another widely-used technology is Hamcrest matchers
as a test matching library or the less frequently used TestNG unit test
framework.

By the time you're reading this, JUnit version 5 will have emerged, which
provides some additional functionalities, especially regarding to dynamic
tests. Dynamic tests have similar motivations as parameterized tests, by
programmatically and dynamically defining test cases.

www.EBooksWorld.ir

Component tests
Component tests verify the behavior of a coherent component. They provide
more integration than unit tests without running the application in simulated
environments.

www.EBooksWorld.ir

Motivation
The behavior of coherent functionality represented by several interdependent
classes needs to be verified in order to test the integration thereof.
Component tests should run as fast as unit tests by still isolating functionality,
that is, testing coherent units. Therefore they aim to provide fast feedback by
integrating yet more logic than just unit tests. Component tests verify
business use cases, from the boundary down to involved controls.

Code level component tests are possible since the vast majority of managed
beans use quite straightforward delegates. The injected types are in most
cases directly resolvable without interfaces or qualifiers and could practically
be instantiated and injected, even without embedded containers. This enables
component tests to be implemented using the same testing frameworks as unit
tests. Required delegates and mocks are set up as part of the test case. The
test scenario we want to show starts from the beginning of a business use
case down to injected controls.

The following examples will examine how to implement component tests
with some basic code quality practices, that help writing maintainable tests.

www.EBooksWorld.ir

Implementation
Imagine the whole manufacture car use case shown in the previous example
in the Unit tests section, needs to be tested. A car is created, using a delegate
CarFactory, and then is persisted into the database. Testing the persistence layer
is out of this test scope, therefore the entity manager will be mocked away.

The following code snippet shows the component test to the manufacture car
use case:

public class ManufactureCarTest {

 private CarManufacturer carManufacturer;

 @Before

 public void setUp() {

 carManufacturer = new CarManufacturer();

 carManufacturer.carFactory = new CarFactory();

 carManufacturer.entityManager = mock(EntityManager.class);

 }

 @Test

 public void test() {

 when(carManufacturer.entityManager.merge(any())).then(a -> a.getArgument(0));

 Specification spec = ...

 Car expected = ...

 assertThat(carManufacturer.manufactureCar(spec)).isEqualTo(expected);

 verify(carManufacturer.entityManager).merge(any(Car.class));

 }

}

The preceding example is quite similar to the previous ones, with the
exception that CarFactory is instantiated, using the actual business logic. The
mocks, which represent the boundaries of the test case, verify correct
behavior.

However, while this approach works for straightforward use cases, it is
somewhat naive in regard to more sophisticated real-world scenarios. The
boundaries of the test case are as seen in the test class, for the CarFactory
delegate to be self-sufficient and not inject further controls. Of course, all
interdependent units that are part of a component test can define delegates.

www.EBooksWorld.ir

Depending on the nature of the test and the use case, these nested delegates
also need to be instantiated or mocked away.

This will eventually lead to a lot of effort required in setting up the test case.
We could make use of test framework functionality such as Mockito
annotations here. Doing so, the test case injects all classes that are involved in
the test case. Developers specify which of them will be instantiated or
mocked away, respectively. Mockito provides functionality to resolve
references, which is sufficient for the majority of use cases.

The following code snippet shows a component test of a similar scenario, this
time using a CarFactory delegate that has an AssemblyLine and Automation as nested
dependencies. These are mocked away in the test case:

@RunWith(MockitoJUnitRunner.class)

public class ManufactureCarTest {

 @InjectMocks

 private CarManufacturer carManufacturer;

 @InjectMocks

 private CarFactory carFactory;

 @Mock

 private EntityManager entityManager;

 @Mock

 private AssemblyLine assemblyLine;

 @Mock

 private Automation automation;

 @Before

 public void setUp() {

 carManufacturer.carFactory = carFactory;

 // setup required mock behavior such as ...

 when(assemblyLine.assemble()).thenReturn(...);

 }

 @Test

 public void test() {

 Specification spec = ...

 Car expected = ...

 assertThat(carManufacturer.manufactureCar(spec)).isEqualTo(expected);

 verify(carManufacturer.entityManager).merge(any(Car.class));

 }

}

The @InjectMocks functionality of Mockito attempts to resolve object references

www.EBooksWorld.ir

with mock objects injected as @Mock in the test case. The references are set
using reflection. If boundaries or controls define new delegates, they need to
be defined at least as a @Mock object in the test cases to prevent
NullPointerException. However, this approach only partially improves the
situation since it leads to a lot of dependencies being defined in the test class.

An enterprise project with a growing number of component tests introduces a
lot of verbosity and duplication if it follows only this approach.

To make the test code less verbose and restrict this duplication, we could
introduce a test superclass for a specific use case scenario. That superclass
would contain all @Mock and @InjectMock definitions, setting up required
dependencies, delegates, and mocks. However, such test superclasses also
contain a lot of implicit logic, which delegates are defined and being used
somewhere in the extended test cases. This approach leads to test cases that
are tightly coupled to commonly used superclasses, eventually leading to
implicitly coupling the test cases.

www.EBooksWorld.ir

Delegating test components
It is more advisable to use delegation rather than extension.

Mocking and verification logic that depends on the used components is
delegated to separate test objects. The delegates thus encapsulate and manage
this logic individually.

The following code snippet shows the test case using components that define
the car manufacture and car factory dependencies:

public class ManufactureCarTest {

 private CarManufacturerComponent carManufacturer;

 private CarFactoryComponent carFactory;

 @Before

 public void setUp() {

 carFactory = new CarFactoryComponent();

 carManufacturer = new CarManufacturerComponent(carFactory);

 }

 @Test

 public void test() {

 Specification spec = ...

 Car expected = ...

 assertThat(carManufacturer.manufactureCar(spec)).isEqualTo(expected);

 carManufacturer.verifyManufacture(expected);

 carFactory.verifyCarCreation(spec);

 }

}

The Component test dependencies specify the declared dependencies and mocks
including the setup and verification behavior for our test cases. The idea is to
define components that are reusable within multiple component tests, wiring
up similar logic.

The following code snippet shows the definition of CarManufacturerComponent:

public class CarManufacturerComponent extends CarManufacturer {

 public CarManufacturerComponent(CarFactoryComponent carFactoryComponent) {

 entityManager = mock(EntityManager.class);

 carFactory = carFactoryComponent;

www.EBooksWorld.ir

 }

 public void verifyManufacture(Car car) {

 verify(entityManager).merge(car);

 }

}

The class resides in the same package as the CarManufacturer class, but under
the test sources. It can subclass the boundary to add mocking and verification
logic. In this example, it is dependent on the CarFactory component, that also
provides additional test logic:

public class CarFactoryComponent extends CarFactory {

 public CarFactoryComponent() {

 automation = mock(Automation.class);

 assemblyLine = mock(AssemblyLine.class);

 when(automation.isAutomated()).thenReturn(true);

 }

 public void verifyCarCreation(Specification spec) {

 verify(assemblyLine).assemble(spec);

 verify(automation).isAutomated();

 }

}

These components serve as reusable test objects that wire up certain
dependencies and configure mocking behavior, accordingly. They can be
reused within multiple component tests and enhanced without affecting
usages.

These examples aim to give an idea of what is possible in order to write
maintainable tests. For components being reused, more refactoring
approaches should be considered, for example, using a builder-pattern like
configuration to satisfy different situations. The Maintaining test data and
scenarios section in this chapter contains more about how to write
maintainable test code.

The benefit of component tests is that they run as fast as unit tests and yet
verify more complex integration logic. The complex logic is tackled by
delegation and encapsulation, increasing maintainability. The code and
overhead required to setup is limited.

It makes sense to verify coherent business logic using component tests. Use

www.EBooksWorld.ir

case invocations are tested on a business level with technical low-level
aspects being mocked away.

www.EBooksWorld.ir

Technology
These examples again demonstrate plain JUnit and Mockito test approaches.
With some code quality practices, it's certainly possible to write
maintainable, dense test cases with limited configuration overhead.

Component tests implemented as shown previously are a practical approach
to wire up components that use straightforward dependency injection. If the
production code makes use of CDI producers and qualifiers, the injection
logic of the test components will change accordingly.

Component tests aim to verify the business use case behavior of coherent
units. They usually don't verify the technical wiring. It's advisable to use
integration tests in order to verify whether CDI injection was used correctly,
for example, in terms of custom qualifiers, producers, or scopes.

However, there are test technologies that provide dependency injection into
test cases. Examples for these are CDI-Unit or the more sophisticated
Aquillian Testing Framework. Test cases using these frameworks run in
containers, either embedded or even remotely, and are able to further verify
the integration of components.

Sophisticated test frameworks certainly provide test cases that are closer to
the enterprise application, but also come with the challenge of slow
application startups. The containers are usually executed and configured in
every test case, typically taking a few hundred milliseconds or more. This
does not sound that much but quickly adds up as more tests arrive.

For component tests that aim to solely verify business behavior, faster, and
lightweight approaches like the one presented, are therefore preferable. With
their fast nature, component tests as well as unit tests are per default executed
during the project build. They should be the default way how to verify
application business logic.

www.EBooksWorld.ir

The following shows code level integration tests that make use of simulated
containers.

www.EBooksWorld.ir

Integration tests
Component tests verify coherent business logic in isolated and fast tests.
Sophisticated Java EE integration behavior, such as injection, custom
qualifiers, CDI events, or scopes are not covered by these tests.

Integration tests aim to verify the technical collaboration of components
within the enterprise system. This covers concerns such as configuration of
Java EE core components, communication with external systems, or
persistence. Are the Java EE components annotated correctly? Does the
JSON-B mapping produce the desired JSON format? Is the JPA ORM
mapping defined properly?

The idea behind code level integration tests is to provide faster feedback by
verifying correct integration without the need to build and deploy the
application to a test environment.

www.EBooksWorld.ir

Embedded containers
Since unit test technology is not aware of Java EE specifics, integration tests
need more sophisticated test functionality in the form of containers. There are
several technologies available that start up an embedded container and make
parts of the application available.

An example for this is CDI-Unit. It provides functionality to run test cases in
a CDI container, further enabling developers to enhance and modify its
configuration. CDI-Unit scans the dependencies of tested objects and
configures them accordingly. Required mocks and test specific behavior are
defined in a declarative approach. A managed bean such as the car
manufacturer boundary is set up within the test case, with all required
dependencies and mocks.

This approach detects configuration errors, such as missing CDI annotations.
The following code snippet shows a car manufacture test, similar to the
component test before, that instantiates the boundary:

import org.jglue.cdiunit.CdiRunner;

@RunWith(CdiRunner.class)

public class ManufactureCarIT {

 @Inject

 CarManufacturer carManufacturer;

 @Mock

 EntityManager entityManager;

 @Before

 public void setUp() {

 carManufacturer.entityManager = entityManager;

 }

 @Test

 public void test() {

 Specification spec = ...

 Car expected = ...

 assertThat(carManufacturer.manufactureCar(spec)).isEqualTo(expected);

 verify(entityManager).merge(expected);

 }

}

www.EBooksWorld.ir

The custom JUnit runner detects beans injected into the test case and resolves
them accordingly. Since CDI-Unit only supports the CDI standard and not
the full Java EE API, the test explicitly mocks and sets the entity manager.
All other used controls, such as the car factory, automation, and assembly
line, are instantiated and injected, accordingly.

CDI-Unit tests can be enhanced to serve more sophisticated scenarios. It's
possible to produce beans that are being used within the test scope.

However, this technology certainly has its limits. CDI-Unit is helpful to
quickly verify configuration and collaboration of managed beans.

Another, more sophisticated technology for testing applications is Arquillian.
Arquillian bundles integration test cases into deployable archives, manages
enterprise containers, either embedded or remotely, and deploys, executes,
and verifies the test archives. It makes it possible to enhance test cases with
custom test behavior depending on the scenario.

The advantage of Arquillian is that it supports containers with full Java EE
support. This enables integration tests to operate in more production-near
scenarios.

The following code snippet shows a simple example of deploying the car
manufacturer boundary to an embedded enterprise container managed by
Arquillian:

import org.jboss.arquillian.container.test.api.Deployment;

import org.jboss.arquillian.junit.Arquillian;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.asset.EmptyAsset;

import org.jboss.shrinkwrap.api.spec.WebArchive;

@RunWith(Arquillian.class)

public class ManufactureCarIT {

 @Inject

 CarManufacturer carManufacturer;

 @Deployment

 public static WebArchive createDeployment() {

 return ShrinkWrap.create(WebArchive.class)

 .addClasses(CarManufacturer.class)

 // ... add other required dependencies

 .addAsWebInfResource(EmptyAsset.INSTANCE, "beans.xml");

www.EBooksWorld.ir

 }

 @Test

 public void test() {

 Specification spec = ...

 Car expected = ...

 assertThat(carManufacturer.manufactureCar(spec)).isEqualTo(expected);

 }

}

This test case will create a dynamic web archive that ships the boundary and
required delegates and deploys it into an embedded container. The test itself
can inject and call methods on the specific components.

The container does not necessarily have to run in an embedded way, it can
also be a managed or remote container. Containers that run for longer than
just the test execution avoid the container startup time and execute tests much
more quickly.

Executing these integration tests will take a comparatively long time, but
operate closer to production environments. Misconfigured managed beans
will be detected during development before the application is shipped. The
flexibility and customization of Arquillian, by including custom bean
definitions that reside in the test scope, enables pragmatic test scenarios.

However, this example only slightly touches the functionality of embedded
container tests. Test frameworks such as Arquillian can be used for validating
the integration of container configuration, communication, persistence, and
UI. In the rest of this chapter, we will see some shortcomings of integration
tests that operate on simulated or embedded environments.

www.EBooksWorld.ir

Embedded databases
Mapping persistence of domain entities is usually defined using JPA
annotations. Validating this mapping before an actual server deployment
prevents careless mistakes and saves time.

In order to verify a correct database mapping, a database is required. Besides
using deployed environment database instances, embedded databases provide
similar verification with fast feedback. Embedded container tests running on
frameworks such as Arquillian can be used to access this functionality.
However, for basic verification it's not necessary for the application to run
inside a container.

JPA ships with the possibility to run standalone, in any Java SE environment.
We can make use of this and write test cases that wire up the JPA
configuration and connect against an embedded or local database.

Imagine a car part that is manufactured and assembled in the car
manufacture. The car part domain entity is mapped with JPA as follows:

@Entity

@Table(name = "car_parts")

public class CarPart {

 @Id

 @GeneratedValue

 private long id;

 @Basic(optional = false)

 private String order;

 @Enumerated(STRING)

 @Basic(optional = false)

 private PartType type;

 ...

}

In order to verify correct persistence, a test entity bean should at least be
persisted and reloaded from the database. The following code snippet shows
an integration test that sets up a standalone JPA persistence:

www.EBooksWorld.ir

import javax.persistence.EntityTransaction;

import javax.persistence.Persistence;

public class CarPartIT {

 private EntityManager entityManager;

 private EntityTransaction transaction;

 @Before

 public void setUp() {

 entityManager = Persistence.createEntityManagerFactory("it").createEntityManager();

 transaction = entityManager.getTransaction();

 }

 @Test

 public void test() {

 transaction.begin();

 CarPart part = new CarPart();

 part.setOrder("123");

 part.setType(PartType.CHASSIS);

 entityManager.merge(part);

 transaction.commit();

 }

}

Since the persistence runs standalone, there is no container taking care of
handling transactions. The test case does this programmatically, as well as
setting up the entity manager, using the persistence unit it. The persistence
unit is configured in test scope persistence.xml. For this test purpose it's
sufficient to configure a resource local transactional unit:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence

 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_2.xsd">

 <persistence-unit name="it" transaction-type="RESOURCE_LOCAL">

 <class>com.example.cars.entity.CarPart</class>

 <exclude-unlisted-classes>true</exclude-unlisted-classes>

 <properties>

 <property name="javax.persistence.jdbc.url" value="jdbc:derby:./it;create=true"/>

 <property name="javax.persistence.jdbc.driver" value="org.apache.derby.jdbc.EmbeddedDriver"/>

 <property name="javax.persistence.schema-generation.database.action" value="drop-and-create"/>

 </properties>

 </persistence-unit>

</persistence>

The involved entity classes such as CarPart have to be specified explicitly,
since there is no container that takes care of annotation scanning. The JDBC
configuration points to an embedded database, in this case Apache Derby.

www.EBooksWorld.ir

The enterprise project does not include the Java EE implementation, only the
API. Therefore, an JPA implementation, such as EclipseLink, is added as a
test dependency, together with the Derby database.

This integration test provides faster feedback for configuration mismatches
and careless mistakes by validating the persistence mapping locally. For
example, the shown test case would fail because the order property of the
CarPart type isn't able to be mapped, since order is a reserved SQL keyword.
The solution to this is to change the column mapping, for example, by
renaming the column with @Column(name = "part_order").

This is a typical example of mistakes developers make while configuring the
persistence. Preventing these errors, that otherwise won't be detected before
deployment time, provides faster feedback and saves time and effort.

Of course, this approach will not find all database related integration
mismatches. There is no container being used and persistence errors, for
example, related to concurrent transactions, won't be found before fully-
fledged system tests are executed. Still, it provides a helpful first verification
in the pipeline.

www.EBooksWorld.ir

Running integration tests
Attentive readers may have noticed the naming convention of integration
tests ending with IT for integration test. This naming emerged from a Maven
naming convention, excluding test classes, that don't match the Test naming
pattern, in the test phase. Classes ending with IT will be run by a different life
cycle plugin.

This approach supports developers in crafting effective development
pipelines, since code level integration tests shouldn't necessarily run in the
first build step depending on the time they take. With the example of Maven,
the Failsafe Plugin runs integration tests, using the command mvn
failsafe:integration-test failsafe:verify, after the project has been built.

The IDE, of course, supports both running Test named tests as well as other
naming conventions.

Gradle doesn't take this naming structure into account. In order to achieve the
same goal, Gradle projects would use multiple sets of test sources that are
executed separately.

www.EBooksWorld.ir

Code level integration tests versus
system tests
Code level tests, such as unit, component, or integration tests, provide fast
feedback during development. They enable developers to verify whether the
business logic works as expected for isolated components and the overall
configuration is sane.

www.EBooksWorld.ir

Shortcomings of integration tests
However, in order to verify the application's production behavior, these tests
are not sufficient. There will be differences in technology, configuration, or
runtime that eventually lead to gaps in the test cases. Examples are enterprise
containers with different versions, mismatches in the bean configuration once
the whole application is deployed, different database implementations, or
differences in JSON serialization.

Ultimately, the application runs in production. It makes a lot of sense to
verify the behavior in environments that are equivalent to production.

Certainly, it is advisable to craft several test scopes to both have tests with
isolated scope and faster feedback as well as integrational tests. The
shortcoming of code level integration tests is that they often take a great
amount of time.

In my projects in the past, integration tests running containers such as
Arquillian, usually were responsible for the vast majority of the build time,
resulting in build with 10 minutes and more. This greatly slows down the
Continuous Delivery pipeline, resulting in slow feedback and fewer builds.
An attempt to solve this shortcoming is to use remote or managed containers
in Arquillian tests. They will run with a longer life cycle than the test run and
eliminate the startup times.

Code level integration tests are a helpful way to quickly verify application
configuration, what cannot be tested using unit or component tests. They are
not ideal for testing business logic.

Integration tests that deploy the whole application on simulated
environments, such as embedded containers, provide certain value, but are
not sufficient to verify production behavior since they are not equivalent to
production. No matter whether on code level or simulated environments,
integration tests tend to slow down the overall pipeline.

www.EBooksWorld.ir

Shortcomings of system tests
System tests which test an application that is deployed to a production-like
environment in an end-to-end fashion provide the most representative
verification. Since they run in a later step in the Continuous Delivery
pipeline, they provide slower feedback. Test cases, such as verifying the
JSON mappings of an HTTP endpoint, will take longer before they provide
feedback to engineers.

Tackling and maintaining complex test scenarios is an aspect that takes quite
some time and effort. Enterprise applications require definition and
maintenance of test data and configuration, especially when many external
systems are involved. For example, an end-to-end test that verifies creating a
car in the car manufacture application requires external concerns such as the
assembly line to be set up as well as test data. Managing these scenarios
involves a certain effort.

End-to-end tests attempt to use external systems and databases similarly to
production. This introduces the challenge to handle unavailable or erroneous
environments. External systems or databases that are unavailable cause the
tests to fail; however, the application is not responsible for this test failure.
This scenario violates the requirement of predictability, that tests should not
depend on external factors that provide false positives. Therefore, it's
advisable that system tests mock away external systems that are not part of
the application under test. Doing this enables to construct predictable end-to-
end tests. The Sub-chapter System tests covers how to implement this
approach.

www.EBooksWorld.ir

Conclusion
Code level unit and component tests verify isolated, specific business logic.
They provide immediate feedback and prevent careless mistakes. Component
tests, in particular, cover the integration of business related software units.

The delimitation of component tests is that they run without a simulated
container, setting up the test cases in a programmatic fashion. Integration
tests rely on inversion of control, similar to application containers that wire
up components with less developer effort involved. However, crafting
maintainable test cases using a programmatic approach with unit test
technology ultimately leads to more effective tests. We will see in the
Maintaining test data and scenarios section in this chapter, what methods
support us in crafting productive test cases.

Integration tests verify the technical integration as well as configuration of
application components. Their feedback is certainly faster than deploying the
application as part of the pipeline. However, integration tests do not provide
sufficient verification compared to production.

They are a good fit to provide a first basic barrier against common errors and
careless mistakes. Since starting up integration tests usually takes quite some
time, it makes a lot of sense to run a limited number of them. Ideally test
frameworks such as Arquillian deploy to managed or remote containers that
keep running beyond a single test case.

System tests verify the application's behavior in the most production-like
fashion. They provide the ultimate feedback, whether the whole enterprise
application works as expected, including business as well as technical
aspects. In order to construct predictable test scenarios, it's important to
consider external concerns, such as databases and external systems.

Crafting test cases, especially complex test scenarios, takes a lot of time and
effort. The question is where does it make the most sense to spend this effort

www.EBooksWorld.ir

on? In order to test business logic, and especially coherent components, it's
advisable to use component tests. Integration tests don't provide ultimate
verification, but still take certain time and effort. It makes sense to use a few
of them for fast integration feedback, but not to test business logic.
Developers may also find ways to reuse created scenarios in several test
scopes, for example both integration tests and system tests.

The overall goal should be to minimize the time and effort spent to craft and
maintain test cases, to minimize the overall pipeline execution time and to
maximize the application verification coverage.

www.EBooksWorld.ir

System tests
System tests run against a deployed enterprise application. The application
contains the same code, configuration, and runtime as in production. The test
cases use external communication, such as HTTP, to initiate use cases. They
verify that the overall outcome, such as HTTP responses, database state, or
communication with external systems, matches the expectations of the
application.

System tests answer the question what to test with: the application that runs
in the same way as in production, excluding external concerns, accessed
using its regular interfaces. External concerns will be simulated, ensuring
predictable tests and enabling verification of the communication. It depends
on the scenario whether a used database is seen as part of the application and
used similarly, or mocked away as well.

www.EBooksWorld.ir

Managing test scenarios
System test scenarios can easily get quite complex, involving several
concerns and obfuscating the actual use case that is to be tested.

In order to manage the complexity of scenarios it makes sense to first craft
the procedure of the test case without writing actual code. Defining the
required steps in comments, or even on paper first, provides a good overview
of what the test scenario is about. Implementing the actual test case
afterwards with regard to reasonable abstraction layers will result in more
maintainable test cases, with potentially reusable functionality. We will cover
this approach in an example later in this sub-chapter.

It's important to take test data into consideration. The more responsibilities a
scenario holds, the more complex it will be to define and maintain the test
data. It makes sense to put some effort into test data functionality that is
being used commonly in the test cases. Depending on the nature of the
application and its domain, it may even make sense to define a specific
engineer role for this. Providing reusable functionality that is usable
effectively can provide some relief; however, it may still be necessary to at
least define and document common test data and scenarios.

Ultimately it doesn't help to ignore the complexity of test data. If the
application domain does include sophisticated scenarios, ignoring this
situation by leaving out certain test cases or postponing test scenarios until
production doesn't improve the application's quality.

In order to craft predictable isolated test cases, the scenario should run as
stateless and self-sufficient as possible. Test cases should have a starting
point similar to production and not rely on a certain state of the system. They
should consider other potential tests and usages running simultaneously.

For example, creating a new car should not make assumptions about the
number of existing cars. The test case should not verify that the list of all cars

www.EBooksWorld.ir

is empty before the creation or that it only contains the created car afterwards.
It rather verifies that the created car is part of the list at all.

For the same reason it should be avoided that system tests have an impact on
the environment life cycle. In situations that involve external systems, it's
necessary to control the behavior of the mocked systems. If possible, these
cases should be limited in order to enable to execute other scenarios
concurrently.

www.EBooksWorld.ir

Simulating external concerns
System test scenarios use external systems in the same way as in production.
However, similar to mock objects in unit and component tests, system tests
simulate and mock away external systems. In this way, potential issues that
the application isn't responsible for are eliminated. System tests run in
dedicated environments, for example, provided by container orchestration
frameworks. The test object is the sole application, deployed, executed and
configured in the same way as in production.

Simulated external systems are configured to provide the expected behavior
once accessed by the application. Similar to a mock object, they verify
correct communication depending on the use case.

For the majority of use cases, used databases would not be mocked away.
The test scenario can manage and populate database contents as part of the
test life cycle, if required. If the database system contains a lot of concerns
external to the application, for example containing a lot of database code or
representing a search engine, it may make sense to mock and simulate this
behavior.

Container orchestration strongly supports these efforts by abstracting systems
as services. Pod images can be replaced by other implementations without
affecting the tested application. The mocked services can be accessed and
configured from within the running system test, defining behavior and
external test data.

www.EBooksWorld.ir

The dotted line illustrates the control and verification of the mocked system
as part of the test scenario. The running application will use the external
service as usual, with the difference that this service is in fact, backed by a
mock.

www.EBooksWorld.ir

Designing system tests
System tests run as a step within the Continuous Delivery pipeline. They
connect against a running application on a test environment, invoke business
use cases, and verify the overall outcome.

System test cases usually don't impact the application's life cycle. The
application is deployed upfront as part of the CD pipeline. If required, the
system tests control the state and behavior of external mocks and contents of
databases.

Generally speaking, it makes sense to develop system tests as separate build
projects without any code dependency to the project. Since system tests
access the application from the outside there should be no implications on
how the system is being used. System tests are developed against the
application's endpoint contracts. Similarly, the system tests should not use
classes or functionality that is part of the application, such as using the
application's JSON mapping classes. Defining technology and system access
from the outside as separate build projects prevents unwanted side effects
caused by existing functionality. The system test project can reside besides
the application project in the same repository.

The following example will construct a system test from a top-down
approach, defining test scenarios and appropriate abstraction layers.

The business use cases of the car manufacture application are accessed via
HTTP. They involve external systems and database accesses. In order to
verify the creation of a car, the system test will connect against the running
application, as a real-world use case would.

In order to manage the test scenario, the case is crafted using logical steps
with comments as placeholders first, and then implemented in several
abstraction layers:

public class CarCreationTest {

www.EBooksWorld.ir

 @Test

 public void testCarCreation() {

 // verify car 1234 is not included in list of cars

 // create car

 // with ID 1234,

 // diesel engine

 // and red color

 // verify car 1234 has

 // diesel engine

 // and red color

 // verify car 1234 is included in list of cars

 // verify assembly line instruction for car 1234

 }

}

These comments represent the logical steps that are executed and verified
when testing creation of a car. They are related to the business rather than the
technical implementation.

We realize these comments in private methods, or better, own delegates. The
delegates encapsulate technical concerns, as well as potential life cycle
behavior:

We define CarManufacturer and AssemblyLine delegates that abstract the access and
behavior of the applications and delegates. They are defined as part of the
system test and have no relation to or knowledge of the managed beans with
the same name in the application code. The system test project code is
defined independently. It could also be implemented using a different
technology, only depending on the communication interface of the
application.

The following code snippet shows the integration of the delegates. The car
creation system test only contains business logic relevant to implementation,
with the delegates realizing the actual invocations. This leverages readable as
well as maintainable test cases. Similar system tests will reuse the delegate
functionality:

import javax.ws.rs.core.GenericType;

public class CarCreationTest {

www.EBooksWorld.ir

 private CarManufacturer carManufacturer;

 private AssemblyLine assemblyLine;

 @Before

 public void setUp() {

 carManufacturer = new CarManufacturer();

 assemblyLine = new AssemblyLine();

 carManufacturer.verifyRunning();

 assemblyLine.initBehavior();

 }

 @Test

 public void testCarCreation() {

 String id = "X123A345";

 EngineType engine = EngineType.DIESEL;

 Color color = Color.RED;

 verifyCarNotExistent(id);

 String carId = carManufacturer.createCar(id, engine, color);

 assertThat(carId).isEqualTo(id);

 verifyCar(id, engine, color);

 verifyCarExistent(id);

 assemblyLine.verifyInstructions(id);

 }

 private void verifyCarExistent(String id) {

 List<Car> cars = carManufacturer.getCarList();

 if (cars.stream().noneMatch(c -> c.getId().equals(id)))

 fail("Car with ID '" + id + "' not existent");

 }

 private void verifyCarNotExistent(String id) {

 List<Car> cars = carManufacturer.getCarList();

 if (cars.stream().anyMatch(c -> c.getId().equals(id)))

 fail("Car with ID '" + id + "' existed before");

 }

 private void verifyCar(String carId, EngineType engine, Color color) {

 Car car = carManufacturer.getCar(carId);

 assertThat(car.getEngine()).isEqualTo(engine);

 assertThat(car.getColor()).isEqualTo(color);

 }

}

This serves as a basic example for an application system test. The delegates
such as CarManufacturer handle the lower-level communication and validation:

public class CarManufacturer {

 private static final int STARTUP_TIMEOUT = 30;

 private static final String CARS_URI = "http://test.car-manufacture.example.com/" +

 "car-manufacture/resources/cars";

www.EBooksWorld.ir

 private WebTarget carsTarget;

 private Client client;

 public CarManufacturer() {

 client = ClientBuilder.newClient();

 carsTarget = client.target(URI.create(CARS_URI));

 }

 public void verifyRunning() {

 long timeout = System.currentTimeMillis() + STARTUP_TIMEOUT * 1000;

 while (!isSuccessful(carsTarget.request().head())) {

 // waiting until STARTUP_TIMEOUT, then fail

 ...

