
Tomasz Nurkiewicz & Ben Christensen
Foreword by Erik Meijer

Reactive
Programming
 with RxJava
CREATING ASYNCHRONOUS,
EVENT-BASED APPLICATIONS

Includes

Android Coverage

www.EBooksWorld.ir

www.EBooksWorld.ir

Praise for Reactive Programming with RxJava

“This book is a deep dive into the concepts and uses of RxJava in particular, and reactive
programming in general, by authors who have countless hours of experience

implementing and using RxJava in the real world. If you want to go reactive, there is no
better way than to buy this book.”

—Erik Meijer, President and Founder, Applied Duality, Inc.

“RxJava is an invaluable tool for managing the highly stateful, concurrent, and
asynchronous implementations that a modern Android application requires. [This book]

serves as both an incremental learning tool and a reference for a library, which can
otherwise be quite daunting to fully understand.”

—Jake Wharton, Software Engineer, Square, Inc.

“Tomasz and Ben have a great talent for explaining complicated matters in an
uncomplicated manner. That’s what makes this book a real pleasure to read and a must-

have for every JVM developer who wants to grasp reactive programming and RxJava. The
authors touch on many topics like concurrency, functional programming, design patterns,

and reactive programming; yet the result doesn’t overwhelm readers but rather guides
them, gradually introducing more and more advanced concepts and techniques.”

—Szymon Homa, Senior Software Developer

www.EBooksWorld.ir

www.EBooksWorld.ir

Tomasz Nurkiewicz and Ben Christensen

Reactive Programming
with RxJava

Creating Asynchronous,
Event-Based Applications

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.EBooksWorld.ir

978-1-491-93165-3

[LSI]

Reactive Programming with RxJava
by Tomasz Nurkiewicz and Ben Christensen

Copyright © 2017 Ben Christensen and Tomasz Nurkiewicz. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Nan Barber and Brian Foster Indexer: Judy McConville
Production Editor: Melanie Yarbrough Interior Designer: David Futato
Copyeditor: Octal Publishing, Inc. Cover Designer: Karen Montgomery
Proofreader: Christina Edwards Illustrator: Rebecca Demarest

October 2016: First Edition

Revision History for the First Edition
2016-10-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491931653 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Reactive Programming with RxJava, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.EBooksWorld.ir

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491931653

I dedicate this book to Paulina Ścieżka, the most honest and direct person I ever met.
For trust and guidance far beyond just writing a book.

For changing my life more than she ever imagined.
—Tomasz Nurkiewicz

www.EBooksWorld.ir

www.EBooksWorld.ir

Table of Contents

Foreword. xiii

Introduction. xvii

1. Reactive Programming with RxJava. 1
Reactive Programming and RxJava 1
When You Need Reactive Programming 3
How RxJava Works 4

Push versus Pull 4
Async versus Sync 5
Concurrency and Parallelism 8
Lazy versus Eager 12
Duality 13
Cardinality 15

Mechanical Sympathy: Blocking versus Nonblocking I/O 20
Reactive Abstraction 25

2. Reactive Extensions. 27
Anatomy of rx.Observable 27
Subscribing to Notifications from Observable 30

Capturing All Notifications by Using Observer<T> 32
Controlling Listeners by Using Subscription and Subscriber<T> 32
Creating Observables 34

Mastering Observable.create() 35
Infinite Streams 38
Timing: timer() and interval() 43
Hot and Cold Observables 43

Use Case: From Callback API to Observable Stream 45

vii

www.EBooksWorld.ir

Manually Managing Subscribers 49
rx.subjects.Subject 51
ConnectableObservable 53

Single Subscription with publish().refCount() 54
ConnectableObservable Lifecycle 56

Summary 59

3. Operators and Transformations. 61
Core Operators: Mapping and Filtering 61

1-to-1 Transformations Using map() 64
Wrapping Up Using flatMap() 67
Postponing Events Using the delay() Operator 72
Order of Events After flatMap() 73
Preserving Order Using concatMap() 75

More Than One Observable 77
Treating Several Observables as One Using merge() 77
Pairwise Composing Using zip() and zipWith() 79
When Streams Are Not Synchronized with One Another: combineLatest(),

withLatestFrom(), and amb() 83
Advanced Operators: collect(), reduce(), scan(), distinct(), and groupBy() 88

Scanning Through the Sequence with Scan and Reduce 88
Reduction with Mutable Accumulator: collect() 91
Asserting Observable Has Exactly One Item Using single() 92
Dropping Duplicates Using distinct() and distinctUntilChanged() 92

Slicing and Dicing Using skip(), takeWhile(), and Others 94
Ways of Combining Streams: concat(), merge(), and switchOnNext() 97
Criteria-Based Splitting of Stream Using groupBy() 104
Where to Go from Here? 107

Writing Customer Operators 107
Reusing Operators Using compose() 108
Implementing Advanced Operators Using lift() 110

Summary 115

4. Applying Reactive Programming to Existing Applications. 117
From Collections to Observables 118
BlockingObservable: Exiting the Reactive World 118
Embracing Laziness 121
Composing Observables 123

Lazy paging and concatenation 124
Imperative Concurrency 125
flatMap() as Asynchronous Chaining Operator 131
Replacing Callbacks with Streams 136

viii | Table of Contents

www.EBooksWorld.ir

Polling Periodically for Changes 138
Multithreading in RxJava 140

What Is a Scheduler? 141
Declarative Subscription with subscribeOn() 150
subscribeOn() Concurrency and Behavior 154
Batching Requests Using groupBy() 158
Declarative Concurrency with observeOn() 159
Other Uses for Schedulers 163

Summary 164

5. Reactive from Top to Bottom. 165
Beating the C10k Problem 165

Traditional Thread-Based HTTP Servers 167
Nonblocking HTTP Server with Netty and RxNetty 169
Benchmarking Blocking versus Reactive Server 177
Reactive HTTP Servers Tour 183

HTTP Client Code 184
Nonblocking HTTP Client with RxNetty 184

Relational Database Access 187
NOTIFY AND LISTEN on PostgreSQL Case Study 189

CompletableFuture and Streams 193
A Short Introduction to CompletableFuture 193
Interoperability with CompletableFuture 198

Observable versus Single 202
Creating and Consuming Single 203
Combining Responses Using zip, merge, and concat 205
Interoperability with Observable and CompletableFuture 207
When to Use Single? 208

Summary 209

6. Flow Control and Backpressure. 211
Flow Control 211

Taking Periodic Samples and Throttling 212
Buffering Events to a List 214
Moving window 220
Skipping Stale Events by Using debounce() 221

Backpressure 226
Backpressure in RxJava 227
Built-in Backpressure 231
Producers and Missing Backpressure 233
Honoring the Requested Amount of Data 237

Summary 242

Table of Contents | ix

www.EBooksWorld.ir

7. Testing and Troubleshooting. 243
Error Handling 243

Where Are My Exceptions? 244
Declarative try-catch Replacement 247
Timing Out When Events Do Not Occur 251
Retrying After Failures 254

Testing and Debugging 258
Virtual Time 258
Schedulers in Unit Testing 260

Unit Testing 262
Monitoring and Debugging 270

doOn…() Callbacks 270
Measuring and Monitoring 272

Summary 275

8. Case Studies. 277
Android Development with RxJava 277

Avoiding Memory Leaks in Activities 278
Retrofit with Native RxJava Support 280
Schedulers in Android 285
UI Events as Streams 288

Managing Failures with Hystrix 291
The First Steps with Hystrix 292
Nonblocking Commands with HystrixObservableCommand 294
Bulkhead Pattern and Fail-Fast 295
Batching and Collapsing Commands 297
Monitoring and Dashboards 303

Querying NoSQL Databases 306
Couchbase Client API 306
MongoDB Client API 307

Camel Integration 309
Consuming Files with Camel 309
Receiving Messages from Kafka 310

Java 8 Streams and CompletableFuture 310
Usefulness of Parallel Streams 312
Choosing the Appropriate Concurrency Abstraction 314
When to Choose Observable? 315

Memory Consumption and Leaks 315
Operators Consuming Uncontrolled Amounts of Memory 316

Summary 321

x | Table of Contents

www.EBooksWorld.ir

9. Future Directions. 323
Reactive Streams 323
Observable and Flowable 323
Performance 324
Migration 325

A. More HTTP Server Examples. 327

B. A Decision Tree of Observable Operators. 333

Index. 339

Table of Contents | xi

www.EBooksWorld.ir

www.EBooksWorld.ir

Foreword

On October 28, 2005, the then newly appointed chief architect of Microsoft, Ray
Ozzie, emailed a now infamous memo to his staff with the subject “The Internet
Services Disruption”. In this memo, Ray Ozzie outlines basically how the world looks
today where enterprises like Microsoft, Google, Facebook, Amazon, and Netflix use
the Web as the main delivery channel for their services.

From a developer perspective, Ozzie made a rather remarkable statement for an exec‐
utive of a large corporation:

Complexity kills. It sucks the life out of developers, it makes products difficult to plan,
build and test, it introduces security challenges, and it causes end-user and administra‐
tor frustration.

First of all, we have to take into account that in 2005, the big IT enterprises were
deeply in love with mind-blowingly complicated technologies like SOAP, WS-*, and
XML. This was a time where the word “microservice” was not yet invented, and there
was no simple technology on the horizon to help developers manage the complexity
of asynchronously composing complex services from smaller ones, and dealing with
concerns such as failure, latency, security, and efficiency.

For my Cloud Programmability Team at Microsoft, Ozzie’s memo was a rude wakeup
call to focus on inventing a simple programming model for building large scale asyn‐
chronous and data-intensive Internet service architectures. After many false starts it
finally dawned on us that by dualizing the Iterable/Iterator interface for synchronous
collections, we could obtain a pair of interfaces to represent asynchronous event
streams, with all the familiar sequence operators such as map, filter, scan, zip,
groupBy, etc. for transforming and combining asynchronous data streams, and thus
Rx was born somewhere in the summer of 2007. During the implementation process
we realized that we needed to manage concurrency and time, and for that we exten‐
ded the idea of Java’s executors with virtual time and cooperative re-scheduling.

After an intense two year hackathon where we explored numerous design choices, we
first shipped Rx.NET on November 18, 2009. Soon thereafter we ported Rx to Micro‐

xiii

www.EBooksWorld.ir

soft.Phone.Reactive for Windows Phone 7 and started to implement Rx in various
other languages such as JavaScript, and C++, and dabbled with experimental versions
in Ruby and Objective-C.

The first Rx user inside Microsoft was Jafar Husain, and he brought the technology
with him when he joined Netflix in 2011. Jafar evangelized Rx within the company,
and eventually re-architected the Netflix UI’s client-side stack to fully embrace asyn‐
chronous stream processing. Also, most fortunately for all of us, he managed to pass
on his enthusiasm to Ben Christensen who was working on Netflix’s middle tier API
and since Netflix uses Java on the middle tier, Ben started to work on RxJava in 2012
and moved the codebase to Github in early 2013 for continued open source develop‐
ment. Another early adopter of Rx at Microsoft was Paul Betts and when he moved to
Github, he managed to convince his colleagues at Github such as Justin Spahr-
Summers to implement and release ReactiveCocoa for Objective-C in the spring of
2012.

As Rx became more popular in the industry, we convinced Microsoft Open Tech to
open-source Rx .NET in the fall of 2012. Soon thereafter, I left Microsoft to start
Applied Duality and focus 100% of my time on making Rx the standard cross-
language and cross-platform API for asynchronous real-time data stream processing.

Fast forward to 2016 and the popularity and use of Rx has skyrocketed. All traffic
through the Netflix API relies upon RxJava, as does the Hystrix fault-tolerance library
that bulkheads all internal service traffic, and via related reactive libraries RxNetty
and Mantis, Netflix is now creating a completely reactive network stack for connect‐
ing all internal services across machine and process boundaries. RxJava is also
extremely successful in the Android space with companies like SoundCloud, Square,
NYT, Seatgeek all using RxJava for their Android apps and contributing to the RxAn‐
droid extension library. noSQL vendors such as Couchbase and Splunk also offer Rx-
based bindings to their data access layer. Other Java libraries that have adopted
RxJava amongst others include Camel Rx, Square Retrofit, and Vert.x. In the Java‐
Script community, RxJS is widely used and powers popular frameworks such as
Angular 2. The community maintains a website where you can find information
about Rx implementations in many languages, as well as fantastic Marble Diagram
artwork and explanations by David Gross (@CallHimMoorlock).

Since its inception, Rx has evolved with the needs and the input from the developer
community. The original implementation of Rx in .NET focussed squarely on trans‐
forming asynchronous event streams, and used asynchronous enumerable for scenar‐
ios that needed back pressure. Since Java does not have language support for async
await, the community extended the Observer and Observable types with the concept
of reactive pull and introduced the Producer interface. Thanks to many open source
contributors, the implementation of RxJava is also extremely sophisticated and highly
optimized.

xiv | Foreword

www.EBooksWorld.ir

http://reactivex.io

Even though the details of RxJava are slightly different that that of other Rx imple‐
mentations, it is still built specially for all you developers that need to survive in the
brave new world of distributed real-time data processing and focus on essential com‐
plexity without accidental complexity that suck the life out of you. This book is a deep
and thorough dive into the concepts and uses of RxJava in particular and Rx in gen‐
eral by two authors that have countless hours of experience in implementing and
using RxJava in the real world. If you want to go “reactive” there is no better way than
to buy this book.

— Erik Meijer, President and Founder,
Applied Duality, Inc.

Foreword | xv

www.EBooksWorld.ir

www.EBooksWorld.ir

Introduction

Who Should Read This Book
Reactive Programming with RxJava targets intermediate and advanced Java program‐
mers. You should be fairly comfortable with Java; however, prior knowledge of reac‐
tive programming is not required. Many concepts in this book relate to functional
programming, but you do not need to be familiar with it either. There are two distinct
groups of programmers that can benefit from this book:

• Craftsmen who seek improved performance on the server or more maintainable
code on mobile devices. If you fall into this category, you will find ideas and solu‐
tions to real problems as well as practical advice. In this case, RxJava is just
another tool that this book will help to master.

• Curious developers who’ve heard about reactive programming or RxJava in par‐
ticular and want to get a fair understanding of it. If this is you, and if you are not
planning to take advantage of RxJava in production code, you will significantly
broaden your horizons.

Additionally, if you are a hands-on software architect, this book will likely help you.
RxJava influences the overall architecture of entire systems, so it is worth knowing.
But even if you are just beginning your adventure with programming, try to go
through the first few chapters, which explain the basics. Underlying concepts like
transformations and composition are quite universal and not related to reactive pro‐
gramming.

Note from Ben Christensen
In 2012, I was working on a new architecture for the Netflix API. Along the way it
became clear that we needed to embrace concurrency and asynchronous network
requests to achieve our goals. During the process of exploring approaches, I ran into
Jafar Husain who tried to sell me on an approach he learned while at Microsoft called

xvii

www.EBooksWorld.ir

https://github.com/jhusain

“Rx.” At that time, I was pretty comfortable with concurrency but still thought about
it imperatively, and very much in a Java-centric manner, as Java has been my predom‐
inant breadwinner, and thus where I have spent the most time.

So, as Jafar tried selling me on the approach, it was difficult to grasp the concepts due
to their functional programming style, and I pushed back on it. Months of arguments
and discussions followed as the overall system architecture continued maturing, dur‐
ing which Jafar and I continued our many whiteboard sessions until I grasped the
theoretical principles and subsequently the elegance and power of what Reactive
Extensions could offer.

We decided to embrace the Rx programming model in the Netflix API and ultimately
created the Java implementation of Reactive Extensions called RxJava, following the
naming convention started by Microsoft with Rx.Net and RxJS.

In the roughly three years that I worked on RxJava, most of it done in the open on
GitHub, I had the privilege to work with a growing community and 120-plus contrib‐
utors to turn RxJava into a mature product used in many production systems both
server and client side. It has succeeded enough to get more than 15,000 stars on Git‐
Hub, making it one of the top 200 projects, and third highest of projects using Java.

George Campbell, Aaron Tull, and Matt Jacobs at Netflix were essential in maturing
RxJava from early builds to what it became, including the addition of lift, Sub
scriber, backpressure, and JVM-polyglot support. Dávid Karnok became involved in
the project and has now surpassed me in commits and lines of code. He has been a
significant factor in the project’s success and has now taken over as the project lead.

I have to thank Erik Meijer who created Rx while he was at Microsoft. Since he left
that company, I had the opportunity to collaborate with him at Netflix on RxJava, and
now I’m lucky enough to be working directly with him at Facebook. I consider it a
real honor to be able to spend so many hours at a whiteboard with him discussing
and learning. It makes a real difference having a mentor like Erik to level-up one’s
thinking.

Along the way I also got to speak at many conferences about RxJava and reactive pro‐
gramming, and through that process met many people who have helped me learn far
more about code and architecture than I would have ever done on my own.

Netflix was phenomenal in supporting my time and efforts on the project as well as
providing support for technical documentation that I could have never written by
myself. Open source of this maturity and scope does not succeed without being able
to do it during your “day job” and with the involvement of many people with different
skillsets.

xviii | Introduction

www.EBooksWorld.ir

http://bit.ly/2bRAewk
http://bit.ly/2bRAhYY
https://github.com/abersnaze
https://github.com/stealthcode
https://github.com/mattrjacobs
https://github.com/akarnokd

The first chapter is my attempt at introducing why reactive programming is a useful
programming approach, and how RxJava in particular provides a concrete imple‐
mentation of those principles.

The rest of this book is written by Tomasz, who has done an amazing job. I had the
opportunity to review and provide suggestions, but this is his book, and he will teach
the details from Chapter 2 onward.

Note from Tomasz Nurkiewicz
I first came across RxJava around 2013 while working for a financial institution. We
were dealing with large streams of market data processed in real-time. By then, the
data pipeline consisted of Kafka delivering messages, Akka processing trades, Clojure
transforming data, and a custom-built language for propagating changes throughout
the system. RxJava was a very compelling choice because it had a uniform API that
worked very well for different sources of data.

Over time, I tried reactive programming in more scenarios for which scalability and
throughput were essential. Implementing systems in a reactive fashion is definitely
more demanding. But the benefits are far more important, including better hardware
utilization and thus energy savings. To fully appreciate the advantages of this pro‐
gramming model, developers must have relatively easy-to-use tooling. We believe that
Reactive Extensions are in the sweet spot between abstraction, complexity, and per‐
formance.

This book covers RxJava 1.1.6, unless stated otherwise. Even though RxJava supports
Java 6 and later, almost all of the examples use lambda syntax from Java 8. Some
examples in the chapter in which we discuss Android (Chapter 8) show how to deal
with verbose syntax prior to lambda expressions. That being said, we do not always
use the shortest possible syntax (like method references) to improve readability where
it makes sense.

Navigating This Book
The book was structured such that you will derive the most from it by reading it from
cover to cover. If you can not afford that much time, however, feel free to cherry pick
only the parts that are most interesting. If there is a concept that was introduced ear‐
lier, you will most likely find a back reference to it. Following is an overview of each
chapter:

• Chapter 1 very briefly goes through the inception of RxJava, basic concepts, and
ideas (Ben).

Introduction | xix

www.EBooksWorld.ir

• Chapter 2 explains how RxJava can appear in your application and how to inter‐
act with it. This chapter is very basic, but understanding concepts like hot versus
cold sources is tremendously important (Tomasz).

• Chapter 3 is a whirlwind tour of the many operators provided by RxJava. We will
introduce you to the expressive and powerful functions that are a foundation of
this library (Tomasz).

• Chapter 4 is more practical, showing how to embed RxJava in various places
across your codebase. It also touches on concurrency (Tomasz).

• Chapter 5 is advanced, explaining how to implement reactive applications from
top to bottom (Tomasz).

• Chapter 6 explains an important problem of flow control and backpressure
mechanisms in RxJava that support it (Tomasz).

• Chapter 7 shows techniques of unit testing, maintaining, and troubleshooting
Rx-based applications (Tomasz).

• Chapter 8 shows a few selected applications of RxJava, especially in distributed
systems (Tomasz).

• Chapter 9 highlights future plans for RxJava 2.x (Ben).

Online Resources
All marble diagrams throughout this book are taken from official RxJava documenta‐
tion published under Apache License Version 2.0.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

xx | Introduction

www.EBooksWorld.ir

https://github.com/ReactiveX/RxJava/wiki
https://github.com/ReactiveX/RxJava/wiki

This icon signifies a tip, suggestion, or general note.

This icon signifies a general note.

This icon indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

Introduction | xxi

www.EBooksWorld.ir

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/reactive-prog-with-rxjava.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
From Ben
This book wouldn’t exist without Tomasz, who wrote most of it, and Nan Barber, our
editor who was incredibly helpful and patient in getting us to the end. Thank you
Tomasz for responding to my message on Twitter looking for an author and making
this book a reality!

I also am very appreciative of the support Netflix Open Source and Daniel Jacobson
provided to me personally, and the project generally over the years. They were great
sponsors of the project and the immense amount of time I put into the community.
Thank you!

And thank you Erik for creating Rx, teaching me so much, and taking the time to
write the foreword to this book.

xxii | Introduction

www.EBooksWorld.ir

http://bit.ly/reactive-prog-with-rxjava
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://bit.ly/2dqLBtD
https://netflix.github.io
https://twitter.com/daniel_jacobson

From Tomasz
First and foremost, I would like to thank my parents who gave me my first computer
almost 20 years ago (486DX2 with 8 MB of RAM: you never forget that). This is how
my journey with programming began. Several people contributed to the making of
this book. Beginning with Ben who agreed to write the first and last chapters as well
as review my content.

Speaking of reviewers, Venkat Subramaniam put a lot of effort into structuring this
book in a meaningful and consistent way. He often suggested a different order of sen‐
tences, paragraphs, and chapters, or even removing entire pages of irrelevant content.
Our other reviewer was the extremely knowledgable and experienced Dávid Karnok.
Being the project lead of RxJava, he spotted dozens of bugs, race conditions, inconsis‐
tencies, and other problems. Both reviewers provided hundreds of comments that
significantly improved the quality of this book. In the very early stages of this book,
many of my colleagues read the manuscript and gave very valuable feedback, as well. I
would like to thank: Dariusz Baciński, Szymon Homa, Piotr Pietrzak, Jakub Pilimon,
Adam Wojszczyk, Marcin Zajączkowski, and Maciej Ziarko.

Introduction | xxiii

www.EBooksWorld.ir

www.EBooksWorld.ir

CHAPTER 1

Reactive Programming with RxJava

Ben Christensen

RxJava is a specific implementation of reactive programming for Java and Android
that is influenced by functional programming. It favors function composition, avoid‐
ance of global state and side effects, and thinking in streams to compose asynchro‐
nous and event-based programs. It begins with the observer pattern of producer/
consumer callbacks and extends it with dozens of operators that allow composing,
transforming, scheduling, throttling, error handling, and lifecycle management.

RxJava is a mature open source library that has found broad adoption both on the
server and on Android mobile devices. Along with the library, an active community
of developers has built up around RxJava and reactive programming to contribute to
the project, speak, write, and help one another.

This chapter will provide an overview of RxJava—what it is and how it works—and
the rest of this book will take you through all of the details of how to use and apply it
in your applications. You can begin reading this book with no prior experience with
reactive programming, but we will start at the beginning and take you through the
concepts and practices of RxJava so that you can apply its strengths to your use cases.

Reactive Programming and RxJava
Reactive programming is a general programming term that is focused on reacting to
changes, such as data values or events. It can and often is done imperatively. A call‐
back is an approach to reactive programming done imperatively. A spreadsheet is a

1

www.EBooksWorld.ir

https://github.com/ReactiveX/RxJava
http://reactivex.io/tutorials.html

great example of reactive programming: cells dependent on other cells automatically
“react” when those other cells change.

Functional Reactive Programming?
Despite the influence of functional programming on Reactive Extensions (Rx gener‐
ally, and RxJava specifically), it is not Functional Reactive Programming (FRP). FRP is
a very specific type of reactive programming that involves continuous time, whereas
RxJava only deals with discrete events over time. I myself fell into this naming trap in
the early days of RxJava and advertised it as “functional reactive” until I learned that
the natural combination of those two words was already taken by something else
defined years earlier. As a result, there isn’t a well-accepted generic term that covers
RxJava more specifically than “reactive programming.” FRP is still commonly mis‐
used to represent RxJava and similar solutions, and the debate occasionally continues
on the Internet as to whether the meaning should be broadened (as it has become
used informally over the past several years) or remain strictly focused on continuous
time implementations.

With that confusion addressed, we can focus on the fact that RxJava is indeed influ‐
enced by functional programming and purposefully adopts a programming model
different than imperative programming. In this chapter, when I refer to “reactive,” I
am referring to the reactive + functional style that RxJava uses. As a counterpoint,
when I refer to “imperative,” I am not saying that reactive programming cannot be
implemented imperatively; I am addressing the use of imperative programming as
opposed to the functional style employed by RxJava. When I’m specifically comparing
imperative and functional approaches, I will use “reactive-functional” and “reactive-
imperative” to be precise.

On today’s computers everything ends up being imperative at some point as it hits the
operating system and hardware. The computer must be told explicitly what needs to
be done and how to do it. Humans do not think like CPUs and related systems, so we
add abstractions. Reactive-functional programming is an abstraction, just like our
higher-level imperative programming idioms are abstractions for the underlying
binary and assembly instructions. The fact that everything ends up imperative is
important to remember and understand because it helps us with the mental model of
what reactive-functional programming is addressing and how it ultimately executes—
there is no magic.

Reactive-functional programming therefore is an approach to programming—an
abstraction on top of imperative systems—that allows us to program asynchronous
and event-driven use cases without having to think like the computer itself and
imperatively define the complex interactions of state, particularly across thread and
network boundaries. Not having to think like the computer is a useful trait when it

2 | Chapter 1: Reactive Programming with RxJava

www.EBooksWorld.ir

http://stackoverflow.com/a/1030631
http://stackoverflow.com/a/1030631

comes to asynchrony and event-driven systems, because concurrency and parallelism
are involved, and these are very challenging characteristics to use correctly and effi‐
ciently. Within the Java community, the books Java Concurrency in Practice by Brian
Goetz and Concurrent Programming in Java by Doug Lea (Addison-Wesley), and
forums such as “Mechanical Sympathy” are representative of the depth, breadth, and
complexity of mastering concurrency. My interactions with experts from these books,
forums, and communities since I started using RxJava has convinced me even more
than before of how difficult it really is to write high-performance, efficient, scalable,
and correct concurrent software. And we haven’t even brought in distributed systems,
which take concurrency and parallelism to another level.

So, the short answer to what reactive-functional programming is solving is concur‐
rency and parallelism. More colloquially, it is solving callback hell, which results from
addressing reactive and asynchronous use cases in an imperative way. Reactive pro‐
gramming such as that implemented by RxJava is influenced by functional program‐
ming and uses a declarative approach to avoiding the typical pitfalls of reactive-
imperative code.

When You Need Reactive Programming
Reactive programming is useful in scenarios such as the following:

• Processing user events such as mouse movement and clicks, keyboard typing,
GPS signals changing over time as users move with their device, device gyro‐
scope signals, touch events, and so on.

• Responding to and processing any and all latency-bound IO events from disk or
network, given that IO is inherently asynchronous (a request is made, time
passes, a response might or might not be received, which then triggers further
work).

• Handling events or data pushed at an application by a producer it cannot control
(system events from a server, the aforementioned user events, signals from hard‐
ware, events triggered by the analog world from sensors, and so on).

Now, if the code in question is handling only one event stream, reactive-imperative
programming with a callback is going to be fine, and bringing in reactive-functional
programming is not going to give you much benefit. You can have hundreds of differ‐
ent event streams, and if they are all completely independent of one another, impera‐
tive programming is not likely to be a problem. In such straightforward use cases,
imperative approaches are going to be the most efficient because they eliminate the
abstraction layer of reactive programming and stay closer to that for which current
operating systems, languages, and compilers are optimized.

When You Need Reactive Programming | 3

www.EBooksWorld.ir

http://bit.ly/2d0hmeX

If your program is like most though, you need to combine events (or asynchronous
responses from functions or network calls), have conditional logic interacting
between them, and must handle failure scenarios and resource cleanup on any and all
of them. This is where the reactive-imperative approach begins to dramatically
increase in complexity and reactive-functional programming begins to shine. A non-
scientific view I have come to accept is that reactive-functional programming has an
initially higher learning curve and barrier to entry but that the ceiling for complexity
is far lower than with reactive-imperative programming.

Hence this is where the tagline for Reactive Extensions (Rx) in general and RxJava
specifically comes from, “a library for composing asynchronous and event-based pro‐
grams.” RxJava is a concrete implementation of reactive programming principles
influenced by functional and data-flow programming. There are different approaches
to being “reactive,” and RxJava is but one of them. Let’s dig into how it works.

How RxJava Works
Central to RxJava is the Observable type that represents a stream of data or events. It
is intended for push (reactive) but can also be used for pull (interactive). It is lazy
rather than eager. It can be used asynchronously or synchronously. It can represent 0,
1, many, or infinite values or events over time.

That’s a lot of buzzwords and details, so let’s unpack it. You’ll get the full details in
“Anatomy of rx.Observable” on page 27.

Push versus Pull
The entire point of RxJava being reactive is to support push, so the Observable and
related Observer type signatures support events being pushed at it. This in turn gen‐
erally is accompanied by asynchrony, which is discussed in the next section. But the
Observable type also supports an asynchronous feedback channel (also sometimes
referred to as async-pull or reactive-pull), as an approach to flow control or backpres‐
sure in async systems. A later section in this chapter will address flow control and
how this mechanism fits in.

To support receiving events via push, an Observable/Observer pair connect via sub‐
scription. The Observable represents the stream of data and can be subscribed to by
an Observer (which you’ll learn more about in “Capturing All Notifications by Using
Observer<T>” on page 32):

interface Observable<T> {
 Subscription subscribe(Observer s)
}

Upon subscription, the Observer can have three types of events pushed to it:

4 | Chapter 1: Reactive Programming with RxJava

www.EBooksWorld.ir

https://github.com/ReactiveX/RxJava

• Data via the onNext() function
• Errors (exceptions or throwables) via the onError() function
• Stream completion via the onCompleted() function

interface Observer<T> {
 void onNext(T t)
 void onError(Throwable t)
 void onCompleted()
}

The onNext() method might never be called or might be called once, many, or infin‐
ite times. The onError() and onCompleted() are terminal events, meaning that only
one of them can be called and only once. When a terminal event is called, the Observ
able stream is finished and no further events can be sent over it. Terminal events
might never occur if the stream is infinite and does not fail.

As will be shown in “Flow Control” on page 211 and “Backpressure” on page 226,
there is an additional type of signature to permit interactive pull:

interface Producer {
 void request(long n)
}

This is used with a more advanced Observer called Subscriber (with more details
given in “Controlling Listeners by Using Subscription and Subscriber<T>” on page
32):

interface Subscriber<T> implements Observer<T>, Subscription {
 void onNext(T t)
 void onError(Throwable t)
 void onCompleted()
 ...
 void unsubscribe()
 void setProducer(Producer p)
}

The unsubcribe function as part of the Subscription interface is used to allow a sub‐
scriber to unsubscribe from an Observable stream. The setProducer function and
Producer types are used to form a bidirectional communication channel between the
producer and consumer used for flow control.

Async versus Sync
Generally, an Observable is going to be asynchronous, but it doesn’t need to be. An
Observable can be synchronous, and in fact defaults to being synchronous. RxJava
never adds concurrency unless it is asked to do so. A synchronous Observable would
be subscribed to, emit all data using the subscriber’s thread, and complete (if finite).

How RxJava Works | 5

www.EBooksWorld.ir

An Observable backed by blocking network I/O would synchronously block the sub‐
scribing thread and then emit via onNext() when the blocking network I/O returned.

For example, the following is completely synchronous:

Observable.create(s -> {
 s.onNext("Hello World!");
 s.onCompleted();
}).subscribe(hello -> System.out.println(hello));

You will learn more about Observable.create in “Mastering Observable.create()” on
page 35 and Observable.subscribe in “Subscribing to Notifications from Observa‐
ble” on page 30.

Now, as you are probably thinking, this is generally not the desired behavior of a
reactive system, and you are right. It is bad form to use an Observable with synchro‐
nous blocking I/O (if blocking I/O needs to be used, it needs to be made asynchro‐
nous with threads). However, sometimes it is appropriate to synchronously fetch data
from an in-memory cache and return it immediately. The “Hello World” case shown
in the previous example does not need concurrency, and in fact will be far slower if
asynchronous scheduling is added to it. Thus, the actual criteria that is generally
important is whether the Observable event production is blocking or nonblocking,
not whether it is synchronous or asynchronous. The “Hello World” example is non‐
blocking because it never blocks a thread, thus it is correct (though superfluous) use
of an Observable.

The RxJava Observable is purposefully agnostic with regard to async versus sync, and
whether concurrency exists or where it comes from. This is by design and allows the
implementation of the Observable to decide what is best. Why might this be useful?

First of all, concurrency can come from multiple places, not just threadpools. If the
data source is already async because it is on an event loop, RxJava should not add
more scheduling overhead or force a particular scheduling implementation. Concur‐
rency can come from threadpools, event loops, actors, and so on. It can be added, or
it can originate from the data source. RxJava is agnostic with respect to where the
asynchrony originates.

Second, there are two good reasons to use synchronous behavior, which we’ll look at
in the following subsections.

In-memory data
If data exists in a local in-memory cache (with constant microsecond/nanosecond
lookup times), it does not make sense to pay the scheduling cost to make it asynchro‐
nous. The Observable can just fetch the data synchronously and emit it on the sub‐
scribing thread, as shown here:

6 | Chapter 1: Reactive Programming with RxJava

www.EBooksWorld.ir

Observable.create(s -> {
 s.onNext(cache.get(SOME_KEY));
 s.onCompleted();
}).subscribe(value -> System.out.println(value));

This scheduling choice is powerful when the data might or might not be in memory.
If it is in memory, emit it synchronously; if it’s not, perform the network call asyn‐
chronously and return the data when it arrives. This choice can reside conditionally
within the Observable:

// pseudo-code
Observable.create(s -> {
 T fromCache = getFromCache(SOME_KEY);
 if(fromCache != null) {
 // emit synchronously
 s.onNext(fromCache);
 s.onCompleted();
 } else {
 // fetch asynchronously
 getDataAsynchronously(SOME_KEY)
 .onResponse(v -> {
 putInCache(SOME_KEY, v);
 s.onNext(v);
 s.onCompleted();
 })
 .onFailure(exception -> {
 s.onError(exception);
 });
 }
}).subscribe(s -> System.out.println(s));

Synchronous computation (such as operators)
The more common reason for remaining synchronous is stream composition and
transformation via operators. RxJava mostly uses the large API of operators used to
manipulate, combine, and transform data, such as map(), filter(), take(), flat
Map(), and groupBy(). Most of these operators are synchronous, meaning that they
perform their computation synchronously inside the onNext() as the events pass by.

These operators are synchronous for performance reasons. Take this as an example:

Observable<Integer> o = Observable.create(s -> {
 s.onNext(1);
 s.onNext(2);
 s.onNext(3);
 s.onCompleted();
});

o.map(i -> "Number " + i)
 .subscribe(s -> System.out.println(s));

How RxJava Works | 7

www.EBooksWorld.ir

If the map operator defaulted to being asynchronous, each number (1, 2, 3) would be
scheduled onto a thread where the string concatenation would be performed (“Num‐
ber " + i). This is very inefficient and generally has nondeterministic latency due to
scheduling, context switching, and so on.

The important thing to understand here is that most Observable function pipelines
are synchronous (unless a specific operator needs to be async, such as timeout or
observeOn), whereas the Observable itself can be async. These topics receive more
in-depth treatment in “Declarative Concurrency with observeOn()” on page 159 and
“Timing Out When Events Do Not Occur” on page 251.

The following example demonstrates this mixture of sync and async:

Observable.create(s -> {
 ... async subscription and data emission ...
})
.doOnNext(i -> System.out.println(Thread.currentThread()))
.filter(i -> i % 2 == 0)
.map(i -> "Value " + i + " processed on " + Thread.currentThread())
.subscribe(s -> System.out.println("SOME VALUE =>" + s));
System.out.println("Will print BEFORE values are emitted")

In this example, the Observable is async (it emits on a thread different from that of
the subscriber), so subscribe is nonblocking, and the println at the end will output
before events are propagated and “SOME VALUE ⇒” output is shown.

However, the filter() and map() functions are synchronously executed on the call‐
ing thread that emits the events. This is generally the behavior we want: an asynchro‐
nous pipeline (the Observable and composed operators) with efficient synchronous
computation of the events.

Thus, the Observable type itself supports both sync and async concrete implementa‐
tions, and this is by design.

Concurrency and Parallelism
Individual Observable streams permit neither concurrency nor parallelism. Instead,
they are achieved via composition of async Observables.

Parallelism is simultaneous execution of tasks, typically on different CPUs or
machines. Concurrency, on the other hand, is the composition or interleaving of mul‐
tiple tasks. If a single CPU has multiple tasks (such as threads) on it, they are execut‐
ing concurrently but not in parallel by “time slicing.” Each thread gets a portion of
CPU time before yielding to another thread, even if a thread has not yet finished.

Parallel execution is concurrent by definition, but concurrency is not necessarily par‐
allelism. In practice, this means being multithreaded is concurrency, but parallelism
only occurs if those threads are being scheduled and executed on different CPUs at

8 | Chapter 1: Reactive Programming with RxJava

www.EBooksWorld.ir

the exact same time. Thus, generically we speak about concurrency and being con‐
current, but parallelism is a specific form of concurrency.

The contract of an RxJava Observable is that events (onNext(), onCompleted(), onEr
ror()) can never be emitted concurrently. In other words, a single Observable
stream must always be serialized and thread-safe. Each event can be emitted from a
different thread, as long as the emissions are not concurrent. This means no inter‐
leaving or simultaneous execution of onNext(). If onNext() is still being executed on
one thread, another thread cannot begin invoking it again (interleaving).

Here’s an example of what’s okay:

Observable.create(s -> {
 new Thread(() -> {
 s.onNext("one");
 s.onNext("two");
 s.onNext("three");
 s.onNext("four");
 s.onCompleted();
 }).start();
});

This code emits data sequentially, so it complies with the contract. (Note, however,
that it is generally advised to not start a thread like that inside an Observable. Use
schedulers, instead, as discussed in “Multithreading in RxJava” on page 140.)

Here’s an example of code that is illegal:

// DO NOT DO THIS
Observable.create(s -> {
 // Thread A
 new Thread(() -> {
 s.onNext("one");
 s.onNext("two");
 }).start();

 // Thread B
 new Thread(() -> {
 s.onNext("three");
 s.onNext("four");
 }).start();

 // ignoring need to emit s.onCompleted() due to race of threads
});
// DO NOT DO THIS

This code is illegal because it has two threads that can both invoke onNext() concur‐
rently. This breaks the contract. (Also, it would need to safely wait for both threads to
complete to call onComplete, and as mentioned earlier, it is generally a bad idea to
manually start threads like this.)

How RxJava Works | 9

www.EBooksWorld.ir

So, how do you take advantage of concurrency and/or parallelism with RxJava? Com‐
position.

A single Observable stream is always serialized, but each Observable stream can
operate independently of one another, and thus concurrently and/or in parallel. This
is why merge and flatMap end up being so commonly used in RxJava—to compose
asynchronous streams together concurrently. (You can learn more about the details of
merge and flatMap in “Wrapping Up Using flatMap()” on page 67 and “Treating Sev‐
eral Observables as One Using merge()” on page 77.)

Here is a contrived example showing the mechanics of two asynchronous Observa
bles running on separate threads and merged together:

Observable<String> a = Observable.create(s -> {
 new Thread(() -> {
 s.onNext("one");
 s.onNext("two");
 s.onCompleted();
 }).start();
});

Observable<String> b = Observable.create(s -> {
 new Thread(() -> {
 s.onNext("three");
 s.onNext("four");
 s.onCompleted();
 }).start();
});

// this subscribes to a and b concurrently,
// and merges into a third sequential stream
Observable<String> c = Observable.merge(a, b);

Observable c will receive items from both a and b, and due to their asynchrony,
three things occur:

• “one” will appear before “two”
• “three” will appear before “four”
• The order between one/two and three/four is unspecified

So why not just allow onNext() to be invoked concurrently?

Primarily because onNext() is meant for us humans to use, and concurrency is diffi‐
cult. If onNext() could be invoked concurrently, it would mean that every Observer
would need to code defensively for concurrent invocation, even when not expected or
wanted.

10 | Chapter 1: Reactive Programming with RxJava

www.EBooksWorld.ir

A second reason is because some operations just aren’t possible with concurrent
emission; for example, scan and reduce, which are common and important behav‐
iors. Operators such as scan and reduce require sequential event propagation so that
state can be accumulated on streams of events that are not both associative and com‐
mutative. Allowing concurrent Observable streams (with concurrent onNext())
would limit the types of events that can be processed and require thread-safe data
structures.

The Java 8 Stream type supports concurrent emission. This is why
java.util.stream.Stream requires reduce functions to be asso‐
ciative, because they must support concurrent invocation on paral‐
lel streams. The documentation of the java.util.stream package
about parallelism, ordering (related to commutativity), reduction
operations, and associativity further illustrates the complexity of
the same Stream type permitting both sequential and concurrent
emission.

A third reason is that performance is affected by synchronization overhead because
all observers and operators would need to be thread-safe, even if most of the time
data arrives sequentially. Despite the JVM often being good at eliminating synchroni‐
zation overhead, it is not always possible (particularly with nonblocking algorithms
using atomics) so this ends up being a performance tax not needed on sequential
streams.

Additionally, it is often slower to do generic fine-grained parallelism. Parallelism typi‐
cally needs to be done coarsely, such as in batches of work, to make up for the over‐
head of switching threads, scheduling work, and recombining. It is far more efficient
to synchronously execute on a single thread and take advantage of the many memory
and CPU optimizations for sequential computation. On a List or array, it is quite
easy to have reasonable defaults for batched parallelism, because all the items are
known upfront and can be split into batches (though even then it is often faster to
just process the full list on a single CPU unless the list is very large, or the compute
per item is significant). A stream, however, does not know the work ahead of time, it
just receives data via onNext() and therefore cannot automatically chunk the work.

In fact, prior to RxJava v1, a .parallel(Function f) operator was added to try to
behave like java.util.stream.Stream.parallel() because that was considered a
nice convenience. It was done in a way to not break the RxJava contract by splitting a
single Observable into many Observables that each executed in parallel, and then
merging them back together. However, it ended up being removed from the library
prior to v1 because it was very confusing and almost always resulted in worse perfor‐
mance. Adding computational parallelism to a stream of events almost always needs
to be reasoned about and tested. Perhaps a ParallelObservable could make sense,

How RxJava Works | 11

www.EBooksWorld.ir

http://bit.ly/2cJJrVG
http://bit.ly/2cJJrVG
http://bit.ly/2cJHVmG
http://bit.ly/2cJIDQF

for which the operators are restricted to a subset that assume associativity, but in the
years of RxJava being used, it has never ended up being worth the effort, because
composition with merge and flatMap are effective building blocks to address the use
cases.

Chapter 3 will teach how to use operators to compose Observables to benefit from
concurrency and parallelism.

Lazy versus Eager
The Observable type is lazy, meaning it does nothing until it is subscribed to. This
differs from an eager type such as a Future, which when created represents active
work. Lazyiness allows composing Observables together without data loss due to
race conditions without caching. In a Future, this isn’t a concern, because the single
value can be cached, so if the value is delivered before composition, the value will be
fetched. With an unbounded stream, an unbounded buffer would be required to pro‐
vide this same guarantee. Thus, the Observable is lazy and will not start until subscri‐
bed to so that all composition can be done before data starts flowing.

In practice, this means two things:

Subscription, not construction starts work
Due to the laziness of an Observable, creating one does not actually cause any
work to happen (ignoring the “work” of allocating the Observable object itself).
All it does is define what work should be done when it is eventually subscribed
to. Consider an Observable defined like this:

Observable<T> someData = Observable.create(s -> {
 getDataFromServerWithCallback(args, data -> {
 s.onNext(data);
 s.onCompleted();
 });
})

The someData reference now exists, but getDataFromServerWithCallback is not
yet being executed. All that has happened is that the Observable wrapper has
been declared around a unit of work to be performed, the function that lives
inside the Observable.

Subscribing to the Observable causes the work to be done:

someData.subscribe(s -> System.out.println(s));

This lazily executes the work represented by the Observable.

12 | Chapter 1: Reactive Programming with RxJava

www.EBooksWorld.ir

Observables can be reused
Because the Observable is lazy, it also means a particular instance can be invoked
more than once. Continuing with the previous example this means we can do the
following:

someData.subscribe(s -> System.out.println("Subscriber 1: " + s));
someData.subscribe(s -> System.out.println("Subscriber 2: " + s));

Now there will be two separate subscriptions, each calling getDataFromServer
WithCallback and emitting events.

This laziness differs from async types such as Future where the Future is created
to represent work already started. A Future cannot be reused (subscribed to mul‐
tiple times to trigger work). If a reference to a Future exists, it means work is
already happening. You can see in the preceding sample code exactly where the
eagerness is; the getDataFromServerWithCallback method is eager because it
immediately executes when invoked. Wrapping an Observable around getData
FromServerWithCallback allows it to be used lazily.

This laziness is powerful when doing composition. For example:

someData
 .onErrorResumeNext(lazyFallback)
 .subscribe(s -> System.out.println(s));

In this case, lazyFallback Observable represents work that can be done, but will
only be done if something subscribes to it, and that we only want subscribed to if
someData fails. Of course, eager types can be made lazy by using function calls (such
as getDataAsFutureA()).

Eagerness and laziness each have their strengths and weaknesses, but RxJava Observa
ble is lazy. Therefore, if you have an Observable it won’t do anything until you sub‐
scribe to it.

This topic is discussed in greater detail in “Embracing Laziness” on page 121.

Duality
An Rx Observable is the async “dual” of an Iterable. By “dual,” we mean the Observ
able provides all the functionality of an Iterable except in the reverse flow of data: it
is push instead of pull. The table that follows shows types that serve both push and
pull functionality:

How RxJava Works | 13

www.EBooksWorld.ir

Pull (Iterable) Push (Observable)
T next() onNext(T)

throws Exception onError(Throwable)

returns onCompleted()

As per the table, instead of data being pulled out via next() by the consumer, it is
pushed to onNext(T) by the producer. Successful termination is signaled via the
onCompleted() callback rather than blocking the thread until all items have been iter‐
ated. In place of exceptions being thrown up the callstack, errors are emitted as events
to the onError(Throwable) callback.

The fact that it behaves as a dual effectively means anything you can do synchro‐
nously via pull with an Iterable and Iterator can be done asynchronously via push
with an Observable and Observer. This means that the same programming model
can be applied to both!

For example, as of Java 8 an Iterable can be upgraded to have function composition
via the java.util.stream.Stream type to work like this:

// Iterable<String> as Stream<String>
// that contains 75 strings
getDataFromLocalMemorySynchronously()
 .skip(10)
 .limit(5)
 .map(s -> s + "_transformed")
 .forEach(System.out::println)

This will retrieve 75 strings from getDataFromLocalMemorySynchronously(), get
items 11–15 and ignore the rest, transform the strings, and print them out. (Learn
more about operators such as take, skip, and limit in “Slicing and Dicing Using
skip(), takeWhile(), and Others” on page 94.)

An RxJava Observable is used the same way:

// Observable<String>
// that emits 75 strings
getDataFromNetworkAsynchronously()
 .skip(10)
 .take(5)
 .map(s -> s + "_transformed")
 .subscribe(System.out::println)

This will receive 5 strings (15 were emitted but the first 10 were dropped), and then
unsubscribe (ignoring or stopping the rest of the strings that were to be emitted). It
transforms and prints the strings just like the previous Iterable/Stream example.

14 | Chapter 1: Reactive Programming with RxJava

www.EBooksWorld.ir

In other words, the Rx Observable allows programming with async data via push just
like Streams around Iterables and Lists using synchronous pull.

Cardinality
The Observable supports asynchronously pushing multiple values. This nicely fits
into the lower right of the following table, the async dual of Iterable (or Stream,
List, Enumerable, etc.) and multivalued version of a Future:

One Many
Synchronous T getData() Iterable<T> getData()

Asynchronous Future<T> getData() Observable<T> getData()

Note that this section refers to Future generically. It uses Future.onSuccess(call
back) syntax to represent its behavior. Different implementations exist, such as Com
pletableFuture, ListenableFuture, or the Scala Future. But whatever you do, don’t
use java.util.Future, which requires blocking to retrieve a value.

So, why might an Observable be valuable instead of just Future? The most obvious
reason is that you are dealing with either an event stream or a multivalued response.
The less obvious reason is composition of multiple single-valued responses. Let’s look
at each of these.

Event stream
Event stream is straightforward. Over time the producer pushes events at the con‐
sumer, as demonstrated here:

// producer
Observable<Event> mouseEvents = ...;

// consumer
mouseEvents.subscribe(e -> doSomethingWithEvent(e));

This doesn’t work very well with a Future:

// producer
Future<Event> mouseEvents = ...;

// consumer
mouseEvents.onSuccess(e -> doSomethingWithEvent(e));

The onSuccess callback could have received the “last event,” but some questions
remain: Does the consumer now need to poll? Will the producer enqueue them? Or
will they be lost in between each fetch? The Observable is definitely beneficial here.
In the absence of Observable, a callback approach would be better than modeling
this with a Future.

How RxJava Works | 15

www.EBooksWorld.ir

http://bit.ly/2cJK7dY
http://bit.ly/2cJK7dY
http://bit.ly/2d41UMv
http://bit.ly/12STMkt

Multiple values

Multivalued responses are the next use of Observable. Basically, anywhere that a
List, Iterable, or Stream would be used, Observable can be used instead:

// producer
Observable<Friend> friends = ...

// consumer
friends.subscribe(friend -> sayHello(friend));

Now, this can work with a Future, like this:

// producer
Future<List<Friend>> friends = ...

// consumer
friends.onSuccess(listOfFriends -> {
 listOfFriends.forEach(friend -> sayHello(friend));
});

So why use the Observable<Friend> approach?

If the list of data to return is small, it probably doesn’t matter for performance and it
becomes a subjective choice. If the list is large, though, or the remote data source
must fetch different portions of the list from different locations, using the Observa
ble<Friend> approach can be a performance or latency benefit.

The most compelling reason is that items can be processed as received rather than
waiting for the entire collection to arrive. This is particularly true when different net‐
work latencies on the backend can affect each item differently, which is actually fairly
common due to long-tail latencies (such as in service-oriented or microservice archi‐
tectures) and shared data stores. If waiting for the entire collection, the consumer will
always experience the maximum latency of the aggregate work done for the collec‐
tion. If items are returned as an Observable stream, the consumer receives them
immediately and “time to first item” can be significantly lower than the last and slow‐
est item. To make this work, ordering of the stream must be sacrified so that the items
can be emitted in whatever order the server gets them. If order is eventually impor‐
tant to the consumer, a ranking or position can be included in the item data or meta‐
data, and the client can then sort or position the items as needed.

Additionally, it keeps memory usage limited to that needed per item rather than
needing to allocate and collect memory for the entire collection.

Composition

A multivalued Observable type is also useful when composing single-valued respon‐
ses, such as from Futures.

16 | Chapter 1: Reactive Programming with RxJava

www.EBooksWorld.ir

When merging together multiple Futures, they emit another Future with a single
value, such as this:

CompletableFuture<String> f1 = getDataAsFuture(1);
CompletableFuture<String> f2 = getDataAsFuture(2);

CompletableFuture<String> f3 = f1.thenCombine(f2, (x, y) -> {
 return x+y;
});

That might be exactly what is wanted, and is actually available in RxJava via Observa
ble.zip (which you’ll learn more about in “Pairwise Composing Using zip() and zip‐
With()” on page 79):

Observable<String> o1 = getDataAsObservable(1);
Observable<String> o2 = getDataAsObservable(2);

Observable<String> o3 = Observable.zip(o1, o2, (x, y) -> {
 return x+y;
});

However, it means waiting until all Futures are completed before emitting anything.
Oftentimes, it is preferable to emit each returned Future value as it completes. In this
case, Observable.merge (or the related flatMap) is preferable. It allows composing
the results (even if each is just an Observable emitting one value) into a stream of
values that are each emitted as soon as they are ready:

Observable<String> o1 = getDataAsObservable(1);
Observable<String> o2 = getDataAsObservable(2);

// o3 is now a stream of o1 and o2 that emits each item without waiting
Observable<String> o3 = Observable.merge(o1, o2);

Single

Now, despite Rx Observable being great at handling multivalued streams, the sim‐
plicity of a single-valued representation is very nice for API design and consumption.
Additionally, basic request/response behavior is extremely common in applications.
For this reason, RxJava provides a Single type, which is a lazy equivalent to a Future.
Think of it as a Future with two benefits: first, it is lazy, so it can be subscribed to
multiple times and easily composed, and second, it fits the RxJava API, so it can easily
interact with an Observable.

For example, consider these accessors:

public static Single<String> getDataA() {
 return Single.<String> create(o -> {
 o.onSuccess("DataA");
 }).subscribeOn(Schedulers.io());
}

How RxJava Works | 17

www.EBooksWorld.ir

public static Single<String> getDataB() {
 return Single.just("DataB")
 .subscribeOn(Schedulers.io());
}

These can then be used and optionally composed like this:

// merge a & b into an Observable stream of 2 values
Observable<String> a_merge_b = getDataA().mergeWith(getDataB());

Note how two Singles are merged into an Observable. This could result in an emis‐
sion of [A, B] or [B, A], depending on which completes first.

Going back to the previous example, we can now use Single instead of Observable
to represent the data fetches, but merge them into a stream of values:

// Observable<String> o1 = getDataAsObservable(1);
// Observable<String> o2 = getDataAsObservable(2);

Single<String> s1 = getDataAsSingle(1);
Single<String> s2 = getDataAsSingle(2);

// o3 is now a stream of s1 and s2 that emits each item without waiting
Observable<String> o3 = Single.merge(s1, s2);

Using Single instead of Observable to represent a “stream of one” simplifies con‐
sumption because a developer must consider only the following behaviors for the Sin
gle type:

• It can respond with an error
• Never respond
• Respond with a success

Compare this with the additional states a consumer must consider with an Observa
ble:

• It can respond with an error
• Never respond
• Respond successfully with no data and terminate
• Respond successfully with a single value and terminate
• Respond successfully with multiple values and terminate
• Respond successfully with one or more values and never terminate (waiting for

more data)

18 | Chapter 1: Reactive Programming with RxJava

www.EBooksWorld.ir

By using Single, the mental model is simpler for consuming the API, and only after
composition into an Observable happens must a developer consider the additional
states. This is often a better place for it to occur because typically the developer con‐
trols that code, whereas the data API is often from a third party.

You’ll learn more about Single in “Observable versus Single” on page 202.

Completable

In addition to Single, RxJava also has a Completable type that addresses the surpris‐
ingly common use case of having no return type, just the need to represent successful
or failed completion. Often Observable<Void> or Single<Void> ends up being used.
This is awkward, so Completable came to be, as demonstrated here:

Completable c = writeToDatabase("data");

This use case is common when doing asynchronous writes for which no return value
is expected but notification of successful or failed completion is needed. The preced‐
ing code with Completable is similar to this:

Observable<Void> c = writeToDatabase("data");

The Completable itself is an abstraction for two callbacks, completion and failure,
like this:

static Completable writeToDatabase(Object data) {
 return Completable.create(s -> {
 doAsyncWrite(data,
 // callback for successful completion
 () -> s.onCompleted(),
 // callback for failure with Throwable
 error -> s.onError(error));
 });
}

Zero to infinity

Observable can support cardinalities from zero to infinity (which is explored more in
“Infinite Streams” on page 38). But for simplicity and clarity, Single is an "Observa
ble of One,” and Completable is an "Observable of None.”

With these newly introduced types, our table ends up looking like this:

Zero One Many
Synchronous void doSomething() T getData() Iterable<T> getData()

Asynchronous Completable doSomething() Single<T> getData() Observable<T> getData()

How RxJava Works | 19

www.EBooksWorld.ir

Mechanical Sympathy: Blocking versus Nonblocking I/O
Thus far, the argument for the reactive-functional style of programming has primar‐
ily been about providing an abstraction over async callbacks to allow more managea‐
ble composition. And, it is fairly obvious that performing unrelated network requests
concurrently rather than sequentially is beneficial to experienced latency, thus the
reason for adopting asynchrony and needing composition.

But is there an efficiency reason for adopting the reactive approach (either imperative
or functional) in how we perform I/O? Are there benefits to using nonblocking I/O,
or is blocking I/O threads to wait on a single network request okay? Performance
testing I was involved in at Netflix demonstrated that there are objective and measur‐
able efficiency benefits to adopting nonblocking I/O and event loops over thread-per-
request blocking I/O. This section provides reasons why this is the case as well as the
data to help you make your own decision.

The Pursuit of Answers
After using RxJava for a while, I wanted an answer to the question of blocking versus
nonblocking I/O (specifically thread-per-request versus event loops), but I found it
very difficult to get clear answers. In fact, I found contradicting answers, myths, theo‐
ries, opinions, and confusion in my research on the topic. Ultimately, I came to the
conclusion that in theory, all different approaches (such as fibers, event loops,
threads, and CSP) should result in the same performance (throughput and latency)
because ultimately all approaches use the same CPU resources. In practice, though,
concrete implementations are made of data structures and algorithms and must deal
with the realities of hardware and thus be “sympathetic” first to how the hardware
functions, and then to the realities of how our operating systems and runtimes are
implemented.

I myself did not have the expertise to answer these questions, but I was lucky enough
to end up working with Brendan Gregg, who definitely has the expertise. Together
with Nitesh Kant, we had the opportunity over several months of work to profile
Tomcat and Netty-based applications.

We specifically chose “real world” code like Tomcat and Netty because they directly
related to our choices for production systems (we already used Tomcat and were
exploring the use of Netty). The two of them differ most significantly in their archi‐
tecture of thread-per-request versus event loop.

You can find the details of the study on GitHub at Netflix-Skunkworks/WsPerfLab
along with the code used for testing. You can find a summary and presentation narra‐
tive on SpeakerDeck in a presentation titled “Applying Reactive Programming with
RxJava”.

20 | Chapter 1: Reactive Programming with RxJava

www.EBooksWorld.ir

http://www.brendangregg.com
http://amzn.to/2cJMrl5
https://twitter.com/niteshkant
http://bit.ly/2cJMBsG
http://bit.ly/2cJMBsG
http://bit.ly/2cJMBsG
http://bit.ly/2cJMs8R
http://bit.ly/2cJMRIe
http://bit.ly/2cJMRIe

As referenced in “The Pursuit of Answers”, tests were done to compare performance
of blocking and nonblocking I/O with Tomcat and Netty on Linux. Because this type
of testing is always controversial and difficult to get right, I’ll be very clear that this
test is only intended to be relevant for the following:

• Behavior on typical Linux systems being used around 2015/2016
• Java 8 (OpenJDK and Oracle)
• Unmodified Tomcat and Netty as used in typical production environments
• Representative web service request/response workload involving composition of

multiple other web services

Considering that context, we learned the following:

• Netty code is more efficient than Tomcat code, allowing it to consume less CPU
per request.

• The Netty event-loop architecture reduces thread migrations under load, which
improves CPU cache warmth and memory locality, which improves CPU
Instructions-per-Cycle (IPC), which lowers CPU cycle consumption per request.

• Tomcat code has higher latencies under load due to its thread pool architecture,
which involves thread pool locks (and lock contention) and thread migrations to
service load.

The following graph best illustrates the difference between the architectures:

Mechanical Sympathy: Blocking versus Nonblocking I/O | 21

www.EBooksWorld.ir

http://bit.ly/2cJMBsG
http://bit.ly/2cJMAFe

Note how the lines diverge as load increases. These are the thread migrations. The
most interesting thing I learned was that the Netty application actually becomes more
efficient as it is put under load and the threads become “hot” and stick to a CPU core.
Tomcat, on the other hand, has a separate thread per request and thus cannot gain
this benefit and retains higher thread migrations due to each thread needing to be
scheduled for every request.

22 | Chapter 1: Reactive Programming with RxJava

www.EBooksWorld.ir

Netty CPU consumption remains mostly flat through increasing load and actually
becomes slightly more efficient as the load is maxed out, as opposed to Tomcat, which
becomes less efficient.

The resulting impact on latency and throughput is seen in the following graph:

Despite averages not being very valuable (as opposed to percentiles), this graph shows
how both have similar latency with little load, but diverge significantly as load increa‐
ses. Netty is able to better utilize the machine until higher load with less impact on
latency:

Mechanical Sympathy: Blocking versus Nonblocking I/O | 23

www.EBooksWorld.ir

This graph of maximum latency was chosen to show how the outliers affect users and
system resources. Netty handles load far more gracefully and avoids the worst-case
outliers.

The following image shows throughput:

Two strong benefits come out of these findings. First, better latency and throughput
means both better user experience and lower infrastructure cost. Second, though, the
event-loop architecture is more resilient under load. Instead of falling apart when the

24 | Chapter 1: Reactive Programming with RxJava

www.EBooksWorld.ir

1 Beyond perhaps debating when the number of event loops is sized at 1x, 1.5x, or 2x the number of cores. I
have not found strong differences between these values, though, and generally default to 1x.

load is increased, the machine can be pushed to its limit and handles it gracefully.
This is a very compelling argument for large-scale production systems that need to
handle unexpected spikes of traffic and remain responsive.

I also found the event-loop architecture easier to operate. It does not1 require tuning
to get optimal performance, whereas the thread-per-request architecture often needs
tweaking of thread pool sizes (and subsequently garbage collection) depending on
workload.

This is not intended to be an exhaustive study of the topic, but I found this experi‐
ment and resulting data as compelling evidence for pursuing the “reactive” architec‐
ture in the form of nonblocking IO and event loops. In other words, with hardware,
the Linux kernel, and JVM circa 2015/2016, nonblocking I/O via event loops does
have benefits.

Using Netty with RxJava will be further explored later in “Nonblocking HTTP Server
with Netty and RxNetty” on page 169.

Reactive Abstraction
Ultimately RxJava types and operators are just an abstraction over imperative call‐
backs. However, this abstraction completely changes the coding style and provides
very powerful tools for doing async and nonblocking programming. It takes effort to
learn and requires a shift of thinking to be comfortable with function composition
and thinking in streams, but when you’ve achieved this it is a very effective tool
alongside our typical object-oriented and imperative programming styles.

The rest of this book takes you through the many details of how RxJava works and
how to use it. Chapter 2 explains where Observables come from and how you can
consume them. Chapter 3 will guide you through several dozen declarative and pow‐
erful transformations.

Reactive Abstraction | 25

www.EBooksWorld.ir

http://www.reactivemanifesto.org

www.EBooksWorld.ir

CHAPTER 2

Reactive Extensions

Tomasz Nurkiewicz

This chapter will guide you through the core concepts related to Reactive Extensions
and RxJava. You will become very comfortable with Observable<T>, Observer<T>,
and Subscriber<T> and a few helpful utility methods called operators. Observable is
the core API RxJava, so make sure you understand how it works and what it repre‐
sents. Throughout this chapter, you will learn what Observable really is and how to
create it and interact with it. The knowledge you gain is essential to idiomatically pro‐
vide and consume reactive APIs based on RxJava. RxJava was designed to ease the
pain of asynchronous and event-driven programming, but you must understand
some core principles and semantics in order to take advantage of that. When you
grasp how Observable collaborates with client code, you will feel a lot of power
under your fingertips. After reading this chapter, you will be capable of creating sim‐
ple streams of data, ready to be combined and composed in very interesting ways.

Anatomy of rx.Observable
rx.Observable<T> represent a flowing sequence of values. It is the abstraction that
you will use all of the time. Because these values often appear over a wide time range,
we tend to think about an Observable as a stream of events. If you look around you
will find many examples of streams:

• User interface events
• Bytes transferred over the network
• New orders in online shopping
• Posts on social-media websites

27

www.EBooksWorld.ir

If you want to compare Observable<T> with something more familiar, Iterable<T>
is probably the closest abstraction. Just like Iterator<T> created from Iterable<T>,
Observable<T> can have zero to an infinite number of values of type T. Iterator is
very effective at generating infinite sequences; for example, all natural numbers, as
demonstrated here:

class NaturalNumbersIterator implements Iterator<BigInteger> {

 private BigInteger current = BigInteger.ZERO;

 public boolean hasNext() {
 return true;
 }

 @Override
 public BigInteger next() {
 current = current.add(BigInteger.ONE);
 return current;
 }
}

Another similarity is the fact that Iterator itself can signal its client that it has no
more items to produce (more on that later). However, the similarities end here.
Observable is inherently push-based, which means that it decides when to produce
values. Iterator, on the other hand, sits idle until someone actually asks for next()
item. Traditionally, such behavior was not possible with Observable—at some point
in time client code can subscribe to an Observable and will be notified when Observa
ble feels it should emit a value. It can happen anytime between immediately and
never. Much later in the book, we will examine “Backpressure” on page 226; this is a
mechanism that gives Subscribers a way to control Observable’s pace under some
circumstances.

Also, Observable can produce an arbitrary number of events. Obviously, this sounds
much like the classic observer pattern, also known as publish-subscribe (if you’d like
to learn more about that, read Design Patterns: Elements of Reusable Object-Oriented
Software by Erich Gamma and Richard Helm [Addison-Wesley]) However, just like
Iterator does not need to be backed by the underlying collection (see NaturalNum
bersIterator), Observable does not necessarily need to represent a stream of events.
It’s time to see some examples of Observables:

Observable<Tweet> tweets

tweets is probably the most obvious example of stream of events. We immedi‐
ately understand that status updates on any social-media website are being cre‐
ated all the time and can certainly be represented as a stream of events. Also,
unlike Iterator, we can not pull data manually when it is useful for us. Observa
ble must push data as it comes.

28 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

1 http://go.microsoft.com/fwlink/?LinkID=205219

Observable<Double> temperature

temperature Observable is quite similar; it generates the temperature value of
some device and pushes it to subscribers. Both tweets and temperature Observa
bles are examples of infinite streams of future events.

Observable<Customer> customers

What Observable<Customer> represents depends on the context. Most likely it
returns a list of customers, probably from a database query. It can be zero, a few,
or even thousands of entries, possibly lazy loaded. Or, this Observable can repre‐
sent a stream of a Customer’s log in to your system. The client programming
model does not change, no matter how Observable<Customer> is implemented.

Observable<HttpResponse> response

Observable<HttpResponse>, on the other hand, most likely yields just one event
(value) until it terminates. This value will appear some time in the future and will
be pushed to the client code. To read that response we must subscribe.

Observable<Void> completionCallback

Finally, there is odd-looking Observable<Void>. Technically speaking Observa
ble can emit zero items and terminate. In that case, we do not care about the
actual type of values pushed by an Observable because they will never appear
anyway.

Indeed, Observable<T> can actually produce three types of events:

• Values of type T, as declared by Observable
• Completion event
• Error event

The specification of reactive extensions clearly states that every Observable can emit
an arbitrary number of values optionally followed by completion or error (but not
both). Strictly speaking Rx Design Guidelines define this rule as follows:1 OnNext*
(OnCompleted | OnError)?—where OnNext represents a new event. Interestingly,
every possible combination of this regular expression-like rule is valid and useful:

OnNext OnCompleted

Observable emits one value and terminates gracefully. This can be used when
Observable represents a request to an external system and we expect a single
response.

Anatomy of rx.Observable | 29

www.EBooksWorld.ir

http://go.microsoft.com/fwlink/?LinkID=205219

OnNext+ OnCompleted

Observable emits multiple events before it terminates. This can represent read‐
ing a list from a database and receiving each record as a single value. Another
example can be tracking progress of some long-running process that eventually
finishes.

OnNext+

Infinite list of events, like comments on a social-media website or status updates
of some component (e.g., mouse movements and ping requests). This stream is
infinite and must be consumed on the fly.

OnCompleted or OnError only
Such an Observable signals only normal or abnormal termination. OnError
additionally wraps a Throwable that caused the stream to terminate. Errors are
signaled via event rather than using standard throw statement.

OnNext+ OnError

A stream might successfully emit one or more events but eventually fail. Typi‐
cally, this means that a stream was supposed to be infinite but failed in the mean‐
time due to fatal error. Think about a sequence of network packets that deliver
events for hours but at some point becomes interrupted due to connectivity loss.

OnError notification is quite interesting. Because of the asynchronous nature of
Observables, simply throwing exceptions makes little sense. Instead, we must trans‐
fer errors to whoever is interested, possibly across threads and over some period of
time. OnError is a special type of event that encapsulates exceptions in a functional
way. You can read more about exceptions in “Error Handling” on page 243.

Additionally, you can implement an Observable to never emit any event at all,
including completion or error. Such an Observable is useful for testing purposes—
for example, to exercise timeouts.

Subscribing to Notifications from Observable
An instance of Observable does not emit any events until someone is actually interes‐
ted in receiving them. To begin watching an Observable, you use the subscribe()
family of methods:

Observable<Tweet> tweets = //...

tweets.subscribe((Tweet tweet) ->
 System.out.println(tweet));

The preceding code snippet subscribes to tweets Observable by registering a call‐
back. This callback will be invoked every time the tweets stream decides to push an
event downstream. The RxJava contract makes sure that your callback will not be

30 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

invoked from more than one thread at a time, even though events can be emitted
from many threads. There are multiple overloaded versions of subscribe() that are
more specific. We already mentioned that idiomatically Observable does not throw
exceptions. Instead, exceptions are just another type of notification (event) that
Observable can propagate. Therefore, you do not use the try-catch block around
subscribe() to catch exceptions produced along the way. Instead, you provide a sep‐
arate callback:

tweets.subscribe(
 (Tweet tweet) -> { System.out.println(tweet); },
 (Throwable t) -> { t.printStackTrace(); }
);

The second argument to subscribe() is optional. It notifies about exceptions that
can potentially occur while producing items. It is guaranteed that no other Tweet will
appear after the exception. You almost always want to subscribe for exceptions as
well, not only legitimate items, even if you do not expect them. Exceptions are first-
class citizens in Observable. Thrown exceptions can propagate quickly, causing lots
of side effects like inconsistent data structures or failed transactions. This is generally
a good idea, but often exceptions are not fatal. Thus, resilient systems should antici‐
pate and have a systematic way of handling exceptions. That is why Observable mod‐
els them explicitly.

The third optional callback allows us to listen for stream completion:

tweets.subscribe(
 (Tweet tweet) -> { System.out.println(tweet); },
 (Throwable t) -> { t.printStackTrace(); },
 () -> {this.noMore();}
);

Remember that RxJava is not opinionated with regard to how many items are pro‐
duced, when, and when to stop. As a stream can be infinite or it can complete imme‐
diately upon subscription, it is up to the Subscriber whether it wants to receive
completion notification. If you know at the outset that a stream is infinite, obviously
it makes no sense. On the other hand, in some cases the completion of a stream might
be the event for which we are actually waiting. As an example, think about Observa
ble<Progress> that keeps track of long-running processes. The client might or might
not be interested in tracking progress, but it definitely wants to know when the pro‐
cess finishes.

As a side note, often you can use Java 8 method references instead of lambdas to
improve readability, as illustrated here:

tweets.subscribe(
 System.out::println,
 Throwable::printStackTrace,
 this::noMore);

Subscribing to Notifications from Observable | 31

www.EBooksWorld.ir

Capturing All Notifications by Using Observer<T>
It turns out that providing all three arguments to subscribe() is quite useful, thus it
would be helpful to have a simple wrapper holding all three callbacks. This is what
Observer<T> was designed for. Observer<T> is a container for all three callbacks,
receiving all possible notifications from Observable<T>. Here is how you can register
an Observer<T>:

Observer<Tweet> observer = new Observer<Tweet>() {
 @Override
 public void onNext(Tweet tweet) {
 System.out.println(tweet);
 }

 @Override
 public void onError(Throwable e) {
 e.printStackTrace();
 }

 @Override
 public void onCompleted() {
 noMore();
 }
};

//...

tweets.subscribe(observer);

As a matter of fact Observer<T> is the core abstraction for listening in RxJava. Yet if
you want even greater control, Subscriber (Observers abstract implementation) is
even more powerful.

Controlling Listeners by Using Subscription and
Subscriber<T>
A single Observable can naturally have numerous subscribers. Just like in a
publisher-subscriber pattern, a single publisher can dispatch events to multiple con‐
sumers. In RxJava, Observable<T> is just a typed data structure that can exist very
briefly or for many days, as long as a server application runs. The same story applies
for subscribers. You can subscribe to an Observable, consume a handful of events,
and discard all the others. Or quite the opposite: drain events as long as Observable
is alive, possibly for hours or days.

Imagine an Observer that knows in advance how many items it wants to receive or
when to stop receiving them. For example, we subscribed for stock price changes, but
when the price falls below $1, we no longer want to listen. Obviously, just as Observer

32 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

has the ability to subscribe, it also should be capable of unsubscribing whenever it
finds it suitable. There are two means to support that: Subscription and Subscriber.
Let’s talk about the former. We did not yet explore what subscribe() actually returns:

Subscription subscription =
 tweets.subscribe(System.out::println);

//...

subscription.unsubscribe();

Subscription is a handle that allows client code to cancel a subscription by using the
unsubscribe() method. Additionally, you can query the status of a subscription by
using isUnsubscribed(). It is important to unsubscribe from Observable<T> as soon
as you no longer want to receive more events; this avoids memory leaks and unneces‐
sary load on the system. Sometimes, we subscribe to an Observable and fully con‐
sume it, never really unsubscribing, even if that stream is infinite. However, there are
cases in which subscribers come and go while the Observable keeps producing events
forever.

There is a second way to request unsubscribe, this time from within the listener. We
know that we can use Subscription to control subscription outside of the Observer
or callback. Subscriber<T>, on the other hand, implements both Observer<T> and
Subscription. Thus, it can be used both to consume notifications (events, comple‐
tions, or errors) and control subscription. The code example that follows subscribes
to all events, but the subscriber itself decides to give up receiving notifications under
certain criteria. Normally, this can be done by using the built-in takeUntil() opera‐
tor, but for the time being we can unsubscribe manually:

Subscriber<Tweet> subscriber = new Subscriber<Tweet>() {
 @Override
 public void onNext(Tweet tweet) {
 if (tweet.getText().contains("Java")) {
 unsubscribe();
 }
 }

 @Override
 public void onCompleted() {}

 @Override
 public void onError(Throwable e) {
 e.printStackTrace();
 }
};
tweets.subscribe(subscriber);

When Subscriber decides it no longer wants to receive more items, it can unsub‐
scribe itself. As an exercise, you can implement a Subscriber that receives only the

Controlling Listeners by Using Subscription and Subscriber<T> | 33

www.EBooksWorld.ir

first n events and then gives up. The Subscriber class is more powerful than that, but
for the time being just remember it is capable of unsubscribing itself from Observa
ble.

Creating Observables
We began by subscribing to an Observable in order to receive events pushed down‐
stream. This is not a coincidence. Most of the time while working with RxJava you
will be interacting with existing Observables, typically combining, filtering, and
wrapping them with one another. However, unless you work with an external API
that already exposes Observables, you first must learn where Observables come from
and how you can create a stream and handle subscriptions. First, there are several
factory methods that create fixed constant Observables. These are useful if you want
to use RxJava consistently across an entire codebase or when values to be emitted are
cheap to produce and known in advance:

Observable.just(value)

Creates an Observable instance that emits exactly one value to all future sub‐
scribers and completes afterward. Overloaded versions of the just() operator
can take anything from two to nine values to be emitted.

Observable.from(values)

Similar to just() but accepts Iterable<T> or T[], thus creating Observable<T>
with as many values emitted as elements in values collection. Another overloa‐
ded version accepts a Future<T>, emitting an event when the underlying Future
completes.

Observable.range(from, n)

Produces n integer numbers starting from from. For example, range(5, 3) will
emit 5, 6, and 7 and then complete normally. Each subscriber will receive the
same set of numbers.

Observable.empty()

Completes immediately after subscription, without emitting any values.

Observable.never()

Such Observable never emits any notifications, neither values nor completion or
error. This stream is useful for testing purposes.

Observable.error()

Emits an onError() notification immediately to every subscriber. No other val‐
ues are emitted and according to contract onCompleted() cannot occur as well.

34 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

Mastering Observable.create()
Dummy empty(), never(), and error() factories don’t seem terribly useful; however,
they are quite handy when composing with genuine Observables. Interestingly, even
though RxJava is all about asynchronous processing of streams of events, the afore‐
mentioned factory methods by default operate on the client thread. Have a look at the
following code sample:

private static void log(Object msg) {
 System.out.println(
 Thread.currentThread().getName() +
 ": " + msg);
}

//...

log("Before");
Observable
 .range(5, 3)
 .subscribe(i -> {
 log(i);
 });
log("After");

What we are interested in is the thread that executed each log statement:

main: Before
main: 5
main: 6
main: 7
main: After

The order of print statements is also relevant. It is not a surprise that Before and
After messages are printed by the main client thread. However, notice that subscrip‐
tion also happened in the client thread and subscribe() actually blocked the client
thread until all events were received. Unless required by some operator RxJava does
not implicitly run your code in any thread pool. To better understand this behavior,
let’s study the low-level operator used for manufacturing Observables: create():

Observable<Integer> ints = Observable
 .create(new Observable.OnSubscribe<Integer>() {
 @Override
 public void call(Subscriber<? super Integer> subscriber) {
 log("Create");
 subscriber.onNext(5);
 subscriber.onNext(6);
 subscriber.onNext(7);
 subscriber.onCompleted();
 log("Completed");
 }
 });

Creating Observables | 35

www.EBooksWorld.ir

log("Starting");
ints.subscribe(i -> log("Element: " + i));
log("Exit");

The preceding code sample is intentionally verbose. Here is the output, including the
thread name that executed each particular line:

main: Starting
main: Create
main: Element: 5
main: Element: 6
main: Element: 7
main: Completed
main: Exit

To understand how Observable.create() works and how RxJava deals with concur‐
rency, we will analyze the execution step by step. First, we create ints Observable by
supplying an implementation of the OnSubscribe callback interface to create()
(later, we almost always replace it with a simple lambda expression). At this point,
nothing happened yet apart from creating an instance of Observable; therefore, the
first line of output we see is main: Starting. Observable defers emission of events
by default, meaning it will not begin to emit any items until you actually subscribe, so
the lambda expression given to create() is not executed yet. Later, we do subscribe,
ints.subscribe(...), forcing Observable to begin emitting items. This is true for
streams known as cold. Hot streams, on the other hand, emit events even if no one
subscribed. This important distinction will be explained soon in “Hot and Cold
Observables” on page 43.

The lambda expression receiving emitted items (i -> log("Ele
ment: " + i) is wrapped with Subscriber<Integer> internally.
This subscriber is nearly directly passed as an argument to a func‐
tion you specified when calling create(). So every time you sub‐
scribe to an Observable, a new Subscriber instance is created and
passed to your create() method. Calling onNext() or other meth‐
ods of Subscriber inside create() indirectly invokes your own
Subscriber.

Observable.create() is so versatile that in fact you can mimic all of the previously
discovered factory methods on top of it. For example, Observable.just(x), emits a
single value x and immediately completes afterward, might look like this:

static <T> Observable<T> just(T x) {
 return Observable.create(subscriber -> {
 subscriber.onNext(x);
 subscriber.onCompleted();
 }

36 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

);
}

As an exercise, try to implement never(), empty(), or even range() by using only
create().

Managing multiple subscribers

Emitting does not begin until we actually subscribe. But every time subscribe() is
called, our subscription handler inside create() is invoked. This is neither an advan‐
tage nor a disadvantage, it is just something you must keep in mind. In some cases,
the fact that every subscriber gets its own unique handler invocation works great. For
example, Observable.just(42) should emit 42 to every subscriber, not just the first
one. On the other hand, if you put a database query or heavyweight computation
inside create(), it might be beneficial to share a single invocation among all sub‐
scribers.

To ensure that you truly understand how subscription works, consider the following
code sample that subscribes to the same Observable twice:

Observable<Integer> ints =
 Observable.create(subscriber -> {
 log("Create");
 subscriber.onNext(42);
 subscriber.onCompleted();
 }
);
log("Starting");
ints.subscribe(i -> log("Element A: " + i));
ints.subscribe(i -> log("Element B: " + i));
log("Exit");

What kind of output do you expect? Remember that every time you subscribe to an
Observable created via the create() factory method, the lambda expression passed
as an argument to create() is executed independently by default within the thread
that initiated the subscription:

main: Starting
main: Create
main: Element A: 42
main: Create
main: Element B: 42
main: Exit

If you would like to avoid calling create() for each subscriber and simply reuse
events that were already computed, there exists a handy cache() operator:

Observable<Integer> ints =
 Observable.<Integer>create(subscriber -> {
 //...

Creating Observables | 37

www.EBooksWorld.ir

 }
)
 .cache();

cache() is the first operator that you learn. Operators wrap existing Observables,
enhancing them, typically by intercepting subscription. What cache() does is stand
between subscribe() and our custom Observable. When the first subscriber
appears, cache() delegates subscription to the underlying Observable and forwards
all notifications (events, completions, or errors) downstream. However, at the same
time, it keeps a copy of all notifications internally. When a subsequent subscriber
wants to receive pushed notifications, cache() no longer delegates to the underlying
Observable but instead feeds cached values. With caching, the output for two Sub
scribers is quite different:

main: Starting
main: Create
main: Element A: 42
main: Element B: 42
main: Exit

Of course, you must keep in mind that cache() plus infinite stream is the recipe for a
disaster, also known as OutOfMemoryError. But this will be covered in “Memory Con‐
sumption and Leaks” on page 315, much later.

Infinite Streams
Infinite data structures are an important concept. Computer memory is finite so hav‐
ing an infinite list or stream sounds impossible. But RxJava allows you to produce
and consume events on the fly. That traditional queue can be treated as an infinite
source of values, despite not keeping all of them in memory at the same time. That
being said how would you implement such an infinite stream by using create()? For
example, let’s build an Observable that produces all natural numbers:

//BROKEN! Don't do this
Observable<BigInteger> naturalNumbers = Observable.create(
 subscriber -> {
 BigInteger i = ZERO;
 while (true) { //don't do this!
 subscriber.onNext(i);
 i = i.add(ONE);
 }
 });
naturalNumbers.subscribe(x -> log(x));

The presence of while(true) should trigger an alarm bell in any codebase. It seems
OK at first, but you should quickly realize that this implementation is broken. But not
because it is infinite—as a matter of fact infinite Observables are perfectly OK and
quite useful. Of course, as long as they are implemented properly. The moment you

38 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

hit subscribe(), the lambda expression inside create() is invoked in the context of
your thread. And because this lambda never ends, subscribe() blocks infinitely as
well. But, you might ask, “But shouldn’t subscription be asynchronous rather than
running subscription handler in the client thread?” This is a valid question, so let’s
spend some time introducing explicit concurrency:

Observable<BigInteger> naturalNumbers = Observable.create(
 subscriber -> {
 Runnable r = () -> {
 BigInteger i = ZERO;
 while (!subscriber.isUnsubscribed()) {
 subscriber.onNext(i);
 i = i.add(ONE);
 }
 };
 new Thread(r).start();
 });

Rather than have a blocking loop running directly in the client thread, we spawn a
custom thread and emit events directly from there. Luckily subscribe() no longer
blocks client thread, because all it does underneath is spawn a thread. All invocations
of the x -> log(x) callback are executed from within our custom thread in the back‐
ground. Now imagine we are not interested in all the natural numbers (there are too
many of them after all), but just the first few. We know already how to stop receiving
notifications from Observable—by unsubscribing:

Subscription subscription = naturalNumbers.subscribe(x -> log(x));
//after some time...
subscription.unsubscribe();

If you pay attention to details, you probably noticed the suspicious-looking
while(true) loop was replaced with the following:

while (!subscriber.isUnsubscribed()) {

For every iteration we make, we need to ensure that someone is actually listening.
When a subscriber decides to stop listening, the subscriber.isUnsubscribed() con‐
dition tells us about it so we can safely complete the stream and exit Runnable, effec‐
tively stopping the thread. Obviously, each subscriber has its own thread and loop, so
when one subscriber decides to unsubscribe, others keep receiving their independent
stream of events. Although creating your own thread is not a good design decision,
and RxJava has much better declarative tools for handling concurrency, the preceding
code sample shows how you can properly handle subscription events.

It is advised to check the isUnsubscribed() flag as often as possible to avoid sending
events after a subscriber no longer wants to receive new events. Moreover, when pro‐
ducing events is costly, there is no point in eagerly sending them when no one wants
them anyway. Even though there is nothing inherently wrong with spawning your

Creating Observables | 39

www.EBooksWorld.ir

own threads within create(), it is error prone and scales poorly. In “Multithreading
in RxJava” on page 140, we explore declarative concurrency and custom schedulers
that allow you to write concurrent code without really interacting with threads your‐
self.

Handling unsubscription immediately before trying to send an event is fine as long as
events are pushed relatively often. But imagine a situation in which events appear
very rarely. Observable can only determine that a subscriber unsubscribed when it
attempts to push some event to it. Take the following useful factory method as an
example: delayed(x) creates an Observable that emits value x after sleeping for 10
seconds. It is similar to Observable.just(), but with extra delay. We know already
that extra thread needs to be used, even though it is not the best usage pattern:

static <T> Observable<T> delayed(T x) {
 return Observable.create(
 subscriber -> {
 Runnable r = () -> {
 sleep(10, SECONDS);
 if (!subscriber.isUnsubscribed()) {
 subscriber.onNext(x);
 subscriber.onCompleted();
 }
 };
 new Thread(r).start();
 });
}

static void sleep(int timeout, TimeUnit unit) {
 try {
 unit.sleep(timeout);
 } catch (InterruptedException ignored) {
 //intentionally ignored
 }
}

The naive implementation spawns a new thread and goes to sleep for 10 seconds. A
more robust implementation should at least use java.util.concurrent.Schedule
dExecutorService, but this is for educational purposes only. After 10 seconds we
ensure that someone is still listening, and if that is the case, we emit a single item and
complete. But what if the subscriber decides to unsubscribe one second after sub‐
scribing, long before the event is supposed to be emitted? Well, nothing really. The
background thread sleeps for the remaining nine seconds just to realize the sub‐
scriber is long gone. This is what bothers us; holding the resource for an extra nine
seconds seems wasteful. Imagine this was an expensive connection to some data feed
for which we pay for every second of usage but where events occur very rarely. Wait‐
ing several seconds or even minutes just to realize that there is no longer anyone sub‐
scribed and we should terminate the connection sounds suboptimal to say the least.

40 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

Luckily, with a subscriber instance we can be notified as soon as it unsubscribes,
cleaning up resources as soon as possible, not when the next message appears:

static <T> Observable<T> delayed(T x) {
 return Observable.create(
 subscriber -> {
 Runnable r = () -> {/* ... */};
 final Thread thread = new Thread(r);
 thread.start();
 subscriber.add(Subscriptions.create(thread::interrupt));
 });
}

The last line is crucial, but everything else remained the same. The background
thread is already running—or, to be precise, sleeping for 10 seconds. But just after
spawning a thread, we ask the subscriber to let us know by invoking a callback if it
unsubscribes and is registered via Subscriber.add(). This callback has basically a
single purpose: to interrupt a thread. What calling Thread.interrupt() does is
throw an InterruptedException inside sleep(), prematurely interrupting our 10-
second pause. sleep() exits gracefully after swallowing the exception. However, at
this point subscriber.isUnsubscribed() returns false and no event is emitted. The
thread stops immediately and no resources are wasted. You can use the same pattern
to perform any cleanup. However, if your stream produces a steady, frequent flow of
events, you can probably live without explicit callback.

There is another reason why you should not use explicit threads inside create(). The
Rx Design Guidelines in section 4.2. Assume observer instances are called in a serialized
fashion require that subscribers never receive notifications concurrently. It is easy to
violate this requirement when explicit threads are involved. This behavior is similar
to actors, for example, in the Akka toolkit, in which each actor can process one mes‐
sage at a time. Such an assumption allows writing Observers as if they were
synchronized, always accessed by at most one thread. This holds true despite events
that can come from multiple threads. Custom implementations of Observable must
ensure that this contract is met. With that in mind, look at the following code that
nonidiomatically tries to parallelize loading of multiple chunks of Data:

Observable<Data> loadAll(Collection<Integer> ids) {
 return Observable.create(subscriber -> {
 ExecutorService pool = Executors.newFixedThreadPool(10);
 AtomicInteger countDown = new AtomicInteger(ids.size());
 //DANGER, violates Rx contract. Don't do this!
 ids.forEach(id -> pool.submit(() -> {
 final Data data = load(id);
 subscriber.onNext(data);
 if (countDown.decrementAndGet() == 0) {
 pool.shutdownNow();
 subscriber.onCompleted();
 }

Creating Observables | 41

www.EBooksWorld.ir

http://akka.io

 }));
 });
}

This code, apart from accidentally being quite complex, violates some Rx principles.
Namely it allows calling the subscriber’s onNext() method from multiple threads
concurrently. Second, you can avoid the complexity by simply applying idiomatic
RxJava operators, such as merge() and flatMap(), but we will get there in “Treating
Several Observables as One Using merge()” on page 77. The good news is that even if
someone poorly implemented the Observable, we can easily fix it by applying the
serialize() operator, such as loadAll(...).serialize(). This operator ensures
that events are serialized and sequenced. It also enforces that no more events are sent
after completion or error.

The last aspect of creating Observables that we have not yet covered is error propaga‐
tion. We’ve learned so far that Observer<T> can receive values of type T, optionally
followed by either completion or error. But how do you push errors downstream to
all subscribers? It is a good practice to wrap entire expressions within create() in a
try-catch block. Throwables should be propagated downstream rather than logged
or rethrown, as demonstrated here:

Observable<Data> rxLoad(int id) {
 return Observable.create(subscriber -> {
 try {
 subscriber.onNext(load(id));
 subscriber.onCompleted();
 } catch (Exception e) {
 subscriber.onError(e);
 }
 });
}

This extra try-catch block is necessary to propagate the possible Exception thrown
from, for example, load(id). Otherwise, RxJava will do its best to at least print the
exception to standard output, but to build resilient streams, exceptions need to be
treated as first-class citizens, not just as extra features in the language that no one
truly understands.

The pattern of completing an Observable with one value and wrapping with the try-
catch statement is so prevalent that the built-in fromCallable() operator was intro‐
duced:

Observable<Data> rxLoad(int id) {
 return Observable.fromCallable(() ->
 load(id));
}

It is semantically equivalent but much shorter and has some other benefits over cre
ate() that you will discover later.

42 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

Timing: timer() and interval()
We’ve devoted quite a few pages to studying Observables that create threads on their
own, which is not the best pattern in RxJava. In later chapters, we will explore sched‐
ulers, but first let’s discover two very useful operators that use threads underneath:
timer() and interval(). The former simply creates an Observable that emits a long
value of zero after a specified delay and then completes:

Observable
 .timer(1, TimeUnit.SECONDS)
 .subscribe((Long zero) -> log(zero));

As silly as it sounds, timer() is extremely useful. It is basically an asynchronous
equivalent of Thread.sleep(). Rather than blocking the current thread, we create an
Observable and subscribe() to it. It will become significantly more important after
we learn how to compose simple Observables into more complex computations. The
fixed value of 0 (in variable zero) is just a convention without any specific meaning.
However, it makes more sense when interval() is introduced. interval() generates
a sequence of long numbers, beginning with zero, with a fixed delay between each
one of them:

Observable
 .interval(1_000_000 / 60, MICROSECONDS)
 .subscribe((Long i) -> log(i));

Observable.interval() produces a sequence of consecutive long numbers, begin‐
ning with 0. However, unlike range(), interval() places a fixed delay before every
event, including the first one. In our example, this delay is about 16666 μs, which
roughly corresponds to 60 Hz, which is the frame rate often used in various anima‐
tions. This is not a coincidence: interval() is sometimes used to control animations
or processes that need to run with certain frequency. interval() is somewhat similar
to scheduleAtFixedRate() from ScheduledExecutorService. You can probably
imagine multiple usage scenarios of interval(), like periodic polling for data,
refreshing user interfaces, or modeling elapsing time in simulation.

Hot and Cold Observables
After you get an instance of Observable, it is important to understand whether the
stream is hot or cold. The API and semantics remain the same, but the way you use
Observable will depend on the type. A cold Observable is entirely lazy and never
begins to emit events until someone is actually interested. If there are no observers,
Observable is just a static data structure. This also implies that every subscriber
receives its own copy of the stream because events are produced lazily but also not
likely cached in any way. Cold Observables typically come from Observable.cre
ate(), which idiomatically should not start any logic but instead postpone it until

Creating Observables | 43

www.EBooksWorld.ir

2 Hohpe, G. and Woolf, B., Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solu‐
tions, Addison-Wesley Professional.

someone actually listens. A cold Observable is thus somewhat dependent on Sub
scriber. Examples of cold Observables, apart from create(), include Observa
ble.just(), from(), and range(). Subscribing to a cold Observable often involves a
side effect happening inside create(). For example, the database is queried or a con‐
nection is opened.

Hot Observables are different. After you get a hold of such an Observable it might
already be emitting events no matter how many Subscribers they have. Observable
pushes events downstream, even if no one listens and events are possibly missed.
Whereas typically you have full control over cold Observables, hot Observables are
independent from consumers. When a Subscriber appears, a hot Observable
behaves like a wire tap,2 transparently publishing events flowing through it. The pres‐
ence or absence of Subscriber does not alter the behavior of Observable; it is
entirely decoupled and independent.

Surprisingly, Observable.interval() is not hot. You might think it simply produces
timer ticks with some interval, irrespective of the environment, but in reality the
timer events are produced only when someone subscribes and each subscriber
receives independent stream. This is a definition of a cold Observable.

Hot Observables typically occur when we have absolutely no control over the source
of events. Examples of such Observables include mouse movements, keyboard
inputs, or button clicks. So far, we haven’t even mentioned the user interface, but it
turns out that RxJava fits perfectly when implementing user interfaces. This library is
especially appreciated in the Android community, where it helps in transforming
from nested callbacks to flat composition of streams. We will explore how you can
use RxJava on mobile devices running Android in “Android Development with
RxJava” on page 277.

The importance of hot versus cold distinction becomes essential when we rely on
delivery of events. No matter when you subscribe to a cold Observable—immediately
or after hours—you always receive a complete and consistent set of events. On the
other hand, if the Observable is hot, you can never be sure you received all events
from the beginning. Later in this chapter, we will learn some techniques on how to
ensure that every subscriber received all events. One such technique already sneaked
into this chapter: the cache() operator (see “Managing multiple subscribers” on page
37). Technically, it can buffer all events from a hot Observable and allow subsequent
subscribers to receive the same sequence of events. However, because it consumes
theoretically an unlimited amount of memory, be careful with caching hot Observa
bles.

44 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

3 At least until version 3.0.

Another interesting distinction that comes to mind between hot and cold sources is
time dependency. A cold Observable produces values on demand and possibly multi‐
ple times so the exact instant when an item was created is irrelevant. Conversely, hot
Observables represent events as they come, typically from some external source. This
means that the instant when a given value was generated is very significant because it
places the event on the timescale.

Use Case: From Callback API to Observable Stream
The majority of Java APIs like JDBC, java.io, servlets3 as well as proprietary solu‐
tions are blocking. This means that the client thread must wait for whatever the result
or side effect is. However, there are use cases that are inherently asynchronous; for
example, pushing events from some external source. You can technically build a
block-streaming API in the following manner:

while(true) {
 Event event = blockWaitingForNewEvent();
 doSomethingWith(event);
}

Luckily, when a domain is so inherently asynchronous, you will most likely find some
sort of callback-based API, so prevalent, for example, in JavaScript. These APIs will
accept some form of callback, typically an interface with a bunch of methods that you
can implement to notify you about various events. The most striking example of such
an API is almost every graphical user interface library out there: for example, Swing.
When various listeners like onClick() or onKeyUp() are used, callbacks are certainly
inevitable. If you’ve worked in such environments, the term callback hell is definitely
familiar to you. Callbacks have a tendency to nest in one another, so coordinating
multiple callbacks is virtually impossible. Here is an example of a callback nested four
times:

button.setOnClickListener(view -> {
 MyApi.asyncRequest(response -> {
 Thread thread = new Thread(() -> {
 int year = datePicker.getYear();
 runOnUiThread(() -> {
 button.setEnabled(false);
 button.setText("" + year);
 });
 });
 thread.setDaemon(true);
 thread.start();
 });
});

Use Case: From Callback API to Observable Stream | 45

www.EBooksWorld.ir

The simplest requirements, like reacting when two callbacks are invoked shortly after
each other, becomes a nightmare, and is additionally hindered by multithreading. In
this section, we will refactor a callback-based API into RxJava with all the benefits
such as controlling threads, lifecycle, and cleanup.

One of my favorite examples of streams are status updates from Twitter, known as
tweets. There are several thousand user updates per second. Many accompanied by
geolocalization, language, and other metadata. For the purpose of this exercise, we
will use the open source Twitter4J library that can push a subset of new tweets using a
callback-based API. This chapter is not intended to explain how Twitter4J works or to
provide robust examples. Twitter4J was chosen as a good example of an API using
callbacks with an interesting domain. The simplest working example of reading
tweets in real-time might look like this:

import twitter4j.Status;
import twitter4j.StatusDeletionNotice;
import twitter4j.StatusListener;
import twitter4j.TwitterStream;
import twitter4j.TwitterStreamFactory;

TwitterStream twitterStream = new TwitterStreamFactory().getInstance();
twitterStream.addListener(new twitter4j.StatusListener() {
 @Override
 public void onStatus(Status status) {
 log.info("Status: {}", status);
 }

 @Override
 public void onException(Exception ex) {
 log.error("Error callback", ex);
 }

 //other callbacks
});
twitterStream.sample();
TimeUnit.SECONDS.sleep(10);
twitterStream.shutdown();

Calling twitterStream.sample() starts a background thread that logs in to Twitter
and awaits new messages. Every time a tweet appears, the onStatus callback is exe‐
cuted. Execution can jump between threads, therefore we can no longer rely on
throwing exceptions. Instead the onException() notification is used. After sleeping
for 10 seconds, we shutdown() the stream, cleaning up all underlying resources like
HTTP connections or threads.

Overall, it does not look that bad, the problem is that this program is not doing any‐
thing. In real life, you would probably process each Status message (tweet) somehow.
For example, save it to a database or feed a machine-learning algorithm. You can
technically put that logic inside the callback, but this couples the infrastructural call

46 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

http://www.twitter.com
http://twitter4j.org

with the business logic. Simple delegation to a separate class is better, but unfortu‐
nately not reusable. What we really want is clean separation between the technical
domain (consuming data from an HTTP connection) and the business domain
(interpreting input data). So we build a second layer of callbacks:

void consume(
 Consumer<Status> onStatus,
 Consumer<Exception> onException) {
 TwitterStream twitterStream = new TwitterStreamFactory().getInstance();
 twitterStream.addListener(new StatusListener() {
 @Override
 public void onStatus(Status status) {
 onStatus.accept(status);
 }

 @Override
 public void onException(Exception ex) {
 onException.accept(ex);
 }

 //other callbacks
 });
 twitterStream.sample();
}

By adding this one extra level of abstraction we can now reuse the consume() method
in various ways. Imagine that instead of logging you have persistence, analytics, or
fraud detection:

consume(
 status -> log.info("Status: {}", status),
 ex -> log.error("Error callback", ex)
);

But we just shifted the problem up in the hierarchy. What if we want to count the
number of tweets per second? Or consume just the first five? And what if we would
like to have multiple listeners? In these situations, each of these situations opens a
new HTTP connection. Last but not least, this API does not allow unsubscribing
when we are done, risking resource leak. We hope you realize that we are heading
toward an Rx-powered API. Rather than passing callbacks down to the place where
they can be executed, we can return an Observable<Status> and let everyone sub‐
scribe whenever they want. However, keep in mind that the following implementa‐
tion still opens a new network connection for each Subscriber:

Observable<Status> observe() {
 return Observable.create(subscriber -> {
 TwitterStream twitterStream =
 new TwitterStreamFactory().getInstance();
 twitterStream.addListener(new StatusListener() {
 @Override

Use Case: From Callback API to Observable Stream | 47

www.EBooksWorld.ir

 public void onStatus(Status status) {
 subscriber.onNext(status);
 }

 @Override
 public void onException(Exception ex) {
 subscriber.onError(ex);
 }

 //other callbacks
 });
 subscriber.add(Subscriptions.create(twitterStream::shutdown));
 });
}

At this point, we can simply call observe(), which only creates an Observable and
does not contact the external server. We learned that unless someone actually sub‐
scribes, the contents of create() are not executed. The subscription is very similar:

observe().subscribe(
 status -> log.info("Status: {}", status),
 ex -> log.error("Error callback", ex)
);

The big difference here, compared to consume(...), is that we are not forced to pass
callbacks as arguments to observe(). Instead, we can return Observable<Status>,
pass it around, store it somewhere, and use it whenever and wherever we feel like it is
needed. We can also compose this Observable with other Observables, which is what
Chapter 3 covers. One important aspect that we have not covered is resource clean-
up. When someone unsubscribes, we should shut down TwitterStream to avoid
resource leak. We already know two techniques for that; let’s use the simpler one first:

@Override
public void onStatus(Status status) {
 if (subscriber.isUnsubscribed()) {
 twitterStream.shutdown();
 } else {
 subscriber.onNext(status);
 }
}

@Override
public void onException(Exception ex) {
 if (subscriber.isUnsubscribed()) {
 twitterStream.shutdown();
 } else {
 subscriber.onError(ex);
 }
}

48 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

When someone subscribes only to receive a small fraction of the stream, our Observa
ble will make sure to clean up the resources. We know a second technique to imple‐
ment clean-up that does not require waiting for an upstream event. The moment a
subscriber unsubscribes, we call shutdown() immediately, rather than waiting for the
next tweet to come just to trigger clean-up behavior (last line):

twitterStream.addListener(new StatusListener() {
 //callbacks...
});
twitterStream.sample();

subscriber.add(Subscriptions.create(twitterStream::shutdown));

Interestingly, this Observable blurs the difference between hot and cold streams. On
one hand, it represents external events that appear without our control (hot behav‐
ior). On the other hand, events will not begin flowing (no underlying HTTP connec‐
tion) to our system until we actually subscribe(). One more side effect that we
forgot about is still creeping in: every new subscribe() will start a new background
thread and new connection to an external system. The same instance of Observa
ble<Status> should be reusable across many subscribers, and because Observable is
lazy, you should technically be able to call observe() once upon startup and keep it
in some singleton. But the current implementation simply opens a new connection,
effectively fetching the same data multiple times from the network, for each Sub
scriber. We certainly want to register multiple Subscribers of that stream, but there
is no reason why every Subscriber is supposed to fetch the same data independently.
What we really want is a pub-sub behavior wherein one publisher (external system)
delivers data to multiple Subscribers. In theory, the cache() operator can do that,
but we don’t want to buffer old events forever. We will now explore some solutions to
this problem.

Manually Managing Subscribers
Manually keeping track of all subscribers and shutting down the connection to the
external system only when all subscribers leave is a Sisyphean task that we will imple‐
ment anyway, just to appreciate idiomatic solutions later on. The idea is to keep track
of all subscribers in some sort of Set<Subscriber<Status>> and start/shut down the
external system connection when it becomes empty/nonempty:

//DON'T DO THIS, very brittle and error prone
class LazyTwitterObservable {

 private final Set<Subscriber<? super Status>> subscribers =
 new CopyOnWriteArraySet<>();

 private final TwitterStream twitterStream;

Use Case: From Callback API to Observable Stream | 49

www.EBooksWorld.ir

 public LazyTwitterObservable() {
 this.twitterStream = new TwitterStreamFactory().getInstance();
 this.twitterStream.addListener(new StatusListener() {
 @Override
 public void onStatus(Status status) {
 subscribers.forEach(s -> s.onNext(status));
 }

 @Override
 public void onException(Exception ex) {
 subscribers.forEach(s -> s.onError(ex));
 }

 //other callbacks
 });
 }

 private final Observable<Status> observable = Observable.create(
 subscriber -> {
 register(subscriber);
 subscriber.add(Subscriptions.create(() ->
 this.deregister(subscriber)));
 });

 Observable<Status> observe() {
 return observable;
 }

 private synchronized void register(Subscriber<? super Status> subscriber) {
 if (subscribers.isEmpty()) {
 subscribers.add(subscriber);
 twitterStream.sample();
 } else {
 subscribers.add(subscriber);
 }
 }

 private synchronized void deregister(Subscriber<? super Status> subscriber) {
 subscribers.remove(subscriber);
 if (subscribers.isEmpty()) {
 twitterStream.shutdown();
 }
 }

}

The subscribers set thread-safely stores a collection of currently subscribed
Observers. Every time a new Subscriber appears, we add it to a set and connect to
the underlying source of events lazily. Conversely, when the last Subscriber disap‐
pears, we shut down the upstream source. The key here is to always have exactly one
connection to the upstream system rather than one connection per subscriber. This

50 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

works and is quite robust, however, the implementation seems too low-level and
error-prone. Access to the subscribers set must be synchronized, but the collection
itself must also support safe iteration. Calling register() must appear before adding
the deregister() callback; otherwise, the latter can be called before we register.
There must be a better way to implement such a common scenario of multiplexing a
single upstream source to multiple Observers—luckily, there are at least two such
mechanisms. RxJava is all about reducing such dangerous boilerplate and abstracting
away concurrency.

rx.subjects.Subject
The Subject class is quite interesting because it extends Observable and implements
Observer at the same time. What that means is that you can treat it as Observable on
the client side (subscribing to upstream events) and as Observer on the provider side
(pushing events downstream on demand by calling onNext() on it). Typically, what
you do is keep a reference to Subject internally so that you can push events from any
source you like but externally expose this Subject as Observable. Let’s reimplement
streaming Status updates using Subject. To further simplify implementation, we
connect to the external system eagerly and do not keep track of subscribers. Apart
from simplifying our example, this has the benefit of smaller latency when the first
Subscriber appears. Events are already flowing, we don’t need to wait to reconnect to
some third-party application:

class TwitterSubject {

 private final PublishSubject<Status> subject = PublishSubject.create();

 public TwitterSubject() {
 TwitterStream twitterStream = new TwitterStreamFactory().getInstance();
 twitterStream.addListener(new StatusListener() {
 @Override
 public void onStatus(Status status) {
 subject.onNext(status);
 }

 @Override
 public void onException(Exception ex) {
 subject.onError(ex);
 }

 //other callbacks
 });
 twitterStream.sample();
 }

 public Observable<Status> observe() {
 return subject;

rx.subjects.Subject | 51

www.EBooksWorld.ir

 }

}

PublishSubject is one of the flavors (subclasses) of Subject. We eagerly begin
receiving events from the upstream system and simply push them (by calling sub
ject.onNext(...)) to all Subscribers. Subject keeps track of these events internally
so that we no longer need to. Notice how we simply return subject in observe(),
pretending it is a plain Observable. Now when someone subscribes, the Subscriber
will receive all subsequent events immediately after onNext() is called on the backend
—at least until it unsubscribes. Because Subject manages the lifecycle of Subscribers
internally, we simply call onNext() without worrying about how many subscribers
are listening.

Error Propagation in Subjects

Subjects are useful, but there are many subtleties you must under‐
stand. For example, after calling subject.onError(), the Subject
silently drops subsequent onError notifications, effectively swal‐
lowing them.

Subject is a useful tool for creating Observable instances when Observable.cre
ate(...) seems too complex to manage. Other types of Subjects include the follow‐
ing:

AsyncSubject

Remembers last emitted value and pushes it to subscribers when onComplete() is
called. As long as AsyncSubject has not completed, events except the last one are
discarded.

BehaviorSubject

Pushes all events emitted after subscription happened, just like PublishSubject.
However, first it emits the most recent event that occurred just before subscrip‐
tion. This allows Subscriber to be immediately notified about the state of the
stream. For example, Subject may represent the current temperature broadcas‐
ted every minute. When a client subscribes, he will receive the last seen tempera‐
ture immediately rather than waiting several seconds for the next event. But the
same Subscriber is not interested in historical temperatures, only the last one. If
no events have yet been emitted, a special default event is pushed first (if pro‐
vided).

ReplaySubject

The most interesting type of Subject that caches events pushed through the
entire history. If someone subscribes, first he receives a batch of missed (cached)

52 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

events and only later events in real-time. By default, all events since the creation
of this Subject are cached. This can be become dangerous if the stream is infinite
or very long (see “Memory Consumption and Leaks” on page 315). In that case,
there are overloaded versions of ReplaySubject that keep only the following:

• Configurable number of events in memory (createWithSize())
• Configurable time window of most recent events (createWithTime())
• Or even constraint both size and time (whichever limit is reached first) with
createWithTimeAndSize()

Subjects should be treated with caution: often there are more idiomatic ways of shar‐
ing subscriptions and caching events—for example, see “ConnectableObservable”.
For the time being, prefer relatively low-level Observable.create() or even better,
consider standard factory methods like from() and just().

One more thing to keep in mind is concurrency. By default calling onNext() on a
Subject is directly propagated to all Observer’s onNext() callback methods. It is not
a surprise that these methods share the same name. In a way, calling onNext() on
Subject indirectly invokes onNext() on each and every Subscriber. But you need to
keep in mind that according to Rx Design Guidelines all calls to onNext() on
Observer must be serialized (i.e., sequential), thus two threads cannot call onNext()
at the same time. However, depending on the way you stimulate Subject, you can
easily break this rule—e.g., calling Subject.onNext() from multiple threads from a
thread pool. Luckily, if you are worried that this might be the case, simply call .toSe
rialized() on a Subject, which is quite similar to calling Observable.serialize().
This operator makes sure downstream events occur in the correct order.

ConnectableObservable
ConnectableObservable is an interesting way of coordinating multiple Subscribers
and sharing a single underlying subscription. Remember our first attempt at creating
a single, lazy connection to an underlying resource with LazyTwitterObservable?
We had to manually keep track of all subscribers and connect/disconnect as soon as
the first subscriber appeared or the last one left. ConnectableObservable is a type of
Observable that ensures there exists at most one Subscriber at all times, but in real‐
ity there can be many of them sharing the same underlying resource.

There are many applications of ConnectableObservable; for example, making sure
all Subscribers receive the same sequence of events regardless of when they subscri‐
bed. ConnectableObservable can also force subscription if it generates important
side effects, even when no “real” Subscriber has appeared yet. We will quickly dis‐
cover all of these use cases. Subjects are imperative ways of creating Observables,

ConnectableObservable | 53

www.EBooksWorld.ir

whereas ConnectableObservable shields the original upstream Observable and
guarantees at most one Subscriber reaches it. No matter how many Subscribers
connect to ConnectableObservable, it opens just one subscription to the Observable
from which it was created.

Single Subscription with publish().refCount()
Let us recap: we have a single handle to the underlying resource; for example, HTTP
connection to stream of Twitter status updates. However, an Observable pushing
these events will be shared among multiple Subscribers. The naive implementation
of this Observable created earlier had no control over this; therefore, each Sub
scriber started its own connection. This is quite wasteful:

Observable<Status> observable = Observable.create(subscriber -> {
 System.out.println("Establishing connection");
 TwitterStream twitterStream = new TwitterStreamFactory().getInstance();
 //...
 subscriber.add(Subscriptions.create(() -> {
 System.out.println("Disconnecting");
 twitterStream.shutdown();
 }));
 twitterStream.sample();
});

When we try to use this Observable, each Subscriber establishes a new connection,
like so:

Subscription sub1 = observable.subscribe();
System.out.println("Subscribed 1");
Subscription sub2 = observable.subscribe();
System.out.println("Subscribed 2");
sub1.unsubscribe();
System.out.println("Unsubscribed 1");
sub2.unsubscribe();
System.out.println("Unsubscribed 2");

Here is the output:

Establishing connection
Subscribed 1
Establishing connection
Subscribed 2
Disconnecting
Unsubscribed 1
Disconnecting
Unsubscribed 2

This time, to simplify, we use a parameterless subscribe() method that triggers sub‐
scription but drops all events and notifications. After spending almost half of the
chapter fighting with this problem and familiarizing ourselves with plenty of RxJava

54 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

features, we can finally introduce the most scalable and simplest solution: the pub
lish().refCount() pair:

lazy = observable.publish().refCount();
//...
System.out.println("Before subscribers");
Subscription sub1 = lazy.subscribe();
System.out.println("Subscribed 1");
Subscription sub2 = lazy.subscribe();
System.out.println("Subscribed 2");
sub1.unsubscribe();
System.out.println("Unsubscribed 1");
sub2.unsubscribe();
System.out.println("Unsubscribed 2");

The output is much like what we expect:

Before subscribers
Establishing connection
Subscribed 1
Subscribed 2
Unsubscribed 1
Disconnecting
Unsubscribed 2

The connection is not established until we actually get the first Subscriber. But,
more important, the second Subscriber does not initiate a new connection, it does
not even touch the original Observable. The publish().refCount() tandem wrap‐
ped the underlying Observable and intercepted all subscriptions. We will explain
later why we need two methods and what using publish() alone means. For the time
being, we will focus on refCount(). What this operator does is basically count how
many active Subscribers we have at the moment, much like reference counting in
historic garbage-collection algorithms. When this number goes from zero to one, it
subscribes to the upstream Observable. Every number above one is ignored and the
same upstream Subscriber is simply shared between all downstream Subscribers.
However, when the very last downstream Subscriber unsubscribes, the counter
drops from one to zero and refCount() knows it must unsubscribe right away.
Thankfully, refCount() does precisely what we implemented manually with Lazy
TwitterObservable. You can use the publish().refCount() duet to allow sharing of
a single Subscriber while remaining lazy. This pair of operators is used very fre‐
quently and therefore has an alias named share(). Keep in mind that if unsubscrip‐
tion is shortly followed by subscription, share() still performs reconnection, as if
there were no caching at all.

ConnectableObservable | 55

www.EBooksWorld.ir

ConnectableObservable Lifecycle
Another useful use case of the publish() operator is forcing subscription in the
absence of any Subscriber. Imagine that we have our Observable<Status>. Before
we expose it to our clients we want to store each event in the database, regardless of
whether someone is subscribed. A naive approach is not sufficient:

Observable<Status> tweets = //...
return tweets
 .doOnNext(this::saveStatus);

We are using the doOnNext() operator that peeks every item that flows through the
stream and performs some action, like saveStatus(). However, remember that
Observables are lazy by design; therefore, as long as no one subscribed, doOnNext()
is not triggered. What we want is a fake Observer that does not really listen to events
but forces upstream Observables to produce events. There is actually an overloaded
version of subscribe() that does exactly this:

Observable<Status> tweets = //...
tweets
 .doOnNext(this::saveStatus)
 .subscribe();

This empty Subscriber in the end invokes Observable.create() and connects to
the upstream source of events. This seems to solve the problem, but we again forgot
to protect ourselves from multiple subscribers. If we expose tweets outside, the sec‐
ond subscriber will make a second attempt to connect to the external resource—for
example, opening a second HTTP connection. The idiomatic solution is to use pub
lish().connect() duet that creates an artificial Subscriber immediately while keep‐
ing just one upstream Subscriber. This is best explained with an example. And at last
we are about to learn how publish() alone works:

ConnectableObservable<Status> published = tweets.publish();
published.connect();

Finally, we see ConnectableObservable in its full glory. We can call Observable.pub
lish() on any Observable and get ConnectableObservable in return. We can con‐
tinue using the original upstream Observable (tweets in the preceding example):
publish() does not affect it. But we will focus on the returned ConnectableObserva
ble. Anyone who subscribes to ConnectableObservable is placed in a set of Sub
scribers. As long as connect() is not called, these Subscribers are put on hold, they
never directly subscribe to upstream Observable. However, when connect() is
called, a dedicated mediating Subscriber subscribes to upstream Observable
(tweets), no matter how many downstream subscribers appeared before—even if
there were none. But if there were some Subscribers of ConnectableObservable put
on hold, they will all receive the same sequence of notifications.

56 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

This mechanism has multiple advantages. Imagine that you have an Observable in
your application in which multiple Subscribers are interested. On startup, several
components (e.g., Spring beans or EJBs) subscribe to that Observable and begin lis‐
tening. Without ConnectableObservable, it is very likely that hot Observable will
begin emitting events that will be consumed by the first Subscriber, but Subscribers
started later will miss out on the early events. This can be a problem if you want to be
absolutely sure that all Subscribers receive a consistent view of the world. All of
them will receive events in the same order, unfortunately Subscriber appearing late
will lose early notifications.

The solution to this problem is to publish() such an Observable first and make it
possible for all of the components in your system to subscribe(); for example, dur‐
ing application startup. When you are 100% sure that all Subscribers that need to
receive the same sequence of events (including initial event) had a chance to sub
scribe(), connect such ConnectableObservable with connect(). This will create a
single Subscriber in upstream Observable and begin pushing events to all down‐
stream Subscribers. The following example uses Spring framework, but as a matter
of fact it is framework agnostic:

import org.springframework.context.ApplicationListener;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.event.ContextRefreshedEvent;
import rx.Observable;
import rx.observables.ConnectableObservable;

@Configuration
class Config implements ApplicationListener<ContextRefreshedEvent> {

 private final ConnectableObservable<Status> observable =
 Observable.<Status>create(subscriber -> {
 log.info("Starting");
 //...
 }).publish();

 @Bean
 public Observable<Status> observable() {
 return observable;
 }

 @Override
 public void onApplicationEvent(ContextRefreshedEvent event) {
 log.info("Connecting");
 observable.connect();
 }
}

@Component

ConnectableObservable | 57

www.EBooksWorld.ir

http://projects.spring.io/spring-framework/

class Foo {

 @Autowired
 public Foo(Observable<Status> tweets) {
 tweets.subscribe(status -> {
 log.info(status.getText());
 });
 log.info("Subscribed");
 }
}

@Component
class Bar {

 @Autowired
 public Bar(Observable<Status> tweets) {
 tweets.subscribe(status -> {
 log.info(status.getText());
 });
 log.info("Subscribed");
 }
}

Our simple application first eagerly creates an Observable (ConnectableObservable
subclass underneath). Observables are lazy by design, so it is fine to create them even
statically. This Observable is publish()-ed so that all subsequent Subscribers are
put on hold and do not receive any notifications until we do connect(). Later, two
@Components are found that require this Observable. Dependency injection frame‐
work provides our ConnectableObservable and allows everyone to subscribe. How‐
ever, the events, even in case of hot Observable will not arrive until full application
startup. When all of the components are instantiated and wired together, a ContextRe
freshedEvent sent from the framework can be consumed. At this point, we can guar‐
antee that all components had a chance to request a given Observable and
subscribe() to it. When the application is about to start, we call connect(). This
subscribes to the underlying Observable exactly once and forwards the exact same
sequence of events to every component. The trimmed-down logging output might
look as follows (the component names are in square brackets):

[Foo] Subscribed
[Bar] Subscribed
[Config] Connecting
[Config] Starting
[Foo] Msg 1
[Bar] Msg 1
[Foo] Msg 2
[Bar] Msg 2

Notice how Foo and Bar components report that they are subscribed even though
they did not yet receive any events. Only after the application fully started, connect()

58 | Chapter 2: Reactive Extensions

www.EBooksWorld.ir

subscribed to the underlying Observable and began forwarding Msg 1 and Msg 2 to
all components. Let’s look at this in contrast with a plain Observable in the same sce‐
nario, in which ConnectableObservable was not used and we allow every component
to subscribe immediately:

[Config] Starting
[Foo] Subscribed
[Foo] Msg 1
[Config] Starting
[Bar] Subscribed
[Foo] Msg 2
[Bar] Msg 2

There are two differences for which you need to be aware. First and foremost, when
the Foo component subscribes, it immediately starts a connection to the underlying
resource; it does not wait for application startup. Even worse, the Bar component ini‐
tiates another connection (notice that Starting occurs twice). Second, do you see
that the Bar component started from Msg 2 and never really got a hold of Msg 1,
exclusively received by Foo? This inconsistency when consuming hot Observable
might or might not be an issue in some circumstances, but you must be aware of it.

Summary
Creating and subscribing to Observable are essential features of RxJava. Especially
beginners tend to forget about subscription and are surprised that no events are emit‐
ted. Many developers focus on amazing operators provided by this library (see Chap‐
ter 3), but failing to understand how these operators perform subscription
underneath can cause subtle bugs.

Moreover, the asynchronous nature of RxJava is typically taken for granted, which is
not really the case. As a matter of fact, most operators in RxJava do not use any par‐
ticular thread pool. More precisely this means that by default no concurrency is
involved whatsoever and everything happens in client thread. This is another impor‐
tant take away of this chapter. Now, when you understand subscription and concur‐
rency principles, you are ready to begin using RxJava painlessly and effectively.

Chapter 3 browses through the library of built-in operators and how you can com‐
bine them. Declarative transformations and composition of streams is what makes
RxJava so compelling.

Summary | 59

www.EBooksWorld.ir

www.EBooksWorld.ir

CHAPTER 3

Operators and Transformations

Tomasz Nurkiewicz

The aim of this chapter is to explain fundamentals of RxJava’s operators and how you
can compose them to build high-level, easy-to-reason data pipelines. One of the rea‐
sons why RxJava is so powerful is the rich universe of built-in operators it provides
and the possibility of creating custom ones. An operator is a function that takes
upstream Observable<T> and returns downstream Observable<R>, where types T
and R might or might not be the same. Operators allow composing simple transfor‐
mations into complex processing graphs.

For example, the Observable.filter() operator receives items from an upstream
Observable but forwards only those matching a given predicate. Conversely, Observa
ble.map() transforms items it receives as they fly through. This allows extracting,
enriching, or wrapping original events. Some operators are much more involved. For
example, Observable.delay() will pass through events as-is; however, each and
every one of them will appear after a fixed delay. Finally, there are operators (like
Observable.buffer()) that consume several input events before emitting them, pos‐
sibly batched.

But even when you recognize how wonderful Rx operators are, the true power comes
from combining them together. Chaining several operators, forking stream into mul‐
tiple substreams and then joining them back is idiomatic and you should feel fairly
comfortable with it.

Core Operators: Mapping and Filtering
Operators are typically instance methods on Observable that somehow alter the
behavior of upstream Observable as seen by downstream Observables or Sub
scribers. This might sound complex, but it is actually quite flexible and not that dif‐

61

www.EBooksWorld.ir

ficult to grasp. One of the simplest examples of operators is filter(), which takes a
predicate and either passes events further or discards them:

Observable<String> strings = //...
Observable<String> filtered = strings.filter(s -> s.startsWith("#"));

It’s now time to introduce the so-called marble diagrams, the ubiquitous visualizations
in RxJava documentation. A marble diagram illustrates how various operators work.
Most of the time you will see two horizontal axes representing time flying by from left
to right. Shapes on these diagrams (the aforementioned marbles) visualize events.
Between the top and bottom axes there is an operator in question that somehow
alters the sequence of events coming from the source Observable (upstream) to form
the resulting Observable (downstream), as demonstrated in the following graphic:

The diagram that follows is a concrete example of a marble diagram representing a
filter() operator. The Observable.filter() returns the exact same events (so the
marbles on top and on the bottom are the same), but some events are skipped
because they did not satisfy the predicate:

62 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

1 There is ongoing research regarding operator fusion that seamlessly collapses several operators into one.

When dealing with certain types of Observables, some events might be out of your
interest, for example when consuming high volumes of data. It is also a common
practice to filter() the same Observable multiple times, each time with a different
predicate. We can apply several filters on original Observable and even chain them
(filter(p1).filter(p2).filter(p3)), effectively implementing logical conjunction
(filter(p1 && p2 && p3)). Collapsing consecutive operators (which does not only
apply to filter()) into one has pros and cons. Having more, smaller transforma‐
tions (like multiple filters) is preferable if you can reuse smaller transformations or
compose them in different ways. On the other hand, more operators add overhead1

and increase the stack depth. Which style you choose depends on your requirements
and coding style:

Observable<String> strings = someFileSource.lines();
Observable<String> comments = strings.filter(s -> s.startsWith("#"));
Observable<String> instructions = strings.filter(s -> s.startsWith(">"));
Observable<String> empty = strings.filter(String::isBlank);

You might ask yourself this question: what happens to the original upstream strings
source? Having an object-oriented background you might remember methods like
java.util.List.sort() that rearrange items within a List internally and returns
nothing. Java’s List<T> is mutable (for better or worse) so rearranging its contents is
acceptable. Similarly, one could imagine a hypothetical void List.filter() that
takes a predicate and internally removes nonmatching elements. In RxJava, you must
forget about mutating data structures internally: modifying variables outside of
stream is considered very nonidiomatic and dangerous. Every single operator returns
a new Observable, leaving the original one untouched.

This makes reasoning about the flow of events much simpler. You can fork a stream
into multiple independent sources, each having different characteristics. One of the
powers of RxJava is that you can reuse a single Observable in multiple places without

Core Operators: Mapping and Filtering | 63

www.EBooksWorld.ir

affecting other consumers. If you pass an Observable to some unknown function you
can be sure that this Observable will not become corrupted in any way by that func‐
tion. You cannot say that about mutable java.util.Date, which can be modified by
anyone who has a reference to it. That is why the new java.time API is entirely
immutable.