 }

 }

 private boolean isSuccessful(Response response) {

 return response.getStatusInfo().getFamily() == Response.Status.Family.SUCCESSFUL;

 }

 public Car getCar(String carId) {

 Response response = carsTarget.path(carId).request(APPLICATION_JSON_TYPE).get();

 assertStatus(response, Response.Status.OK);

 return response.readEntity(Car.class);

 }

 public List<Car> getCarList() {

 Response response = carsTarget.request(APPLICATION_JSON_TYPE).get();

 assertStatus(response, Response.Status.OK);

 return response.readEntity(new GenericType<List<Car>>() {

 });

 }

 public String createCar(String id, EngineType engine, Color color) {

 JsonObject json = Json.createObjectBuilder()

 .add("identifier", id)

 .add("engine-type", engine.name())

 .add("color", color.name());

 Response response = carsTarget.request()

 .post(Entity.json(json));

 assertStatus(response, Response.Status.CREATED);

 return extractId(response.getLocation());

 }

 private void assertStatus(Response response, Response.Status expectedStatus) {

 assertThat(response.getStatus()).isEqualTo(expectedStatus.getStatusCode());

 }

 ...

}

The test delegate is configured against the car manufacture test environment.
This configuration could be made configurable, for example, by a Java
system property or environment variable in order to make the test reusable

www.EBooksWorld.ir

against several environments.

If the delegate needs to hook up into the test case life cycle, it can be defined
as a JUnit 4 rule or JUnit 5 extension model.

This example connects against a running car manufacture application via
HTTP. It can create and read cars, mapping and verifying the responses. The
reader may have noted how the delegate encapsulates communication
internals, such as HTTP URLs, status codes, or JSON mapping. Its public
interface only comprises classes that are relevant to the business domain of
the test scenario, such as Car or EngineType. The domain entity types used in
system tests don't have to match the ones defined in the application. For
reasons of simplicity, system tests can use different, simpler types that are
sufficient for the given scenario.

www.EBooksWorld.ir

Deploying and controlling external
mocks
We just saw how to connect a system test against a running enterprise
application. But how can we control and manipulate the external system that
is used inside the application's use case?

An external system can be mocked away using mock server technology such
as WireMock. WireMock runs as a standalone web server, which is
configured to answer specific requests accordingly. It acts like a code level
test mock object, that stubs and verifies behavior.

The benefit of using container orchestration frameworks for system tests is
that services can be easily replaced by mock servers. The external system's
infrastructure as code configuration for the system test environment can
contain a WireMock Docker image, which is executed instead of the actual
system.

The following code snippet shows an example Kubernetes configuration for
the assembly line system, using a WireMock Docker image in the running
pods:

kind: Service

apiVersion: v1

metadata:

 name: assembly-line

 namespace: systemtest

spec:

 selector:

 app: assembly-line

 ports:

 - port: 8080

kind: Deployment

apiVersion: apps/v1beta1

metadata:

 name: assembly-line

 namespace: systemtest

spec:

 replicas: 1

www.EBooksWorld.ir

 template:

 metadata:

 labels:

 app: assembly-line

 spec:

 containers:

 - name: assembly-line

 image: docker.example.com/wiremock:2.6

 restartPolicy: Always

The system test connects against this service, using an administration URL to
set up and modify the mock server's behavior.

The following code snippet shows an implementation of the AssemblyLine test
delegate, using the WireMock API to control the service:

import static com.github.tomakehurst.wiremock.client.ResponseDefinitionBuilder.okForJson;

import static com.github.tomakehurst.wiremock.client.WireMock.*;

import static java.util.Collections.singletonMap;

public class AssemblyLine {

 public void initBehavior() {

 configureFor("http://test.assembly.example.com", 80);

 resetAllRequests();

 stubFor(get(urlPathMatching("/assembly-line/processes/[0-9A-Z]+"))

 .willReturn(okForJson(singletonMap("status", "IN_PROGRESS"))));

 stubFor(post(urlPathMatching("/assembly-line/processes"))

 .willReturn(status(202)));

 }

 public void verifyInstructions(String id) {

 verify(postRequestedFor(urlEqualTo("/assembly-line/processes/" + id))

 .withRequestBody(carProcessBody()));

 }

 ...

}

The initial behavior instructs the WireMock instance to answer HTTP
requests appropriately. The behavior can also be modified during the test
case, if more complex processes and conversations have to be represented.

If a more sophisticated test scenario involves asynchronous communication
such as long-running processes, the test cases can use polling to wait for
verifications.

The defined car manufacturer and assembly line delegates can be reused

www.EBooksWorld.ir

within multiple test scenarios. Some cases might require to run system tests
mutually exclusively.

In the Maintaining test data and scenarios section, we will see what further
methods and approaches support developers in writing maintainable test
cases.

www.EBooksWorld.ir

Performance tests
Performance tests verify the non-functional requirement of how a system
performs in terms of responsiveness. They don't verify business logic, they
verify the application's technology, implementation, and configuration.

In production systems the load on the systems can vary heavily. This is
especially true for applications that are publicly available.

www.EBooksWorld.ir

Motivation
Similar to tests that verify business behavior, it can be helpful to test upfront
whether an application, or component thereof, is likely to meet their
performance expectations in production. The motivation is to prevent major
performance drops, potentially caused by introduced errors.

It's important to consider the application logic when constructing
performance test scenarios. Some invocations perform more expensive
processes than others. Generally it makes sense to construct performance
tests after realistic production scenarios, in regard to the frequency and nature
of requests.

For example, the ratio of guests browsing an online shop to customers
actually performing purchase transactions should somehow reflect the real
world.

However, it also makes sense to construct tests that excessively perform
expensive invocations, to detect potential issues that emerge when the system
is under stress.

In Chapter 9, Monitoring, Performance, and Logging, we will see why
performance tests on environments other than production are a poor tool to
explore the application's limits and potential bottlenecks. Instead of putting
great effort into crafting sophisticated performance test scenarios, it makes
more sense to invest into technical insights into production systems.

Still, we will see a few techniques of how to craft simple load tests that put a
simulated application under pressure to find evident issues.

A reasonable attempt is to simulate usual load, ramp up the number of
concurrent users, and explore at which point the application becomes
unresponsive. If the responsiveness breaks sooner than from an earlier test
run, this could indicate an issue.

www.EBooksWorld.ir

Key performance indicators
Key performance indicators give information about the application's
responsiveness during normal behavior as well as under simulated workload.
There are several indicators that can be gathered that directly affect the user,
such as the response time or the error rate. These gauges represent the
system's state and will provide insights about its behavior under performance
tests. The indicated values will change depending on the number of
concurrent users as well as the test scenario.

A first interesting insight is the application's response time - the time it takes
to respond to a client's request including all transmissions. It directly affects
the quality of the offered service. If the response time falls below a certain
threshold, timeouts may occur that cancel and fail the request. The latency
time is the time it takes until the server receives the first byte of the request. It
mainly depends on the network setup.

During performance tests, it's especially interesting to see how the response
time and latency time change compared to their average. When increasing the
load on an application, at some point the application will become
unresponsive. This unresponsiveness can originate from all kinds of reasons.
For example, available connections or threads may be consumed, timeouts
can occur, or database optimistic locking may fail. The request error rate
represents the ratio of failed requests.

The number of concurrent users or load size in a specific interval of time
affects the performance metrics of the application and needs to be considered
in the test results. A higher number of users will put the system under more
stress, depending on the nature of the request. This number is related to the
number of concurrent transactions, technical transactions in this case, that
indicate how many transactions the application can handle at a time.

The CPU and memory utilization provide insights about the application's
resources. Whereas the values don't necessarily say much about the

www.EBooksWorld.ir

application's health, they represent the trend of resource consumption during
load simulation.

Similarly, the overall throughput indicates the total amount of data that the
server transmits to the connected users at any point in time.

The key performance indicators provide insights about the application's
responsiveness. They help gather experience and especially trends during
development. This experience can be used to verify future application
versions. Especially after making changes in technology, implementation, or
configuration, performance tests can indicate a potential performance impact.

www.EBooksWorld.ir

Developing performance tests
It makes sense to design performance test scenarios that are close to the real
world. Performance test technology should support scenarios that not only
ramp up a big amount of users, but simulate user behavior. Typical behavior
could be, for example, a user visits the home page, logs in, follows a link to
an article, adds the article to their shopping cart, and performs the purchase.

There are several performance test technologies available. At the time of
writing, the arguably most used ones are Gatling and Apache JMeter.

Apache JMeter executes test scenarios that put applications under load and
generates reports from the test execution. It uses XML-based configuration,
supports multiple or custom communication protocols and can be used to
replay recorded load test scenarios. Apache JMeter defines test plans that
contain compositions of so-called samplers and logic controllers. They are
used to define test scenarios that simulate user behavior. JMeter is
distributed, using a master/slave architecture and can be used to generate load
from several directions. It ships a graphical UI which is is used to edit the test
plan configuration. Command-line tools execute the tests locally or on a
Continuous Integration server.

Gatling provides a similar performance test solution, but it defines test
scenarios programmatically written in Scala. It therefore provides a lot of
flexibility in defining test scenarios, behavior of virtual users, and how the
test progresses. Gatling can also record and reuse user behavior. Since the
tests are defined programmatically, there are a lot of flexible solutions
possible, such as dynamically feeding cases from external sources. The so-
called checks and assertions are used to verify whether a single test request or
the whole test case was successful.

Unlike JMeter, Gatling runs on a single host, not distributed.

The following code snippet shows the definition of a simple Gatling

www.EBooksWorld.ir

simulation in Scala:

import io.gatling.core.Predef._

import io.gatling.core.structure.ScenarioBuilder

import io.gatling.http.Predef._

import io.gatling.http.protocol.HttpProtocolBuilder

import scala.concurrent.duration._

class CarCreationSimulation extends Simulation {

 val httpConf: HttpProtocolBuilder = http

 .baseURL("http://test.car-manufacture.example.com/car-manufacture/resources")

 .acceptHeader("*/*")

 val scn: ScenarioBuilder = scenario("create_car")

 .exec(http("request_1")

 .get("/cars"))

 .exec(http("request_1")

 .post("/cars")

 .body(StringBody("""{"id": "X123A234", "color": "RED", "engine": "DIESEL"}""")).asJSON

 .check(header("Location").saveAs("locationHeader")))

 .exec(http("request_1")

 .get("${locationHeader}"))

 pause(1 second)

 setUp(

 scn.inject(rampUsersPerSec(10).to(20).during(10 seconds))

).protocols(httpConf)

 .constantPauses

}

The create_car scenario involves three client requests, which retrieve all cars,
create a car, and follow the created resource. The scenarios configure
multiple virtual users. The number of users starts at 10 and is ramped up to 20
users within 10 seconds runtime.

The simulation is triggered via the command line and executed against a
running environment. Gatling provides test results in HTML files. The
following code snippet shows the Gatling HTML output of the test example
run:

www.EBooksWorld.ir

This example gives an idea of what is possible with Gatling tests.

Since performance tests should reflect somewhat realistic user scenarios, it
makes sense to reuse existing system test scenarios for performance tests.
Besides programmatically defining user behavior, pre-recorded test runs can
be used to feed in data from external sources such as web server log files.

www.EBooksWorld.ir

Insights
The point in executing performance tests is less a green or red outcome than
the insights gathered from the runs. The test reports and the application's
behavior are collected during the test runs. These collections enable us to
gain experience and discover trends in performance.

While the performance tests can be executed standalone, they ideally run
continuously as part of a Continuous Delivery pipeline. It's already helpful to
gain these insights without needing to affect the outcome of the pipeline step.
After some metrics have been gathered, engineers can consider defining a
performance run as failed if the measured performance indicated a major
drop from the usual expectations.

This matches the idea of continuous improvement or in this case avoiding
responsiveness deterioration.

www.EBooksWorld.ir

Running tests locally
The previous chapter covered development workflows and Continuous
Delivery pipelines. It's crucial for modern enterprise applications to define an
effective pipeline. However, while the CI server takes care of all build, test,
and deploy steps, software engineers are still required to build and test on
their local environments.

Continuous Delivery pipelines with proper tests sufficiently verify that
enterprise applications work as expected. However, the shortcoming with
only relying on the pipeline is that engineers receive feedback later and only
after they have pushed their changes to the central repository. Whereas this is
the idea behind Continuous Integration, developers still want certainty in
their changes before committing them.

Committing changes that contain careless mistakes disturbs other team
members by unnecessarily breaking the build. Errors that are easy to detect
can be prevented by verifying the commit locally. This is certainly doable in
code level tests, such as unit, component, and integration tests, which run on
local environments as well. Performing code level tests before committing
prevents the majority of mistakes.

When developing technical or cross-cutting concerns, such as interceptors or
JAX-RS JSON mapping, engineers also want feedback before committing the
changes to the pipeline. As mentioned before, system tests against actually
running applications provide the most realistic verification.

For local environments, developers could write sophisticated integration
tests, running on embedded containers, to receive faster feedback. However,
as we saw previously, this requires quite some time and effort and still does
not reliably cover all situations.

Using container technologies enables engineers to run the same software
images on multiple environments, including locally. There are Docker

www.EBooksWorld.ir

installations available for the major operating systems. Local machines can
run Docker containers in the same way as in production, setting up custom
configuration or wiring up their own networks, if required.

This enables us to run fully-fledged system tests on local environments as
well. Whereas this step doesn't necessarily have to be performed during
development, it's helpful for developers that want to verify integrational
behavior.

Developers can perform build and test steps locally, similar to the Continuous
Delivery pipeline. Running steps via the command line greatly facilitates this
approach. Docker run commands enable us to dynamically configure volumes,
networks, or environment variables based on the local host.

In order to automate the process, the separate build, deploy, and test
commands are combined into shell scripts.

The following code snippet shows one example of a Bash script that performs
several steps. Bash scripts can be run on Windows as well, via Unix-console
emulators:

#!/bin/bash

set -e

cd hello-cloud/

build

mvn package

docker build -t hello-cloud .

deploy

docker run -d \

 --name hello-cloud-st \

 -p 8080:8080 \

 -v $(pwd)/config/local/application.properties:/opt/config/application.properties \

 hello-cloud

system tests

cd ../hello-cloud-st/

mvn test

stopping environment

docker stop hello-cloud-st

The hello-cloud application is contained in the hello-cloud/ subfolder and built
with Maven and Docker. The Docker run command configures a custom

www.EBooksWorld.ir

properties file. This is similar to the orchestration configuration example
shown in Chapter 5, Container and Cloud Environments with Java EE.

The hello-cloud-st/ directory contains system tests that connect against a
running application. In order to direct the system test to the local
environment, the hosts configuration of the local machine can be adapted.
The Maven test run executes the system tests.

This approach enables developers to verify behavior in fully-fledged system
tests that are executed in the Continuous Delivery pipelines as well as locally,
if required.

If the system test scenario requires several external systems, they are equally
run as Docker containers, similar to the test environment. Applications that
run in container orchestration environments use logical service names to
resolve external systems. The same is possible for natively running Docker
containers, that are part of custom Docker networks. Docker resolves
container names in containers running in the same network.

This approach is used to run all kinds of services locally and is especially
useful to run mock servers.

The following snippet shows an example of the idea of running a local test
environment:

#!/bin/bash

previous steps omitted

docker run -d \

 --name assembly-line \

 -p 8181:8080 \

 docker.example.com/wiremock:2.6

docker run -d \

 --name car-manufacture-st \

 -p 8080:8080 \

 car-manufacture

...

Similar to the system test example, the WireMock server will be configured
as part of the test case. The local environment needs to ensure that hostnames
point to the corresponding localhost containers.

www.EBooksWorld.ir

For more complex setups, it makes sense to run the services in a container
orchestration cluster as well. There are local installation options for
Kubernetes or OpenShift available. The container orchestration abstracts
cluster nodes. It therefore makes no difference for infrastructure as code
definitions, whether a cluster runs locally, as a single node, in a server
environment on-premises, or in the cloud.

This enables engineers to use the very same definitions that are used in the
test environments. Running a local Kubernetes installation simplifies the
shell scripts to a few kubectl commands.

If installing Kubernetes or OpenShift locally is too oversized, orchestration
alternatives such as Docker Compose can be used as lightweight alternatives.
Docker Compose also defines multi-container environments and their
configuration in infrastructure as code files - executable by a single
command. It provides similar benefits as Kubernetes. Arquillian Cube is
another sophisticated way of orchestrating and running Docker containers.

Automating steps locally via scripts, highly increases the developer's
productivity. Running system tests on local machines benefits engineers by
providing faster feedback with less disruption.

www.EBooksWorld.ir

Maintaining test data and scenarios
Test cases verify that the application will behave as expected when deployed
to production. The tests also ensure that the expectations are still met when
new features are developed.

However, it's not sufficient to define test scenarios and test data only once.
Business logic will evolve and change over time and test cases need to adapt.

www.EBooksWorld.ir

Importance of maintainable tests
Both for writing and managing test cases, it's crucial to create maintainable
test code. Over time the number of test cases will increase. In order to stay
productive during development, some time and effort needs to be spent on the
test code quality.

For production code, every engineer agrees that code quality is an important
requirement. Since tests are not part of the application that is running in
production they are often treated differently. Experience shows that
developers rarely invest time and effort in test code quality. However, the
quality of test cases has a huge impact on the developer's productivity.

There are some signs that indicate poorly written tests.

www.EBooksWorld.ir

Signs of lack of test quality
Generally speaking, development time that is overly spent in test code rather
than in production code can be a sign of poorly designed or crafted tests. A
feature that is being implemented or changed will cause some tests to fail.
How fast can the test code adapt? How many occurrences of test data or
functionality are there that need to be changed? How easy is it to add test
cases to the existing code base?

Failing tests that are being @Ignored for more than a very short period of time
are also an indicator of a potential flaw in test quality. If the test case is
logically still relevant, it needs to be stabilized and fixed. If it becomes
obsolete, it should be deleted. However, tests should never be deleted in order
to save time and effort that would be necessary to fix them when the test
scenarios would logically still be relevant.

Copy and pasting test code should also be an alarming signal. This practice is
sadly quite common in enterprise projects, especially when test scenarios
slightly differ in their behavior. Copy and pasting violates the don't repeat
yourself (DRY) principle and introduces a lot of duplication which makes
future changes expensive.

www.EBooksWorld.ir

Test code quality
While production code quality is important for keeping a constant
development velocity, test code quality is so as well. Tests, however, are
mostly not treated in the same way. Experience shows that enterprise projects
rarely invest time and effort into refactoring tests.

In general the same practices for high code quality apply for test code as they
do for live code. Certain principles are especially important for tests.

First of all, the DRY principle certainly has its importance. On code level this
means to avoid repeating definitions, test procedures, and code duplication
that contains just minor differences.

For test data, the same principle applies. Experience shows that multiple test
case scenarios that use similar test data tempt developers to use copy and
pasting. However, doing so will lead to an unmaintainable code base, once
changes in the test data have to be made.

The same is true for assertions and mock verifications. Assert statements and
verifications that are applied one by one directly in the test method, similarly
lead to duplication and challenges with maintenance.

Typically the biggest issue in test code quality is missing abstraction layers.
Test cases too often contain different aspects and responsibilities. They mix
business with technical concerns.

Let me give an example of a poorly written system test in pseudo code:

@Test

public void testCarCreation() {

 id = "X123A345"

 engine = EngineType.DIESEL

 color = Color.RED

 // verify car X123A345 not existent

 response = carsTarget.request().get()

 assertThat(response.status).is(OK)

 cars = response.readEntity(List<Car>)

www.EBooksWorld.ir

 if (cars.stream().anyMatch(c -> c.getId().equals(id)))

 fail("Car with ID '" + id + "' existed before")

 // create car X123A345

 JsonObject json = Json.createObjectBuilder()

 .add("identifier", id)

 .add("engine-type", engine.name())

 .add("color", color.name())

 response = carsTarget.request().post(Entity.json(json))

 assertThat(response.status).is(CREATED)

 assertThat(response.header(LOCATION)).contains(id)

 // verify car X123A345

 response = carsTarget.path(id).request().get()

 assertThat(response.status).is(OK)

 car = response.readEntity(Car)

 assertThat(car.engine).is(engine)

 assertThat(car.color).is(color)

 // verify car X123A345 existent

 // ... similar invocations as before

 if (cars.stream().noneMatch(c -> c.getId().equals(id)))

 fail("Car with ID '" + id + "' not existent");

}

Readers might have noticed that it requires quite some effort to comprehend
the test case. The inline comments provide some help, but comments like
these are in general rather a sign of poorly constructed code.

The example, however, is similar to the system test example crafted
previously.

The challenge with test cases like these is not only that they're harder to
comprehend. Mixing multiple concerns, both technically and business
motivated into a single class, or even a single method, introduces duplication
and rules out maintainability. What if the payload of the car manufacture
service changes? What if the logical flow of the test case changes? What if
new test cases with similar flow but different data need to be written? Do
developers copy and paste all code and modify the few aspects then? Or what
if the overall communication changes from HTTP to another protocol?

For test cases, the most important code quality principles are to apply proper
abstraction layers together with delegation.

Developers need to ask themselves which concerns this test scenario has.

www.EBooksWorld.ir

There is the test logical flow, verifying the creation of a car with required
steps. There is the communication part, involving HTTP invocations and
JSON mapping. There might be an external system involved, maybe
represented as a mock server that needs to be controlled. And there are
assertions and verifications to be performed on these different aspects.

This is the reason why we crafted the previous system test example with
several components, all of them concerning different responsibilities. There
should be one component for accessing the application under test, including
all communication implementation details required. In the previous example,
this was the responsibility of the car manufacturer delegate.

Similar to the assembly line delegate, it makes sense to add one component
for every mock system involved. These components encapsulate
configuration, control, and verification behavior of the mock servers.

Verifications that are made on test business level are advisably outsourced as
well, either into private methods or delegates depending on the situation. The
test delegates can then again encapsulate logic into more abstraction layers, if
required by the technology or the test case.

All of these delegate classes and methods become single points of
responsibility. They are reused within all similar test cases. Potential changes
only affect the points of responsibility, leaving other parts of the test cases
unaffected.

This requires the definition of clear interfaces between the components that
don't leak the implementation details. For this reason it makes sense,
especially for the system test scope, to have a dedicated, simple model
representation. This model can be implemented simply and straightforward
with potentially less type safety than the production code.

A reasonable green field approach, similar to the previous system test
example, is to start with writing comments and continuously replacing them
with delegates while going down the abstraction layers. This starts with what
the test logically executes first, implementation details second. Following that
approach naturally avoids mixing business and technical test concerns. It also

www.EBooksWorld.ir

enables simpler integration of test technology that supports writing tests
productively, such as Cucumber-JVM or FitNesse.

www.EBooksWorld.ir

Test technology support
Some test technology also support crafting maintainable tests. AssertJ, for
example, provides the possibility to create custom assertions. In our test case
the car needs to verify the correct engine and color encapsulated into car
specifications. Custom assertions can decrease overall duplication in the test
scope.

The following shows a custom AssertJ assertion for verifying a car:

import org.assertj.core.api.AbstractAssert;

public class CarAssert extends AbstractAssert<CarAssert, Car> {

 public CarAssert(Car actual) {

 super(actual, CarAssert.class);

 }

 public static CarAssert assertThat(Car actual) {

 return new CarAssert(actual);

 }

 public CarAssert isEnvironmentalFriendly() {

 isNotNull();

 if (actual.getSpecification().getEngine() != EngineType.ELECTRIC) {

 failWithMessage("Expected car with environmental friendly engine but was <%s>",

 actual.getEngine());

 }

 return this;

 }

 public CarAssert satisfies(Specification spec) {

 ...

 }

 public CarAssert hasColor(Color color) {

 isNotNull();

 if (!Objects.equals(actual.getColor(), color)) {

 failWithMessage("Expected car's color to be <%s> but was <%s>",

 color, actual.getColor());

 }

 return this;

 }

 public CarAssert hasEngine(EngineType type) {

 ...

 }

www.EBooksWorld.ir

}

The assertion is then usable within the test scope. The correct static import of
the CarAssert class has to be chosen for the assertThat() method:

assertThat(car)

 .hasColor(Color.BLACK)

 .isEnvironmentalFriendly();

The examples in this chapter showed tests written mainly with Java, JUnit,
and Mockito, with the exception of embedded application containers and
Gatling. There are dozens of other test technologies that uses different
frameworks as well as dynamic JVM languages.

A famous example of this the Spock Testing Framework which uses
Groovy. The motivation behind this technology was to write leaner, more
maintainable tests. Since dynamic JVM languages such as Groovy or Scala
are less verbose than plain Java, this idea sounds reasonable.

Test frameworks, such as Spock, indeed result in test cases that require
minimal code. They make use of dynamic JVM language features such as
less-constraint method names such as def "car X123A234 should be created"().
Spock testing also provides clear readability with low effort.

However, readable tests are achievable with all test technologies if test code
quality is minded. Maintainability, in particular, is rather a question of well-
crafted test cases and proper abstraction layers than of the technology being
used. Once test cases become quite complex, the impact of the technology on
maintainability becomes less relevant.

When choosing test technology, the team's familiarity with the technology
should also be considered. At the time of writing, enterprise Java developers
are usually less familiar with dynamic JVM languages.

However, the test code quality should be more important than the used
technology. Applying good practices of software engineering to tests should
be considered as mandatory, using other test frameworks as optional.
Refactoring test cases frequently increases the maintainability and reusability
of test components and ultimately the quality of the software project.

www.EBooksWorld.ir

Summary
Tests are required to verify software functionality in simulated environments.
Software tests should run predictably, isolated, reliably, fast, and in an
automated way. In order to enable productive project life cycles, it's
important to keep tests maintainable.

Unit tests verify the behavior of individual units of an application, mostly
single entity, boundary, or control classes. Component tests verify the
behavior of coherent components. Integration tests fulfill the need to verify
the interaction of the Java EE components. Database integration tests use
embedded databases together with standalone JPA to verify the persistence
mapping. System tests verify deployed applications that run on actual
environments. Container orchestration heavily supports running system test
environments with potential mock applications.

In order to verify functionality before it is pushed to the central repository,
engineers need the ability to run tests on their local environment. Changes
that contain careless mistakes disturb other teammates by unnecessarily
breaking the build. Docker, Docker Compose, and Kubernetes can run on
local environments as well, enabling developers to verify behavior upfront.
It's advisable to craft simple automation scripts that include the required
steps.

In order to achieve a constant development velocity, it's required to develop
maintainable test cases. In general, test code should have a similar quality to
production code. This includes refactoring, proper abstraction layers, and
software quality in general.

These approaches are, in fact, more helpful than introducing sophisticated test
frameworks using dynamic JVM languages. Whereas frameworks such as
Spock certainly enable readable, minimal test cases, the benefits of using
proper practices of software craftsmanship have a more positive impact on
the overall test code quality, especially once test scenarios become complex.

www.EBooksWorld.ir

No matter what testing technology is being used, software engineers are
advised to mind the test code quality in order to keep test cases maintainable.

The following chapter will cover the topic of distributed systems and
microservices architectures.

www.EBooksWorld.ir

Microservices and System
Architecture
The previous chapters covered how to develop a single enterprise application
with Java EE. Modern applications contain infrastructure and configuration
definitions as code, making it possible to create environments in automated
ways, either on premises or in cloud platforms. Continuous Delivery
pipelines together with sufficient, automated test cases make it possible to
deliver enterprise applications with high quality and productivity. Modern
zero-dependency Java EE approaches support these efforts.

Enterprise systems rarely come with single responsibilities that could be
reasonably mapped into single enterprise applications. Traditionally,
enterprise applications combined multiple aspects of the business into
monolithic applications. The question is, whether this approach to crafting
distributed systems is advisable.

This chapter will cover:

The motivations behind distribution
Possibilities and challenges of distributed systems
How to design interdependent applications
Application boundaries, APIs, and documentation
Consistency, scalability, challenges, and solutions
Event sourcing, event-driven architectures, and CQRS
Microservice architectures
How Java EE fits the microservice world
How to realize resilient communication

www.EBooksWorld.ir

Motivations behind distributed
systems
One of the first questions should ask for the need for distribution. There are
several technical motivations behind designing distributed systems.