1-to-1 Transformations Using map()
Imagine that you have a stream of some events and you must perform certain trans‐
formation on each event. This can be decoding from JSON to Java object (or vice
versa), enriching, wrapping, extracting from the event, and so on. This is where the
invaluable map() operator is useful. It applies a transformation to each and every
value from upstream, as shown here:

import rx.functions.Func1;

Observable<Status> tweets = //...
Observable<Date> dates = tweets.map(new Func1<Status, Date>() {
 @Override
 public Date call(Status status) {
 return status.getCreatedAt();
 }
});

Observable<Date> dates =
 tweets.map((Status status) -> status.getCreatedAt());

Observable<Date> dates =
 tweets.map((status) -> status.getCreatedAt());

Observable<Date> dates =
 tweets.map(Status::getCreatedAt);

All of the ways in which you can define dates Observable are equivalent, from the
most verbose using Func1<T, R> to the most compact Java 8 syntax method reference
and type inference. But look carefully! The original Observable named tweets pro‐
duces events of type Status. Later, we call map() with a function that takes a single
event (Status s) and returns a value of type Date. By the way having mutable events
(like java.util.Date) is problematic because any operator or Subscriber can unin‐
tentionally mutate events consumed by other Subscribers. We can quickly fix this by
applying subsequent map():

Observable<Instant> instants = tweets
 .map(Status::getCreatedAt)
 .map((Date d) -> d.toInstant());

The marble diagram for map() follows:

64 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

The map() operator takes a function that can change the shape of input event from
circle to square. This transformation is applied to each item flowing through it.

Now it is time for a pop quiz to make sure that you understand how Observables
work. Look at the following and try to predict what values will be emitted when the
following Observable is subscribed to:

Observable
 .just(8, 9, 10)
 .filter(i -> i % 3 > 0)
 .map(i -> "#" + i * 10)
 .filter(s -> s.length() < 4);

Observables are lazy, meaning that they do not begin producing events until some‐
one subscribes. You can create infinite streams that take hours to compute the first
value, but until you actually express your desire to be notified about these events,
Observable is just a passive and idle data structure for some type T. This even applies
to hot Observables—even though the source of events keeps producing them, not a
single operator like map() or filter() is evaluated until someone actually shows an
interest. Otherwise, running all of these computational steps and throwing away the
result would make no sense. Every time you use any operator, including those that we
did not explain yet, you basically create a wrapper around original Observable. This
wrapper can intercept events flying through it but typically does not subscribe on its
own:

Observable
 .just(8, 9, 10)
 .doOnNext(i -> System.out.println("A: " + i))
 .filter(i -> i % 3 > 0)
 .doOnNext(i -> System.out.println("B: " + i))
 .map(i -> "#" + i * 10)
 .doOnNext(s -> System.out.println("C: " + s))
 .filter(s -> s.length() < 4)
 .subscribe(s -> System.out.println("D: " + s));

Core Operators: Mapping and Filtering | 65

www.EBooksWorld.ir

Logging or otherwise peeking at messages as they flow through our stream is so use‐
ful that there is a special impure operator called doOnNext() that allows looking at
items going through without touching them. It is impure because it must rely on side
effects like logging or accessing global state. doOnNext() simply receives every event
that flew from upstream Observable and passes it downstream, it cannot modify it in
any way. doOnNext() is like a probe that you can safely inject anywhere in your pipe‐
line of Observables to keep an eye on what is flowing through. This is a straightfor‐
ward implementation of the Wiretap pattern, as found in Enterprise Integration
Patterns: Designing, Building, and Deploying Messaging Solutions by Hohpe and Woolf
(Addison-Wesley). Technically, doOnNext() can mutate the event. However, having
mutable events controlled by Observable is a recipe for a disaster. Soon you will learn
how to process events concurrently, fork execution, and so on. Guarding thread
safety in each event would become a major problem. As a rule of thumb, all types
wrapped with Observable should be immutable for all practical applications.

First we will walk through the execution path that RxJava takes. Every line in the pre‐
vious code example creates new Observable, in a way wrapping the original one. For
example, the first filter() does not remove 9 from Observable.just(8, 9, 10)
Instead, it creates a new Observable that, when subscribed to, will eventually emit
values 8 and 10. The same principle applies to most of the operators: they do not
modify the contents or behavior of an existing Observable, they create new ones.
However, saying that filter() or map() creates a new Observable is a bit of a short‐
hand. Most of the operators are lazy until someone actually subscribes. So what hap‐
pens when Rx sees subscribe() at the very end of the chain? Understanding the
internals will help you to realize how streams are processed under the hood. We will
be looking at the code bottom-up.

• First, subscribe() informs the upstream Observable that it wants to receive val‐
ues.

• The upstream Observable (filter(s -> s.length() < 4)) does not have any
items by itself, it is just a decorator around another Obervable. So it subscribes to
upstream, as well.

• map(i -> "#" + i * 10), just like filter(), is not able to deliver any items on
its own. It barely transforms whatever it receives—thus, it must subscribe to
upstream just like the others.

• The story continues until we reach just(8, 9, 10). This Observable is the true
source of events. As soon as the filter(i -> i % 3 > 0) subscribes to it (as a
consequence of our explicit subscribe() down below), it begins pumping the
events downstream.

• Now we can observe how events are passed through all of the stages of the pipe‐
line. filter() internally receives 8 and passes it downstream (i % 3 > 0 predi‐

66 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

http://bit.ly/2d2vbJT

cate holds). Later on, map() transforms 8 into string "#80" and wakes up the
filter() operator below it.

• The predicate s.length() < 4 holds, and we can finally pass the transformed
value into System.out.

Take your time to study how 9 and 10 are discarded to result with the following out‐
put, as produced by the version with doOnNext():

A: 8
B: 8
C: #80
D: #80
A: 9
A: 10
B: 10
C: #100

Wrapping Up Using flatMap()
flatMap() is among the most important operators in RxJava. At first sight, it is simi‐
lar to map() but the transformation of each element can return another (nested,
inner) Observable. Recognizing that Observable can represent another asynchro‐
nous operation, we quickly discover that flatMap() can be used to spawn asynchro‐
nous computation for each upstream event (fork execution) and join the results back.
Conceptually flatMap() takes Observable<T> and a function from T to Observa
ble<R>. flatMap() first constructs Observable<Observable<R>> replacing all
upstream values of type T with Observable<R> (just like map()). However, it does not
stop there: it automatically subscribes to these inner Observable<R> streams to pro‐
duce a single stream of type R, containing all values from all inner streams, as they
come. The marble diagram that follows shows how this works:

The marble diagram touches on an important aspect of flatMap(). Each upstream
event (circle) is turned into an Observable of two diamonds separated by some delay.

Core Operators: Mapping and Filtering | 67

www.EBooksWorld.ir

2 However, RxJava has dedicated map() and filter() implementations due to performance reasons

If two upstream events appear close to each other, flatMap() will automatically apply
a transformation and turn them into two streams of diamonds. However, because
RxJava concurrently subscribes to both of them and merges them together, events
produced from one inner Observable can interleave with events from another. We
will explore this behavior later.

flatMap() is the most fundamental operator in RxJava, using it one can easily2 imple‐
ment map() or filter():

import static rx.Observable.empty;
import static rx.Observable.just;

numbers.map(x -> x * 2);
numbers.filter(x -> x != 10);

//equivalent
numbers.flatMap(x -> just(x * 2));
numbers.flatMap(x -> (x != 10) ? just(x) : empty());

But first a more realistic example of flatMap(). Imagine that you receive a stream of
photographs of cars entering a highway. For each car, we can run a rather expensive
optical character recognition algorithm that returns the registration number from the
license plate of the cars. Obviously, the recognition can fail, in which case this algo‐
rithm returns nothing. It can also fail with an exception, or for some bizarre reason it
can return two license plates for a single car. This can be easily modeled with Observa
bles:

Observable<CarPhoto> cars() {
 //...
}

Observable<LicensePlate> recognize(CarPhoto photo) {
 //...
}

By using Observable<LicensePlate> as the basis of the data stream you can model
to accommodate the following:

• No license plate found on photo (empty stream)
• Fatal internal failure (onError() callback); for example, when a recognition

module failed entirely and permanently without recovery options
• One or multiple license plates recognized, followed by onComplete()

68 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

And even better, recognize() can steadily produce better results over time—for
example, starting from rough estimates or running two algorithms concurrently. This
is how you can take advantage of the preceding methods:

Observable<CarPhoto> cars = cars();

Observable<Observable<LicensePlate>> plates =
 cars.map(this::recognize);

Observable<LicensePlate> plates2 =
 cars.flatMap(this::recognize);

Whatever you return from a function in map() is wrapped again inside an Observa
ble. This means that if you return Observable<LicensePlate>, you would get
Observable<Observable<LicensePlate>> in return. Not only is Observable nested
in another Observable quite cumbersome to work with, you must first subscribe to
each inner Observable to get any results. Moreover, you would have to somehow
synchronize the inner results back to a single stream, which is very difficult.

flatMap() solves these problems by flattening the result so that you get a simple
stream of LicensePlates. Additionally, in “Multithreading in RxJava” on page 140 we
will learn how to parallelize work using flatMap(). As a rule of thumb, you use flat
Map() for the following situations:

• The result of transformation in map() must be an Observable. For example, per‐
forming long-running, asynchronous operation on each element of the stream
without blocking.

• You need a one-to-many transformation, a single event is expanded into multiple
sub-events. For example, a stream of customers is translated into streams of their
orders, for which each customer can have an arbitrary number of orders.

Now imagine that you would like to use a method returning an Iterable (like List
or Set). For example, if Customer has a simple List<Order> getOrders(), you are
forced to go through several operators to take advantage of it in Observable pipeline:

Observable<Customer> customers = //...
Observable<Order> orders = customers
 .flatMap(customer ->
 Observable.from(customer.getOrders()));

Or, equivalent and equally verbose:

Observable<Order> orders = customers
 .map(Customer::getOrders)
 .flatMap(Observable::from);

The need to map from a single item to Iterable is so popular that an operator, flat
MapIterable(), was created to perform just such a transformation:

Core Operators: Mapping and Filtering | 69

www.EBooksWorld.ir

Observable<Order> orders = customers
 .flatMapIterable(Customer::getOrders);

You must take care when simply wrapping methods in an Observable. If getOr
ders() was not a simple getter but an expensive operation in terms of run time, it is
better to implement getOrders() to explicitly return Observable<Order>.

Another interesting variant of flatMap() can react not only to events, but on any
notification, namely events, errors, and completion. The simplified signature of this
flatMap() overload follows. For an Observable<T> we must provide the following:

• A function mapping single T → Observable<R>
• A function mapping an error notification → Observable<R>
• A no-arg function reacting on upstream completion that can return Observa
ble<R>

Here is what the code looks like:

<R> Observable<R> flatMap(
 Func1<T, Observable<R>> onNext,
 Func1<Throwable, Observable<R>> onError,
 Func0<Observable<R>> onCompleted)

Imagine that you are creating a service that uploads videos. It takes a UUID and
returns upload progress with Observable<Long>—how many bytes it transferred. We
can take advantage of that progress anyway—for example, displaying it in the user
interface. But what we are really interested in is completion, when the upload is
finally done. Only after a successful upload can we begin rating the video. Naive
implementation can simply subscribe to the progress stream, ignoring events and
only reacting on completion (last callback):

void store(UUID id) {
 upload(id).subscribe(
 bytes -> {}, //ignore
 e -> log.error("Error", e),
 () -> rate(id)
);
}

Observable<Long> upload(UUID id) {
 //...
}

Observable<Rating> rate(UUID id) {
 //...
}

However, notice that the rate() method actually returns Observable<Rating> that
got lost. What we really want is for the store() method to return that second Observ

70 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

able<Rating>. But we can’t simply call upload() and rate() concurrently, because
the latter will fail if the former did not finish yet. The answer is flatMap() again in
the most complex form:

upload(id)
 .flatMap(
 bytes -> Observable.empty(),
 e -> Observable.error(e),
 () -> rate(id)
);

Take a moment to digest the preceding code snippet. We have an Observable<Long>
as returned by the upload() method. For each progress update of type Long we
return Observable.empty(), effectively discarding these events. We are not interested
in progress indicator values. Moreover, we are not interested in errors, but contrary
to logging them, we pass them through to the subscriber. Notice that the naive
approach was simply logging errors, effectively hiding them. The rule of thumb is that
if you don’t know how to handle an exception, let your supervisor (e.g., the calling
method, parent task, or downstream Observable) make a decision. Finally, the last
lambda expression (() -> rate(id)) reacts upon stream completion. At this point,
we replace completion notification with another Observable<Rating>. So, even if the
original Observable wanted to terminate, we ignore that and in a way append a dif‐
ferent Observable. Keep in mind that all three callbacks must return Observable<R>
of the same type R.

In practice, we do not replace map() and filter() with flatMap() due to the clarity
of code and performance. Just to make sure you understand the syntactic part of flat
Map(), another abstract example translates from a sequence of characters to Morse
code:

import static rx.Observable.empty;
import static rx.Observable.just;

Observable<Sound> toMorseCode(char ch) {
 switch(ch) {
 case 'a': return just(DI, DAH);
 case 'b': return just(DAH, DI, DI, DI);
 case 'c': return just(DAH, DI, DAH, DI);
 //...
 case 'p': return just(DI, DAH, DAH, DI);
 case 'r': return just(DI, DAH, DI);
 case 's': return just(DI, DI, DI);
 case 't': return just(DAH);
 //...
 default:
 return empty();
 }
}

Core Operators: Mapping and Filtering | 71

www.EBooksWorld.ir

enum Sound { DI, DAH }

//...

just('S', 'p', 'a', 'r', 't', 'a')
 .map(Character::toLowerCase)
 .flatMap(this::toMorseCode)

As you can clearly see, every character is replaced by a sequence of DI and DAH sounds
(dots and dashes). When character is unrecognizable, an empty sequence is returned.
flatMap() ensures that we get a steady, flat stream of sounds, as opposed to Observa
ble<Observable<Sound>>, which we would get with plain map(). At this point, we
touch an important aspect of flatMap(): order of events. This is best explained with
an example, which will be much more enjoyable with delay() operator.

Postponing Events Using the delay() Operator
delay() basically takes an upstream Observable and shifts all events further in time.
So, a construct as simple as:

import java.util.concurrent.TimeUnit;

just(x, y, z).delay(1, TimeUnit.SECONDS);

will not emit x, y and z immediately upon subscription but after given delay.

We already learned about the timer() operator in Chapter 2, and they are very simi‐
lar. We can replace delay() with timer() and (surprise!) flatMap() like this:

Observable
 .timer(1, TimeUnit.SECONDS)
 .flatMap(i -> Observable.just(x, y, z))

I hope this is clear: we generate an artificial event from timer() that we completely
ignore. However, using flatMap() we replace that artificial event (zero, in i value)
with three immediately emitted values: x, y, and z. This is somewhat equivalent to
just(x, y, z).delay(1, SECONDS) in this particular case; however, it is not so in
general. delay() is more comprehensive than timer() because it shifts every single
event further by a given amount of time, whereas timer() simply “sleeps” and emits a
special event after given time. For completeness, let us mention about an overloaded
variant of delay() that can compute the amount of delay on a per-event basis rather
than globally for every event. The following code snippet delays the emission of every
String, depending on how long that String is:

import static rx.Observable.timer;
import static java.util.concurrent.TimeUnit.SECONDS;

72 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

Observable
 .just("Lorem", "ipsum", "dolor", "sit", "amet",
 "consectetur", "adipiscing", "elit")
 .delay(word -> timer(word.length(), SECONDS))
 .subscribe(System.out::println);

TimeUnit.SECONDS.sleep(15);

When running this program, even after subscribing, your application will terminate
immediately without displaying any results because emission occurs in the back‐
ground. In Chapter 4, you will learn about BlockingObservable that makes such
simple testing easier. For the time being, though, we just put an arbitrary sleep() in
the end. What you will notice then is that the first word to occur is sit, followed by
amet and elit one second later. Remember that delay() can be rewritten to timer()
plus flatMap()? Can you try that yourself? The solutions follows:

Observable
 .just("Lorem", "ipsum", "dolor", "sit", "amet",
 "consectetur", "adipiscing", "elit")
 .flatMap(word ->
 timer(word.length(), SECONDS).map(x -> word))

The preceding examples reveals an interesting characteristic of flatMap(): it does not
preserve the original order of events. Knowing how delay() work, we can finally
tackle this problem.

Order of Events After flatMap()
What flatMap() essentially does is take a master sequence (Observable) of values
appearing over time (events) and replaces each of the events with an independent
subsequence. These subsequences are generally unrelated to one another and to the
event that generated them from master sequence. To make it clear, you no longer
have a single the master sequence but a set of Observables, each working on its own,
coming and going over time. Therefore, flatMap() cannot give any guarantee about
what order of those subevents will arrive at the downstream operator/subscriber. Take
this simple code snippet as an example:

just(10L, 1L)
 .flatMap(x ->
 just(x).delay(x, TimeUnit.SECONDS))
 .subscribe(System.out::println);

In this example, we delay event 10L by 10 seconds and event 1L (chronologically
appearing later in upstream) by 1 second. As a result, we see 1 after a second and 10
nine seconds later—the order of events in upstream and downstream is different!
Even worse, imagine a flatMap() transformation producing multiple events (even
infinite number of them) over wide range of time:

Core Operators: Mapping and Filtering | 73

www.EBooksWorld.ir

Observable
 .just(DayOfWeek.SUNDAY, DayOfWeek.MONDAY)
 .flatMap(this::loadRecordsFor);

The loadRecordsFor() method returns different streams depending on the day of
the week:

Observable<String> loadRecordsFor(DayOfWeek dow) {
 switch(dow) {
 case SUNDAY:
 return Observable
 .interval(90, MILLISECONDS)
 .take(5)
 .map(i -> "Sun-" + i);
 case MONDAY:
 return Observable
 .interval(65, MILLISECONDS)
 .take(5)
 .map(i -> "Mon-" + i);
 //...
 }
}

The duplication in loadRecordsFor() is intentional to improve readability of the
example that already was becoming increasingly complex. Nonetheless, let’s study
what this flatMap() is doing step by step. We have a simple Observable that emits
days of the week: Sunday immediately followed by Monday. Now, we transform both
of these values with a subsequence generated using interval(). A quick reminder,
interval() will generate increasing numbers starting from zero preceded by a fixed
delay. In our case, this delay depends on the day of the week: 65 and 90 milliseconds
for Saturday and Monday, respectively. Both sequences are limited to the first five
items (take(5), see: “Slicing and Dicing Using skip(), takeWhile(), and Others” on
page 94). What we ended up with here are two Observables counting up at the same
time with different frequencies. What kind of output do you expect? The most
straightforward answer would be this:

Sun-0, Sun-1, Sun-2, Sun-3, Sun-4, Mon-0, Mon-1, Mon-2, Mon-3, Mon-4

But, in fact, you have two streams that work independently but their results must
somehow merge into a single Observable. When flatMap() encounters Sunday in the
upstream, it immediately invokes loadRecordsFor(Sunday) and redirects all events
emitted by the result of that function (Observable<String>) downstream. However,
almost exactly at the same time, Monday appears and flatMap() calls loadRecords
For(Monday). Events from the latter substream are also passed downstream, inter‐
leaving with events from first substream. If flatMap() was suppose to avoid
overlapping it would either need to buffer all subsequent sub-Observables until the
first one finishes or subscribe to a second sub-Observable only when the first one
completed. Such behavior is actually implemented in concatMap() (see “Preserving

74 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

Order Using concatMap()” on page 75). But flatMap() instead subscribes to all sub‐
streams immediately and merges them together, pushing events downstream when‐
ever any of the inner streams emit anything. All subsequences returned from
flatMap() are merged and treated equally; that is, RxJava subscribes to all of them
immediately and pushes events downstream evenly:

Mon-0, Sun-0, Mon-1, Sun-1, Mon-2, Mon-3, Sun-2, Mon-4, Sun-3, Sun-4

If you carefully track all delays, you will notice that this order is in fact correct. For
example, even though Sunday was the first event in the upstream Observable, Mon-0
event appeared first because the substream produced by Monday begins emitting
faster. This is also the reason why Mon-4 appears before Sun-3 and Sun-4.

Preserving Order Using concatMap()
What if you absolutely need to keep the order of downstream events so that they align
perfectly with upstream events? In other words, downstream events resulted from
upstream event N must occur before events from N + 1. It turns out there is a handy
concatMap() operator that has the exact same syntax as flatMap() but works quite
differently:

Observable
 .just(DayOfWeek.SUNDAY, DayOfWeek.MONDAY)
 .concatMap(this::loadRecordsFor);

This time the output is exactly what we anticipated:

Sun-0, Sun-1, Sun-2, Sun-3, Sun-4, Mon-0, Mon-1, Mon-2, Mon-3, Mon-4

So what happened under the hood? When the first event (Sunday) appears from
upstream, concatMap() subscribes to an Observable returned from loadRecords
For() and passes all events emitted from it downstream. When this inner stream
completes, concatMap() waits for the next upstream event (Monday) and continues.
concatMap() does not introduce any concurrency whatsoever but it preserves the
order of upstream events, avoiding overlapping.

flatMap() uses the merge() operator internally that subscribes to
all sub-Observables at the same time and does not make any dis‐
tinction between them (see “Treating Several Observables as One
Using merge()” on page 77). That is why downstream events inter‐
leave with one another. concatMap(), on the other hand, could
technically use the concat() operator (see “Ways of Combining
Streams: concat(), merge(), and switchOnNext()” on page 97). con
cat() subscribes only to the first underlying Observable and con‐
tinues with the second one when the first one completes.

Core Operators: Mapping and Filtering | 75

www.EBooksWorld.ir

Controlling the concurrency of flatMap()

Suppose that you have a large list of users wrapped in an Observable. Each User has a
loadProfile() method that returns an Observable<Profile> instance fetched using
an HTTP request. Our aim is to load the profiles of all users as fast as possible. flat
Map() was designed exactly for that: to allow spawning concurrent computation for
each upstream value:

class User {
 Observable<Profile> loadProfile() {
 //Make HTTP request...
 }
}

class Profile {/* ... */}

//...

List<User> veryLargeList = //...
Observable<Profile> profiles = Observable
 .from(veryLargeList)
 .flatMap(User::loadProfile);

At first sight it looks great. Observable<User> is constructed from a fixed List using
the from() operator; thus, when subscribed it emits all users pretty much instantane‐
ously. For every new User flatMap() calls, loadProfile() returns Observable<Pro
file>. Then, flatMap() transparently subscribes to every new
Observable<Profile>, redirecting all Profile events downstream. Subscription to
inner Observable<Profile> most likely makes a new HTTP connection. Therefore,
if we have, say 10,000 Users, we suddenly triggered 10,000 concurrent HTTP connec‐
tions. If all of them hit the same server, we can expect any of the following:

• Rejected connections
• Long wait time and timeouts
• Crashing the server
• Hitting rate-limit or blacklisting
• Overall latency increase
• Issues on the client, including too many open sockets, threads, excessive memory

usage

Increasing concurrency pays off only up to certain point. If you try to run too many
operations concurrently, you will most likely end up with a lot of context switches,
high memory and CPU utilization, and overall performance degradation. One solu‐
tion could be to slow down Observable<User> somehow so that it does not emit all
Users at once. However, tuning that delay to achieve optimal concurrency level is

76 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

3 Actually, flatMap() will not even request more users at this point, a feature that will be explained in “Honor‐
ing the Requested Amount of Data” on page 237

troublesome. Instead flatMap() has a very simple overloaded version that limits the
total number of concurrent subscriptions to inner streams:

flatMap(User::loadProfile, 10);

The maxConcurrent parameter limits the number of ongoing inner Observables. In
practice when flatMap() receives the first 10 Users it invokes loadProfile() for
each of them. However, when the 11th User appears from upstream,3 flatMap() will
not even call loadProfile(). Instead, it will wait for any ongoing inner streams to
complete. Therefore, the maxConcurrent parameter limits the number of background
tasks that are forked from flatMap().

You can probably see that concatMap(f) is semantically equivalent to flatMap(f, 1)
—flatMap() with maxConcurrent equal to one. We could spend a couple of extra
pages discussing the nuances of flatMap(), but more exciting operators lie ahead of
us.

More Than One Observable
Transforming a single Observable is interesting, but what if there are more Observa
bles that need to cooperate? If you come from traditional concurrent programing in
Java, full of Threads and Executors, you know how difficult shared mutable state and
synchronization is. Fortunately, RxJava works even better in such circumstances. Also
the library has a consistent way of handling errors in all operators involving multiple
streams. If any of the upstream sources emits an error notification, it will be forwar‐
ded downstream and complete the downstream sequence with an error, as well. If
more than one upstream Observable emits an error, the first one wins and the others
are discarded (any Observable can emit onError only once, see “Anatomy of
rx.Observable” on page 27). Finally, if you want to continue processing and emit
errors only when all normal events were produced, many operators have a *DelayEr
ror variant.

Treating Several Observables as One Using merge()
Do you remember the Observable<LicensePlate> recognize(CarPhoto photo)
method that was asynchronously trying to recognize LicensePlate from a CarPhoto
in “Wrapping Up Using flatMap()” on page 67? We mentioned briefly that such a
stream can actually use several algorithms at the same time, some being faster, others
being more precise. However, we do not want to expose the details of these algo‐

More Than One Observable | 77

www.EBooksWorld.ir

rithms to the outside world, we just want a stream of progressively better results from
each algorithm, from fastest to most accurate.

Imagine that we have three algorithms that are already RxJava-enabled, each one
nicely encapsulated within Observable. Of course, each algorithm alone can produce
zero to possibly an infinite number of results:

Observable<LicensePlate> fastAlgo(CarPhoto photo) {
 //Fast but poor quality
}

Observable<LicensePlate> preciseAlgo(CarPhoto photo) {
 //Precise but can be expensive
}

Observable<LicensePlate> experimentalAlgo(CarPhoto photo) {
 //Unpredictable, running anyway
}

What we would like to do is run these three algorithms side by side (see: “Declarative
Subscription with subscribeOn()” on page 150 for more details how RxJava handles
concurrency) and receive results as soon as possible. We do not care which algorithm
emitted an event, we want to catch all of them and aggregate into a single stream.
This is what the merge() operator does:

Observable<LicensePlate> all = Observable.merge(
 preciseAlgo(photo),
 fastAlgo(photo),
 experimentalAlgo(photo)
);

I intentionally placed preciseAlgo() (presumably slowest) first to emphasize that the
order of Observables passed to merge() is rather arbitrary. The merge() operator will
keep a reference to all of the underlying Observables, and as soon as someone sub‐
scribes to Observable<LicensePlate> all, it will automatically subscribe to all
upstream Observables at once. No matter which one emits a value first, it will be for‐
warded to the Observer of all. Of course, the merge() operator follows the Rx con‐
tract (see “Anatomy of rx.Observable” on page 27), ensuring that events are serialized
(do not overlap), even if underlying streams each emit a value at the same time. The
following marble diagram illustrates how merge() works:

78 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

4 This is the join stage in some types of computation.

The merge() operator is used extensively when you want to treat multiple sources of
events of the same type as a single source.4 Also, if you have just two Observables you
want to merge(), you can use obs1.mergeWith(obs2) instance method.

Keep in mind that errors appearing in any of the underlying Observables will be
eagerly propagated to Observers. You can use the mergeDelayError() variant of
merge() to postpone any errors until all of the other streams have finished. mergeDe
layError() will even make sure to collect all exceptions, not only the first one, and
encapsulate them in rx.exceptions.CompositeException .

Pairwise Composing Using zip() and zipWith()
Zipping is the act of taking two (or more) streams and combining them with each
other in such a way that each element from one stream is paired with corresponding
event from the other. A downstream event is produced by composing the first event
from each, second event from each stream, and so on. Therefore, events appear only
when all upstream sources emit an event. This is useful when you want to combine
results from multiple streams that are somehow related to one another. Or, quite the
contrary, when two independent streams emit values but only combining them
together has business meaning. The following marble diagram illustrates how this
works:

More Than One Observable | 79

www.EBooksWorld.ir

The zip() and zipWith() operators are equivalent. We use the former when we want
to fluently compose one stream with another, like so: s1.zipWith(s2, ...). But
when we have more than two streams to compose, static zip() on Observable can
take up to nine streams:

Observable.zip(s1, s2, s3...)

There are many other operators that have instance and static variants—for example,
merge() and mergeWith(). To understand zip(), imagine that you have two inde‐
pendent streams, yet those streams are entirely synchronized with each other. For
example, think about the WeatherStation API that exposes temperature and wind
measurements precisely every minute at the same time:

interface WeatherStation {
 Observable<Temperature> temperature();
 Observable<Wind> wind();
}

We have to make an assumption that events from these two Observables are emitted
at the same time and thus with the same frequency. Under this restriction, we can
safely join these two streams by combining every pair of events. This means that
when an event occurs on one stream, we must hold it until the other appears, and vice
versa. The name zip implies that there are two flows of events that we join together,
one from left, one from right, repeat. But in a more general version, zip() can take
up to nine upstream Observables and emit an event only when all of them emit an
event.

It seems like a perfect return type for zip() would be tuple or pair (two-element
tuple). Unfortunately, Java has no built-in data structure for pairs, and RxJava does
not have any external dependencies. Feel free to use the Pair implementation from
Apache Commons Lang, Javaslang, or Android SDK. Or provide a function or data
structure to combine pairs of events together:

80 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

http://bit.ly/2d2BYmQ
http://bit.ly/2d2BYmQ
http://bit.ly/2d2Cm4R
http://bit.ly/2d2BXPS

5 Shorter lambda syntax Weather::new is also possible here.

class Weather {
 public Weather(Temperature temperature, Wind wind) {
 //...
 }
}

//...

Observable<Temperature> temperatureMeasurements = station.temperature();
Observable<Wind> windMeasurements = station.wind();

temperatureMeasurements
 .zipWith(windMeasurements,
 (temperature, wind) -> new Weather(temperature, wind));

When a new Temperature event occurs, zipWith() waits (obviously without block‐
ing!) for Wind, and vice versa. Two events are passed to our custom lambda5 and com‐
bined into a Weather object. Then, the cycle repeats. zip() was described in terms of
streams, even infinite ones. However, often you will find yourself using zipWith()
and zip() for Observables that emit exactly one item. Such an Observable is typi‐
cally an asynchronous response to some request or action. We will go into details of
how you can use RxJava in real applications in Chapter 4.

For the time being, let’s study an example. We will need to produce a Cartesian prod‐
uct of all values from two streams. For example we might have two Observables, one
with chessboard’s rows (ranks, 1 to 8) and one with columns (files, a to h). We would
like to find all possible 64 squares on a chessboard:

Observable<Integer> oneToEight = Observable.range(1, 8);
Observable<String> ranks = oneToEight
 .map(Object::toString);
Observable<String> files = oneToEight
 .map(x -> 'a' + x - 1)
 .map(ascii -> (char)ascii.intValue())
 .map(ch -> Character.toString(ch));

Observable<String> squares = files
 .flatMap(file -> ranks.map(rank -> file + rank));

The squares Observable will emit exactly 64 events: for 1 it generates a1, a2,…a8,
followed by b1, b2, and so on until it finally reaches h7 and h8. This is another inter‐
esting example of flatMap()—for each column (file), generate all possible squares in
that column. Now onto a more realistic example that also employs Cartesian product.
Suppose that you would like to plan a one-day vacation in some city when the

More Than One Observable | 81

www.EBooksWorld.ir

weather is sunny and airfare and hotels are cheap. To do so, we will combine several
streams together and come up with all possible results:

import java.time.LocalDate;

Observable<LocalDate> nextTenDays =
 Observable
 .range(1, 10)
 .map(i -> LocalDate.now().plusDays(i));

Observable<Vacation> possibleVacations = Observable
 .just(City.Warsaw, City.London, City.Paris)
 .flatMap(city -> nextTenDays.map(date -> new Vacation(city, date))
 .flatMap(vacation ->
 Observable.zip(
 vacation.weather().filter(Weather::isSunny),
 vacation.cheapFlightFrom(City.NewYork),
 vacation.cheapHotel(),
 (w, f, h) -> vacation
));

Vacation class:

class Vacation {
 private final City where;
 private final LocalDate when;

 Vacation(City where, LocalDate when) {
 this.where = where;
 this.when = when;
 }

 public Observable<Weather> weather() {
 //...
 }

 public Observable<Flight> cheapFlightFrom(City from) {
 //...
 }

 public Observable<Hotel> cheapHotel() {
 //...
 }
}

Quite a lot is happening in the preceding code. First, we generate all dates from
tomorrow to 10 days ahead using a combination of range() and map(). Then, we
flatMap() these days with three cities—we do not want to use zip() here, because
we need all possible combinations of date versus city pairs. For each such pair, we cre‐
ate an instance of Vacation class encapsulating it. Now the real logic: we zip together
three Observables: Observable<Weather>, Observable<Flight>, and Observa

82 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

ble<Hotel>. The last two are supposed to return a zero or one result depending on
whether cheap flight or hotel was found for that city/date. Even though Observa
ble<Weather> always returns something, however, we use filter(Weather::sunny)
to discard nonsunny weather. So we end up with zip() operation of three streams,
each emitting zero to one items. zip() completes early if any of the upstream Observ
ables complete, discarding other streams early: thanks to this property, if any of
weather, flight, or hotel is absent, the result of zip() completes with no items being
emitted, as well. This leaves us with a stream of all possible vacation plans matching
requirements.

Do not be surprised to see a zip function that does not take arguments into account:
(w, f, h) -> vacation. An outer stream of Vacation lists all possible vacation
plans for every possible day. However, for each vacation, we want to make sure
weather, cheap flight, and hotel are present. If all these conditions are met, we return
vacation instance; otherwise, zip will not invoke our lambda expression at all.

When Streams Are Not Synchronized with One Another:
combineLatest(), withLatestFrom(), and amb()
In “Pairwise Composing Using zip() and zipWith()” on page 79, we made a very bold
assumption that two Observables always produce events with the same frequency
and at a similar point in time. However if one of the streams outperforms the other
even slightly, events from the faster Observable will need to wait longer and longer
for the lagging stream. To illustrate this effect, let’s first zip() two streams that are
producing items at the exact same pace:

Observable<Long> red = Observable.interval(10, TimeUnit.MILLISECONDS);
Observable<Long> green = Observable.interval(10, TimeUnit.MILLISECONDS);

Observable.zip(
 red.timestamp(),
 green.timestamp(),
 (r, g) -> r.getTimestampMillis() - g.getTimestampMillis()
).forEach(System.out::println);

red and green Observables are producing items with the same frequency. For each
item, we attach timestamp() so that we know exactly when it was emitted.

timestamp()

The timestamp() operator wraps whatever the event type T was
with rx.schedulers.Timestamped<T> class having two attributes:
original value of type T and long timestamp when it was created.

More Than One Observable | 83

www.EBooksWorld.ir

In zip() transformation, we simply compare the time difference between creation of
events in each stream. When streams are synchronized, this value oscillates around
zero. However, if we slightly slow down one Observable, say green becomes Observa
ble.interval(11, MILLISECONDS), the situation is much different. The time differ‐
ence between red and green keeps going up: red is consumed in real time but it must
wait, increasing the amount of time for the slower item. Over time this difference
piles up and can lead to stale data or even memory leak (see “Memory Consumption
and Leaks” on page 315). In practice zip() must be used carefully.

What we actually expect is emitting a pair every time any upstream produces an
event, using the latest known value from the other stream. This is where combineLat
est() becomes useful, as illustrated by the following marble diagram:

Take the following artificial example. One stream produces S0, S1, S2 values every 17
milliseconds whereas the other F0, F1, F2 every 10 milliseconds (considerably faster):

import static java.util.concurrent.TimeUnit.MILLISECONDS;
import static rx.Observable.interval;

Observable.combineLatest(
 interval(17, MILLISECONDS).map(x -> "S" + x),
 interval(10, MILLISECONDS).map(x -> "F" + x),
 (s, f) -> f + ":" + s
).forEach(System.out::println);

We combine these two streams and produce a new value every time any of the
streams produces something. The output quickly becomes out-of-sync, but at least
values are consumed in real time, and the faster stream does not need to wait for the
slower one:

F0:S0
F1:S0
F2:S0
F2:S1

84 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

F3:S1
F4:S1
F4:S2
F5:S2
F5:S3
...
F998:S586
F998:S587
F999:S587
F1000:S587
F1000:S588
F1001:S588

Notice how the new item appears downstream on each new F event: F0:S0, F1:S0,
F2:S0. RxJava notices the new event on the fast stream so takes whatever the latest
value was of the slow stream (it still has two wait for at least one event!)—S0 in this
case—and produces a new pair. However, neither stream is distinguished: when the
new slow S1 appears, the latest known fast value (F2) is taken and combined, as well.
After about 10 seconds we encounter the F1000:S588 event. Everything adds up: dur‐
ing 10 seconds, fast stream produced about 1,000 events, whereas the slow stream
only 588 (10 seconds divided by 17 milliseconds).

withLatestFrom() operator

combineLatest is symmetric, which means that it does not distinguish between the
substreams it combines. Occasionally, however, you want to emit an event every time
something appears in one stream with latest value from the second stream, but not
vice versa. In other words, events from the second stream do not trigger a down‐
stream event; they are used only when first stream emits. You can achieve such
behavior by using the new withLatestFrom() operator. Let’s illustrate it with the
same slow and fast streams:

Observable<String> fast = interval(10, MILLISECONDS).map(x -> "F" + x);
Observable<String> slow = interval(17, MILLISECONDS).map(x -> "S" + x);
slow
 .withLatestFrom(fast, (s, f) -> s + ":" + f)
 .forEach(System.out::println);

In the prior example, the slow stream is primary, the resulting Observable will
always emit an event when slow emits, providing fast emitted at least one element so
far. Conversely, fast stream is just a helper used only when slow emits something.
The function passed as the second argument to withLatestFrom() will combine
every new value from slow with the most recent value from fast. However, new val‐
ues from fast are not propagated downstream; they are just updated internally when
the new slow appears. The output of the preceding code snippet reveals that all slow
events appear exactly once, whereas some fast events are dropped:

More Than One Observable | 85

www.EBooksWorld.ir

S0:F1
S1:F2
S2:F4
S3:F5
S4:F7
S5:F9
S6:F11
...

All slow events appearing before the first fast event are silently dropped because
there is nothing with which to combine them. This is by design, but if you truly need
to preserve all events from the primary stream, you must ensure that the other stream
emits some dummy event as soon as possible. For example, you can prepend said
stream with some dummy event emitted immediately. The example that follows arti‐
ficially slows the fast stream by pushing all events 100 milliseconds forward (see
“Postponing Events Using the delay() Operator” on page 72). Without a dummy
event, we would lose a few slow events; however, by using the startWith() operator
we create a new Observable that derives from fast. It starts with "FX" immediately
and then continues with events from the original fast stream:

Observable<String> fast = interval(10, MILLISECONDS)
 .map(x -> "F" + x)
 .delay(100, MILLISECONDS)
 .startWith("FX");
Observable<String> slow = interval(17, MILLISECONDS).map(x -> "S" + x);
slow
 .withLatestFrom(fast, (s, f) -> s + ":" + f)
 .forEach(System.out::println);

The output reveals that no slow events are dropped. However, in the beginning we
see dummy "FX" events a few times, until the first "F0" shows up after 100 milli‐
seconds:

S0:FX
S1:FX
S2:FX
S3:FX
S4:FX
S5:FX
S6:F1
S7:F3
S8:F4
S9:F6
...

startWith() basically returns a new Observable that, upon subscription, first emits
some constant values (like "FX") followed by original Observable. For example, the
following code block yields 0, 1 and 2, in that order:

86 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

Observable
 .just(1, 2)
 .startWith(0)
 .subscribe(System.out::println);

See also “Slicing and Dicing Using skip(), takeWhile(), and Others” on page 94 for
examples of a similar concat() operator.

amb() operator

The last tiny operator that can become useful is amb() (together with ambWith()),
which subscribes to all upstream Observables it controls and waits for the very first
item emitted. When one of the Observables emits the first event, amb() discards all
other streams and just keep forwarding events from the first Observable that woke
up, as shown in the following marble diagram:

The sample that follows illustrates how amb() works with two streams. Pay attention
to initialDelay parameter that controls which Observable starts emitting first:

Observable<String> stream(int initialDelay, int interval, String name) {
 return Observable
 .interval(initialDelay, interval, MILLISECONDS)
 .map(x -> name + x)
 .doOnSubscribe(() ->
 log.info("Subscribe to " + name))
 .doOnUnsubscribe(() ->
 log.info("Unsubscribe from " + name));
}

//...

Observable.amb(
 stream(100, 17, "S"),
 stream(200, 10, "F")
).subscribe(log::info);

More Than One Observable | 87

www.EBooksWorld.ir

You can write an equivalent program using nonstatic ambWith(), but it is less reada‐
ble because it hides the symmetry of amb(). It seems like we are applying the second
stream on top of the first, whereas both of them should be treated equally:

stream(100, 17, "S")
 .ambWith(stream(200, 10, "F"))
 .subscribe(log::info);

No matter which version you prefer, they yield the same results. The slow stream
produces events less frequently, but the first event appears after 100 milliseconds,
whereas the fast stream begins after 200 milliseconds. What amb() does is first sub‐
scribe to both Observables, and when it encounters the first event in the slow stream,
it immediately unsubscribes from the fast one and forwards events from only the
slow one:

14:46:13.334: Subscribe to S
14:46:13.341: Subscribe to F
14:46:13.439: Unsubscribe from F
14:46:13.442: S0
14:46:13.456: S1
14:46:13.473: S2
14:46:13.490: S3
14:46:13.507: S4
14:46:13.525: S5

doOnSubscribe() and doOnUnsubscribe() callbacks are useful for debugging pur‐
poses (see “doOn…() Callbacks” on page 270). Notice how unsubscription from F
occurs roughly 100 millisecond after subscription to S; this is the moment when first
event from S Observable appeared. At this point, listening for events from F no
longer makes any sense.

Advanced Operators: collect(), reduce(), scan(), distinct(),
and groupBy()
Some operators allow more advanced transformations such as scanning through the
sequence and aggregating some value along the way, like a running average. Some
operators are even stateful, managing internal state while the sequence progresses.
This is how distinct works, caching and discarding already visited values.

Scanning Through the Sequence with Scan and Reduce
All operators we explored so far operated on a per-event basis (e.g., filtering, map‐
ping, or zipping). But sometimes you want to aggregate events to shrink the initial
stream or simplify it. For example, consider an Observable<Long> that monitors pro‐
gress of data transfer. Every time a chunk of data is sent, a single Long value appears
telling, indicating the size of that chunk. This is a useful bit of information, but what

88 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

we really want to know is how many bytes were transferred in total. A very bad idea is
to use global state modified inside an operator:

import java.util.concurrent.atomic.LongAdder;

//BROKEN!
Observable<Long> progress = transferFile();

LongAdder total = new LongAdder();
progress.subscribe(total::add);

The preceding code can lead to very unpleasant concurrency bugs, just like any other
shared state. Lambda expressions within operators can be executed from arbitrary
threads so global state must be thread safe. We must also take laziness into account.
RxJava tries to minimize global state and mutability as much as possible by providing
composable operators. Modifying global state is tricky, even with Rx guarantees.
Moreover, we can no longer rely on Rx operators to further compose total–for
example, by periodically updating user interface. Signaling when a transfer is comple‐
ted is also more complex. What we really want is a way to incrementally accumulate
sizes of data chunks and report the current total, every time a new chunk appears.
This is what our hypothetical stream should look like:

Observable<Long> progress = // [10, 14, 12, 13, 14, 16]
Observable<Long> totalProgress = /* [10, 24, 36, 49, 63, 79]

 10
 10+14=24
 24+12=36
 36+13=49
 49+14=63
 63+16=79
*/

The first item is propagated as-is (10). However, before the second item (14) is passed
downstream it is added to the previous emitted item (10), emitting 24 (the sum of the
first two items). The third item (12) is again added to the previous item from the
resulting stream (24), emitting 36. This iterative process continues until the upstream
Observable completes. At this point, the last item emitted is the total of all upstream
events. You can implement this relatively complex workflow easily by using the
scan() operator:

Observable<Long> totalProgress = progress
 .scan((total, chunk) -> total + chunk);

scan() takes two parameters: the last generated value (known as the accumulator)
and current value from upstream Observable. In the first iteration, total is simply
the first item from progress, whereas in the second iteration it becomes the result of
scan() from the previous one. This is illustrated in Table 3-1.

Advanced Operators: collect(), reduce(), scan(), distinct(), and groupBy() | 89

www.EBooksWorld.ir

Table 3-1. Each row represents one scan() iteration

progress total chunk totalProgress

10 - - -

14 10 14 24

12 24 12 36

13 36 13 49

14 49 14 63

16 63 16 79

scan() is like a bulldozer, going through the source (upstream) Observable and
accumulating items. Overloaded version of scan() can provide an initial value (if it is
different than simply the first element):

Observable<BigInteger> factorials = Observable
 .range(2, 100)
 .scan(BigInteger.ONE, (big, cur) ->
 big.multiply(BigInteger.valueOf(cur)));

factorials will generate 1, 2, 6, 24, 120, 720…, and so forth. Notice that the
upstream Observable starts from 2 but the downstream starts from 1, which was our
initial value (BigInteger.ONE). The rule of thumb is that the type of resulting Observ
able is always the same as the type of accumulator. So, if you do not provide a custom
initial value of accumulator, the type T returned from scan() will not change. Other‐
wise (like in our factorials example), the result is of type Observable<BigInteger>
because BigInteger was the type of initial value. Obviously, this type cannot change
throughout the scanning process.

Sometimes, we do not care about intermediate results, just the final one. For example,
we want to calculate total bytes transferred, not intermediate progress. Or, we would
like to accumulate all values in some mutable data structure, like ArrayList, adding
one item at a time. The reduce() operator was designed precisely for that. One rather
obvious caveat: if your sequence is infinite, scan() keeps emitting events for each
upstream event, whereas reduce() will never emit any event. Imagine that you have a
source of CashTransfer objects with getAmount() method returning BigDecimal. We
would like to calculate the total amount on all transfers. The following two transfor‐
mations are equivalent. They iterate over all transfers and add up amounts, beginning
at ZERO:

Observable<CashTransfer> transfers = //...;

Observable<BigDecimal> total1 = transfers
 .reduce(BigDecimal.ZERO,
 (totalSoFar, transfer) ->
 totalSoFar.add(transfer.getAmount()));

90 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

Observable<BigDecimal> total2 = transfers
 .map(CashTransfer::getAmount)
 .reduce(BigDecimal.ZERO, BigDecimal::add);

Both transformations yield the same result, but the second one seems simpler, despite
using two steps. This is another reason to prefer smaller, more composable transfor‐
mations over a single big one. Also you can probably see that reduce() is basically
scan() talking only to the last element. As a matter of fact, you can implement it as
follows:

public <R> Observable<R> reduce(
 R initialValue,
 Func2<R, T, R> accumulator) {
 return scan(initialValue, accumulator).takeLast(1);
}

As you can see, reduce() simply scans through the Observable but discards all but
the last item (see “Slicing and Dicing Using skip(), takeWhile(), and Others” on page
94).

Reduction with Mutable Accumulator: collect()
Now, let’s transform the finite stream of events of type T into a stream with just a sin‐
gle event of type List<T>. Of course, that event is emitted when upstream Observa
ble<T> completes:

Observable<List<Integer>> all = Observable
 .range(10, 20)
 .reduce(new ArrayList<>(), (list, item) -> {
 list.add(item);
 return list;
 });

This example of reduce() simply begins with empty ArrayList<Integer> (an accu‐
mulator) and adds every emitted item to that ArrayList. The lambda expression
responsible for reduction (accumulating) must return a new version of accumulator.
Unfortunately, List.add() does not return said List; instead, it returns boolean. An
explicit return statement is required. To overcome this verboseness, you can use the
collect() operator. It works almost exactly like reduce() but assumes that we use
the same mutable accumulator for every event as opposed to returning a new immut‐
able accumulator every time (compare this to the immutable BigInteger example):

Observable<List<Integer>> all = Observable
 .range(10, 20)
 .collect(ArrayList::new, List::add);

Advanced Operators: collect(), reduce(), scan(), distinct(), and groupBy() | 91

www.EBooksWorld.ir

6 There are only 1,000 possible unique outcomes of nextInt(1000).

Another useful use case for collect() is aggregating all events into a StringBuilder.
In that case, the accumulator is an empty StringBuilder and an operation appends
one item to that builder:

Observable<String> str = Observable
 .range(1, 10)
 .collect(
 StringBuilder::new,
 (sb, x) -> sb.append(x).append(", "))
 .map(StringBuilder::toString);

Just like every Observable operator, both reduce() and collect() are nonblocking,
so the resulting List<Integer> containing all numbers emitted from Observa
ble.range(10, 20) will appear when upstream signals completion; exceptions are
propagated normally. Transforming Observable<T> into Observable<List<T>> is so
common that a built-in toList() operator exists. See “BlockingObservable: Exiting
the Reactive World” on page 118 for real life use cases.

Asserting Observable Has Exactly One Item Using single()
By the way, some Observables by definition must emit exactly one value. For exam‐
ple, the preceding code snippet will always emit one List<Integer>, even an empty
one. In such circumstances, it is worthwhile to apply a single() operator. It does not
change the upstream Observable in any way; however, it makes sure it emits exactly
one event. In case this assumption is wrong, you will receive an exception instead of
an unexpected result.

Dropping Duplicates Using distinct() and distinctUntilChanged()
An infinite stream of simply random values can be really useful, typically when com‐
bined with other streams. The following Observable produces pseudo-random Inte
ger values from 0 to 1,000 exclusive:

Observable<Integer> randomInts = Observable.create(subscriber -> {
 Random random = new Random();
 while (!subscriber.isUnsubscribed()) {
 subscriber.onNext(random.nextInt(1000));
 }
});

Obviously, duplicates can occur, and take(1001) is guaranteed to have at least one.6

But what if we want to take a peek at smaller (say, 10) unique random values? The
built-in distinct() operator automatically discards events from upstream Observa
ble that already occurred, making sure only unique events are passed downstream:

92 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

Observable<Integer> uniqueRandomInts = randomInts
 .distinct()
 .take(10);

Every time a new value is emitted from the upstream Observable (randomInts), the
distinct() operator internally makes sure such value did not occur before. The
comparison happens by means of equals() and hashCode(), so ensure that you
implement them according to Java guidelines (two equal objects must have the same
hash code). Interestingly, take(1001) would eventually emit every single value from
0 to 999 in random order and never complete because there is no 1,001st unique int
between 0 and 999.

In “Use Case: From Callback API to Observable Stream” on page 45, we looked at
Observable<twitter4j.Status> that was emitting status updates generated on social
media website Twitter. Every time any user posted a status update, new event was
pushed from that Observable. The Status object contains several attributes, like get
Text(), getUser(), and so on. The distinct() operator makes no sense for Status
events, given that duplicates are virtually impossible. But, what if we would like to see
the text of only the very first update per each user (status.getUser().getId()
returning long)? Obviously, we can extract that unique property and run distinct()
on that:

Observable<Status> tweets = //...

Observable<Long> distinctUserIds = tweets
 .map(status -> status.getUser().getId())
 .distinct();

Unfortunately, by the time we get to execute distinct(), the original Status object is
lost. What we really need is a way to extract a property of event used to determine
uniqueness. Two events are considered equal (and the latter being discarded as a
result) if that extracted property (known as key) was already seen:

Observable<Status> distinctUserIds = tweets
 .distinct(status -> status.getUser().getId());

Whatever we return as key is compared using equals() and hashCode() to already
seen keys. Be sure to remember that distinct() must keep in mind all events/keys
seen so far for eternity. (See “Memory Consumption and Leaks” on page 315. dis
tinct() is useful when we want to process unique events only once.)

In practice, distinctUntilChanged() is often more reasonable. In the case of dis
tinctUntilChanged(), any given event is discarded only if the previous event was the
same (by default using equals() for comparison). distinctUntilChanged() works
best when we receive a steady stream of some measurements and we want to be noti‐
fied only when the measured value actually changed. In “Pairwise Composing Using
zip() and zipWith()” on page 79 we experimented with Observable<Weather>, with

Advanced Operators: collect(), reduce(), scan(), distinct(), and groupBy() | 93

www.EBooksWorld.ir

Weather having two attributes: Temperature and Wind. A new Weather event can
appear once every minute, but the weather does not change that often, so we would
like to drop duplicated events and focus only on changes:

Observable<Weather> measurements = //...

Observable<Weather> tempChanges = measurements
 .distinctUntilChanged(Weather::getTemperature);

The preceding code snippet emits a Weather event only when the temperature
changes (changes to Wind are not taken into account). Obviously, if we want to an
emit event every time either Temperature or Wind changes, parameterless distinctUn
tilChanged() would work great, assuming that Weather implements equals(). The
important difference between distinct() and distinctUntilChanged() is that the
latter can produce duplicates but only if they were separated by a different value. For
example, the same temperature might occur every day, separated by colder and
warmer measurements. Also distinctUntilChanged() must only remember the last
seen value, as opposed to distinct(), which must keep track of all unique values
since the beginning of the stream. This means that distinctUntilChanged() has a
predictable, constant memory footprint, as opposed to distinct().

Slicing and Dicing Using skip(), takeWhile(), and Others
You are never obligated to read the stream fully, especially but not exclusively when
dealing with hot infinite Observables. As a matter of fact, it is a common practice to
slice Observable and consume just a small subset. Most operators in this section have
examples unless they follow the principle of least astonishment. Yet operators such as
take or last are too useful to be omitted. Here is a nonexhaustive list of such opera‐
tors:

take(n) and skip(n)
The take(n) operator will truncate the source Observable prematurely after
emitting only the first n events from upstream, unsubscribing afterward (or com‐
plete earlier if upstream did not have n items). skip(n) is the exact opposite; it
discards the first n elements and begins emitting events from the upstream
Observable beginning with event n+1. Both operators are quite liberal: negative
numbers are treated as zero, exceeding the Observable size is not treated as a
bug:

Observable.range(1, 5).take(3); // [1, 2, 3]
Observable.range(1, 5).skip(3); // [4, 5]
Observable.range(1, 5).skip(5); // []

94 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

takeLast(n) and skipLast(n)
Another self-descriptive pair of operators. takeLast(n) emits only the last n val‐
ues from the stream before it completes. Internally, this operator must keep a
buffer of the last n values and when it receives completion notification, it imme‐
diately emits the entire buffer. It makes no sense to call takeLast() on an infinite
stream because it will never emit anything—the stream never ends, so there are
no last events. skipLast(n), on the other hand, emits all values from upstream
Observable except the last n. Internally, skipLast() can emit the first value from
upstream only when it received n+1 elements, second when it received n+2, and
so on.

Observable.range(1, 5).takeLast(2); // [4, 5]
Observable.range(1, 5).skipLast(2); // [1, 2, 3]

first() and last()
The parameterless first() and last() operators can be implement via
take(1).single() and takeLast(1).single() accordingly, which should pretty
much describe their behavior. The extra single() operator ensures that the
downstream Observable emits precisely one value or exception. Additionally,
both first() and last() have overloaded versions that take predicates. Rather
than returning the very first/last value they emit first/last value, matching a given
condition.

takeFirst(predicate)

The takeFirst(predicate) operator can be expressed by filter(predi

cate).take(1). The only difference between this one and first(predicate) is
that it will not break with NoSuchElementException in case of missing matching
values.

takeUntil(predicate) and takeWhile(predicate)
takeUntil(predicate) and takeWhile(predicate) are closely related to each
other. takeUntil() emits values from the source Observable but completes and
unsubscribes after emitting the very first value matching predicate. take
While(), conversely, emits values as long as they match a given predicate. So the
only difference is that takeUntil() will emit the first nonmatching value,
whereas takeWhile() will not. These operators are quite important because they
provide a means of conditionally unsubscribing from an Observable based on
the events being emitted. Otherwise, the operator would need to somehow inter‐
act with the Subscription instance (see “Controlling Listeners by Using Sub‐
scription and Subscriber<T>” on page 32), which is not available when the
operator is invoked.

Observable.range(1, 5).takeUntil(x -> x == 3); // [1, 2, 3]
Observable.range(1, 5).takeWhile(x -> x != 3); // [1, 2]

Slicing and Dicing Using skip(), takeWhile(), and Others | 95

www.EBooksWorld.ir

elementAt(n)

Extracting a specific item by index is rather uncommon, but you can use the
built-in elementAt(n) operator for that. It is quite strict, and it can result in an
IndexOutOfBoundsException being emitted when upstream Observable is not
long enough or the index is negative. Of course, it returns Observable<T> of the
same type T as upstream.

…OrDefault() operators
Many operators in this section are strict and can result in exceptions being
thrown—for example, first() when upstream Observable is empty. Under
these circumstances many ...OrDefault operators were introduced to replace
exceptions with a default value. All of them are rather self-explanatory: elementA
tOrDefault(), firstOrDefault(), lastOrDefault(), and singleOrDefault().

count()

count() is an interesting operator that calculates how many events were emitted
by upstream Observable. By the way, if you need to know how many items
matching a given predicate that the upstream Observable emitted, filter(predi
cate).count() can do that idiomatically. Do not worry, all operators are lazy so
this will work even for quite large streams. Obviously, count() never emits any
value in case of infinite stream. You can implement`count()` easily by using
reduce()):

Observable<Integer> size = Observable
 .just('A', 'B', 'C', 'D')
 .reduce(0, (sizeSoFar, ch) -> sizeSoFar + 1);

all(predicate), exists(predicate), and contains(value)
Sometimes, it is useful to ensure that all events from a given Observable match
some predicate. The all(predicate) operator will emit true when upstream
completes and all values matched the predicate. However, false will be emitted
as soon as first nonconforming value is found. exists(predicate) is the exact
opposite of all(); it emits true when the first matching value is found but false
in case of upstream completing without any matching value found. Often, our
predicate in exists() simply compares upstream values with some constants. In
that case, you can use the contains() operator:

Observable<Integer> numbers = Observable.range(1, 5);

numbers.all(x -> x != 4); // [false]
numbers.exists(x -> x == 4); // [true]
numbers.contains(4); // [true]

96 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

Ways of Combining Streams: concat(), merge(), and switchOnNext()
concat() (and instance method concatWith()) allow joining together two Observa
bles: when the first one completes, concat() subscribes to the second one. Impor‐
tantly, concat() will subscribe to the second Observable if, and only if, the first one
is completed (see also “Preserving Order Using concatMap()” on page 75). concat()
can even work with the same upstream Observable with different operators applied.
For example if we would like to receive only the first few and last few items from a
very long stream, we could use the following:

Observable<Data> veryLong = //...
final Observable<Data> ends = Observable.concat(
 veryLong.take(5),
 veryLong.takeLast(5)
);

Keep in mind that the preceding code example subscribes to veryLong twice, which
might be undesirable. Another example of concat() is providing fallback value when
first stream did not emit anything:

Observable<Car> fromCache = loadFromCache();
Observable<Car> fromDb = loadFromDb();

Observable<Car> found = Observable
 .concat(fromCache, fromDb)
 .first();

Observables are lazy, so neither loadFromCache() nor loadFromDb() actually load
any data yet. loadFromCache() can complete without emitting any events when cache
is empty, but loadFromDb() always emits one Car. concat() followed by first() will
initially subscribe to fromCache and if that emits one item, concat() will not sub‐
scribe to fromDb. However, if fromCache is empty, concat() will continue with
fromDb, subscribe to it, and load data from database.

The concat() operator is actually closely related to merge() and switchMap(). con
cat() works like concatenation on ordinary List<T>: first, it takes all items from the
first stream and only when it completes, it begins consuming second stream. Of
course, like all operators we met so far, concat() is nonblocking, it emits events only
when the underlying stream emits something. Now, let’s compare concat() with
merge() (see “Treating Several Observables as One Using merge()” on page 77) and
switchOnNext() just being introduced.

Consider a group of people, each one having microphone. Every microphone is mod‐
eled as an Observable<String>, for which an event represents a single word. Obvi‐
ously, events appear over time, as soon as they are spoken. To simulate this behavior
we will construct a simple Observable for demonstration purposes, interesting on its
own:

Slicing and Dicing Using skip(), takeWhile(), and Others | 97

www.EBooksWorld.ir

Observable<String> speak(String quote, long millisPerChar) {
 String[] tokens = quote.replaceAll("[:,]", "").split(" ");
 Observable<String> words = Observable.from(tokens);
 Observable<Long> absoluteDelay = words
 .map(String::length)
 .map(len -> len * millisPerChar)
 .scan((total, current) -> total + current);
 return words
 .zipWith(absoluteDelay.startWith(0L), Pair::of)
 .flatMap(pair -> just(pair.getLeft())
 .delay(pair.getRight(), MILLISECONDS));
}

The preceding code snippet is quite complex, so let’s study it first, line by line. We
take an arbitrary text in String and split it to words, removing punctuation using a
regular expression. Now, for each word we calculate how much it takes to say that
word, simply by multiplying the word length by millisPerChar. Then, we would like
to spread words over time, so that each word appears in the resulting stream after the
delay calculated in the preceding example. Clearly, a simple from operator is not
enough:

Observable<String> words = Observable.from(tokens);

We want words to appear with delay, based on the length of the previous word. The
first naive approach simply delays each word, given its length:

words.flatMap(word -> Observable
 .just(word)
 .delay(word.length() * millisPerChar, MILLISECONDS));

This solution is incorrect. The Observable will first emit all one-letter words at the
same time. Then, after a while, all two-letter words followed by all three-letter words.
What we want is to have the first word appear immediately and then the second word
after a delay, depending on the length of the first word. This sounds terribly complex
but turns out to be quite pleasant. First we create a helper stream from words that
contains only relative delays induced by each word:

words
 .map(String::length)
 .map(len -> len * millisPerChar);

Assuming millisPerChar is 100 and words are Though this be madness, we first get
the following stream: 600, 400, 200, 700. If we were to simply delay() each word by
that duration, "be" word would appear first and other words would be scrambled as
well. What we really want is a cumulative sequence of absolute delays, like this: 600,
600 + 400 = 1,000; 1,000 + 200 = 1,200; 1,200 + 700 = 1,900. This is easy using the
scan() operator (see “Scanning Through the Sequence with Scan and Reduce” on
page 88):

98 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

Observable<Long> absoluteDelay = words
 .map(String::length)
 .map(len -> len * millisPerChar)
 .scan((total, current) -> total + current);

Now when we have a sequence of words and a sequence of absolute delays for each
one of them, we can zip these two streams. This is the kind of a situation in which
zip() shines:

words
 .zipWith(absoluteDelay.startWith(0L), Pair::of)
 .flatMap(pair -> just(pair.getLeft()))

This makes a lot of sense because we know two streams have exact the same size and
are entirely in sync with each other. Well…almost. We do not want the first word to
be delayed at all. Instead, the length of the first word should influence the delay of the
second word, the total length of the first and second word should influence the delay
of the third word, and so on. You can achieve such a shift easily by simply prepending
absoluteDelay with 0:

import org.apache.commons.lang3.tuple.Pair;

words
 .zipWith(absoluteDelay.startWith(0L), Pair::of)
 .flatMap(pair -> just(pair.getLeft())
 .delay(pair.getRight(), MILLISECONDS));

We construct a sequence of pair words—absolute delay of that word, making sure the
first word is not delayed at all. These pairs might look as follows:

(Though, 0)
(this, 600)
(be, 1000)
(madness, 1200)
...