Typical enterprise scenarios are in essence distributed. Users or other systems
that are spread across locations need to communicate with a service. This
needs to happen over the network.

Another reason is scalability. If a single application reaches the point where it
cannot reliably serve the overall load of clients, the business logic needs to be
distributed to multiple hosts.

A similar reasoning aims toward a system's fault tolerance. Single
applications represent single points of failure; if the single application is
unavailable, the service won't be usable by the clients. Distributing services
to multiple locations increases availability and resilience.

There are also other less technology-driven motivations. An application
represents certain business responsibilities. In Domain-Driven Design
language they are contained in the application's bounded context. Bounded
contexts include the business concerns, logic, and data of the application and
differentiate it from external concerns.

In the same way as engineers cluster code responsibilities into packages and
modules, it certainly makes sense to craft contexts on a system scale as well.
Coherent business logic and functionality is grouped into separate services as
part of separate applications. The data and schema is also part of a bounded
context. It can therefore be encapsulated into several database instances,
which are owned by the corresponding distributed applications.

www.EBooksWorld.ir

Challenges of distribution
With all these motivations, especially technical ones such as scalability, why
shouldn't engineers distribute everything then? Distribution comes with
certain overheads.

In general, the overall overhead that comes on top of the system's distilled
business logic will be multiplied by the number of applications involved. For
example, a single, monolithic application requires a monitoring solution.
Distributing this application will cause all resulting applications to be
monitored as well.

www.EBooksWorld.ir

Communication overhead
In distribution, first of all, there is an overhead cost in communicating
between systems.

Technology is very effective in communicating within a single process. There
is effectively no overhead in calling functionality that is part of the
application. As soon as inter-process or remote communication is required,
engineers have to define interface abstractions. Communication protocols
such as HTTP have to be defined and used in order to exchange information.

This requires certain time and effort. Communication between applications
has to be defined, implemented, and maintained. Within a single application,
the communication is reflected in method invocations.

The required communication also becomes a concern of the business use
case. It can no longer be assumed that certain functionality or data can be just
used without any overhead. Communicating with the distributed system
becomes a responsibility of the application.

www.EBooksWorld.ir

Performance overhead
Distributing applications at first decreases performance of the overall
systems. Computer networks are slower than communication within a single
host. Therefore networking will always come with a certain performance
overhead.

The overhead in performance is not only caused by the communication itself,
but also the need to synchronize. Synchronization within a single process
already consumes certain processing time, and this impact is much bigger
when distribution is involved.

However, despite this overhead in performance, distribution eventually
increases the overall performance of the system as its applications scale out.
Scaling horizontally always comes with a certain performance overhead
compared to a single instance.

www.EBooksWorld.ir

Organizational overhead
Distributed systems containing several applications certainly need more
organizational effort than a single one.

Multiple applications imply multiple deployments that need to be managed.
Deploying new versions may have an impact on dependent applications.
Teams need to ensure that versions of deployed applications work together
well. Single, monolithic applications are not affected by this since they are
consistent within themselves.

Besides that, multiple applications are developed in several projects and
repositories, usually by multiple development teams. In particular, having
multiple teams requires communication, not necessarily technically, but
human-related communication. In the same way as for deploying
applications, responsibilities, system boundaries, and dependencies need to
be agreed upon.

www.EBooksWorld.ir

How to design systems landscapes
With all of these challenges and overheads involved, a lot of scenarios still
require distribution. It's important to mention, that there must be enough
motivation behind distributing systems. Distribution comes with costs and
risks. If it's not necessary to distribute, building monolithic applications is
always to be preferred.

Now, let's look into how to design reasonable system landscapes, tailored for
business requirements.

www.EBooksWorld.ir

Context maps and bounded contexts
Bounded contexts define the application's responsibilities in business logic,
behavior, and data ownership. So-called context maps, as described in
Domain-Driven Design, represent the entire system landscape. It shows the
individual responsibilities, contexts, and belongings of its applications.
Bounded contexts therefore fit within a context map to show how they
exchange information among each other.

The following shows the context map of the cars domain, including two
bounded contexts:

It's advisable to consider the different responsibilities of the system before
designing and carving out applications. Lack of clarity on an application's
responsibilities usually emerges quickly as soon as the system's context map
is recorded.

Context maps are not only helpful during the initial project definition, but
also during revisiting and refining responsibilities once business functionality
changes. In order to prevent the boundaries and belongings of distribution
applications from drifting apart, it's advisable to reflect on them from time to
time.

www.EBooksWorld.ir

Separation of concerns
The application's responsibilities should be clearly defined and differentiated
from other applications.

In the same way as with code level, the concerns of several applications
should be separated. The single responsibility principle holds true here as
well.

The application's concerns include all business concerns, application
boundaries, and owned data. As the business logic evolves and changes over
time, these concerns should be revisited from time to time. This may result in
applications that split up or get merged into single ones. The responsibilities
and concerns that emerge from the context map should be reflected in the
system's applications.

Data and data ownership is an important aspect of distributed applications.
The business processes, being part of the bounded context defines the data
involved in the use cases. Owned data are a concern of the specific
applications and are only shared via the defined boundaries. Use cases that
require data that is under the responsibility of another, remote application
need to retrieve the information by remotely invoking the corresponding use
cases.

www.EBooksWorld.ir

Teams
Teams and organizational structure are other important aspects to consider
when designing distributed systems, since, as of writing this book, software is
developed by humans. Considering Conway's law, that the organization's
communication structure will eventually leak into the constructed system,
teams should be defined similarly to the applications in the system.

Or, in other words, it makes sense for a single application to be developed by
only a single team. Depending on the responsibilities and sizes, a single team
can potentially craft multiple applications.

Again, comparing to the project code structure, this is a similar approach as
horizontal versus vertical module layering. Similar to business motivated
module structures, teams are therefore organized vertically, representing the
structure of the context map. For example, rather than having several expert
teams on software architecture, development, or operations, there will be
teams for car manufacture, assembly line, and order management.

www.EBooksWorld.ir

Project life cycles
With individual teams being involved in developing distributed systems,
applications will have independent project life cycles. This includes the way
teams operate, for example, how they organize their sprint cycles.

The deployment cycles and schedules also emerge from the project life cycle.
For the overall system to stay consistent and functional, potential
dependencies on deployments of other applications need to be defined. This
does not only target the application's availability.

Deployed application versions need to be compatible. In order to ensure this,
applications that are dependent need to be clearly represented in the context
map. Teams will have to communicate when dependent services introduce
changes.

Again, painting a clear context map containing the bounded contexts helps
define the interdependent applications and their responsibilities.

www.EBooksWorld.ir

How to design system interfaces
After the responsibilities of the system landscape have been defined, the
boundaries of dependent systems need to be specified.

In previous chapters, we have seen various communication protocols and
how to implement them. Besides the actual implementation, the question is
now: how to design the interfaces of applications? Which aspects need to be
considered, especially in distributed systems?

www.EBooksWorld.ir

API considerations
The applications within a system are carved out based on their business
responsibilities.

Similarly, the application's API should represent that business logic as well.
The exposed API represents the business use cases a certain application
comprises. This implies that a business domain expert can, without any
further technical knowledge, identify the exposed business use cases from an
API.

The business use cases are ideally offered in clear, lean interfaces. Invoking a
use case should not require more technically-motivated communication steps
or details than being part of the business logic. For example, if the create a
car use case could be invoked as a single operation, the API of the car
manufacture application should not require multiple invocations providing
technical details.

An API should abstract the business logic in a clear, lean interface.

The API should therefore be decoupled from the application's
implementation. The interface implementation should be independent from
the chosen technology. This also implies that a communication format is
chosen that doesn't set many constraints on the used technology.

It therefore makes sense to prefer technology that sets on standard protocols
such as HTTP. It's more likely that engineer have knowledge in commonly
used protocols, as that are supported by various technologies and tools.
Creating application interfaces in HTTP web services allows clients to be
developed in every technology that supports HTTP.

Abstracting the business logic in clear, lean interfaces that use standard
protocols also enables change in used implementations, technologies, and
platforms. Java Enterprise applications that only expose HTTP services could

www.EBooksWorld.ir

replace their technology with other implementations, without requiring
dependent clients to change.

www.EBooksWorld.ir

Interface management
Application interfaces are often subject to change during the development
process.

New business use cases are included and existing one refined. The question
is, how are these changes reflected in the API?

It depends on the nature and environment of the enterprise application how
stable the API needs to be. If the project team is both in charge of the service,
all clients and their life cycles, the API can introduce arbitrary changes that
are reflected in the clients at the same time. The case is the same if for some
reason the life cycles of involved applications are identical.

Usually, life cycles of distributed systems aren't that tightly coupled. For any
other client/server model, or applications that have different life cycles, the
APIs must not break existing clients. This means that the APIs are fully
backwards-compatible, not introducing breaking changes.

www.EBooksWorld.ir

Change-resilient APIs
There are certain principles in designing interfaces that prevent unnecessary
breaks. For example, introducing new, optional payload data should not break
the contract. Technology should be resilient as far as it can continue to work
if all necessary data is provided. This matches the idea of being conservative
in what you do and liberal in what you accept.

Therefore adding new, optional functionality or data should be possible
without breaking clients. But what if existing logic changes?

www.EBooksWorld.ir

Breaking the business logic
The question to be asked here is what a breaking change in the API means for
the business use case. Is the application's past behavior not valid anymore?
Should the client have to stop working from now on?

This is equivalent to, for example, a vendor of a widely-used smartphone app
that decides to break existing versions and to force the users to update the
installations to its latest version. There is arguably no need in doing so for
existing functionality to continue.

If for some reason the existing use cases can't be used as is anymore, some
additional, compensating business logic should be considered.

www.EBooksWorld.ir

Hypermedia REST and versioning
Hypermedia REST APIs can bring some relief with this issue. In particular,
Hypermedia controls provide the ability to evolve the API by dynamically
defining resource links and actions. The clients of the REST service will
adapt to the changes in accessing the services and considerately ignore
unknown functionality.

A quite often suggested possibility is to version the API. This means
introducing different operations or resources, such as /car-manufacture/v1/cars,
with the version as the identifying part of the API. Versioning APIs,
however, contradicts the idea of clean interfaces. In particular, since REST
APIs resources represent domain entities, introducing several versions of a
car doesn't make sense in business terms. The car entity is identified by its
URI. Changing the URI to reflect changes in the business functionality would
imply a change to the car's identity.

Sometimes several, different representations, or versions, of the same domain
entities are required, for example, JSON mappings containing different sets
of properties. Via HTTP interface this is achievable via content negotiation,
by defining content type parameters. For example, different JSON
representations for the same car can be requested via content types such as
application/json;vnd.example.car+v2, if supported by the corresponding service.

Managing interfaces is a relevant topic for distributed systems. It's advisable
to carefully design APIs upfront, with backwards-compatibility in mind.
Extra efforts, such as additional operations that prevent an API from breaking
existing functionality, should be preferred over clean interfaces that disrupt
clients.

www.EBooksWorld.ir

Documenting boundaries
Application boundaries that define APIs to invoke the application's business
logic need to be made public to its clients, for example, other applications
within the system. The question is, what information needs to be
documented?

The application's bounded context is part of the context map. Therefore, the
domain responsibilities should be clear. The application fulfills certain
business use cases within its context.

This domain information needs to be documented first. Clients should be
aware of what the application offers. This includes the use cases as well as
the exchanged information and data ownership.

The responsibility of the car manufacture application is to assemble cars due
to provided, exact specifications. The status information of manufactured cars
is owned by the application for the whole process of assembling, until the car
reaches the end of the production line and is ready for delivery. The
application can be polled to provide status updates about the creation process
of a car.

The application's domain description should contain the information the
clients require, be precise in responsibilities, but not too verbose, only
exposing what clients need to know.

Besides the business domain, there are technical aspects that need to be
documented. Client applications need to be programmed against a system's
API. They require information about the communication protocols, as well as
data formats.

We covered several communication protocols and how to implement them in
the second chapter of this book. At the time of writing, one of the most used
protocols is HTTP, together with JSON or XML content types. With the

www.EBooksWorld.ir

example of HTTP, what needs to be documented?

HTTP endpoints, especially those following the REST constraints, represent
the domain entities as resources, locatable by URLs. The available URLs
need to be documented first. Clients will connect against these URLs in order
to perform some business use cases. For example, the /car-
manufacture/cars/<car-id> URL will refer to a particular car specified by its
identifier.

The content type with detailed mapping information needs to be documented
as well. Clients need to be aware of the structure and properties within the
used content type.

For example, a car specification that is provided in order to create a car
contains an identifier, an engine type, and a chassis color. The JSON format
will look as follows:

{

 "identifier": "<car-identifier>",

 "engine-type": "<engine-type>",

 "color": "<chassis-color>"

}

The types and available values need to be documented as well. They will
point to the business domain knowledge, the semantics behind an engine
type. This is important, that both the content types as well as the semantics of
the information are documented.

In the case of HTTP there will be more aspects to be documented such as
potentially required header information, status codes provided by the web
service, and so on.

All this documentation certainly depends on the used technology and
communication protocol. The business domain, however, should also be part
of the documentation, providing as much context as required.

The application's API documentation is part of the software project. It needs
to be shipped together with the application in a particular version.

www.EBooksWorld.ir

In order to ensure that the documentation matches the application's version, it
should be part of the project repository, residing under version control as
well. Therefore, it's highly advisable to use text-based documentation formats
instead of binary formats such as Word documents. Lightweight markup
languages such as AsciiDoc or Markdown have proven themselves well in
the past.

The benefit of maintaining the documentation directly in the project, next to
the application's sources, is to ensure the creation of documentation versions
that are consistent with the developed service. Engineers are able to perform
both changes in one step. Doing so prevents the documentation and service
version from diverging.

There is a lot of tool support in documenting application boundaries
depending on the communication technology. For HTTP web services for
example, the OpenAPI Specification together with Swagger as a
documentation framework are widely used. Swagger outputs the API
definition as browsable HTML, making it easy for developers to identify the
offered resources together with their usages.

Using Hypermedia REST services, however, gets rids of the biggest necessity
of service documentation. Providing the information of which resources are
available in links removes the need for documenting URLs. In fact, the server
gets back the control of how URLs are constructed. Clients only enter an
entry point, for example /car-manufacture/, and follow the provided
Hypermedia links based on their relations. The knowledge what a car URL
consists of solely resides on the server side and is explicitly not documented.

This is especially true for Hypermedia controls, not only directing the client
to resources, but providing information on how to consume it. The car
manufacture service that tells a client how to perform the create-car action: A
POST request to /car-manufacture/cars is needed, including a request body in
JSON content type with properties identifier, engine-type, and color.

The client needs to know the semantics of all relations and action names as
well as the properties and where they originate. This is certainly client logic.

www.EBooksWorld.ir

All information on how to consume the API becomes part of the API.
Designing REST services then eliminates the need for a lot of documentation.

www.EBooksWorld.ir

Consistency versus scalability
Certainly it's necessary for distributed system to communicate. Since
computer networks cannot be considered as reliable, even not in company-
internal networks, reliable communication is a necessity. Business use cases
are required to communicate in a reliable way, in order to ensure correct
behavior.

Earlier in this book, we introduced the so-called CAP theorem that claims
that it's impossible for distributed data stores to guarantee at most two of the
three specified constraints. Systems can effectively choose whether they want
to guarantee consistency or horizontal scalability. This highly affects the
communication in a distributed world.

In general, enterprise systems should be consistent in their use cases.
Business logic should transform the overall system from one consistent state
to another, different consistent state.

In distributed systems, an overall consistent state would imply that use cases
that communicate to external concerns would have to ensure that the invoked
external logic also adheres to consistency. This approach leads to distributed
transactions. Use cases that are invoked on a system would execute in an all-
or-nothing fashion, including all external systems. This implies a need for a
lock on all involved, distributed functionality until every single distributed
application successfully performed its responsibilities.

Naturally, this approach doesn't scale. The fact that the system is distributed
requires this transaction orchestration to be performed over the potentially
slow network. This introduces a bottleneck, which results in a locking
situation, since involved applications have to block and wait a relatively large
amount of time.

Generally speaking, synchronous, consistent communication is only
advisable for applications that don't involve more than two applications at a

www.EBooksWorld.ir

time. Performance tests as well as production experience indicate whether a
chosen communication scenario scales well enough for the given use case
and environment.

Using asynchronous communication is motivated by scalability. Distributed
systems that communicate asynchronously won't, by definition, be consistent
at all times. Asynchronous communication can happen on a logical level,
where synchronous calls only initiate business logic without awaiting a
consistent result.

Let's have a look into the motivations and design behind asynchronous,
eventually consistent communication in distributed applications.

www.EBooksWorld.ir

Event sourcing, event-driven
architectures, and CQRS
Traditionally, enterprise applications are built using a model approach that is
based on the atomic Create Read Update Delete (CRUD).

The current state of the system, including the state of the domain entities, is
reflected in a relational database. If a domain entity is updated, the new state
of the entity including all of its properties is put into the database and the old
state is gone.

The CRUD approach requires applications to maintain consistency. In order
to ensure the state of the domain entity is reflected correctly, all use case
invocations have to be executed in a consistent manner, synchronizing
modifications to the entities.

www.EBooksWorld.ir

Shortcomings of CRUD-based
systems
This synchronization is also one of the shortcomings of CRUD-based
systems, the way that we typically build applications.

www.EBooksWorld.ir

Scalability
The required synchronization prevents the system from scaling infinitely. All
transactions are executed on the relational database instance, which
eventually introduces a bottleneck if the system needs to scale out.

This ultimately becomes a challenge for situations with huge amounts of
workloads or huge numbers of users. For the vast majority of enterprise
applications, however, the scalability of relational databases is sufficient.

www.EBooksWorld.ir

Competing transactions
Another challenge that comes with CRUD-based models is to handle
competing transactions. Business use cases that include the same domain
entities and operate simultaneously need to ensure that the resulting state of
the entities is consistent.

Editing a user's name and at the same time updating its account credit limit
should not result in lost updates. The implementation has to ensure that the
overall result of both transactions is still consistent.

Competing transactions that rely on optimistic locking usually result in
failing transactions. This is definitely not ideal from a user's perspective, but
at least maintains consistency, rather than suppressing that a transaction has
been lost in space.

Following this approach, however, potentially leads to unnecessary locking.
From a business theory perspective it should be possible to simultaneously
edit the user's name and account credit limit.

www.EBooksWorld.ir

Reproducibility
Since the application only stores its current state, all historical information
about previous states is gone. The state is always overwritten by the new
updates.

This makes it hard to reproduce how an application got into its current state.
If a current state was miscalculated from its originating use case invocations,
there is no possibility of fixing the situation later on.

Some scenarios explicitly require reproducibility for legal terms. Some
applications therefore include audit logs that permanently write certain
information as soon as they happen to the system.

www.EBooksWorld.ir

Event sourcing
Event sourcing is an approach that tackles reproducibility as a shortcoming of
CRUD-based systems.

Event sourced systems calculate the current state of the systems from atomic
events that happened in the past. The events represent the individual business
use case invocations, including the information provided in the invocations.

The current state is not permanently persisted, but emerges by applying all
events one after another. The events themselves happened in the past and are
immutable.

To give an example, a user with its characteristics is calculated from all
events related to it. Applying UserCreated, UserApproved, and UserNameChanged one
after another creates the current representation of the user up to its recent
event:

The events contain self-sufficient information mostly concerning the
corresponding use case. For example, a UserNameChanged event contains the time
stamp and the name the user was changed to, not other, unrelated information
about the user. The event's information is therefore atomic.

www.EBooksWorld.ir

Events are never changed nor deleted. If a domain entity is removed from the
application, there will be a corresponding deletion event such as UserDeleted.
The current state of the system then won't contain this user anymore after
applying all events.

www.EBooksWorld.ir

Benefits
An event-sourced application contains all of its information in atomic events.
Therefore, the full history and context, how it got into its current state, is
available. In order to reproduce the current state for debugging purposes, all
events and their individual modifications to the system can be regarded.

The fact that everything that happened to the system is stored atomically has
a couple of benefits, not only for debugging purposes.

Tests can make use of this information to replay everything that happened to
a production system in system tests. Tests are then able to re-execute the
exact business use case invocations that happened in productions. This is an
advantage especially for system and performance tests.

The same is true for statistics that use the atomic information to gather
insights about the usage of the application. This enables use cases and
insights that are designed after an application has been deployed.

Assuming a manager wants to know how many users were created on a
Monday, after the application has been running for two years. With CRUD-
based systems that information would have had to explicitly been persisted
by the time the use case was invoked. Use cases that were not explicitly
requested in the past can only be added as new features, and will add value in
the future.

With event sourcing these functionalities are possible. Since information
about whatever happened to the system is stored, use cases that are developed
in the future are able to operate on data that happened in the past.

These benefits, however, are certainly possible without the need for
distributed systems. A monolithic, independent application can base its model
on event sourcing, gaining the same benefits from it.

www.EBooksWorld.ir

Eventually consistent real world
Before we go further into distributed systems in regard to consistency and
scalability, let's look at an example of how consistent the real world is.
Enterprise applications are typically built with the aspiration to provide full
consistency. The real world, however, is highly distributed and not consistent
at all.

Imagine you're hungry and you want to eat a burger. So you go to a
restaurant, sit at a table, and tell the waiter that you would like to have a
burger. The waiter will accept your order. Now, although your order has been
accepted this doesn't necessarily mean that you will receive your meal. The
process of ordering a meal is not fully consistent.

A lot of things can go wrong at this point. For example, the chef may tell the
waiter that unfortunately the last burger patty was just used and there won't
be more burgers for the day. So although your order has transactionally been
accepted, the waiter will come back and tell you that the order won't be
possible.

Now, instead of asking you to leave, the waiter might suggest to you an
alternative dish. And if you're hungry and fine with the substitute you might
eventually receive a meal.

This is how the highly distributed real world handles business use case
transactions.

If the restaurant would be modeled in a fully consistent way the scenario
would look different. In order to guarantee that an order is only accepted if it
will be possible to provide the prepared meal, the whole restaurant would
need to be locked down. The customers would have to wait and hold the
conversation while the waiter goes into the kitchen and orders the meal from
the chef. Since many other things can go wrong after ordering, the whole
order transaction would actually have to block until the meal is fully

www.EBooksWorld.ir

prepared.

Obviously, this approach would not work. Instead, the real world is all about
collaboration, intentions, and eventually dealing with issues if the intentions
can't be fulfilled.

This means that the real world operates in an eventually consistent way.
Eventually, the restaurant system will be in a consistent state, but not
necessarily at all times, which leads to initially accepting orders that are
actually not possible.

Real-world processes are represented as intentions or commands, such as
ordering a burger, and atomic outcomes or events, such as that the order has
been accepted. Events will then cause new commands that result in new
outcomes or failures.

www.EBooksWorld.ir

Event-driven architectures
Now back to the topic of distributed systems. In the same way as for a
restaurant, distributed systems that communicate in a consistent way, via
distributed transactions, won't be able to scale.

Event-driven architectures solve this issue. The communication in these
architectures happens via asynchronous events that are published and
consumed reliably.

By doing so, consistent use case transactions get split up into multiple,
smaller-scaled transactions that are consistent in themselves. This leads the
overall use case eventually being consistent.

Let's see an example of how the use case of ordering a burger is represented
in an event-driven architecture. The restaurant system consists of at least two
distributed applications, the waiter and the chef. The restaurant applications
communicate by listening to each other's events. The client application will
communicate with the waiter in order to initiate the use case:

www.EBooksWorld.ir

The client orders a meal at the waiter application, which results in the
OrderPlaced event. Once the event has been published reliably, the orderMeal()
method's invocation returns. The client therefore is able to perform other
work in parallel.

The chef system receives the OrderPlaced event and validates whether the order
is possible with the currently available ingredients. If the order wouldn't be
possible, the chef would emit a different event, such as
OrderFailedInsufficientIngredients. In that case, the waiter would update the
order status to failed.

When initiating the meal preparation was successful, the waiter receives the
MealPreparationStarted event and updates the status of the order, what results in
OrderStarted. If the client would ask the waiter about the status of their order, it
could respond appropriately.

www.EBooksWorld.ir

At some point the meal preparation would have been finished, resulting in a
MealPrepared event, which notifies the waiter to deliver the order.

www.EBooksWorld.ir

Eventual consistency in event-
driven architectures
The use case of ordering a meal is eventually consistent. Publishing the
events reliably still ensures that all clients eventually know about the status of
their order.

It is somewhat fine if processing the order doesn't happen immediately or if
the order will fail for some reason. However, it must not happen that an order
gets lost in the system due to unavailable applications. This needs to be
ensured when publishing the events.

There are still transactions involved here, but on a much smaller scale and not
involving external systems. Doing so enables distributed systems to cover
transactional use cases while still enabling horizontal scalability.

The fact that some reliability is required for approaches like event-driven
architectures is an important aspect in distributed systems, and should be
considered when designing solutions and choosing technology.

www.EBooksWorld.ir

Enter CQRS
Now let's combine the motivations behind event-driven architectures and
event sourcing.

Event-driven architectures communicate by atomic events. It makes sense to
piggyback on this approach and build the system using event sourcing, by
using the events as the system's source of truth. Doing so combines the
benefits of both approaches, enabling horizontally scalable, event-sourced
systems.

The question is how to model event-driven applications that base their
domain model on events? And how to efficiently calculate and return the
current state of domain entities?

The Command Query Responsibility Segregation (CQRS) principle
describes how to model these applications. It is a consequence of event-
driven architectures and is based on event sourcing.

www.EBooksWorld.ir

Principles
As the name suggests, CQRS separates the responsibilities for commands and
queries, namely writes and reads.

A command changes the state of the system by ultimately producing events.
It is not allowed to return any data. Either the command succeeds, which
results in zero or more events, or it fails with an error. The events are
produced reliably.

A query retrieves and returns data, without side effects on the system. It is
not allowed to modify state.

To give an example in Java code, a command acts like a void doSomething()
method, which changes state. A query acts like a getter String getSomething(),
which has no impact on the system's state. These principles sound simple, but
have some implications on the system's architecture.

The responsibilities of the commands and queries are separated into several
concerns, allowing CQRS applications to emerge in fully independent
applications that either write or read. Now, how to design and implement this
approach?

www.EBooksWorld.ir

Design
Following event-driven architectures, the write and read systems
communicate solely via events. The events are distributed via an event store
or event hub. There is no other coupling than the write systems that produce
events and both write and read systems that consume for events to update
their internal state.

The following snippet shows the architecture of a CQRS system:

The command and query services consume events from the event store. This
is the only way for communication between them.

All services maintain a current-state representation that reflects the state of
the domain entities. Entities are, for example, meal orders or cars, including
the latest state of their properties. This state is kept in memory or persisted in
databases.

These representations just enable the systems to contain a current state. The

www.EBooksWorld.ir

golden source of truth is the atomic events contained in the event store.

All application instances individually update their state representations by
consuming and applying the events from the event store.

The command services contain the business logic that initiates changes to the
systems. They produce events via the event store after potential command
verification using their state representations.

In order to make the flow of information clear, let's go through an example
meal order:

The client orders the meal at a command service instance. After a potential
verification against its representation, the command service produces the
OrderPlaced event to the event store. If publishing the event was successful, the
orderMeal() method returns. The client can proceed with its execution.

The command service can create a meal identifier for later retrieval, for

www.EBooksWorld.ir

example, as a universally unique identifier:

The event store publishes the event to all consumers, which updates their
internal representation accordingly. The client can access the status of the
meal at the query service using its identifier. The query service will respond
with its latest representation of the order.

In order to proceed with the order processing, an authority that invokes
potential subsequent commands will handle the event as well:

www.EBooksWorld.ir

An event handler will listen to the OrderPlaced event and invoke the
prepareMeal() use case of the chef system. This subsequent command will then
potentially result in new events.

The section Implementing microservices with Java EE, covers how to
implement CQRS among other things.

www.EBooksWorld.ir

Benefits
CQRS enables distributed applications to not only scale horizontally, but
independently in their write and read concerns. The replicas of query service,
for example, can be different from the number of command services.

The read and write load in enterprise applications is usually not evenly
distributed. Typically the read operations highly outperform the number of
writes. For these cases the number of read instances can be scaled out
independently. This would not be possible in a CRUD-based system.

Another benefit is that each service can optimize their state representations
accordingly. For example, persistently storing the domain entities in a
relational database might not be the best approach for every situation. It's also
possible to just store the representation in memory and to recalculate all
events at application startup. The point is that both the write and read
instances are free to choose and optimize their representations according to
the circumstances.

A side effect of this approach is also that CQRS provides read-side failover
availability. In case of the event store being unavailable no new events can be
published, therefore no use cases that modify state can be invoked on the
system. In CRUD-based systems this would correspond to the database being
down. In CQRS systems, however, at least the query services can still
provide the latest state from their representations.

The state representations of CQRS systems also solve the scalability issue of
event-sourced systems. Event-sourced systems calculate the current
application state from the atomic events. Executing this each and every time
an operation is invoked will over time become slower and slower as more
events arrive. The representations of the command and query services
eliminate this need by continuously applying the recent events.

www.EBooksWorld.ir

Shortcomings
Building CQRS systems not only has benefits, it also has shortcomings.

Probably one of the biggest shortcoming of constructing these systems is that
the majority of developers are not familiar with the concept, design and
implementations. This will introduce difficulties when this approach is
chosen in enterprise projects. Unlike CRUD-based systems, CQRS would
require additional training and know-how.