This is our speech time line, each word accompanied with its point in time. All we
need to do is turn every pair into a one-element Observable shifted in time:

flatMap(pair -> just(pair.getLeft())
 .delay(pair.getRight(), MILLISECONDS));

After so much preparation, we can finally see how concat(), merge(), and switchOn
Next() differ. Suppose that three people were quoting Hamlet by William Shake‐
speare:

Observable<String> alice = speak(
 "To be, or not to be: that is the question", 110);
Observable<String> bob = speak(
 "Though this be madness, yet there is method in't", 90);
Observable<String> jane = speak(

Slicing and Dicing Using skip(), takeWhile(), and Others | 99

www.EBooksWorld.ir

 "There are more things in Heaven and Earth, " +
 "Horatio, than are dreamt of in your philosophy", 100);

As you can see, each person has a slightly different pace measured in millisPerChar.
What happens if all people speak at the same time? RxJava can answer this question:

Observable
 .merge(
 alice.map(w -> "Alice: " + w),
 bob.map(w -> "Bob: " + w),
 jane.map(w -> "Jane: " + w)
)
.subscribe(System.out::println);

The output is very chaotic, words spoken by each person interleave with each other.
All we hear is noise, and without prefixing each phrase, it would have been difficult to
understand:

Alice: To
Bob: Though
Jane: There
Alice: be
Alice: or
Jane: are
Alice: not
Bob: this
Jane: more
Alice: to
Jane: things
Alice: be
Bob: be
Alice: that
Bob: madness
Jane: in
Alice: is
Jane: Heaven
Alice: the
Bob: yet
Alice: question
Jane: and
Bob: there
Jane: Earth
Bob: is
Jane: Horatio
Bob: method
Jane: than
Bob: in't
Jane: are
Jane: dreamt
Jane: of
Jane: in
Jane: your
Jane: philosophy

100 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

This is how merge() works: it subscribes to words of each person immediately and
forwards them downstream, no matter which person is speaking. If two streams emit
an event at more or less the same time, they are both forwarded right away. There is
no buffering or halting events within this operator.

The situation is much different if we replace merge() with concat() operator:

Alice: To
Alice: be
Alice: or
Alice: not
Alice: to
Alice: be
Alice: that
Alice: is
Alice: the
Alice: question
Bob: Though
Bob: this
Bob: be
Bob: madness
Bob: yet
Bob: there
Bob: is
Bob: method
Bob: in't
Jane: There
Jane: are
Jane: more
Jane: things
Jane: in
Jane: Heaven
Jane: and
Jane: Earth
Jane: Horatio
Jane: than
Jane: are
Jane: dreamt
Jane: of
Jane: in
Jane: your
Jane: philosophy

Now the order is perfect. concat(alice, bob, jane) first subscribes to alice and
keeps forwarding events from that first Observable until it is exhausted and comple‐
ted. Then, concat() switches to bob. Think about hot and cold Observables for a
while. In case of merge(), all events from all streams are forwarded because merge()
subscribes eagerly to every stream. However, concat() subscribes just to the first
stream, so in case of hot Observable, you might expect a different outcome. By the
time the first Observable is completed, the second one might be sending an entirely

Slicing and Dicing Using skip(), takeWhile(), and Others | 101

www.EBooksWorld.ir

7 We Need To Go Deeper

different sequence of events. Keep in mind that concat() does not buffer second
Observable until the first one completes; instead, it simply subscribes lazily.

switchOnNext()) is an entirely different way of combining operators. Imagine that
you have an Observable<Observable<T>> that is a stream of events for which each
event is a stream on its own.7 This situation actually makes sense, for example, if you
have a set of mobile phones connecting and disconnecting to the network (outer
stream). Each new connection is an event, but every such event is a stream of inde‐
pendent heartbeat messages (Observable<Ping>). In our case, we will have an Observ
able<Observable<String>>, where each inner stream is a quote from a different
person: alice, bob, or jane:

import java.util.Random;

Random rnd = new Random();
Observable<Observable<String>> quotes = just(
 alice.map(w -> "Alice: " + w),
 bob.map(w -> "Bob: " + w),
 jane.map(w -> "Jane: " + w));

First, we wrap alice, bob and jane Observables into an Observable<Observa
ble<String>>. Let us reiterate: quotes Observable emits three events immediately,
each event being an inner Observable<String>. Every inner Observable<String>
represents words spoken by each person. To illustrate how switchOnNext() works,
we shall delay the emission of inner Observables. We are not delaying each word
within that Observable (variant A) but the entire Observable (variant B is subtly dif‐
ferent):

//A
map(innerObs ->
 innerObs.delay(rnd.nextInt(5), SECONDS))

//B
flatMap(innerObs -> just(innerObs)
 .delay(rnd.nextInt(5), SECONDS))

In variant A, the Observable appears immediately in the outer stream but begins
emitting events with some delay. In variant B, on the other hand, we shift the entire
Observable event forward in time so that it appears in the outer Observable much
later. Now the reason why we needed such a complex setup. Both static concat() and
merge() operators can work with either a fixed list of Observables or Observable of
Observables. In the case of switchOnNext(), the ladder makes sense.

102 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

switchOnNext() begins by subscribing to an outer Observable<Observable<T>>,
which emits inner Observable<T>s. As soon as the first inner Observable<T>
appears, this operator subscribes to it and begins pushing events of type T down‐
stream. Now what happens if next inner Observable<T> appears? switchOnNext()
discards the first Observable<T> by unsubscribing from it and switches to the next
one (thus, the name). In other words, when we have a stream of streams, switchOn
Next() always forwards downstream events from the last inner stream, even if older
streams keep forwarding fresh events.

This is how it looks in our Hamlet quoting example:

Random rnd = new Random();
Observable<Observable<String>> quotes = just(
 alice.map(w -> "Alice: " + w),
 bob.map(w -> "Bob: " + w),
 jane.map(w -> "Jane: " + w))
 .flatMap(innerObs -> just(innerObs)
 .delay(rnd.nextInt(5), SECONDS));

Observable
 .switchOnNext(quotes)
 .subscribe(System.out::println);

One of the possible outcomes, due to the random nature of this example, could look
like this:

Jane: There
Jane: are
Jane: more
Alice: To
Alice: be
Alice: or
Alice: not
Alice: to
Bob: Though
Bob: this
Bob: be
Bob: madness
Bob: yet
Bob: there
Bob: is
Bob: method
Bob: in't

Each person starts speaking with zero to four seconds random delay. In this particu‐
lar round, it was Jane’s Observable<String>, but after citing few words, Alice’s
Observable<String> appeared in the outer Observable. At this point switchOn
Next() unsubscribes from jane, and we never hear the rest of this quote. This Observ
able is discarded and ignored, switchOnNext() only listens to alice at the moment.
However, again the inner Observable is interrupted because Bob’s quote appears.

Slicing and Dicing Using skip(), takeWhile(), and Others | 103

www.EBooksWorld.ir

8 See the section “Read Model Projections” in Appendix A of Implementing Domain-Driven Design (Addison-
Wesley).

Theoretically, switchOnNext() could produce all of the events from the inner Observ
ables if they did not overlap, completing before the next one appears.

Now what would happen in the case of delaying only events in every inner Observa
ble (variant A, remember?) rather than delaying Observables themselves? Well, three
inner Observables would appear at the same time in outer Observable, and switch
OnNext() would only subscribe to one of them.

Criteria-Based Splitting of Stream Using groupBy()
One of the techniques often used together with domain-driven design (for more
information about data-driven design, read Implementing Domain-Driven Design, by
Vaughn Vernon [Addison-Wesley Professional]) is event sourcing. In this architec‐
ture style, data is not stored as a snapshot of current state and mutated in place; that
is, using SQL UPDATE queries. Instead, a sequence of immutable domain events
(facts) about events that already happened are kept in an append-only data store.
Using this design, we never overwrite any data, effectively having an audit log for free.
Moreover, the only way to see the data in real time is by applying these facts one after
another, starting from an empty view.

The process of applying events on top of an initial empty state is known as projection
in event sourcing.8 A single source of facts can drive multiple different projections.
For example, we might have a stream of facts related to a reservation system, like Tick
etReserved, ReservationConfirmed, and TicketBought—the past tense is important
because facts always reflect actions and events that already occurred. From a single
stream of facts (also being the single source of truth), we can derive multiple projec‐
tions, such as the following:

• List of all confirmed reservations
• List of reservations canceled today
• Total revenue per week

When the system evolves, we can discard old projections and build new ones, taking
advantage of data collected eagerly in facts. Suppose that you would like to build a
projection containing all reservations together with their status. To do so, you must
consume all ReservationEvents and apply them to appropriate reservations. Each
ReservationEvent has a subclass for different types of events, like TicketBought.
Also, each event has a UUID of the reservation to which it applies:

104 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

FactStore factStore = new CassandraFactStore();
Observable<ReservationEvent> facts = factStore.observe();
facts.subscribe(this::updateProjection);

//...

void updateProjection(ReservationEvent event) {
 UUID uuid = event.getReservationUuid();
 Reservation res = loadBy(uuid)
 .orElseGet(() -> new Reservation(uuid));
 res.consume(event);
 store(event.getUuid(), res);
}

private void store(UUID id, Reservation modified) {
 //...
}

Optional<Reservation> loadBy(UUID uuid) {
 //...
}

class Reservation {

 Reservation consume(ReservationEvent event) {
 //mutate myself
 return this;
 }

}

Obviously, the stream of facts is expressed as Observable. Some other part of the
system receives API calls or web requests, reacts (e.g., charges the customer’s credit
card) and stores facts (domain events) about what happened. Other parts of the sys‐
tem (or even other systems!) can consume these facts by subscribing to a stream and
building a snapshot of current system state from some arbitrary perspective. Our
code is quite simple: each ReservationEvent loads a Reservation from our projec‐
tion’s data store. If Reservation was not found, it means that it was the very first
event associated with this UUID, so we begin with an empty Reservation. Then, we
pass ReservationEvent to Reservation object. It can update itself to reflect any type
of fact. Then, we store Reservation back.

Remember that projections are independent from facts, they can use any other persis‐
tence mechanism or even keep state in-memory. Moreover, you can have multiple
projections consuming the same stream of facts but building a different snapshot. For
example, you can have an Accounting object that consumes the same stream of facts
but is only concerned about money coming in and out. Another projection might
only be interested in FraudDetected facts, summarizing fraudulent situations.

Slicing and Dicing Using skip(), takeWhile(), and Others | 105

www.EBooksWorld.ir

This brief introduction to event sourcing will help us to understand why groupBy()
operator is useful. After a while, we discovered that updates to Reservation projec‐
tion fall behind, we cannot keep up with the rate of facts being generated. The data
store can easily handle concurrent reads and updates, so we can try to parallelize han‐
dling of facts:

Observable<ReservationEvent> facts = factStore.observe();

facts
 .flatMap(this::updateProjectionAsync)
 .subscribe();

//...

Observable<ReservationEvent> updateProjectionAsync(ReservationEvent event) {
 //possibly asynchronous
}

In this case, we consume facts in parallel, or to be more precise: receiving is sequen‐
tial but handling (in updateProjectionAsync()) is possibly asynchronous. update
ProjectionAsync() alters the state of supplied Reservation objects inside a
projection. But a look at how updateProjection() was implemented we quickly see a
possible race-condition: two threads can consume different events, modify the same
Reservation and try to store it—but the first update is overwritten and effectively
lost. Technically you can try optimistic locking, but another problem remains: the
order of facts is no longer guaranteed. This is not a problem when two unrelated Res
ervation instances (with different UUID) are touched. But applying facts on the same
Reservation object in a different order from which they actually occurred can be dis‐
astrous.

This is where groupBy() comes in handy. It splits a stream based on some key into
multiple parallel streams, each holding events with given key. In this case, we want to
split one huge stream of all facts regarding reservations into large number of smaller
streams, each emitting only events related to a specific UUID:

Observable<ReservationEvent> facts = factStore.observe();

Observable<GroupedObservable<UUID, ReservationEvent>> grouped =
 facts.groupBy(ReservationEvent::getReservationUuid);

grouped.subscribe(byUuid -> {
 byUuid.subscribe(this::updateProjection);
});

This example contains quite a few new constructs. First, we take upstream Observa
ble<ReservationEvent> stream and group it by UUID (ReservationEvent::getRe
servationUuid). You might first expect that groupBy() should return a
List<Observable<ReservationEvent>>—after all we transform a single stream into

106 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

9 Hunt, A. and Thomas, D., The Pragmatic Programmer: From Journeyman to Master (Addison-Wesley Profes‐
sional).

multiple ones. This assumption breaks when you realize that groupBy() cannot possi‐
bly know how many different keys (UUIDs) will generate upstream. Therefore, it must
produce them on-the-fly: whenever a new UUID is discovered, the new GroupedOb
servable<UUID, ReservationEvent> is emitted, pushing events related to that UUID.
So it becomes clear that the outer data structure must be an Observable.

But what is this GroupedObservable<UUID, ReservationEvent> anyway? GroupedOb
servable is a simple subclass of Observable that apart from the standard Observable
contract returns a key to which all events in that stream belong (UUID, in our case).
The number of emitted GroupedObservables can be anything from one (in case of all
events having the same key) to the total number of events (if each upstream event has
a unique key). This is one of these cases for which nested Observables are not that
bad. When we subscribe to the outer Observable, every emitted value is actually
another Observable (GroupedObservable) to which you can subscribe. For example,
each inner stream can provide events related to one another (like the same correla‐
tion ID), however, inner streams are unrelated to one another and can be processed
separately.

Where to Go from Here?
There are dozens of other operators built in to RxJava. Many of them will be
explained in Chapter 6, but going through the entire API is not very reasonable and
quite time consuming. Also such an exhaustive description would become obsolete
from version to version. However, you should have a basic understanding of what
operators can do for you and how they work. The next logical step is writing custom
operators.

Writing Customer Operators
We barely scratched the surface of available operators in RxJava, and you will learn
many more throughout the course of this book. Moreover, the true power of opera‐
tors comes from their composition. Following the UNIX philosophy of "small, sharp
tools,”9 each operator is doing one, small transformation at a time. This section will
first guide you through the compose() operator, which allows fluent composition of
smaller operators, and later introduces the lift() operator, which helps you to write
entirely new custom operators.

Writing Customer Operators | 107

www.EBooksWorld.ir

Reusing Operators Using compose()
Let’s begin by looking at an example. For some reason, we want to transform an
upstream Observable so that every other item is discarded and we only receive even
items. In “Flow Control” on page 211, we will learn about the buffer() operator that
makes this task very simple (buffer(1, 2) does almost exactly what we want). How‐
ever, we will pretend that we do not know this operator so far, but we can implement
this functionality easily by composing several operators:

import org.apache.commons.lang3.tuple.Pair;

//...

Observable<Boolean> trueFalse = Observable.just(true, false).repeat();
Observable<T> upstream = //...
Observable<T> downstream = upstream
 .zipWith(trueFalse, Pair::of)
 .filter(Pair::getRight)
 .map(Pair::getLeft);

First, we generate an infinite Observable<Boolean> emitting true and false alter‐
nately. We can implement this easily by creating a fixed [true, false] stream with
just two items and then repeating it infinitely with the repeat() operator. repeat()
simply intercepts completion notification from upstream and rather than passing it
downstream it resubscribes. Therefore, it is not guaranteed that repeat() will keep
cycling through the same sequence of events, but it happens to be the case when
upstream is a simple fixed stream. See also “Retrying After Failures” on page 254 for a
similar retry() operator.

We zipWith() our upstream Observable with this infinite stream of true and false.
However, zipping requires a function that combines two items. This is simpler in
other languages; in Java, we help ourselves by using the Apache Commons Lang
library, which provides a simple Pair class. At this point, we have a stream of
Pair<T, Boolean> values, each having true or false on the right (a pair comprises
left and right components). As a next step, we filter() all pairs and keep only those
having true on the right, effectively discarding every even pair. The last step is to
unwrap the pair, throwing out Boolean and keeping T only (getLeft()). If you want
to avoid third-party library, an alternative implementation follows:

import static rx.Observable.empty;
import static rx.Observable.just;

//...

upstream.zipWith(trueFalse, (t, bool) ->
 bool ? just(t) : empty())
 .flatMap(obs -> obs)

108 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

http://bit.ly/2cM5gUC
http://bit.ly/2cM5gUC

10 Go to http://reactivex.io/rxscala for a Scala-specific wrapper for RxJava.

At first glance, flatMap() looks kind of odd and doesn’t appear to be doing anything
that is actually crucial. From zipWith() transformation we return an Observable
(one element or empty), which leads to Observable<Observable<T>>. By using flat
Map() this way we get rid of this nesting level—after all, a lambda expression in flat
Map() is supposed to return an Observable for each input element, which also
happens to be an Observable.

No matter which implementation you choose, this is not very reusable. If you need to
reuse “every odd element” sequence of operators, you either copy-paste them or create
a utility method like this:

static <T> Observable<T> odd(Observable<T> upstream) {
 Observable<Boolean> trueFalse = just(true, false).repeat();
 return upstream
 .zipWith(trueFalse, Pair::of)
 .filter(Pair::getRight)
 .map(Pair::getLeft)
}

But you can no longer fluently chain operators; in other words, you cannot say:
obs.op1().odd().op2(). Unlike C# (where reactive extensions originated) and
Scala10 (via implicits), Java does not allow extension methods. But the built-in com
pose() operator comes as close as possible. compose() takes a function as an argu‐
ment that is supposed to transform the upstream Observable via a series of other
operators. This is how it works in practice:

private <T> Observable.Transformer<T, T> odd() {
 Observable<Boolean> trueFalse = just(true, false).repeat();
 return upstream -> upstream
 .zipWith(trueFalse, Pair::of)
 .filter(Pair::getRight)
 .map(Pair::getLeft);
}

//...

//[A, B, C, D, E...]
Observable<Character> alphabet =
 Observable
 .range(0, 'Z' - 'A' + 1)
 .map(c -> (char) ('A' + c));

//[A, C, E, G, I...]
alphabet
 .compose(odd())
 .forEach(System.out::println);

Writing Customer Operators | 109

www.EBooksWorld.ir

http://reactivex.io/rxscala

The odd() function returns a Transformer<T, T> from Observable<T> to Observa
ble<T> (of course, types can be different). Thus, Transformer is a function on its
own, so we can replace it with a lambda expression (upstream -> upstream...).
Notice that the odd() function is executed eagerly when Observable is assembled,
not during subscription. Interestingly, if you want to emit even values (2nd, 4th, 6th,
etc.) rather than odd (1st, 3rd, 5th, etc.), simply replace trueFalse with true
False.skip(1).

Implementing Advanced Operators Using lift()
Implementing custom operators is tricky because backpressure (see: “Backpressure”
on page 226) and the subscription mechanism need to be taken into account. There‐
fore, try your best to implement your requirements from existing operators rather
than inventing your own. Built-in operators are much better tested and proven. How‐
ever, if none of the supplied operators work for you, the lift() meta-operator will
help. compose() is only useful for grouping existing operators together. With lift(),
on the other hand, you can implement almost any operator, altering the flow of
upstream events.

Whereas compose() transforms Observables, lift() allows transforming Sub
scribers. Let’s recap what we learned in “Mastering Observable.create()” on page 35.
When you subscribe() to an Observable, the Subscriber instance wrapping your
callback travels up to the Observable it subscribed to and causes Obsevable’s cre
ate() method to be invoked with our subscriber as an argument (gross simplifica‐
tion). So every time we subscribe, a Subscriber travels up through all operators to
the original Observable. Obviously, between the Observable and subscribe() there
can be an arbitrary number of operators, altering events flowing downstream, as
illustrated here:

Observable
 .range(1, 1000)
 .filter(x -> x % 3 == 0)
 .distinct()
 .reduce((a, x) -> a + x)
 .map(Integer::toHexString)
 .subscribe(System.out::println);

But here is an interesting fact: if you look up the source code of RxJava and replace
operator invocations with their body, this quite complex sequence of operators
becomes very regular (notice how reduce() is implemented using scan().take
Last(1).single():

Observable
 .range(1, 1000)
 .lift(new OperatorFilter<>(x -> x % 3 == 0))
 .lift(OperatorDistinct.<Integer>instance())

110 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

 .lift(new OperatorScan<>((Integer a, Integer x) -> a + x))
 .lift(OperatorTakeLastOne.<Integer>instance())
 .lift(OperatorSingle.<Integer>instance())
 .lift(new OperatorMap<>(Integer::toHexString))
 .subscribe(System.out::println);

Almost all operators, excluding those working with multiple streams at once (like
flatMap()) are implemented by means of lift(). When we subscribe() at the very
bottom, a Subscriber<String> instance is created and passed to the immediate pred‐
ecessor. It can be “true” Observable<String> that emits events or just the result of
some operator, map(Integer::toHexString) in our case. map() itself does not emit
events, yet it received a Subscriber that wants to receive them. What map() does
(through the lift() helper operator) is it transparently subscribes to its parent
(reduce() in the preceding example). However, it cannot pass the same Subscriber
instance it received. This is because subscribe() required Subscriber<String>,
whereas reduce() expects Subscriber<Integer>. After all, that is what map() is
doing here: transforming Integer to String. So instead, map() operator creates a
new artificial Subscriber<Integer> and every time this special Subscriber receives
anything, it applies Integer::toHexString function and notifies the downstream Sub
scriber<String>.

Looking under the hood of the map() operator

This is essentially what OperatorMap class is doing: providing a transformation from
downstream (child) Subscriber<R> into upstream Subscriber<T>. Here is the real
implementation found in RxJava, with some minor readability simplifications:

public final class OperatorMap<T, R> implements Operator<R, T> {

 private final Func1<T, R> transformer;

 public OperatorMap(Func1<T, R> transformer) {
 this.transformer = transformer;
 }

 @Override
 public Subscriber<T> call(final Subscriber<R> child) {
 return new Subscriber<T>(child) {

 @Override
 public void onCompleted() {
 child.onCompleted();
 }

 @Override
 public void onError(Throwable e) {
 child.onError(e);
 }

Writing Customer Operators | 111

www.EBooksWorld.ir

 @Override
 public void onNext(T t) {
 try {
 child.onNext(transformer.call(t));
 } catch (Exception e) {
 onError(e);
 }
 }
 };
 }
}

One unusual detail is the reversed order of T and R generic types. The map() operator
transforms values flowing from upstream of type T to type R. However, the operator’s
responsibility is transforming Subscriber<R> (coming from downstream subscrip‐
tion) to Subscriber<T> (passed to upstream Observable). We expect subscribe via
Subscriber<R>, whereas operator map() is used against Observable<T>, requiring
Subscriber<T>.

Ensure that you roughly understand the preceding snippet from RxJava’s source code.
Understanding how map() is implemented (admittedly one of the easiest operators)
will enable you to write your own. Every time you map() over a stream, you actually
call lift() with a new instance of OperatorMap class, providing the transformer
function. This function operates on upstream events of type T and returns down‐
stream events of type R. Every time a user provides any custom function/transforma‐
tion to your operator, make sure you catch all unexpected exceptions and forward
them downstream via the onError() method. This also ensures that you unsubscribe
from upstream, preventing it from emitting further events.

Keep in mind that until someone actually subscribes, we barely created a new Observ
able (lift(), like any other operator, creates new Observable) with a reference to
OperatorMap instance underneath, which in turns holds a reference to our function.
But only when someone actually subscribes, the call() function of OperatorMap is
invoked. This function receives our Subscriber<String> (e.g., wrapping Sys
tem.out::println) and returns another Subscriber<Integer>. It is the latter Sub
scriber that travels upstream, to preceding operators.

That is pretty much how all operators work, both built-in and custom. You receive a
Subscriber and return another one, enhancing and passing whatever it wishes to
downstream Subscriber.

Our first operator

This time we would like to implement an operator that will emit toString() of every
odd (1st, 3rd, 5th, etc.) element. It is best explained with some sample code:

112 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

Observable<String> odd = Observable
 .range(1, 9)
 .lift(toStringOfOdd())
//Will emit: "1", "3", "5", "7" and "9" strings

You can achieve the same functionality by using built-in operators, we are writing a
custom operator just for educational purposes:

Observable
 .range(1, 9)
 .buffer(1, 2)
 .concatMapIterable(x -> x)
 .map(Object::toString);

The buffer() will be introduced in “Buffering Events to a List” on page 214, for the
time being, all you need to know is that buffer(1, 2) will transform any Observa
ble<T> into Observable<List<T>>, where each inner List has exactly one odd ele‐
ment and skips even ones. Having a stream of lists like List(1), List(3), and so on,
we reconstruct a flat stream using concatMapIterable(). But for the sake of learning
experience, let’s implement a custom operator that does that in a single step. The cus‐
tom operator can be in one of two states:

• It either received odd event (1st, 3rd, 5th, etc.) from upstream which it forwards
downstream after applying it to toString().

• It received even event which it simply discards.

Then cycle repeats. The operator might look like this:

<T> Observable.Operator<String, T> toStringOfOdd() {
 return new Observable.Operator<String, T>() {

 private boolean odd = true;

 @Override
 public Subscriber<? super T> call(Subscriber<? super String> child) {
 return new Subscriber<T>(child) {
 @Override
 public void onCompleted() {
 child.onCompleted();
 }

 @Override
 public void onError(Throwable e) {
 child.onError(e);
 }

 @Override
 public void onNext(T t) {
 if(odd) {
 child.onNext(t.toString());

Writing Customer Operators | 113

www.EBooksWorld.ir

 } else {
 request(1);
 }
 odd = !odd;
 }
 };
 }
 };
}

The request(1) invocation will be explained much later in “Honoring the Requested
Amount of Data” on page 237. For now you can understand it like this: when a Sub
scriber requests just a subset of events—for example, only the first two (take(2))—
RxJava takes care of requesting only that amount of data by calling request(2) inter‐
nally. This request is passed upstream and we receive barely 1 and 2. However, we
drop 2 (even), yet we were obligated to provide two events downstream. Therefore,
we must request one extra event (request(1)) in addition to that so that we receive 3,
as well. RxJava implements quite a sophisticated mechanism called backpressure that
allows subscribers to request only the amount of events they can process, protecting
from producers outperforming consumers. We devote “Backpressure” on page 226 to
this topic.

Unfortunately, for better or worse, null is a valid event value in
RxJava; that is, Observable.just("A", null, "B") is as good as
any other stream. You need to take that into account when design‐
ing custom operators as well as when applying operators. However,
passing null is generally considered nonidiomatic, and you should
use wrapper value types, instead.

Another interesting pitfall you might encounter is failing to provide a child Sub
scriber as an argument to the new Subscriber, like here:

<T> Observable.Operator<String, T> toStringOfOdd() {
 //BROKEN
 return child -> new Subscriber<T>() {
 //...
 }
}

The parameterless constructor of Subscriber is fine, and again our operator seems to
work. But let’s see how it goes with infinite stream:

Observable
 .range(1, 4)
 .repeat()
 .lift(toStringOfOdd())
 .take(3)
 .subscribe(

114 | Chapter 3: Operators and Transformations

www.EBooksWorld.ir

 System.out::println,
 Throwable::printStackTrace,
 () -> System.out.println("Completed")
);

We build an infinite stream of numbers (1, 2, 3, 4, 1, 2, 3…), apply our operator ("1",
"3", "1", "3"…), and take only the first three values. This is absolutely fine and
should never fail; after all, streams are lazy. But remove child from new Sub

scriber(child) constructor and our Observable never notifies about completion
after receiving 1, 3, 1. What happened?

The take(3) operator requested only the first three values and wanted to unsub
scribe(). Unfortunately, the unsubscription requested never made it to the original
stream, which keeps producing values. Even worse, these values are processed by our
custom operator and passed to downstream Subscriber (take(3)), which is not even
listening anymore. Implementation details aside, as a rule of thumb, pass the down‐
stream Subscriber as a constructor argument to the new Subscriber when writing
your own operators. A no-argument constructor is used rarely and very unlikely you
will need it for simple operators.

This is just the tip of the iceberg with respect to the issues you can encounter when
writing your own operators. Luckily, very seldom are we not able to achieve what we
want to accomplish with built-in mechanisms.

Summary
The true power of RxJava lies in its operators. Declarative transformations of streams
of data is safe yet expressive and flexible. With a strong foundation in functional pro‐
gramming, operators play deciding role in RxJava adoption. Mastering built-in oper‐
ators is a key to success in this library. But remember we did not see all operators yet
—for example, see “Flow Control” on page 211. But at this point, you should have a
good overview of what RxJava can do and how to enhance it when it cannot do some‐
thing directly.

Summary | 115

www.EBooksWorld.ir

www.EBooksWorld.ir

CHAPTER 4

Applying Reactive Programming
to Existing Applications

Tomasz Nurkiewicz

Introducing a new library, technology, or paradigm to an application, be it greenfield
or legacy codebase, must be a careful decision. RxJava is not an exception. In this
chapter, we review some patterns and architectures found in ordinary Java applica‐
tions and see how Rx can help. This process is not straightforward and requires a sig‐
nificant mindset shift, therefore we will carefully transform from imperative to
functional and reactive style. Many libraries in Java projects these days simply add
bloat without giving anything in return. However, you will see how RxJava not only
simplifies traditional projects, but what kinds of benefits it brings to legacy platforms.

I am pretty sure that you’re already very excited about RxJava. Built-in operators and
simplicity makes Rx an amazingly powerful tool for transforming streams of events.
However, if you go back to your office tomorrow, you will realize that there are no
streams, no real-time events from stock exchange. You can hardly find any events in
your applications; it’s just a mash-up of web requests, databases, and external APIs.
You are so eager to try this new RxJava-thing somewhere beyond Hello world. Yet it
seems that there are simply no use cases in real life that justify using Rx. Yet, RxJava
can be a significant step forward in terms of architectural consistency and robustness.
You do not need to commit to reactive style top-to-bottom—this is too risky and
requires too much work in the beginning. But Rx can be introduced at any layer,
without breaking an application as a whole.

We take you through some common application patterns and ways by which you can
enhance them with RxJava in noninvasive way, with the focus being on database
querying, caching, error handling, and periodic tasks. The more RxJava you add in
various places of your stack the more consistent your architecture will become.

117

www.EBooksWorld.ir

From Collections to Observables
Unless your platform was built recently in JVM frameworks like Play, Akka actors, or
maybe Vert.x, you are probably on a stack with a servlet container on one hand, and
JDBC or web services on the other. Between them, there is a varying number of layers
implementing business logic, which we will not refactor all at once; instead, let’s begin
with a simple example. The following class represents a trivial repository abstracting
us from a database:

class PersonDao {

 List<Person> listPeople() {
 return query("SELECT * FROM PEOPLE");
 }

 private List<Person> query(String sql) {
 //...
 }

}

Implementation details aside, how is this related to Rx? So far we have been talking
about asynchronous events pushed from upstream systems or, at best, when someone
subscribes. How is this mundane Dao relevant here? Observable is not only a pipe
pushing events downstream. You can treat Observable<T> as a data structure, dual to
Iterable<T>. They both hold items of type T, but providing a radically different
interface. So, it shouldn’t come as a surprise that you can simply replace one with the
other:

Observable<Person> listPeople() {
 final List<Person> people = query("SELECT * FROM PEOPLE");
 return Observable.from(people);
}

At this point, we made a breaking change to the existing API. Depending on how big
your system is, such incompatibility might be a major concern. Thus, it is important
to bring RxJava into your API as soon as possible. Obviously, we are working with an
existing application so that can’t be the case.

BlockingObservable: Exiting the Reactive World
If you are combining RxJava with existing, blocking and imperative code, might need
have to translate Observable to a plain collection. This transformation is rather
unpleasant, it requires blocking on an Observable waiting for its completion. Until
Observable completes, we are not capable of creating a collection. BlockingObserva
ble is a special type that makes it easier to work with Observable in nonreactive

118 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

https://www.playframework.com
http://akka.io
http://vertx.io

environment. BlockingObservable should be your last choice when working with
RxJava, but it is inevitable when combining blocking and nonblocking code.

In Chapter 3, we refactored the listPeople() method so that it returns Observa
ble<People> rather than List. Observable is not an Iterable in any sense, so our
code no longer compiles. We want to take baby steps rather than massive refactoring,
so let’s keep the scope of changes as minimal as possible. The client code could look
like this:

List<Person> people = pesonDao.listPeople();
String json = marshal(people);

We can imagine the marshal() method pulling data from the people collection and
serializing them to JSON. That’s no longer the case, we can’t simply pull items from
Observable when we want. Observable is in charge of producing (pushing) items and
notifying subscribers if any. This radical change can be easily circumvented with
BlockingObservable. This handy class is entirely independent from Observable and
can be obtained via the Observable.toBlocking() method. The blocking variant of
Observable has superficially similar methods like single() or subscribe(). How‐
ever, BlockingObservable is much more convenient in blocking environments that
are inherently unprepared for the asynchronous nature of Observable. Operators on
BlockingObservable typically block (wait) until the underlying Observable is com‐
pleted. This strongly contradicts the main concept of Observables that everything is
likely asynchronous, lazy, and processed on the fly. For example, Observable.forE
ach() will asynchronously receive events from Observable as they come in, whereas
BlockingObservable.forEach() will block until all events are processed and stream
is completed. Also exceptions are no longer propagated as values (events) but instead
are rethrown in the calling thread.

In our case, we want to transform Observable<Person> back into List<Person> to
limit the scope of refactoring:

Observable<Person> peopleStream = personDao.listPeople();
Observable<List<Person>> peopleList = peopleStream.toList();
BlockingObservable<List<Person>> peopleBlocking = peopleList.toBlocking();
List<Person> people = peopleBlocking.single();

I intentionally left all intermediate types explicit in order to explain what happens.
After refactoring to Rx, our API returns Observable<Person> peopleStream. This
stream can potentially be fully reactive, asynchronous, and event driven, which
doesn’t match at all what we need: a static List. As the first step, we turn Observa
ble<Person> into Observable<List<Person>>. This lazy operator will buffer all Per
son events and keep them in memory until the onCompleted() event is received. At
this point, a single event of type List<Person> will be emitted, containing all seen
events at once, as illustrated in the following marble diagram:

BlockingObservable: Exiting the Reactive World | 119

www.EBooksWorld.ir

The resulting stream completes immediately after emitting a single List item. Again,
this operator is asynchronous; it doesn’t wait for all events to arrive but instead lazily
buffers all values. The awkward looking Observable<List<Person>> peopleList is
then converted to BlockingObservable<List<Person>> peopleBlocking. Blockin
gObservable is a good idea only when you must provide a blocking, static view of
your otherwise asynchronous Observable. Whereas Observable.from(List<T>)
converts normal pull-based collection into Observable, toBlocking() does some‐
thing quite the opposite. You might ask yourself why we need two abstractions for
blocking and nonblocking operators. The authors of RxJava figured out that being
explicit about synchronous versus asynchronous nature of underlying operator is too
crucial to be left for JavaDoc. Having two unrelated types ensures that you always
work with the appropriate data structure. Moreover, BlockingObservable is your
weapon of last resort; normally, you should compose and chain plain Observables as
long as possible. However, for the purpose of this exercise, let’s escape from Observa
ble right away. The last operator single() drops observables altogether and extracts
one, and only one, item we expect to receive from BlockingObservable<T>. A similar
operator, first(), will return a value of T and discard whatever it has left. single(),
on the other hand, makes sure there are no more pending events in underlying
Observable before terminating. This means single() will block waiting for onCom
pleted() callback. Here is the same code snippet as earlier, this time with all opera‐
tors chained:

List<Person> people = personDao
 .listPeople()
 .toList()
 .toBlocking()
 .single();

You might think that we went through all this hassle of wrapping and unwrapping
Observable for no apparent reason. Remember, this was just the first step. The next
transformation will introduce some laziness. Our code as it stands right now always
executes query("...") and wraps it with Observable. As you know by now, Observa

120 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

bles (especially cold ones) are lazy by definition. As long as no one subscribes, they
just represent a stream that never had a chance to begin emitting values. Most of the
time you can call methods returning Observable and as long as you don’t subscribe,
no work will be done. Observable is like a Future because it promises a value to
appear in the future. But as long as you don’t request it, a cold Observable will not
even begin emitting. From that perspective, Observable is more similar to
java.util.function.Supplier<T>, generating values of type T on demand. Hot
Observables are different because they emit values whether you are listening or not,
but we are not considering them right now. The mere existence of Observable does
not indicate a background job or any side effect, unlike Future, which almost always
suggests some operation running concurrently.

Embracing Laziness
So how do we make our Observable lazy? The simples technique is to wrap an eager
Observable with defer():

public Observable<Person> listPeople() {
 return Observable.defer(() ->
 Observable.from(query("SELECT * FROM PEOPLE")));
}

Observable.defer() takes a lambda expression (a factory) that can produce Observa
ble. The underlying Observable is eager, so we want to postpone its creation.
defer() will wait until the last possible moment to actually create Observable; that is,
until someone actually subscribes to it. This has some interesting implications.
Because Observable is lazy, calling listPeople() has no side effects and almost no
performance footprint. No database is queried yet. You can treat Observable<Per
son> as a promise but without any background processing happening yet. Notice that
there is no asynchronous behavior at the moment, just lazy evaluation. This is similar
to how values in the Haskell programming language are evaluated lazily only when
absolutely needed.

If you never programmed in functional languages, you might be quite confused why
laziness is so important and groundbreaking. It turns out that such behavior is quite
useful and can improve the quality and freedom of your implementation quite a bit.
For example, you no longer have to pay attention to which resources are fetched,
when, and in what order. RxJava will load them only when they are absolutely
needed.

As an example take this trivial fallback mechanism that we have all seen so many
times:

void bestBookFor(Person person) {
 Book book;

Embracing Laziness | 121

www.EBooksWorld.ir

https://www.haskell.org/

 try {
 book = recommend(person);
 } catch (Exception e) {
 book = bestSeller();
 }
 display(book.getTitle());
}

void display(String title) {
 //...
}

You probably think there is nothing wrong with such a construct. In this example, we
try to recommend the best book for a given person, but in case of failures, we degrade
gracefully and display the best seller. The assumption is that fetching a bestseller is
faster and can be cached. But what if you could add error handling declaratively so
that try-catch blocks aren’t obscuring real logic?

void bestBookFor(Person person) {
 Observable<Book> recommended = recommend(person);
 Observable<Book> bestSeller = bestSeller();
 Observable<Book> book = recommended.onErrorResumeNext(bestSeller);
 Observable<String> title = book.map(Book::getTitle);
 title.subscribe(this::display);
}

We are only exploring RxJava so far, thus I left all these intermediate values and types.
In real life, bestBookFor() would look more like this:

void bestBookFor(Person person) {
 recommend(person)
 .onErrorResumeNext(bestSeller())
 .map(Book::getTitle)
 .subscribe(this::display);
}

This code is beautifully concise and readable. First find a recommendation for per
son. In case of error (onErrorResumeNext), proceed with a bestseller. No matter
which one succeeded, map returns a value by extracting the title and then displays it.
onErrorResumeNext() is a powerful operator that intercepts exceptions happening
upstream, swallows them, and subscribes to provided backup Observable. This is
how Rx implements a try-catch clause. We will spend much more time on error
handling later in this book (see “Declarative try-catch Replacement” on page 247).
For the time being, notice how we can lazily call bestSeller() without worrying that
fetching best seller happens even when a real recommendation went fine.

122 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

Composing Observables
SELECT * FROM PEOPLE is not really a state-of-the-art SQL query. First, you should
not fetch all columns blindly, but fetching all rows is even more damaging. Our old
API is not capable of paging results, viewing just a subset of a table. It might look like
this, again in traditional enterprise application:

List<Person> listPeople(int page) {
 return query(
 "SELECT * FROM PEOPLE ORDER BY id LIMIT ? OFFSET ?",
 PAGE_SIZE,
 page * PAGE_SIZE
);
}

This is not a SQL book, so we’re going to set the implementation details aside. The
author of this API was merciless: we don’t have the freedom to choose any range of
records, we can only operate on 0-based page numbers. However in RxJava, due to
laziness we can actually simulate reading an entire database starting from given page:

import static rx.Observable.defer;
import static rx.Observable.from;

Observable<Person> allPeople(int initialPage) {
 return defer(() -> from(listPeople(initialPage)))
 .concatWith(defer(() ->
 allPeople(initialPage + 1)));
}

This code snippet lazily loads the initial page of database records, for example 10
items. If no one subscribes, even this first query is not invoked. If there is a subscriber
that only consumes a few initial elements (e.g., allPeople(0).take(3)), RxJava will
unsubscribe automatically from our stream and no more queries are executed. So
what happens when we request, say, 11 items but the first listPeople() call returned
only 10? Well, RxJava figures out that the initial Observable is exhausted but the con‐
sumer is still hungry. Luckily, it sees concatWith() operator, that basically says: when
the Observable on the left is completed, rather than propagating completion notifica‐
tion to subscribers, subscribe to Observable on the right and continue as if nothing
happened, as depicted in the following marble diagram:

Composing Observables | 123

www.EBooksWorld.ir

In other words, concatWith() can join together two Observables so that when the
first one completes, the second one takes over. In a.concatWith(b).subscribe(...),
subscriber will first receive all events from a, followed by all events from b. In this
case, the subscriber first receives an initial 10 items followed by a subsequent 10.
However, look carefully, there is an alleged infinite recursion in our code! allPeo
ple(initialPage) calls allPeople(initialPage + 1) without any stop condition.
This is a recipe for StackOverflowError in most languages, but not here. Again, call‐
ing allPeople() is always lazy, therefore the moment you stop listening (unsub‐
scribe), this recursion is over. Technically concatWith() can still produce
StackOverflowError here. Wait until “Honoring the Requested Amount of Data” on
page 237, you will learn how to deal with the varying demand for incoming data.

The technique of lazily loading data chunk by chunk is quite useful because it allows
you to concentrate on business logic, not on low-level plumbing. We already see some
benefits of applying RxJava even on a small scale. Designing an API with Rx in mind
doesn’t influence the entire architecture, because we can always fall back to Blockin
gObservable and Java collections. But it’s better to have wide range of possibilities
that we can further trim down if necessary.

Lazy paging and concatenation
There are more ways to implement lazy paging with RxJava. If you think about it, the
simplest way of loading paged data is to load everything and then take whatever we
need. It sounds silly, but thanks to laziness it is feasible. First we generate all possible
page numbers and then we request loading each and every page individually:

Observable<List<Person>> allPages = Observable
 .range(0, Integer.MAX_VALUE)

124 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

 .map(this::listPeople)
 .takeWhile(list -> !list.isEmpty());

If this were not RxJava, the preceding code would take an enormous amount of time
and memory, basically loading the entire database to memory. But because Observa
ble is lazy, no query to the database appeared yet. Moreover, if we find an empty page
it means all further pages are empty, as well (we reached the end of the table). There‐
fore, we use takeWhile() rather than filter(). To flatten allPages to Observa
ble<Person> we can use concatMap() (see “Preserving Order Using concatMap()” on
page 75):

Observable<Person> people = allPages.concatMap(Observable::from);

concatMap() requires a transformation from List<Person> to Observable<Person>,
executed for each page. Alternatively we can try concatMapIterable(), which does
the same thing, but the transformation should return an Iterable<Person> for each
upstream value (happening to be Iterable<Person> already):

Observable<Person> people = allPages.concatMapIterable(page -> page);

No matter which approach you choose, all transformations on Person object are lazy.
As long as you limit the number of records you want to process (for example with
people.take(15)), the Observable<Person> will invoke listPeople() as late as pos‐
sible.

Imperative Concurrency
I don’t often see explicit concurrency in enterprise applications. Most of the time a
single request is handled by a single thread. The same thread does the following:

• Accepts TCP/IP connection
• Parses HTTP request
• Calls a controller or servlet
• Blocks on database call
• Processes results
• Encodes response (e.g., in JSON)
• Pushes raw bytes back to the client

This layered model affects user latency when the backend makes several independent
requests for instance to database. They are performed sequentially, whereas one could
easily parallelize them. Moreover scalability is affected. For example in Tomcat there
are 200 threads by default in the executors that are responsible for handling requests.
This means that we can’t handle more than 200 concurrent connections. In case of a
sudden but short burst of traffic, incoming connections are queued and the server

Imperative Concurrency | 125

www.EBooksWorld.ir

1 In fact, RxJava tries to stay on the same thread via thread affinity in the event loop model to take advantage of
this, as well.

2 See also “Bulkhead Pattern and Fail-Fast” on page 295

responds with higher latency. However, this situation can’t last forever, and Tomcat
will eventually begin rejecting incoming traffic. We will devote large parts of the next
chapter (see “Nonblocking HTTP Server with Netty and RxNetty” on page 169) on
how to deal with this rather embarrassing shortcoming. For the time being, let’s stay
with traditional architecture. Executing every step of request handling within a single
thread has some benefits, for example improved cache locality and minimal synchro‐
nization overhead.1 Unfortunately, in classic applications, because overall latency is
the sum of each layer’s latencies, one malfunctioning component can have a negative
impact on total latency.2 Moreover, sometimes there are many steps that are inde‐
pendent from one another and can be executed concurrently. For example, we invoke
multiple external APIs or execute several independent SQL queries.

JDK has quite good support for concurrency, especially since Java 5 with Executor
Service and Java 8 with CompletableFuture . Nonetheless, it is not as widely used as
it could be. For example, let’s look at the following program with no concurrency
whatsoever:

Flight lookupFlight(String flightNo) {
 //...
}

Passenger findPassenger(long id) {
 //...
}

Ticket bookTicket(Flight flight, Passenger passenger) {
 //...
}

SmtpResponse sendEmail(Ticket ticket) {
 //...
}

And on the client side:

Flight flight = lookupFlight("LOT 783");
Passenger passenger = findPassenger(42);
Ticket ticket = bookTicket(flight, passenger);
sendEmail(ticket);

Again, quite typical, classic blocking code, similar to what you can find in many
applications. But if you look carefully from a latency perspective, the preceding code
snippet has four steps; however, the first two are independent from each other. Only
the third step (bookTicket()) needs results from lookupFlight() and findPassen

126 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

ger(). There exists an obvious opportunity to take advantage of concurrency. Yet,
very few developers will actually go down this path because it requires awkward
thread pools, Futures, and callbacks. What if the API were already Rx-compatible,
though? Remember, you can simply wrap blocking, legacy code in Observable, just
like we did in the beginning of this chapter:

Observable<Flight> rxLookupFlight(String flightNo) {
 return Observable.defer(() ->
 Observable.just(lookupFlight(flightNo)));
}

Observable<Passenger> rxFindPassenger(long id) {
 return Observable.defer(() ->
 Observable.just(findPassenger(id)));
}

Semantically, the rx- methods do exactly the same thing and in the same way; that is,
they are blocking by default. We didn’t gain anything yet, apart from a more verbose
API from the client perspective:

Observable<Flight> flight = rxLookupFlight("LOT 783");
Observable<Passenger> passenger = rxFindPassenger(42);
Observable<Ticket> ticket =
 flight.zipWith(passenger, (f, p) -> bookTicket(f, p));
ticket.subscribe(this::sendEmail);

Both traditional blocking programs and the one with Observable work exactly the
same way. It’s lazier by default, but the order of operations is essentially the same.
First, we create Observable<Flight>, which as you already know, does nothing by
default. Unless someone explicitly asks for a Flight, this Observable is just a lazy
placeholder. We already learned that this is a valuable property of cold Observables.
The same story goes for Observable<Passenger>; we have two placeholders of type
Flight and Passenger, however no side-effects were performed yet. No database
query or web-service call. If we decide to stop processing here, no superfluous work
was done.

To proceed with bookTicket(), we need concrete instances of both Flight and Pas
senger. It is tempting to just block on these two Observables by using the toBlock
ing() operator. However, we would like to avoid blocking as much as possible to
reduce resource consumption (especially memory) and allow greater concurrency.
Another poor solution is to .subscribe() on the flight and passenger Observa
bles and somehow wait for both callbacks to finish. It’s fairly straightforward when
Observable is blocking, but if callbacks appear asynchronously and you need to syn‐
chronize some global state waiting for both of them, this quickly becomes a night‐
mare. Also a nested subscribe() is nonidiomatic, and typically you want a single
subscription for one message flow (use case). The only reason why callbacks work
somewhat decently in JavaScript is because there is just one thread. The idiomatic

Imperative Concurrency | 127

www.EBooksWorld.ir

way of subscribing to multiple Observables at the same time is zip and zipWith. You
might perceive zip as a way to join two independent streams of data pair-wise. But
far more often, zip is simply used to join together two single-item Observables.
ob1.zip(ob2).subscribe(...) essentially means that receiving an event when both
ob1 and ob2 are done (emit an event on their own). So whenever you see zip, it’s
more likely that someone is simply making a join step on two or more Observables
that had forked paths of execution. zip is a way to asynchronously wait for two or
more values, no matter which one appears last.

So let’s get back to flight.zipWith(passenger, this::bookTicket) (a shorter syn‐
tax using method reference instead of explicit lambda, as in the code sample). The
reason I keep all of the type information rather than fluently joining expressions is
because I want you to pay attention to return types. flight.zipWith(passen
ger, ...) doesn’t simply invoke callback when both flight and passenger are
done; it returns a new Observable which you should immediately recognize as a lazy
placeholder for data. Amazingly, at this point in time no computation was yet started,
as well. We simply wrapped few data structures together, but no behavior was trig‐
gered. As long as no one subscribes to Observable<Ticket>, RxJava won’t run any
backend code. This is what finally happens in last statement: ticket.subscribe()
explicitly asks for Ticket.

Where to Subscribe?

Pay attention to where you see subscribe() in domain code. Often
your business logic is just composing Observables all the way
down and returning them to some sort of framework or scaffolding
layer. The actual subscription happens behind the scenes in a web
framework or some glue code. It is not a bad practice to call sub
scribe() yourself, but try to push it out as far as possible.

To understand the flow of execution, it’s useful to look bottom up. We subscribed to
ticket, thus RxJava must subscribe transparently to both flight and passenger. At
this point the real logic happens. Because both Observables are cold and no concur‐
rency is yet involved, the first subscription to flight invokes the lookupFlight()
blocking method right in the calling thread. When lookupFlight() is done, RxJava
can subscribe to passenger. However, it already received a Flight instance from syn‐
chronous flight. rxFindPassenger() calls findPassenger() in a blocking fashion
and receives a Passenger instance. At this juncture, data flows back downstream.
Instances of Flight and Passenger are combined using the provided lambda (book
Ticket) and passed to ticket.subscribe().

This sounds like a lot of work considering it behaves and works essentially just like
our blocking code in the beginning. But now we can declaratively apply concurrency

128 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

without changing any logic. If our business methods returned Future<Flight> (or
CompletableFuture<Flight>, it doesn’t really matter), two decisions would have
been made for us:

• The underlying invocation of lookupFlight() already began and there is no
place for laziness. We don’t block on such method, but work already started.

• We have no control over concurrency whatsoever, it is the method implementa‐
tion that decides whether a Future task is invoked in a thread pool, new thread
per request, and so on.

RxJava gives users more control. Just because Observable<Flight> wasn’t imple‐
mented with concurrency in mind, this does not mean that we cannot apply it later.
Real-world Observables are typically asynchronous already, but in rare cases you
must add concurrency to an existing Observable. The consumers of our API, not the
implementors, are free to choose the threading mechanism in case of the synchro‐
nous Observable. All of this is achieved by using the subscribeOn() operator:

Observable<Flight> flight =
 rxLookupFlight("LOT 783").subscribeOn(Schedulers.io());
Observable<Passenger> passenger =
 rxFindPassenger(42).subscribeOn(Schedulers.io());

At any point before subscribing, we can inject subscribeOn() operator and provide a
so-called Scheduler instance. In this case, I used the Schedulers.io() factory
method, but we can just as well use a custom ExecutorService and quickly wrap it
with Scheduler. When subscription occurs, the lambda expression passed to Observa
ble.create() is executed within the supplied Scheduler rather than the client
thread. It is not necessary yet but we will examine schedulers in depth in “What Is a
Scheduler?” on page 141 section. For the time being, treat a Scheduler like a thread
pool.

How does Scheduler change the runtime behavior of our program? Remember that
the zip() operator subscribes to two or more Observables and waits for pairs (or
tuples). When subscription occurs asynchronously, all upstream Observables can call
their underlying blocking code concurrently. If you now run your program, lookup
Flight() and findPassenger() will begin execution immediately and concurrently
when ticket.subscribe() is invoked. Then, bookTicket() will be applied as soon as
the slower of the aforementioned Observables emits a value.

Talking about slowness, you can declaratively apply a timeout, as well, when a given
Observable does not emit any value in the specified amount of time:

Imperative Concurrency | 129

www.EBooksWorld.ir

rxLookupFlight("LOT 783")
 .subscribeOn(Schedulers.io())
 .timeout(100, TimeUnit.MILLISECONDS)

As always, in case of errors, they are propagated downstream rather than thrown
arbitrarily. So if the lookupFlight() method takes more than 100 milliseconds, you
will end up with TimeoutException rather than an emitted value sent downstream to
every subscriber. The timeout() operator is exhaustively explained in “Timing Out
When Events Do Not Occur” on page 251.

We ended up with two methods running concurrently without much effort, assuming
that your API is already Rx-driven. But we cheated a little bit with bookTicket() still
returning Ticket, which definitely means it is blocking. Even if booking ticket was
extremely fast, it is still worth declaring it as such, just to make the API easier to
evolve. The evolution might mean adding concurrency or using in fully nonblocking
environments (see Chapter 5). Remember that turning a nonblocking API into a
blocking one is as easy as calling toBlocking(). The opposite is often challenging
and requires lots of extra resources. Also, it is very difficult to predict the evolution of
methods like rxBookTicket(), if they ever touch the network or filesystem, not to
mention database, it is worth it to wrap them with an Observable indicating possible
latency on the type level:

Observable<Ticket> rxBookTicket(Flight flight, Passenger passenger) {
 //...
}

But now zipWith() returns an awkward Observable<Observable<Ticket>> and the
code no longer compiles. A good rule of thumb is that whenever you see double-
wrapped type (for example Optional<Optional<...>>) there is a flatMap() invoca‐
tion missing somewhere. That’s the case here, as well. zipWith() takes a pair (or
more generally a tuple) of events, applies a function taking these events as arguments,
and puts the result into the downstream Observable as-is. This is why we saw Observ
able<Ticket> first but now it’s Observable<Observable<Ticket>>, where Observa
ble<Ticket> is the result of our supplied function. There are two ways to overcome
this problem. One way is by using an intermediate pair returned from zipWith:

import org.apache.commons.lang3.tuple.Pair;

Observable<Ticket> ticket = flight
 .zipWith(passenger, (Flight f, Passenger p) -> Pair.of(f, p))
 .flatMap(pair -> rxBookTicket(pair.getLeft(), pair.getRight()));

If using an explicit Pair from third-party library did not obscure flow enough,
method reference would actually work: Pair::of, but again, we decided that visible
type information is more valuable than saving a few keystrokes. After all we read code

130 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

for much more time than we write it. An alternative to an intermediate pair is apply‐
ing a flatMap with an identity function:

Observable<Ticket> ticket = flight
 .zipWith(passenger, this::rxBookTicket)
 .flatMap(obs -> obs);

This obs -> obs lambda expression is seemingly not doing anything, at least if it
were a map() operator. But remember that flatMap() applies a function to each value
inside Observable, so this function takes Observable<Ticket> as an argument in our
case. Later, the result is not placed directly in the resulting stream, like with map().
Instead, the return value (of type Observable<T>) is “flattened,” leading to an Observa
ble<T> rather than Observable<Observable<T>>. When dealing with schedulers, the
flatMap() operator becomes even more powerful. You might perceive flatMap() as
merely a syntactic trick to avoid a nested Observable<Observable<...>> problem,
but it’s much more fundamental than this.

Observable.subscribeOn() Use Cases

It is tempting to think that subscribeOn() is the right tool for con‐
currency in RxJava. This operator works but you should not see the
usage of subscribeOn() (and yet to be described observeOn())
often. In real life, Observables come from asynchronous sources,
so custom scheduling is not needed at all. We use subscribeOn()
throughout this chapter to explicitly show how to upgrade existing
applications to use reactive principles selectively. But in practice,
Schedulers and subscribeOn() are weapons of last resort, not
something seen commonly.

flatMap() as Asynchronous Chaining Operator
In our sample application, we must now send a list of Tickets via e-mail. But we
must keep in mind the following:

1. The list can be potentially quite long.
2. Sending an email might take several milliseconds or even seconds.
3. The application must keep running gracefully in case of failures, but report in the

end which tickets failed to be delivered.

The last requirement quickly rules out simple tickets.forEach(this::sendEmail)
because it eagerly throws an exception and won’t continue with tickets that were not
yet delivered. Exceptions are actually a nasty back door to the type system and just
like callbacks are not very friendly when you want to manage them in a more robust
way. That is why RxJava models them explicitly as special notifications, but be patient,

flatMap() as Asynchronous Chaining Operator | 131

www.EBooksWorld.ir

we will get there. In light of the error-handling requirement, our code looks more-or-
less like that:

List<Ticket> failures = new ArrayList<>();
for(Ticket ticket: tickets) {
 try {
 sendEmail(ticket);
 } catch (Exception e) {
 log.warn("Failed to send {}", ticket, e);
 failures.add(ticket);
 }
}

However, the first two requirements or guidelines aren’t addressed. There is no rea‐
son why we keep sending emails from one thread sequentially. Traditionally, we could
use an ExecutorService pool for that by submitting each email as a separate task:

List<Pair<Ticket, Future<SmtpResponse>>> tasks = tickets
 .stream()
 .map(ticket -> Pair.of(ticket, sendEmailAsync(ticket)))
 .collect(toList());

List<Ticket> failures = tasks.stream()
 .flatMap(pair -> {
 try {
 Future<SmtpResponse> future = pair.getRight();
 future.get(1, TimeUnit.SECONDS);
 return Stream.empty();
 } catch (Exception e) {
 Ticket ticket = pair.getLeft();
 log.warn("Failed to send {}", ticket, e);
 return Stream.of(ticket);
 }
 })
 .collect(toList());

//------------------------------------

private Future<SmtpResponse> sendEmailAsync(Ticket ticket) {
 return pool.submit(() -> sendEmail(ticket));
}

That’s a fair amount of code that all Java programmers should be familiar with. Yet it
seems too verbose and accidentally complex. First, we iterate over tickets and sub‐
mit them to a thread pool. To be precise, we call the sendEmailAsync() helper
method that submits sendEmail() invocation wrapped in Callable<SmtpResponse>
to a thread pool. Even more precise instances of Callable are first placed in an
unbounded (by default) queue in front of a thread pool. Lack of mechanisms that

132 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

slow down too rapid submission of tasks if they cannot be processed on time led to
reactive streams and backpressure effort (see “Backpressure” on page 226).

Because later we will need a Ticket instance in case of failure, we must keep track of
which Future was responsible for which Ticket, again in a Pair. In real production
code, you should consider a more meaningful and dedicated container like a TicketA
syncTask value object. We collect all such pairs and proceed to the next iteration. At
this point, the thread pool is already running multiple sendEmail() invocations
concurrently, which is precisely what we were aiming at. The second loop goes
through all Futures and tries to dereference them by blocking (get()) and awaiting
for completion. If get() returns successfully, we skip such a Ticket. However, if there
is an exception we return Ticket instance that was associated with this task—we
know it failed and we want to report it later. Stream.flatMap() allows us to return
zero or one elements (or actually any number), contrary to Stream.map(), which
always requires one.

You might be wondering why we need two loops instead of just one like this:

//WARNING: code is sequential despite utilizing thread pool
List<Ticket> failures = tickets
 .stream()
 .map(ticket -> Pair.of(ticket, sendEmailAsync(ticket)))
 .flatMap(pair -> {
 //...
 })
 .collect(toList());

This is an interesting bug that is really difficult to find if you don’t understand how
Streams in Java 8 work. Because streams—just like Observables—are lazy, they evalu‐
ate the underlying collection one element at a time and only when terminal operation
was requested (e.g., collect(toList())). This means that a map() operation starting
background tasks is not executed on all tickets immediately; rather, it’s done one at a
time, alternately by using a flatMap() operation. Furthermore, we really start one
Future, block waiting for it, start a second Future, block waiting on that, and so on.
An intermediate collection is needed to force evaluation, not because of clarity or
readability. After all, List<Pair<Ticket, Future<SmtpResponse>>> type is hardly
more readable.

That’s plenty of work and the possibility of mistake is high, so it’s no wonder that
developers are reluctant to apply concurrent code on a daily basis. The little-known
ExecutorCompletionService from JDK is sometimes used when there is a pool of
asynchronous tasks and we want to process them as they complete. Moreover, Java 8
brings CompletableFuture (see “CompletableFuture and Streams” on page 193) that
is entirely reactive and nonblocking. But how can RxJava help here? First, assume
that an API for sending an email is already retrofitted to use RxJava:

flatMap() as Asynchronous Chaining Operator | 133

www.EBooksWorld.ir

http://bit.ly/2d3eD4x

import static rx.Observable.fromCallable;

Observable<SmtpResponse> rxSendEmail(Ticket ticket) {
 //unusual synchronous Observable
 return fromCallable(() -> sendEmail())
}

There is no concurrency involved, just wrapping sendEmail() inside an Observable.
This is a rare Observable; ordinarily you would use subscribeOn() in the implemen‐
tation so that the Observable is asynchronous by default. At this point, we can iterate
over all tickets as before:

List<Ticket> failures = Observable.from(tickets)
 .flatMap(ticket ->
 rxSendEmail(ticket)
 .flatMap(response -> Observable.<Ticket>empty())
 .doOnError(e -> log.warn("Failed to send {}", ticket, e))
 .onErrorReturn(err -> ticket))
 .toList()
 .toBlocking()
 .single();

Observable.ignoreElements()

It is easy to see that inner flatMap() in our example ignores
response and returns an empty stream. In such cases, flatMap() is
an overkill; the ignoreElements() operator is far more efficient.
ignoreElements() simply ignores all emitted values and forwards
onCompleted() or onError() notifications. Because we are ignor‐
ing the actual response and just deal with errors, ignoreEle
ments() works great here.