Like any distributed system, there are naturally more applications involved in
a CQRS system compared to the CRUD approach. As previously described
for distributed systems in general, this requires some extra effort.
Additionally, an event store is required.

Unlike the figures demonstrated, it is not mandatory to have the command
and query sides in two or more independent applications. As long as the
functionalities only communicate via events published by the event store,
both can reside within the same application. This would, for example, result
in a single waiter and chef application that still scales out horizontally. This is
a reasonable trade-off, if individually scaling the write and read sides is not
required.

www.EBooksWorld.ir

Communication
Building CQRS systems is one approach to realizing asynchronous,
eventually consistent communication. As we have seen previously in this
book, there are many forms of communication, synchronous as well as
asynchronous.

In order to enable scalable applications, distributed systems should not rely
on synchronous communication that involves several systems. This leads to
distributed transactions.

One approach to realize scalability with technology-agnostic, synchronous
communication protocols is to model logically asynchronous processes. For
example, communication protocols such as HTTP can be used to trigger
processing that happens asynchronously while the caller immediately returns.
This introduces eventual consistency, but enables the system to scale.

This also involves the consideration of whether the applications that made the
distributed system make a difference in system-internal, and external
communication. CQRS uses this approach by offering external interfaces, for
example, using HTTP, to the clients, whereas the services themselves
communicate via the event store. Modeling asynchronous processes that are
accessed via uniform protocol doesn't distinguish here.

In general, it's advisable to prefer availability, that is, scalability, over
consistency when designing distributed systems. There are many approaches
possible, CQRS is one of them, combining asynchronous communication
with event sourcing.

The following section covers the necessity of self-sufficient applications.

www.EBooksWorld.ir

Microservice architectures
We saw the motivations, challenges, and benefits of distributed systems, as
well as some approaches to handle communication and consistency. Now we
will focus on the architecture of distributed applications.

www.EBooksWorld.ir

Sharing data and technology in
enterprises
A common idea in enterprises is to share and reuse technology as well as
commonly used data. Earlier we looked at sharing Java modules and the
shortcomings with that. What about sharing common technology or data
models in distributed systems?

Multiple applications that form an enterprise system are often implemented
using similar technology. This comes naturally with applications that are built
by a single team or teams that work closely together. Doing so very often
raises the idea of sharing technology that is being reused in the applications.

Projects could use commonly used modules that remove duplication in the
overall system. A typical approach for this is shared models. There could be
only one module within the organization that is being reused in all projects.

Sharing models leads to the question whether potentially persisted domain
entities or transfer objects are being reused. Domain entities that are persisted
in a database could then even be directly retrieved from the database system,
right?

Commonly used databases stand in total contradiction to distributed systems.
They tightly couple the involved applications. Changes in schemas or
technology welds the application and project life cycles together. Commonly
used database instances prevent applications from being able to scale. This
eliminates the motivations behind distributed systems.

The same is true for sharing technology in general. As shown in previous
chapters, commonly used modules and dependencies introduce technical
constraints in the implementations. They couple the applications and limit
their independence in changes and life cycles. Teams will have to
communicate and discuss modifications, even if they would not affect the

www.EBooksWorld.ir

application's boundaries.

Looking at the domain knowledge and the responsibilities in the context map
of the system, sharing data and technology makes little sense. There are
indeed points of contact between the systems that are subject to be shared in
technology.

However, the point is to implement applications, which only depend on their
business responsibilities on the one side and documented communication
protocols on the other side. It's therefore advisable to choose potential
duplication and independence rather than coupling in technology.

Sharing other concerns rather than points of contact in the system's context
map should alert engineers. The application's different responsibilities should
make it clear that commonly used models or data reside in different contexts.
The individual applications are exclusively responsible for their concerns.

www.EBooksWorld.ir

Shared-nothing architectures
With these thoughts in mind it's advisable to craft applications that share no
common technology or data. They fulfill the application boundary contract in
communication and business responsibilities.

Shared-nothing architectures are independent in technology, potentially
used libraries, their data and schemas thereof. They are free to choose
implementations and potential persistence technology.

Changing the implementation of an application within a distributed system
from Python to Java should have no impact on the other applications, if the
contract of its HTTP interface is still met.

If data is required within other applications, this needs to be defined
explicitly in the context map, requiring the application to expose data via its
business logic interfaces. Databases are not shared.

Shared-nothing architectures enable applications with independent life cycles
that depend on nothing more than the explicitly defined contracts. Teams are
free to choose technology and the project life cycles. The technology, as well
as the data including databases, is owned by the application.

www.EBooksWorld.ir

Interdependent systems
Shared-nothing architectures eventually have to collaborate with other
applications. The defined contracts have to be met, documented, and
communicated.

This is the point, that shared-nothing architectures are only dependent on the
defined contracts and responsibilities. In case of changes in the business logic
the contracts are redefined and communicated. Solely the application's team
is responsible for how to implement the contracts.

Interdependent systems are made up of several shared-nothing applications
with well-defined interfaces. The used interfaces should be technology-
agnostic to not set constraints on the used implementation.

This is the idea behind microservice architectures. Microservices consist of
several interdependent applications that realize their individual business
responsibilities and, combined together, solve a problem.

The name microservice doesn't necessarily say anything about the size of the
application. An application should be built by a single team of developers.
For organizational reasons team sizes should not grow too big. There is an
often-cited notion by Amazon that the whole team should be able to survive
on two pizzas.

The motivations behind distributed systems should be considered before
crafting microservices. If there is no actual need to distribute a system, it
should be avoided. Sticking to monolithic applications with reasonable
responsibilities is to be preferred.

Usually the approach to craft microservice architectures is to slice up
monolithic applications that grow too large in responsibilities, or diverged in
teams and life cycles. This is comparable with refactoring approaches.
Refactoring a class that grew too big into multiple delegates works well more

www.EBooksWorld.ir

often than trying to introduce a perfect scenario from the beginning.

In general, it's always advisable to consider the business requirements,
context map of the system with their development teams and life cycles.

www.EBooksWorld.ir

12-factor and cloud native
applications
Chapter 5, Container and Cloud Environments with Java EE, introduced the
approaches of 12-factor and cloud native applications. They heavily support
microservice architectures.

In particular, the shared-nothing approach of having interdependent,
distributed applications is well realizable with the principles of containerized,
stateless, and scalable enterprise applications.

The 12-factor principles and the effective nature of cloud and container
environments support teams in developing microservices with manageable
overhead and high productivity.

However, an enterprise system doesn't not have to be distributed in order to
comply with the 12-factor or cloud native principles. The approaches are
certainly advisable for building monolithic applications as well.

www.EBooksWorld.ir

When to use and when not to use
microservices
In the recent years microservice architectures have seen some hype in the
software industry.

As always with hypes, engineers should ask themselves what is behind
certain buzzwords and whether implementing them makes sense. It's always
advisable to look into new technology and methodologies. It's not necessarily
advisable to apply them immediately.

The reasons for using microservices are the same as for using distributed
systems in general. There are technical reasons, such as applications that need
independent deployment life cycles.

There are also reasons that are driven by the business requirements and
situations in teams and project working modes.

Scalability is an often-cited motivation behind microservice architectures. As
we have seen in event-driven architectures, monolithic applications aren't
able so scale infinitely. The question is whether scalability is effectively an
issue.

There are big companies that handle business logic for huge amounts of users
using monolithic applications. Before considering distribution as a relief for
scaling issues, performance insights and statistics should be gathered.

Engineers should avoid to use microservice architectures solely because of
believing in a silver bullet approach. It can easily happen as a result of
buzzword-driven meetings and conversations, that solutions are chosen based
on limited or no evidence supporting the requirement. Microservices
certainly provide benefits, but also come with a price in time and effort. In
any way, the requirements and motivations whether to split up

www.EBooksWorld.ir

responsibilities into multiple applications should be clear.

www.EBooksWorld.ir

Implementing microservices with
Java EE
Now on to the question of how to build microservices with Enterprise Java.

In various discussions and meetings, Java EE has been considered as too
heavyweight and cumbersome for microservices. Whereas this is certainly the
case for J2EE technology and approaches, Java EE offers modern, lean ways
of developing enterprise applications. Chapter 4, Lightweight Java EE and Chapte
r 5, Container and Cloud Environments with Java EE covered these aspects,
especially in regard to modern environments.

Java EE is indeed well suited for writing microservice applications. Container
technologies and orchestration support the platform, particularly since Java
EE separates the business logic from the implementation.

www.EBooksWorld.ir

Zero-dependency applications
Microservices with Java EE are ideally built as zero-dependency applications.

Thin WAR applications are deployed on modern enterprise containers that
can be shipped in containers. This minimizes deployment time. Java EE
deployment artifacts should only contain provided dependencies, if there is a
reasonable need for adding third-party dependencies, they should be installed
in the application server. Container technologies simplify this approach.

This also matches the idea of shared-nothing architectures. The team is
responsible for the application-specific technology, in this case the
application server installation including libraries. Infrastructure as code
definitions such as Dockerfiles, enable the development team to accomplish
this in effective ways.

www.EBooksWorld.ir

Application servers
Following this approach, the application server is shipped in a container,
containing only a single application. The one application per application
server approach also matches the idea of shared-nothing architectures.

The question is whether application servers introduce too much overhead if a
single server instance only contains a single application. In the past, the
storage and memory footprint certainly was significant.

Modern application servers considerably improved in this area. There are
container base images of servers such as TomEE that consume 150 MB and
less, for the server including the Java runtime and operating system, mind
you. The memory consumption also significantly improved due to
dynamically loading functionality.

In enterprise projects installation sizes are usually not an issue to be
concerned with, especially if they're not exceeding all bounds. What's much
more important is the size of the built and shipped artifacts. The application
artifact, which in some technologies contains megabytes of dependencies, is
built and transmitted many times. The runtime is only installed once per
environment.

Container technologies such as Docker make use of layered file systems that
encourage the moving parts to be small. Zero-dependency applications
support this approach.

Making each and every Continuous Delivery build only shipping kilobytes of
data is far more advisable than saving a few megabytes in the base
installation.

If the installation size still needs to be shrunk down, some application
vendors offer possibilities to tailor the container to the required standards,
especially the MicroProfile initiative, which includes several application

www.EBooksWorld.ir

server vendors, and defines slimmed profiles.

Java EE microservices don't need to be shipped as standalone JAR files. On
the contrast, applications shipped in containers should leverage the use of
layered file systems and be deployed on enterprise containers residing in the
base image. Standalone JAR files oppose this principle.

There are possibilities to combine standalone JAR files with thin
deployments, by so-called hollow JAR. This approach, however, is not
required when using containers.

www.EBooksWorld.ir

Implementing application
boundaries
Let's move on to the implementation of the application boundaries with Java
EE. This is, in fact, a more system-architectural question than an
implementational one.

Communication between microservices should use technology-agnostic
protocols. As seen previously, Java EE heavily supports HTTP, for both
HTTP and REST services use Hypermedia.

The next sub-chapter will cover asynchronous communication in CQRS
systems, using publish/subscribe messaging implemented with Apache
Kafka.

www.EBooksWorld.ir

Implementing CQRS
Earlier in this chapter we have seen the motivations and concepts behind
event sourcing, event-driven architectures, and CQRS. CQRS offers an
interesting approach to creating distributed applications that implement
scalable, eventually consistent business use cases.

At the time of writing, there is a lot of interest in CQRS, yet little knowledge
within companies of how to use it. Some frameworks and technologies have
emerged that aim to implement this approach. Yet CQRS is an architectural
style, and specific frameworks are not necessary to develop CQRS systems.

Let's have a close look at an approach that uses Java EE.

www.EBooksWorld.ir

System interfaces
The CQRS system interfaces are used from outside the system to initiate
business use cases. For example, a client accesses the waiter system to order
a burger.

These interfaces are used externally and ideally implemented using a
technology-agnostic protocol.

For REST-like HTTP services, this implies that the command services
implement HTTP methods that modify resources, such as POST, DELETE,
PATCH, or PUT. The query services usually only implement resources
queried by GET.

In our example, this means that the client POSTs a new meal order to a
command service resource. Similarly, meal orders are retrieved via GET
resources from query services.

These HTTP interfaces concern the external communication. Internally the
application communicates via events that are published using an event hub.

www.EBooksWorld.ir

Example scenario using Apache
Kafka
In this example, I will use Apache Kafka as a distributed message broker,
offering high performance and throughput. It's one example of a messaging
technology, supporting a publish/subscribe approach, among others.

At the time of writing, Apache Kafka doesn't implement all JMS semantics.
The following examples will use the Kafka's vendor-specific Client API.

Apache Kafka's publish/subscribe approach organizes messages in topics. It
can be configured to enable transactional event producers and in-order event
consumption, which is what event-driven architectures need to ensure in
order to create reliable use cases.

Kafka brokers are distributed and use so-called consumer groups to manage
message topics and partitions. Examining Kafka's architecture is beyond the
scope of this book and it's advised to go further into its documentation when
choosing this technology.

In short, a message is published to a topic and consumed once per consumer
group. Consumer groups contain one or more consumers and guarantee that
exactly one consumer will process the messages that have been published
using transactional producers.

A CQRS system needs to consume messages in multiple locations. The
applications that are interested in a specific topic will consume the message
and update their internal representations. Therefore, all these updating
consumers will receive an event. There are also event handlers who use the
event to process the business logic further. Exactly one event handler needs
to process the event per topic, otherwise processes would run multiple times
or not at all.

www.EBooksWorld.ir

The concept of Kafka consumer groups is therefore used in such a way,
where there is one update consumer group per application and one event
handler group per topic. This enables all instances to receive the events, but
reliably one command service to process the business logic. By doing so, the
instances are able to scale without affecting the overall system's outcome:

www.EBooksWorld.ir

Integrating Java EE
In order to integrate the Apache Kafka cluster into the application this
example will use Kafka's Java API.

The applications connect to Kafka to consume messages in their updating
consumers and event handlers. The same is true for publishing events.

The used technology should be encapsulated from the rest of the application.
In order to integrate the events, developers can use a functionality that
naturally fits this scenario: CDI events.

www.EBooksWorld.ir

CDI events
The domain events contain the event specific data, a timestamp, and
identifiers that reference the domain entity.

The following snippet shows an example of an abstract MealEvent and the
OrderPlaced event:

public abstract class MealEvent {

 private final Instant instant;

 protected MealEvent() {

 instant = Instant.now();

 }

 protected MealEvent(Instant instant) {

 Objects.requireNonNull(instant);

 this.instant = instant;

 }

 ...

}

public class OrderPlaced extends MealEvent {

 private final OrderInfo orderInfo;

 public OrderPlaced(OrderInfo orderInfo) {

 this.orderInfo = orderInfo;

 }

 public OrderPlaced(OrderInfo orderInfo, Instant instant) {

 super(instant);

 this.orderInfo = orderInfo;

 }

 ...

}

Domain events like these are the core of the application. The domain entity
representations are calculated from these events.

The integration into Kafka ensures that these events are fired via CDI. They
are observed in the corresponding functionality that updates the state
representations, or invokes subsequent commands, respectively.

www.EBooksWorld.ir

Event handlers
The following snippet shows an event handler of the chef system, invoking
functionality of a command service:

@Singleton

public class OrderEventHandler {

 @Inject

 MealPreparationService mealService;

 public void handle(@Observes OrderPlaced event) {

 mealService.prepareMeal(event.getOrderInfo());

 }

}

The event handler consumes the event and will invoke the boundary of the
subsequent meal preparation use case. The prepareMeal() method itself will
result in zero or more events, in this case either MealPreparationStarted or
OrderFailedInsufficientIngredients:

public class MealPreparationService {

 @Inject

 EventProducer eventProducer;

 @Inject

 IngredientStore ingredientStore;

 public void prepareMeal(OrderInfo orderInfo) {

 // use ingredientStore to check availability

 if (...)

 eventProducer.publish(new OrderFailedInsufficientIngredients());

 else

 eventProducer.publish(new MealPreparationStarted(orderInfo));

 }

}

The event producer will reliably publish the events to the Kafka cluster. If the
publication fails, the whole event processing has to fail, and will be retried
later.

www.EBooksWorld.ir

State representation
The consumers that update the state representation consume the CDI events
as well. The following snippet shows the bean that contains the meal order
state representations:

@Stateless

public class MealOrders {

 @PersistenceContext

 EntityManager entityManager;

 public MealOrder get(UUID orderId) {

 return entityManager.find(MealOrder.class, orderId.toString());

 }

 public void apply(@Observes OrderPlaced event) {

 MealOrder order = new MealOrder(event.getOrderInfo());

 entityManager.persist(order);

 }

 public void apply(@Observes OrderStarted event) {

 apply(event.getOrderId(), MealOrder::start);

 }

 public void apply(@Observes MealDelivered event) {

 apply(event.getOrderId(), MealOrder::deliver);

 }

 private void apply(UUID orderId, Consumer<MealOrder> consumer) {

 MealOrder order = entityManager.find(MealOrder.class, orderId.toString());

 if (order != null)

 consumer.accept(order);

 }

}

This simple example represents the state of the meal orders in a relational
database. As soon as a new CDI event arrives, the state of the orders is
updated. The current state can be retrieved by the get() method.

The meal order domain entity is persisted via JPA. It contains the status of
the order that is updated via observed CDI events:

@Entity

@Table("meal_orders")

public class MealOrder {

 @Id

 private String orderId;

www.EBooksWorld.ir

 @Embedded

 private MealSpecification specification;

 @Enumerated(EnumType.STRING)

 private OrderState state;

 private MealOrder() {

 // required for JPA

 }

 public MealOrder(OrderInfo orderInfo) {

 orderId = orderInfo.getOrderId().toString();

 state = OrderState.PLACED;

 // define specifications

 }

 public void start() {

 state = OrderState.STARTED;

 }

 public void deliver() {

 state = OrderState.DELIVERED;

 }

 ...

}

www.EBooksWorld.ir

Consuming Kafka messages
The part that consumes the messages encapsulates the message hub from the
rest of the application. It is integrated by firing CDI events on arriving
messages. This certainly is specific to the Kafka API and should be
considered as an example solution.

The updating consumer connects to a specific topic via its consumer group.
The startup singleton bean ensures the consumer will be initiated at
application startup. A container-managed executor service runs the event
consumer in its own thread:

@Startup

@Singleton

public class OrderUpdateConsumer {

 private EventConsumer eventConsumer;

 @Resource

 ManagedExecutorService mes;

 @Inject

 Properties kafkaProperties;

 @Inject

 Event<MealEvent> events;

 @PostConstruct

 private void init() {

 String orders = kafkaProperties.getProperty("topic.orders");

 eventConsumer = new EventConsumer(kafkaProperties,

 ev -> events.fire(ev), orders);

 mes.execute(eventConsumer);

 }

 @PreDestroy

 public void close() {

 eventConsumer.stop();

 }

}

The application-specific Kafka properties are exposed via a CDI producer.
They contain the corresponding consumer groups.

www.EBooksWorld.ir

The event consumer performs the actual consumption:

import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.util.function.Consumer;

import static java.util.Arrays.asList;

public class EventConsumer implements Runnable {

 private final KafkaConsumer<String, MealEvent> consumer;

 private final Consumer<MealEvent> eventConsumer;

 private final AtomicBoolean closed = new AtomicBoolean();

 public EventConsumer(Properties kafkaProperties,

 Consumer<MealEvent> eventConsumer, String... topics) {

 this.eventConsumer = eventConsumer;

 consumer = new KafkaConsumer<>(kafkaProperties);

 consumer.subscribe(asList(topics));

 }

 @Override

 public void run() {

 try {

 while (!closed.get()) {

 consume();

 }

 } catch (WakeupException e) {

 // will wakeup for closing

 } finally {

 consumer.close();

 }

 }

 private void consume() {

 ConsumerRecords<String, MealEvent> records =

 consumer.poll(Long.MAX_VALUE);

 for (ConsumerRecord<String, MealEvent> record : records) {

 eventConsumer.accept(record.value());

 }

 consumer.commitSync();

 }

 public void stop() {

 closed.set(true);

 consumer.wakeup();

 }

}

Kafka records that are consumed result in new CDI events. The configured
properties use JSON serializers and deserializers, respectively, to map the
domain event classes.

Events that are fired via CDI and consumed successfully are committed to
Kafka. The CDI events are fired synchronously, to ensure that all processes
are finish reliably before committing.

www.EBooksWorld.ir

Producing Kafka messages
The event producer publishes the domain events to the message hub. This
happens synchronously to rely on the messages being in the system. Once the
transmission is acknowledged, the EventProducer#publish method invocation
returns:

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.Producer;

@ApplicationScoped

public class EventProducer {

 private Producer<String, MealEvent> producer;

 private String topic;

 @Inject

 Properties kafkaProperties;

 @PostConstruct

 private void init() {

 producer = new KafkaProducer<>(kafkaProperties);

 topic = kafkaProperties.getProperty("topics.order");

 producer.initTransactions();

 }

 public void publish(MealEvent event) {

 ProducerRecord<String, MealEvent> record = new ProducerRecord<>(topic, event);

 try {

 producer.beginTransaction();

 producer.send(record);

 producer.commitTransaction();

 } catch (ProducerFencedException e) {

 producer.close();

 } catch (KafkaException e) {

 producer.abortTransaction();

 }

 }

 @PreDestroy

 public void close() {

 producer.close();

 }

}

Going into the details of the Kafka producer API is beyond the scope of this
book. However, it needs to be ensured that the events are sent reliably. The
event producer bean encapsulates this logic.

www.EBooksWorld.ir

These examples demonstrate one possibility for integrating Kafka.

As mentioned earlier, the Java EE Connector Architecture (JCA) is
another possibility for integrating external concerns into the application
container. At the time of writing, there are vendor-specific container solutions
that integrate messaging via JCA. Existing solutions for integrating message
hubs such as Kafka are an interesting alternative. However, application
developers are advised to encapsulate technology specifics into single points
of responsibilities and use standard Java EE functionality within the
application.

www.EBooksWorld.ir

Application boundaries
The applications of a CQRS system communicate via events internally.
Externally, other protocols such as HTTP can be provided.

The query and command functionality of, for example, the waiter system, is
exposed via JAX-RS. The command service offers functionality to place
meal orders. It uses the event producer to publish the resulting events:

public class OrderService {

 @Inject

 EventProducer eventProducer;

 public void orderMeal(OrderInfo orderInfo) {

 eventProducer.publish(new OrderPlaced(orderInfo));

 }

 void cancelOrder(UUID orderId, String reason) {

 eventProducer.publish(new OrderCancelled(orderId, reason));

 }

 void startOrder(UUID orderId) {

 eventProducer.publish(new OrderStarted(orderId));

 }

 void deliverMeal(UUID orderId) {

 eventProducer.publish(new MealDelivered(orderId));

 }

}

The orderMeal() method is called by the HTTP endpoint. The other methods
are called by the waiter system's event handler. They will result in new events
that are delivered by the event hub.

The reason for not directly firing events or calling functionality internally
here is that this application resides in a distributed environment. There might
be other instances of the waiter system consuming the event hub and
updating their representation accordingly.

The command service contains a JAX-RS resource that is used to order
meals:

www.EBooksWorld.ir

@Path("orders")

public class OrdersResource {

 @Inject

 OrderService orderService;

 @Context

 UriInfo uriInfo;

 @POST

 public Response orderMeal(JsonObject order) {

 OrderInfo orderInfo = createOrderInfo(order);

 orderService.orderMeal(orderInfo);

 URI uri = uriInfo...

 return Response.accepted().header(HttpHeaders.LOCATION, uri).build();

 }

 ...

}

The query service exposes the meal order representations. It loads the current
state of the domain entities from the database as seen in the MealOrders. The
JAX-RS resources of the query service use this functionality.

If the waiter system is shipped as a single instance, containing both the
command and query services, these resources can be combined. It needs to be
ensured though that the services don't cross-communicate, except via the
eventing mechanism. The following code snippet shows the query service
endpoint:

@Path("orders")

public class OrdersResource {

 @Inject

 MealOrders mealOrders;

 @GET

 @Path("{id}")

 public JsonObject getOrder(@PathParam("id") UUID orderId) {

 MealOrder order = mealOrders.get(orderId);

 if (order == null)

 throw new NotFoundException();

 // create JSON response

 return Json.createObjectBuilder()...

 }

}

These examples are not exhaustive, but are meant to give the reader an idea

www.EBooksWorld.ir

of integrating CQRS concepts and message hubs into Java EE applications.

www.EBooksWorld.ir

Integrating further CQRS concepts
One of the benefits of event-sourced systems is that it's possible to take the
full set of atomic events and replay them, for example, in test scenarios.
System tests verify against the actual use cases that happened in production.
Audit logging comes for free as well, being part of the core of the
application.

This approach also enables us to change business functionality and replay
some events, either to fix bugs and to correct behavior, or to apply the event
information to new functionality. This makes it possible to apply new
features on events as if they were part of the application since day one.

If the chef system adds functionality to continuously calculate the average
time of meal preparation, the events can be redelivered to re-calculate the
representations. Therefore the database contents will be reset and the events
redelivered, only to the updating consumer, which results in new
representation being calculated and persisted. Kafka can explicitly redeliver
events.

The events, however, are solely used to update the status representations, not
triggering new commands during replays. Otherwise, the system would end
up in an inconsistent state. The demonstrated example realizes this by
defining a dedicated Kafka consumer group for event handlers, which is not
reset to redistribute events to the event handlers. Only the updating
consumers re-consume the events, to recalculate the internal state
representations.

The point is, that CQRS systems enable many more use cases, due to event
sourcing being used. The possibilities of capturing and replaying events, as
well as the contained context and history information, enable extensive
scenarios.

www.EBooksWorld.ir

Java EE in the age of distribution
Microservice architectures and distributed systems naturally require
communication that involves more than a single, monolithic application.
There are many ways how to implement communication with Java EE,
depending on the chosen protocols and communication technologies.

There are some aspects to be considered when realizing communication.
External applications that take part of the microservice system, for example,
require discovering the service instances. In order to not tightly couple
applications and configuration, looking up services should be dynamic, rather
than configuring static hosts or IP addresses.

The cloud native principle of being resilient also concerns communication.
Since networks can potentially fail anytime, application health should not be
impacted when connectivity decelerates or goes down. The application
should guard itself from potential errors propagating into the application.

www.EBooksWorld.ir

Discovering services
Service discovery can happen in various ways, from DNS lookup to more
sophisticated scenarios where the lookup is part of business logic, providing
different endpoints depending on the situation. It generally encapsulates
addressing external systems from the application's concerns. Ideally, the
application logic only names the logical service it needs to communicate
with, and the actual lookup is performed externally.

It depends on the used environments and runtime which possibilities
enterprise developers have. Container technologies offer functionality to link
services by names, taking away work and responsibility from the application.
The clients connect against the link or service names as hostnames, which are
resolved by the container technology.

This approach works both for Docker containers and container orchestration
such as Docker Compose, Kubernetes, or OpenShift. All communication
concerns solely use logical service names and ports to establish connections.
This matches the 12-factor principles as well.

Since the lookup work is performed in the environment, the applications will
only specify the desired service names. This is true for all outward
communication, such as HTTP connections, databases, or message hubs. Chapt
er 5, Container and Cloud Environments with Java EE demonstrated examples
for this.

www.EBooksWorld.ir

Communicating resiliently
Network communication is not reliable and can potentially break in all sorts
of ways. Connections may timeout, services may be unavailable, respond
slowly, or deliver unexpected answers.

In order to not let errors propagate into the application, the communications
need to be resilient.

www.EBooksWorld.ir

Validating responses
First of all, this implies client-side validation and handling errors. Irrelevant
to the communication technology in use, applications can't rely on external
systems to provide responses that are not malformed or not simply wrong.

This doesn't mean that clients immediately have to reject all responses that
are not perfect in the application's understanding. Responses that contain
more information or slightly different formats than expected, but are still
understandable, should not lead to immediate errors. Following the principle
to be conservative in what you do and liberal in what you accept, messages
that contain just enough for the application to do its job should be accepted.
For example, additional, unknown properties in JSON responses should not
lead to refusing to map the object.

www.EBooksWorld.ir

Breaking timeouts and circuits
Clients that perform synchronous calls to external systems block the
subsequent execution until the external system responds. Invocations may
fail, slow down the execution, or in the worst case effectively bring the whole
application down. It's crucial to keep this fact in mind when implementing
clients.

First of all client connections should always set reasonable timeouts, as
shown similarly in Chapter 3, Implementing Modern Java Enterprise
Applications. Timeouts prevent the application from deadlock situations.

As seen before, Java EE interceptors can be used to prevent potential runtime
exceptions from propagating into the business logic.

So-called circuit breakers take this approach of preventing cascading failure
further. They secure client invocations by defining error or timeout thresholds
and prevent further invocations in case of failure. The circuit breaker
approach comes from the model of electrical engineering, circuit breakers
built into buildings, that intercept the connection by opening their circuits to
prevent further damage.

A client circuit breaker similarly opens its circuit, that is, preventing further
invocations, to not damage the application or the external system. Circuit
breakers usually allow errors and timeouts to happen up to a certain degree
and then cutting the connections for a certain time, or until the circuit is
manually closed again.

Java EE applications can implement circuit breakers via interceptors. They
can add sophisticated logic on when and how to open and close their circuits,
for example, measuring the number of failures and timeouts.