All we are interested in lies inside the outer flatMap(). If it were just flat
Map(this::rxSendEmail), code would work; however, any failure emitted from
rxSendEmail would terminate the entire stream. But we want to “catch” all emitted
errors and collect them for later consumption. We use a similar trick to Stream.flat
Map(): if response was successfully emitted, we transform it to an empty Observable.
This basically means that we discard successful tickets. However, in case of failures,
we return a ticket that raised an exception. An extra doOnError() callback allows us
to log exception—of course we can just as well add logging to onErrorReturn() oper‐
ator, but I found this separation of concerns more functional.

To remain compatible with previous implementations, we transform Observable into
Observable<List<Ticket>>, BlockingObservable<List<Ticket>>, toBlocking(),
and finally List<Ticket> (single()). Interestingly, even BlockingObservable

remains lazy. A toBlocking() operator on its own doesn’t force evaluation by sub‐

134 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

scribing to the underlying stream and it doesn’t even block. Subscription and thus
iteration and sending emails is postponed until single() is invoked.

Note that if we replace the outer flatMap() with concatMap() (see “Ways of Combin‐
ing Streams: concat(), merge(), and switchOnNext()” on page 97 and “Preserving
Order Using concatMap()” on page 75), we will encounter a similar bug as the men‐
tioned with JDK’s Stream. As opposed to flatMap() (or merge) that subscribe imme‐
diately to all inner streams, concatMap (or concat) subscribes one inner Observable
after another. And as long as no one subscribed to Observable, no work even began.

So far, a simple for loop with a try—catch was replaced with less readable and more
complex Observable. However, to turn our sequential code into multithreaded com‐
putation we barely need to add one extra operator:

Observable
 .from(tickets)
 .flatMap(ticket ->
 rxSendEmail(ticket)
 .ignoreElements()
 .doOnError(e -> log.warn("Failed to send {}", ticket, e))
 .onErrorReturn(err -> ticket)
 .subscribeOn(Schedulers.io()))

It is so noninvasive that you might find it hard to spot. One extra subscribeOn()
operator causes each individual rxSendMail() to be executed on a specified Schedu
ler (io(), in this case). This is one of the strengths of RxJava; it is not opinionated
about threading, defaulting to synchronous execution but allowing seamless and
almost transparent multithreading. Of course, this doesn’t mean that you can safely
inject schedulers in arbitrary places. But at least the API is less verbose and higher
level. We will explore schedulers in much more detail later in “Multithreading in
RxJava” on page 140. For the time being remember that Observables are synchronous
by default; however, we can easily change that and apply concurrency in places where
it was least expected. This is especially valuable in existing legacy applications, which
you can optimize without much hassle.

Wrapping up if you are implementing Observables from scratch, making them asyn‐
chronous by default is more idiomatic. That means placing subscribeOn() directly
inside rxSendEmail() rather than externally. Otherwise, you risk wrapping already
asynchronous streams with yet another layer of schedulers. Of course, if the producer
behind Observable is already asynchronous, it is even better because your stream
does not bind to any particular thread. Additionally, you should postpone subscribing
to an Observable as late as possible, typically close to the web framework of our out‐

flatMap() as Asynchronous Chaining Operator | 135

www.EBooksWorld.ir

3 Compare it to lazy evaluation of expressions in Haskell.

side world. This changes your mindset significantly. Your entire business logic is lazy
until someone actually wants to see the results.3

Replacing Callbacks with Streams
Traditional APIs are blocking most of the time, meaning they force you to wait syn‐
chronously for the results. This approach works relatively well, at least before you
heard about RxJava. But a blocking API is particularly problematic when data needs
to be pushed from the API producer to consumers—this is anarea where RxJava
really shines. There are numerous examples of such cases and various approaches are
taken by API designers. Typically, we need to provide some sort of a callback that the
API invokes, often called event listeners. One of the most common scenarios like that
is Java Message Service (JMS). Consuming JMS typically involves implementing a
class that the application server or container notifies on every incoming messages. We
can replace with relative ease such listeners with a composable Observable, which is
much more robust and versatile. The traditional listener looks similar to this class,
here using JMS support in Spring framework, but our solution is technology-
agnostic:

@Component
class JmsConsumer {

 @JmsListener(destination = "orders")
 public void newOrder(Message message) {
 //...
 }
}

When a JMS message is received, the JmsConsumer class must decide what to do with
it. Typically, some business logic is invoked inside a message consumer. When a new
component wants to be notified about such messages, it must modify JmsConsumer
appropriately. Coversely, imagine Observable<Message> that can be subscribed to by
anyone. Moreover, an entire universe of RxJava operators is available, allowing map‐
ping, filtering, and combining capabilities. The easiest way to convert from a push,
callback-based API to Observable is to use Subjects. Every time a new JMS message
is delivered, we push that message to a PublishSubject that looks like an ordinary
hot Observable from the outside:

private final PublishSubject<Message> subject = PublishSubject.create();

@JmsListener(destination = "orders", concurrency="1")
public void newOrder(Message msg) {
 subject.onNext(msg);

136 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

http://bit.ly/2d3hx9m
http://bit.ly/2d3hieL

}

Observable<Message> observe() {
 return subject;
}

Keep in mind that Observable<Message> is hot; it begins emitting JMS messages as
soon as they are consumed. If no one is subscribed at the moment, messages are sim‐
ply lost. ReplaySubject is an alternative, but because it caches all events since the
application startup, it’s not suitable for long-running processes. In case you have a
subscriber that absolutely must receive all messages, ensure that it subscribes before
the JMS message listener is initialized. Additionally, our message listener has a con
currency="1" parameter to ensure that Subject is not invoked from multiple
threads. As an alternative, you can use Subject.toSerialized().

As a side note, Subjects are easier to get started but are known to be problematic
after a while. In this particular case, we can easily replace Subject with the more
idiomatic RxJava Observable that uses create() directly:

public Observable<Message> observe(
 ConnectionFactory connectionFactory,
 Topic topic) {
 return Observable.create(subscriber -> {
 try {
 subscribeThrowing(subscriber, connectionFactory, topic);
 } catch (JMSException e) {
 subscriber.onError(e);
 }
 });
}

private void subscribeThrowing(
 Subscriber<? super Message> subscriber,
 ConnectionFactory connectionFactory,
 Topic orders) throws JMSException {
 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(true, AUTO_ACKNOWLEDGE);
 MessageConsumer consumer = session.createConsumer(orders);
 consumer.setMessageListener(subscriber::onNext);
 subscriber.add(onUnsubscribe(connection));
 connection.start();
}

private Subscription onUnsubscribe(Connection connection) {
 return Subscriptions.create(() -> {
 try {
 connection.close();
 } catch (Exception e) {
 log.error("Can't close", e);
 }

Replacing Callbacks with Streams | 137

www.EBooksWorld.ir

 });
}

The JMS API provides two ways of receiving messages from a broker: synchronous
via blocking receive() method, and nonblocking, using MessageListener. The non‐
blocking API is beneficial for many reasons; for example, it holds less resources like
threads and stack memory. Also it aligns beautifully with the Rx style of program‐
ming. Rather than creating a MessageListener instance and calling our subscriber
from within it, we can use this terse syntax with method reference:

consumer.setMessageListener(subscriber::onNext)

Also, we must take care of resource cleanup and proper error handling. This tiny
transformation layer allows us to easily consume JMS messages without worrying
about API internals. Here an example using the popular ActiveMQ messaging broker
running locally:

import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.activemq.command.ActiveMQTopic;

ConnectionFactory connectionFactory =
 new ActiveMQConnectionFactory("tcp://localhost:61616");
Observable<String> txtMessages =
 observe(connectionFactory, new ActiveMQTopic("orders"))
 .cast(TextMessage.class)
 .flatMap(m -> {
 try {
 return Observable.just(m.getText());
 } catch (JMSException e) {
 return Observable.error(e);
 }
 });

JMS, just like JDBC, has a reputation of heavily using checked JMSException, even
when calling getText() on a TextMessage. To properly handle errors (see “Error
Handling” on page 243 for more details) we use flatMap() and wrap exceptions.
From that point, you can treat JMS messages flowing in like any other asynchronous
and nonblocking stream. And by the way, we used the cast() operator that optimisti‐
cally casts upstream events to a given type, failing with onError(), otherwise. cast()
is basically a specialized map() operator that behaves like map(x -> (TextMes

sage)x).

Polling Periodically for Changes
The worst blocking API that you can work with requires polling for changes. It pro‐
vides no mechanism to push changes right at you, even with callbacks or by blocking
indefinitely. The only mechanism this API gives is asking for the current state, and it
is up to you to figure out if it differs from previous state or not. RxJava has few really

138 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

http://activemq.apache.org

powerful operators that you can apply to retrofit a given API to Rx style. The first
case I want you to consider is a simple method that delivers a single value that repre‐
sents state, for example long getOrderBookLength(). To track changes we must call
this method frequently enough and capture differences. You can achieve this in
RxJava with a very basic operator composition:

Observable
 .interval(10, TimeUnit.MILLISECONDS)
 .map(x -> getOrderBookLength())
 .distinctUntilChanged()

First we produce a synthetic long value every 10 milliseconds which serves as a basic
ticking counter. For each such value (that is every 10 milliseconds), we call getOrder
BookLength(). However, the aforementioned method doesn’t change that often, and
we don’t want to flood our subscribers with lots of irrelevant state changes. Luckily we
can simply say distinctUntilChanged() and RxJava will transparently skip long val‐
ues returned by getOrderBookLength() that have not changed since last invocation,
as demonstrated in the following marble diagram:

We can apply this pattern even further. Imagine that you are watching for filesystem
or database table changes. The only mechanism at your disposal is taking a current
snapshot of files or database records. You are building an API that will notify clients
about every new item. Obviously, you can use java.nio.file.WatchService or data‐
base triggers, but take this as an educational example. This time, again, we begin by
periodically taking a snapshot of current state:

Observable<Item> observeNewItems() {
 return Observable
 .interval(1, TimeUnit.SECONDS)
 .flatMapIterable(x -> query())
 .distinct();
}

List<Item> query() {
 //take snapshot of file system directory

Polling Periodically for Changes | 139

www.EBooksWorld.ir

 //or database table
}

The distinct() operator keeps a record of all items that passed through it (see also
“Dropping Duplicates Using distinct() and distinctUntilChanged()” on page 92). If
the same item appears for the second time, it is simply ignored. That is why we can
push the same list of Items every second. The first time they are pushed downstream
to all subscribers. However, when the exact same list appears one second later, all
items were already seen and are therefore discarded. If at some point in time the list
returned from query() contains one extra Item, distinct() will let it go but discard
it the next time. This simple pattern allows us to replace a bunch of Thread.sleep()
invocations and manual caching with periodic polling. It is applicable in many areas,
like File Transfer Protocol (FTP) polling, web scraping, and so on.

Multithreading in RxJava
There are third-party APIs that are blocking and there is simply nothing we can do
about it. We might not have source code, rewriting might result in too much risk. In
that case, we must learn how to deal with blocking code rather than fighting it.

One of the hallmarks of RxJava is declarative concurrency, as opposed to imperative
concurrency. Manually creating and managing threads is a thing of the past (compare
with “Thread Pool of Connections” on page 331) most of us already use managed
thread pools (e.g., with ExecutorService). But RxJava goes one step further: Observa
ble can be nonblocking just like CompletableFuture in Java 8 (see “CompletableFu‐
ture and Streams” on page 193), but unlike the other, it is also lazy. Unless you
subscribe, a well-behaving Observable will not perform any action. But the power of
Observable goes even beyond that.

An asynchronous Observable is the one that calls your Subscribers callback meth‐
ods (like onNext()) from a different thread. Recall “Mastering Observable.create()”
on page 35 in which we explored when subscribe() is blocking, waiting until all
notifications arrive? In real life, most Observables come from sources that are asyn‐
chronous by their nature. Chapter 5 is entirely devoted to such Observables. But
even our simple JMS example from “Replacing Callbacks with Streams” on page 136,
which uses a built-in, nonblocking API from the JMS specification (MessageListener
interface). This is not enforced or suggested by the type system, but many Observa
bles are asynchronous from the very beginning, and you should assume that. A
blocking subscribe() method happens very rarely, when a lambda within Observa
ble.create() is not backed by any asynchronous process or stream. However, by
default (with create()) everything happens in the client thread (the one that subscri‐
bed). If you just poke onNext() directly within your create() callback, no multi‐
threading and concurrency is involved whatsoever.

140 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/File_Transfer_Protocol

4 Obviously, for any real project, you will use a production-grade logging system like Logback or Log4J 2.

Encountering such an unusual Observable, we can declaratively select the so-called
Scheduler that will be used to emit values. In case of CompletableFuture, we have no
control over underlying threads, the API made the decision and in worst case it is
impossible to override it. RxJava rarely makes such decisions alone and chooses safe
default: client thread and no multithreading involved. For the purposes of this chap‐
ter, we will use a really simple logging “library,”4 which will print a message along with
the current thread and number of milliseconds since the start of the program using
System.currentTimeMillis():

void log(Object label) {
 System.out.println(
 System.currentTimeMillis() - start + "\t| " +
 Thread.currentThread().getName() + "\t| " +
 label);
}

What Is a Scheduler?
RxJava is concurrency-agnostic, and as a matter of fact it does not introduce concur‐
rency on its own. However, some abstractions to deal with threads are exposed to the
end user. Also, certain operators cannot work properly without concurrency; see
“Other Uses for Schedulers” on page 163 for some of them. Luckily, the Scheduler
class, the only one you must pay attention to, is fairly simple. In principle it works
similarly to ScheduledExecutorService from java.util.concurrent—it executes
arbitrary blocks of code, possibly in the future. However, to meet Rx contract, it offers
some more fine-grained abstractions, which you can see more of in the advanced sec‐
tion “Scheduler implementation details overview” on page 146.

Schedulers are used together with subscribeOn() and observeOn() operators as well
as when creating certain types of Observables. A scheduler only creates instances of
Workers that are responsible for scheduling and running code. When RxJava needs to
schedule some code it first asks Scheduler to provide a Worker and uses the latter to
schedule subsequent tasks. You will find examples of this API later on, but first famil‐
iarize yourself with available built-in schedulers:

Schedulers.newThread()

This scheduler simply starts a new thread every time it is requested via subscri
beOn() or observeOn(). newThread() is hardly ever a good choice, not only
because of the latency involved when starting a thread, but also because this
thread is not reused. Stack space must be allocated up front (typically around one
megabyte, as controlled by the -Xss parameter of the JVM) and the operating
system must start new native thread. When the Worker is done, the thread simply

Multithreading in RxJava | 141

www.EBooksWorld.ir

http://logback.qos.ch/
http://logging.apache.org/log4j/2.x/

terminates. This scheduler can be useful only when tasks are coarse-grained: it
takes a lot of time to complete but there are very few of them, so that threads are
unlikely to be reused at all. See also: “Thread per Connection” on page 329. In
practice, following Schedulers.io() is almost always a better choice.

Schedulers.io()

This scheduler is similar to newThread(), but already started threads are recycled
and can possibly handle future requests. This implementation works similarly to
ThreadPoolExecutor from java.util.concurrent with an unbounded pool of
threads. Every time a new Worker is requested, either a new thread is started (and
later kept idle for some time) or the idle one is reused.

The name io() is not a coincidence. Consider using this scheduler for I/O bound
tasks which require very little CPU resources. However they tend to take quite
some time, waiting for network or disk. Thus, it is a good idea to have a relatively
big pool of threads. Still, be careful with unbounded resources of any kind—in
case of slow or unresponsive external dependencies like web services, io()
scheduler might start an enormous number of threads, leading to your very own
application becoming unresponsive, as well. See “Managing Failures with Hys‐
trix” on page 291 for more details how to tackle this problem.

Schedulers.computation()

You should use a computation scheduler when tasks are entirely CPU-bound;
that is, they require computational power and have no blocking code (reading
from disk, network, sleeping, waiting for lock, etc.) Because each task executed
on this scheduler is supposed to fully utilize one CPU core, executing more such
tasks in parallel than there are available cores would not bring much value.
Therefore, computation() scheduler by default limits the number of threads run‐
ning in parallel to the value of availableProcessors(), as found in the Run
time.getRuntime() utility class.

If for some reason you need a different number of threads than the default, you
can always use the rx.scheduler.max-computation-threads system property.
By taking less threads you ensure that there is always one or more CPU cores
idle, and even under heavy load, computation() thread pool does not saturate
your server. It is not possible to have more computation threads than cores.

computation() scheduler uses unbounded queue in front of every thread, so if
the task is scheduled but all cores are occupied, they are queued. In case of load
peak, this scheduler will keep the number of threads limited. However, the queue
just before each thread will keep growing.

142 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

Luckily, built-in operators, especially observeOn() that we are about to discover
in “Declarative Concurrency with observeOn()” on page 159 ensure that this
Scheduler is not overloaded.

Schedulers.from(Executor executor)

Schedulers are internally more complex than Executors from java.util.con
current, so a separate abstraction was needed. But because they are conceptually
quite similar, unsurprisingly there is a wrapper that can turn Executor into Sched
uler using the from() factory method:

import com.google.common.util.concurrent.ThreadFactoryBuilder;
import rx.Scheduler;
import rx.schedulers.Schedulers;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;

//...

ThreadFactory threadFactory = new ThreadFactoryBuilder()
 .setNameFormat("MyPool-%d")
 .build();
Executor executor = new ThreadPoolExecutor(
 10, //corePoolSize
 10, //maximumPoolSize
 0L, TimeUnit.MILLISECONDS, //keepAliveTime, unit
 new LinkedBlockingQueue<>(1000), //workQueue
 threadFactory
);
Scheduler scheduler = Schedulers.from(executor);

I am intentionally using this verbose syntax for creating ExecutorService rather than
the more simple version:

import java.util.concurrent.Executors;

//...

ExecutorService executor = Executors.newFixedThreadPool(10);

Although tempting, the Executors factory class hardcodes several defaults that are
impractical or even dangerous in enterprise applications. For examples, it uses
unbounded LinkedBlockingQueue that can grow infinitely, resulting in OutOfMemor
yError for cases in which there are a of large number of outstanding tasks. Also, the
default ThreadFactory uses meaningless thread names like pool-5-thread-3. Nam‐
ing threads properly is an invaluable tool when profiling or analyzing thread dumps.
Implementing ThreadFactory from scratch is a bit cumbersome, so we used

Multithreading in RxJava | 143

www.EBooksWorld.ir

ThreadFactoryBuilder from Guava. If you are interested in tuning and properly uti‐
lizing thread pools even further, see “Thread Pool of Connections” on page 331 and
“Managing Failures with Hystrix” on page 291. Creating schedulers from Executor
that we consciously configured is advised for projects dealing with high load. How‐
ever, because RxJava has no control over independently created threads in an Execu
tor, it cannot pin threads (that is, try to keep work of the same task on the same
thread to improve cache locality). This Scheduler barely makes sure a single Schedu
ler.Worker (see “Scheduler implementation details overview” on page 146) processes
events sequentially.

Schedulers.immediate()

Schedulers.immediate() is a special scheduler that invokes a task within the cli‐
ent thread in a blocking fashion, rather than asynchronously. Using it is pointless
unless some part of your API requires providing a scheduler, whereas you are
absolutely fine with default behavior of Observable, not involving any threading
at all. In fact, subscribing to an Observable (more on that in a second) via immedi
ate() Scheduler typically has the same effect as not subscribing with any partic‐
ular scheduler at all. In general, avoid this scheduler, it blocks the calling thread
and is of limited use.

Schedulers.trampoline()

The trampoline() scheduler is very similar to immediate() because it also
schedules tasks in the same thread, effectively blocking. However, as opposed to
immediate(), the upcoming task is executed when all previously scheduled tasks
complete. immediate() invokes a given task right away, whereas trampoline()
waits for the current task to finish. Trampoline is a pattern in functional pro‐
gramming that allows implementing recursion without infinitely growing the call
stack. This is best explained with an example, first involving immediate(). By the
way, notice that we do not interact directly with a Scheduler instance but first
create a Worker. This makes sense as you will quickly see in “Scheduler imple‐
mentation details overview” on page 146.

Scheduler scheduler = Schedulers.immediate();
Scheduler.Worker worker = scheduler.createWorker();

log("Main start");
worker.schedule(() -> {
 log(" Outer start");
 sleepOneSecond();
 worker.schedule(() -> {
 log(" Inner start");
 sleepOneSecond();
 log(" Inner end");
 });
 log(" Outer end");

144 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

https://github.com/google/guava

});
log("Main end");
worker.unsubscribe();

The output is as expected; you could actually replace schedule() with a simple
method invocation:

1044 | main | Main start
1094 | main | Outer start
2097 | main | Inner start
3097 | main | Inner end
3100 | main | Outer end
3100 | main | Main end

Inside the Outer block we schedule() Inner block that gets invoked immedi‐
ately, interrupting the Outer task. When Inner is done, the control goes back to
Outer. Again, this is simply a convoluted way of invoking a task in a blocking
manner indirectly via immediate() Scheduler. But what happens if we replace
Schedulers.immediate() with Schedulers.trampoline()? The output is quite
different:

1030 | main | Main start
1096 | main | Outer start
2101 | main | Outer end
2101 | main | Inner start
3101 | main | Inner end
3101 | main | Main end

Do you see how Outer manages to complete before Inner even starts? This is
because the Inner task was queued inside the trampoline() Scheduler, which
was already occupied by the Outer task. When Outer finished, the first task from
the queue (Inner) began. We can go even further to make sure you understand
the difference:

log("Main start");
worker.schedule(() -> {
 log(" Outer start");
 sleepOneSecond();
 worker.schedule(() -> {
 log(" Middle start");
 sleepOneSecond();
 worker.schedule(() -> {
 log(" Inner start");
 sleepOneSecond();
 log(" Inner end");
 });
 log(" Middle end");
 });
 log(" Outer end");

Multithreading in RxJava | 145

www.EBooksWorld.ir

});
log("Main end");

The Worker from immediate() Scheduler outputs the following:

1029 | main | Main start
1091 | main | Outer start
2093 | main | Middle start
3095 | main | Inner start
4096 | main | Inner end
4099 | main | Middle end
4099 | main | Outer end
4099 | main | Main end

Versus the trampoline() worker:

1041 | main | Main start
1095 | main | Outer start
2099 | main | Outer end
2099 | main | Middle start
3101 | main | Middle end
3101 | main | Inner start
4102 | main | Inner end
4102 | main | Main end

Schedulers.test()

This Scheduler is used only for testing purposes, and you will never see it in pro‐
duction code. Its main advantage is the ability to arbitrarily advance the clock,
simulating time passing by. TestScheduler is described to a great extent in
“Schedulers in Unit Testing” on page 260. Schedulers alone are not very interest‐
ing. If you want to discover how they work internally and how to implement
your own, check out the next section.

Scheduler implementation details overview

This section is entirely optional, feel free to jump straight to
“Declarative Subscription with subscribeOn()” on page 150 if you
are not interested in implementation details.

Scheduler not only decouples tasks and their execution (typically by running them
in another thread), but it also abstracts away the clock, as we will learn in “Virtual
Time” on page 258. The API of the Scheduler is a bit simpler compared to, for exam‐
ple, ScheduledExecutorService:

abstract class Scheduler {
 abstract Worker createWorker();

146 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

5 https://github.com/ReactiveX/RxSwing

 long now();

 abstract static class Worker implements Subscription {

 abstract Subscription schedule(Action0 action);

 abstract Subscription schedule(Action0 action,
 long delayTime, TimeUnit unit);

 long now();
 }
}

When RxJava wants to schedule a task (presumably, but not necessarily in the back‐
ground), it must first ask for an instance of Worker. It is the Worker that allows sched‐
uling the task without any delay or at some point in time. Both Scheduler and
Worker have an overridable source of time (now() method) that it uses to determine
when a given task is supposed to run. Naively, you can think of a Scheduler like a
thread pool and a Worker like a thread inside that pool.

The separation between Scheduler and Worker is necessary to easily implement some
of the guidelines enforced by the Rx contract, namely invoking Subscriber’s method
sequentially, not concurrently. Worker’s contract provides just that: two tasks sched‐
uled on the same Worker will never run concurrently. However, independent Workers
from the same Scheduler can run tasks concurrently just fine.

Rather than going through the API, let’s analyze the source code of an existing Schedu
ler, namely HandlerScheduler, as found in the RxAndroid project. This Scheduler
simply runs all scheduled tasks on an Android UI thread. Updating the user interface
is only allowed from that thread (see “Android Development with RxJava” on page
277 for more details). This is similar to the Event Dispatch Thread (EDT) as found in
Swing, where most of the updates to windows and components must be executed
within dedicated thread (EDT). Unsurprisingly, there is also the RxSwing5 project for
that.

The code snippet that follows is a stripped down and incomplete class from RxAn‐
droid for education purposes only:

package rx.android.schedulers;

import android.os.Handler;
import android.os.Looper;
import rx.Scheduler;
import rx.Subscription;
import rx.functions.Action0;

Multithreading in RxJava | 147

www.EBooksWorld.ir

https://github.com/ReactiveX/RxSwing
https://github.com/ReactiveX/RxAndroid
http://bit.ly/2cMxH4U

import rx.internal.schedulers.ScheduledAction;
import rx.subscriptions.Subscriptions;

import java.util.concurrent.TimeUnit;

public final class SimplifiedHandlerScheduler extends Scheduler {

 @Override
 public Worker createWorker() {
 return new HandlerWorker();
 }

 static class HandlerWorker extends Worker {

 private final Handler handler = new Handler(Looper.getMainLooper());

 @Override
 public void unsubscribe() {
 //Implementation coming soon...
 }

 @Override
 public boolean isUnsubscribed() {
 //Implementation coming soon...
 return false;
 }

 @Override
 public Subscription schedule(final Action0 action) {
 return schedule(action, 0, TimeUnit.MILLISECONDS);
 }

 @Override
 public Subscription schedule(
 Action0 action, long delayTime, TimeUnit unit) {
 ScheduledAction scheduledAction = new ScheduledAction(action);
 handler.postDelayed(scheduledAction, unit.toMillis(delayTime));

 scheduledAction.add(Subscriptions.create(() ->
 handler.removeCallbacks(scheduledAction)));

 return scheduledAction;
 }
 }
}

Details of the Android API are not important at the moment. What happens here is
that every time we schedule something on a HandlerWorker, the block of code is
passed to a special postDelayed() method that executes it on a dedicated Android

148 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

thread. There is just one such thread, so events are serialized not only within, but also
across Workers.

Before we pass action to be executed, we wrap it with ScheduledAction, which
implements both Runnable and Subscription. RxJava is lazy whenever it can be—
this also applies to scheduling tasks. If for any reason you decide that a given action
should not be executed after all (this makes sense when the action was scheduled in
the future, not immediately), simply run unsubscribe() on the Subscription
returned from schedule(). It is the responsibility of the Worker to properly handle
unsubscription (best effort at least).

Client code can also decide to unsubscribe() from Worker in its entirety. This should
unsubscribe all queued tasks as well as release the Worker so that the underlying
thread can potentially be reused later. The following code snippet enhances the Sim
plifiedHandlerScheduler by adding Worker unsubscription flow (only modified
methods are included):

private CompositeSubscription compositeSubscription =
 new CompositeSubscription();

@Override
public void unsubscribe() {
 compositeSubscription.unsubscribe();
}

@Override
public boolean isUnsubscribed() {
 return compositeSubscription.isUnsubscribed();
}

@Override
public Subscription schedule(Action0 action, long delayTime, TimeUnit unit) {
 if (compositeSubscription.isUnsubscribed()) {
 return Subscriptions.unsubscribed();
 }

 final ScheduledAction scheduledAction = new ScheduledAction(action);
 scheduledAction.addParent(compositeSubscription);
 compositeSubscription.add(scheduledAction);

 handler.postDelayed(scheduledAction, unit.toMillis(delayTime));

 scheduledAction.add(Subscriptions.create(() ->
 handler.removeCallbacks(scheduledAction)));

 return scheduledAction;
}

In “Controlling Listeners by Using Subscription and Subscriber<T>” on page 32, we
explored the Subscription interface but never really looked at the implementation

Multithreading in RxJava | 149

www.EBooksWorld.ir

details. CompositeSubscription is one out of many implementations available that
itself is just a container for child Subscriptions (a Composite design pattern). Unsub‐
scribing from CompositeSubscription means unsubscribing from all children. You
also can add and remove the children managed by CompositeSubscription.

In our custom Scheduler, CompositeSubscription is used to track all Subscrip
tions from the previous schedule() invocations (see compositeSubscrip

tion.add(scheduledAction)). On the other hand, the child ScheduledAction needs
to know about its parent (see: addParent()) so that it can remove itself when the
action is completed or canceled. Otherwise, Worker would accumulate stale child Sub
scriptions forever. When the client code decides that it no longer needs a Handler
Worker instance, it unsubscribes from it. The unsubscription is propagated to all (if
any) outstanding child Subscriptions.

That was a very brief introduction to Schedulers in RxJava. The details of their inter‐
nals are not that useful in daily work; as a matter of fac, they are designed in such as
way as to make using RxJava more intuitive and predictable. That being said, let’s
quickly see how Schedulers solve many concurrency problems in Rx.

Declarative Subscription with subscribeOn()
In “Mastering Observable.create()” on page 35 we saw that subscribe() by default
uses the client thread. To recap, here is the most simple subscription that you can
come up with where no threading was involved whatsoever:

Observable<String> simple() {
 return Observable.create(subscriber -> {
 log("Subscribed");
 subscriber.onNext("A");
 subscriber.onNext("B");
 subscriber.onCompleted();
 });
}

//...

log("Starting");
final Observable<String> obs = simple();
log("Created");
final Observable<String> obs2 = obs
 .map(x -> x)
 .filter(x -> true);
log("Transformed");
obs2.subscribe(
 x -> log("Got " + x),
 Throwable::printStackTrace,
 () -> log("Completed")

150 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

);
log("Exiting");

Notice where the logging statements are placed and study the output carefully, espe‐
cially with regard to which thread invoked the print statement:

33 | main | Starting
120 | main | Created
128 | main | Transformed
133 | main | Subscribed
133 | main | Got A
133 | main | Got B
133 | main | Completed
134 | main | Exiting

Pay attention: the order of statements is absolutely predictable. First, every line of
code in the preceding code snippet runs in the main thread, there are no thread pools
and no asynchronous emission of events involved. Second, the order of execution
might not be entirely clear at first sight.

When the program starts, it prints Starting, which is understandable. After creating
an instance of Observable<String>, we see the Created message. Notice that Sub
scribed appears later, when we actually subscribe. Without the subscribe() invoca‐
tion, the block of code inside Observable.create() is never executed. Moreover,
even map() and filter() operators do not have any visible side effects, notice how
the Transformed message is printed even before Subscribed.

Later, we receive all emitted events and completion notification. Finally, the Exiting
statement is printed and the program can return. This is an interesting observation—
subscribe() was supposed to be registering a callback when events appear asynchro‐
nously. This is the assumption that you should make by default. However in this case
there is no threading involved and subscribe() is actually blocking. How is this so?

There is an inherent but hidden connection between subscribe() and create().
Every time you call subscribe() on an Observable, its OnSubscribe callback method
is invoked (wrapping the lambda expression you passed to create()). It receives your
Subscriber as an argument. By default, this happens in the same thread and is block‐
ing, so whatever you do inside create() will block subscribe(). If your create()
method sleeps for few seconds, subscribe() will block. Moreover, if there are opera‐
tors between Observable.create() and your Subscriber (lambda acting as call‐
back), all these operators are invoked on behalf of the thread that invoked
subscribe(). RxJava does not inject any concurrency facilities by default between
Observable and Subscriber. The reason behind that is that Observables tend to be
backed by other concurrency mechanisms like event loops or custom threads, so Rx
lets you take full control rather than imposing any convention.

Multithreading in RxJava | 151

www.EBooksWorld.ir

This observation prepares the landscape for the subscribeOn() operator. By inserting
subscribeOn() anywhere between an original Observable and subscribe(), you
declaratively select Scheduler where the OnSubscribe callback method will be
invoked. No matter what you do inside create(), this work is offloaded to an inde‐
pendent Scheduler and your subscribe() invocation no longer blocks:

log("Starting");
final Observable<String> obs = simple();
log("Created");
obs
 .subscribeOn(schedulerA)
 .subscribe(
 x -> log("Got " + x),
 Throwable::printStackTrace,
 () -> log("Completed")
);
log("Exiting");

35 | main | Starting
112 | main | Created
123 | main | Exiting
123 | Sched-A-0 | Subscribed
124 | Sched-A-0 | Got A
124 | Sched-A-0 | Got B
124 | Sched-A-0 | Completed

Do you see how the main thread exits before Observable even begins emitting any
values? Technically, the order of log messages is no longer that predictable because
two threads are running concurrently: main, which subscribed and wants to exit, and
Sched-A-0, which emits events as soon as someone subscribed. The schedulerA as
well as Sched-A-0 thread come from the following sample schedulers we built for
illustration purposes:

import static java.util.concurrent.Executors.newFixedThreadPool;

ExecutorService poolA = newFixedThreadPool(10, threadFactory("Sched-A-%d"));
Scheduler schedulerA = Schedulers.from(poolA);

ExecutorService poolB = newFixedThreadPool(10, threadFactory("Sched-B-%d"));
Scheduler schedulerB = Schedulers.from(poolB);

ExecutorService poolC = newFixedThreadPool(10, threadFactory("Sched-C-%d"));
Scheduler schedulerC = Schedulers.from(poolC);

private ThreadFactory threadFactory(String pattern) {
 return new ThreadFactoryBuilder()
 .setNameFormat(pattern)

152 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

 .build();
}

These schedulers will be used across all examples, but they are fairly easy to remem‐
ber. Three independent schedulers, each managing 10 threads from an ExecutorSer
vice. To make the output nicer, each thread pool has a distinct naming pattern.

Before we begin, you must understand that in mature applications, in terms of Rx
adoption, subscribeOn() is very seldom used. Normally, Observables come from
sources that are naturally asynchronous (like RxNetty, see “Nonblocking HTTP
Server with Netty and RxNetty” on page 169) or apply scheduling on their own (like
Hystrix, see “Managing Failures with Hystrix” on page 291). You should treat subscri
beOn() only in special cases when the underlying Observable is known to be syn‐
chronous (create() being blocking). However, subscribeOn() is still a much better
solution than hand-crafted threading within create():

//Don't do this
Observable<String> obs = Observable.create(subscriber -> {
 log("Subscribed");
 Runnable code = () -> {
 subscriber.onNext("A");
 subscriber.onNext("B");
 subscriber.onCompleted();
 };
 new Thread(code, "Async").start();
});

The preceding code mixes two concepts: producing events and choosing concurrency
strategy. Observable should be responsible only for production logic, whereas it is
only the client code that can make judicious decision about concurrency. Remember
that Observable is lazy but also immutable, in the sense that subscribeOn() affects
only downstream subscribers, if someone subscribes to the exact same Observable
without subscribeOn() in between, no concurrency will be involved by default.

Keep in mind that in this chapter our focus is on existing applications and introduc‐
ing RxJava gradually. The subscribeOn() operator is quite useful in such circumstan‐
ces; however, after you grasp reactive extensions and begin using them on large scale,
the value of subscribeOn() diminishes. In entirely reactive software stacks, as found
for example at Netflix , subscribeOn() is almost never used, yet all Observables are
asynchronous. Most of the time Observables come from asynchronous sources and
they are treated as asynchronous by default. Therefore, using subscribeOn() is very
limited, mostly when retrofitting existing APIs or libraries. In Chapter 5, we write
write truly asynchronous applications without explicit subscribeOn() and Schedu
lers altogether.

Multithreading in RxJava | 153

www.EBooksWorld.ir

subscribeOn() Concurrency and Behavior
There are several nuances regarding how subscribeOn() works. First, curious reader
should be wondering what happens if two invocations of the subscribeOn() appear
between Observable and subscribe(). The answer is simple: subscribeOn() closest
to the original Observable wins. This has important practical implications. If you are
designing an API and you use subscribeOn() internally, the client code has no way of
overriding the Scheduler of your choice. This can be a conscious design decision;
after all, the API designer might know best which Scheduler is appropriate. On the
other hand, providing an overloaded version of said API that allows overriding the
chosen Scheduler is always a good idea.

Let’s study how subscribeOn() behaves:

log("Starting");
Observable<String> obs = simple();
log("Created");
obs
 .subscribeOn(schedulerA)
 //many other operators
 .subscribeOn(schedulerB)
 .subscribe(
 x -> log("Got " + x),
 Throwable::printStackTrace,
 () -> log("Completed")
);
log("Exiting");

The output reveals only schedulerA’s threads:

17 | main | Starting
73 | main | Created
83 | main | Exiting
84 | Sched-A-0 | Subscribed
84 | Sched-A-0 | Got A
84 | Sched-A-0 | Got B
84 | Sched-A-0 | Completed

Interestingly, subscribing on schedulerB is not entirely ignored in favor of schedu
lerA. schedulerB is still used for a short period of time, but it barely schedules new
action on schedulerA, which does all the work. Thus, multiple subscribeOn() are
not only ignored, but also introduce small overhead.

Speaking of operators, we said that the create() method used when there is a new
Subscriber is executed within the provided scheduler (if any). But which thread exe‐
cutes all these transformations happening between create() and subscribe()? We
already know that when all operators are executed by default in the same thread
(scheduler), no concurrency is involved by default:

154 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

log("Starting");
final Observable<String> obs = simple();
log("Created");
obs
 .doOnNext(this::log)
 .map(x -> x + '1')
 .doOnNext(this::log)
 .map(x -> x + '2')
 .subscribeOn(schedulerA)
 .doOnNext(this::log)
 .subscribe(
 x -> log("Got " + x),
 Throwable::printStackTrace,
 () -> log("Completed")
);
log("Exiting");

We sprinkled the pipeline of operators occasionally with doOnNext() to see which
thread is in control at this point. Remember that the position of subscribeOn() is not
relevant, it can be right after Observable or just before subscribe(). The output is
unsurprising:

20 | main | Starting
104 | main | Created
123 | main | Exiting
124 | Sched-A-0 | Subscribed
124 | Sched-A-0 | A
124 | Sched-A-0 | A1
124 | Sched-A-0 | A12
124 | Sched-A-0 | Got A12
124 | Sched-A-0 | B
124 | Sched-A-0 | B1
124 | Sched-A-0 | B12
125 | Sched-A-0 | Got B12

Watch how create() is invoked and produces A and B events. These events travel
sequentially through the scheduler’s thread to finally reach the Subscriber. Many
newcomers to RxJava believe that using a Scheduler with a large number of threads
will automatically fork processing of events concurrently and somehow join all the
results together in the end. This is not the case. RxJava creates a single Worker
instance (see: “Scheduler implementation details overview” on page 146) for the
entire pipeline, mostly to guarantee sequential processing of events.

This means that if one of your operators is particularly slow—for example, map()
reading data from disk in order to transform events passing by—this costly operation
will be invoked within the same thread. A single broken operator can slow down the
entire pipeline, from production to consumption. This is an antipattern in RxJava,
operators should be nonblocking, fast, and as pure as possible.

Multithreading in RxJava | 155

www.EBooksWorld.ir

Again, flatMap() comes to the rescue. Rather than blocking within map(), we can
invoke flatMap() and asynchronously collect all the results. Therefore, flatMap()
and merge() are the operators when we want to achieve true parallelism. But even
with flatMap() it is not obvious. Imagine a grocery store (let’s call it “RxGroceries”)
that provides an API for purchasing goods:

class RxGroceries {

 Observable<BigDecimal> purchase(String productName, int quantity) {
 return Observable.fromCallable(() ->
 doPurchase(productName, quantity));
 }

 BigDecimal doPurchase(String productName, int quantity) {
 log("Purchasing " + quantity + " " + productName);
 //real logic here
 log("Done " + quantity + " " + productName);
 return priceForProduct;
 }

}

Obviously, the implementation of doPurchase() is irrelevant here, just imagine it
takes some time and resources to complete. We simulate business logic by adding
artificial sleep of one second, slightly higher if quantity is bigger. Blocking Observa
bles like the one returned from purchase() are unusual in a real application, but let’s
keep it this way for educational purposes. When purchasing several goods we would
like to parallelize as much as possible and calculate total price for all goods in the end.
The first attempt is fruitless:

Observable<BigDecimal> totalPrice = Observable
 .just("bread", "butter", "milk", "tomato", "cheese")
 .subscribeOn(schedulerA) //BROKEN!!!
 .map(prod -> rxGroceries.doPurchase(prod, 1))
 .reduce(BigDecimal::add)
 .single();

The result is correct, it is an Observable with just a single value: total price, calculated
using reduce(). For each product, we invoke doPurchase() with quantity one.
However, despite using schedulerA backed by a thread pool of 10, the code is entirely
sequential:

144 | Sched-A-0 | Purchasing 1 bread
1144 | Sched-A-0 | Done 1 bread
1146 | Sched-A-0 | Purchasing 1 butter
2146 | Sched-A-0 | Done 1 butter
2146 | Sched-A-0 | Purchasing 1 milk
3147 | Sched-A-0 | Done 1 milk
3147 | Sched-A-0 | Purchasing 1 tomato
4147 | Sched-A-0 | Done 1 tomato

156 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

4147 | Sched-A-0 | Purchasing 1 cheese
5148 | Sched-A-0 | Done 1 cheese

Notice how each product blocks subsequent ones from processing. When the pur‐
chase of bread is done, butter begins immediately, but not earlier. Strangely, even
replacing map() with flatMap() does not help, and the output is exactly the same:

Observable
 .just("bread", "butter", "milk", "tomato", "cheese")
 .subscribeOn(schedulerA)
 .flatMap(prod -> rxGroceries.purchase(prod, 1))
 .reduce(BigDecimal::add)
 .single();

The code does not work concurrently because there is just a single flow of events,
which by design must run sequentially. Otherwise, your Subscriber would need to
be aware of concurrent notifications (onNext(), onComplete(), etc.), so it is a fair
compromise. Luckily, the idiomatic solution is very close. The main Observable
emitting products cannot be parallelized. However, for each product, we create a new,
independent Observable as returned from purchase(). Because they are independ‐
ent, we can safely schedule each one of them concurrently:

Observable<BigDecimal> totalPrice = Observable
 .just("bread", "butter", "milk", "tomato", "cheese")
 .flatMap(prod ->
 rxGroceries
 .purchase(prod, 1)
 .subscribeOn(schedulerA))
 .reduce(BigDecimal::add)
 .single();

Can you spot where subscribeOn() is? The main Observable is not really doing any‐
thing, so a special thread pool is unnecessary. However each substream created within
flatMap() is supplied with a schedulerA. Every time subscribeOn() is used to the
Scheduler gets a chance to return a new Worker, and therefore a separate thread
(simplifying a bit):

113 | Sched-A-1 | Purchasing 1 butter
114 | Sched-A-0 | Purchasing 1 bread
125 | Sched-A-2 | Purchasing 1 milk
125 | Sched-A-3 | Purchasing 1 tomato
126 | Sched-A-4 | Purchasing 1 cheese
1126 | Sched-A-2 | Done 1 milk
1126 | Sched-A-0 | Done 1 bread
1126 | Sched-A-1 | Done 1 butter
1128 | Sched-A-3 | Done 1 tomato
1128 | Sched-A-4 | Done 1 cheese

Finally, we achieved true concurrency. Each purchase operation now begins at the
same time and they all eventually finish. The flatMap() operator is carefully

Multithreading in RxJava | 157

www.EBooksWorld.ir

designed and implemented so that it collects all events from all independent streams
and pushes them downstream sequentially. However, as we already learned in “Order
of Events After flatMap()” on page 73, we can no longer rely on the order of down‐
stream events—they neither begin nor complete in the same order as they were emit‐
ted (the original sequence began at bread). When events reach the reduce() operator,
they are already sequential and well behaving.

By now, you should slowly move away from the classic Thread model and understand
how Schedulers work. But if you find it difficult, here is a simple analogy:

• Observable without any Scheduler works like a single-threaded program with
blocking method calls passing data between one another.

• Observable with a single subscribeOn() is like starting a big task in the back‐
ground Thread. The program within that Thread is still sequential, but at least it
runs in the background.

• Observable using flatMap() where each internal Observable has subscri
beOn() works like ForkJoinPool from java.util.concurrent, where each sub‐
stream is a fork of execution and flatMap() is a safe join stage.

Of course, the preceding tips only apply to blocking Observables, which are rarely
seen in real applications. If your underlying Observables are already asynchronous,
achieving concurrency is a matter of understanding how they are combined and
when subscription occurs. For example, merge() on two streams will subscribe to
both of them concurrently, whereas the concat() operator waits until the first stream
finishes before it subscribes to the second one.

Batching Requests Using groupBy()
Did you notice that RxGroceries.purchase() takes productName and quantity even
though the quantity was always one? What if our grocery list had some products mul‐
tiple times, indicating bigger demand? The first naive implementation simply sends
the same request—for example, for egg, multiple times, each time asking for one. For‐
tunately, we can declaratively batch such requests by using groupBy()—and this still
works with declarative concurrency:

import org.apache.commons.lang3.tuple.Pair;

Observable<BigDecimal> totalPrice = Observable
 .just("bread", "butter", "egg", "milk", "tomato",
 "cheese", "tomato", "egg", "egg")
 .groupBy(prod -> prod)
 .flatMap(grouped -> grouped
 .count()
 .map(quantity -> {
 String productName = grouped.getKey();

158 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

 return Pair.of(productName, quantity);
 }))
 .flatMap(order -> store
 .purchase(order.getKey(), order.getValue())
 .subscribeOn(schedulerA))
 .reduce(BigDecimal::add)
 .single();

This code is quite complex, so before revealing the output, let’s quickly go through it.
First, we group products simply by their name, thus identity function prod -> prod.
In return we get an awkward Observable<GroupedObservable<String, String>>.
There is nothing wrong with that. Next, flatMap() receives each GroupedObserva
ble<String, String>, representing all products of the same name. So, for example,
there will be an ["egg", "egg", "egg"] Observable there with a key "egg", as well.
If groupBy() used a different key function, like prod.length(), the same sequence
would have a key 3.

At this point, within flatMap() we need to construct an Observable of type
Pair<String, Integer> which represents every unique product and its quantity.
Both count() and map() return an Observable, so everything lines up perfectly. Sec‐
ond flatMap() receives order of type Pair<String, Integer> and makes a pur‐
chase, this time the quantity can be bigger. The output looks perfect; notice that
bigger orders are slightly slower, but still it is much faster than having several
repeated requests:

164 | Sched-A-0 | Purchasing 1 bread
165 | Sched-A-1 | Purchasing 1 butter
166 | Sched-A-2 | Purchasing 3 egg
166 | Sched-A-3 | Purchasing 1 milk
166 | Sched-A-4 | Purchasing 2 tomato
166 | Sched-A-5 | Purchasing 1 cheese
1151 | Sched-A-0 | Done 1 bread
1178 | Sched-A-1 | Done 1 butter
1180 | Sched-A-5 | Done 1 cheese
1183 | Sched-A-3 | Done 1 milk
1253 | Sched-A-4 | Done 2 tomato
1354 | Sched-A-2 | Done 3 egg

If you believe that your system can benefit from batching this way or the other, check
out “Batching and Collapsing Commands” on page 297.

Declarative Concurrency with observeOn()
Believe it or not, concurrency in RxJava can be described by two operators: the afor‐
mentioned subscribeOn() and observeOn(). They seem very similar and are confus‐
ing to newcomers, but their semantics are actually quite clear and reasonable.

Multithreading in RxJava | 159

www.EBooksWorld.ir

subscribeOn() allows choosing which Scheduler will be used to invoke OnSubscribe
(lambda expression inside create()). Therefore, any code inside create() is pushed
to a different thread—for example, to avoid blocking the main thread. Conversely,
observeOn() controls which Scheduler is used to invoke downstream Subscribers
occurring after observeOn(). For example, calling create() happens in the io()
Scheduler (via subscribeOn(io())) to avoid blocking the user interface. However,
updating the user interface widgets must happen in the UI thread (both Swing and
Android have this constraint), so we use observeOn() for example with Android
Schedulers.mainThread() before operators or subscribers changing UI. This way we
can use one Scheduler to handle create() and all operators up to the first observ
eOn(), but other(s) to apply transformations. This is best explained with an example:

log("Starting");
final Observable<String> obs = simple();
log("Created");
obs
 .doOnNext(x -> log("Found 1: " + x))
 .observeOn(schedulerA)
 .doOnNext(x -> log("Found 2: " + x))
 .subscribe(
 x -> log("Got 1: " + x),
 Throwable::printStackTrace,
 () -> log("Completed")
);
log("Exiting");

observeOn() occurs somewhere in the pipeline chain, and this time, as opposed to
subscribeOn(), the position of observeOn() is quite important. No matter what
Scheduler was running operators above observeOn() (if any), everything below uses
the supplied Scheduler. In this example, there is no subscribeOn(), so the default is
applied (no concurrency):

23 | main | Starting
136 | main | Created
163 | main | Subscribed
163 | main | Found 1: A
163 | main | Found 1: B
163 | main | Exiting
163 | Sched-A-0 | Found 2: A
164 | Sched-A-0 | Got 1: A
164 | Sched-A-0 | Found 2: B
164 | Sched-A-0 | Got 1: B
164 | Sched-A-0 | Completed

All of the operators above observeOn are executed within client thread, which hap‐
pens to be the default in RxJava. But below observeOn(), the operators are executed

160 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

within the supplied Scheduler. This will become even more obvious when both sub
scribeOn() and multiple observeOn() occur within the pipeline:

log("Starting");
final Observable<String> obs = simple();
log("Created");
obs
 .doOnNext(x -> log("Found 1: " + x))
 .observeOn(schedulerB)
 .doOnNext(x -> log("Found 2: " + x))
 .observeOn(schedulerC)
 .doOnNext(x -> log("Found 3: " + x))
 .subscribeOn(schedulerA)
 .subscribe(
 x -> log("Got 1: " + x),
 Throwable::printStackTrace,
 () -> log("Completed")
);
log("Exiting");

Can you predict the output? Remember, everything below observeOn() is run within
the supplied Scheduler, of course until another observeOn() is encountered. Addi‐
tionally subscribeOn() can occur anywhere between Observable and subscribe(),
but this time it only affects operators down to the first observeOn():

21 | main | Starting
98 | main | Created
108 | main | Exiting
129 | Sched-A-0 | Subscribed
129 | Sched-A-0 | Found 1: A
129 | Sched-A-0 | Found 1: B
130 | Sched-B-0 | Found 2: A
130 | Sched-B-0 | Found 2: B
130 | Sched-C-0 | Found 3: A
130 | Sched-C-0 | Got: A
130 | Sched-C-0 | Found 3: B
130 | Sched-C-0 | Got: B
130 | Sched-C-0 | Completed

Subscription occurs in schedulerA because that is what we specified in subscri
beOn(). Also "Found 1" operator was executed within that Scheduler because it is
before the first observeOn(). Later, the situation becomes more interesting. observ
eOn() switches current Scheduler to schedulerB, and "Found 2" is using this one,
instead. The last observeOn(schedulerC) affects both "Found 3" operator as well as
Subscriber. Remember that Subscriber works within the context of the last encoun‐
tered Scheduler.

subscribeOn() and observeOn() work really well together when you want to physi‐
cally decouple producer (Observable.create()) and consumer (Subscriber). By
default, there is no such decoupling, and RxJava simply uses the same thread. sub

Multithreading in RxJava | 161

www.EBooksWorld.ir

scribeOn() only is not enough, we simply choose a different thread. observeOn() is
better, but then we block the client thread in case of synchronous Observables.
Because most of the operators are nonblocking and lambda expressions used inside
them tend to be short and cheap, typically there is just one subscribeOn() and
observeOn() in the pipeline of operators. subscribeOn() can be placed close to the
original Observable to improve readability, whereas observeOn() is close to sub
scribe() so that only Subscriber uses that special Scheduler, other operators rely
on the Scheduler from subscribeOn().

Here is a more advanced program that takes advantage of these two operators:

log("Starting");
Observable<String> obs = Observable.create(subscriber -> {
 log("Subscribed");
 subscriber.onNext("A");
 subscriber.onNext("B");
 subscriber.onNext("C");
 subscriber.onNext("D");
 subscriber.onCompleted();
});
log("Created");
obs
 .subscribeOn(schedulerA)
 .flatMap(record -> store(record).subscribeOn(schedulerB))
 .observeOn(schedulerC)
 .subscribe(
 x -> log("Got: " + x),
 Throwable::printStackTrace,
 () -> log("Completed")
);
log("Exiting");

Where store() is a simple nested operation:

Observable<UUID> store(String s) {
 return Observable.create(subscriber -> {
 log("Storing " + s);
 //hard work
 subscriber.onNext(UUID.randomUUID());
 subscriber.onCompleted();
 });
}

The production of events occurs in schedulerA, but each event is processed inde‐
pendently using schedulerB to improve concurrency, a technique we learned in “sub‐
scribeOn() Concurrency and Behavior” on page 154. The subscription in the end
happens in yet another schedulerC. We are pretty sure you understand by now which
Scheduler/thread will execute which action, but just in case (empty lines added for
clarity):

162 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

26 | main | Starting
93 | main | Created
121 | main | Exiting

122 | Sched-A-0 | Subscribed
124 | Sched-B-0 | Storing A
124 | Sched-B-1 | Storing B
124 | Sched-B-2 | Storing C
124 | Sched-B-3 | Storing D

1136 | Sched-C-1 | Got: 44b8b999-e687-485f-b17a-a11f6a4bb9ce
1136 | Sched-C-1 | Got: 532ed720-eb35-4764-844e-690327ac4fe8
1136 | Sched-C-1 | Got: 13ddf253-c720-48fa-b248-4737579a2c2a
1136 | Sched-C-1 | Got: 0eced01d-3fa7-45ec-96fb-572ff1e33587
1137 | Sched-C-1 | Completed

observeOn() is especially important for applications with a UI for which we do not
want to block the UI event-dispatching thread. On Android (see “Android Develop‐
ment with RxJava” on page 277) or Swing, some actions like updating the UI must be
executed within a specific thread. But doing too much in that thread renders your UI
unresponsive. In these cases, you put observeOn() close to subscribe() so that code
within the subscription is invoked within the context of a particular Scheduler (like
UI-thread). However, other transformations, even rather cheap, should be executed
outside UI thread. On the server, observeOn() is seldom used because the true source
of concurrency is built into most Observables. This leads to an interesting conclu‐
sion: RxJava controls concurrency with just two operators (subscribeOn() and
observeOn()), but the more you use reactive extensions, the less frequently you will
see these in production code.

Other Uses for Schedulers
There are numerous operators that by default use some Scheduler. Typically, Schedu
lers.computation() is used if none is supplied—JavaDoc always makes it clear. For
example, the delay() operator takes upstream events and pushes them downstream
after a given time. Obviously, it cannot hold the original thread during that period, so
it must use a different Scheduler:

Observable
 .just('A', 'B')
 .delay(1, SECONDS, schedulerA)
 .subscribe(this::log);

Without supplying a custom schedulerA, all operators below delay() would use the
computation() Scheduler. There is nothing inherently wrong with that; however, if
your Subscriber is blocked on I/O it would consume one Worker from globally
shared computation() scheduler, possibly affecting the entire system. Other impor‐
tant operators that support custom Scheduler are: interval(), range(), timer(),

Multithreading in RxJava | 163

www.EBooksWorld.ir

repeat(), skip(), take(), timeout(), and several others that have yet to be intro‐
duced. If you do not provide a scheduler to such operators, computation() Schedu
ler is utilized, which is a safe default in most cases.

Mastering schedulers is essential to writing scalable and safe code using RxJava. The
difference between subscribeOn() and observeOn() is especially important under
high load where every task must be executed precisely when we expect. In truly reac‐
tive applications, for which all long-running operations are asynchronous, very few
threads and thus Schedulers are needed. But there is always this one API or depend‐
ency that requires blocking code.

Last but not least, we must be sure that Schedulers used downstream can keep up
with the load generated by Schedulers upstream. But this danger will be explained in
great detail in Chapter 6.

Summary
This chapter described several patterns in traditional applications that can be
replaced with RxJava. I hope you understand by now that high-frequency trading or
streaming posts from social media are not the only use cases for RxJava. As a matter
of fact, almost any API can be seamlessly replaced with Observable. Even if you don’t
want or need the power of reactive extensions at the moment, it will allow you to
evolve implementation without introducing backward-incompatible changes. More‐
over, it is the client that eventually harvests all the possibilities offered by RxJava, like
laziness, declarative concurrency, or asynchronous chaining. Even better, because of
seamless conversion from Observable to BlockingObservable, traditional clients can
consume your API as they want, and you can always provide a simple bridge layer.

You should be fairly confident with RxJava and understand the benefits of applying it
even in legacy systems. Undoubtedly, working with reactive Observables is more
challenging and has a somewhat steep learning curve. But the advantages and possi‐
bilities of growth simply can’t be exaggerated. Imagine if we could write entire appli‐
cations using reactive extensions, from top to bottom? Like a greenfield project for
which we have control over every API, interface, and external system. Chapter 5 will
discuss how you can write such an application and what the implications are.

164 | Chapter 4: Applying Reactive Programming to Existing Applications

www.EBooksWorld.ir

CHAPTER 5

Reactive from Top to Bottom

Tomasz Nurkiewicz

“Everything is a stream” is an often cited Zen of RxJava. In Chapter 4, we learned how
to deploy RxJava in some places throughout our codebase. But what you will quickly
discover is that truly reactive applications use streams pretty much from top to bot‐
tom. This approach simplifies reasoning and makes our application very consistent.
Nonblocking applications tend to provide great performance and throughput for a
fraction of the hardware. By limiting the number of threads, we are able to fully uti‐
lize CPU without consuming gigabytes of memory.

One of the limiting factors of scalability in Java is the I/O mechanism. The java.io
package is very well designed with lots of small Input/OutputStream and Reader/
Writer implementations that decorate and wrap one another, adding one functional‐
ity at a time. As much as I like this beautiful separation of concerns, standard I/O in
Java is entirely blocking, meaning every thread that wishes to read or write from a
Socket or File must wait indefinitely for the result. Even worse, threads stuck at an
I/O operation due to slow network or an even slower spinning disk are hard to inter‐
rupt. Blocking on its own is not an issue, when one thread is blocked, others can still
interact with remaining open Sockets. But threads are expensive to create and man‐
age, and switching between them takes time. Java applications are perfectly capable of
handling tens of thousands of concurrent connections, but you must design them
carefully. This design effort is greatly reduced when RxJava is combined with some
modern event-driven libraries and frameworks.

Beating the C10k Problem
The C10k problem was an area of research and optimization that tried to achieve
10,000 concurrent connections on a single commodity server. Even these days, solv‐
ing this engineering task with the traditional Java toolkit is a challenge. There are

165

www.EBooksWorld.ir

many reactive approaches that easily achieve C10k, and RxJava makes them very
approachable. In this chapter, we explore several implementation techniques that will
improve scalability by several orders of magnitude. All of them will circle around the
concept of reactive programming. If you are lucky enough to work on a greenfield
project, you might consider implementing your application in a reactive manner top
to bottom. Such an application should never synchronously wait for any computation
or action. The architecture must be entirely event-driven and asynchronous in order to
avoid blocking. We will go through several examples of a simple HTTP server and
observe how it behaves with respect to design choices we made. Admittedly, perfor‐
mance and scalability does have a complexity price tag. But with RxJava the addi‐
tional complexity will be reduced significantly.

The classic thread per connection model struggles to solve the C10k problem. With
10,000 threads we do the following:

• Consume several gigabytes of RAM for stack space
• Put great pressure on the garbage collection mechanism, despite that stack space

is not garbage-collected (lots of GC roots and live objects)
• Waste significant amount of CPU time simply switching cores to run different

threads (context switching).

The classic thread-per-Socket model served us really well, and as a matter of fact it
works quite good in many applications to this day. However, after you reach certain
level of concurrency, the number of threads becomes dangerous. A thousand concur‐
rent connections handled by a single commodity server is not something unusual,
especially with long-living TCP/IP connections like HTTP with a Keep-Alive header,
server-sent events, or WebSockets. However, each thread occupies a little bit of mem‐
ory (stack space), regardless of whether it is computing something or just waiting idle
for data.

There are two independent approaches to scalability: horizontal and vertical. To han‐
dle more concurrent connections we can simply spin up more servers, each manag‐
ing a subset of the load. This requires a frontend load-balancer and does not solve the
original C10k problem that expects just one server. On the other hand, vertical scala‐
bility means purchasing bigger and more capable servers. However, with blocking I/O
we need a disproportional amount of memory compared to heavily underutilized
CPU. Even if a big enterprise server can handle hundreds of thousands of concurrent
connections (at very high price), it is far from solving C10M problem—ten million
concurrent connections. This number is not a coincidence; a couple of years ago, a
properly designed Java application reached that enormous level on a typical server.

This chapter takes you on a journey through different ways of implementing an
HTTP server. From single-threaded servers, through thread pools, to entirely event-
driven architectures. The idea behind this exercise is to compare the implementation

166 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

http://bit.ly/2d4Z1xu

complexity versus performance and throughput. In the end, you will notice that the
version using RxJava combines both relative simplicity and outstanding performance.

Traditional Thread-Based HTTP Servers
The purpose of this section is to compare how blocking servers, even when written
properly, behave under high load. This is the exercise that we probably all went
through during our education: writing a server on top of raw sockets. We will be
implementing an extremely simple HTTP server that responds with 200 OKs for
every request. As a matter of fact, for the sake of simplicity we will ignore the request
altogether.

Single threaded server

The simplest implementation just opens a ServerSocket and handles client connec‐
tions as they come. When a single client is served, all other requests are queued up.
The following code snippet is actually very simple:

class SingleThread {

 public static final byte[] RESPONSE = (
 "HTTP/1.1 200 OK\r\n" +
 "Content-length: 2\r\n" +
 "\r\n" +
 "OK").getBytes();

 public static void main(String[] args) throws IOException {
 final ServerSocket serverSocket = new ServerSocket(8080, 100);
 while (!Thread.currentThread().isInterrupted()) {
 final Socket client = serverSocket.accept();
 handle(client);
 }
 }

 private static void handle(Socket client) {
 try {
 while (!Thread.currentThread().isInterrupted()) {
 readFullRequest(client);
 client.getOutputStream().write(RESPONSE);
 }
 } catch (Exception e) {
 e.printStackTrace();
 IOUtils.closeQuietly(client);
 }
 }

 private static void readFullRequest(Socket client) throws IOException {
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(client.getInputStream()));
 String line = reader.readLine();

Beating the C10k Problem | 167

www.EBooksWorld.ir

 while (line != null && !line.isEmpty()) {
 line = reader.readLine();
 }
 }

}

You will not see similar low-level implementations outside of the university, but it
works. For each request we ignore whatever was sent to us and return 200 OK
responses. Opening localhost:8080 in the browser succeeds with an OK text reply.
The class is named SingleThread for a reason. ServerSocket.accept() blocks until
any client establishes a connection with us. Then, it returns a client Socket. While we
interact with that Socket (read and write to it), we still listen for incoming connec‐
tions but no one picks them up because our thread is busy handling first client. It is
like at the doctor’s office: one patient goes in and everyone else must wait in a queue.
Did you notice the extra 100 parameter after 8080 (listening port)? This value (the
default is 50) caps the maximum number of pending connections that can wait in a
queue. Above that number, they are rejected. To make matters worse, we pretend to
implement HTTP/1.1 which uses persistent connections by default. Until the client
disconnects we keep the TCP/IP connection open just in case, blocking new clients.

Now, coming back to our client connection, we first must read the entire request and
then write the response. Both of these operations are potentially blocking and subject
to network slowness and congestion. If one client establishes a connection but then
waits a few seconds before sending a request, all other clients must wait. Having just a
single thread for handling all incoming connections is clearly not very scalable, we
barely solved the C1 (one concurrent connection) problem.

Appendix A contains the source code and a discussion of other blocking servers.
Rather than spending more time analyzing nonscalable blocking architectures, we
will briefly summarize them so that we can proceed to benchmarks and side-by-side
comparisons quicker:

In “fork() Procedure in C Language” on page 327, you will find the source code of a
simple server written in C language using fork(). Despite superficial simplicity, fork‐
ing a new process per each client connection, especially for short-living ones, puts
significant load on the operating system. Each process needs quite a bit of memory
and initial startup takes some time. Also thousands of processes starting and stopping
all the time unnecessarily occupy system resources.

ThreadPerConnection (see “Thread per Connection” on page 329) shows how to
implement a blocking server that creates a new thread per each client connection.
This presumably scales quite well, but such implementation suffers the same prob‐
lems as fork() in C: starting a new thread takes some time and resources, which is
especially wasteful for short-lived connections. Moreover, there is no limit to the
maximum number of client threads running at the same time. And when you do not

168 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

put a limit on something in the computer system, this limit will be applied for you in
the worst and least expected place. For example, our program will become unstable
and eventually crash with OutOfMemoryError in case of thousands of concurrent con‐
nections.

ThreadPool (see “Thread Pool of Connections” on page 331) also uses a thread per
connection, but threads are recycled when a client disconnects so that we do not pay
the price of thread warm up for every client. This is pretty much how all popular
servlet containers like Tomcat and Jetty work, managing 100 to 200 threads in a pool
by default. Tomcat has the so-called NIO connector that handles some of the opera‐
tions on sockets asynchronously, but the real work in servlets and frameworks built
on top of them is still blocking. This means that traditional applications are inher‐
ently limited to a couple thousand connections, even built on top of modern servlet
containers.

Nonblocking HTTP Server with Netty and RxNetty
We will now focus on event-driven approaches to writing an HTTP server, which are
far more promising in terms of scalability. A blocking processing model involving
thread-per-request clearly does not scale. We need a way of managing several client
connections with just a handful of threads. This has a lot of benefits:

• Reduced memory consumption
• Better CPU and CPU cache utilization
• Greatly improved scalability on a single node

One caveat is the lost simplicity and clarity. Threads are not allowed to block on any
operation, we can no longer pretend that receiving or sending data over the wire is
the same as a local method invocation. The latency is unpredictable and response
times higher by orders of magnitude. By the time you read this, there will probably
still be quite a few spinning hard drives out there, which are even slower than a local
area networks. In this section, we will develop a tiny event-driven application with
the Netty framework and later refactor it to use RxNetty. Finally, we conclude with a
benchmark of all solutions.

Netty is entirely event-driven; we never block waiting for data to be sent or received.
Instead, raw bytes in the form of ByteBuf instances are pushed to our processing
pipeline. TCP/IP gives us an impression of connection and data flowing byte after
byte between two computers. But in reality TCP/IP is built on top of IP, which can
barely transfer chunks of data known as packets. It is the operating system’s role to
assemble them in the correct order and give the illusion of a stream. Netty drops this
abstraction and works at a byte-sequence layer, not a stream. Whenever a few bytes

Beating the C10k Problem | 169

www.EBooksWorld.ir

https://github.com/ReactiveX/RxNetty
http://netty.io/

arrive to our application, Netty will notify our handler. Whenever we send few bytes,
we get a ChannelFuture without blocking (more on futures in a second).

Our example of non-blocking HTTP server has three components. The first simply
starts the server and sets up the environment:

import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioServerSocketChannel;

class HttpTcpNettyServer {

 public static void main(String[] args) throws Exception {
 EventLoopGroup bossGroup = new NioEventLoopGroup(1);
 EventLoopGroup workerGroup = new NioEventLoopGroup();
 try {
 new ServerBootstrap()
 .option(ChannelOption.SO_BACKLOG, 50_000)
 .group(bossGroup, workerGroup)
 .channel(NioServerSocketChannel.class)
 .childHandler(new HttpInitializer())
 .bind(8080)
 .sync()
 .channel()
 .closeFuture()
 .sync();
 } finally {
 bossGroup.shutdownGracefully();
 workerGroup.shutdownGracefully();
 }
 }
}

This is the most basic HTTP server in Netty. The crucial part is bossGroup pool
responsible for accepting incoming connections and workerGroup that processes
events. These pools are not very big: one for bossGroup and close to the number of
CPU cores for workerGroup but this is more than enough for a well-written Netty
server. We did not specify yet what the server should do, apart from listening on port
8080. This is configurable via ChannelInitializer:

import io.netty.channel.ChannelInitializer;
import io.netty.channel.socket.SocketChannel;
import io.netty.handler.codec.http.HttpServerCodec;

class HttpInitializer extends ChannelInitializer<SocketChannel> {

 private final HttpHandler httpHandler = new HttpHandler();

 @Override
 public void initChannel(SocketChannel ch) {

170 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

 ch
 .pipeline()
 .addLast(new HttpServerCodec())
 .addLast(httpHandler);
 }
}

Rather than providing a single function that handles the connection, we build a pipe‐
line that processes incoming ByteBuf instances as they arrive. The first step of the
pipeline decodes raw incoming bytes into higher-level HTTP request objects. This
handler is built-in. It is also used for encoding the HTTP response back to raw bytes.
In more robust applications you will often see more handlers focused on smaller
functionality; for example, frame decoding, protocol decoding, security, and so on.
Every piece of data and notification flows through this pipeline.

You’re probably beginning to see the analogy with RxJava here. The second step of
our pipeline is the business logic component that actually handles the request rather
than just intercepting or enriching it. Although HttpServerCodec is inherently state‐
ful (it translates incoming packets to high-level HttpRequest instances), our custom
HttpHandler can be a stateless singleton:

import io.netty.channel.*;
import io.netty.handler.codec.http.*;

@Sharable
class HttpHandler extends ChannelInboundHandlerAdapter {

 @Override
 public void channelReadComplete(ChannelHandlerContext ctx) {
 ctx.flush();
 }

 @Override
 public void channelRead(ChannelHandlerContext ctx, Object msg) {
 if (msg instanceof HttpRequest) {
 sendResponse(ctx);
 }
 }

 private void sendResponse(ChannelHandlerContext ctx) {
 final DefaultFullHttpResponse response = new DefaultFullHttpResponse(
 HTTP_1_1,
 HttpResponseStatus.OK,
 Unpooled.wrappedBuffer("OK".getBytes(UTF_8)));
 response.headers().add("Content-length", 2);
 ctx.writeAndFlush(response);
 }

 @Override
 public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {
 log.error("Error", cause);

Beating the C10k Problem | 171

www.EBooksWorld.ir

 ctx.close();
 }
}

After constructing the response object, we write() back a DefaultFullHttpRes
ponse. However, write() does not block like in ordinary sockets. Instead, it returns a
ChannelFuture that we can subscribe via addListener() and asynchronously close
the channel:

ctx
 .writeAndFlush(response)
 .addListener(ChannelFutureListener.CLOSE);

Channel is an abstraction over a communication link—for example, an HTTP con‐
nection—therefore closing a channel closes the connection. Again, we do not want to
do this in order to implement persistent connections.

Netty uses just a handful of threads to process possibly thousands of connections. We
do not keep any heavyweight data structures or threads per each connection. This is
much closer to what actually happens close to the metal. The computer receives an IP
packet and wakes up process listening on the destination port. TCP/IP connections
are just an abstraction often implemented using threads. However, when the applica‐
tion is much more demanding in terms of load and the number of connections, oper‐
ating directly at the packet level is much more robust. We still have channels
(lightweight representation of threads) and pipelines with possibly stateful handlers.

Observable server with RxNetty
Netty is an important backbone behind plenty of successful products and frameworks
such as Akka, Elasticsearch, HornetQ, Play framework, Ratpack and Vert.x to name a
few. There is also a thin wrapper around Netty that bridges between its API and
RxJava. Let’s rewrite the nonblocking Netty server into RxNetty. But we will begin
with asimple currency server to become familiar with the API:

import io.netty.handler.codec.LineBasedFrameDecoder;
import io.netty.handler.codec.string.StringDecoder;
import io.reactivex.netty.protocol.tcp.server.TcpServer;

class EurUsdCurrencyTcpServer {

 private static final BigDecimal RATE = new BigDecimal("1.06448");

 public static void main(final String[] args) {
 TcpServer
 .newServer(8080)
 .<String, String>pipelineConfigurator(pipeline -> {
 pipeline.addLast(new LineBasedFrameDecoder(1024));
 pipeline.addLast(new StringDecoder(UTF_8));
 })
 .start(connection -> {

172 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

http://akka.io
https://www.elastic.co
http://hornetq.jboss.org
https://www.playframework.com
http://ratpack.io
http://vertx.io
https://github.com/ReactiveX/RxNetty

 Observable<String> output = connection
 .getInput()
 .map(BigDecimal::new)
 .flatMap(eur -> eurToUsd(eur));
 return connection.writeAndFlushOnEach(output);
 })
 .awaitShutdown();
 }

 static Observable<String> eurToUsd(BigDecimal eur) {
 return Observable
 .just(eur.multiply(RATE))
 .map(amount -> eur + " EUR is " + amount + " USD\n")
 .delay(1, TimeUnit.SECONDS);
 }
}

This is a self-sufficient, standalone TCP/IP server written on top of RxNetty. You
should have a rough understanding of its major parts. First, we create a new TCP/IP
server listening on port 8080. Netty provides rather low-level abstraction of ByteBuf
messages flowing through a pipeline. We must configure such a pipeline, as well. The
first handler rearranges (splits and joins when needed) ByteBuf sequences into
sequences of lines using built-in LineBasedFrameDecoder. Second, the decoder trans‐
forms a ByteBuf containing full lines into actual String instances. From this point,
we are working exclusively with Strings.

Every time a new connection arrives, the callback is executed. The connection object
allows us to asynchronously send and receive data. First, we begin with connec
tion.getInput(). This object is of type Observable<String> and emits a value every
time a new line of the client’s request appears on the server. The getInput() Observa
ble notifies us asynchronously about new input. First, we parse the String into Big
Decimal. Then, using the helper method eurToUsd(), we fake calling some currency
exchange service. To make the example more realistic, we artificially applied delay()
so that we must wait a little bit for the response. Obviously delay() is asynchronous
and does not involve any sleeping. In the meantime, we keep receiving and trans‐
forming requests along the way.

After all these transformations the output Observable is fed directly into writeAnd
FlushOnEach(). I believe this is quite understandable—we receive a sequence of
inputs, transform them, and use the transformed sequence as a sequence of outputs.
Now, let’s interact with this server using telnet. Notice how some responses appear
after several requests were consumed due to faked currency server latency:

$ telnet localhost 8080
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
2.5

Beating the C10k Problem | 173

www.EBooksWorld.ir

2.5 EUR is 2.661200 USD
0.99
0.99 EUR is 1.0538352 USD
0.94
0.94 EUR is 1.0006112 USD
20
30
40
20 EUR is 21.28960 USD
30 EUR is 31.93440 USD
40 EUR is 42.57920 USD

We treat our server like a function of request data into response data. Because the
TCP/IP connection is not just a simple function but a stream of sometimes interde‐
pendent chunks of data, RxJava works amazingly well in this scenario. A rich set of
operators makes it easy to transform input to output in nontrivial ways. Of course,
the output stream does not have to be based on input; for example, if you are imple‐
menting server-sent events, the server simply publishes data irrespective of incoming
data.

The EurUsdCurrencyTcpServer is reactive because it only acts when data comes in.
We do not have a dedicated thread per each client. This implementation can easily
withstand thousands of concurrent connections, and vertical scalability is limited
only by the amount of traffic it must handle, not the number of more-or-less idle
connections.

Knowing how RxNetty works in principle, we can go back to the original HTTP
server that returns OK responses. RxNetty has built-in support for HTTP clients and
servers, but we will begin from a plain implementation based on TCP/IP:

import io.netty.handler.codec.LineBasedFrameDecoder;
import io.netty.handler.codec.string.StringDecoder;
import io.reactivex.netty.examples.AbstractServerExample;
import io.reactivex.netty.protocol.tcp.server.TcpServer;

import static java.nio.charset.StandardCharsets.UTF_8;

class HttpTcpRxNettyServer {

 public static final Observable<String> RESPONSE = Observable.just(
 "HTTP/1.1 200 OK\r\n" +
 "Content-length: 2\r\n" +
 "\r\n" +
 "OK");

 public static void main(final String[] args) {
 TcpServer
 .newServer(8080)
 .<String, String>pipelineConfigurator(pipeline -> {
 pipeline.addLast(new LineBasedFrameDecoder(128));

174 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

 pipeline.addLast(new StringDecoder(UTF_8));
 })
 .start(connection -> {
 Observable<String> output = connection
 .getInput()
 .flatMap(line -> {
 if (line.isEmpty()) {
 return RESPONSE;
 } else {
 return Observable.empty();
 }
 });
 return connection.writeAndFlushOnEach(output);
 })
 .awaitShutdown();
 }
}

Having EurUsdCurrencyTcpServer in mind understanding HttpTcpRxNettyServer
should be fairly simple. Because for educational purposes we are always returning
static 200 OK responses, there is no point in parsing the request. However, a well-
behaving server should not send a response before it read a request. Therefore, we
begin by looking for an empty line in getInput(), marking the end of the HTTP
request. Only then do we produce the 200 OK line. The output Observable built this
way is passed to connection.writeString(). In other words, the response will be
sent to the client as soon as the request contains the first empty line.

Implementing an HTTP server using TCP/IP is an entertaining exercise that helps
you to understand the intricacies of HTTP. Luckily, we are not forced to implement
HTTP and RESTful web services using TCP/IP abstraction all the time. Similar to
Netty, RxNetty also has a bunch of built-in components to serve HTTP:

import io.reactivex.netty.protocol.http.server.HttpServer;

class RxNettyHttpServer {

 private static final Observable<String> RESPONSE_OK =
 Observable.just("OK");

 public static void main(String[] args) {
 HttpServer
 .newServer(8086)
 .start((req, resp) ->
 resp
 .setHeader(CONTENT_LENGTH, 2)
 .writeStringAndFlushOnEach(RESPONSE_OK)
).awaitShutdown();
 }

Beating the C10k Problem | 175

www.EBooksWorld.ir

}

If you are bored with just returning a static 200 OK, we can build nonblocking REST‐
ful web service with relative ease, again for currency exchange:

class RestCurrencyServer {

 private static final BigDecimal RATE = new BigDecimal("1.06448");

 public static void main(final String[] args) {
 HttpServer
 .newServer(8080)
 .start((req, resp) -> {
 String amountStr = req.getDecodedPath().substring(1);
 BigDecimal amount = new BigDecimal(amountStr);
 Observable<String> response = Observable
 .just(amount)
 .map(eur -> eur.multiply(RATE))
 .map(usd ->
 "{\"EUR\": " + amount + ", " +
 "\"USD\": " + usd + "}");
 return resp.writeString(response);
 })
 .awaitShutdown();
 }
}

We can interact with this server using a web browser or curl. The initial sub
string(1) is required to strip the first slash from the request:

$ curl -v localhost:8080/10.99

> GET /10.99 HTTP/1.1
> User-Agent: curl/7.35.0
> Host: localhost:8080
> Accept: */*
>

< HTTP/1.1 200 OK
< transfer-encoding: chunked
<

{"EUR": 10.99, "USD": 11.6986352}

Having a handful of implementations of this simple HTTP server we can compare
them in terms of performance, scalability, and throughput. This is the reason why we
abandoned the familiar thread-based model and began using RxJava and asynchro‐
nous APIs in the first place.

176 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

1 We exclude C programs but also other reactive platforms like Node.js.

Benchmarking Blocking versus Reactive Server
To illustrate why writing nonblocking, reactive HTTP server is valuable and pays off,
we will run a series of benchmarks for each implementation. Interestingly, the bench‐
marking tool wrk of our choice is also nonblocking; otherwise, it would fail to simu‐
late the load equivalent to tens of thousands of concurrent connections. Another
interesting alternative is Gatling, which is built on top of the Akka toolkit. Traditional
thread-based load tools like JMeter and ab fail to simulate such excessive load and
become a bottleneck themselves.

Every JVM-based implementation1 was benchmarked against 10,000, 20,000, and
50,000 concurrent HTTP clients, thus TCP/IP connections. We were interested in the
number of requests per second (throughput) as well as median and 99th percentile
response time. Just as a reminder: median means 50% of the requests were as fast,
whereas 99th percentile tells us that 1% of the requests was slower than given num‐
ber.

Benchmark Environment

All benchmarks were executed on home laptops running Linux
3.13.0-62-generic kernel with an Intel i7 CPU 2.4 GHz, 8 GB of
RAM, and a solid-state drive (SSD) drive. The client machine was
running official wrk, Gatling and JMeter tools were connected to
the server machine via a single Gigabit ethernet router. Average
ping between client and server machine is 289 μs (deviation 42 μs,
minimum 160 μs).
Every benchmark was running for at least one minute with 30 sec‐
onds of warm-up on JDK 1.8.0_66. RxJava 1.0.14, RxNetty 0.5.1,
and Netty 4.0.32.Final. The system load was measured using htop.

Benchmarks were executed using the following command (with varying -c parame‐
ter representing number of concurrent clients):

wrk -t6 -c10000 -d60s --timeout 10s --latency http://server:8080

Plain server returning 200 OKs
The first benchmark compares how various implementations are performing when
they simply return 200 OKs and perform no backend tasks. This is a somewhat unre‐
alistic benchmark but it will give us a notion of the server and Ethernet upper limits.
In subsequent tests we will add some arbitrary sleep inside every server.

Beating the C10k Problem | 177

www.EBooksWorld.ir

https://github.com/wg/wrk
http://gatling.io
http://bit.ly/2cOdAmX

The following chart depicts number of requests per second handled by each imple‐
mentation (note the logarithmic scale):

Keep in mind that this benchmark is just a warm-up before real scenarios involving
some work on the server side. But we can already see a few interesting trends:

• Netty and RxNetty-based implementations using raw TCP/IP have the best
throughput, almost reaching 200,000 requests per second.

• Unsurprisingly, SingleThread implementation is significantly slower, being able
to handle about 6,000 requests per second, irrespective of the concurrency level.

• However, SingleThread is the fastest implementation when there is just one cli‐
ent. The overhead of thread pools, event-driven (Rx)Netty, and pretty much any
other implementation is visible. This advantage quickly diminishes when the
number of clients grow. Moreover throughput of the server is highly dependent
on the performance of the client.

• Surprisingly, ThreadPool performs really well, but it becomes unstable under
high load (lots of errors reported by wrk) and fails entirely when confronted with
50,000 concurrent clients (10-second timeout reached).

• ThreadPerConnection is also performing very well, but above 100–200 threads,
the server quickly drops throughput. Also 50,000 threads put a lot of pressure on
the JVM, especially a few extra gigabytes of stack space is troublesome.

178 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

We will not spend too much time analyzing this artificial benchmark. After all our
servers rarely return a response immediately. Instead, we want to simulate some work
happening upon each request.

Simulating server-side work

To simulate some work on the server-side, we will simply inject sleep() invocation in
between request and response. This is fair: often servers are not performing any
CPU-intensive work to fulfill a request. Traditional servers block on external resour‐
ces, consuming one thread. Reactive servers, on the other hand, simply wait for an
external signal (like event or message containing response), releasing underlying
resources in the meantime.

For that reason, for blocking implementations we simply added sleep(), whereas for
nonblocking servers we will use Observable.delay() and similar to simulate non-
blocking, slow response of some external service, as demonstrated in the following
example

public static final Observable<String> RESPONSE = Observable.just(
 "HTTP/1.1 200 OK\r\n" +
 "Content-length: 2\r\n" +
 "\r\n" +
 "OK")
 .delay(100, MILLISECONDS);

There was no point in using a nonblocking delay in blocking implementations
because they would still have to wait for the response, even if the underlying imple‐
mentation was nonblocking. That being said we injected a 100-millisecond delay to
each request so that each interaction with the server takes at least a tenth of a second.
The benchmark is now much more realistic and interesting. The number of requests
per second versus client connections is shown in the following graphic:

Beating the C10k Problem | 179

www.EBooksWorld.ir

The results more closely follow what one could expect from a real life load. The two
Netty-based implementations (HttpTcpNettyServer and HttpTcpRxNettyServer) on
the top are by far the fastest, easily reaching 90,000 requests per second (RPS). As a
matter of fact, up until about 10,000 concurrent clients, the server scales linearly. It is
very simple to prove: one client generates about 10 RPS (each request takes around
100 milliseconds, so 10 requests fit in 1 second). Two clients generate up to 20 RPS, 5
clients up to 50 RPS, and so on. At about 10,000 concurrent connections we should
expect 100,000 RPS and we are close to that theoretical limit (90,000 RPS).

On the bottom, we see the SingleThread and ThreadPool servers. Their performance
results are miserable, which does not come as a surprise. Having one thread process‐
ing requests, each request taking at least 100 milliseconds clearly cannot handle more
than 10 RPS. ThreadPool is much better, having 100 threads, each processing 10 RPS,
totaling at 1,000 RPS. These results are worse by a few orders of magnitude compared
to reactive Netty and RxJava implementations. Also, the SingleThread implementa‐
tion was rejecting almost every request under high load. At around 50,000 concurrent
connections, it was accepting a marginal number of requests but almost never met
the 10-second timeout imposed by wrk.

You might ask, why restrict ThredPool to just 100 threads? This number is similar to
what popular HTTP servlet containers are defaulting to, but surely we can specify
more. Because all connections are persistent and keep thread from a pool for the
duration of the entire connection, you can treat ThreadPerConnection like a thread
pool with an unlimited number of threads. Surprisingly, such an implementation
works quite well, even when JVM must manage 50,000 concurrent threads, each rep‐

180 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

resenting one connection. As a matter of fact, ThreadPerConnection is not much
worse than RxNettyHttpServer. It turns out that throughput measured in RPS is not
sufficient, we must also look at the response times for each individual request. It
depends on your requirements but typically you need both great throughput to utilize
the server and low response times so that perceived performance is great, as well.

Average response time is rarely a good indicator. On one hand, average hides outliers
(the few requests that are unacceptably slow), on the other, typical response time
(those observed by most clients) is smaller compared to average, again due to outli‐
ers. Percentiles proved to be much more indicative, effectively describing the distri‐
bution of a particular value. The following diagram shows 99th percentile of response
time for each implementation versus the number of concurrent connections (or cli‐
ents). The value on the Y axis tells us that 99% of the requests were faster than a given
value. Obviously, we want these numbers to be as low as possible (but they cannot be
lower than 100 milliseconds of simulated delay) and grow as little as possible with
increasing load, as depicted in the following chart:

ThreadPerConnection implementation badly stands out. Up to 1,000 concurrent con‐
nections of all implementations go side by side. But at some point ThreadPerConnec
tion becomes really slow to respond, several times slower than competitors. There
are a couple of primary reasons for that: first, excessive context switches between
thousands of threads, and second, more frequent garbage collection cycles. Basically
JVM spends a lot of time housekeeping and not much is left for actual work. Thou‐
sands of concurrent connections are sitting idle, waiting for their turn.

You might be surprised why the ThreadPool implementation has such an outstanding
99th percentile of response time? It outperforms all other implementations and

Beating the C10k Problem | 181

www.EBooksWorld.ir

remains stable even under high load. Let’s quickly recap what the implementation of
ThreadPool looked like:

BlockingQueue<Runnable> workQueue = new ArrayBlockingQueue<>(1000);
executor = new ThreadPoolExecutor(100, 100, 0L, MILLISECONDS, workQueue,
 (r, ex) -> {
 ((ClientConnection) r).serviceUnavailable();
 });

Rather than using the Executors builder, we built ThreadPoolExecutor directly, tak‐
ing control of workQueue and RejectedExecutionHandler. The latter is executed
when the former runs out of space. Basically, we prevent server overload, ensuring
that requests that cannot be served quickly are rejected immediately. No other imple‐
mentation has a similar safety feature, often called fail-fast. We will briefly cover fail-
fast in “Managing Failures with Hystrix” on page 291; for the time being, let’s
confront ThreadPool responsiveness with the error rate it exposes, as shown here:

Errors, as reported by the wrk load test tool are nonexistent to marginal for all of the
implementations except SingleThread and ThreadPool. This is an interesting trade-
off: ThreadPool always responds as soon as possible, much faster than competitors.
However, it is also very eager to reject requests immediately when it is being over‐
whelmed. Of course, you can implement a similar mechanism on top of a reactive
implementation with Netty/RxJava.

Wrapping up, using thread pools and independent threads can no longer keep up
with throughput and response time requirements that are easily met with reactive
implementation.

182 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

Reactive HTTP Servers Tour
TCP/IP and HTTP built on top of it are inherently event driven. Despite providing
an illusion of input and output pipes, underneath one can see asynchronous packets
of data arriving asynchronously. As with nearly every abstraction in computer sci‐
ence, treating the network stack as a blocking stream of bytes becomes leaky. Espe‐
cially when we want to take the full advantage of the hardware.

Classic approaches to networking are just fine, even under moderate load. But to
scale up to the limits unheard of in traditional Java applications, you must go reactive.
Although Netty is a wonderful framework for building reactive, event-driven network
applications, it is rarely used directly. Instead, it is part of a wide range of libraries and
frameworks, including RxNetty. RxNetty is especially interesting because it combines
the power of event-driven networking with the simplicity of RxJava’s operators. We
still treat network communication as a flow of messages (packets) but abstracted
away with Observable<ByteBuf>.

Remember how we defined the problem of 10,000 concurrent connections in “Beat‐
ing the C10k Problem” on page 165? We managed to solve this problem using numer‐
ous Netty and RxNetty implementations. As a matter of fact, we successfully
implemented servers that withstood C50k, handling 50,000 concurrent HTTP persis‐
tent connections. With more client hardware (because the server was doing just fine)
and less frequent requests going through the wire, the same implementations could
easily survive C100k and more—using about dozen lines of code.

Obviously, implementing the server part of HTTP (or any other protocol for that
matter; HTTP was chosen due to its ubiquity) is just one side of the story. It is equally
important what the server is doing, and most of the time it becomes a client of
another server. So far in this chapter, we focused on reactive, nonblocking HTTP
servers. This is reasonable, but there are multiple, sometimes surprising places where
blocking code can sneak in. First of all we paid a lot of attention to the server side,
whereas we entirely skipped the client part. But modern servers, especially in large
distributed systems, serve the role of client, as well, requesting and pushing data to
many downstream services. It is safe to assume that a single request to a popular
search engine can span hundreds or even thousands of downstream components,
thus making plenty of client requests. It is obvious that if these requests were blocking
and sequential, the search engine’s response time would be unbearably slow.

No matter how perfectly we implement the server’s infrastructure code, if it still has
to deal with blocking APIs, the scalability will be harmed, just like our benchmarks
have shown. There are a few known sources of blocking in the Java ecosystem in par‐
ticular, which we will explore briefly.

Beating the C10k Problem | 183

www.EBooksWorld.ir

HTTP Client Code
Servers that simply make several requests to downstream services and combine the
responses together are not unheard of. In fact, you can probably find dozens of start‐
ups that managed to cleverly mash up several available data sources and provide a
valuable service simply on top of that. Today’s APIs are mostly RESTful with SOAP
playing a diminishing role—but both based on the ever-prevalent HTTP.

Even a single blocking request can bring a server down, significantly degrading per‐
formance. Fortunately, there is a wide range of mature HTTP clients that are non‐
blocking and we already met the first one: Netty. There are two classes of problems
that a nonblocking HTTP client tries to solve:

• Large number of independent concurrent requests, each requiring a few client
calls to third-party APIs. This is typical for service-oriented architectures for
which one request spans multiple services.

• A server is making a large number of HTTP client requests, probably during
batch operations. Think about web crawlers or indexing services that constantly
keep thousands of connections open.

Regardless of the nature of the server, the problem remains the same: maintaining
large (tens of thousands and more) open HTTP connections introduces significant
overhead. This is especially painful when services we connect to (this time as a client)
are slow, therefore requiring us to hold the resources for a long time.

In contrast, a TCP/IP connection is actually quite lightweight. The operating system
must keep a socket descriptor for each open connection (around one kilobyte) and
that is pretty much it. When a packet (message) arrives, the kernel dispatches it to the
appropriate process, like JVM. One kilobyte is a quite a small memory footprint com‐
pared to the roughly one megabyte consumed by the stack of each thread blocked on
a socket. That being said, the classic thread per connection model does not scale in
the case of high-performance servers, and we need to embrace the underlying net‐
working model rather than trying to abstract it using blocking code. The good news
is that RxJava + Netty provide a much better abstraction, still relatively close to the
metal.

Nonblocking HTTP Client with RxNetty
RxJava together with Netty provides an abstraction that is sufficiently close to the way
networks work. Rather than pretending that an HTTP request is almost like an ordi‐
nary method call within JVM, it embraces asynchrony. Moreover, we can no longer
pretend that HTTP is just a request–response protocol. The emergence of server-sent
events (one request, multiple responses), WebSockets (full-duplex communication),

184 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

and finally HTTP/2 (many parallel requests and responses over the same wire, inter‐
leaving with one another) reveals many different usage scenarios for HTTP.

RxNetty on the client side provides quite a concise API for the simplest use cases. You
make a request and get back easily composable Observables:

Observable<ByteBuf> response = HttpClient
 .newClient("example.com", 80)
 .createGet("/")
 .flatMap(HttpClientResponse::getContent);
response
 .map(bb -> bb.toString(UTF_8))
 .subscribe(System.out::println);

Calling the createGet() method returns a subclass of Observable<HttpClientRes
ponse>. Obviously, the client does not block waiting for the response, so the Observa
ble seems like a good choice. But this is just the beginning. HttpClientResponse
itself has a getContent() method that returns Observable<ByteByf>. If you recall
from “Nonblocking HTTP Server with Netty and RxNetty” on page 169, ByteBuf is
an abstraction over a chunk of data received over the wire. From the client perspec‐
tive, this is part of the response. That is right, RxNetty goes a bit further compared to
other nonblocking HTTP clients and does not simply notify us when the entire
response arrives. Instead, we get a stream of ByteBuf messages, optionally followed
by Observable completion when the server decides to drop the connection.

Such a model is much closer to how the TCP/IP stack works and scales better in
terms of use cases. It can work with a simple request/response flow as well as complex
streaming scenarios. But beware that even in case of a single response—for example,
one containing HTML—it will most likely arrive in multiple chunks. Of course,
RxJava has plenty of ways to assemble them back such as Observable.toList() or
Observable.reduce(). But it is your choice: if you want to consume data as it comes
in small bits, that is absolutely fine. In that regard, RxNetty is quite low-level, but
because the abstraction does not impose a major performance bottleneck like exces‐
sive buffering or blocking, it turns out to be extremely scalable. If you are looking for
a reactive and robust but more high-level HTTP client, see “Retrofit with Native
RxJava Support” on page 280.

As opposed to callback-based reactive APIs, RxNetty plays very nicely with other
Observables, you can easily parallelize, combine, and split work. For example, imag‐
ine that you have a stream of URLs to which you must connect and consume data in
real time. This stream can be fixed (built from a simple List<URL>) or dynamic, with
new URLs appearing all the time. If you want a steady stream of packets flowing
through all of these sources, you can simply flatMap() over them:

Observable<URL> sources = //...

Observable<ByteBuf> packets =

HTTP Client Code | 185

www.EBooksWorld.ir

 sources
 .flatMap(url -> HttpClient
 .newClient(url.getHost(), url.getPort())
 .createGet(url.getPath()))
 .flatMap(HttpClientResponse::getContent);

This is a slightly contrived example because it mixes together ByteBuf messages from
different sources, but you get the idea. For each URL in the upstream Observable, we
produce an asynchronous stream of ByteByf instances from that URL. If you want to
first transform incoming data, perhaps by combining chunks of data into a single
event—you can do this easily, for example with reduce(). Here is the upshot: you can
easily have tens of thousands of open HTTP connections, idle or receiving data. The
limiting factor is no longer memory, but the processing power of your CPU and net‐
work bandwidth. JVM does not need to consume gigabytes of memory to process a
reasonable number of transactions.

HTTP APIs are one of the major bottlenecks in modern applications. They are not
expensive in terms of CPU, but blocking HTTP behaving like an ordinary procedural
call substantially limits scalability. Even if you carefully remove the blocking HTTP,
communication, synchronous code can appear in the most surprising places. It is a
pitfall of the equals() method in java.net.URL that it makes a network request.
That’s right: when you compare two instances of the URL class, this seemingly fast
method makes a network roundtrip (call sequence, read top to bottom):

java.net.URL.equals(URL.java)
java.net.URLStreamHandler.equals(URLStreamHandler.java)
java.net.URLStreamHandler.sameFile(URLStreamHandler.java)
java.net.URLStreamHandler.hostsEqual(URLStreamHandler.java)
java.net.URLStreamHandler.getHostAddress(URLStreamHandler.java)
java.net.InetAddress.getByName(InetAddress.java)
java.net.InetAddress.getAllByName(InetAddress.java)
java.net.InetAddress.getAllByName0(InetAddress.java)
java.net.InetAddress.getAddressesFromNameService(InetAddress.java)
java.net.InetAddress$2.lookupAllHostAddr(InetAddress.java)
[native code]

To determine whether two URLs are equal, JVM calls lookupAllHostAddr(), which
(in native code) calls gethostbyname (or similar), which can make a synchronous
request to DNS server. This can have a disastrous effect when you have just a handful
of threads and a few of them are unexpectedly blocked. Remember our RxNetty-
based servers? They were using a few dozen threads at most. Another disastrous sita‐
tion can happen when URL.equals() is invoked frequently such as in Set<URL>. This
unexpected behavior of URL is rather well known, just like the fact that its equals()
can actually yield different results depending on Internet connectivity.

186 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

We bring up this fact just to illustrate how writing fully reactive applications is diffi‐
cult and filled with traps. In the next section, we look at another, more obvious source
of blocking: database access code.

Relational Database Access
In previous parts, we concluded that every server eventually becomes a client of some
different service. Another interesting observation is that pretty much every computer
system we’ve had a chance to work with was distributed. When two machines separa‐
ted by a network cable need to communicate with each other, they are already spa‐
tially distributed. Taking that to the extreme, you might even consider every
computer as a distributed system, with independent CPU core’s caches that are not
always consistent and must synchronize with one another via message-passing proto‐
col. But let’s stick to application server versus database server architecture.

The long-existing standard for relational database access in Java is called Java Data‐
base Connectivity (JDBC). From the consumer perspective, JDBC provides a set of
APIs for communicating with any relational database like PostgreSQL, Oracle Data‐
base, and many others. The core abstractions are Connection (TCP/IP, wire connec‐
tion), Statement (a database query), and ResultSet (view over the database result).
Today, developers very rarely use this API directly because more user-friendly
abstractions exist, from lightweight JdbcTemplate in Spring framework, through
code generation libraries like jOOQ, to object-relational mapping solutions like JPA.
JDBC has a notorious reputation for difficult error handling combined with checked
exceptions (much simpler with try-with-resources since Java 7):

import java.sql.*;

try (
 Connection conn = DriverManager.getConnection("jdbc:h2:mem:");
 Statement stat = conn.createStatement();
 ResultSet rs = stat.executeQuery("SELECT 2 + 2 AS total")
) {
 if (rs.next()) {
 System.out.println(rs.getInt("total"));
 assert rs.getInt("total") == 4;
 }
}

The preceding example uses an embedded H2 database, often utilized during integra‐
tion tests. But in production, you rarely see a database instance running on the same
machine as the application. Every interaction with the database requires a network
roundtrip. The core part of JDBC is the API, which every database vendor must
implement.

Relational Database Access | 187

www.EBooksWorld.ir

http://www.jooq.org

When asking the JDBC API for a new Connection, the implementation must make a
physical connection to the database by opening a client socket, authorizing, and so
on. Databases have different wire protocols (almost universally binary) and the
responsibility of the JDBC implementation (also known as Driver) is to translate this
low-level network protocol into a consistent API. This works quite well (putting aside
different SQL dialects), unfortunately when the JDBC standard was released with
JDK 1.1 around 1997, nobody predicted how important reactive and asynchronous
programming would be two decades later. Surely, the API went through many ver‐
sions, but all of them are inherently blocking, waiting for each database operation to
complete.

This is precisely the same problem as we had with HTTP. You must have as many
threads in your application as active database operations (queries). JDBC is the only
mature standard for accessing the variety of relational databases in a portable way
(again, SQL dialects differences put aside). The servlet specification was significantly
revamped in version 3.0 by introducing the HttpServletRequest.startAsync()
method several years ago. It’s too bad that the JDBC standard still holds the classic
model.

There are reasons for JDBC to remain blocking. Web servers can easily handle hun‐
dreds of thousands of open connections; for example, if they just occasionally stream
small bits of data. Database systems, on the other hand, perform several more or less
similar steps for each client query:

1. Query parsing (CPU-bound) translates a String containing a query into a parse
tree

2. Query optimizer (CPU-bound) evaluates the query against various rules and sta‐
tistics, trying to build an execution plan

3. Query executor (I/O-bound) traverses database storage and finds appropriate
tuples to return

4. Result set (network-bound) is serialized and pushed back to the client

Clearly, every database needs a lot of resources to perform a query. Typically, the
majority of time is actually spent executing the query and disks (spinning or SSD) are
not very parallel by design. Therefore, there is a limited amount of concurrent quer‐
ies that a database system can and should perform until it saturates. This limit largely
depends on the actual database engine being used and the hardware on which it’s
running. There are also many other less-obvious aspects like locks, context switches,
and CPU cache lines exhaustion. You should expect around a few hundred queries
per second. This is very little compared to, for example, the hundreds of thousands of
open HTTP connections, easily achievable with nonblocking APIs.

188 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

Knowing that throughput of the database is severely limited by hardware, having fully
and entirely reactive drivers does not make that much sense after all. Technically, you
can implement a wire protocol on top of Netty or RxNetty and never block the client
thread. In fact, there are numerous nonstandard, independently developed
approaches (see postgresql-async, postgres-async-driver, adbcj, and finagle-mysql),
all trying to implement a wire protocol of a particular database with a nonblocking
networking stack. But knowing that JVM can handle hundreds to thousands of
threads without much hassle (see “Thread per Connection” on page 329), there does
not seem to be much benefit derived from rewriting the well-established JDBC API
from the ground up. Even Slick from commonly used Lightbend reactive stack pow‐
ered by Akka toolkit uses JDBC underneath. There are also community-led projects
bridging between RxJava and JDBC, such as rxjava-jdbc.

The advice for interacting with relational databases is to actually have a dedicated,
well-tuned thread pool and isolate the blocking code there. The rest of your applica‐
tion can be highly reactive and operate on just a handful of threads, but from a prag‐
matic point of view, just deal with JDBC because trying to replace it with something
more reactive could bring a lot of pain for no apparent gain. We already gave a few
hints in “From Collections to Observables” on page 118 for how to interact with
JDBC in classic software stacks. Still, we can still experiment a little bit with RxJava,
even on top of blocking JDBC.

NOTIFY AND LISTEN on PostgreSQL Case Study
PostgreSQL has a peculiar built-in messaging mechanism available through the LIS
TEN and NOTIFY extended SQL statements. Every PostgreSQL client can send a notifi‐
cation to virtual channel via a SQL statement, as shown here:

NOTIFY my_channel;
NOTIFY my_channel, '{"answer": 42}';

In this example, we send an empty notification followed by an arbitrary string (it can
be JSON, XML, or data in any other encoding) to channel named my_channel. A
channel is basically a queue managed inside the PostgreSQL database engine. Inter‐
estingly, sending a notification is part of a transaction, so delivery happens after the
commit, and in the case of rollback, the message is discarded.

To consume notifications from a particular channel, we first must LISTEN on that
channel. When we begin listening on a given connection, the only way to obtain noti‐
fications is by periodic polling by using the getNotifications() method. This intro‐
duces random latency and unnecessary CPU load and context switches;
unfortunately, that is how the API was designed. The complete blocking example fol‐
lows:

try (Connection connection =
 DriverManager.getConnection("jdbc:postgresql:db")) {

Relational Database Access | 189

www.EBooksWorld.ir

http://bit.ly/2d5649l
http://bit.ly/2d56QTS
https://github.com/mheath/adbcj
http://bit.ly/2d56nB2
http://bit.ly/2d562i3
http://bit.ly/2d56jS7

 try (Statement statement = connection.createStatement()) {
 statement.execute("LISTEN my_channel");
 }
 Jdbc4Connection pgConn = (Jdbc4Connection) connection;
 pollForNotifications(pgConn);
 }
}

//...

void pollForNotifications(Jdbc4Connection pgConn) throws Exception {
 while (!Thread.currentThread().isInterrupted()) {
 final PGNotification[] notifications = pgConn.getNotifications();
 if (notifications != null) {
 for (final PGNotification notification : notifications) {
 System.out.println(
 notification.getName() + ": " +
 notification.getParameter());
 }
 }
 TimeUnit.MILLISECONDS.sleep(100);
 }
}

Not only do we block the client thread, we are also forced to keep one JDBC connec‐
tion open because listening is tied to a particular connection. At least we can listen on
many channels at the same time. The preceding code is quite verbose but straightfor‐
ward. After calling LISTEN, we enter an endless loop asking for new notifications.
Calling getNotifications() is destructive, meaning that it discards returned notifi‐
cations, so calling it twice will not return the same events. getName() is the channel
name (for example, my_channel), whereas getParameter() returns optional event
contents such as a JSON payload.

The API is horribly old-fashioned, using null to signal no pending notifications, and
arrays rather than collections. Let’s make it more Rx-friendly. In the absence of any
push-based mechanism for notifications, we are forced to reimplement polling using
the nonblocking interval() operator. There are many tiny details that allow our cus‐
tom Observable to behave properly, which we will discuss further after the example
(which is not yet complete):

Observable<PGNotification> observe(String channel, long pollingPeriod) {
 return Observable.<PGNotification>create(subscriber -> {
 try {
 Connection connection = DriverManager
 .getConnection("jdbc:postgresql:db");
 subscriber.add(Subscriptions.create(() ->
 closeQuietly(connection)));
 listenOn(connection, channel);
 Jdbc4Connection pgConn = (Jdbc4Connection) connection;
 pollForNotifications(pollingPeriod, pgConn)

190 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

 .subscribe(Subscribers.wrap(subscriber);
 } catch (Exception e) {
 subscriber.onError(e);
 }
 }).share();
}

void listenOn(Connection connection, String channel) throws SQLException {
 try (Statement statement = connection.createStatement()) {
 statement.execute("LISTEN " + channel);
 }
}

void closeQuietly(Connection connection) {
 try {
 connection.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
}

It’s amazing how much shorter this example could have been if there were no SQLEx
ception. Never mind. Our goal is to produce robust Observable<PGNotification>.
First, we postpone opening a connection to a database until someone actually sub‐
scribes. Also, to avoid connection leaks (serious problem in any application that deals
with JDBC directly) we ensure that the connection is closed when the Subscriber
unsubscribes. Moreover, when an error occurs in the stream, the unsubscription and
therefore closing the connection happens.

Now we are ready to call listenOn() and begin receiving notifications over an open
connection. If an exception is thrown when this statement is executed, it will be
caught and handled by calling subscriber.onError(e). Not only does it seamlessly
propagate the error to the subscriber but it also forces the closing of the connection.
But if the LISTEN request succeeds, the next invocation of getNotifications() will
return all events sent afterward.

We do not want to block any thread so instead, we create an inner Observable with
interval() inside pollForNotifications(). We subscribe to that Observable with
the same Subscriber but wrapped with Subscribers.wrap() so that onStart() is
not executed twice on that Subscriber.

Observable<PGNotification> pollForNotifications(
 long pollingPeriod,
 AbstractJdbc2Connection pgConn) {
 return Observable
 .interval(0, pollingPeriod, TimeUnit.MILLISECONDS)
 .flatMap(x -> tryGetNotification(pgConn))
 .filter(arr -> arr != null)
 .flatMapIterable(Arrays::asList);

Relational Database Access | 191

www.EBooksWorld.ir

}

Observable<PGNotification[]> tryGetNotification(
 AbstractJdbc2Connection pgConn) {
 try {
 return Observable.just(pgConn.getNotifications());
 } catch (SQLException e) {
 return Observable.error(e);
 }
}

Periodically, we examine the contents of getNotifications() by first wrapping it in
an awkward Observable<PGNotification[]>. Because the returned array PGNotifi
cation[] can be null, we then filter() out nulls and via flatMapIterable()
unwrap the array, first converting it to a List<PGNotification> with Arrays::asL
ist. I encourage you to walk carefully through all of these steps, tracking types of
intermediate Observables. The only reason for including closeQuietly() and try
GetNotification() is for handling checked SQLException. Notice, that we swallow
this exception in closeQuietly() because it is called from the context where we can
do nothing about it; for example, when someone just unsubscribed and there is no
way of forwarding it.

One last tiny bit of implementation is publish() and refCount(), close to the end of
the first method. These two methods make it possible to share a single JDBC connec‐
tion among multiple subscribers. Without them, every new subscriber would open a
new connection and listen on it, which is quite wasteful. Additionally refCount()
keeps track of the number of subscribers and when the last one unsubscribes it physi‐
cally closes the database connection. See “Single Subscription with pub‐
lish().refCount()” on page 54 for more details about publish() and refCount(),
especially how it changes the behavior of a lambda expression inside Observable.cre
ate().

Remembering that a single connection can listen on multiple channels, as an exercise
try to implement observe() so that it reuses the same connection among all sub‐
scribers and all channels in which they are interested. The current implementation
shares a connection if you call observe() once and subscribe multiple times, whereas
it could easily reuse the same connection all the way down, even for subscribers inter‐
ested in different channels.

There is no practical reason for exploring LISTEN and NOTIFY in PostgreSQL; there
are faster, more robust and reliable message queues on the market. But this case study
was showing how to exploit JDBC in more reactive scenario, even when it still
requires a little bit of blocking or polling.

192 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

CompletableFuture and Streams
Java 8, apart from lambda expressions, new java.time API, and multiple smaller
additions also brought us CompletableFuture class. This utility significantly
improves the Future interface known since Java 5. Pure Future represents asynchro‐
nous operation running in the background, typically obtained from ExecutorSer
vice. However Future’s API is overly simplistic, forcing developers to block on
Future.get() invocation pretty much all the time. It is not possible to efficiently
implement waiting for the first of the Futures to complete without busy waiting.
Other options to compose Futures are nonexistent. The following section will briefly
describe how CompletableFuture works. Later, we will implement thin interoperabil‐
ity layer between CompletableFuture and Observable.

A Short Introduction to CompletableFuture
CompletableFuture successfully bridges that gap by providing dozens of useful
methods, almost all of which are nonblocking and composable. We got used to that
map() asynchronously transforms input events on the fly. Moreover, Observa
ble.flatMap() allows us to replace single event with another Observable, chaining
asynchronous tasks. A similar operation is possible with CompletableFutures. Imag‐
ine a service that needs two unrelated pieces of information: User and GeoLocation.
Knowing both of these, we ask several independent travel agencies to find Flight and
we book the Ticket in whichever provider was first to return—promoting the fastest
and most reactive one. This last requirement is especially difficult to implement, and
prior to Java 8 required ExecutorCompletionService to effectively find the fastest
task:

User findById(long id) {
 //...
}

GeoLocation locate() {
 //...
}

Ticket book(Flight flight) {
 //...
}

interface TravelAgency {
 Flight search(User user, GeoLocation location);
}

And usage:

ExecutorService pool = Executors.newFixedThreadPool(10);
List<TravelAgency> agencies = //...

CompletableFuture and Streams | 193

www.EBooksWorld.ir

User user = findById(id);
GeoLocation location = locate();
ExecutorCompletionService<Flight> ecs =
 new ExecutorCompletionService<>(pool);
agencies.forEach(agency ->
 ecs.submit(() ->
 agency.search(user, location)));
Future<Flight> firstFlight = ecs.poll(5, SECONDS);
Flight flight = firstFlight.get();
book(flight);

ExecutorCompletionService was not particularly popular among Java developers,
and with CompletableFuture it is no longer needed. But first notice how we wrap
ExecutorService with ExecutorCompletionService so that we can later poll for
completed tasks as they arrive. With vanilla ExecutorService we would get a bunch
of Future objects having no idea which one will complete first, so ExecutorComple
tionService was useful. Yet, we still have to sacrifice one extra thread to block wait‐
ing for TravelAgencies response. Also, we do not take advantage of concurrency
where it is possible (loading User and GeoLocation at the same time).

Our refactoring will turn all methods into their asynchronous counterparts and later
combine CompletableFutures appropriately. This way our code is fully nonblocking
(main thread completes almost immediately) and we parallelize as much as possible:

CompletableFuture<User> findByIdAsync(long id) {
 return CompletableFuture.supplyAsync(() -> findById(id));
}

CompletableFuture<GeoLocation> locateAsync() {
 return CompletableFuture.supplyAsync(this::locate);
}

CompletableFuture<Ticket> bookAsync(Flight flight) {
 return CompletableFuture.supplyAsync(() -> book(flight));
}

@Override
public CompletableFuture<Flight> searchAsync(User user, GeoLocation location) {
 return CompletableFuture.supplyAsync(() -> search(user, location));
}

We simply wrapped blocking methods with an asynchronous CompletableFuture.
The supplyAsync() method takes an optional Executor as an argument. If not speci‐
fied, it uses the globally defined one in ForkJoinPool.commonPool(). It is advised to
always use custom Executor, but for the purpose of this sample, we take advantage of
the default one. Just keep in mind that the default is shared among all CompletableFu
tures, parallel streams (see “Java 8 Streams and CompletableFuture” on page 310),
and a few other less obvious places.

194 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

import static java.util.function.Function.identity;

List<TravelAgency> agencies = //...
CompletableFuture<User> user = findByIdAsync(id);
CompletableFuture<GeoLocation> location = locateAsync();

CompletableFuture<Ticket> ticketFuture = user
 .thenCombine(location, (User us, GeoLocation loc) -> agencies
 .stream()
 .map(agency -> agency.searchAsync(us, loc))
 .reduce((f1, f2) ->
 f1.applyToEither(f2, identity())
)
 .get()
)
 .thenCompose(identity())
 .thenCompose(this::bookAsync);

Quite a bit is happening in the preceding code example. Explaining CompletableFu
ture in its entirety is beyond the scope of this book, but some parts of the API are
going to be useful in the context of RxJava. First, we asynchronously begin fetching
User and GeoLocation. These two operations are independent and can run concur‐
rently. However, we need the results of both in order to proceed, of course without
blocking and wasting the client thread. This is what thenCombine() is doing—it takes
two CompletableFutures (user and location) and invokes a callback when both are
completed, asynchronously. Interestingly, the callback can return a value, which will
become the new content of resulting CompletableFuture, as demonstrated here:

CompletableFuture<Long> timeFuture = //...
CompletableFuture<ZoneId> zoneFuture = //...

CompletableFuture<Instant> instantFuture = timeFuture
 .thenApply(time -> Instant.ofEpochMilli(time));

CompletableFuture<ZonedDateTime> zdtFuture = instantFuture
 .thenCombine(zoneFuture, (instant, zoneId) ->
 ZonedDateTime.ofInstant(instant, zoneId));

CompletableFuture shares a lot of similarities with Observable. The thenApply()
performs on-the-fly transformation of whatever the Future brings, just like Observa
ble.map(). In our example, we transform CompletableFuture<Long> to Completable
Future<Instant> by supplying a function from Long to Instant

(Instant::ofEpochMilli). Later, we take two Futures (instantFuture and zoneFu
ture) and run a transformation on their future values, namely Instant and ZoneId,
using the thenCombine() method. This transformation returns ZoneDateTime, but
because most of the CompletableFuture operators are nonblocking, we get Completa
bleFuture<ZonedDateTime> in return—again, very similar to zip() in Observable.

CompletableFuture and Streams | 195

www.EBooksWorld.ir

Going back to the previous example with booking tickets, the following snippet of
code is probably quite obscure:

List<TravelAgency> agencies = //...

agencies
 .stream()
 .map(agency -> agency.searchAsync(us, loc))
 .reduce((f1, f2) ->
 f1.applyToEither(f2, identity())
)
 .get()

We need to start asynchronous operation on each TravelAgency by calling searchA
sync(). We immediately get back a List<CompletableFuture<Flight>>; this is a
very inconvenient data structure if all we need is the first Future to complete. There
are methods like CompletableFuture.allOf() and CompletableFuture.anyOf().
The latter is exactly what we need from a semantic point of view—it takes a group of
CompletableFutures and returns a CompletableFuture that completes when the very
first underlying CompletableFuture completes, discarding all the others. This is very
similar to) Observable.amb() (see “When Streams Are Not Synchronized with One
Another: combineLatest(), withLatestFrom(), and amb()” on page 83). Unfortunately
the syntax of anyOf() is very awkward. First, it accepts an array (varargs) and it
always returns CompletableFuture<Object>, not of whatever the type that the under‐
lying Futures was such as Flight. We can use it, but it becomes quite messy:

.thenCombine(location, (User us, GeoLocation loc) -> {
 List<CompletableFuture<Flight>> fs = agencies
 .stream()
 .map(agency -> agency.searchAsync(us, loc))
 .collect(toList());
 CompletableFuture[] fsArr = new CompletableFuture[fs.size()];
 fs.toArray(futuresArr);
 return CompletableFuture
 .anyOf(futuresArr)
 .thenApply(x -> ((Flight) x));
})

The trick with Stream.reduce() is as follows. There exists a CompletableFu
ture.applyToEither() operator that accepts two CompletableFutures and applies a
given transformation on the first one to complete. The applyToEither() transforma‐
tion is extremely useful when you have two homogeneous tasks and you only care
about the first one to complete. In the following example, we query User on two dif‐
ferent servers: primary and secondary. Whichever finishes first, we apply a simple
transformation that extracts date of the user’s birth. The second CompletableFuture
is not interrupted, but its result is discarded. Obviously, we end up with Completable
Future<LocalDate>:

196 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

CompletableFuture<User> primaryFuture = //...
CompletableFuture<User> secondaryFuture = //...

CompletableFuture<LocalDate> ageFuture =
 primaryFuture
 .applyToEither(secondaryFuture,
 user -> user.getBirth());

applyToEither() can only work on two CompletableFutures, whereas the quirky
anyOf() can take an arbitrary number. Fortunately, we can call applyToEither() on
the first two Futures and then take the result (fastest out of the first two) and apply it
with the third upstream Future (fastest out of the first three). By iteratively calling
applyToEither(), we get the CompletableFuture representing the fastest overall.
This handy trick can be efficiently implemented using the reduce() operator. One
last caveat is the identity() method from Function. This is a requirement of apply
ToEither(); we must provide a transformation that deals with the first result to
come. If the result is supposed to be left as-is, we can use an identity function, which
can also be written as f -> f or (Flight f) -> f.

Finally, we implemented CompletableFuture<Flight> that completes when the fast‐
est TravelAgency responds, asynchronously. There is still a tiny issue with the result
of thenCombine(). Whatever the transformation passed to thenCombine() returns is
then wrapped back into CompletableFuture. In our case, we return CompletableFu
ture<Flight>, so the type of the thenCombine() result is: CompletableFuture<Com
pletableFuture<Flight>>. Double wrapping is a common issue with Observable as
well, and we can use the same trick to fix it in both cases: flatMap()! (See “Wrapping
Up Using flatMap()” on page 67.) But remember that just like map() is called thenAp
ply() in Futures, flatMap() is called thenCompose():

Observable<Observable<String>> badStream = //...
Observable<String> goodStream = badStream.flatMap(x -> x);

CompletableFuture<CompletableFuture<String>> badFuture = //...
CompletableFuture<String> goodFuture = badFuture.thenCompose(x -> x);

Normally, we use flatMap()/thenCompose() to chain an asynchronous computation,
but here we simply unwrap the incorrect type. Keep in mind that thenCompose()
expects the return type of the supplied transformation to be CompletableFuture. But
because the internal type is already a Future, using an identity() function, or sim‐
ply x -> x, fixes the type by unwrapping the internal Future.

Finally, when we have CompletableFuture<Flight> (abbreviated to flightFuture),
we can call bookAsync(), which takes a Flight as an argument:

CompletableFuture<Ticket> ticketFuture = flightFuture
 .thenCompose(flight -> bookAsync(flight));

CompletableFuture and Streams | 197

www.EBooksWorld.ir

This time, thenCompose() was used more naturally when calling bookAsync(). That
method returns CompletableFuture<Ticket>, so to avoid double wrapping, we
choose thenCompose() instead of thenApply().

Interoperability with CompletableFuture
The factory method Observable.from(Future<T>) that returns Observable<T>
already exists. However, because of the limitations of the old Future<T> API, it has
several shortcomings, the biggest one being blocking on Future.get() internally.
Classic Future<T> implementations have no way of registering callbacks and process‐
ing them asynchronously, therefore they are quite useless in reactive applications.

CompletableFuture, in contrast, is a totally different story. Semantically, you can
treat CompletableFuture like an Observable that has the following characteristics:

It is hot.
The computation behind CompletableFuture starts eagerly, regardless of
whether someone registered any callbacks like thenApply() or not.

It is cached.
The background computation behind CompletableFuture is triggered once
eagerly and the result is forwarded to all registered callbacks. Moreover, if a call‐
back is registered after completion, it is immediately invoked with completed
value (or exception)

It emits exactly one element or exception.
In principle, Future<T> completes exactly once (or never) with a value of type T
or an exception. This matches the contract of Observable.

Turning CompletableFuture into Observable with single item

First, we would like to write a utility function that takes a CompletableFuture<T> and
returns a properly behaving Observable<T>:

class Util {
 static <T> Observable<T> observe(CompletableFuture<T> future) {
 return Observable.create(subscriber -> {
 future.whenComplete((value, exception) -> {
 if (exception != null) {
 subscriber.onError(exception);
 } else {
 subscriber.onNext(value);
 subscriber.onCompleted();
 }
 });
 });
 }
}

198 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

To be notified about both successful and failed completion, we use the Completable
Future.whenComplete() method. It receives two parameters excluding each other. If
exception is not null, it means that the underlying Future failed. Otherwise, we take
the successful value. In both cases, we notify the incoming subscriber. Notice that if
the subscription appears after the CompletableFuture completed (one way or the
other), the callbacks are executed immediately. CompletableFuture caches the result
as soon as it completes so that callbacks registered afterward are invoked immediately
within the calling thread.

It is tempting to register an unsubscription handler that tries to cancel Completable
Future in case of unsubscription:

//Don't do this!
subscriber.add(Subscriptions.create(
 () -> future.cancel(true)));

This is a bad idea. We can create many Observables based on one CompletableFu
ture, and every Observable can have multiple Subscribers. If just one Subscriber
decides to unsubscribe prior to Future’s completion, cancellation will affect all other
Subscribers.

Remember that CompletableFuture is hot and cached using Rx terminology. It begins
computation immediately, whereas Observable will not start computation until
someone actually subscribes. Having that in mind, with the following tiny utility we
can further improve our API:

Observable<User> rxFindById(long id) {
 return Util.observe(findByIdAsync(id));
}

Observable<GeoLocation> rxLocate() {
 return Util.observe(locateAsync());
}

Observable<Ticket> rxBook(Flight flight) {
 return Util.observe(bookAsync(flight));
}

Obviously, if the API you are consuming supports Observable from the beginning,
you do not need all these extra layers of adapters. However, if all you have at your
disposal are CompletableFutures, converting them to Observables is efficient and
safe. The advantage of RxJava is much more concise implementation of our initial
problem:

Observable<TravelAgency> agencies = agencies();
Observable<User> user = rxFindById(id);
Observable<GeoLocation> location = rxLocate();

Observable<Ticket> ticket = user

CompletableFuture and Streams | 199

www.EBooksWorld.ir

 .zipWith(location, (us, loc) ->
 agencies
 .flatMap(agency -> agency.rxSearch(us, loc))
 .first()
)
 .flatMap(x -> x)
 .flatMap(this::rxBook);

The client code using RxJava API seems less noisy and easier to read. Rx naturally
supports “futures with multiple values” in the form of streams. If you still find iden‐
tity transformation x -> x inside flatMap() little bit intimidating, we can always
split zipWith() using a Pair helper container:

import org.apache.commons.lang3.tuple.Pair;

//...
Observable<Ticket> ticket = user
 .zipWith(location, (usr, loc) -> Pair.of(usr, loc))
 .flatMap(pair -> agencies
 .flatMap(agency -> {
 User usr = pair.getLeft();
 GeoLocation loc = pair.getRight();
 return agency.rxSearch(usr, loc);
 }))
 .first()
 .flatMap(this::rxBook);

At this point, you should understand why extra x -> x is no longer needed. zip
With() takes two independent Observables and asynchronously waits for both of
them. Java has no built-in pairs and tuples, thus we must provide a transformation
that will take the events from both streams and combine them into a single Observa
ble<Pair<User, Location>> object. That object will be the input for the down‐
stream Observable. Later, we use flatMap() to search every travel agency
concurrently for a given User and Location. flatMap() does the unwrapping for us
(from a syntactic perspective), so the resulting stream is a simple Observa
ble<Flight>. Naturally, in both cases we do first() to process only the first Flight
occurring upstream (fastest TravelAgency).

From Observable to CompletableFuture

In some cases, the API you are using might support CompletableFuture but not
RxJava. Such a situation can be quite common, especially taking into account that the
former is part of JDK, whereas the latter is a library. Under these circumstances it
would be nice to convert Observable into CompletableFuture. There are two ways to
implement this transformation:

200 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

Observable<T> to CompletableFuture<T>
Use this when you expect just a single item emitted from stream—for example,
when Rx wraps a method invocation or request/response pattern. The Completa
bleFuture<T> completes successfully when stream completes with exactly one
emitted value. Obviously, future completes with an exception when stream com‐
pleted in such a way or when it did not complete with exactly one item emitted.

Observable<T> to CompletableFuture<List<T>>
In this scenario, the CompletableFuture completes when all events from
upstream Observable are emitted and the stream completes. This is just a special
case of the first transformation, as you will see later.