The following demonstrates one possible circuit breaker approach in pseudo
code. The interceptor behavior is annotated to a client method, similarly to

www.EBooksWorld.ir

client interceptor examples demonstrated earlier in this book:

@Interceptor

public class CircuitBreaker {

 ...

 @AroundInvoke

 public Object aroundInvoke(InvocationContext context) {

 // close circuit after recovery time

 if (circuit.isOpen())

 return null;

 try {

 return context.proceed();

 } catch (Exception e) {

 // record exception

 // increase failure counter

 // open circuit if failure exceeds threshold

 return null;

 }

 }

}

Similarly, the circuit breaker could measure the service time and open its
circuit if the service becomes too slow, additionally to HTTP client timeouts.

There are some open source Java EE libraries available for this purpose, for
example Breakr by Java EE expert Adam Bien. It depends on the technical
requirements and the complexity of the logic, when to open and close the
circuit, and whether third-party dependencies are required.

In order to build zero-dependency applications, potential libraries should be
installed into the container and not shipped with the application artifacts.

www.EBooksWorld.ir

Bulkheads
Ships contain bulkheads that divide the vessel into several areas. If the ship
hull gets a leak in some locations, only a single area is filled with water and
the whole ship is likely still able to float.

The bulkhead pattern takes this idea to enterprise applications. If some
component of the application fails or is working to capacity due to workload,
then the rest of the application should still be able to fulfill its purpose. This,
of course, highly depends on the business use case.

One example is to separate the thread execution of business processes from
HTTP endpoints. Application servers manage a single pool of request
threads. If, for example, a single business component fails and blocks all
incoming requests, all available request threads will eventually be occupied.
The result is in no other business uses cases is being able to be invoked, due
to unavailable request threads. This could be the case if used clients don't
implement proper timeouts, connect against a system that is down, and block
the execution.

Using asynchronous JAX-RS resources together with dedicated managed
executor services can relieve this issue. As seen earlier in this book, JAX-RS
resources can invoke the business functionality in separate, container-
managed threads to prevent the overall execution utilizing a request thread.
Multiple components can use independent thread pools, which prevent
failures from spreading.

Since the application server is responsible for managing threads, this
approach should be implemented following Java EE standards. The idea is to
define dedicated executor services that are injectable at the required
positions.

The open source library Porcupine by Adam Bien uses this approach to
create dedicated executor services that use ManagedThreadFactory to define thread

www.EBooksWorld.ir

pools with container-managed threads. The dedicated executor services can
be configured and instrumented appropriately.

The following snippet shows one example of the bulkheads pattern,
combining asynchronous JAX-RS resources with dedicated executor
services:

import com.airhacks.porcupine.execution.boundary.Dedicated;

import java.util.concurrent.ExecutorService;

@Path("users")

@Produces(MediaType.APPLICATION_JSON)

public class UsersResource {

 @Inject

 @Dedicated("custom-name")

 ExecutorService executor;

 @GET

 public CompletionStage<Response> get() {

 return CompletableFuture

 .supplyAsync(this::getUsers, executor)

 .thenApply(s -> Response.ok(s).build());

 }

 ...

}

The business use case is executed in a managed thread provided by the
executor service, in order to allow the request thread to return and to handle
other requests. This enables other functionality of the application to still
function, even if this part is overloaded, and utilizes all threads of the custom-
name executer.

The following examines how the custom executor service is configured.

www.EBooksWorld.ir

Shaking hands and pushing back
Another approach of communicating in a resilient way is handshaking and
backpressure. The idea is that the communication partner being under load
notifies the other side, which then backs off and eases the load. Handshaking
here means that the calling side has a way of asking the service whether it can
handle more requests. Backpressure reduces the load on a system by
notifying clients when the limit is reached or pushing back requests.

The two approaches combined form a resilient and effective form of
communication.

Information about the current load state of the application can be provided in
HTTP resources or via header fields. The clients then take this information
into account.

A more direct way is to simply reject a client request when the server's
resources are fully utilized. Developers are advised to pay attention to the
behavior of pooling such as in executor services, and how they handle
situations with full queues. Exceptionally, it's advisable to abort the client
request to not unnecessarily run into timeouts.

The following example shows a scenario using the Porcupine library. A
business functionality is executed using a dedicated executor service, which
will be configured to abort rejected executions. The clients will immediately
receive a 503 Service Unavailable response, indicating that currently the service
is not able to serve requests.

The JAX-RS resource is similar to the previous example. The custom-name
executor is configured to abort rejected executions via a specialized
configurator. The ExecutorConfigurator is part of the Porcupine library. The
following shows the custom configuration:

import com.airhacks.porcupine.configuration.control.ExecutorConfigurator;

import com.airhacks.porcupine.execution.control.ExecutorConfiguration;

www.EBooksWorld.ir

@Specializes

public class CustomExecutorConfigurator extends ExecutorConfigurator {

 @Override

 public ExecutorConfiguration defaultConfigurator() {

 return super.defaultConfigurator();

 }

 @Override

 public ExecutorConfiguration forPipeline(String name) {

 if ("custom-name".equals(name)) {

 return new ExecutorConfiguration.Builder().

 abortPolicy().

 build();

 }

 return super.forPipeline(name);

 }

}

Executions that are rejected due to full queues will then result in a
RejectedExecutionException. This exception is mapped via JAX-RS functionality:

import java.util.concurrent.RejectedExecutionException;

@Provider

public class RejectedExecutionHandler

 implements ExceptionMapper<RejectedExecutionException> {

 @Override

 public Response toResponse(RejectedExecutionException exception) {

 return Response.status(Response.Status.SERVICE_UNAVAILABLE)

 .build();

 }

}

Client requests that would exceed the server limits immediately result in an
error response. The client invocation can take this into account and act
appropriately. For example, a circuit breaker pattern-like functionality can
prevent the client from immediate subsequent invocations.

Backpressure is helpful when crafting scenarios with multiple services that
need to meet service level agreements (SLA). Chapter 9, Monitoring,
Performance, and Logging will cover this topic.

www.EBooksWorld.ir

More on being resilient
Besides resilience in communication, microservices also aim to improve
service quality and availability. Applications should be able to scale and self-
heal in cases of failures.

The use of container orchestration technology such as Kubernetes supports
this approach. Pods that back logical services can be scaled up to handle
more workload. The services balance the load between the containers. There
are possibilities to auto-scale instances up or down based on the current
workload on the cluster.

Kubernetes aims to maximize service uptime. It manages liveness and
readiness probes to detect failures and potentially start new containers. In
case of errors during deployments, it will leave currently running services
untouched, until the new versions are able to serve traffic.

These approaches are managed by the runtime environment, not part of the
application. It's advisable to minimize the non-functional, cross-cutting
concerns within the enterprise application.

www.EBooksWorld.ir

Summary
There a multiple motivations behind distributing systems. Despite certain
introduced challenges and overheads in communication, performance, and
organization, distribution is often necessary.

In order to design the system landscape, the system's context map that
represents the individual responsibilities needs to be taken into consideration.
It's advisable to design application APIs in clear, lean interfaces, ideally
implemented with standard communication protocols. Before introducing
breaking changes, engineers as well as business experts need to ask
themselves whether it is necessary to force client functionality to stop
working. In the same way, APIs should be designed in a resilient way,
preventing unnecessary breaks, in other words: be conservative in what you
do and liberal in what you accept.

Engineers that build distributed applications need to be aware of the trade-off
between consistency and scalability. The majority of applications that use
synchronous communication involving an external system will likely scale
well enough. Distributed transactions should be avoided.

In order to communicate asynchronously, application can be based on event-
driven architectures. The CQRS principle combines the motivations behind
event-driven architectures and event sourcing. Whereas CQRS certainly
offers interesting solutions, it only makes sense if there is a need for
distributing application.

Microservice architectures don't share common technology or data with each
other. Shared-nothing architectures are free to choose implementations and
persistence technology. Zero-dependency Java EE applications shipped in
containers are a reasonable fit for microservices. The one application per
application server approach matches the idea of shared-nothing architectures.
There are many aspects in which Java EE applications running in container
orchestration frameworks support developing microservice architectures,

www.EBooksWorld.ir

such as service discovery, resilient communication via timeout, circuit
breakers or bulkheads.

The following chapter covers the topics of performance, monitoring and
logging.

www.EBooksWorld.ir

Monitoring, Performance, and
Logging
We have now seen how to craft modern, scalable, and resilient microservices
with Java EE. In particular, the part about adding resilience as well as
technical cross-cutting to microservices is a topic that we want to pursue
further.

Enterprise applications run on server environments remote from the users. In
order to provide insights into the system, we need to add visibility. There are
multiple ways to achieve this aspect of telemetry that includes monitoring,
health checks, tracing, or logging. This chapter covers the reasoning behind
each of these approaches and what makes sense for enterprise applications.

In this chapter we will cover the following topics:

Business and technical metrics
Integrating Prometheus
How to meet performance needs
Java Performance Diagnostic Model
Monitoring and sampling techniques
Why traditional logging is harmful
Monitoring, logging, and tracing in a modern world
Suitability of performance tests

www.EBooksWorld.ir

Business metrics
Visibility in the business processes is crucial to business-related persons in
order to see and interpret what is happening inside an enterprise system.
Business-relevant metrics allow to evaluate the effectiveness of
processes. Without visibility into the processes, the enterprise application acts
as a black box.

Business-related metrics are an invaluable asset to business experts. They
provide domain-specific information as to how the use cases perform. Which
metrics are of interested obviously depends on the domain.

How many cars are created per hour? How many articles are purchased and
for what amount? What is the conversion rate? How many users followed the
email marketing campaign? These are examples of domain-specific key
performance indicators. The business experts have to define these indicators
for the specific domain.

The enterprise application has to emit this information which originate from
various points in the business processes. The nature of this information
depends on the actual domain. In many cases, business metrics arise from
domain events that occur during performing the business processes.

Take the number of cars that are created per hour as an example. The car
creation use case emits a corresponding CarCreated domain event, which is
collected for future statistics. Whereas calculating the conversion rate
involves much more information.

The business experts have to define the semantics and origin behind key
performance indicators. Defining and collecting these indicators becomes
part of the use case. Emitting this information is a responsibility of the
application as well.

It's important to distinguish between business-motivated and technically-

www.EBooksWorld.ir

motivated metrics. Although business metrics provide insights of high value,
they are directly impacted by technical metrics. An example of a technical
metric is the service response time which is, in turn, affected by other
technical metrics. The sub-chapter Technical metrics will examine this topic
further.

Business experts, therefore, must not only care about the business aspects of
monitoring but also the technical impact of an application's responsiveness.

www.EBooksWorld.ir

Collecting business metrics
Business-relevant metrics allow business experts to evaluate the effectiveness
of the enterprise system. The metrics provide helpful insights into specific
parts of the business domain. The application is responsible for gathering
business-relevant metrics as part of it's use cases.

The car manufacture package, for example, performs business logic that can
emit certain metrics, such as the number of cars created per hour.

From a business perspective, the relevant metrics usually originate from
domain events. It's advisable to define and emit domain events, such
as CarCreated, as part of the use case, as soon as a car has been successfully
manufactured. These events are collected and being used to derive further
information in the form of specific business metrics.

The CarCreated event is fired in the boundary as a CDI event and can be
observed in a separate statistics collector. The following code snippet shows
a domain event fired as part of a use case:

@Stateless

public class CarManufacturer {

 @Inject

 CarFactory carFactory;

 @Inject

 Event<CarCreated> carCreated;

 @PersistenceContext

 EntityManager entityManager;

 public Car manufactureCar(Specification spec) {

 Car car = carFactory.createCar(spec);

 entityManager.merge(car);

 carCreated.fire(new CarCreated(spec));

 return car;

 }

}

The boundary fires the CDI event that notifies about a successful car creation.

www.EBooksWorld.ir

The corresponding handling is decoupled from the business process and no
further logic is involved in this place. The event will be observed in a
separate application scoped bean. Synchronous CDI events can define to be
handled during specific transaction phases. The following transactional
observer therefore ensures that only successful database transactions are
measured:

import javax.enterprise.event.TransactionPhase;

@ApplicationScoped

public class ManufacturingStatistics {

 public void carCreated(@Observes(during =

 TransactionPhase.AFTER_SUCCESS) Specification spec) {

 // gather statistics about car creation with

 // provided specification

 // e.g. increase counters

 }

}

The event information is collected and processed further in order to provide
the business metrics. Depending on the situation, more business-relevant data
could be required.

Modeling the relevant information as domain events matches the business
definition and decouples the use case from the statistics calculation.

Besides defining domain events, the information can also be collected via
cross-cutting components, such as interceptors, depending on the situation
and requirements. In the simplest case, the metrics are instrumented and
collected in primitives. Application developers have to consider bean scopes
in order not to throw away collected data with incorrect scopes.

www.EBooksWorld.ir

Emitting metrics
Metrics are usually not persisted in the application but in another system that
is part of the environment, such as external monitoring solutions. This
simplifies the implementation of metrics; the enterprise application keeps the
information in memory and emits the specified metrics. External monitoring
solutions scrape and process these metrics.

There are several techniques that can be used to emit and collect metrics. For
example, measures can be formatted into custom JSON strings and exposed
via HTTP endpoints.

A monitoring solution that is part of the Cloud Native Computing
Foundation, and, as of today, has huge momentum, is Prometheus.
Prometheus is a monitoring and alerting technology that scrapes, efficiently
stores, and queries time series data. It gathers data that is emitted by some
service over HTTP in a specific format. Prometheus is powerful in scraping
and storing data.

For graphs and dashboards for business-related information, other solutions
can be built on top of this. A technology that works well with Prometheus
and provides many possibilities for appealing graphs is Grafana. Grafana
doesn't store time series itself but uses sources such as Prometheus to query
and display time series.

The following screenshot shows an example of a Grafana dashboard:

www.EBooksWorld.ir

The idea of dashboards provides visibility for business experts and combines
relevant information. Depending on the requirements and motivations,
coherent information is combined into graphs that provide overviews and
insights. Dashboards provide the ability to query and customize time series
representations based on the target group.

www.EBooksWorld.ir

Enter Prometheus
The following examples show how to integrate Prometheus into Java EE.
This is one possible monitoring solution and aims to give the readers an idea
of how to slimly integrate business-related metrics.

The application will emit the gathered metrics in the Prometheus output
format. The Prometheus instances scrape and store this information, as
demonstrated in the following diagram:

Developers can implement custom functionality to collect and emit
information, or use Prometheus' Client API which already ships with several
metric types.

There are multiple Prometheus metric types as follows:

The one mostly used is a counter which represents an increasing
numeric value. It counts the occurred events.
A gauge is a numeric value that goes up and down. It can be used for
measuring values such as conversion rates, temperatures, or turnover.
Histograms and summaries are more complex metric types used to
sample observations in buckets. They typically observe metrics
distribution. For example, how long does it take to create a car, how
much do these values vary, and how are they distributed?

www.EBooksWorld.ir

A Prometheus metric has a name and labels, which are sets of key-value
pairs. A time series is identified by the metric's name and a set of labels. The
label can be seen as parameters, sharding the overall amount of information.

An example of a counter metric representation using labels is
cars_manufactured_total{color="RED", engine="DIESEL"}. The cars_manufactured_total
counter includes the total number of manufactured cars that are specified by
their color and engine type. The collected metrics can be queried for the
provided label information later on.

www.EBooksWorld.ir

Realization with Java EE
The following statistics implementation observes the domain event specified
earlier and stores the information in the Prometheus counter metric:

import io.prometheus.client.Counter;

@ApplicationScoped

public class ManufacturingStatistics {

 private Counter createdCars;

 @PostConstruct

 private void initMetrics() {

 createdCars = Counter.build("cars_manufactured_total",

 "Total number of manufactured cars")

 .labelNames("color", "engine")

 .register();

 }

 public void carCreated(@Observes(during =

 TransactionPhase.AFTER_SUCCESS) Specification spec) {

 createdCars.labels(spec.getColor().name(),

 spec.getEngine().name()).inc();

 }

}

The counter metric is created and registered to the Prometheus Client API.
Measured values are qualified by the car color and engine type, which are taken
into account when scraping the values.

In order to emit this information, the Prometheus servlet library can be
included. This outputs all the registered metrics in the correct format. The
monitoring servlet is configured via web.xml. It's also possible to include a
JAX-RS resource to emit the data by accessing CollectorRegistry.defaultRegistry.

The emitted output will look similar to the following:

...

cars_manufactured_total{color="RED", engine="DIESEL"} 4.0

cars_manufactured_total{color="BLACK", engine="DIESEL"} 1.0

Java EE components, such as CDI events, support developers in integrating

www.EBooksWorld.ir

domain event metrics in a lean way. In the preceding example, the
ManufacturingStatistics class is the only point that depends on the Prometheus
API.

It's highly advisable to include the Prometheus Client API as a separate
container image layer and not in the application artifact.

The monitoring solution scrapes and further processes the provided
information, in order to gather the required business metrics. Scraping the
counter of manufactured cars over time leads to the number of created cars
per hour. This metric can be queried for the total number of cars as well as
for specific color and engine combinations. The queries that define the
business metrics can also be adapted and refined due to the requirements. The
application ideally emits the needed atomic business-relevant metrics.

www.EBooksWorld.ir

Integrating the environment
The application emits the business-relevant metrics via HTTP. The
Prometheus instance scrapes and store this data and makes it available via
queries, graphs, and external solutions, such as Grafana.

In a container orchestration, the Prometheus instance runs inside the cluster.
This removes the necessity to configure externally accessible monitoring
endpoints. Prometheus integrates with Kubernetes in order to discover the
application instances. Prometheus needs to access every application pod
individually, since every application instance emits its monitoring metrics
separately. Prometheus accumulates the information of all instances.

The Prometheus configuration is either stored in a config map or part of a
base image. The instance is configured to access the applications and
exporters every n seconds in order to scrape the time series. For configuring
Prometheus, refer to its current documentation.

This is one possible solution for integrating business monitoring into a cloud
native application.

Business-related metrics are advisably represented by domain events that
emerge as part of the business use case. Integrating the chosen monitoring
solutions should happen transparently from the domain logic, without much
vendor lock-in.

www.EBooksWorld.ir

Meeting performance requirements
in distributed systems
Responsiveness is an important non-technical requirement of an enterprise
application. The system only provides business value if client requests can be
served within a reasonable amount of time.

Meeting performance requirements in distributed systems requires to take all
participating applications into account.

Enterprise application are often required to meet a service level agreement
(SLA). SLAs usually define thresholds for availability or response times,
respectively.

www.EBooksWorld.ir

Service level agreements
In order to calculate and meet SLAs, it's important to consider which
processes and applications are included in business use cases, especially in
regard to synchronous communication. The performance of applications that
synchronously call external systems directly depend on the performance of
these calls. As mentioned before, distributed transactions should be avoided.

As per its nature, SLAs can only be met if all applications perform and work
well together. Every application affects the SLAs of dependent systems. This
not only concerns the slowest application in a system but all participating
services.

For example, meeting an uptime of 99.995% per definition is not possible if it
includes synchronous calls to two applications with each of them
guaranteeing 99.995%. The resulting SLA is 99.99%, the values of each
participating system multiplied.

The same is true for guaranteed response times. Every involved system slows
down the overall response, resulting in a total response time that is the sum of
all SLA times.

www.EBooksWorld.ir

Achieving SLAs in distributed
systems
Let's see an example how to achieve SLAs in distributed systems, assuming
the enterprise application resides in a high performance scenario where it's
crucial to meet guaranteed response times. The application synchronously
communicates with one or more backend systems that provide necessary
information. The overall system needs to meet an SLA response time of 200
milliseconds.

In this scenario the backend applications support in meeting the SLA time by
applying backpressure and preventively rejecting requests that won't meet the
guaranteed SLA. By doing so the originating application has the chance to
use another backend service that may respond in time.

In order to appropriately configure pooling, the engineers need to know the
average response time of the backend system, here 20 milliseconds. The
corresponding business functionality defines a dedicated thread pool by using
a dedicated managed executor service. The thread pool can be configured
individually.

The configuration is achieved by following some steps: The engineers
configure the maximum limit of the thread pool size plus the maximum
queue size, so that the SLA time is n times the average response time. This n,
here 10, is the maximum number of requests the system will handle at a time,
consisting of the maximum pool size and maximum queue size limit. Any
request that exceeds this number is immediately rejected by a service
temporarily unavailable response. This is based on the calculation that the
new request will likely exceed the calculated SLA time of 200 milliseconds,
if the current number of handled requests exceeds n.

Immediately rejecting requests sounds like a harsh response, but by doing so,
the client application is given the opportunity to retry a different backend

www.EBooksWorld.ir

without consuming the whole SLA time in vain in a single invocation. It's a
case example for high performance scenarios with multiple backends where
meeting SLAs has a high priority.

The implementation of this scenario is similar to the backpressure example in
the previous chapter. The client uses different backends as a fallback if the
first invocation failes with an unavailable service. This implicitly makes the
client resilient since it uses multiple backends as fallback. The backend
service implicitly applies the bulkhead pattern. A single functionality that is
unavailable doesn't affect the rest of the application.

www.EBooksWorld.ir

Tackling performance issues
Technical metrics, such as response time, throughput, error rates
or uptime indicate the responsiveness of the system. As long as the
application's responsiveness is in acceptable ranges, there is arguably no
other metric to consider. Insufficient performance means that the system's
SLAs are not being met, that is, the response time is too high or client
requests fail. Then the question arises: what needs to be changed to improve
the situation?

www.EBooksWorld.ir

Theory of constraints
If the desired load on the system increases, the throughput ideally increases
as well. The theory of constraints is based on the assumption that there will
be at least one constraint that will throttle the system's throughput. The
constraints or bottlenecks therefore cause a performance regression.

Like a chain that is only as strong as its weakest link, the constraining
resource limits the overall performance of the system or certain functionality
thereof. It prevents the application from handling more load while other
resources are not fully utilized. Only by increasing the flow through the
constraining resource, that is, removing the bottleneck, will the throughput be
increased. If the system is optimized around the bottleneck rather than
removing it, the responsiveness of the overall system won't improve and,
ultimately, it may even decrease.

It's therefore crucial to identify what the bottleneck is. The overall
performance won't improve, before the limiting bottleneck gets targeted.

For example, throwing more CPU power at an application with high CPU
utilization probably won't help to achieve better performance. Maybe the
application isn't performing well because of other root causes than
insufficient CPU.

It's important to mention here that the limiting constraint likely is external to
the application. In a single, monolithic application, this includes the hardware
and the operating system, with all running processes. If other software
running on the same hardware heavily utilizes the network adapter, the
application's network I/O and overall performance will be affected as well,
even if the root cause, the limiting constraint, isn't the in responsibility of the
application.

Inspecting performance issues therefore needs to take more into account than
just the application itself. The whole set of processes running on the same

www.EBooksWorld.ir

hardware can have an impact on the application's performance, depending on
how the other processes utilize the system's resources.

In a distributed environment, performance analytics also involves all
interdependent applications, that interact with the application, and the
communication in between. In order to identify the constraining resource, the
overall situation of the system has to be taken into account.

Since the applications are interconnected, improving the responsiveness of a
single system will affect others and can potentially even decrease the overall
responsiveness. Again, trying to improve the wrong aspect, such as
optimizing around the bottleneck, will not improve rather than most likely
even downgrade the overall performance. An application that connects to an
external system that represents the bottleneck , puts certain pressure on the
external system. If the application's performance is tuned, rather than the
external application, the load and pressure on the latter is increased which
ultimately leads to overall worse responsiveness.

In distributed systems, the situation with all interdependent applications
involved vastly complicates solving performance issues.

www.EBooksWorld.ir

Identifying performance regression
with jPDM
The Java Performance Diagnostic Model (jPDM) is a performance
diagnostic model that abstracts the complexity of systems. It helps
interpreting the performance counters of the system and thus understanding
the root cause of why we experience performance regression.

The challenge with identifying performance regression is that a specific
scenario is the result of innumerable influences, many of them external to the
application. jPDM and the resulting methodologies helps dealing with that
complexity.

In terms of responsiveness, there is an infinite number of things that can go
wrong, but they will go wrong in a finite number of ways. Performance
regression can therefore be categorized into different manifestations. There
will be a few typical forms of issues, emerging in innumerable, varying
scenarios, and root causes. In order to identify the different categories, we
will make use of the diagnostic model.

jPDM identifies important subsystems of our system, their roles, functions,
and attributes. The subsystems interact with each other. The model helps to
identify tools to measure levels of activity and interactions between the
subsystems. Methodologies and processes that help to study and analyze
systems and situations in regard to performance, fall out of this model.

www.EBooksWorld.ir

Subsystems
The subsystems in a Java application environment are: the operating system,
including hardware, the Java Virtual Machine, the application, and the actors.
Subsystems utilize their corresponding, underlying subsystem to perform
their tasks.

The following diagram shows how the jPDM subsystems interact with each
other:

www.EBooksWorld.ir

Actors
The actors are the users of the system in a broadest sense. This includes end
users, batch processes, or external systems, depending on the use case.

By using the system, the actors will generate work load. The properties of the
actors include the load factor, that is how many users are involved, as well as
the velocity, that is how fast user requests are processed. These properties
influence the overall situation similar to all other subsystem's properties.

The actors themselves don't represent a performance issue, they simply use
the application. That said, if the system's performance isn't met, the limiting
constraint is not to be searched for within the actors; the actors and the load
they generate are part of the circumstances the system has to deal with.

www.EBooksWorld.ir

Application
The enterprise application contains the business logic algorithms. Part of the
business use cases is to allocate memory, schedule threads, and use external
resources.

The application will use framework and Java language functionalities to
fulfill this. It ultimately makes use of JVM code and configuration, directly
or indirectly. By doing so, the application puts a certain load on the JVM.

www.EBooksWorld.ir

JVM
The Java Virtual Machine (JVM) interprets and executes the application
byte code. It takes care of memory management--allocation as well as
garbage collection. There are vast optimization techniques in place to
increase the performance of the program, such as Just-In-Time (JIT)
compilation of the Java HotSpot Performance Engine.

The JVM utilizes operating system resources to allocate memory, run
threads, or use network or disk I/O.

www.EBooksWorld.ir

Operating system and hardware
A computer's hardware components such as CPU, memory, disk and network
I/O, define the resources of a system. They contain certain attributes, such as
capacities or speed.

Since the hardware components represent non-shareable resources, the
operating system provisions hardware between the processes. The operating
system provides system-wide resources and schedule threads for the CPUs.

For this reason, the model considers the overall system, including hardware.
The enterprise application potentially doesn't run alone on the system's
hardware. Other processes utilize hardware components and thus influence
the application's performance. Multiple processes that simultaneously try to
access the network will result in poorer responsiveness than running each of
them independently.

www.EBooksWorld.ir

jPDM instances - production
situations
Specific situations in a production system, are instances of the jPDM model.
They contain all their properties, characteristics, and specific bottlenecks.

Any change in one of the subsystems would result in a different situation
with different properties and characteristics, thus in a different instance of the
model. For example, changing the load on the system could result in a totally
different bottleneck.

This is also the reason why performance tests in environments other than
production will result in potentially different bottlenecks. The different
environment has at least a different OS and hardware situation, not
necessarily in the hardware and configuration being used, but in the whole
condition of OS processes. Simulated scenarios such as performance tests
therefore don't allow conclusions about bottlenecks or performance
optimizations. They represent a different jPDM instance.

Since we use the model to ultimately analyze performance issues, the
following approaches only make sense when there are actual performance
issues. If there is no issue, that is, the defined SLAs are met, there is nothing
to investigate or act upon.

www.EBooksWorld.ir

Analyzing the jPDM instances
jPDM is used to assist in investigating performance regression.
Methodologies, processes and tools that fall out of the model help to identify
limiting constraints.

Each subsystem with its distinct set of attributes and resources plays a
specific role in the system. We use specific tools to both expose specific
performance metrics and monitor interactions between subsystems.

Looking back at the theory of constraints, we want to investigate the limiting
constraint of a production situation, an instance of the jPDM. The tooling
helps with investigating. It's important for the investigation to take the overall
system into account. The hardware is shared by all operating system
processes. The dominance, therefore, may be caused by a single process or
the sum of all processes running on that hardware.

First, we investigate the dominating consumer of the CPU and how the CPU
is utilized. The CPU consumption pattern will lead us to the subsystem that
contains the bottleneck.

In order to investigate the dominating consumer, we make use of a decision
tree. It indicates where the CPU time is spent - in kernel space, user space, or
idling. The following diagram shows the decision tree:

www.EBooksWorld.ir

The round nodes in the graph represent the dominant consumers of the CPU.
The colors represent the jPDM subsystems. Following the decision tree leads
us to the subsystem that contains the bottleneck. Identifying the subsystem
narrows down the performance regression to a specific category. We then use
further tooling to analyze the instance of jPDM, the actual situation.

Since performance issues can originate from an infinite number of things, we
need to follow a process to narrow down the causes. If we would not follow a
process but blindly peek and poke or guess, we would not only waste time
and effort but potentially wrongly identify symptoms as actual dominating
constraints.

The dominant consumers of the CPU represent where the CPU time is spent.

www.EBooksWorld.ir

This is an important information to investigate the situation. It's not sufficient
to solely look at the overall amount of CPU utilization. This information
alone neither gives us much evidence of the existence of a bottleneck or how
much headroom there is, nor does it lead to the dominating consumer. A CPU
usage of 60% doesn't tell us whether the CPU is the constraining resource,
that is whether adding more CPU would improve the overall responsiveness.
The CPU time needs to be analyzed in greater detail.

First, we look at the ratio between CPU user and system time. This indicates
whether the CPU time is spent in the kernel for longer than expected and thus
whether the operating system is the dominating consumer of the CPU.

www.EBooksWorld.ir

Dominating consumer - OS
The operating system dominates the CPU consumption when it's asked to
work harder than it usually should. This means that too much CPU time is
spent on resource and device management. This includes network and disk
I/O, locks, memory management, or context switches.

If the CPU system time is more than a certain percentage value of the user
time, the operating system is the dominating consumer. The jPDM identified
10% as a threshold value, based on the experience of analyzing innumerable
production situations. That means if the CPU system time is more than 10%
of the user time, the bottlenecks are contained in the OS subsystem.

In this case, we investigate the issue further using operating system tools,
such as vmstat, perf, netstat, and others.

For example, an enterprise application that retrieves database entries with a
huge number of individually executed queries puts lots of pressure on the
operating system in managing all these database connections. The overhead
spent on establishing each and every network connection will eventually
dominate the overall system and represent the constraining resource in the
system. Investigating this situation thus shows a big share of CPU time spent
in the kernel where the network connections are established.

www.EBooksWorld.ir

Dominating consumer - none
If the CPU time didn't identify the OS to be the dominating consumer, we
follow the decision tree further and analyze whether the CPU is idling. If that
is the case, it means there is still CPU time available that cannot be
consumed.

Since we are analyzing a situation where the SLA is not met, that is, the
overall system is in a situation where it doesn't perform well enough for the
given load, a well-saturated situation would fully utilize the CPU. Idling CPU
times thus indicates a liveliness issue.

What needs to be investigated is why the threads are not scheduled by the
operating system. This can have multiple causes, such as empty connection or
thread pools, deadlock situations, or slow responding external systems. The
state of the threads will indicate the cause of the constraint. We again use
operating system tooling to investigate the situation.

An example for this category of issues is when an external system that
responds slowly is accessed synchronously. It will lead to threads that are
waiting for network I/O and can't run. This is the difference to dominating
OS consumption, that the thread is not actively executing work but waiting to
get scheduled.

www.EBooksWorld.ir

Dominating consumer - JVM
The dominating consumers so far weren't contained in the application or JVM
subsystems. If the CPU time is not overly spent in the kernel or idling, we
start investigations in the JVM.

Since the JVM is responsible for memory management, its performance will
indicate potential memory issues. Mainly Garbage Collection (GC) logs,
together with JMX tooling help investigate scenarios.

Memory leaks will lead to increasing memory usage and excessive garbage
collector runs that occupy the CPU. Inefficient memory usage will equally
lead to excessive garbage collections. The GC executions ultimately cause
the JVM being the dominating consumer of the CPU.

This is another example of why it's important to follow the process of the
jPDM decision tree. The performance issue arises in high CPU usage,
although the actual bottleneck in this case is the memory leak.

As of today, the main cause of performance issues are related to memory,
mostly from application logging that results in extensive string object
creation.

www.EBooksWorld.ir

Dominating consumer - application
If the JVM analysis didn't indicate a memory issue, finally the application is
the dominating consumer of the CPU. This means that the application code
itself is responsible for the bottleneck. Especially applications that run
sophisticated algorithms excessively utilize the CPU.

Application-related profiling will lead to conclusions where in the application
the issue originates and how the issue might be resolved. This means that the
application either contains suboptimal code or reached the possible limit with
the given resources, and ultimately needs to be scaled horizontally or
vertically.

www.EBooksWorld.ir

Conclusion
The approach of solving performance issues is to try to characterize the
regression first by investigating the situation by following a specific process.
After the constraining resource has been identified, further steps to resolve
the situation are applied. After potentially fixing the situation, the
measurement in production needs to be repeated. It's important to not change
behavior or configuration without the verification that the changes in fact
provide the expected results.

The jPDM approach investigates performance regression without considering
the application's code, by applying a uniform solving process.

What tools and metrics are needed to apply this approach?

Depending on the system in production, tools that ship with the operating
system, as well as Java Runtime-related tools, are useful. Since all aspects
consider the overall system at the operating system level rather than just the
application alone, operating system tools and lower-level metrics are more
helpful than application-specific ones.

However, the technical metrics of the application, such as response time or
throughput, are the first place of focus that indicate the application's quality
of service. If these metrics indicate a performance issue, then it makes sense
to investigate using lower-level metrics and tools.

The next section examines how to gather the application's technical metrics.

www.EBooksWorld.ir

Technical metrics
Technical metrics indicate the load and responsiveness of the system. Prime
examples for these metrics are the response time, as well as the throughput,
often gathered as requests or transactions per second, respectively. They
provide information about how the overall system currently performs.

These metrics will ultimately have an impact on other, business-related
metrics. At the same time, as we have seen in the previous section, these
metrics are just indicators and themselves affected by a lot of other technical
aspects, namely all properties of jPDM subsystems.

Therefore, an application's performance is impacted by a lot of technical
influences. Thus, the question is, which technical metrics besides response
time, throughput, error rates, and uptime should reasonably be collected?

www.EBooksWorld.ir

Types of technical metrics
Technical metrics are primarily concerned with the quality of the
application's service, such as response times or throughput. They are the
indicators that represent the application's responsiveness and may point out
potential performance issues. The information can be used to create statistics
about trends and application peaks.

This insight increases the likelihood of foreseeing potential outages and
performance issues in a timely manner. It is the technical equivalent of
business insights into the otherwise black box system. These metrics alone
allow no sound conclusions about the root cause or constraining resources in
the case of performance issues.

Lower-level technical information includes resource consumption, threading,
pooling, transactions, or sessions. It's again important to mention that this
information alone does not direct the engineers to potential bottlenecks.

As shown previously, it's necessary to inspect the overall situation with
everything running on specific hardware. The operating system information
provides the best source of information. In order to solve performance issues,
the operating system, as well as application tools, are required to take this
into account.

This doesn't mean that the technical information emitted by the application or
the JVM runtime has no value at all. The application-specific metrics can
assist in solving performance issues. It's important to keep in mind that these
metrics alone will lead to potentially wrong assumptions about what the
constraining resources are when a system needs to be performance-tuned.

www.EBooksWorld.ir

High frequency monitoring versus
sampling
Often, monitoring aims to collect technical metrics with a high frequency of
many collections per second. The problem with this high frequency collection
is that it heavily impacts the performance of the system. Metrics often get
collected even if there is no performance regression.

As mentioned, application-level metrics, such as resource consumption, alone
don't help much in identifying potential performance constraints. In the same
way, the collection disrupts the responsiveness of the system.

Instead of monitoring with a high frequency it's advisable to sample metrics
with lower frequency, such as for only a few times per minute. The theory
behind statistical populations shows that these few samples represent the
population of data well enough.

Sampling the information should have as little impact on the application's
performance as possible. All subsequent investigations, or metrics querying
or calculations should happen out-of-band; that is, outsourced to a system
that does not impact the running application. The concerns for sampling the
information from storing, querying, and displaying it, are thus separated.

www.EBooksWorld.ir

Collecting technical metrics
The application is a good place to gather the technical metrics, ideally at the
system boundaries. It's equally possible to collect these in a potential proxy
server.

The application server already emits technically-relevant metrics such as
information about resource consumption, threading, pooling, transactions, or
sessions. Some solutions also provide Java agents that sample and emit
technically-relevant information.

Traditionally, application servers are required to make technically relevant
metrics available via JMX. This functionality is part of the Management API,
but has never been used much in projects. One of the reasons for this is that
the model and API are quite cumbersome.

However, it's helpful to mention that Java EE application servers are required
to gather and provide data about its resources. The container emits this
information via JMX. There are several ways to scrape this information.

There are so-called exporters available, applications that either run standalone
or as Java agents, that access the JMX information and emit it via HTTP.
The Prometheus JMX exporter, which exports the information in a similar
format as shown previously, is an example of this. The benefit of this
approach is that it doesn't add dependencies into the application.

The installation and configuration of Java agents is done in the application
server, in a base container image layer. This once again emphasizes the
principle that containers should not couple the application's artifact with
implementation details.

www.EBooksWorld.ir

Boundary metrics
Technical metrics that are application-specific, such as response times,
throughput, uptime, or error rates can be gathered at the system boundaries.
This can happen via the interceptors or filters, depending on the situation.
HTTP-relevant monitoring can be collected via a servlet filter for any
technology that builds upon servlets, such as JAX-RS.

The following code snippet shows a servlet filter that gathers the response
time and throughput in a Prometheus histogram metrics:

import javax.servlet.*;

import javax.servlet.annotation.WebFilter;

import javax.servlet.http.HttpServletRequest;

@WebFilter(urlPatterns = "/*")

public class MetricsCollectorFilter implements Filter {

 private Histogram requestDuration;

 @Override

 public void init(FilterConfig filterConfig) throws ServletException {

 requestDuration = Histogram.build("request_duration_seconds",

 "Duration of HTTP requests in seconds")

 .buckets(0.1, 0.4, 1.0)

 .labelNames("request_uri")

 .register();

 }

 public void doFilter(ServletRequest req, ServletResponse res,

 FilterChain chain) throws IOException, ServletException {

 if (!(req instanceof HttpServletRequest)) {

 chain.doFilter(req, res);

 return;

 }

 String url = ((HttpServletRequest) req).getRequestURI();

 try (Histogram.Timer ignored = requestDuration

 .labels(url).startTimer()) {

 chain.doFilter(req, res);

 }

 }

 @Override

 public void destroy() {

 // nothing to do

 }

}

www.EBooksWorld.ir

This metric is registered similarly to the business-related example previously,
and emitted via the Prometheus output format. The histogram buckets collect
the time in four buckets, with the specified times from 0.1, 0.4, or 1.0
seconds, and everything above. These bucket configurations need to be
adapted to the SLAs.

The servlet filter is active on all resource paths and will collect the statistics,
qualified by each path.

www.EBooksWorld.ir

Logging and tracing
Historically, logging had quite high importance in enterprise applications. We
have seen a lot of logging framework implementations and supposedly best
practices on how to implement reasonable logs.

Logging is typically used for debugging, tracing, journaling, monitoring, and
outputting errors. In general, all information that developers consider
somewhat important, but not made apparent to the users, is been placed into
logs. In almost all cases, this includes logging to files.

www.EBooksWorld.ir

Shortcomings of traditional logging
This approach, which is way too common in enterprise projects, comes with a
few problems.

www.EBooksWorld.ir

Performance
Traditional logging, especially extensively used logging invocations, creates
a lot of string objects. Even APIs such as Slf4J that aim to reduce
unnecessary string concatenation will result in high memory rates. All these
objects need to be garbage collected after their use, which utilizes the CPU.

Storing log events as string messages is a verbose way of storing
information. Choosing different formats, mainly binary formats would
drastically reduce the message size and result in more efficient memory
consumption and higher throughput.

Log messages that are stored in a buffer or directly on disk need to be
synchronized with other log invocations. Synchronous loggers ultimately
cause a file to be written within a single invocation. All simultaneous log
invocations need to be synchronized in order to ensure that logged events
appear in the right order. This presents the issue that synchronization
indirectly couples functionality that otherwise is completely unrelated. It
decreases the parallelism of intrinsically independent functionality and has a
negative overall performance impact. With a high number of log messages
being written, the probability of blocking threads due to synchronization
increases.

Another issue is that logging frameworks usually don't write the log messages
to disk directly; rather, they use several layers of buffering. This optimization
technique comes with certain management overhead involved that does not
improve the situation either. Synchronous file operations advisably work with
the least overhead layers as possible.

Log files that reside on NFS storage decrease the overall performance even
more, since the write operation hits the operation system I/O twice, with both
file system and network calls involved. In order to manage and persist log
files, network storage is an often chosen solution, especially for container
orchestration that needs persisted volumes.

www.EBooksWorld.ir

In general, experience shows that logging has the biggest impact in an
application's performance. This is mostly due to the memory impact on string
log messages.

www.EBooksWorld.ir

Log levels
Logging solutions include the ability to specify the importance of a log entry
via log levels, such as debug, info, warning, or error. Developers might ask
themselves which log level to choose for specific invocations.

The approach of having several layers certainly sounds reasonable, since
production systems can specify a higher log level than development runs, so
as not to produce too much data in production.

The challenge with this situation is that in production there is usually no
debug log information available when it's needed. Potential error situations
that could need additional insights don't have this information available.
Debug or trace log levels that include tracing information are switched off.

Choosing log levels is always a trade-off regarding what information should
be included. Debugging in development is done best using actual debug tools
which connect against running applications, potentially remotely. Debug or
trace logs are usually not available in production and therefore provide little
benefit.

Whereas defining multiple log levels may have emerged from a good
intention, the practical use in production systems adds little value.

www.EBooksWorld.ir

Log format
Traditional logging solutions specify particular log layouts that format the log
messages in the resulting log file. The application needs to manage the
creation, rolling, and formatting of log files that are not relevant for the
business logic.

Quite a few enterprise applications ship with third-party logging
dependencies that implement this functionality, but provide no business
value.

Choosing particular plain text log formats is another decision that needs to be
made by the application developers. There is a trade-off between a log entry
format that is readable by both humans and machines. The result is usually
the worst compromise for both parties; string log formats that are both hardly
readable and have a tremendous impact on the system's performance.

It would be more reasonable to choose binary formats that store information
with the highest density. Humans then could use tooling to make the
messages visible.

www.EBooksWorld.ir

Amounts of data
Extensive logging introduces a huge amount of data that is contained in log
files. In particular, logs that are used for debugging and tracing purposes
result in big files that are cumbersome and expensive to parse.

Parsing log formats in general introduces an avoidable overhead. Information
that is potentially technically-relevant is serialized in a specific format first,
just to be parsed again later when inspecting the logs.

Later in this sub-section, we will see what other solutions there are.

www.EBooksWorld.ir

Obfuscation
Equal to unreasonably checked exception handling, logging obfuscates
business logic in the source code. This is especially the case for boilerplate
log patterns that are common in many projects.

Log statements take up too much space in the code and especially draw the
developer's attention.

Some logging technology, such as Slf4j, provides functionality to format
strings in readable ways while avoiding immediate string concatenation. But
still, log statements add obfuscating invocations that are unrelated to the
business problem.

This is obviously less the case if the debug log statements are added in a
cross-cutting component, such as an interceptor. However, these cases mostly
add logging for tracing purposes. We will see in the next sub-section that
there are more suitable solutions for this.

www.EBooksWorld.ir

The concerns of applications
As we have seen in 12-factor applications, it is not an application's concern to
choose log files and message formats.

In particular, logging frameworks that promise simpler logging solutions add
technically-motivated third-party dependencies to the application;
dependencies that have no direct business value.

If there is business value in events or messages, then the use of another
solution should be favored. The following shows how traditional logging is
misused for these other applications' concerns.

www.EBooksWorld.ir

Wrong choice of technology
Traditional logging, and how it is used in the majority of enterprise projects,
is a suboptimal choice for concerns that are better handled using different
approaches.

The question is: what do developers want to log, anyway? What about
metrics, such as the current resource consumption? Or business-related
information, such as car manufactured? Should we log debugging and tracing
information such as request with UUID xy originated from application A, and
called subsequent application B? What about occurring exceptions?

Attentive readers will see that most of the use cases for traditional logging are
far better handled using other approaches.

If logging is used for debugging or debug tracing applications, the approach
with using trace or debug levels doesn't help much. Information that will not
be available in production can't reproduce a potential bug. Logging a huge
amount of debug or trace events in production, however, will affect the
application's responsiveness due to disk I/O, synchronization, and memory
consumption. Debugging concurrency-related errors may even lead to a
different outcome, due to the modified order of execution.

For debugging functionality, it's much more advisable to use actual debugger
features during development, such as IDEs that connect against a running
application. Logging that is used for business-motivated journaling is better
accomplished via a proper journaling solution, as we will see later in this
chapter. The plain text log messages are certainly not the ideal solution. The
chosen technology should minimize the performance impact on the
application.

Another approach to realize the same motivations behind journaling is to
introduce event sourcing. This makes the domain events part of the
application's core model.

www.EBooksWorld.ir

Business-motivated tracing, this should be part of the business use case as
well, implemented using an adequate solution. As we will see in the next sub-
section, there are more suitable tracing solutions that require less parsing and
have a smaller performance impact. Tracing solutions also support the
consolidation of information and requests across microservices.

Monitoring information that is stored in log messages is better managed via
the use of proper monitoring solutions. This approach is not just much more
performant, it is also a more effective way of emitting the information in
proper data structures. The examples we have seen earlier in this chapter
illustrate monitored data and possible solutions.

Logging is also traditionally being used to output exceptions and errors that
cannot properly be handled in the application otherwise. This is arguably the
only reasonable use of logging. Together with other potential metrics that
may capture the error, such as error rate counters at the system boundary, the
logged exception may support developers in investigating errors.

However, errors and exceptions should only be logged if they in fact concern
the application and represent an error that can be resolved by developers.
With monitoring and alerting solutions in place, the need to look into logs
should indicate a serious problem with the application.

www.EBooksWorld.ir

Logging in a containerized world
One of the 12-factor principles is to treat logging as a stream of events. This
includes the idea that handling log files should not be a concern of the
enterprise application. Log events should simply output to the process'
standard output.

The application's runtime environment consolidates and processes the log
streams. There are solutions for unified access over all participating
applications that can be deployed into the environment. The runtime
environment where the application is deployed takes care of processing the
log streams. fluentd, which is part of the Cloud Native Computing
Foundation unifies the access to log events in a distributed environment.

Application developers should treat the used logging technology as simply as
possible. The application container is configured to output all server and
application log events to standard output. This approach simplifies matters
for enterprise developers and enables them to focus more on solving actual
business problems.

As we have seen, there is not much information left that application
developers reasonably can log in a traditional way. Monitoring, journaling, or
tracing solutions, as well as event sourcing, can solve the requirements in
more suitable ways.

Together with logging to standard output without the need for sophisticated
log file handling, there is no need for sophisticated logging framework. This
supports zero-dependency applications and enables developers to be able to
focus on business concerns instead.

It's therefore advisable to avoid third-party logging frameworks, as well as
writing to traditional log files. The need to manage log rotations, log entry
formats, levels, and framework dependencies, as well as configuration,
becomes no longer necessary.

www.EBooksWorld.ir

However, the following might seem antithetical to enterprise developers.

The straightforward, 12-factor way to log the output is using the standard
output capabilities of Java via System.out and System.err. This directly writes the
synchronous output without needless layers of buffering.

It's important to mention that outputting data via this approach will not
perform. The introduced synchronization, again, ties otherwise independent
parts of the application together. If the output of the process is grabbed and
emitted by a video card, the performance will further decrease.

Logging to console is only meant to emit errors that are, as the name of the
Java type indicates - an exception. In all other cases, engineers must ask
themselves why they want to output an information in the first place, or
whether other solutions are more suitable. Therefore, logged errors should
indicate a fatal problem that requires engineering action. It should not be
expected to receive this log output in production; in this fatal error case,
performance can be disrespected.

In order to output fatal error information, Java EE applications can use CDI
features as well as Java SE 8 functional interfaces to provide a uniform
logging functionality:

public class LoggerExposer {

 @Produces

 public Consumer<Throwable> fatalErrorConsumer() {

 return Throwable::printStackTrace;

 }

}

The Consumer<Throwable> logger is then injectable in other beans, and it logs
using the accept() method of the consumer type. If a more readable interface is
desired, a thin logger facade type which is injected via @Inject can be defined
as follows:

public class ErrorLogger {

 public void fatal(Throwable throwable) {

 throwable.printStackTrace();

 }

}

www.EBooksWorld.ir

This approach will seem antithetical to enterprise developers, especially
logging without using a logging framework. Using a sophisticated logging
framework, which is used to direct the output to standard out again,
introduces overhead, which ultimately ends up in the same result. Some
developers may prefer to use JDK logging at this point.

However, providing sophisticated log interfaces and thus giving application
developers the opportunity to output all kinds of information, especially
human-readable strings, is counterproductive. This is why the code examples
only allow to output throwable types in fatal error situations.

It's important to notice the following few aspects:

Traditional logging should be avoided and substituted with more-suited
solutions
Only fatal error cases that are the exception, and are expected to ideally
never happen, should be logged
Containerized applications are advised to output log events to standard
out
Application logging and interfaces should be as simple as possible,
preventing developers from excessive use

www.EBooksWorld.ir

Journaling
If journaling is needed as part of the business logic, there are better ways than
using logging frameworks. The requirements for journaling could be auditing
regulations, such as is the case for trading systems.

If the business logic requires journaling, it should accordingly be treated as
such - a business requirement. There is journaling technology available that
synchronously persists the required information with higher density and
lower latency than traditional logging. An example of these solutions is
Chronicle Queue, which allows us to store messages with high throughput
and low latency.

The application domain could model the information as a domain event and
directly persist it into a journaling solution. As mentioned previously, another
way is to base the application on an event sourcing model. The auditing
information is then already part of the application's model.

www.EBooksWorld.ir

Tracing
Tracing is used to reproduce specific scenarios and request flows. It's already
helpful in retracing complex application processes, but it's especially helpful
when multiple applications and instances are involved.

However, what's important to be pointed out is that there needs to be a
business, not technical, requirement for tracing systems, similar to journaling.

Tracing is a poor technique for debugging or performance tracing systems. It
will have a certain impact on performance and doesn't help much in resolving
performance regression. Interdependent, distributed applications that need to
be optimized in their performance advisably solely emit information about
their quality of service, such as response times. Sampling techniques can
sufficiently gather information that indicate performance issues in the
applications.

However, let's have a look at business-motivated tracing to track the
components and systems involved.

The following diagram shows a trace of a specific request involving multiple
application instances and components thereof:

www.EBooksWorld.ir

The trace can also be displayed in a timeline to show the synchronous
invocations as demonstrated in the following diagram:

Tracing includes information about which applications or application
components have been involved and how long the individual invocations
took.

Traditionally, log files have been used for this, by logging the start and end of
each method or component invocation including a correlation ID, such as a
thread identifier. There is the possibility of including correlation IDs into logs
that are used from a single originating request and are reused and logged in
subsequent applications. This results in traces that also span multiple
applications.

www.EBooksWorld.ir

In the case of logging, the tracing information was accumulated from
multiple log files; for example, using solutions such as the ELK stack. Trace
logs are usually implemented in cross-cutting ways; for example, using
logging filters and interceptors so as not to obfuscate the code.

However, using log files for tracing is not advisable. Even enterprise
applications that experience a moderate load introduce a lot of log entries that
are written to files. Many log entries are needed for each and every request.

File-based I/O and the needed log format serialization generally is too heavy
for this approach and greatly affects the performance. Tracing to log file
formats introduces a lot of data that needs to be parsed again afterwards.

There are tracing solutions that provide a much better fit.

www.EBooksWorld.ir

Tracing in a modern world
In the past months and years, multiple tracing solutions have originated that
aim to minimize the performance impact on the system.

OpenTracing is standard, vendor-neutral tracing technology that is part of
the Cloud Native Computing Foundation. It defines the concepts and
semantics of traces and supports tracing in distributed applications. It is
implemented by multiple tracing technologies such as Zipkin, Jaeger, or
Hawkular.

A hierarchical trace consists of several spans, similar to the ones shown in the
previous figures. A span can be a child of, or follow, another span.

In the previous example, the car manufacture component span is a child of
the load balancer span. The persistence span follows the client span since
their invocations happen sequentially.

An OpenTracing API span includes a time span, an operation name, context
information, as well as optional sets of tags and logs. The operation names
and tags are somewhat similar to Prometheus metric names and labels
described earlier in the Enter Prometheus section. Logs describe information
such as span messages.

An example for a single span is createCar with the tags color=RED and
engine=DIESEL, as well as a log message field Car successfully created.

The following code snippet shows an example of using the OpenTracing Java
API in the car manufacture application. It supports Java's try-with-resource
feature.

import io.opentracing.ActiveSpan;

import io.opentracing.Tracer;

@Stateless

public class CarManufacturer {

www.EBooksWorld.ir

 @Inject

 Tracer tracer;

 public Car manufactureCar(Specification spec) {

 try (ActiveSpan span = tracer.buildSpan("createCar")

 .withTag("color", spec.getColor().name())

 .withTag("engine", spec.getEngine().name())

 .startActive()) {

 // perform business logic

 span.log("Car successfully created");

 }

 }

}

The created span starts actively and is added as a child to a potentially
existing parent span. The Tracer is produced by a CDI producer that depends
on the specific OpenTracing implementation.

Obviously, this approach obfuscates the code a lot and should be moved to
cross-cutting components, such as interceptors. Tracing interceptor bindings
can decorate methods and extract information about method names and
parameters.

Depending on the desired information included in tracing spans, the
interceptor binding can be enhanced to provide further information, such as
the operation name.

The following code snippet shows a business method decorated with an
interceptor binding that adds tracing in a lean way. Implementing the
interceptor is left as an exercise for the reader:

@Stateless

public class CarManufacturer {

 ...

 @Traced(operation = "createCar")

 public Car manufactureCar(Specification spec) {

 // perform business logic

 }

}

The traced information is carried into subsequent applications via span
contexts and carriers. They enable participating applications to add their
tracing information as well.

www.EBooksWorld.ir

The gathered data can be extracted via the used OpenTracing
implementation. There are filter and interceptor implementations available
for technology such as JAX-RS resources and clients that transparently add
the required debug information to the invocations, for example, using HTTP
headers.

This way of tracing impacts the system's performance way less than
traditional logging. It defines the exact steps and systems that instrument the
business logic flow. However, as mentioned before, there needs to be a
business requirement to implement a tracing solution.

www.EBooksWorld.ir

Typical performance issues
Performance issues come with typical symptoms, such as response times, that
are slow or become slower over time, timeouts, or even completely
unavailable services. The error rates indicate the latter.

When performance issues arise, the question to be asked is what the actual
constraining resource, the bottleneck, is. Where does the issue originate? As
shown earlier, engineers are advised to follow an investigative process that
considers the overall situation, including hardware and operating systems, in
order to find the constraint. There should be no guessing and premature
decisions.

Performance problems can have a huge number of root causes. Most of them
originate in coding errors or misconfiguration rather than actual workload
exceeding the available resources. Modern application servers can handle a
lot of load until the performance becomes an issue.

However, experience shows that there are typical performance issue root
causes. The following will show you the most serious ones.

Engineers are instructed to investigate issues properly, without following
supposedly best practices and premature optimizations.

www.EBooksWorld.ir

Logging and memory consumption
Traditional logging, such as writing string-formatted log messages to files, is
the most common root cause for poor performance. This chapter has already
described the issues and advisable solutions for them.

The biggest reason for poor performance is the extensive string object
creation and resulting memory consumption. High memory consumption, in
general, represents a major performance issue. This is not only caused by
logging but by high memory rates in caching, memory leaks, or extensive
object creation.

Since the JVM manages the garbage collection of memory, these high
memory rates result in garbage collector runs, trying to free unused memory.
The garbage collection utilizes the CPU. The situation is not resolved by a
single collection run, what results in subsequent GC executions and thus high
CPU usage. This happens if not sufficient memory can be freed either
because of memory leaks or a high workload with high consumption. Even if
the system doesn't crash with OutOfMemoryError, the CPU usage can effectively
stall the application.

Garbage collection logs, heap dumps, and measurements can help with
investigating these issues. JMX tools provide insights about the memory
distribution and potential hot spots.

If business logic is implemented in a lean, straightforward way using short-
lived objects, memory issues are far less likely.

www.EBooksWorld.ir

Premature optimization
It regularly happens in enterprise projects that developers try to prematurely
optimize applications without proper verification. Examples for this are the
usage of caching, configuring pools, and application server behavior, without
sampling sufficient measurements before and after tweaking.

It's highly advisable to not consider to use these optimizations before there is
an identified performance problem. Proper performance sampling and
measurements in production, as well as investigating the constraining
resource, are a necessity before changing the setup.

In the vast majority of cases, it's sufficient to go with convention over
configuration. This is true for both the JVM runtime as well as the
application server. If developers take a plain Java EE approach with the
default application server configuration, they won't likely run into issues with
premature optimization.

If technical metrics indicate that the current approach is not sufficient for the
production workload, only then is there a need to introduce change. Also,
engineers should validate the necessity of the change over time. Technology
changes and an optimization that provided remedy in previous runtime
versions might not be the best solution anymore.

The approach of convention over configuration and taking the default
configuration first also requires the least amount of initial effort.

Again, experience shows that a lot of issues originated from prematurely
introducing change without proper verification beforehand.

www.EBooksWorld.ir

Relational databases
Typical scapegoats for insufficient performance are relational databases.
Usually, application servers are deployed in multiple instances that all
connect against a single database instance. This is a necessity to ensure
consistency due to the CAP theorem.

The database as a single point of responsibility, or failure, is predestined to
become a bottleneck. Still, engineers must consider proper measurements to
verify this assumption.

If metrics indicate that the database response is slower than acceptable, again
the first approach is to investigate the root cause. If the database query is
responsible for causing the slow response, engineers are advised to take a
look at the performed queries. Is a lot of data being loaded? If yes, is all this
data necessary or will it be filtered and reduced by the application later on? In
some cases, the database queries load more data than required.

This is also a question relevant to the business, especially for retrieving data,
whether everything is required. More specific database queries that pre-filter
results or size limits, such as pagination, can help in these cases.