You can implement the first scenario easily using the following utility:

static <T> CompletableFuture<T> toFuture(Observable<T> observable) {
 CompletableFuture<T> promise = new CompletableFuture<>();
 observable
 .single()
 .subscribe(
 promise::complete,
 promise::completeExceptionally
);
 return promise;
}

Before diving into the implementation, keep in mind that this transformation has an
important side effect: it subscribes to Observable, thus forcing evaluation and com‐
putation of cold Observables. Moreover, each invocation of this transformer will sub‐
scribe again; it is just a design choice that you must be aware of.

Apart from that, the implementation is quite interesting. First, we force Observable
to emit precisely one element using single(), throwing an exception otherwise. If
this single event is emitted and a stream completes, we invoke CompletableFu
ture.complete(). It turns out one can create CompletableFuture from scratch
without any backing thread pool and asynchronous task. It is still a CompletableFu
ture, but the only way to complete it and signal all registered callbacks is by calling
complete() explicitly. This is an efficient way of exchanging data asynchronously, at
least when RxJava is not available.

In case of failure, we can trigger an error in all registered callbacks by calling Comple
tableFuture.completeExceptionally(). As surprising as it is, this is the entire
implementation. Future returned from toFuture behaves as if it had some task
attached in the background, whereas in reality we explicitly complete it.

The transformation from Observable<T> to CompletableFuture<List<T>> is embar‐
rassingly simple:

CompletableFuture and Streams | 201

www.EBooksWorld.ir

static <T> CompletableFuture<List<T>> toFutureList(Observable<T> observable) {
 return toFuture(observable.toList());
}

Interoperability between CompletableFuture and Observable is quite useful. The
former is properly designed but lacks the expressiveness and richness of the latter.
Therefore, if you are forced to deal with CompletableFuture in an otherwise RxJava-
based application, apply these simple transformations as soon as possible to provide a
consistent and predictable API. Make sure you understand the difference between
eager (hot) Future and Observable lazy by default.

Observable versus Single
I often see people afraid of RxJava because it looks so stream oriented. Observable is
a stream, potentially infinite, and all operators are described in terms of streams. But
similar to a List<T>, which can have one element, certain Observable<T> can by def‐
inition always emit one event. It is quite confusing to have a List<T> to hold exactly
one element all the time; therefore, we simply use T or Optional<T> for that. In the
land of RxJava there is a special abstraction for Observables emitting exactly one ele‐
ment, and it is called rx.Single<T>.

Single<T> is basically a container for a future value of type T or Exception. In that
regard CompletableFuture from Java 8 is the closest cousin of Single (see “Comple‐
tableFuture and Streams” on page 193). But unlike CompletableFuture, Single is
lazy and does not begin producing its value until someone actually subscribes. Single
is typically used for APIs known to return a single value (duh!) asynchronously and
with high probability of failure. Obviously, Single is a great candidate for request–
response types of communication involving I/O, like a network call. The latency is
typically high compared to normal method invocation and failures are inevitable.
Moreover, because Single is lazy and asynchronous, we can apply all sorts of tricks to
improve latency and resilience, such as invoking independent actions concurrently
and combining responses together (see “Combining Responses Using zip, merge, and
concat” on page 205). Single reduces the confusion of APIs returning Observable by
providing a type-level guidance:

Observable<Float> temperature() {
 //...
}

It’s difficult to predict the contract of the preceding method. Does it return just one
temperature measurement and complete? Or maybe it streams temperatures infin‐
itely? Even worse, it might complete without any events under some circumstances. If
temperature() returned Single<Float>, we would have known immediately what
output to expect.

202 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

Creating and Consuming Single
Single is fairly similar to Observable in terms of the operators it supports, so we will
not spend much time on them here. Instead, we will briefly compare them to Observa
ble’s counterparts and focus on use cases for Single. There are few ways to create a
Single, beginning with the constant just() and error() operators:

import rx.Single;

Single<String> single = Single.just("Hello, world!");
single.subscribe(System.out::println);

Single<Instant> error =
 Single.error(new RuntimeException("Opps!"));
error
 .observeOn(Schedulers.io())
 .subscribe(
 System.out::println,
 Throwable::printStackTrace
);

There are no overloaded versions of just() that take multiple values—after all, Sin
gle can hold only one value by definition. Also the subscribe() method takes two
arguments rather than three. There is simply no point in having an onComplete()
callback; Single completes with either a value (first callback) or exception (second
callback). Listening on completion alone is equivalent to subscribing for a single
value. Additionally, we included the observeOn() operator, which works exactly the
same as its Observable peer. The same applies to subscribeOn() (see “Imperative
Concurrency” on page 125 for more details). Finally, you can use the error() opera‐
tor to create a Single that always completes with a given Exception.

Let’s implement a more real-life scenario of making an HTTP request. In “Nonblock‐
ing HTTP Client with RxNetty” on page 184, we learned how to use RxNetty to build
an asynchronous HTTP clients. This time we will use async-http-client that happens
to use Netty underneath, as well. After making an HTTP request we can provide a
callback implementation that will be invoked asynchronously whenever a response or
error comes back. This fits very nicely into how Single is created:

import com.ning.http.client.AsyncCompletionHandler;
import com.ning.http.client.AsyncHttpClient;
import com.ning.http.client.Response;

AsyncHttpClient asyncHttpClient = new AsyncHttpClient();

Single<Response> fetch(String address) {
 return Single.create(subscriber ->
 asyncHttpClient

Observable versus Single | 203

www.EBooksWorld.ir

http://bit.ly/UbSPq1

 .prepareGet(address)
 .execute(handler(subscriber)));
}

AsyncCompletionHandler handler(SingleSubscriber<? super Response> subscriber) {
 return new AsyncCompletionHandler() {
 public Response onCompleted(Response response) {
 subscriber.onSuccess(response);
 return response;
 }

 public void onThrowable(Throwable t) {
 subscriber.onError(t);
 }
 };
}

Single.create() looks similar to Observable.create() (see “Mastering Observa‐
ble.create()” on page 35) but it has some important constraints; you must call either
onSuccess() once or onError() once. Technically, it is also possible to have a Single
that never completes, but multiple onSuccess() invocations are not allowed. Speak‐
ing of Single.create() you can also try Single.fromCallable() that accepts Calla
ble<T> and returns Single<T>. As simple as that.

Going back to our HTTP client example, when a response is back, we let subscribers
know by calling onSuccess() or propagate the exception with onError() in case of
asynchronous failure callback. You can use Single in similar fashion to Observable:

Single<String> example =
 fetch("http://www.example.com")
 .flatMap(this::body);

String b = example.toBlocking().value();

//...

Single<String> body(Response response) {
 return Single.create(subscriber -> {
 try {
 subscriber.onSuccess(response.getResponseBody());
 } catch (IOException e) {
 subscriber.onError(e);
 }
 });
}

//Same functionality as body():
Single<String> body2(Response response) {
 return Single.fromCallable(() ->
 response.getResponseBody());
}

204 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

2 In CompletableFuture, this operator is called thenCombine().

Unfortunately, Response.getResponseBody() throws an IOException, so we cannot
simply say: map(Response::getResponseBody). But at least we see how Single.flat
Map()) works. By wrapping the potentially dangerous getResponseBody() method
with Single<String>, we make sure potential failure is encapsulated and clearly
expressed in type system. Single.flatMap() works as you might expect, knowing
Observable.flatMap(): if the second stage of computation (this::body in our case)
fails, the entire Single fails, as well. Interestingly, Single has map() and flatMap()
but no filter(). Can you guess why? filter() could potentially filter out content of
Single<T> if it did not meet certain Predicate<T>. But Single<T> must have exactly
one item inside whereas filter() could result with Single having none.

Just like BlockingObservable (see “BlockingObservable: Exiting the Reactive World”
on page 118), Single has its very own BlockingSingle created with Single.toBlock
ing(). Analogously, creating BlockingSingle<T> does not yet block. However, call‐
ing value() on it blocks until value of type T (the String containing the response
body in our example) is available. In case of exception, it will be rethrown from
value() method.

Combining Responses Using zip, merge, and concat
rx.Single would be useless if it did not provide composable operators. The most
important operator you will come across is Single.zip(), which works the same way
as Observable.zip() (see “Pairwise Composing Using zip() and zipWith()” on page
79) but has simpler semantics. Single always emits precisely one value (or exception)
so the result of Single.zip() (or a Single.zipWith() instance version) is always
exactly one pair/tuple. zip() is basically a way of creating a third Single when two
underlying Singles complete.2

Suppose that you are rendering an article to be displayed on your website. Three
independent operations need to be made to fulfill the request: reading the article con‐
tent from the database, asking a social media website for a number of likes collected
so far, and updating the read count metric. Naive implementation not only performs
these three actions sequentially, but also risks unacceptable latency if any of the steps
are slow. With Single every step is modeled separately:

import org.springframework.jdbc.core.JdbcTemplate;

//...

Single<String> content(int id) {
 return Single.fromCallable(() -> jdbcTemplate

Observable versus Single | 205

www.EBooksWorld.ir

 .queryForObject(
 "SELECT content FROM articles WHERE id = ?",
 String.class, id))
 .subscribeOn(Schedulers.io());
}

Single<Integer> likes(int id) {
 //asynchronous HTTP request to social media website
}

Single<Void> updateReadCount() {
 //only side effect, no return value in Single
}

As an example, we show how Single can be created using fromCallable by passing a
lambda expression. This utility is quite useful because it manages error handling for
us (see “Where Are My Exceptions?” on page 244). The content() method uses a
handy JdbcTemplate from Spring framework to unobtrusively load the article con‐
tent from the database. JDBC is inherently blocking the API, so we explicitly call sub
scribeOn() to make Single asynchronous. The implementation of likes() and
updateReadCount() is omitted. You can imagine likes() making an asynchonous
HTTP request to some API using RxNetty (see “Nonblocking HTTP Client with
RxNetty” on page 184). updateReadCount() is interesting because it has a Sin
gle<Void> type. This suggest it performs some side effect that has no return value but
significant latency. Yet, we still might want to be notified about possible failures that
happened asynchronously. RxJava has a special type for such cases, as well: Completa
ble. This specifies that either complete without result or yield exception asynchro‐
nously.

Combining these three operations with zip is quite straightforward:

Single<Document> doc = Single.zip(
 content(123),
 likes(123),
 updateReadCount(),
 (con, lks, vod) -> buildHtml(con, lks)
);

//...

Document buildHtml(String content, int likes) {
 //...
}

Single.zip() takes three Singles (it has overloaded versions for anything between
two and nine instances) and invokes our custom function when all three are comple‐
ted. The outcome of this custom function is then placed back in a Single<Document>
instance that we can further transform. You should be aware that Void result is never

206 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

3 As of this writing (RxJava 1.1.6). The set of available operators grows fast so ensure that you use newest
release and check again.

used by the transformation. This means that we wait until updateReadCount() com‐
pletes, yet we do not need its (empty) result. This might be a requirement or can sug‐
gest possible optimization: building an HTML document might work just as well if
updateReadCount() is executed asynchronously without waiting for its completion or
failure.

Now imagine what happens if invoking likes() fails or takes an unacceptably long
time to complete (which is actually much worse). Without reactive extensions ren‐
dering, HTML fails entirely or takes a considerable amount of time. However, our
implementation is not much better in that regard. Single supports multiple operators
like timeout(), onErrorReturn(), and onErrorResumeNext() that enhance resiliency
and error handling. All of these operators behave the same way as their Observable
counterparts.

Interoperability with Observable and CompletableFuture
From the perspective of the type system, Observable and Single are unrelated. This
basically means when Observable is required, you cannot use Single and vice versa.
However there are two situations for which conversion between the two makes sense:

• When we use Single as an Observable that emits one value and completion
notification (or error notification)

• When Single is missing certain operators available in Observable, cache() is
one such example3

Let’s take the second reason as an example:

Single<String> single = Single.create(subscriber -> {
 System.out.println("Subscribing");
 subscriber.onSuccess("42");
});

Single<String> cachedSingle = single
 .toObservable()
 .cache()
 .toSingle();

cachedSingle.subscribe(System.out::println);
cachedSingle.subscribe(System.out::println);

We use the cache() operator here so that Single generates "42" only once for the
first subscriber. Single.toObservable() is a safe and easy to understand operator. It

Observable versus Single | 207

www.EBooksWorld.ir

takes a Single<T> instance and converts it to an Observable<T>, emitting one ele‐
ment immediately followed by a completion notification (or error notification if that
is how Single completed). The opposite Observable.toSingle() (do not confuse
with the single() operator; see “Asserting Observable Has Exactly One Item Using
single()” on page 92) requires more attention. Just like single(), toSingle() will
throw an exception saying that “Observable emitted too many elements” if the under‐
lying Observable emits more than one element. Similarly, expect “Observable emitted
no items” if Observable is empty:

Single<Integer> emptySingle =
 Observable.<Integer>empty().toSingle();
Single<Integer> doubleSingle =
 Observable.just(1, 2).toSingle();

Now you might think that when the toObservable() and toSingle() operators are
used close to each other, the latter is safe, but it does not need to be the case. For
example, intermediate Observable might duplicate or discard an event emitted by
Single:

Single<Integer> ignored = Single
 .just(1)
 .toObservable()
 .ignoreElements() //PROBLEM
 .toSingle();

In the preceding code, ignoreElements() from Observable simply discards a single
value emitted from Single. Therefore, when the toSingle() operator is used, all it
can see is an Observable is that the completes without any elements. One thing to
keep in mind that toSingle() operator, just like all of the other operators we discov‐
ered so far, is lazy. The exception about Single not emitting precisely one event will
appear only when someone actually subscribes.

When to Use Single?
Having two abstractions, Observable and Single, it is important to distinguish
between them and understand when to use which one. Just like with data structures,
one size does not fit all. You should use Single in the following scenarios:

• An operation must complete with some particular value or an exception. For
example, calling a web service always results with either a response from an
external server or some sort of exception.

• There is no such thing as a stream in your problem domain; using Observable
would be misleading and an overkill.

208 | Chapter 5: Reactive from Top to Bottom

www.EBooksWorld.ir

• Observable is too heavyweight and you measured that Single is faster in your
particular problem.

On the other hand, you should prefer Observable for these circumstances:

• You model some sort of events (messages, GUI events) which are by definition
occurring several times, possibly infinite.

• Or entirely the opposite, you expect the value to occur or not before completion.

The latter case is quite interesting. Do you think it makes sense for findById(int)
method on some repository to return Single<Record> rather than Record or Observa
ble<Record>? Well, it sounds reasonable: we look up an item by ID (which suggests
there is just one such Record). However, there is no guarantee that a Record exists for
every ID we supply. Therefore, this method can technically return nothing, modeled
as null, Optional<Record>, or Observable<Record>, which are perfectly capable of
handling empty streams followed by a completion notification. What about Single?
It must either complete with a single value (Record) or with an exception. It is your
design choice if you want to model a nonexisting record with an exception, but this
often is considered a bad practice. Deciding whether a missing record for a given ID
is a truly exceptional situation is not a responsibility of repository layer.

Summary
Chapters 2 and 3 gave you an overview and feel of RxJava. In this chapter, we covered
quite advanced topics related to designing entirely reactive applications. This part was
much more advanced, showing real-life techniques for implementing event-driven
systems without introducing accidental complexity. We have shown several bench‐
marks proving that RxJava together with a nonblocking networking stack like Netty.
You are not forced to use such advanced libraries but it certainly pays off when you
strive for maximum throughput on a commodity servers.

Summary | 209

www.EBooksWorld.ir

www.EBooksWorld.ir

CHAPTER 6

Flow Control and Backpressure

Tomasz Nurkiewicz

So far, we’ve become very familiar with the push-based nature of RxJava. Events are
produced somewhere up in the stream to be consumed later by all subscribers. We
never really paid much attention to what happens if Observer is slow and cannot
keep up with events emitted from within Observable.create(). This entire chapter
is devoted to this problem.

RxJava has two ways of dealing with producers being more active than subscribers:

• Various flow-control mechanisms such as sampling and batching are imple‐
mented via built-in operators

• Subscribers can propagate their demand and request only as many items as they
can process by using a feedback channel known as backpressure.

These two mechanisms are described in this chapter.

Flow Control
Before RxJava began implementing backpressure (see the section “Backpressure” on
page 226), dealing with producers (Observables) outperforming consumers
(Observers) was a difficult task. There are quite a few operators that were invented to
deal with producers pushing too many events, and most of them are quite interesting
on their own. Some are useful for batching events; others are dropping some events.
This section walks you through these operators, including some examples.

211

www.EBooksWorld.ir

Taking Periodic Samples and Throttling
There are cases for which you definitely want to receive and process every single
event pushed from the upstream Observable. But, there are some scenarios for which
periodic sampling is enough. The most obvious case is receiving measurements from
some device; for example, temperature (compare with “Dropping Duplicates Using
distinct() and distinctUntilChanged()” on page 92). The frequency at which the
device produces new measurements is often irrelevant for us, especially when the
measurements appear often but are very similar to one another. The sample() opera‐
tor looks at the upstream Observable periodically (for example, every second) and
emits the last encountered event. If there were no event at all in the last one-second
period, no sample is forwarded downstream and the next sample will be taken after
one second, as illustrated in this sample:

long startTime = System.currentTimeMillis();
Observable
 .interval(7, TimeUnit.MILLISECONDS)
 .timestamp()
 .sample(1, TimeUnit.SECONDS)
 .map(ts -> ts.getTimestampMillis() - startTime + "ms: " + ts.getValue())
 .take(5)
 .subscribe(System.out::println);

The preceding code snippet will print something similar to the following:

1088ms: 141
2089ms: 284
3090ms: 427
4084ms: 569
5085ms: 712

The first column shows relative time from subscription to sample emission. You can
clearly see that the first sample appears a little bit over one second (as requested by
the sample() operator) and subsequent samples are roughly one second after one
another. More important, notice what the values are. The interval() operator emits
natural numbers starting from zero every seven milliseconds. Thus, by the time the
first sample is taken, we can expect about 142 (1,000/7) events to appear, where
142nd value is 141 (0-based).

Let’s explore a sample that’s a little bit more complex. Imagine that you have a list of
names that appear with some absolute delays, like so:

Observable<String> names = Observable
 .just("Mary", "Patricia", "Linda",
 "Barbara",
 "Elizabeth", "Jennifer", "Maria", "Susan",
 "Margaret", "Dorothy");

Observable<Long> absoluteDelayMillis = Observable
 .just(0.1, 0.6, 0.9,

212 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

 1.1,
 3.3, 3.4, 3.5, 3.6,
 4.4, 4.8)
 .map(d -> (long)(d * 1_000));

Observable<String> delayedNames = names
 .zipWith(absoluteDelayMillis,
 (n, d) -> Observable
 .just(n)
 .delay(d, MILLISECONDS))
 .flatMap(o -> o);

delayedNames
 .sample(1, SECONDS)
 .subscribe(System.out::println);

First, we construct a sequence of names followed by a sequences of absolute delays (in
seconds, later mapped to milliseconds). Using the zipWith() operator, we delay()
the occurrence of certain names; for example, Mary appears after 100 milliseconds
from subscription, whereas Dorothy appears after 4.8 seconds. The sample() operator
will periodically (every second) pick the last seen name from the stream within the
last period. So, after the first second, we println Linda, followed by Barbara a second
later. Now between 2,000 and 3,000 milliseconds since subscription, no name
appeared, so sample() does not emit anything. Two seconds after Barbara was emit‐
ted, we see Susan. sample() will forward completion (and errors, as well) discarding
the last period. If we want to see Dorothy appearing as well, we can artificially post‐
pone the completion notification, as is done here:

static <T> Observable<T> delayedCompletion() {
 return Observable.<T>empty().delay(1, SECONDS);
}

//...

delayedNames
 .concatWith(delayedCompletion())
 .sample(1, SECONDS)
 .subscribe(System.out::println);

sample() has a more advanced variant taking Observable as an argument rather than
a fixed period. This second Observable (known as sampler) basically dictates when to
take a sample from the upstream source: every time sampler emits any value, a new
sample is taken (if any new value appeared since the last sample). You can use this
overloaded version of sample() to dynamically change the sampling rate or take sam‐
ples only at very specific points in time. For example, taking a snapshot of some value
when a new frame is redrawn or when a key is pressed. A trivial example can simply
emulate the fixed period by using the interval() operator:

Flow Control | 213

www.EBooksWorld.ir

//equivalent:
obs.sample(1, SECONDS);
obs.sample(Observable.interval(1, SECONDS));

As you can see, there are some subtleties regarding sample()’s behavior. Rather than
relying on our understanding of documentation or manual verification, it is great to
have automated tests. Testing time-sensitive operators like sample() is covered in the
section “Virtual Time” on page 258.

sample() has an alias in RxJava called throttleLast(). Symmetrically, there is also
the throttleFirst()) operator that emits the very first event that appeared in each
period. So, applying throttleFirst() instead of sample() in our name stream yields
rather expected results:

Observable<String> names = Observable
 .just("Mary", "Patricia", "Linda",
 "Barbara",
 "Elizabeth", "Jennifer", "Maria", "Susan",
 "Margaret", "Dorothy");

Observable<Long> absoluteDelayMillis = Observable
 .just(0.1, 0.6, 0.9,
 1.1,
 3.3, 3.4, 3.5, 3.6,
 4.4, 4.8)
 .map(d -> (long)(d * 1_000));

//...

delayedNames
 .throttleFirst(1, SECONDS)
 .subscribe(System.out::println);

The output looks like this:

Mary
Barbara
Elizabeth
Margaret

Just like sample() (aka throttleLast()), throttleFirst() does not emit any event
when no new name appeared between Barbara and Elizabeth.

Buffering Events to a List
Buffering and moving windows are among the most exciting built-in operators
offered by RxJava. They both traverse input stream through a window that captures
several consecutive elements and moves forward. On one hand, they allow batching
values from an upstream source to handle them more effectively. In practice, they are
flexible and versatile tools that allow various aggregations of data on the fly.

214 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

The buffer() operator aggregates batches of events in real time into a List. How‐
ever, unlike the toList() operator, buffer() emits several lists grouping some num‐
ber of subsequent events as opposed to just one containing all events (like toList()).
The simplest form of buffer() groups values from upstream Observable into a lists
of equal size:

Observable
 .range(1, 7) //1, 2, 3, ... 7
 .buffer(3)
 .subscribe((List<Integer> list) -> {
 System.out.println(list);
 }
);

Of course, subscribe(System.out::println) would work as well; we left the type
information for educational purposes. The output shows three events emitted from
the buffer(3) operator:

[1, 2, 3]
[4, 5, 6]
[7]

buffer() keeps receiving upstream events and buffers them (hence the name) inter‐
nally until the buffer reaches a size of 3. When that happens, the entire buffer
(List<Integer>) is pushed downstream. When the completion notification appears
and internal buffer was not empty (but not yet of size 3), it is pushed downstream
anyway. That is the reason we see a one-element list in the end.

By using the buffer(int) operator you can replace several fine-grained events with
less but bigger batches. For example, if you want to reduce database load, you might
want to replace storing each event individually by storing them in batches:

interface Repository {
 void store(Record record);
 void storeAll(List<Record> records);
}

//...

Observable<Record> events = //...

events
 .subscribe(repository::store);
//vs.
events
 .buffer(10)
 .subscribe(repository::storeAll);

The latter subscription calls storeAll on Repository, storing batches of 10 elements
at once. This can potentially improve throughput in your application.

Flow Control | 215

www.EBooksWorld.ir

1 https://en.wikipedia.org/wiki/Moving_average
2 Keep in mind that this is not the most efficient algorithm because it adds the same number multiple times.

buffer() has many overloaded variants. A slightly more complex version allows you
to configure how many oldest values from internal buffer to drop when buffer()
pushes the list downstream. That sounds complex, but put in more basic terms, it
makes it possible for you to look at your event stream through the moving window of
a certain size:

Observable
 .range(1, 7)
 .buffer(3, 1)
 .subscribe(System.out::println);

This yields several overlapping lists:

[1, 2, 3]
[2, 3, 4]
[3, 4, 5]
[4, 5, 6]
[5, 6, 7]
[6, 7]
[7]

You can use buffer(N, 1) variant if you want to compute a moving average of some
time-series data.1 The code example that follows generates 1,000 random values from
normal distribution. Later, we take a sliding window of 100 elements (advancing one
element at a time) and compute the average of such a window.2 Run this program
yourself and notice how the moving average is much smoother than the random
unordered values.

import java.util.Random;
import java.util.stream.Collectors;

//...

Random random = new Random();
Observable
 .defer(() -> just(random.nextGaussian()))
 .repeat(1000)
 .buffer(100, 1)
 .map(this::averageOfList)
 .subscribe(System.out::println);

//...

private double averageOfList(List<Double> list) {
 return list
 .stream()

216 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Moving_average

 .collect(Collectors.averagingDouble(x -> x));
}

You can probably imagine that calling buffer(N) is in fact equivalent to buffer(N,
N). The simplest form of buffer() drops the entire internal buffer when it becomes
full. Interestingly, the second parameter of buffer(int, int) (that specifies how
many elements to skip when the buffer is pushed downstream) can be bigger than the
first argument, effectively skipping some elements!

Observable<List<Integer>> odd = Observable
 .range(1, 7)
 .buffer(1, 2);
odd.subscribe(System.out::println);

This setup forwards the first element but then skips two: the first and the second one.
Then the cycle repeats: buffer() forwards the third element but then skips the third
and fourth. Effectively, the output is: [1] [3] [5] [7]. Notice that each element in
the odd Observable is actually a one-element list. You can use flatMap() or flatMapI
terable() to get back a simple Observable<Integer>:

Observable<Integer> odd = Observable
 .range(1, 7)
 .buffer(1, 2)
 .flatMapIterable(list -> list);

flatMapIterable() expects a function that transforms each value in the stream (one-
element List<Integer>) into a List. Identity transformation (list -> list) is
enough here.

Buffering by time periods

buffer() is actually a broad family of operators. Rather than batching upstream
events based on size (so that each batch has the same size), another variant of
buffer() batches events by time period. While throttleFirst() and throttle
Last() were taking first and last events within a given period of time accordingly, one
of the overloaded versions of buffer batches all events in each time period. Coming
back to our names example:

Observable<String> names = just(
 "Mary", "Patricia", "Linda", "Barbara", "Elizabeth",
 "Jennifer", "Maria", "Susan", "Margaret", "Dorothy");
Observable<Long> absoluteDelays = just(
 0.1, 0.6, 0.9, 1.1, 3.3,
 3.4, 3.5, 3.6, 4.4, 4.8
).map(d -> (long) (d * 1_000));

Observable<String> delayedNames = Observable.zip(names,
 absoluteDelays,
 (n, d) -> just(n).delay(d, MILLISECONDS)
).flatMap(o -> o);

Flow Control | 217

www.EBooksWorld.ir

delayedNames
 .buffer(1, SECONDS)
 .subscribe(System.out::println);

An overloaded version of buffer() that accepts time period (one second in the pre‐
ceding example) aggregates all upstream events within that period. Therefore,
buffer() collects all events that happened during first time period, second time
period, and so on:

[Mary, Patricia, Linda]
[Barbara]
[]
[Elizabeth, Jennifer, Maria, Susan]
[Margaret, Dorothy]

The third List<String> is empty because no events appeared in that time frame. One
of the use cases for buffer() is counting the number of events per each time period;
for example, number of key events per second:

Observable<KeyEvent> keyEvents = //...

Observable<Integer> eventPerSecond = keyEvents
 .buffer(1, SECONDS)
 .map(List::size);

Luckily, because no events within a one-second period yields an empty list, we do not
have gaps in our measurements. However, this is not the most efficient way, as we will
soon discover with the window() operator.

The most comprehensive overload of buffer() allows you to take full control over
when this operator begins buffering events and when the buffer should be flushed
downstream. In other words, you choose in which periods of time upstream events
should be grouped. Imagine that you are monitoring some industrial device that
pushes telemetric data very often. The amount of data is overwhelming, so to save
some computational capacity, you decided to look only at certain samples. The algo‐
rithm follows:

• During business hours (9:00–17:00), we take 100-millisecond long snapshots
every second (processing approximately 10% of data)

• Outside business hours we look only at 200-millisecond long snapshots taken
every 5 seconds (4%)

In other words, once every second (or 5 seconds) we buffer all events for 100 milli‐
seconds (or 200 accordingly) and emit lists of all of the events within that period.
This will become clear when you see the entire example. First, we need an Observa
ble that emits any value whenever we want to begin buffering (grouping) upstream
events. This Observable can literally push any type of value, but this is irrelevant

218 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

because only timing matters. The fact that we are returning Duration from the
java.time package is a coincidence, RxJava does not use this value in any way:

Observable<Duration> insideBusinessHours = Observable
 .interval(1, SECONDS)
 .filter(x -> isBusinessHour())
 .map(x -> Duration.ofMillis(100));
Observable<Duration> outsideBusinessHours = Observable
 .interval(5, SECONDS)
 .filter(x -> !isBusinessHour())
 .map(x -> Duration.ofMillis(200));

Observable<Duration> openings = Observable.merge(
 insideBusinessHours, outsideBusinessHours);

First using the interval() operator we generate timer ticks every second but exclude
those that are not within business hours. This way, we get a steady clock ticking every
second between 9:00 and 17:00. Recall that interval() returns growing natural Long
numbers; however, we do not need them, so for convenience we replace them with
fixed duration of 100 milliseconds. Symmetrical code creates a steady stream of
events every 5 seconds between 17:00 and 9:00. If you are curious how isBusines
sHour() is implemented, it uses the java.time package:

private static final LocalTime BUSINESS_START = LocalTime.of(9, 0);
private static final LocalTime BUSINESS_END = LocalTime.of(17, 0);

private boolean isBusinessHour() {
 ZoneId zone = ZoneId.of("Europe/Warsaw");
 ZonedDateTime zdt = ZonedDateTime.now(zone);
 LocalTime localTime = zdt.toLocalTime();
 return !localTime.isBefore(BUSINESS_START)
 && !localTime.isAfter(BUSINESS_END);
}

The openings stream merges together insideBusinessHours and outsideBusines
sHours streams. It is basically a trigger that instructs the buffer() operator when to
begin collecting samples from upstream rather than discarding them. Whatever the
value is emitted from the openings stream is entirely irrelevant. But we must also
specify when to stop aggregating (buffering) events and push them downstream as
one batch in a List. The most obvious solution is to treat each event emitted from
openings stream as a signal to stop the current batch, emit it downstream, and start
another batch:

Observable<TeleData> upstream = //...

Observable<List<TeleData>> samples = upstream
 .buffer(openings);

Notice how we pass carefully crafted openings stream to the buffer() operator. The
preceding code example slices the upstream source of TeleData values. The ticking

Flow Control | 219

www.EBooksWorld.ir

clock of openings stream batches events from upstream. Within business hours, a
new batch is created every second, outside business hours, batches group values in
five-second periods. Importantly in this version, all events from upstream are pre‐
served because they either land in one batch or the other. However, an overloaded
version of the buffer() operator also allows marking the end of a batch:

Observable<List<TeleData>> samples = upstream
 .buffer(
 openings,
 duration -> empty()
 .delay(duration.toMillis(), MILLISECONDS));

First recall that openings is an Observable<Duration>, but the actual value of events
from openings is not important. RxJava merely uses this event to start buffering Tele
Data instances. But this time we have full control when buffering and emission of this
buffer should occur. The second parameter is an Observable that must complete
whenever we want to stop sampling. Completion of this second stream marks the end
of a given batch. Look carefully: the openings stream emits an event every time we
would like to start a new batch. For each event emitted from openings we return a
new Observable that should complete some time in the future. So, for example, when
the openings stream emits an event of Duation.ofMillis(100) value, we transform
it to an Observable that completes when a given batch should end, after 100 milli‐
seconds. Notice that in this case some events might be dropped or duplicated in con‐
secutive batches. If second, the Observable—which is responsible for marking the
end of a given batch, appears before an opening event of the next batch, within this
time gap events are discarded by buffer(). This is our case: we begin buffering
events every second (or every other second outside business hours), but the buffer
closes and is being forwarded after 100 milliseconds (or 200, accordingly). The
majority of events fall between buffering periods and therefore are discarded.

The buffer() operator is extremely flexible and quite complex. Make sure that you
experiment a little bit with it and understand the preceding example. It is used to
smartly batch events from the upstream source to achieve grouping, sampling, or
moving window functionality. But because buffer() requires creating an intermedi‐
ate List before the current buffer is closed and passed downstream, it might unneces‐
sarily put pressure on garbage collection and memory usage (see the section
“Memory Consumption and Leaks” on page 315). Therefore, the window() operator
was introduced.

Moving window
When working with buffer() we build List instances over and over. Why do we
build these intermediate Lists rather then somehow consume events on the fly? This
is where the window() operator becomes useful. You should prefer window() over

220 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

buffer() if possible because the latter is less predictable in terms of memory usage.
The window() operator is very similar to buffer(): it has similar overloaded versions
including the one that does the following:

• Receive int, grouping events from source into fixed-size lists
• Receive time unit, grouping events within fixed-time periods
• Receive custom Observables marking the beginning and end of each batch

What is the difference, then? Remember the example that was counting how many
events occurred per second in given source? Let’s take another look at it:

Observable<KeyEvent> keyEvents = //...

Observable<Integer> eventPerSecond = keyEvents
 .buffer(1, SECONDS)
 .map(List::size);

We batch all events from Observable<KeyEvent> that occurred in each second into
Observable<List<KeyEvent>>. In the next step, we map List into its size. This is
quite wasteful, especially if the number of events in each second is significant:

Observable<Observable<KeyEvent>> windows = keyEvents.window(1, SECONDS);
Observable<Integer> eventPerSecond = windows
 .flatMap(eventsInSecond -> eventsInSecond.count());

window(), as opposed to buffer(), returns an Observable<Observable<KeyEvent>>.
Think about it for a moment. Rather than receiving fixed lists with each one contain‐
ing one batch (or buffer), we receive a stream of streams. Every time a new batch
begins (every one second in the preceding example), a new Observable<KeyEvent>
value appears in the outer stream. We can further transform all of these inner
streams, but to avoid double-wrapping we use flatMap(). flatMap() receives each
buffer (an Observable<KeyEvent>) as an argument and is suppose to return another
Observable. The count() operator (see the section “Slicing and Dicing Using skip(),
takeWhile(), and Others” on page 94) transforms an Observable<T> into an Observa
ble<Integer> that emits just one item representing the number of events in the origi‐
nal Observable. Therefore, for each one-second batch we produce, the number of
events occurred within that second. But there is no internal buffering; the count()
operator counts events on the fly as they pass through.

Skipping Stale Events by Using debounce()
buffer() and window() group several events together so that you can process them
in batches. sample() picks one fairly arbitrary event once in a while. These operators
do not take into account how much time elapsed between events. But in many cases,

Flow Control | 221

www.EBooksWorld.ir

the event can be discarded if it is shortly followed by another event. For example,
imagine a stream of stock prices flowing from a trading platform:

Observable<BigDecimal> prices = tradingPlatform.pricesOf("NFLX");
Observable<BigDecimal> debounced = prices.debounce(100, MILLISECONDS);

debounce() (alias: throttleWithTimeout()) discards all of the events that are shortly
followed by another event. In other words, if a given event is not followed by another
event within a time window, that event is emitted. In the preceding example, the pri
ces stream pushes prices of "NFLX" stock every time they change. Prices sometimes
change very frequently, dozens of times per second. For each price change we would
like to run some computation that takes a significant amount of time to complete.
However, if a new price arrives, the result of this computation is irrelevant; it must
begin from scratch with this new price. Therefore, we would like to discard events if
they are followed (suppressed by) a new event shortly after.

debounce() waits a little bit (100 milliseconds in the preceding example) just in case
second event appears later on. This process repeats itself so that if a second event
appears in less than 100 milliseconds from the first one, RxJava will postpone its
emission, hoping for the third one to appear. This time, again, you have an option to
flexibly control for how long to wait on a per-event basis. For example, you might
want to ignore stock price changes if they are followed by an update in less than 100
milliseconds. However, if the price goes above $150, we would like to forward such an
update downstream much faster without hesitation. Maybe because some types of
events need to be handled straight away; for example, because they are great market
opportunities. you can implement this easily by using an overloaded version of
debounce():

prices
 .debounce(x -> {
 boolean goodPrice = x.compareTo(BigDecimal.valueOf(150)) > 0;
 return Observable
 .empty()
 .delay(goodPrice? 10 : 100, MILLISECONDS);
 })

For each new update of price x, we apply sophisticated logic (> $150) to figure out if
the price is good. Then, for each such update we return a unique Observable, which
is empty. It does not need to emit any items; it is important when it completes. For
good prices, it emits a completion notification after 10 milliseconds. For other prices,
this Observable completes after 100 milliseconds. The debounce() operator for each
event it receives subscribes to this Observable waiting for its completion. If it com‐
pletes first, the event is passed downstream. Otherwise, if more recent upstream event
appeared in the meantime, the cycle repeats.

In our example, when a price x of $140 appears, the debounce() operator creates a
new Observable with completion delayed by 100 milliseconds via the expression we

222 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

provided. If no events appear before the completion of this event, the $140 event will
be forwarded downstream. However, imagine another price update x of $151 came
along. This time when the debounce() operator asks us to provide an Observable
(called debounceSelector in the API) we return a stream that completes much faster,
after 10 milliseconds. So in case of good prices (greater than $150), we are willing to
wait only 10 milliseconds for a subsequent update. If you still struggle to understand
how debounce() works, here is a stock price simulator you can try:

Observable<BigDecimal> pricesOf(String ticker) {
 return Observable
 .interval(50, MILLISECONDS)
 .flatMap(this::randomDelay)
 .map(this::randomStockPrice)
 .map(BigDecimal::valueOf);
}

Observable<Long> randomDelay(long x) {
 return Observable
 .just(x)
 .delay((long) (Math.random() * 100), MILLISECONDS);
}

double randomStockPrice(long x) {
 return 100 + Math.random() * 10 +
 (Math.sin(x / 100.0)) * 60.0;
}

The preceding code nicely composes several streams. First, we generate a sequence of
long values emitted in fixed 50-millisecond intervals. Then, we delay each event inde‐
pendently by some random value between 0 and 100 milliseconds. Last but not least,
we transform infinitely growing long numbers into a sine wave (using Math.sin())
with random jitter. This simulates stock price fluctuation over time. If you run this
stream against the debounce() operator, you will notice that as long as prices are low,
events are generally infrequent because we are willing to wait as much as 100 milli‐
seconds for subsequent event, which often occurs. But when the price goes above
$150, the debounce() tolerance goes down to 10 milliseconds, so effectively every
good price update is forwarded downstream.

Avoid starvation in debounce()

It is quite easy to imagine a situation in which the debounce() operator prevents
emission of all events because they simply appear too often and there is never a
moment of silence:

Observable
 .interval(99, MILLISECONDS)
 .debounce(100, MILLISECONDS)

Flow Control | 223

www.EBooksWorld.ir

Such a source will never emit any event because debounce() waits as much as 100
milliseconds to wnsure that there is no more recent event. Unfortunately, just 1 milli‐
second before this timeout, a new event appears, starting debounce’s timer all over.
This leads to an Observable that produces events so often that we may never get to
see any of them (!) You can call this a feature, but in practice you might want to see
some event from time to time, even in case of flood. To prevent such a situation we
must get a little bit creative.

First, we must discover a situation in which no new event appeared for a long time.
We already played with timeout() operator in the section “Timing Out When Events
Do Not Occur” on page 251, so we know that part is easy:

Observable
 .interval(99, MILLISECONDS)
 .debounce(100, MILLISECONDS)
 .timeout(1, SECONDS);

Now, we at least get an exception signaling an idle upstream source. Bizarrely it is the
opposite—the upstream interval() operator produces events too often and because
of that, debounce() never passes them downstream—but we digress. If events appear
too often, we hold them back waiting for a moment of silence. But if this silence is too
long (more than one second), we fail and throw a TimeoutException. Rather than
failing permanently, we would actually like to see an arbitrary value from upstream
Observable and continue. The first part of the task is simple:

ConnectableObservable<Long> upstream = Observable
 .interval(99, MILLISECONDS)
 .publish();
upstream
 .debounce(100, MILLISECONDS)
 .timeout(1, SECONDS, upstream.take(1));
upstream.connect();

The timeout() operator has an overloaded version that accepts a fallback Observable
upon timeout. Unfortunately, there is a subtle bug here. In case of timeout, we naively
take the first encountered item from upstream and then complete. What we really
want is to continue emitting events from upstream, still with debounce() support.

224 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

ConnectableObservable

ConnectableObservable together with the publish() and con
nect() pair is needed here to turn the cold Observable.inter
val() into hot one (see the section “Hot and Cold Observables” on
page 43 for details why interval() is cold and what that means).
By calling publish() followed by connect() (see the section “Con‐
nectableObservable Lifecycle” on page 56) we force the interval()
operator to begin producing events right away, even without any‐
one subscribing. This means that if we subscribe to such an Observ
able many seconds later, it begins receiving events in the middle,
and all subscribers get the same events at the same time. By default,
interval() is a cold Observable, so each subscriber, no matter
when subscribed, starts from 0, from the beginning.

Another approach is seemingly better:

upstream
 .debounce(100, MILLISECONDS)
 .timeout(1, SECONDS, upstream
 .take(1)
 .concatWith(
 upstream.debounce(100, MILLISECONDS)))

It looks somewhat OK at first sight. The original source, after applying debounce()
has a timeout. When timeout occurs, we emit the very first item we encountered and
continue with the same source, also by using the debounce() operator. However, in
the case of a first timeout, we switch to the fallback Observable that no longer has a
timeout() operator applied. A quick, dirty, and short-sighted fix:

upstream
 .debounce(100, MILLISECONDS)
 .timeout(1, SECONDS, upstream
 .take(1)
 .concatWith(
 upstream
 .debounce(100, MILLISECONDS)
 .timeout(1, SECONDS, upstream)))

Yet again, we forgot to put a fallback Observable in the inner timeout() operator.
Enough is enough, you should already see a recurring pattern here. Rather than infin‐
itely repeating the same form of upstream → debounce → timeout() → upstream →
…we can use recursion!

import static rx.Observable.defer;

Observable<Long> timedDebounce(Observable<Long> upstream) {
 Observable<Long> onTimeout = upstream

Flow Control | 225

www.EBooksWorld.ir

 .take(1)
 .concatWith(defer(() -> timedDebounce(upstream)));
 return upstream
 .debounce(100, MILLISECONDS)
 .timeout(1, SECONDS, onTimeout);
}

The definition of onTimeout fallback Observable in timedDebounce is tricky. We
declare that it first takes one sample event from upstream (which is the original
source) followed by a recursively invoked timedDebounce() method. We must use the
defer() operator to avoid infinite recursion. The rest of the timedDebounce() basi‐
cally takes the original upstream source, applies the debounce() operator, and adds
fallback onTimeout. This fallback does the exact same thing: applies debounce(), adds
a timeout(), and fallback—recursively.

Do not become depressed if you find it difficult to grasp at first.
This is a rather complex example showing the power of stream
composition together with laziness and recursion. You hardly ever
need that level of complexity, but after you grasp how it works, it is
quite satisfying. Play around with this code and observe how tiny
changes drastically alter the way streams interact with one another.

Backpressure
Backpressure is quite essential to build robust and responsive applications. In
essence, it is a feedback channel from the consumer to producer. The consumer has a
certain level of control over how much data it can process at any time. This way con‐
sumers or messaging middleware are not becoming saturated and unresponsive
under high load. Instead, they request fewer messages, letting the producer decide
how to slow down.

In every system that exchanges data via message passing (or events for that matter), a
problem of consumers not keeping up with producers can arise. Depending on the
underlying implementation, it can manifest in different ways. If the communication
channel somehow synchronizes producers and consumers (for example, by using
ArrayBlockingQueue), the producer is throttled (blocked) when the consumer is not
keeping up with the load. This leads to coupling between the producer and consumer
which should otherwise be entirely independent. Message passing typically means
asynchronous processing, an assumption that fails when the producer suddenly must
wait for the consumer. Even worse, the producer might be a consumer of a different
producer higher in the hierarchy, cascading increased latency up.

Conversely, if the medium in between these two parties is unbounded, well…it is still
bound by factors over which we have less control. An infinite queue like LinkedBlock
ingQueue allows the producer to greatly outperform consumers without blocking.

226 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

3 This example was inspired by https://www.lightbend.com/blog/7-ways-washing-dishes-and-message-driven-
reactive-systems.

That is, until LinkedBlockingQueue does not consume all memory and crash entire
application. If the medium is persistent—for example a JMS message broker—the
same problem can technically manifest as well with disk space, but this is less proba‐
ble. Far more common is a situation in which the messaging middleware finds it diffi‐
cult to manage thousands if not millions of unconsumed messages. Some specialized
brokers such as Kafka can technically store hundreds of millions of messages until
lagging consumers get a hold of them. But this leads to an enormous increase in
latencies, measured as a time between message production and consumption.

Although message-driven systems are generally considered more robust and scalable,
the problem of too eager producers remains unsolved. However, there are some
efforts to solve this integration issue. Sampling and throttling (using sample() and
others) and batching (using window() and buffer()) are manual ways of reducing
producer load in RxJava. When Observable generates more events that can be con‐
sumed, we can apply sampling or batching to increase subscription throughput. Yet,
more robust and systematic approach was needed, hence the Reactive Streams initia‐
tive was born out of necessity. This small set of interfaces and semantics aims to for‐
malize the problem and provide a systematic algorithm for producer–consumer
coordination, known as backpressure.

Backpressure is a simple protocol that allows the consumer to request how much data
it can consume at a time, effectively providing a feedback channel to a producer. Pro‐
ducers receive requests from consumers, avoiding message overflow. Of course, this
algorithm can work only with producers that are capable of throttling themselves; for
example, when they are backed by static collection or source that can be pulled from
something like Iterator. When the producer has no control over the frequency of
data it produces (the source is external or hot), backpressure can not help much.

Backpressure in RxJava
Even though Reactive Streams solve a very general problem in technology-agnostic
way, we will focus on RxJava and how it approaches the problem of backpressure.
Throughout this chapter we will use an example of continually washing dishes in a
small restaurant.3 Dishes are modeled as large objects with an identifier:

class Dish {
 private final byte[] oneKb = new byte[1_024];
 private final int id;

 Dish(int id) {
 this.id = id;
 System.out.println("Created: " + id);

Backpressure | 227

www.EBooksWorld.ir

https://www.lightbend.com/blog/7-ways-washing-dishes-and-message-driven-reactive-systems
https://www.lightbend.com/blog/7-ways-washing-dishes-and-message-driven-reactive-systems
http://kafka.apache.org:
http://www.reactive-streams.org:

 }

 public String toString() {
 return String.valueOf(id);
 }
}

The oneKb buffer simulates some extra memory utilization. Dishes are passed to the
kitchen by waiters and are modeled as an Observable:

Observable<Dish> dishes = Observable
 .range(1, 1_000_000_000)
 .map(Dish::new);

The range() operator produces new values as fast as it possibly can. So what happens
if washing dishes takes a little bit of time and is clearly slower than the pace of pro‐
duction?

Observable
 .range(1, 1_000_000_000)
 .map(Dish::new)
 .subscribe(x -> {
 System.out.println("Washing: " + x);
 sleepMillis(50);
 });

Surprisingly nothing bad. If you study the output you will notice that range() is per‐
fectly aligned with subscription:

Created: 1
Washing: 1
Created: 2
Washing: 2
Created: 3
Washing: 3
...
Created: 110
Washing: 110
...

This should not come as a surprise to you. The range() operator is not asynchronous
by default, so every item it produces is passed to a Subscriber directly within the
context of the same thread. If the Subscriber is slow, it effectively prevents Observa
ble from producing more elements. range() cannot call onNext() of the Subscriber
until the previous one finished. This is possible because both producer and consumer
work in the same thread and are transparently coupled. In some sense, there is an
implicit queue between them with a maximum capacity of one. A rendezvous algo‐
rithm that we did not anticipate. Imagine a waiter in a restaurant who cannot leave
new dishes for cleaning as long as the ones currently being washed are not done. But
when a waiter stands still waiting for dish washing to be done, customers are not
served. And when they are not served, new customers cannot enter the restaurant.

228 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

This is how one blocking component can bring the entire system to a stall. However,
in real life there is typically a thread boundary between producer and consumer:
Observable produces events in one thread, whereas Subscriber consumes in
another:

dishes
 .observeOn(Schedulers.io())
 .subscribe(x -> {
 System.out.println("Washing: " + x);
 sleepMillis(50);
 });

Stop for a moment and think about what could happen without actually compiling
and running the code. One might think that a disaster should occur because dishes
produces events very fast from the range() operator, whereas Subscriber is quite
slow, consuming only 20 dishes per second. The observeOn() operator keeps con‐
suming events in quick succession but the Subscriber is consuming them way to
slow. Therefore you might conclude that OutOfMemoryError is unavoidable with
unprocessed events piling up somewhere. Luckily backpressure saves the day in this
case and RxJava protects us to some degree. The output of the program is somewhat
unexpected:

Created: 1
Created: 2
Created: 3
...
Created: 128

Washing: 1
Washing: 2
...
Washing: 128

Created: 129
...
Created: 223
Created: 224

Washing: 129
Washing: 130
...

First, a batch of 128 dishes is being produced by range() pretty much instantane‐
ously. Later, there is a slow process of washing dishes, one by one. Somehow the
range() operator becomes idle. When the last dish out of these 128 is washed,
another batch of 96 dishes is produced by range(), followed by a slow process of

Backpressure | 229

www.EBooksWorld.ir

4 Do not pay much attention to these exact sizes, what matters is that something requests batches of events peri‐
odically.

washing.4 Apparently, there must be some clever mechanism that prevents range()
from producing too many events, controlled by subscriber. If you do not see where
such mechanism is deployed, let’s try to implement range() ourselves:

Observable<Integer> myRange(int from, int count) {
 return Observable.create(subscriber -> {
 int i = from;
 while (i < from + count) {
 if (!subscriber.isUnsubscribed()) {
 subscriber.onNext(i++);
 } else {
 return;
 }
 }
 subscriber.onCompleted();
 });
}

Here, we’re using myRange() in the same example together with observeOn():

myRange(1, 1_000_000_000)
 .map(Dish::new)
 .observeOn(Schedulers.io())
 .subscribe(x -> {
 System.out.println("Washing: " + x);
 sleepMillis(50);
 },
 Throwable::printStackTrace
);

This ends with catastrophe, and we never even get to wash any dish:

Created: 1
Created: 2
Created: 3
...
Created: 7177
Created: 7178

rx.exceptions.MissingBackpressureException
 at rx.internal.operators...
 at rx.internal.operators...

MissingBackpressureException will be explained later on. For the time being, I’m
guessing that this convinces you that there is some background mechanism that our
custom implementation of range() is lacking.

230 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

Built-in Backpressure
For the past several chapters we watched how events were flowing downstream from
the source Observable, through a sequence of operators, down to a Subscriber.
There was never any feedback channel past a subscription request. The moment we
invoked subscribe() (which in some sense propagates up) all events and notifica‐
tions are traveling down without any apparent feedback loop. This lack of feedback
can lead to producers (uppermost Observable) emitting a number of events over‐
whelming the subscriber. As a consequence, your application can crash with OutOfMe
moryError or at best become very latent.

Backpressure is a mechanism that allows terminal subscribers as well as all intermedi‐
ate operators to request only a certain number of events from the producer. By
default, an upstream cold Observable produces events as fast it can. But in the pres‐
ence of such requests coming from downstream, it should in a way “slow down” and
produce exactly the number requested. This is the reason behind the magic number
of 128 seen with observeOn(). But, first let’s see how the final subscriber can control
backpressure.

When subscribing, we have a possibility to implement onNext(), onCompleted(), and
onError() (see the section “Subscribing to Notifications from Observable” on page
30). Turns out there is another callback method to implement: onStart().

Observable
 .range(1, 10)
 .subscribe(new Subscriber<Integer>() {

 @Override
 public void onStart() {
 request(3);
 }

 //onNext, onCompleted, onError follows...
 });

onStart() is invoked by RxJava exactly when you think it should—before any event
or notification is propagated to Subscriber. You can technically use a constructor of
your Subscriber, but for anonymous inner classes in Java, constructors look really
eerie:

.subscribe(new Subscriber<Integer>() {

 {{
 request(3);
 }}

 //onNext, onCompleted, onError follows...
});

Backpressure | 231

www.EBooksWorld.ir

But we digress. The request(3) invocation inside a Subscriber instructs the
upstream source how many items we are willing to receive at first. Skipping this invo‐
cation entirely (or calling request(Long.MAX_VALUE)) is equivalent to requesting as
many events as possible. This is the reason why we must invoke request() very early;
otherwise, the stream begins to emit events and we cannot decrease our demand later
on. But when we request only three events, the range() operator will obediently stop
emitting events temporarily after pushing 1, 2, and 3. Our onNext() callback method
will be invoked three times and no more, despite range() operator not being comple‐
ted yet. However, we, as a Subscriber, have full control over how much data we want
to receive. For example, we might want to request items individually:

Observable
 .range(1, 10)
 .subscribe(new Subscriber<Integer>() {

 @Override
 public void onStart() {
 request(1);
 }

 @Override
 public void onNext(Integer integer) {
 request(1);
 log.info("Next {}", integer);
 }

 //onCompleted, onError...
 });

This example is a bit silly because it behaves just like an ordinary Subscriber without
any backpressure whatsoever. But it illustrates how you can use backpressure. You
can probably imagine a Subscriber that prebuffers some number of events and then
requests chunks when it finds it convenient. Subscriber might decide that it wants to
wait a little bit before receiving more events, despite being idle, for example to reduce
stress on some downstream dependency. In our restaurant example, the waiter is an
Observable<Dish> that keeps pushing new dirty dishes whereas request(N) is a
readiness of the kitchen staff to wash a certain number of dishes. A good waiter
should not deliver new dishes without a request from the kitchen’s staff.

That being said, calling request(N) directly in client code is rare. More often, the var‐
ious operators that we put between source and final Subscriber take advantage of
backpressure to control how much data flows through our pipeline. For example
observeOn () must subscribe to the upstream Observable and schedule each event it
receives on a particular Scheduler, such as io(). But what if upstream produces
events at such a pace that the underlying Scheduler and Subscriber can no longer
keep up? The Subscriber that is being created by the observeOn() operator is

232 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

5 You can change this value via the rx.ring-buffer.size system property.

backpressure-enabled, it requests only 128 values to begin with.5 The upstream
Observable, which understands backpressure, emits only a given number of events
and remains idle—this is what range() does, for example. When observeOn() finds
that this batch of events was successfully processed by downstram Subscriber, it
requests more. This way, despite crossing a thread boundary and the asynchronous
nature of both producer and consumer side, the consumer is never flooded with
events.

observeOn() is not the only operator that is backpressure friendly. As a matter of fact,
dozens of other operators take advantage of it. For example, zip() buffers only a
fixed number of events from each underlying Observable. Thanks to this zip() is
not affected in case of only one of zipped streams being very active. The same logic
applies to most of the operators we use.

Producers and Missing Backpressure
We already came across a MissingBackpressureException in our custom implemen‐
tation of range(). What does it actually mean and how do you interpret this excep‐
tion? Imagine a Subscriber (yours but more often the one create by some operator)
that knows exactly how many items it wants to receive; for example, buffer(N) or
take(N). Another example of such an operator is observeOn(). It must be very strict
in that regard, if upstream Observable pushes more items for some reason, the inter‐
nal buffer inside observeOn() overflows and it is signaled with MissingBackpressur
eException. But why does an upstream Observable push more items than requested?
Well, because it simply ignores the request() invocations. Let’s revisit our simple
range() reimplementation:

Observable<Integer> myRange(int from, int count) {
 return Observable.create(subscriber -> {
 int i = from;
 while (i < from + count) {
 if (!subscriber.isUnsubscribed()) {
 subscriber.onNext(i++);
 } else {
 return;
 }
 }
 subscriber.onCompleted();

 });
}

Backpressure | 233

www.EBooksWorld.ir

6 See, for example, https://github.com/ReactiveX/RxJava/blob/1.x/src/main/java/rx/internal/operators/OnSubscri
beRange.java to get a feeling for how optimized and complex even the simplest producer can be.

The only way to stop it is by unsubscribing, but we do not want to unsubscribe, just
slow it down a little bit. Downstream operators know precisely how many events they
want to receive, but our source ignores these requests. The low-level mechanism for
honoring the requested number of events is implemented via the rx.Producer. This
interface is plugged in within create(). To recap, OnSubscribeRange is a callback
that is executed every time someone subscribes to this Observable. Normally, you
would see calling onNext() directly from within this interface, but not when back‐
pressure is taken into account:

Observable<Integer> myRangeWithBackpressure(int from, int count) {
 return Observable.create(new OnSubscribeRange(from, count));
}

class OnSubscribeRange implements Observable.OnSubscribe<Integer> {

 //constructor...

 @Override
 public void call(final Subscriber<? super Integer> child) {
 child.setProducer(new RangeProducer(child, start, end));
 }

}

class RangeProducer implements Producer {

 @Override
 public void request(long n) {
 //calling onNext() on child subscriber here
 }
}

This is the skeleton of code you will find in RxJava’s implementation of range().
Implementing Producer is quite a challenging task: it must be stateful, thread-safe,
and extremely fast. Thus, we do not normally implement producers ourselves but it is
useful to understand how they work (see the section “Honoring the Requested
Amount of Data” on page 237 for details on how to implement backpressure your‐
self).6 Backpressure internally turns Rx principles upside down. Observable pro‐
duced by range() (and many other built-in operators) no longer pushes data eagerly
to Subscribers. Instead, it wakes up and reacts on data requests (request(N) invoca‐
tions within Subscriber) and only then produces events. Also, it makes sure not to
produce more than was requested.

234 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

https://github.com/ReactiveX/RxJava/blob/1.x/src/main/java/rx/internal/operators/OnSubscribeRange.java
https://github.com/ReactiveX/RxJava/blob/1.x/src/main/java/rx/internal/operators/OnSubscribeRange.java

Look how we set a Producer on child Subscriber—this Producer will later be
invoked indirectly within Subscriber whenever it calls request(). This is how we set
up a feedback channel from Subscriber to the source Observable. An Observable
instructs its Subscriber how it can request certain amount of data. Effectively Observ
able switches from push to pull–push model, where clients can optionally request
only limited number of events. So, what to do if some foreign Observable does not
set up such a channel? Well, when RxJava discovers that it;s dealing with a source that
does not support backpressure, it can fail with MissingBackpressureException at
any time. However, there are operators from the onBackpressure*() family that can
simulate backpressure to some extent.

The simplest onBackpressureBuffer() operator unconditionally buffers all upstream
events and serves only the requested amount of data to downstream subscribers:

myRange(1, 1_000_000_000)
 .map(Dish::new)
 .onBackpressureBuffer()
 .observeOn(Schedulers.io())
 .subscribe(x -> {
 System.out.println("Washing: " + x);
 sleepMillis(50);
 });

As always, reading from bottom to top: first subscribe() propagates up to the
observeOn() operator. observeOn() must subscribe, as well, but it cannot simply
begin consuming arbitrary number of events. Thus, it requests only a fixed number at
the beginning (128) to avoid overflow of the io() Scheduler’s queue. The onBack
pressureBuffer() operator acts as a guard against sources ignoring backpressure.
When it receives request(128) from the downstream Subscriber, it passes the
request up and does nothing if only 128 flow through it. But, in the event that the
Observable that ignored that request and simply pushed data irrespective to back‐
pressure, onBackpressureBuffer() keeps an unbounded buffer internally. When
another request comes from a downstream Subscriber, onBackpressureBuffer()
first drains its internal buffer, and only when it is almost empty does it ask upstream
for more. This clever mechanism allows observeOn() to work as if myRange() was
backpressure-enabled, whereas in reality it is onBackpressureBuffer() that does the
throttling. Unfortunately, infinite internal buffer is not something that you can treat
lightheartedly:

Created: 1
Created: 2
Created: 3
Created: 4
Created: 8
Created: 9
Washing: 1
Created: 10

Backpressure | 235

www.EBooksWorld.ir

Created: 11
...
Created: 26976
Created: 26977
Washing: 15
Exception in thread "main" java.lang.OutOfMemoryError: ...
Washing: 16
 at java.util.concurrent.ConcurrentLinkedQueue.offer...
 at rx.internal.operators.OperatorOnBackpressureBuffer...
...

Of course, your mileage may vary, and with smaller events and sufficient amount of
memory, onBackpressureBuffer() can technically work. But in reality, you should
never rely on unbounded resources. Neither memory nor your solid state drive are
inifnite. Luckily there is an overloaded version of onBackpressureBuffer(N) that
accepts the maximum buffer size:

.onBackpressureBuffer(1000, () -> log.warn("Buffer full"))

The second parameter is optional; it is a callback invoked when the bounded buffer of
1,000 elements is full—when despite buffering Subscriber still cannot process events
at a satisfying pace. It does not allow any recovery, so expect MissingBackpressureEx
ception immediately following the warning message. We do at least we have control
over the buffer, but not the limits of the hardware or operating system.

An alternative to onBackpressureBuffer() is onBackpressureDrop(), which simply
discards all events that appeared without prior request(). Imagine a waiter in a res‐
taurant who keeps delivering new dishes to the kitchen. onBackpressureBuffer() is
a finite/infinite table with dishes waiting to be washed. onBackpressureDrop(), on
the other hand, is a waiter who simply throws away dirty dishes if there is no washing
capacity at the moment. This is not a very sustainable business model, but at least the
restaurant can keep serving clients:

.onBackpressureDrop(dish -> log.warn("Throw away {}", dish))

The callback is optional and it notifies us every time an event had to be discarded
because it appeared without being requested. It is a good idea to keep track of how
many events we dropped; this can be an important metric. Finally, there is onBack
pressureLatest() which is quite similar to onBackpressureDrop(), but keeps a ref‐
erence to the very last dropped element so that in case of a late request() from
downstream, the last seen value from upstream is served.

The onBackpressure*() family of methods is used to bridge between operators and
subscribers requesting backpressure and Observables that are not supporting it.
However, it is better to either use or create sources that support it natively.

236 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

7 https://commons.apache.org/proper/commons-dbutils/apidocs/org/apache/commons/dbutils/ResultSetItera
tor.html

Honoring the Requested Amount of Data
There are many ways to construct an Observable that supports downstream back‐
pressure requests. The easiest solution is to use built-in factory methods like range()
or from(Iterable<T>). The latter creates a source backed by Iterable but with
backpressure built-in. This means that such an Observable will not emit all values
from Iterable at once; rather, it will do so gradually as requests are flowing from
consumers. Note that this does not imply loading all data to List<T> (extending
Iterable<T>) first. Iterable is basically a factory of Iterators, so we can safely load
data on the fly.