Databases perform exceptionally well when joining and filtering data.
Performing more complex queries directly in the database instance usually
outperforms loading all required data into the application's memory and
executing the query there. It's possible to define complex, nested SQL queries
in Java and to execute them in the database. However, what enterprise
applications should avoid is to define business logic queries directly in the
database, using stored procedures. Business-related logic should reside in the
application.

A typical configuration mistake is also neglecting to index relevant database
columns that are used in queries. There were many cases in projects where
the overall performance could be improved by several factors just by defining

www.EBooksWorld.ir

proper indexes.

In general, the insight measurements of specific use cases usually provide
good insights on where the issue might originate from.

In some scenarios, queries that update data often result in optimistic locking
errors. This originates from domain entities simultaneously being updated.
Optimistic locking is rather a business issue than a technical one. The service
error rate will indicate such issues.

If the business use case requires that entities are often changed
simultaneously, development teams can consider changing the functionality
to an event-based model. Similarly, as shown previously, event sourcing and
event-driven architectures get rid of this situation by introducing eventual
consistency.

If the performance issues purely originates from workload and concurrent
accesses, then ultimately a different data model is required, such as event-
driven architectures realized with CQRS. However, usually the situation is
solvable in another way. The vast majority of enterprise applications scale
well enough using relational databases.

www.EBooksWorld.ir

Communication
The majority of communication-related performance issues are due to
synchronous communication. Most issues in this area emerge from missing
timeouts that lead client calls to block infinitely and cause deadlock
situations. This happens if no client-side timeouts are configured and the
invoked system is unavailable.

A less critical but similarly imperfect situation occurs if the configured
timeouts are too large. This causes systems to wait for too long, slowing
down processes and blocking threads.

Configuring timeouts for client invocations, as described earlier, provides
simple but effective relief from this issue.

High response time and low throughput can have multiple origins.
Performance analysis provides insights into where the time is spent.

There are some other potential bottlenecks, such as payload sizes. Whether
data is sent as plain text or binary data can make quite some difference in
payload sizes. Serialization that uses imperfect algorithms or technology can
also decrease the responsiveness. Still, these concerns are usually negligible
unless the application resides in high performance situations.

If multiple, synchronous invocations are required, they should happen in
parallel if possible, using container-managed threads; for example, provided
by a managed executor service. This avoids unnecessarily making the
application wait.

In general, use cases that span multiple transactional systems, such as
databases using distributed transactions, should be avoided. As described
previously, distributed transactions won't scale. The business use case should
be considered to effectively process asynchronously instead.

www.EBooksWorld.ir

Threading and pooling
In order to reuse threads as well as connections, application containers
manage pools. Requested threads don't necessarily have to be created but are
reused from a pool.

Pooling is used to control the load on specific parts of the system. Choosing
appropriate pool sizes allows the system to be saturated well, but prevents it
from overloading. This is due to the fact that empty pools will lead to
suspended or rejected requests. All threads and connections of that pool are
then being utilized already.

The bulkhead pattern prevents different parts of the system from affecting
each other by defining dedicated thread pools. This limits the resource
shortage to a potentially problematic functionality. In some cases,
functionality such as a legacy system might be known to cause issues.
Bulkheads, implemented as dedicated thread pools, and timeout configuration
help preserve the application's health.

Empty pools either originate from the current load on that pool being
exceptionally high, or resources that are acquired for much longer than
expected. In any case, it's advisable not to simply increase the corresponding
pool size but to investigate where the issue originates from. The described
investigation techniques as well as JMX insights and thread dumps will
supports you in finding bottlenecks, as well as potential programming errors,
such as deadlocks, misconfigured timeouts, or resource leaks. In the minority
of cases will a shortage in pooling actually originate from a high workload.

Pool sizes and configuration is made in the application container. Engineers
must perform proper performance sampling in production before and after
reconfiguring the server.

www.EBooksWorld.ir

Performance testing
The challenge with performance testing is that the tests run in a simulated
environment.

Simulated environments are fine for other kinds of tests, such as system tests,
since certain aspects are abstracted. Mock servers, for example, can simulate
behavior similarly to production.

However, unlike in functional tests, validating the system's responsiveness
requires to take everything in the environment into account. At the end of the
day, applications are running on actual hardware, thus the hardware, as well
as the overall situation, impacts the application's performance. The system's
performance in simulated environments will never behave equally in
production. Therefore, performance tests are not a reliable way of finding
performance bottlenecks.

There are many scenarios where an application can perform much better in
production compared to performance tests, depending on all the immediate
and imminent influences. The HotSpot JVM, for example, performs better
under high load.

Investigating performance constraints therefore can only happen in
production. As shown earlier, the jPDM investigation processes, together
with sampling techniques and tools applied to the production system, will
identify the bottleneck.

Performance and stress tests help in finding obvious code or configuration
errors, such as resource leaks, serious misconfiguration, missing timeouts, or
deadlocks. These bugs will be found before deploying to production.
Performance tests can also capture performance trends over time and warn
engineers if the overall responsiveness decreases. Still, this may only indicate
potential issues but should not lead the engineers to premature conclusions.

www.EBooksWorld.ir

Performance and stress tests only make sense in the whole network of
interdependent applications. This is because of dependencies and
performance influences of all the systems and databases involved. The setup
needs to be as similar to production as possible.

Even then, the outcome will not be the same as in production. It's highly
important that engineers are aware of this. Performance optimizations that
follow performance tests are therefore never fully representative.

For performance tuning, it's important to use investigative processes together
with sampling on production instead. Continuous Delivery techniques
support in quickly bringing configuration changes to production. Then
engineers can use the sampling and performance insights to see whether
changing the setup has improved the overall solution. And again, the overall
system needs to be taken into account. Simply tuning a single application
without considering the whole system can have negative effects on the
overall scenario.

www.EBooksWorld.ir

Summary
Business-related metrics can provide helpful insights into the enterprise
application. These metrics are a part of the business use case and therefore
should be treated as such. Business metrics are ultimately impacted by other,
technical metrics. It's therefore advisable to monitor these metrics as well.

The theory of constraints describes that there will be one ore more limiting
constraints that prevent the system from infinitely increasing its throughput.
In order to improve the application's performance the limiting constraint
therefore needs to be eradicated. jPDM helps identifying the limiting
constraints by finding the dominating consumer of the CPU first and using
appropriate tooling to further investigate performance issues. It's advisable to
investigate potential bottlenecks by following this process, which takes the
overall situation into account, rather than to blindly peek and poke.

Rather than using high-frequency monitoring, engineers are advised to
sample technical metrics with low frequency and to query, calculate, and
investigate out-of-band. This has tremendously less impact on the
application's performance. Distributed applications will need to meet SLAs.
The backpressure approach as well as the bulkhead pattern can help achieve
highly responsive, resilient enterprise systems.

Traditional logging should be avoided for a number of reasons, especially the
negative performance impact. Enterprise applications are advised to only
output log events in case of fatal, unexpected errors, which are written to
standard output in a preferably straightforward way. For all other
motivations, such as debugging, tracing, journaling, or monitoring, there are
more suitable solutions.

Performance and stress tests running in simulated environments can be used
to find obvious errors in the application. The environments should be as close
to production, including all applications and databases involved. For any
other reasoning, especially statements about an application's expected

www.EBooksWorld.ir

performance, bottlenecks, or optimizations, performance tests are not helpful
and might even lead to wrong assumptions.

The next chapter will cover the topic of application security.

www.EBooksWorld.ir

Security
So far, most of the topics covered in this book haven't dealt with the topic of
security. This is an often overlooked topic that in some real-world projects
only gets interest when it's already too late.

Developers as well as project managers see security as a necessary evil rather
than as something providing big benefits to the business. Still, it's a topic that
stakeholders must be made aware of.

Quite a few requirements have changed in the age of the cloud and
distributed applications. This chapter will look into the situation of the past,
as well as today's requirements. It will cover how security is realized using
modern Java EE:

Security lessons learned from the past
Enterprise security principles
Modern security solutions
How to realize security using modern Java EE

www.EBooksWorld.ir

Lessons learned from the past
In today's world IT security is quite an important aspect. Most people have
realized that information technology can cause a lot of harm if misused.

The last half-century of computing contained a lot to learn from, in terms of
security, and not only for enterprise software.

Let's look into a few lessons learned from the past of enterprise application
development. In previous years, the biggest security issues were encryption
and approaches on how to manage credentials.

Encrypting and signing data is an incredibly safe way of keeping secrets, if
applied correctly. It solely depends on the used algorithms and the key
lengths.

There were quite a few encryption and hashing algorithms that turned out to
not be secure enough. DES is an example, as well as the often-used MD5
hashing algorithm. As of writing this book, AES with 192- or 256-bit key
lengths is considered secure. For the hashing algorithm, SHA-2 or -3 with at
least 256 bits is advised.

User credentials that are stored as part of the application must not be stored in
plain text. There have been too many security breaches in the past that
especially targeted databases where the passwords resided. Also, simply
hashing passwords without providing proper password salts is discouraged.

In general, it's highly advisable for enterprise developers not to implement
security functionality themselves if they can avoid it. The idea of companies
was to create their own security implementations that weren't used anywhere
else and, therefore, provide security by obscurity. This, however, turns out to
have had the opposite effect, and, unless security experts are involved, in fact
leads to, less secure solutions.

www.EBooksWorld.ir

The vast majority of enterprise security demands don't require their own,
custom implementations. Enterprise frameworks and the implementations
thereof already ship with corresponding functionality that has been well-
tested in numerous use cases. We will have a look at these APIs for Java
Enterprise later in this chapter.

If the application requires the custom use of encryption, then
implementations provided by runtime or third-party dependencies must be
used. The Java platform offers the Java Cryptography Extension (JCE) for
this reason. It provides implementations for modern encryption and hashing
algorithms.

In general, applications should only process and store secure information
when it's absolutely required by the business use case. In particular, for
authentication and authorization, there are ways that avoid storing user
credentials in multiple systems.

www.EBooksWorld.ir

Security in a modern world
More distribution of applications leads to higher demand in securing
communication. The integrity of exchanged information needs to be ensured.
Similarly, people are aware of the necessity of encryption, especially when it
comes to encrypting communication.

What possibilities do engineers have in today's enterprise world? What
principles should they follow when realizing security?

www.EBooksWorld.ir

Security principles
There are some basic principles that should be followed when implementing
security in enterprise applications. The following list aims to give the basic
ideas, and is not intended to be exhaustive.

www.EBooksWorld.ir

Encrypt communication
First of all, it's important to mention that external communication that
happens over the internet must be encrypted. The usual way of doing this is
via TLS using trusted certificates. This is possible for HTTP as well as for
other communication protocols.

The authenticity of the certificates used must be verified at runtime by the
implementation. They have to be assured by a trusted internal or external
certificate authority.

Insecurely accepting any certificates in the application should be avoided, for
production as well as other environments. This implies that properly signed
certificates are being provided and used for the communication.

www.EBooksWorld.ir

Delegate security concerns
In terms of storing user information, today's approach is to delegate
authentication and authorization to security providers if possible. This means
that an enterprise application doesn't store security information, but asks a
third-party, a trusted security provider.

This is especially interesting in distributed environments, where multiple
applications offer potential endpoints to the outside world. The secure
information moves to a single point of responsibility.

Security concerns are usually not a part of the core business logic. The
application will ask the trusted security provider system to validate the
security of user requests. The security provider acts as a secure single point
of responsibility.

There are decentralized security protocols, such as OAuth or OpenID, that
implement this approach.

Delegating the responsibility to a trusted security provider eliminates the
need to share passwords within enterprise systems. Users identify directly
against security providers. Applications that require security information
about a user will be provided session tokens that do not directly contain
confidential data.

This principle, however, mainly targets communication that includes
application users as persons.

www.EBooksWorld.ir

Treat user credentials properly
If for some reason the application manages user authentication itself, it
should never permanently store passwords and tokens in plain text. This
introduces a severe security risk. Even if an application or database has
sufficient protection from the outside world, it's important to protect the
credentials from internal leaks.

Passwords that need to be managed within the application must be stored
only via appropriate hashing algorithms and approaches such as salting.
Doing so prevents any malicious attack, from both the inside as well the
outside of the coorporation. It's advisable to consult security information
organizations such as Open Web Application Security Project (OWASP).
They provide the modern advice for security approaches and algorithms.

www.EBooksWorld.ir

Avoid storing credentials in version
control
For the same reason that you should not treat secure credentials poorly,
developers shouldn't store clear credentials in the version-controlled project
repository. Even if the repository is hosted company-internally, this
introduces a security risk.

The credentials will be visible permanently in the repository's history.

As shown in Chapter 5, Container and Cloud Environments with Java EE, there
are features of cloud environments that inject secret configuration values into
applications. This functionality can be used to provide secret credentials that
are configured externally.

www.EBooksWorld.ir

Include tests
The security mechanisms that are a responsibility of the application need to
be system-tested properly. Any included authentication and authorization
must be verified as part of the Continuous Delivery pipeline. This means that
you should verify the functionality in automated tests, to not only verify it
once, but continuously, after changes in the software.

It's especially important for security-relevant tests to include negative tests.
For example, the test must verify that incorrect credentials or insufficient
permissions do not allow you to perform specific application functionality.

www.EBooksWorld.ir

Possibilities and solutions
After a few basic but important security principles, let's have a look at the
possible security protocols and solutions.

www.EBooksWorld.ir

Encrypted communication
Encrypted communication usually means that the communications are
encrypted using TLS encryption, as part of the communication protocol in
the transport layer. Certificates are used to encrypt and sign the
communication. Of course, it's crucial to be able to rely on the certificates.

Companies often operate their own certificate authorities and pre-install
their root CA in their computers and software. This certainly makes sense for
internal networks. It reduces overhead and potential costs compared to
requesting certificates for all internal services from an official authority.

Certificates that are publicly trusted are required to be signed by one of the
official certificate authorities that come pre-installed with operating systems
or platforms.

Encrypted communication does not authenticate users, unless individual
client certificates are being used. It lays the foundation for a secure, trusted
communication.

www.EBooksWorld.ir

Protocol-based authentication
Some communication protocols come with authentication capabilities, such
as HTTP with basic or digest authentication. These functionalities are part of
the communication protocol and are usually well-supported in tools and
frameworks.

They usually rely on the communication being already securely encrypted,
otherwise this would make the information accessible for parties that can read
it, should they intercept the communication. This is important to mention to
application developers to ensure that protocol-based authentication is
provided via encrypted communication.

The credentials for protocol-based security are usually provided directly in
every message. This simplifies client calls as there is no need for several
authentication steps, such as in exchanging tokens. The first client invocation
can already exchange information.

www.EBooksWorld.ir

Decentralized security
Other approaches that do not directly include credentials in the client
invocations will fetch security tokens first and issue the actual
communication with the token being provided afterwards. This goes in the
direction of decentralized security.

In order to decouple security from the application, enterprise systems can
include identity providers as a central point for authentication or
authorization, respectively. This delegates the security concerns from the
application to a provider.

The identity providers authorize third parties, such as enterprise applications,
without directly exchanging the credentials with them. The end users are
redirected to the identity providers and don't hand the secure information to
the enterprise application. Third-parties only receive the information when
the access has been permitted, contained in tokens that they can verify.

This three-way authentication avoids concerning the enterprise application
with security responsibilities. The responsibility to verify whether the
information that the user provides was correct moves to the identity provider.

One example of this method is single sign on (SSO) mechanisms. They're
used quite often in bigger companies to require users to authenticate only
once and reuse the information in all services that are secured by an SSO.
The SSO system authenticates the user and provides the required user
information to the corresponding applications. Users just need to log in once.

Another approach is to use decentralized access delegation protocols, such as
OAuth, OpenID, and OpenID Connect. They represent three-way security
workflows to exchange security information between clients, third-party
applications, and the identity provider. The idea is similar to single sign on
mechanisms. However, these protocols enable users to decide which
individual application will receive the user's information. The applications

www.EBooksWorld.ir

receive user access tokens, for example, in the form of JSON Web Tokens,
that are validated via the identity provider, instead of the actual credentials.

The decentralized access delegation protocols and their implementation are
beyond the scope of this book. The responsibility for enterprise systems is to
intercept and redirect the user authentication to the identity provider.
Depending on the system architecture, this is the responsibility of a proxy
server or the application itself.

There are open source solutions out there that implement decentralized
security. An interesting technology is Keycloak which is an Identity and
Access Management solution. It ships with various client adapters and
supports standard protocols, such as OAuth or OpenID Connect, what makes
it easy to secure applications and services.

www.EBooksWorld.ir

Proxies
Proxy servers that encapsulate communication with enterprise applications
can add security aspects, such as encrypting the communication. Web proxy
servers, for example, support TLS encryption over HTTPS.

The question is whether engineers want to make a difference between
network, internal and external communication. Communication in an intranet
network is often unencrypted. Depending on the nature of the exchanged
information, internet communication should, in most cases, be encrypted.

Proxy servers can be used to terminate the encryption at the network
boundaries, so-called TLS termination. The proxy server encrypts all
outgoing information and decrypts all incoming information, respectively.

It's equally possible to re-encrypt the communication using different
certificates for different networks.

www.EBooksWorld.ir

Integration in modern environments
Modern environments aim to support today's security needs. Container
orchestration frameworks offer the provisioning of software proxy servers
and gateways that expose the service; for example,
Kubernetes ingress resources, as well as OpenShift routes support TLS
encryption for cluster-external traffic.

In order to provide secret values such as credentials or private keys,
orchestration frameworks offer the functionality of secrets. As seen
previously, this enables us to separately provide secret configurations into the
environment. Chapter 5, Container and Cloud Environments with Java
EE examined how this is realized.

This enables applications, as well as the configuration in general, to use
secret values. The secrets can be injected into the container runtimes, if
needed.

www.EBooksWorld.ir

Implementing security in Java EE
applications
After seeing the most common security approaches of today's world, let's
have a look into how security is implemented using Java EE.

Of all the Java versions, Java EE version 8 aimed to address security aspects.
It contains a security API that simplifies and unifies the integration for
developers.

www.EBooksWorld.ir

Transparent security
In the simplest way, security in web applications can be implemented by
proxy web servers, such as Apache or nginx. In that case, the security
responsibilities are transparent to the application.

This is often the case if the enterprise application doesn't have to deal with
users as domain entities.

www.EBooksWorld.ir

Servlets
In order to secure web services offered by the Java EE application, usually
security on the servlet layer is used. This is the case for all technology that is
built on top of servlets such as JAX-RS. Security features are configured
using the servlet deployment descriptor, that is, the web.xml file.

This can happen in several ways such as form-based authentication, HTTP
basic access authentication, or client certificates.

Similarly, security solutions such as Keycloak ship their own
implementations of adapters and servlet filters. Developers usually just need
to configure these components to use the security provider.

www.EBooksWorld.ir

Java principals and roles
Java security principals and roles represent identities and authorization roles,
respectively. Principals and roles are usually configured in the application
server in vendor-specific ways. Authenticated requests are bound to a
principal during the execution.

One example of using the associated roles within the execution workflow is
by using common security annotations such as @RolesAllowed. This declarative
approach checks whether the principal is authorized correctly and will
otherwise result in a security exception:

import javax.annotation.security.RolesAllowed;

@Stateless

public class CarManufacturer {

 ...

 @RolesAllowed("worker")

 public Car manufactureCar(Specification spec) {

 ...

 }

 @RolesAllowed("factory-admin")

 public void reconfigureMachine(...) {

 ...

 }

Besides vendor-specific solutions, users and roles can be extended to contain
domain-specific information. The Principal security type is enhanced in order
to do so.

It is possible to inject the principal that is identified by its name and to
provide a specialization. The container takes care of the user identification,
for example, by using form-based authentication.

This approach was especially advised prior to Java EE version 8. However,
modern applications will likely use identity stores to represent domain-
specific user information.

www.EBooksWorld.ir

JASPIC
The Java Authentication Service Provider Interface for
Containers (JASPIC) is a standard that defines authentication service
providers' interfaces. It comprises so-called Server Authentication Modules
(SAM), pluggable authentication components, which are added to the
application server.

This standard offers powerful and flexible ways how to implement
authentication. Server vendors can ship their own implementation of SAMs.
However, implementing authentication modules using the JASPIC standard is
seen as quite cumbersome by a lot of developers. This is why the JASPIC
standard is not widely used in enterprise projects.

www.EBooksWorld.ir

Security API
The Security API 1.0 is shipped with Java EE 8. The idea for this standard
was to provide modern security approaches that are simpler to use for
developers. These are implemented in vendor-independent ways, without the
need to lock in to specific solutions.

Let's have a look into what the Security API includes.

www.EBooksWorld.ir

Authentication mechanisms
First of all, the Security API includes HttpAuthenticationMechanism, which
provides the features of the JASPIC standard with much less development
effort needed. It's specified to be used in a servlet context.

Application developers are only required to define a
custom HttpAuthenticationModule and to configure the authentication in
the web.xml deployment descriptor. We will have a look at a custom security
implementation later in this chapter.

The Java EE container already ships with predefined HTTP authentication
mechanisms for basic, default, and custom form authentication. The
developers can use this predefined functionality with minimal effort. Before
we see an example, let's see how to store the user information.

www.EBooksWorld.ir

Identity stores
The concept of identity stores was also added with the Security API. Identity
stores provide the authentication and authorization information of users in
lightweight, portable ways. They offer a unified way to access this
information.

The IdentityStore type validates a caller's credentials and accesses its
information. Similarly to HTTP authentication mechanisms, the application
containers are required to provide identity stores for LDAP and database
access.

The following shows an example using the container-provided security
functionality:

import javax.security.enterprise.authentication.mechanism.http.*;

import javax.security.enterprise.identitystore.DatabaseIdentityStoreDefinition;

import javax.security.enterprise.identitystore.IdentityStore;

@BasicAuthenticationMechanismDefinition(realmName = "car-realm")

@DatabaseIdentityStoreDefinition(

 dataSourceLookup = "java:comp/UserDS",

 callerQuery = "select password from users where name = ?",

 useFor = IdentityStore.ValidationType.VALIDATE

)

public class SecurityConfig {

 // nothing to configure

}

Application developers only need to provide this annotated class. This
approach provides simple and straightforward security definitions for test
purposes.

Usual enterprise projects arguably require more custom approaches.
Organizations usually have custom ways of authentication and authorization
that need to be integrated.

www.EBooksWorld.ir

Custom security
The following shows a more sophisticated example.

In order to provide custom authentication, application developers implement
a custom HttpAuthenticationMechanism, especially the validateRequest() method. The
class only has to be visible to the container as a CDI bean. The rest is done by
the application container. This simplifies the security integration for
developers.

The following shows a basic example, with pseudo code representing the
actual authentication:

import javax.security.enterprise.AuthenticationException;

import javax.security.enterprise.authentication.mechanism.http.*;

import javax.security.enterprise.credential.UsernamePasswordCredential;

import javax.security.enterprise.identitystore.CredentialValidationResult;

import javax.security.enterprise.identitystore.IdentityStoreHandler;

@ApplicationScoped

public class TestAuthenticationMechanism implements

 HttpAuthenticationMechanism {

 @Inject

 IdentityStoreHandler identityStoreHandler;

 @Override

 public AuthenticationStatus validateRequest(HttpServletRequest request,

 HttpServletResponse response,

 HttpMessageContext httpMessageContext)

 throws AuthenticationException {

 // get the authentication information

 String name = request.get...

 String password = request.get...

 if (name != null && password != null) {

 CredentialValidationResult result = identityStoreHandler

 .validate(new UsernamePasswordCredential(name,

 password));

 return httpMessageContext.notifyContainerAboutLogin(result);

 }

 return httpMessageContext.doNothing();

 }

}

www.EBooksWorld.ir

The validateRequest() implementation accesses the user information contained
in the HTTP request, for example via the HTTP headers. It delegates the
validation to the identity store using the IdentityStoreHandler. The validation
result contains the result that is provided to the security HTTP message
context.

Depending on the requirements, a custom identity handler implementation is
required as well. It can provide custom authentication and authorization
methods.

If decentralized security protocols, such as OAuth, are being used, a custom
identity handler will implement the security access token validation.

The following shows a custom identity store:

import javax.security.enterprise.identitystore.IdentityStore;

@ApplicationScoped

public class TestIdentityStore implements IdentityStore {

 public CredentialValidationResult validate(UsernamePasswordCredential

 usernamePasswordCredential) {

 // custom authentication or authorization

 // if valid

 return new CredentialValidationResult(username, roles);

 // or in case of invalid credentials

 return CredentialValidationResult.INVALID_RESULT;

 }

}

The web.xml servlet deployment descriptor is used to specify the secure
resources. The application container takes care of the integration:

<security-constraint>

 <web-resource-collection>

 <web-resource-name>Protected pages</web-resource-name>

 <url-pattern>/management</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>admin-role</role-name>

 </auth-constraint>

</security-constraint>

An HTTP authentication mechanism provides a straightforward, yet flexible,

www.EBooksWorld.ir

way to implement JASPIC security. Its implementation is simpler compared
to a plain JASPIC approach.

It provides the possibility of intercepting communication flows and can
integrate the application with third-party security providers.

www.EBooksWorld.ir

Accessing security information
Enterprise applications sometimes need the functionality to access
information about the user authorization as part of the business logic. The
Security API enables us to retrieve this information in a uniform way.

It contains the SecurityContext type that provides a programmatic way to
retrieve information about the caller principal and its roles.
The SecurityContext is injectable into any managed beans. It also integrates
with the servlet authentication configuration and provides information about
whether the caller is allowed to access a specific HTTP resource.

The following shows an example usage of the SecurityContext:

import javax.security.enterprise.SecurityContext;

@Stateless

public class CompanyProcesses {

 @Inject

 SecurityContext securityContext;

 public void executeProcess() {

 executeUserProcess();

 if (securityContext.isCallerInRole("admin")) {

 String name = securityContext.getCallerPrincipal().getName();

 executeAdminProcess(name);

 }

 }

 ...

}

The idea of the Security API is that it integrates with the existing
functionality from previous Java EE versions. This implies, for example, that
the @RolesAllowed annotation uses the same role information as
the SecurityContext. Developers can continue to rely on the existing standard
functionality.

www.EBooksWorld.ir

Summary
In today's world, IT security is quite an important aspect. In the past, some of
the biggest security issues were weak encryption and hashing algorithms,
how passwords are persisted, and home-grown security implementations. A
few important security principles include encrypting the communication,
using external, trusted security providers for authentication and authorization,
avoiding keeping credentials under version control, and including test
scenarios that verify protection.

Communication is usually encrypted in the transport layer using TLS. Used
certificates should be signed correctly, either by a company-internal or
official certificate authority. Other approaches includes using security
features of the protocol layer, such as HTTP basic authentication on top of
encrypted communication.

Decentralized security decouples authentication and authorization
responsibilities from the applications by including trusted identity providers.
Single sign on as well as decentralized access delegations protocols are
examples for this.

Security in Java EE application boundaries is usually realized on top of
Servlets. The Security API which was introduced in Java EE 8 aims to
provide simpler, uniform approaches on how to tackle security in Java EE
applications. HTTP authentication mechanisms are an example that provide
easier usage of the powerful JASPIC functionality. Identity stores provide
authentication and authorization information of users.

The idea of the Security API is to integrate with existing functionality and
offer uniform access mechanisms. The included features should be sufficient
to secure enterprise application on the HTTP side.

www.EBooksWorld.ir

Conclusion
I hope that all that we have learned in this book provides helpful insights into
how to build modern, lightweight, business-oriented enterprise applications.
Maybe this book could even dissolve some outdated best practices of the
past.

We have seen how modern versions of Java EE fit into a new world of
software development, embracing container technology, cloud platforms,
automation, Continuous Delivery, and more.

www.EBooksWorld.ir

Motivations in enterprise
development
As we have seen several times in this book, engineering teams should follow
the right motivations when developing software. The main focus of enterprise
systems should be on their business motivations. The domain and business
use cases of applications need to be clear, before they can deliver value to
their customers. At the end of the day, working software that accomplishes
business functionality is what generates revenue.

A helpful question that developers can ask themselves over time is: Is what
we're doing helping to solve the business problem?

Software that aims to meet a customer's demands therefore mainly focuses on
fulfilling business uses cases. Technology that fulfills a subordinate
necessity, such as communication, persistence, or distribution, comes second.
The chosen solutions should aim to solve the business demands first.

Therefore, technology, programming languages and frameworks ideally
support the implementation of use cases without too much overhead. The
team of engineers is advised to choose technology that they are productive
and familiar with, but that also fits this requirement.

www.EBooksWorld.ir

Cloud and Continuous Delivery
We have seen the necessity of moving fast in a fast moving world. It's
important to put emphasis on agility and reactiveness towards the customer's
demands, the time-to-market, or better, time-to-production. The best features
don't deliver value, until they are in the customer's hands.

It makes sense to use concepts and technology that help achieve this goal,
such as Continuous Delivery, automation, infrastructure as code, and
automated software tests.

This is what represents the biggest benefit of modern environments and cloud
technology: the ability to move fast. Application environments for new
projects, features, or test scenarios, can be created in a matter of minutes,
using well-defined specifications. In particular, infrastructure as code and
container technology support these attempts. Software developers deliver the
environment configuration together with the application code, contained in
the project's repository.

Defining all contents of enterprise software thus becomes a responsibility of
the whole engineering team. Developers, as well as operational engineers, are
interested in shipping software that provides value to its users. The whole
software team is accountable for achieving this goal.

This also includes the topic of software quality assurance. Delivering features
with rapid pace is only possible if proper, automated quality verification
mechanisms are in place. Tests that require human intervention and that don't
run reliably or fast enough prevent fast processes and keep developers from
doing more useful work. It's a necessity to invest effort in automated,
sufficient, and reliable test cases that are built with maintainability and code
quality in mind.

www.EBooksWorld.ir

Relevance of Java EE
We have seen how Java EE enables all this. The platform supports focusing
on business demands by enabling developers to write code without setting too
many constraints. Use cases can be designed and implemented by following
the domain's demands first.

The technology itself does not want attention. In the majority of cases, it's
sufficient to annotate business logic which leads the application container to
add the required technical necessities. The approaches of Java EE standards,
such as JAX-RS, JPA, or JSON-B, accomplish the required technical
integration with minimum effort required.

The Java EE platform especially enables engineers to seamlessly integrate
multiple standards without configuration work. The JSR specifications that
are written with the principles of Java EE in mind, make this possible.

Modern Java EE has to be seen differently to how it was in the old days of
J2EE. In fact, the programming model and runtimes have little to do with
J2EE.

With the backwards-compatible nature of the platform, outdated approaches
are still possible, but the technology has advanced a lot since then.
Programming models and design patterns have been revisited and vastly
simplified. In particular, the restrictions of past patterns in implementing
hierarchies of technology-motivated interfaces, and superclasses, are gone.
Developers are able to focus on business domains, not on the technology.

The nature of the Java EE standards allows companies to realize vendor-
independent applications. This avoids vendor lock-in on the technology-side.
Developers are also not exclusively trained for vendor-specific technologies.
We have seen quite a few cases of teams that were solely familiar with
vendors that became obsolete.

www.EBooksWorld.ir

Java EE technology is not only used on the server-side. Standards such as
JAX-RS, JSON-P, or CDI provide valuable benefits for Java SE applications
as well. It makes sense to realize certain functionalities, such as HTTP
clients, with standards technology that developers are familiar with.

www.EBooksWorld.ir

API updates introduced in Java EE
8
This book focuses on enterprise applications with Java EE 8.

There have been certain standards that have been updated in the course of this
version. The following are the most important new features and standards.

www.EBooksWorld.ir

CDI 2.0
Since Java EE 8 and CDI 2.0, events cannot only be handled synchronously.
As we have seen previously in this book, CDI natively supports handling
events asynchronously. In fact, this was only possible before if the event
observer method was a business method of an EJB, annotated with
@Asynchronous.

In order to emit and handle asynchronous CDI events, the publisher side uses
the fireAsync method. The observer method parameter is annotated with
@ObservesAsync.

Another new event functionality the advent of CDI 2.0 included is the
possibility to order event observers. Therefore, the @Priority annotation, which
is well-known within the Java EE platform, is specified at the event observer
method:

public void onCarCreated(@Observes @Priority(100) CarCreated event) {

 System.out.println("first: " + newCoffee);

}

public void alsoOnCarCreated(@Observes @Priority(200) CarCreated event) {

 System.out.println("second: " + newCoffee);

}

This approach guarantees that the event observers are called in the specified
order, with lower priority numbers first. Developers should consider whether
the situation violates loose coupling and the single point of responsibility
principle, by needing to order the event handlers.

The biggest feature of CDI 2.0 was the integration outside of an enterprise
container, providing the possibility to use CDI in Java SE applications. The
idea is that Java SE applications can also use the features of a sophisticated
dependency injection standard. This aims to increase the acceptance of CDI
outside of the Java EE world.

www.EBooksWorld.ir

JAX-RS 2.1
Version 2.1 of JAX-RS mainly targeted reactive clients, SSE, and better
integration into standards such as JSON-B. Besides these, some small
improvements have been added.

Reactive programming is used more and more, and, in particular, the client
receives new, reactive functionality to make HTTP calls and directly
returning so-called reactive types. An example for such a type is the
CompletionStage type. This type is supported natively; other types and libraries
can be added via extensions.

In order to make reactive calls, the rx() method of the Invocation.Builder is
used.

As also shown in this book, JAX-RS 2.1 supports SSE, both on the client and
on the server side. The SSE standard represents a lightweight, one-way
messaging protocol that uses plain text messages over HTTP.

In order to match the usual approach of the Java EE platform, the JSON-B
standard which has been added in Java EE 8 is seamlessly integrated into
JAX-RS. This means that, similarly to JAXB, Java types that are used as
request or response bodies, respectively, are implicitly mapped to JSON.

Similarly, the new features that are part of JSON-P 1.1 and Bean Validation
2.0 are included in JAX-RS, as well. This is possible since the specifications
forward the specific functionality to the corresponding standards.

A smaller update that was incorporated into JAX-RS was the inclusion of the
@PATCH annotation for the HTTP method of the same name. Although support
of HTTP methods other than the provided ones was possible in JAX-RS
before, it simplifies the usage for developers who require this feature.

Another small but indeed helpful improvement was to include standardized

www.EBooksWorld.ir

HTTP timeout methods on the JAX-RS client. The builder methods
connectTimeout and readTimeout handle configured timeouts. A lot of projects
require this configuration, which previously resulted in including vendor-
specific features.

We have seen the implementation of these features in Chapter 3, Implementing
Modern Java Enterprise Applications.

www.EBooksWorld.ir

JSON-B 1.0
The JSON-B is a new standard that maps Java types to and from JSON
structures, respectively. Similarly to JAXB for XML, it provides
functionality to declaratively map objects.

The biggest advantage of this standard within the Java EE ecosystem is that
applications don't need to rely on vendor-specific implementations anymore.
JSON mapping frameworks have typically prevented enterprise applications
to be built in a portable way. They increase the risk of breaking runtime
dependencies with existing framework versions.

JSON-B solves this issue by providing standardized JSON mapping.
Shipping custom mapping frameworks such as Jackson or Johnzon is not
required anymore.

www.EBooksWorld.ir

JSON-P 1.1
JSON-P 1.0, which was introduced in Java EE 7, shipped a powerful feature
to programmatically create and read JSON structures. The version 1.1 mainly
included support for common JSON standards.

One of these IETF standards is JSON Pointer (RFC 6901). It defines a
syntax to query JSON structures and values. By using pointers such as
"/0/user/address", JSON values are referenced, similarly to XPath in the XML
world.

This feature is included in the JsonPointer type, that is created via the
Json.createPointer() method, similarly to the existing JSON-P API.

Another, newly-supported standard is JSON Patch (RFC 6902). RFC 6902
defines so-called patches and modification methods that are applied to
existing JSON structures.

JSON 1.1 supports creating JSON patches via Json.createPatch or
Json.createPatchBuilder, respectively. The corresponding JSON-P type is
JsonPatch.

The third supported IETF standard is JSON Merge Patch (RFC 7386). This
standard merges existing JSON structures to create new structures. JSON-P
supports creating Merge Patches via Json.createMergeDiff or Json.createMergePatch,
respectively, that result in the JsonMergePatchtype.

Besides these supported IETF standards, JSON-P 1.1 includes a few smaller
features that simplify the API usage. One example is the support of Java SE 8
streams via pre-defined stream collectors, such as the
JsonCollectors.toJsonArray() method. Another small improvement enables the
creation of JSON-P values types from Java strings and primitives, via
Json.createValue.

www.EBooksWorld.ir

Bean Validation 2.0
Java EE 8 updates the Bean Validation version to 2.0. Besides including new,
pre-defined constraints, it mainly targets support for Java SE 8.

The Java SE 8 support includes multiple, differently-configured validation
constraint annotations. Types of the Java 8 Date and Time API are now
supported; for example, via usage such as @Past LocalDate date.

Values that are contained in container types can also be validated separately,
via parameterized type annotations. Examples for this are Map<String, @Valid
Customer> customers, List<@NotNull String> strings, and Optional<@NotNull String>
getResult().

Bean Validation 2.0 includes new pre-defined constraints. For example, @Email
validates email addresses. @Negative and @Positive verify numeric values.
@NotEmpty ensures that collections, maps, arrays, or strings are not empty or
null. @NotBlank validates that strings do not solely consist of whitespace.

These constraints are a helpful default feature that avoids potentially defining
this manually.

www.EBooksWorld.ir

JPA 2.2
Java EE 8 updates the JPA specification to version 2.2. This version mainly
targets Java SE 8 features.

Similar to Bean Validation, the Java SE 8 support includes the Date and Time
API. Types such as LocalDate or LocalDateTime are now natively supported for
entity properties.

Version 2.2 makes it possible to return a query result, not only as List<T> but
Stream<T>, using the getResultStream() method as shown in the following code
snippet:

Stream<Car> cars = entityManager

 .createNamedQuery(Car.FIND_TWO_SEATERS, Car.class)

 .getResultStream();

cars.map(...)

What JPA 2.2 also finally added is support to inject managed beans into
attribute converters using CDI's @Inject. This increases the use and number of
scenarios of custom attribute converters. Similar to other standards such as
JSON-B, better CDI integration encourages reuse of Java EE components.

Also version 2.2 adds repeatable annotations, such as @JoinColumn, @NamedQuery,
or @NamedEntityGraph. Since Java SE 8 allows to repeat the same annotation type
multiple times, developers are no longer required to use the corresponding
group annotations, such as @JoinColumns, for these functionalities.

www.EBooksWorld.ir

Security 1.0
As seen in the last chapter, Security 1.0 aims to simplify the integration of
security concerns into Java EE applications. Developers are therefore
encouraged to use powerful functionalities such as JASPIC.

We have seen the features and usage of HTTP authentication mechanisms,
identity stores, and security contexts in the previous chapter.

www.EBooksWorld.ir

Servlet 4.0
As of writing this book, HTTP/1.1 is the primarily used version of HTTP.
HTTP/2 targets the shortcomings of HTTP performance of web applications
in the past. In particular, requesting several resources of a web based system
could lead to suboptimal performance due to the numerous connections
involved. Version 2 of HTTP aims to lower latency and maximize throughput
by multiplexing, pipelining, compressing headers, and Server Push.

Most of the changes in HTTP/2 do not affect the engineers' work compared to
1.1. The servlet container deals with HTTP concerns under the hood. The
exception to this is the Server Push feature.

Server Push works in such a way that the server directly sends HTTP
responses of resources related to a client-requested resource, following the
assumption that the client would need these resources as well. It allows the
server to send resources which were not explicitly requested by a client. This
is a performance optimization technique that in web pages mainly concerns
style sheets, JavaScript code, and other assets.

The Servlet API supports Server Push messages by using the PushBuilder type
that is instantiated with the HttpServletRequest.newPushBuilder() method.

www.EBooksWorld.ir

JSF 2.3
Java Server Faces are a traditional way of building server-centric,
component-based HTML UIs. Java EE 8 ships with the updated JSF version
2.3.

The main improvements of the version update include better CDI,
WebSocket and AJAX integration, class-level Bean Validation, as well as
support for Java SE 8.

Since the focus of this book is clearly on the backend-side, it doesn't include
much about JSF.

www.EBooksWorld.ir

JCP and participation
The Java Community Process (JCP) defines the standards that make up the
Java SE and EE platforms, including the Java EE umbrella standard itself.
The individual standards are defined as Java Specification Requests (JSR),
each forming so-called Expert Groups, consisting of experts and companies
involved in enterprise software.

The idea is to standardize technology that has proven itself well in real-world
projects. The experience of companies and individuals from these real-world
projects is brought together to form vendor-independent Java enterprise
standards.

It's highly advisable for both companies and individuals to participate in the
JCP. It provides the ability to form the standards and the future of Java
technology as well as to gain knowledge in this technology. The open
processes of the JCP enable developers to get insight about how the future
versions of Java EE will look.

Individuals and companies can also follow the standardization processes,
even if they don't participate in the JCP. It's possible to review working states
of the standards and provide feedback to the Expert Groups.

The Expert Groups indeed welcome constructive feedback while the
specifications are being formed. It's very beneficial to receive feedback and
experience from real-world projects and helps in crafting standards that suit
the needs of the industry better.

I also was involved in shaping Java EE 8, being part of two Expert Groups,
namely JAX-RS 2.1 and JSON-P 1.1. I personally gained a lot of knowledge
as part of this engagement and can encourage enterprise Java developers to
look into the processes within the JCP.

www.EBooksWorld.ir

MicroProfile
The motivation behind the MicroProfile initiative was to build upon the Java
EE standards and create smaller-scale profiles that target microservice
architectures as well as experiment with features independent from
standardization. Multiple application server vendors have been involved in
this initiative that forms vendor-agreed de facto standards.

Server applications that support MicroProfile pride the opportunity to run
Java EE applications that only require a smaller set of standards, in the first
version this includes JAX-RS, CDI, and JSON-P. Similarly, application
server vendors provide the ability to strip down runtime to a specific required
set of standards.

The advantage of these approaches is that they don't add dependencies to the
enterprise project, rather than just optimizes the runtime. Developers still
write their applications using the same Java EE standard technology.

www.EBooksWorld.ir

Eclipse Enterprise for Java
In September 2017, just before publishing this book, Oracle, the steward of
Java EE and the JCP, announced to move the Java EE platform and its
standards to an Open Source Foundation, what emerged in Eclipse
Enterprise for Java (EE4J). The plans aim to lower the barrier for
companies and developers who would like to contribute and to ultimately
enable to a more open technology.

However the realization of these plans will look, it's important to mention
that the plans include the preservation of the nature of the platform. The
approaches and techniques presented in this book will hold true in the future
of enterprise Java.

I can repeat my message of what I have said in the past about participation
within the JCP. However the manifestation of the standardization process of
Enterprise Java looks, I encourage engineers and companies to have a look
into Eclipse Enterprise for Java and to participate in defining enterprise
standards. The collective knowledge and real world experience helped
shaping the standards of Java EE, and will help shaping Enterprise Java in the
future.

www.EBooksWorld.ir

Appendix: Links and further
resources
Throughout this book, we have covered many topics pertaining to Java EE.
There are a few sources that helped me shape the content at various places.
To continue your learning journey, you can refer to the following resources
and references in the order of their occurrence in the book:

Java Enterprise Platform: http://www.oracle.com/technetwork/java/javaee/overview/ind
ex.html

Java Community Process: https://jcp.org/en/home/index

Clean Code, Robert C. Martin (Uncle Bob)

Design Patterns: Elements of Reusable Object-Oriented Software, Erich
Gamma et al

Domain-Driven Design, Eric Evans

Screaming Architecture, Robert C. Martin (Uncle Bob): https://8thlight.com/b
log/uncle-bob/2011/09/30/Screaming-Architecture.html

Conway’s Law, Mel Conway: http://www.melconway.com/Home/Conways_Law.html

Apache Maven: https://maven.apache.org

Gradle: https://gradle.org

Servlet API 4: https://www.jcp.org/en/jsr/detail?id=369

Entity Control Boundary, Ivar Jacobson

Java EE 8 (JSR 366): https://jcp.org/en/jsr/detail?id=366

www.EBooksWorld.ir

http://www.oracle.com/technetwork/java/javaee/overview/index.html
https://jcp.org/en/home/index
https://8thlight.com/blog/uncle-bob/2011/09/30/Screaming-Architecture.html
http://www.melconway.com/Home/Conways_Law.html
https://maven.apache.org
https://gradle.org
https://www.jcp.org/en/jsr/detail?id=369
https://jcp.org/en/jsr/detail?id=366

Enterprise JavaBeans 3.2 (JSR 345): https://jcp.org/en/jsr/detail?id=345

Context and Dependency Injection for Java 2.0 (JSR 365): https://jcp.org/en/j
sr/detail?id=365

Simple Object Access Protocol (SOAP): https://www.w3.org/TR/soap/

Java API for RESTful Web Services 2.1 (JSR 370): https://jcp.org/en/jsr/detail?
id=370

Roy T. Fielding, Architectural Styles and the Design of Network-based
Software

Siren: https://github.com/kevinswiber/siren

Java API for JSON Binding 1.0 (JSR 367): https://jcp.org/en/jsr/detail?id=367

Java API for JSON Processing 1.1 (JSR 374): https://jcp.org/en/jsr/detail?id=374

Java XML Binding 2.0 (JSR 222): https://jcp.org/en/jsr/detail?id=222

Bean Validation 2.0, (JSR 380): https://jcp.org/en/jsr/detail?id=380

Java Message Service 2.0 (JSR 343): https://jcp.org/en/jsr/detail?id=343

Server-Sent Events: https://www.w3.org/TR/eventsource/

WebSocket Protocol (RFC 6455): https://tools.ietf.org/html/rfc6455

Java API for WebSocket (JSR 356): https://jcp.org/en/jsr/detail?id=365

Enterprise JavaBeans / Interceptors API 1.2 (JSR 318): https://jcp.org/en/jsr/d
etail?id=318

Java Temporary Caching API (JSR 107): https://jcp.org/en/jsr/detail?id=107

MicroProfile: https://microprofile.io

Docker Documentation: https://docs.docker.com

www.EBooksWorld.ir

https://jcp.org/en/jsr/detail?id=345
https://jcp.org/en/jsr/detail?id=365
https://www.w3.org/TR/soap/
https://jcp.org/en/jsr/detail?id=370
https://github.com/kevinswiber/siren
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=222
https://jcp.org/en/jsr/detail?id=380
https://jcp.org/en/jsr/detail?id=343
https://www.w3.org/TR/eventsource/
https://tools.ietf.org/html/rfc6455
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=318
https://jcp.org/en/jsr/detail?id=107
https://microprofile.io
https://docs.docker.com

Kubernetes Documentation: https://kubernetes.io/docs/home

OpenShift Documentation: https://docs.openshift.com

Cloud Native Computing Foundation: https://www.cncf.io

The 12-factor app: https://12factor.net

Beyond the 12 Factor App, Kevin Hoffman: https://content.pivotal.io/ebooks/bey
ond-the-12-factor-app

Jenkins: https://jenkins.io

Using a Jenkinsfile, Documentation: https://jenkins.io/doc/book/pipeline/jenkinsfile

Semantic Versioning: http://semver.org

JUnit 4: http://junit.org/junit4

Mockito: http://site.mockito.org

Arquillian: http://arquillian.org

CDI-Unit: https://bryncooke.github.io/cdi-unit

AssertJ: http://joel-costigliola.github.io/assertj

TestNG: http://testng.org/doc

WireMock: http://wiremock.org

Gatling: https://gatling.io

Apache JMeter: http://jmeter.apache.org

Cucumber-JVM: https://cucumber.io/docs/reference/jvm

FitNesse: http://fitnesse.org

www.EBooksWorld.ir

https://kubernetes.io/docs/home
https://docs.openshift.com
https://www.cncf.io
https://12factor.net
https://content.pivotal.io/ebooks/beyond-the-12-factor-app
https://jenkins.io
https://jenkins.io/doc/book/pipeline/jenkinsfile
http://semver.org
http://junit.org/junit4
http://site.mockito.org
http://arquillian.org
https://bryncooke.github.io/cdi-unit
http://joel-costigliola.github.io/assertj
http://testng.org/doc
http://wiremock.org
https://gatling.io
http://jmeter.apache.org
https://cucumber.io/docs/reference/jvm
http://fitnesse.org

Prometheus: https://prometheus.io

Grafana: https://grafana.com

fluentd: https://www.fluentd.org

Chronicle Queue: http://chronicle.software/products/chronicle-queue

OpenTracing: http://opentracing.io

AsciiDoc: http://asciidoc.org

Markdown: https://daringfireball.net/projects/markdown

OpenAPI: https://www.openapis.org

Swagger: https://swagger.io

Porcupine, Adam Bien: https://github.com/AdamBien/porcupine

Breakr, Adam Bien: https://github.com/AdamBien/breakr

OWASP: https://www.owasp.org

OAuth: https://oauth.net

OpenID: https://openid.net

JSON Web Tokens: https://jwt.io

Java Authentication Service Provider Interface for Containers (JSR
196): https://www.jcp.org/en/jsr/detail?id=196

www.EBooksWorld.ir

https://prometheus.io
https://grafana.com
https://www.fluentd.org
http://chronicle.software/products/chronicle-queue
http://opentracing.io
http://asciidoc.org
https://daringfireball.net/projects/markdown
https://www.openapis.org
https://swagger.io
https://github.com/AdamBien/porcupine
https://github.com/AdamBien/breakr
https://www.owasp.org
https://oauth.net
https://openid.net
https://jwt.io
https://www.jcp.org/en/jsr/detail?id=196

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	Introduction
	New demands in enterprise systems
	Modern way of realizing enterprise systems
	Relevance of Java EE in modern systems
	Java EE 8 update and roadmap
	Java Community Process
	What to expect in the book

	Designing and Structuring Java Enterprise Applications
	The purpose of enterprise applications
	What developers should focus on
	Meeting customer's demands

	Outer enterprise project structure
	Business and team structures
	Software projects contents
	Application source code
	Software structures
	Version control systems
	Binaries
	Build systems

	Single versus multi-module projects
	Illusion of reusability
	Technical dependencies
	Organizational challenges
	Reusability considerations

	Project artifacts
	One project per artifact
	Build systems for Java EE
	Apache Maven
	Gradle

	Structuring for modern frontend technologies
	Enter JavaScript frameworks
	Organizing modern frontends

	Enterprise project code structure
	Situation in enterprise projects
	Horizontal versus vertical layering
	Business-driven structure
	Designing reasonable modules
	Realizing package structures
	Package contents
	Horizontal package layering
	Flat module package
	Entity Control Boundary
	Packages
	Package access

	Don't over-enforce architecture

	Summary

	Implementing Modern Java Enterprise Applications
	Use case boundaries
	Core domain components of modern Java EE
	EJB and CDI - differentiation and integration
	CDI producers
	Emitting domain events
	Scopes

	Patterns in Java EE
	Design patterns revisited
	Singleton
	Abstract factory
	Factory method
	Object pool
	Decorator
	Facade
	Proxy
	Observer
	Strategy
	Further patterns

	Domain-Driven Design
	Services
	Entities
	Value objects
	Aggregates
	Repositories
	Factories
	Domain event

	External and cross-cutting concerns in enterprise applications
	Communication with external systems
	How to choose communication technology
	Synchronous HTTP communication
	Representational State Transfer
	Java API for RESTful web services
	Mapping HTTP content types
	Validating requests
	Mapping errors
	Accessing external systems
	Stability when consuming HTTP
	Accessing Hypermedia REST services

	Asynchronous communication and messaging
	Asynchronous HTTP communication
	Message-oriented communication
	Server-sent events
	WebSocket

	Connecting enterprise technology

	Database systems
	Integrating RDBMS systems
	Mapping domain models
	Integrating database systems
	Transactions

	Relational databases versus NoSQL

	Cross-cutting concerns
	Configuring applications
	Caching

	Flow of execution
	Synchronous execution
	Asynchronous execution
	Asynchronous EJB methods
	Managed Executor Service
	Asynchronous CDI events
	Scopes in asynchronicity
	Timed execution
	Asynchronous and reactive JAX-RS

	Concepts and design principles of modern Java EE
	Preserving maintainable code with high quality
	Summary

	Lightweight Java EE
	Lightweight enterprise technology
	Why Java EE standards?
	Convention over configuration
	Dependency management of Java EE projects
	Lightweight way of packaging applications
	Java EE application servers
	One application per application server
	Summary

	Container and Cloud Environments with Java EE
	Motivations and goals
	Infrastructure as code
	Stability and production readiness

	Containers
	Java EE in the container
	Container orchestration frameworks
	Realizing container orchestration
	Java EE in orchestrated containers
	Connecting external services
	Configuring orchestrated applications

	12-factor applications and Java EE
	Have one codebase tracked in revision control, many deploys
	Explicitly declare and isolate dependencies
	Store config in the environment
	Treat backing services as attached resources
	Strictly separate build and run stages
	Execute the app as one or more stateless processes
	Export services via port binding
	Scale out via the process model
	Maximize robustness with fast startup and graceful shutdown
	Keep development, staging, and production as similar as possible
	Treat logs as event streams
	Run admin/management tasks as one-off processes

	Cloud, Cloud native, and their benefits
	Cloud native

	Summary

	Application Development Workflows
	Motivation and goals of productive development workflows
	Realizing development workflows
	Version control everything
	Building binaries
	Java artifacts
	Artifact versions
	Building containers

	Quality assurance
	Deployment
	Configuration
	Credentials

	Data migration
	Adding database structures
	Changing database structures
	Removing database structures
	Implementing migration

	Testing
	Build metadata
	Going to production
	Branching models
	Technology
	Pipeline-as-code

	Workflows with Java EE
	Continuous Delivery culture and team habits
	Responsibility
	Check in early and often
	Immediately fixing issues
	Visibility
	Improve continuously

	Summary

	Testing
	The necessity of tests
	Requirements of well-crafted tests
	Predictability
	Isolation
	Reliability
	Fast execution
	Automation
	Maintainability

	What to test
	Definition of test scopes
	Unit tests
	Component tests
	Integration tests
	System tests
	Performance tests
	Stress tests

	Implementing tests
	Unit tests
	Implementation
	Technology

	Component tests
	Motivation
	Implementation
	Delegating test components
	Technology

	Integration tests
	Embedded containers
	Embedded databases
	Running integration tests

	Code level integration tests versus system tests
	Shortcomings of integration tests
	Shortcomings of system tests
	Conclusion

	System tests
	Managing test scenarios
	Simulating external concerns
	Designing system tests
	Deploying and controlling external mocks

	Performance tests
	Motivation
	Key performance indicators
	Developing performance tests
	Insights

	Running tests locally
	Maintaining test data and scenarios
	Importance of maintainable tests
	Signs of lack of test quality
	Test code quality
	Test technology support

	Summary

	Microservices and System Architecture
	Motivations behind distributed systems
	Challenges of distribution
	Communication overhead
	Performance overhead
	Organizational overhead

	How to design systems landscapes
	Context maps and bounded contexts
	Separation of concerns
	Teams
	Project life cycles

	How to design system interfaces
	API considerations
	Interface management
	Change-resilient APIs
	Breaking the business logic
	Hypermedia REST and versioning

	Documenting boundaries
	Consistency versus scalability

	Event sourcing, event-driven architectures, and CQRS
	Shortcomings of CRUD-based systems
	Scalability
	Competing transactions
	Reproducibility

	Event sourcing
	Benefits

	Eventually consistent real world
	Event-driven architectures
	Eventual consistency in event-driven architectures

	Enter CQRS
	Principles
	Design
	Benefits
	Shortcomings

	Communication
	Microservice architectures
	Sharing data and technology in enterprises
	Shared-nothing architectures
	Interdependent systems
	12-factor and cloud native applications
	When to use and when not to use microservices

	Implementing microservices with Java EE
	Zero-dependency applications
	Application servers
	Implementing application boundaries
	Implementing CQRS
	System interfaces
	Example scenario using Apache Kafka
	Integrating Java EE
	CDI events
	Event handlers
	State representation
	Consuming Kafka messages
	Producing Kafka messages
	Application boundaries

	Integrating further CQRS concepts

	Java EE in the age of distribution
	Discovering services
	Communicating resiliently
	Validating responses
	Breaking timeouts and circuits
	Bulkheads
	Shaking hands and pushing back

	More on being resilient

	Summary

	Monitoring, Performance, and Logging
	Business metrics
	Collecting business metrics
	Emitting metrics
	Enter Prometheus
	Realization with Java EE
	Integrating the environment

	Meeting performance requirements in distributed systems
	Service level agreements
	Achieving SLAs in distributed systems

	Tackling performance issues
	Theory of constraints
	Identifying performance regression with jPDM
	Subsystems
	Actors
	Application
	JVM
	Operating system and hardware

	jPDM instances - production situations
	Analyzing the jPDM instances
	Dominating consumer - OS
	Dominating consumer - none
	Dominating consumer - JVM
	Dominating consumer - application

	Conclusion

	Technical metrics
	Types of technical metrics
	High frequency monitoring versus sampling
	Collecting technical metrics
	Boundary metrics

	Logging and tracing
	Shortcomings of traditional logging
	Performance
	Log levels
	Log format
	Amounts of data
	Obfuscation
	The concerns of applications
	Wrong choice of technology

	Logging in a containerized world

	Journaling
	Tracing
	Tracing in a modern world

	Typical performance issues
	Logging and memory consumption
	Premature optimization
	Relational databases
	Communication
	Threading and pooling

	Performance testing
	Summary

	Security
	Lessons learned from the past
	Security in a modern world
	Security principles
	Encrypt communication
	Delegate security concerns
	Treat user credentials properly
	Avoid storing credentials in version control
	Include tests

	Possibilities and solutions
	Encrypted communication
	Protocol-based authentication
	Decentralized security
	Proxies
	Integration in modern environments

	Implementing security in Java EE applications
	Transparent security
	Servlets
	Java principals and roles
	JASPIC
	Security API
	Authentication mechanisms
	Identity stores
	Custom security
	Accessing security information

	Summary

	Conclusion
	Motivations in enterprise development
	Cloud and Continuous Delivery
	Relevance of Java EE
	API updates introduced in Java EE 8
	CDI 2.0
	JAX-RS 2.1
	JSON-B 1.0
	JSON-P 1.1
	Bean Validation 2.0
	JPA 2.2
	Security 1.0
	Servlet 4.0
	JSF 2.3

	JCP and participation
	MicroProfile
	Eclipse Enterprise for Java

	Appendix: Links and further resources