An interesting example of a backpressure-enabled Observable is wrapping Result
Set from JDBC onto a stream. Notice that ResultSet is pull-based, just like the
backpressure-enabled Observable. But it is not an Iterable or Iterator, so we must
first convert it to Iterator<Object[]>—an Object[] is a loosely-typed representa‐
tion of a single row from a database:

public class ResultSetIterator implements Iterator<Object[]> {

 private final ResultSet rs;

 public ResultSetIterator(ResultSet rs) {
 this.rs = rs;
 }

 @Override
 public boolean hasNext() {
 return !rs.isLast();
 }

 @Override
 public Object[] next() {
 rs.next();
 return toArray(rs);
 }
}

The preceding converter is a very simplified version without error handling, extrac‐
ted from ResultSetIterator, as found in Apache Commons DbUtils open source
utility library.7 This class also provides a simplistic conversion to Itera

ble<Object[]>:

 public static Iterable<Object[]> iterable(final ResultSet rs) {
 return new Iterable<Object[]>() {

Backpressure | 237

www.EBooksWorld.ir

https://commons.apache.org/proper/commons-dbutils/apidocs/org/apache/commons/dbutils/ResultSetIterator.html
https://commons.apache.org/proper/commons-dbutils/apidocs/org/apache/commons/dbutils/ResultSetIterator.html

 @Override
 public Iterator<Object[]> iterator() {
 return new ResultSetIterator(rs);
 }

 };
 }

ResultSet handling

Keep in mind that treating ResultSet as an Iterator (and espe‐
cially Iterable) is a leaky abstraction. First, ResultSet is destruc‐
tive like Iterator, but unlike Iterable. You can traverse Iterator
only once, often this applies to ResultSet, as well. Secondly Itera
ble is a factory of fresh Iterators, whereas preceding converter
always returns an Iterator backed by the same ResultSet. This
means that calling iterator() twice will not yield the same values
—both iterators will compete over the same ResultSet. Finally,
ResultSet must be closed when done, but Iterator has no such
lifecycle. Relying on client code reading Iterator in its entirety to
perform cleanup in the end is too optimistic.

Having all of these converters in place, we can finally build Observable<Object[]>
backed by ResultSet with backpressure support:

Connection connection = //...
PreparedStatement statement =
 connection.prepareStatement("SELECT ...");
statement.setFetchSize(1000);
ResultSet rs = statement.executeQuery();
Observable<Object[]> result =
 Observable
 .from(ResultSetIterator.iterable(rs))
 .doAfterTerminate(() -> {
 try {
 rs.close();
 statement.close();
 connection.close();
 } catch (SQLException e) {
 log.warn("Unable to close", e);
 }
 });

The result Observable supports backpressure out of the box because the built-in
from() operator supports it. Therefore, the throughput of Subscriber is not relevant
anymore and we will no longer see MissingBackpressureException. Notice that set
FetchSize() is necessary; otherwise, some JDBC drivers might try to load all records
into memory, quite inefficient if we want to stream over a large result set.

238 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

As we already mentioned, the low-level mechanism for supporting backpressure is a
custom implementation of Producer. However, this task is quite error-prone, thus a
helper class was created, namely SyncOnSubscribe. This implementation of Observa
ble.OnSubscribe is pull-based and has backpressure transparently built in. Let’s
begin from the simplest case of stateless Observable—which is hardly ever found in
real life. This type of Observable does not hold any state in between onNext() invo‐
cations. But even the simplest range() or just() must remember which items were
already emitted. One of the few useful Observables without state emits random num‐
bers:

import rx.observables.SyncOnSubscribe;

Observable.OnSubscribe<Double> onSubscribe =
 SyncOnSubscribe.createStateless(
 observer -> observer.onNext(Math.random())
);

Observable<Double> rand = Observable.create(onSubscribe);

The rand Observable is an ordinary Observable that you can transform, combine,
and subscribe to. But underneath, it has full-fledged backpressure support. If Sub
scriber or any other operator in the pipeline requests a limited number of events,
this Observable will correctly obey the orders. The only thing we must provide to
createStateless() is a lambda expression that is invoked for each requested event;
so if downstream calls request(3), this custom expression is invoked three times,
assuming that each invocation emits just one event. There is no context (state) in
between invocations, thus it is called stateless.

Now let’s build a stateful operator. This variation of SyncOnSubscribe allows an
immutable state variable that is passed between invocations. Also, each invocation
must return a new state value. As an example, we will build an unbounded generator
of natural numbers, beginning at zero. Such an operator is actually quite useful if you
want to zip an arbitrarily long sequence with monotonically increasing natural num‐
bers. range() will work as well, but it requires providing an upper limit, which is not
always practical:

Observable.OnSubscribe<Long> onSubscribe =
 SyncOnSubscribe.createStateful(
 () -> 0L,
 (cur, observer) -> {
 observer.onNext(cur);
 return cur + 1;
 }
);

Observable<Long> naturals = Observable.create(onSubscribe);

Backpressure | 239

www.EBooksWorld.ir

This time we provide two lambda expressions to the createStateful() factory
method. The first lazily creates initial state—zero in this case. The second expression
is more important: it is supposed to push one item downstream somehow based on
current state and return new state value. The state is expected to be immutable, thus
this method allows returning a new state as opposed to mutating it. You can easily
rewrite naturals Observable so that it returns BigInteger instead and prevents
hypothetical overflow. This Observable can produce an infinite number of increasing
natural numbers, but fully supports backpressure. This means that it can adjust the
speed at which it produces events based on Subscribers preferences. Compare this to
naive implementation that is undeniably much simpler, but falls short in the case of
slow Subcribers:

Observable<Long> naturals = Observable.create(subscriber -> {
 long cur = 0;
 while (!subscriber.isUnsubscribed()) {
 System.out.println("Produced: " + cur);
 subscriber.onNext(cur++);
 }
});

If you prefer a single state variable that mutates while you traverse it (like ResultSet
from JDBC), SyncOnSubscribe has a method for you as well. The following code
does not compile due to checked exceptions, but we want to first highlight the overall
usage pattern:

ResultSet resultSet = //...

Observable.OnSubscribe<Object[]> onSubscribe = SyncOnSubscribe.createSingleState(
 () -> resultSet,
 (rs, observer) -> {
 if (rs.next()) {
 observer.onNext(toArray(rs));
 } else {
 observer.onCompleted();
 }
 observer.onNext(toArray(rs));
 },
 ResultSet::close
);

Observable<Object[]> records = Observable.create(onSubscribe);

There are three callbacks to implement:

• Generator of state. This lambda is invoked once to produce state variable that will
be passed as an argument to subsequent expressions.

• Callback to generate next value, typically based on state. This callback is free to
mutate state given as the first argument.

240 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

8 If you need an even more reactive toolkit, check out AsyncOnSubscribe that in principle is quite similar, but
callbacks generating the next item for Observer are allowed to be asynchronous as well.

• Third callback is invoked on unsubscription. This is the place to clean up Result
Set.

The more complete implementation with error handling looks as follows. Note that
errors occurring during unsubscription are really difficult to propagate properly
downstream:

Observable.OnSubscribe<Object[]> onSubscribe = SyncOnSubscribe.createSingleState(
 () -> resultSet,
 (rs, observer) -> {
 try {
 rs.next();
 observer.onNext(toArray(rs));
 } catch (SQLException e) {
 observer.onError(e);
 }
 },
 rs -> {
 try {
 //Also close Statement, Connection, etc.
 rs.close();
 } catch (SQLException e) {
 log.warn("Unable to close", e);
 }
 }
);

SyncOnSubscribe is a handy utility that allows you to write backpressure-enabled
Observables.8 It is slightly more complex compared to Observable.create(), but the
benefits of backpressure controlled by each Subscriber are difficult to underesti‐
mate. You should avoid using the create() operator directly and instead consider
built-in factories like from() or SyncOnSubscribe.

Backpressure is an amazingly powerful mechanism for controlled throttling of
Observables by Subscribers. The feedback channel obviously brings some overhead,
but the advantages of loosely coupled yet managed producers and consumers are
enormous. Backpressure is often batched, so the overhead is minimal, but if Sub
scriber is really slow (even briefly), this slowness is immediately reflected and the
overall system stability is preserved. Missing backpressure can be mitigated to some
extent by using the onBackpressure*() family of methods, but not on the long term.

When creating your Observables, think about correctly handling the backpressure
requests. After all, you have no control over the throughput of Subscribers. Another
technique is to avoid the heavyweight work in Subscriber, instead off-loading it to

Backpressure | 241

www.EBooksWorld.ir

flatMap(). For example, rather than storing events in a database within subscribe()
try doing this:

source.subscribe(this::store);

Consider making store more reactive (let it return Observable<UUID> of saved
record) and subscribing only to trigger subscription and side-effects:

source
 .flatMap(this::store)
 .subscribe(uuid -> log.debug("Stored: {}", uuid));

Or even further, batch UUIDs to reduce logging framework overhead:

source
 .flatMap(this::store)
 .buffer(100)
 .subscribe(
 hundredUuids -> log.debug("Stored: {}", hundredUuids))

By avoiding long-running work in subscribe() we reduce the need for backpressure,
but it is still a good idea to think about it in advance. Consult JavaDocs for an indica‐
tion as to whether the operator supports backpressure or not. If such information is
missing, most likely the operator is not affected by backpressure in any way, like
map().

Summary
One important takeaway from this chapter is to avoid Observable.create() and
manually emitting events. If you must implement Observable yourself, consider the
many factory methods that support backpressure for you. Also, pay attention to your
domain, maybe you can safely skip or batch incoming events to reduce overall load
on the consuming side.

242 | Chapter 6: Flow Control and Backpressure

www.EBooksWorld.ir

CHAPTER 7

Testing and Troubleshooting

Tomasz Nurkiewicz

By now you should understand the basic principles of programming with reactive
extensions. So far, we’ve mastered subscription, most commonly used operators, tak‐
ing advantage of RxJava in existing applications, and writing entirely reactive soft‐
ware stacks. But to make the best of reactive programming, we must dive a little bit
deeper. This chapter focuses on a few nontrivial but important aspects and principles,
among them:

• Declarative error handling, including retries (see “Error Handling”)
• Virtual time and testing (see “Virtual Time” on page 258)
• Monitoring and debugging of your Observable streams (see “Monitoring and

Debugging” on page 270)

Understanding a library or framework is not enough to successfully deploy it to pro‐
duction. The aforementioned aspects are crucial if you want to build solid, stable, and
resilient applications.

Error Handling
The Reactive Manifesto enumerates four traits that reactive systems should embrace.
Such systems should be: responsive, resilient, elastic, and message driven. Let’s take a
look at a couple of these:

Responsive
The system responds in a timely manner if at all possible. […] responsiveness
means that problems may be detected quickly and dealt with effectively. […]
rapid and consistent response times, […] simplifies error handling.”

243

www.EBooksWorld.ir

http://www.reactivemanifesto.org

Resilient
The system stays responsive in the face of failure. […] parts of the system can fail
and recover without compromising the system as a whole. […] The client of a
component is not burdened with handling its failures.

This section explains why the first two, responsiveness and resiliency, are important
and how RxJava helps to achieve them. You are already familiar with onError() call‐
back when subscribing to an Observable. But this is just the tip of the iceberg and
often not the best approach to handle errors.

Where Are My Exceptions?
Traditionally in Java, errors are indicated by using exceptions. There are two flavors
of exceptions in this language:

• Unchecked exceptions, which are not required in method declaration. If a
method throws an unchecked exception (like NullPointerException), it can
indicate this in its declaration, but it is not obligatory.

• Checked exceptions, which must be declared and handled in order for the code
to compile. Basically, this is every Throwable that does not extend RuntimeExcep
tion or Error. Example: IOException.

There are pros and cons to both of these types of traditional error handling.
Unchecked exceptions are easy to add and do not break compile-time backward com‐
patibility. Also, with unchecked exceptions, client code seems cleaner because it does
not need to deal with error handling (although it can). Checked exceptions, on the
other hand, are more explicit about the outcome that we can expect from a method.
Of course, every method can throw other arbitrary types but checked exceptions are
considered part of the API and suggest errors that must be handled explicitly.
Although checked exceptions are impossible to miss and might seem superior in
terms of writing error-free code, they proved to be quite unwieldy and obscure. Even
official Java APIs are migrating to unchecked exceptions, for example, old JMSExcep
tion (checked) versus new in JMS 2.0 JMSRuntimeException (unchecked).

RxJava takes an entirely different approach. First, in standard Java, exceptions are a
new dimension in the type system. There is a method return type and there are
exceptions that are completely orthogonal. When a method opens a File, it can
either return InputStream or throw FileNotFoundException. But what if FileNot
FoundException is not declared? Or are there any other exceptions we should expect?
Exceptions are like an alternative execution path, as if failures were always unexpec‐
ted and never part of ordinary business flow. In RxJava, failures are just another type
of notification. Every Observable<T> is a sequence of events of type T optionally fol‐
lowed by completion or error notification. This means that errors are implicitly a part

244 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

of every stream, and even though we are not required to handle them, there are
plenty of operators that declaratively handle errors in a more elegant way. Also, an
obtrusive try-catch around Observable will not capture any errors, they are only
propagated through the aforementioned error notifications.

But, before we explore a handful of RxJava operators to declaratively handle errors,
first we must understand the heuristics that apply when errors are not handled at all.
In Java, exceptions can occur almost everywhere, and library creators must ensure
they are appropriately handled or at least reported if not otherwise dealt with. The
most common problem is a subscribe() that does not define an onError callback:

Observable
 .create(subscriber -> {
 try {
 subscriber.onNext(1 / 0);
 } catch (Exception e) {
 subscriber.onError(e);
 }
 })
 //BROKEN, missing onError() callback
 .subscribe(System.out::println);

Within create(), we forcibly throw ArithmeticException and invoke an onError()
callback on each Subscriber. Unfortunately, subscribe() does not provide onEr
ror() implementation. Fortunately, RxJava tries to save the day by throwing OnError
NotImplementedException wrapping the original ArithmeticException. But which
thread throws this exception? This is a difficult question. If Observable is synchro‐
nous (as in the preceding example), the client thread indirectly invokes create() and
thus throws OnErrorNotImplementedException in case of unhandled onError().
This means that the thread that invoked subscribe() will receive OnErrorNotImple
mentedException.

The situation becomes more complex if you forget to subscribe for errors and Observ
able is asynchronous. In that case, the thread that invoked subscribe() might be
long gone when OnErrorNotImplementedException is thrown. Under these circum‐
stances, an exception is thrown from whichever thread was about to invoke onEr
ror() callback. This can be a thread from Scheduler selected via subscribeOn() or
the last observeOn(). Scheduler is free to manage such an unexpected exception in
any way it likes, most of the time it simply prints a stack trace to the standard error
stream. This is far from perfect: such exceptions bypass your normal logging code,
and in a worst-case scenario can go unnoticed. Therefore, subscribe() only listening
for values and not errors is often a bad sign and possibly missed errors. Even if you
do not expect any exceptions to happen (which is rarely the case), at least place error
logging that plugs into your logging framework:

Error Handling | 245

www.EBooksWorld.ir

private static final Logger log = LoggerFactory.getLogger(My.class);

//....

.subscribe(
 System.out::println,
 throwable -> log.error("That escalated quickly", throwable));

There are many other places where exceptions can occur and sneak in. First of all, it
is a good practice to surround a lambda expression within create() with a try-
catch() block, just like in the previous example:

Observable.create(subscriber -> {
 try {
 subscriber.onNext(1 / 0);
 } catch (Exception e) {
 subscriber.onError(e);
 }
});

However, if you forget about the try-catch and let create() throw an exception,
RxJava does its best and propagates such an exception as an onError() notification:

Observable.create(subscriber -> subscriber.onNext(1 / 0));

The two preceding code examples are semantically equivalent. Exceptions thrown
from create() are caught internally by RxJava and translated to error notification.
Yet, it is advised to explicitly propagate exceptions via subscriber.onError() if pos‐
sible. Even better, use fromCallable()):

Observable.fromCallable(() -> 1 / 0);

Other places where exceptions can generally occur are any operators that accept user
code. In simpler words, any operator that takes a lambda expression as an argument,
like map(), filter(), zip(), and many, many more. These operators should not only
deal with error notifications coming from an upstream Observable, but also with
exceptions thrown from custom mapping functions or predicates. Take this broken
mapping and filtering as an example:

Observable
 .just(1, 0)
 .map(x -> 10 / x);

Observable
 .just("Lorem", null, "ipsum")
 .filter(String::isEmpty);

The first example throws the familiar ArithmeticException for some elements. The
second example will lead to NullPointerException while the filter() predicate is
invoked. All lambda expressions passed to higher-order functions like map() or fil
ter() should be pure, whereas throwing an exception is an impure side effect. RxJava

246 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

again does its best to handle unexpected exceptions here and the behavior is exactly
what you would expect. If any operator in the pipeline throws an exception, it is
translated to error notification and passed downstream. Despite RxJava making an
effort to fix broken user code, if you suspect your lambda expression to potentially
throw an exception, make it explicit by using flatMap():

Observable
 .just(1, 0)
 .flatMap(x -> (x == 0) ?
 Observable.error(new ArithmeticException("Zero :-(")) :
 Observable.just(10 / x)
);

flatMap() is a very versatile operator, it does not need to manifest the next step of
asynchronous computation. Observable is a container for values or errors, so if you
want to declaratively express even very fast computation that can result in an error,
wrapping it with Observable is a good choice, as well.

Declarative try-catch Replacement
Errors are very much like normal events flowing through our Observable pipeline.
We now understand where they come from, so we should learn how to handle them
declaratively. The Observables we program against most often are a combination of
several operators and upstream Observables. Take this simple example of construct‐
ing an insurance agreement based on some data:

Observable<Person> person = //...
Observable<InsuranceContract> insurance = //...
Observable<Health> health = person.flatMap(this::checkHealth);
Observable<Income> income = person.flatMap(this::determineIncome);
Observable<Score> score = Observable
 .zip(health, income, (h, i) -> asses(h, i))
 .map(this::translate);
Observable<Agreement> agreement = Observable.zip(
 insurance,
 score.filter(Score::isHigh),
 this::prepare);
Observable<TrackingId> mail = agreement
 .filter(Agreement::postalMailRequired)
 .flatMap(this::print)
 .flatMap(printHouse::deliver);

This contrived example shows several steps of some business process: loading a Per
son, looking up an available InsuranceContract, determining Health and Income
based on Person (concurrently forking execution), and then joining these two results
to compute and translate Score. Finally, the InsuranceContract is joined with Score
(but only if it is high) and some post-processing like sending postal mail is per‐
formed. You know by now that no processing was performed so far; we barely

Error Handling | 247

www.EBooksWorld.ir

declared operations to be invoked but until someone subscribes, no business logic is
involved. But, what happens if any of these upstream sources result in error notifica‐
tion? There is no error handling visible here but errors are propagated quite conven‐
iently.

All of the operators we’ve encountered so far worked primarily with values, entirely
ignoring errors. This is fine: ordinary operators transform values flowing through but
skip completion and error notifications, letting them flow downstream. This means
that a single error from any upstream Observable will propagate with a cascading
failure to all downstream subscribers. Again, this is fine if your business logic
requires absolutely all steps to succeed. But sometimes you can safely ignore failures
and replace them with fallback values or secondary sources.

Replacing errors with a fixed result using onErrorReturn()

The simplest error handling operator in RxJava is onErrorReturn(): when encoun‐
tered, an error simply replaces it with a fixed value:

Observable<Income> income = person
 .flatMap(this::determineIncome)
 .onErrorReturn(error -> Income.no())

//...

private Observable<Income> determineIncome(Person person) {
 return Observable.error(new RuntimeException("Foo"));
}

class Income {
 static Income no() {
 return new Income(0);
 }
}

The onErrorReturn() operator probably goes without explanation. As long as nor‐
mal events are flowing through, this operator does nothing. However, the moment it
encounters an error notification from upstream, it immediately discards it and repla‐
ces it with a fixed value—Income.no(), in this example. onErrorReturn() is a fluent
and very pleasant to read alternative to a try-catch block that returns fixed result in
the catch statement known from imperative style:

try {
 return determineIncome(Person person)
} catch(Exception e) {
 return Income.no();
}

In this example, you might have noticed that this catch swallows the original excep‐
tion and just returns a fixed value. This can be by design but it is generally a good

248 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

idea to at least log an exception when it occurs. All error handling operators in
RxJava behave this way—if you declaratively handle some exception, it will be swal‐
lowed. This is something you should definitely take into account; there is nothing
worse than a malfunctioning system with a log file that does not reveal any issues.
onErrorReturn() passes error as an argument, which we happily ignore. You can
either log an exception within onErrorReturn() or use the more specialized diagnos‐
tics operators, which are covered in “Monitoring and Debugging” on page 270. For
the time being, just remember that all error handling operators in RxJava leave excep‐
tion logging and monitoring up to you.

Lazily computing fallback value using onErrorResumeNext()

Returning a fixed stub result with onErrorReturn() might sometimes be a good
approach, but more often than not you would actually like to lazily compute some
fallback value in case of error. There are two possible scenarios here:

• The primary way of generating a stream of data failed (onError() event, so we
switch to a secondary source that is just as good, but for some reason we treat it
as backup (slower, more expensive, and so on)

• In the presence of a failure, we would like to replace real data with some less
expensive, more stable, maybe stale information. For example, when retrieval of
fresh data fails we choose possibly a stale stream from cache. Another common
example is delivering a slightly worse user experience; for example, returning a
list of global best-sellers rather than personalized recommendations in an online
shop.

Clearly, the logic required when an error occurs can be expensive on its own and can
lead to errors. Therefore, we must somehow encapsulate the fallback logic in a lazy,
preferably asynchronous wrapper. What can it be? Of course: an Observable!

Observable<Person> person = //...
Observable<Income> income = person
 .flatMap(this::determineIncome)
 .onErrorResumeNext(person.flatMap(this::guessIncome));

//...

private Observable<Income> guessIncome(Person person) {
 //...
}

The onErrorResumeNext() operator basically replaces error notification with another
stream. If you subscribe to an an Observable guarded with onErrorResumeNext() in
case of failure, RxJava transparently switches from main Observable to the fallback
one, specified as an argument. In our example, if income stream fails, the error notifi‐

Error Handling | 249

www.EBooksWorld.ir

cation is captured and the library automatically subscribes to guessIncome() stream
that is probably less precise, but more reliable, faster, or cheaper. Interestingly, you
can replace onErrorResumeNext() with the concatWith() operator, assuming deter
mineIncome always emits exactly one value or error:

Observable<Income> income = person
 .flatMap(this::determineIncome)
 .flatMap(
 Observable::just,
 th -> Observable.empty(),
 Observable::empty)
 .concatWith(person.flatMap(this::guessIncome))
 .first();

There is something unfamiliar with the flatMap() operator here: it accepts three
lambda expressions instead of one:

• The first argument allows replacing each element from the upstream Observable
with new Observable—this is exactly how flatMap() was used so far throughout
this book

• The second argument replaces the optional error notification with another
stream. We want to ignore upstream errors so we simply switch to an empty
Observable

• Finally, when upstream completes normally, we can replace the completion noti‐
fication with another stream

The usage of the first() operator is crucial here. By applying the first() operator,
we wait only for the very first event to appear. In case of success, we get back a result
of determineIncome and RxJava never really subscribes to guessIncome()’s result.
But, in case of failure, the first Observable essentially yields no events, so the first()
operator asks for another item, this time by subscribing to the fallback stream passed
as an argument to concatWith().

I hope you realized by now that concatWith() is not needed at all in this example;
flatMap() in its most complex form is enough. Even the first() operator is no
longer needed. Think about it:

Observable<Income> income = person
 .flatMap(this::determineIncome)
 .flatMap(
 Observable::just,
 th -> person.flatMap(this::guessIncome),
 Observable::empty);

The preceding example has an interesting feature: we can return a different Observa
ble from onError() mapping based on th of type Throwable. So, theoretically we can

250 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

return a different fallback stream based on the exception message or type. The onEr
rorResumeNext() operator has an overloaded version that allows just that:

Observable<Income> income = person
 .flatMap(this::determineIncome)
 .onErrorResumeNext(th -> {
 if (th instanceof NullPointerException) {
 return Observable.error(th);
 } else {
 return person.flatMap(this::guessIncome);
 }
 });

Although flatMap() is versatile enough to provide flexible error handling, onErrorRe
sumeNext() is more expressive and easier to read, so you should prefer it.

Timing Out When Events Do Not Occur
RxJava provides some operators to handle exception notifications from an upstream
Observable. But do you know what is even worse than an error? Silence. When a sys‐
tem you connect to fails with an exception, this is relatively simple to predict, handle,
unit test, and so on. But what if you subscribe to an Observable and it simply never
emits anything, even though you expected to get a result almost immediately? This
scenario is much worse than simply having an error. The latency of the system is
greatly affected, and it appears as if it was hanging with no clear indication in the logs
whatsoever.

Luckily, RxJava provides a built-in timeout() operator that listens to the upstream
Observable, constantly monitoring how much time elapsed since the last event or
subscription. If it so happens that the silence between consecutive events is longer
than a given period, the timeout() operator publishes an error notification that con‐
tains TimeoutException. To better understand how timeout() works, first let’s con‐
sider an Observable that emits only one event after a certain time. For the purposes
of this demonstration, we will create an Observable that returns some Confirmation
event after 200 milliseconds. We simulate the latency by adding delay(100, MILLI
SECONDS). Moreover, we would like to simulate additional latency between the event
and completion notification. That is the purpose of empty() Observable that nor‐
mally just completes immediately but with the extra delay() it waits before sending a
completion. Combining these two streams looks as follows:

Observable<Confirmation> confirmation() {
 Observable<Confirmation> delayBeforeCompletion =
 Observable
 .<Confirmation>empty()
 .delay(200, MILLISECONDS);
 return Observable
 .just(new Confirmation())

Error Handling | 251

www.EBooksWorld.ir

 .delay(100, MILLISECONDS)
 .concatWith(delayBeforeCompletion);
}

Now, let’s test drive the timeout() operator in its simplest overloaded version:

import java.util.concurrent.TimeoutException;

//...

confirmation()
 .timeout(210, MILLISECONDS)
 .forEach(
 System.out::println,
 th -> {
 if ((th instanceof TimeoutException)) {
 System.out.println("Too long");
 } else {
 th.printStackTrace();
 }
 }
);

The 210-millisecond timeout is not a coincidence. The delay between subscription
and arrival of Confirmation instance is exactly 100 milliseconds, so less than the
timeout threshold. Also, the delay between this event and completion notification is
200 milliseconds, also less than 210. Therefore, in this example, the timeout() opera‐
tor is transparent and does not influence the overall flow of messages. But decrease
the timeout() threshold to slightly less than 200 milliseconds (say, 190) and it
becomes visible. The Confirmation is displayed but rather than a completion callback
we receive an error notification holding TimeoutException. The first event arrived
considerably less than 200 milliseconds but the latency between the first event and
the second one (completion notification actually) exceeded 190 milliseconds and
instead an error notification was propagated downstream. Of course, if the timeout
threshold is less than 100 milliseconds, you will not even see the first event.

This was the simplest use case for timeout(); you’ll find it useful when you want to
limit the time you wish to wait for a response or responses. However, sometimes a
fixed timeout threshold is too strict and you would like to adjust timeouts at runtime.
Suppose that we built an algorithm for predicting the next solar eclipse. The interface
of that algorithm is an Observable<LocalDate> (of course!) which streams future
dates of these kinds of events. Imagine for a second that this algorithm is really com‐
putationally intensive, which again we are going to simulate, this time by using the
interval() operator (see “Timing: timer() and interval()” on page 43) by zipping a
fixed list of dates with a slowly progressing stream generated by interval(). The first
date available appears after 500 milliseconds, and every subsequent one after 50 milli‐
seconds, thanks to interval(500, 50, MILLISECONDS). This is quite common in

252 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

real-life systems: the initial element of the response has relatively high latency as a
result of establishing the connection, SSL handshake, query optimization, or what‐
ever the server is doing. But subsequent responses are either readily available or easily
retrievable, so latency between them is much lower:

Observable<LocalDate> nextSolarEclipse(LocalDate after) {
 return Observable
 .just(
 LocalDate.of(2016, MARCH, 9),
 LocalDate.of(2016, SEPTEMBER, 1),
 LocalDate.of(2017, FEBRUARY, 26),
 LocalDate.of(2017, AUGUST, 21),
 LocalDate.of(2018, FEBRUARY, 15),
 LocalDate.of(2018, JULY, 13),
 LocalDate.of(2018, AUGUST, 11),
 LocalDate.of(2019, JANUARY, 6),
 LocalDate.of(2019, JULY, 2),
 LocalDate.of(2019, DECEMBER, 26))
 .skipWhile(date -> !date.isAfter(after))
 .zipWith(
 Observable.interval(500, 50, MILLISECONDS),
 (date, x) -> date);
}

In these types of scenarios, having one fixed threshold is problematic. The first event
should have a pessimistic limit, whereas subsequent limits should be much more
aggressive. The overloaded version of timeout() does just that: it accept two factories
of Observables, one marking the timeout of the first event, and the second one for
each subsequent element. An example is worth a thousand words:

nextSolarEclipse(LocalDate.of(2016, SEPTEMBER, 1))
 .timeout(
 () -> Observable.timer(1000, TimeUnit.MILLISECONDS),
 date -> Observable.timer(100, MILLISECONDS))

Here, the first Observable emits exactly one event after one second—this is the
acceptable latency threshold for the first event. The second Observable is created for
each event that appears on the stream and allows fine tuning of the timeout for the
subsequent event. Notice that we do not use the date parameter. You can imagine a
timeout value that is adaptive in some sense; for example, we can wait a little bit more
for the next event if the previous one was bigger than usual. Or, vice versa, each sub‐
sequent event has a lower timeout, adapting to our subscriber’s performance.

It is sometimes useful to also track the latency of each event, even if we do not time‐
out. The handy timeInterval() operator does just that: it replaces each event of type
T with TimeInterval<T> that encapsulates the event but also shows how much time
has elapsed since the previous event (or subscription in case of first event):

Error Handling | 253

www.EBooksWorld.ir

Observable<TimeInterval<LocalDate>> intervals =
 nextSolarEclipse(LocalDate.of(2016, JANUARY, 1))
 .timeInterval();

Apart from getValue() that returns LocalDate, TimeInterval<LocalDate> also has
getIntervalInMilliseconds() but it is easier to see how it looks studying the out‐
put of the preceding program after subscription. You can clearly see that it took 533
milliseconds for the first event to arrive but only around 50 milliseconds for each one
subsequently:

TimeInterval [intervalInMilliseconds=533, value=2016-03-09]
TimeInterval [intervalInMilliseconds=49, value=2016-09-01]
TimeInterval [intervalInMilliseconds=50, value=2017-02-26]
TimeInterval [intervalInMilliseconds=50, value=2017-08-21]
TimeInterval [intervalInMilliseconds=50, value=2018-02-15]
TimeInterval [intervalInMilliseconds=50, value=2018-07-13]
TimeInterval [intervalInMilliseconds=50, value=2018-08-11]
TimeInterval [intervalInMilliseconds=50, value=2019-01-06]
TimeInterval [intervalInMilliseconds=51, value=2019-07-02]
TimeInterval [intervalInMilliseconds=49, value=2019-12-26]

The timeout() operator has yet another overloaded version that accepts the fallback
Observable replacing the original source in case of error. It is very similar in behavior
to onErrorResumeNext() (see “Lazily computing fallback value using onErrorResu‐
meNext()” on page 249).

Retrying After Failures
The onError notification is terminal; no other event can ever appear in such stream.
Therefore, if you want to signal business conditions that are potentially nonfatal,
avoid onError. This is not much different from a common recommendation to avoid
controlling the program flow by using exceptions. Instead, in Observables consider
wrapping errors in special types of events that can emerge multiple times next to
ordinary events. For example, if you are providing a stream of transaction results and
some transactions can fail due to business reasons such as insufficient funds, do not
use onError notification for that. Instead, consider creating a TransactionResult
abstract class with two concrete subclasses, each representing either success or failure.
onError notification in such a stream signals that something is going terribly wrong,
like a catastrophic failure preventing further emission of any event.

That being said, onError can represent transient failures of external components or
systems. Surprisingly, often simply retrying one more time can lead to success. Other
systems might be experiencing a brief load spike, GC pause, or restart. Retrying is an
essential mechanism in building robust and resilient applications. RxJava has first-
class support for retry.

254 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

The simplest version of the retry() operator resubscribes to a failed Onservable
hoping that it will keep producing normal events rather than failures. For educational
purposes, we will create an Observable that misbehaves severely:

Observable<String> risky() {
 return Observable.fromCallable(() -> {
 if (Math.random() < 0.1) {
 Thread.sleep((long) (Math.random() * 2000));
 return "OK";
 } else {
 throw new RuntimeException("Transient");
 }
 });
}

In 90 percent of the cases, subscribing to risky() ends with a RuntimeException. If
you somehow make it to the "OK" branch an artificial delay between zero and two
seconds is injected. Such a risky operation will serve as a demonstration of retry():

risky()
 .timeout(1, SECONDS)
 .doOnError(th -> log.warn("Will retry", th))
 .retry()
 .subscribe(log::info);

Remember that a slow system is generally indistinguishable from a broken one, but
often it is even worse because we experience additional latency. Having timeouts,
sometimes even aggressive ones with a retry mechanism is desirable—of course, as
long as retrying has no side effects or the operation is idempotent. The behavior of
retry() is fairly straightforward: it pushes all events and completion notification
downstream, but not onError(). The error notification is swallowed (so no exception
is logged whatsoever), thus we use doOnError() callback (see “doOn…() Callbacks”
on page 270). Every time retry() encounters a simulated RuntimeException or Time
outException, it tries subscribing again.

A word of caution here: if your Observable is cached or otherwise guaranteed to
always return the same sequence of elements, retry() will not work:

risky().cached().retry() //BROKEN

If risky() emits errors once, it will continue emitting them forever, no matter how
many times you resubscribe. To overcome this issue, you can delay the creation of
Observable even further by using) defer():

Observable
 .defer(() -> risky())
 .retry()

Even if an Observable returned from risky() is cached, defer() calls risky() mul‐
tiple times, possibly getting a new Observable each time.

Error Handling | 255

www.EBooksWorld.ir

Retrying by using delay and limited attempts

A plain retry() method is useful, but blindly resubscribing with no throttling or lim‐
iting attempts is dangerous. We can quickly saturate the CPU or network, generating
a lot of load. Basically, parameterless retry() is a while loop with a try block within
it, followed by an empty catch. First, we should limit the number of attempts, which
happens to be built in:

risky()
 .timeout(1, SECONDS)
 .retry(10)

The integer parameter to retry() instructs how many times to resubscribe, thus
retry(0) is equivalent to no retry at all. If the upstream Observable failed for the
tenth time, the last seen exception is propagated downstream. A more flexible version
of retry() leaves you with a decision about retry, based on the attempt number and
the actual exception:

risky()
 .timeout(1, SECONDS)
 .retry((attempt, e) ->
 attempt <= 10 && !(e instanceof TimeoutException))

This version not only limits the number of resubscription attempts to 10, but also
drops retrying prematurely if the exception happens to be TimeoutException.

If failures are transient, waiting a little bit prior to a resubscription attempt sounds
like a good idea. The retry() operator does not provide such a possibility out of the
box, but it is relatively easy to implement. A more robust version of retry() called
retryWhen() takes a function receiving an Observable of failures. Every time an
upstream fails, this Observable emits a Throwable. Our responsibility is to transform
this Observable in such a way that it emits some arbitrary event when we want to
retry (hence the name):

risky()
 .timeout(1, SECONDS)
 .retryWhen(failures -> failures.delay(1, SECONDS))

The preceding example of retryWhen() receives an Observable that emits a Throwa
ble every time the upstream fails. We simply delay that event by one second so that it
appears in the resulting stream one second later. This is a signal to retryWhen() that
it should attempt retry. If we simply returned the same stream (retryWhen(x -> x)),
retryWhen() would behave exactly like retry(), resubscribing immediately when an
error occurs. With retryWhen(), we can also easily simulate retry(10) (well,
almost… keep reading):

.retryWhen(failures -> failures.take(10))

256 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

1 https://en.wikipedia.org/wiki/Exponential_backoff

We receive an event each time a failure occurs. The stream we return is supposed to
emit an arbitrary event when we want to retry. Thus, we simply forward the first 10
failures, causing each one of them to be retried immediately. But what happens when
eleventh failure occurs in a failures Observable? This is where it becomes tricky.
The take(10) operator emits an onComplete event immediately following the 10th
failure. Therefore, after the 10th retry, retryWhen() receives a completion event. This
completion event is interpreted as a signal to stop retrying and complete down‐
stream. It means that after 10 failed attempts, we simply emit nothing and complete.
However, if we complete Observable returned inside retryWhen() with an error, this
error will be propagated downstream.

In other words, as long as we emit any event from an Observable inside retry
When(), they are interpreted as retry requests. However, if we send a completion or
error notification, retry is abandoned and this completion or error is passed down‐
stream. Doing just failures.take(10) will retry 10 times, but in case of yet another
failure, we do not propagate the last error but the successful completion, instead. Let’s
have a look at it:

static final int ATTEMPTS = 11;

//...

.retryWhen(failures -> failures
 .zipWith(Observable.range(1, ATTEMPTS), (err, attempt) ->
 attempt < ATTEMPTS ?
 Observable.timer(1, SECONDS) :
 Observable.error(err))
 .flatMap(x -> x)
)

This looks quite complex, but it is also really powerful. We zip failures with sequence
numbers from 1 to 11. We would like to perform as many as 10 retry attempts, so if
the attempt sequence number is smaller than 11, we return timer(1, SECONDS). The
retryWhen() operator will capture this event and retry one second after failure. How‐
ever, when the 10th retry ends with a failure, we return an Observable with that
error, completing the retry mechanism with the last seen exception.

This gives us a lot of flexibility. We can stop retrying when a certain exception
appears or when too many attempts were already performed. Moreover, we can adjust
the delay time between attempts! For example, the first retry can appear immediately
but the delays between subsequent retries should grow exponentially:1

.retryWhen(failures -> failures
 .zipWith(Observable.range(1, ATTEMPTS),

Error Handling | 257

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Exponential_backoff

 this::handleRetryAttempt)
 .flatMap(x -> x)
)

//...

Observable<Long> handleRetryAttempt(Throwable err, int attempt) {
 switch (attempt) {
 case 1:
 return Observable.just(42L);
 case ATTEMPTS:
 return Observable.error(err);
 default:
 long expDelay = (long) Math.pow(2, attempt - 2);
 return Observable.timer(expDelay, SECONDS);
 }
}

On the first retry attempt, we return an Observable emitting an arbitrary event
immediately, so that retry happens right away. It makes no difference what type and
value of event we return (only the moment counts), so 42 is as good as any other
value. On the last retry attempt, we forward an exception to the downstream Sub
scriber containing the last seen failure reason. Finally, for attempts 2 through 10, we
calculate the delay using the following exponential formula:

delay attempt =
0 if attempt = 1

2attempt − 2 if attempt 2, 3, 4⋯10

Testing and Debugging
Stream composition, especially involving time, can become difficult. Happily, RxJava
has great support for unit testing. You can use a TestSubscriber to assert emitted
events, but more importantly, RxJava has a concept of virtual time. In essence, we
have full control over the elapsing of time so that tests relying on time are both fast
and predictable.

Virtual Time
Time is an important factor in almost any application we deal with, and we are not
talking about latency and response times here. Everything happens at some point in
time, the order of events is important, jobs are scheduled in the future. Therefore, we
spend countless hours looking for bugs occurring only at certain dates or timezones.
There does not seem to be any established way of testing time-related code. One of
the practices, known as property-based testing, aims at generating hundreds of test
cases (sometimes randomized) to test a wide spectrum of input arguments. For exam‐

258 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

ple, let’s validate a very simple property: for any given date, adding and subsequently
subtracting one month gives back the same date:

import spock.lang.Specification
import spock.lang.Unroll

import java.time.LocalDate
import java.time.Month

class PlusMinusMonthSpec extends Specification {

 static final LocalDate START_DATE =
 LocalDate.of(2016, Month.JANUARY, 1)

 @Unroll
 def '#date +/- 1 month gives back the same date'() {
 expect:
 date == date.plusMonths(1).minusMonths(1)
 where:
 date << (0..365).collect {
 day -> START_DATE.plusDays(day)
 }
 }

}

We used the Spock framework in Groovy language to rapidly generate 366 different
test cases. The code in the expect block is executed for each value generated in the
where block. In the where block, we iterate over integers from 0 to 365 and generate
all possible dates beginning on 2016-01-01 to 2016-12-31. The assertion is fairly
obvious and straightforward: if we add and then subtract one month for pretty much
any date we should get that date back. Yet 6 out of 366 test cases fail:

date == date.plusMonths(1).minusMonths(1)
| | | | |
| | | 2016-02-29 2016-01-29
| | 2016-01-30
| false
2016-01-30

date == date.plusMonths(1).minusMonths(1)
| | | | |
| | | 2016-02-29 2016-01-29
| | 2016-01-31
| false
2016-01-31

date == date.plusMonths(1).minusMonths(1)
| | | | |
| | | 2016-04-30 2016-03-30

Testing and Debugging | 259

www.EBooksWorld.ir

http://spockframework.org:

| | 2016-03-31
| false
2016-03-31

...

We bet that you can work out the other dates that fail yourself. The reason to show
this contrived example is to make you realize how complex the time domain is. But
the peculiarities of the calendar are not the root cause of the headaches we have when
dealing with time in computer systems. RxJava tries to tackle the complexity of con‐
currency by avoiding state and using pure functions as often as possible. Being pure
means that a function (or operator) should explicitly declare all inputs and output.
This makes testing much easier. However, the dependency on time is almost always
hidden and concealed. Every time you see new Date(), Instant.now(), System.cur
rentTimeMillis(), and many others, you are depending on an external value that
changes…well, over time. We know depending on singletons is bad for your design,
especially from a testability point of view. But, reading current time is effectively rely‐
ing on a system-wide singleton available everywhere.

One of the patterns to make dependency on time more explicit involves a fake system
clock. This pattern requires all programmers to be very rigorous and delegate time-
related code to a special service that can be mocked. Java 8 formalizes this method by
introducing the Clock abstraction, which boils down to the following:

public abstract class Clock {

 public static Clock system(ZoneId zone) { /* ... */ }

 public long millis() {
 return instant().toEpochMilli();
 }

 public abstract Instant instant();

}

Interestingly, RxJava has a very similar abstraction that we already explored in great
detail: Schedulers (see: “What Is a Scheduler?” on page 141). How are Schedulers
related to the passage of time, you might ask? Well, everything that happens in RxJava
either happens immediately or is scheduled in some time in the future. It is the Sched
uler that has full control over when to execute every single line of code in RxJava.

Schedulers in Unit Testing
Various Schedulers like io() or computation() have no special capabilities apart
from running tasks at given points in time. However, there is one special test()
Scheduler that has two intriguing methods: advanceTimeBy() and advanceTimeTo().

260 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

These methods of TestScheduler are capable of advancing the time manually; other‐
wise, it’s frozen forever. This means that no tasks scheduled in the future on this
Scheduler are ever executed until we manually advance time whenever we find it
useful.

As an example, let’s look at a sequence of events appearing over time:

TestScheduler sched = Schedulers.test();
Observable<String> fast = Observable
 .interval(10, MILLISECONDS, sched)
 .map(x -> "F" + x)
 .take(3);
Observable<String> slow = Observable
 .interval(50, MILLISECONDS, sched)
 .map(x -> "S" + x);

Observable<String> stream = Observable.concat(fast, slow);
stream.subscribe(System.out::println);
System.out.println("Subscribed");

When subscribed, we should see three events F0, F1, and F2, each preceded with 10
ms delay, followed by an infinite number of S0, S1… events, each after 50 ms delay.
How can we test that we combined all these streams together, that events appear in
the correct order and, more importantly, at the correct time? The key is the explicit
TestScheduler that we passed wherever it was possible:

TimeUnit.SECONDS.sleep(1);
System.out.println("After one second");
sched.advanceTimeBy(25, MILLISECONDS);

TimeUnit.SECONDS.sleep(1);
System.out.println("After one more second");
sched.advanceTimeBy(75, MILLISECONDS);

TimeUnit.SECONDS.sleep(1);
System.out.println("...and one more");
sched.advanceTimeTo(200, MILLISECONDS);

The output you can expect is absolutely predictable and repeatable, entirely inde‐
pendent from system time, and experiences transient load spikes, GC pauses, and so
on:

Subscribed
After one second
F0
F1
After one more second
F2
S0
...and one more

Testing and Debugging | 261

www.EBooksWorld.ir

S1
S2

Here is what happens:

1. After we subscribed to stream Observable, it began by scheduling F0 task 10 ms
in the future. However, it used TestScheduler that sits absolutely idle unless we
manually advance time.

2. Sleeping one second is actually irrelevant and could be omitted, TestScheduler
is independent from system time, thus no events are emitted at all. Sleeping here
is only to prove that TestScheduler works. If this were not a TestScheduler but
an ordinary (default) one, you could expect several events to appear on the con‐
sole by now.

3. Calling advanceTimeBy(25ms) forces everything that was scheduled up to 25th
millisecond to be triggered and executed. This causes events F0 (10th ms) and F1
(20th ms) to appear on the console.

4. Sleeping another second does nothing to the output; TestScheduler ignores real
time. However, calling advanceTimeBy(75ms) (so the logical time is now 100th
ms) further triggers F2 (30th ms) and S0 (80th ms). Nothing more happens

5. After one more second of real time elapsed, we advance time to absolute value of
200 ms (advanceTimeTo(200ms), advanceTimeBy() uses relative time). Test
Scheduler realizes that S1 (130th ms) and S2 (180th ms) should have been trig‐
gered by that time. But no other event is triggered, even if we wait for eternity.

As you can see, TestScheduler is actually much more clever than an ordinary fake
Clock abstraction. Not only do we have full control over current time, but we can also
arbitrarily postpone all events. One caveat is that you must pass TestScheduler
everywhere, basically to every operator that has an optional Scheduler argument. For
your convenience, all such operators use a default computation() Scheduler, but
from a testability point of view, you should prefer passing an explicit Scheduler.
Moreover, consider dependency injection and provide Schedulers from the outside.

But having TestScheduler alone is not enough. It works very well in unit tests for
which predictability is a must and flickering tests failing sporadically are quite frus‐
trating. Chapter 8 explores tools and techniques that enable unit testing of inherently
asynchronous Observables.

Unit Testing
Writing testable code and having a solid suite of tests has been a necessity for a long
time, not a novel approach. Whether you write tests first in test-driven development
(TDD) spirit or hack around and confirm your assumptions with few integration

262 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

tests later, automated testing is something you should be comfortable with. Therefore,
the tools you use (frameworks, libraries, platforms) must support automated tests,
and this ability should be one of the aspect when making technology decisions. Fear
no more, RxJava has excellent support for unit testing, despite a quite complex
domain of asynchronous, event-driven architecture. Explicitness of time, combined
with focus on pure functions and function composition (well grounded in functional
programming) greatly improve the testing experience.

Verifying emitted events

First, we need to define our goals for testing Observables. Having a method return‐
ing an Observable we probably want to make sure of the following:

• Events are emitted in correct order
• Errors are properly propagated
• Various operators are composed together as predicted
• Events appear at right moments in time
• Backpressure is supported

And much more. The first two requirements are simple and do not require any spe‐
cial support from RxJava. Basically, collect everything that was emitted and execute
assertions using whichever library you prefer:

import org.junit.Test;
import static org.assertj.core.api.Assertions.assertThat;

@Test
public void shouldApplyConcatMapInOrder() throws Exception {
 List<String> list = Observable
 .range(1, 3)
 .concatMap(x -> Observable.just(x, -x))
 .map(Object::toString)
 .toList()
 .toBlocking()
 .single();

 assertThat(list).containsExactly("1", "-1", "2", "-2", "3", "-3");
}

The preceding simple test case transforms an Observable<Integer> into List<Inte
ger> by using the well-known toList() → toBlocking() → single() construct (see
“BlockingObservable: Exiting the Reactive World” on page 118). Normally, an Observ
able is asynchronous, so to have predictable and fast tests, we must perform such
transformation. We can also easily assert onError() notifications when BlockingOb
servable is used. Exceptions are simply rethrown upon subscription. Notice that

Unit Testing | 263

www.EBooksWorld.ir

checked exceptions are wrapped with RuntimeExceptions—something only a good
test can prove:

import com.google.common.io.Files;
import static java.nio.charset.StandardCharsets.UTF_8;
import static org.assertj.core.api.Assertions.failBecauseExceptionWasNotThrown;

File file = new File("404.txt");
BlockingObservable<String> fileContents = Observable
 .fromCallable(() -> Files.toString(file, UTF_8))
 .toBlocking();

try {
 fileContents.single();
 failBecauseExceptionWasNotThrown(FileNotFoundException.class);
} catch (RuntimeException expected) {
 assertThat(expected)
 .hasCauseInstanceOf(FileNotFoundException.class);
}

The fromCallable() operator is handy when you want to lazily create an Observable
that emits at most one element. It also handles error handling and backpressure, so
you should prefer it over Observable.create() for one-element streams. You can
use another type of unit test to prove our understanding of various operators and
their behavior. For example, what does the concatMapDelayError() operator actually
do? You are free to try it once, but having an automated test that everyone can read
and quickly grasp is a great advantage:

import static rx.Observable.fromCallable;

Observable<Notification<Integer>> notifications = Observable
 .just(3, 0, 2, 0, 1, 0)
 .concatMapDelayError(x -> fromCallable(() -> 100 / x))
 .materialize();

List<Notification.Kind> kinds = notifications
 .map(Notification::getKind)
 .toList()
 .toBlocking()
 .single();

assertThat(kinds).containsExactly(OnNext, OnNext, OnNext, OnError);

With the standard concatMap(), the transformation of the second element (0) would
fail and terminate the entire stream. However, we clearly see that our final stream has
four elements: three OnNext notifications followed by OnError. Another assertion
could actually show that indeed the final values are 33 (100 / 3), 50, and 100. This
nicely explains how concatMapDelayError() works—if any error is generated from
transformation, it is not passed downstream but the operator continues. Only when

264 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

the upstream source completes, we instead pass onError notification that we found
along the way. In this last test case, we could no longer convert Observable to List
because it would throw an exception immediately. materialize() is useful in such
cases: each kind of event (onNext, onCompleted, and onError) is wrapped in a homo‐
geneous Notification object. These objects can later be examined, but this is tedious
and not very readable. This is where TestSubscriber becomes handy:

Observable<Integer> obs = Observable
 .just(3, 0, 2, 0, 1, 0)
 .concatMapDelayError(x -> Observable.fromCallable(() -> 100 / x));

TestSubscriber<Integer> ts = new TestSubscriber<>();
obs.subscribe(ts);

ts.assertValues(33, 50, 100);
ts.assertError(ArithmeticException.class); //Fails (!)

The TestSubscriber class is quite simple: it stores all events and notifications it
received internally so that we can later query it. TestSubscriber also provides a set of
assertions that are very useful in a test case. All we need to do is create an instance of
TestSubscriber, subscribe to an Observable-under-test, and examine the contents
of it. Strangely, the preceding test actually fails. assertError() fails because we
expect the stream to complete with ArithmeticException, whereas in reality we got
CompositeException that aggregates all three ArithmeticExceptions found along
the way. This is yet another reason why discovering operators by running them and
testing automatically is quite useful.

TestSubscriber is extremely effective when working hand in hand with TestSchedu
ler. A typical scenario involves interleaving assertions and advancing time to observe
how events are flowing over time. Imagine that you have a service that returns an
Observable. The details of its implementation are entirely irrelevant:

interface MyService {
 Observable<LocalDate> externalCall();
}

Rather than mixing different concerns, we decided to build a decorator over MySer
vice that adds timeout functionality to whatever the underlying implementation of
MyService is. For the reasons that you can probably guess by now, we also go the
extra mile of externalizing the Scheduler used by the timeout() operator:

class MyServiceWithTimeout implements MyService {

 private final MyService delegate;
 private final Scheduler scheduler;

 MyServiceWithTimeout(MyService d, Scheduler s) {
 this.delegate = d;

Unit Testing | 265

www.EBooksWorld.ir

 this.scheduler = s;
 }

 @Override
 public Observable<LocalDate> externalCall() {
 return delegate
 .externalCall()
 .timeout(1, TimeUnit.SECONDS,
 Observable.empty(),
 scheduler);
 }
}

MyServiceWithTimeout wraps another MyService instance and adds a one-second
timeout with fallback. In the spirit of RxJava, every class has one responsibility which
you can combine, just like operators are very focused but are easy to compose. Sup‐
pose that we would like to test whether the timeout actually works. Unit tests should
ideally be extremely fast. Do you remember PlusMinusMonthSpec from the beginning
of “Virtual Time” on page 258? Invoking it for all possible days in 21st century (more
than 36 thousand test cases) takes about one second. A good unit test should not take
more than few milliseconds.

Our one-second timeout does not sound like much but it is an eternity when there
are hundreds of such scenarios. We can externalize the timeout (which is a good idea
anyway) and shrink it to, for example, 100 milliseconds for unit testing. In such a test,
we can sleep for 90 milliseconds, assert that the timeout did not yet kick in, sleep for
another 20 milliseconds, and verify the timeout returned an empty Observable.
Unfortunately, such a setup is very brittle, prone to context switches, garbage-
collection pauses, system load variability, and so on. Long story short, your test can
be either relatively stable or relatively fast. But the faster you make it, the more often
it will spuriously fail. Flickering tests are worse than no tests at all because they are
frustrating, you have no trust in them, and they are eventually removed.

The RxJava approach involves a synthetic, controlled clock that is entirely predictable.
100 percent accurate but also extremely fast tests are achieved by artificially advanc‐
ing time. First, we setup a mock of MyService (using Mockito) that can return any
Observable:

import static org.mockito.BDDMockito.given;
import static org.mockito.Mockito.mock;

private MyServiceWithTimeout mockReturning(
 Observable<LocalDate> result,
 TestScheduler testScheduler) {
 MyService mock = mock(MyService.class);
 given(mock.externalCall()).willReturn(result);
 return new MyServiceWithTimeout(mock, testScheduler);
}

266 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

http://mockito.org:

We will now write two unit tests. The first ensures that in case of an externalCall()
that never finishes, we receive a timeout precisely after one second:

@Test
public void timeoutWhenServiceNeverCompletes() throws Exception {
 //given
 TestScheduler testScheduler = Schedulers.test();
 MyService mock = mockReturning(
 Observable.never(), testScheduler);
 TestSubscriber<LocalDate> ts = new TestSubscriber<>();

 //when
 mock.externalCall().subscribe(ts);

 //then
 testScheduler.advanceTimeBy(950, MILLISECONDS);
 ts.assertNoTerminalEvent();
 testScheduler.advanceTimeBy(100, MILLISECONDS);
 ts.assertCompleted();
 ts.assertNoValues();
}

The never() operator returns an Observable that never completes and never emits
any value. This simulates MyService’s call that is painfully slow. Then, we make a
sequence of two assertions. First, we advance time just before the timeout threshold
(950 milliseconds) and make sure that the TestSubscriber did not yet complete or
fail. After 100 more milliseconds—that is, after the timeout threshold—we assert that
the stream completed (assertCompleted()) with no values (assertNoValues()). We
can also take advantage of assertError().

The second test should ensure that the timeout does not kick in before the configured
threshold:

@Test
public void valueIsReturnedJustBeforeTimeout() throws Exception {
 //given
 TestScheduler testScheduler = Schedulers.test();
 Observable<LocalDate> slow = Observable
 .timer(950, MILLISECONDS, testScheduler)
 .map(x -> LocalDate.now());
 MyService myService = mockReturning(slow, testScheduler);
 TestSubscriber<LocalDate> ts = new TestSubscriber<>();

 //when
 myService.externalCall().subscribe(ts);

 //then
 testScheduler.advanceTimeBy(930, MILLISECONDS);
 ts.assertNotCompleted();
 ts.assertNoValues();
 testScheduler.advanceTimeBy(50, MILLISECONDS);

Unit Testing | 267

www.EBooksWorld.ir

 ts.assertCompleted();
 ts.assertValueCount(1);
}

advanceTimeBy() is equivalent to sleeping in test, waiting for some action to happen,
but without actually sleeping. You can test all sorts of operators like buffer(), sam
ple(), and so on, as long as you meticulously allow passing a custom Scheduler.
Speaking of schedulers, it is tempting to use Schedulers.immediate() (see “What Is
a Scheduler?” on page 141) as opposed to standard ones. This Scheduler avoids con‐
currency by invoking all actions in the context of the caller thread. Such an approach
works in some scenarios, but in general you should prefer TestScheduler because its
use cases are far more versatile.

Following the dependency injection principle is very important. Otherwise, you will
not be able to replace various Schedulers with test one. There are some techniques
that can help you; for example, the RxJavaSchedulersHook plug-in. RxJava has a set
of plug-ins that can globally alter the behavior of the library. RxJavaSchedulersHook,
for example, can override the standard computation() Scheduler (and other) with
test one:

private final TestScheduler testScheduler = new TestScheduler();

@Before
public void alwaysUseTestScheduler() {
 RxJavaPlugins
 .getInstance()
 .registerSchedulersHook(new RxJavaSchedulersHook() {
 @Override
 public Scheduler getComputationScheduler() {
 return testScheduler;
 }

 @Override
 public Scheduler getIOScheduler() {
 return testScheduler;
 }

 @Override
 public Scheduler getNewThreadScheduler() {
 return testScheduler;
 }
 });
}

This global approach has many shortcomings. You can register only RxJavaSchedu
lersHook once across all of JVM, so invoking this @Before method for the second
time fails. You can work around this, but it becomes increasingly complex. Also run‐
ning unit tests in parallel (normally, unit tests are independent from one another so it

268 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

should not be an issue) becomes impossible. Therefore, the only scalable solution for
controlling time is explicitly passing TestScheduler whenever possible.

The one last thing that you can exercise with TestSubscriber is backpressure. In
“Honoring the Requested Amount of Data” on page 237, we examined two imple‐
mentations of an infinite Observable that produces subsequent natural numbers.
One was using an old-fashioned raw Observable.create(), which does not support
backpressure:

Observable<Long> naturals1() {
 return Observable.create(subscriber -> {
 long i = 0;
 while (!subscriber.isUnsubscribed()) {
 subscriber.onNext(i++);
 }
 });
}

The more advanced but recommended implementation fully supports backpressure:

Observable<Long> naturals2() {
 return Observable.create(
 SyncOnSubscribe.createStateful(
 () -> 0L,
 (cur, observer) -> {
 observer.onNext(cur);
 return cur + 1;
 }
));
}

From a functionality point of view, these two are the same, both are infinite but you
can, for example, just take only a selected subset. However, with TestSubscriber we
can easily unit-test whether a given Observable also supports backpressure:

TestSubscriber<Long> ts = new TestSubscriber<>(0);

naturals1()
 .take(10)
 .subscribe(ts);

ts.assertNoValues();
ts.requestMore(100);
ts.assertValueCount(10);
ts.assertCompleted();

The crucial part of this example is the TestSubscriber<>(0) constructor. Without it,
TestSubscriber simply receives everything at the velocity dictated by the source.
But, if we request no data prior to subscription, TestSubscriber does not request any
data from an Observable. This is the reason why we see assertNoValues() despite
the source Observable clearly emitting 10 values. Later, we request as much as 100

Unit Testing | 269

www.EBooksWorld.ir

items (just to be safe) but obviously the source Observable emits only 10—as many
as it can possibly produce. This test fails for naturals1 almost immediately, and the
following message appears:

AssertionError: No onNext events expected yet some received: 10

Our naive Observable, of course, knows to stop emitting events after receiving 10,
despite being infinite. The take(10) operator eagerly unsubscribes ending the inter‐
nal while loop. However, naturals1 ignores the backpressure requests issued by
TestSubscriber, the latter receives items it never wanted. If you replace source with
naturals2, now the test passes. This is another reason to avoid plain Observable.cre
ate() in favor of the built-in factories and SyncOnSubscribe.

TestSubscriber has many other assertions. Some of them block waiting for comple‐
tion; for example, awaitTerminalEvent(). Most of them, however, assert the state of
the subscriber at the current moment, so that we can observe events flowing over
time.

Monitoring and Debugging
Monitoring the behavior of various streams interacting with one another and
troubleshooting when issues arise is a difficult subject in RxJava. As a matter of fact,
every asynchronous event-driven system is inherently more difficult to troubleshoot
compared to blocking architectures. When a synchronous operation fails, the excep‐
tion flows all the way up the call stack, exposing the exact sequence of operations that
caused it, from HTTP server, through all filters, aspects, business logic, and so on. In
an asynchronous system, the call stack is of limited use because when an event crosses
the thread boundary, we no longer have the original call stack available. The same
applies to distributed systems. This section gives you few tips on how to make moni‐
toring and debugging easier in applications using RxJava.

doOn…() Callbacks
Every Observable has a set of callback methods that you can use to peek into various
events, namely:

• doOnCompleted()

• doOnEach()

• doOnError()

• doOnNext()

• doOnRequest()

• doOnSubscribe()

270 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

• doOnTerminate()

• doOnUnsubscribe()

What they all have in common is that they are not allowed to alter the state of an
Observable in any way and they all return the same Observable, which makes them
an ideal place to sprinkle some logging logic. For example, many newcomers forget
that the code within Observable.create() is executed for each new Subscriber.
This is important especially when a subscription triggers side effects like a network
call. To detect such problems, it is a good practice to log every subscription to critical
sources:

Observable<Instant> timestamps = Observable
 .fromCallable(() -> dbQuery())
 .doOnSubscribe(() -> log.info("subscribe()"));

timestamps
 .zipWith(timestamps.skip(1), Duration::between)
 .map(Object::toString)
 .subscribe(log::info);

The preceding program queries the database (dbQuery()) and retrieves some time
series data in the form of Observable<Instant>. We would like to transform this
stream a little bit by calculating the duration (using Duration class from the
java.time package) between each subsequent pairs of Instants: first and second,
second and third, and so on. One way to do this is to zip() stream with itself shifted
by one element. This way we tie together the first with the second element, the second
with the third, up to the end. What we did not anticipate is that zipWith() actually
subscribes to all of the underlying streams, effectively subscribing to the same time
stamps Observable twice. This is a problem that you can discover by observing doOn
Subscribe() is being invoked twice. This leads to duplicated database query, which is
the problem we discussed in great lengths in Chapter 2.

Speaking of zip(), thanks to backpressure it no longer buffers faster stream infinitely,
waiting for a slower one to emit events. Instead, it asks for a fixed batch of values
from each Observable, throwing MissingBackpressureException if it received
more:

.doOnSubscribe(() -> log.info("subscribe()"))

.doOnRequest(c -> log.info("Requested {}", c))

.doOnNext(instant -> log.info("Got: {}", instant));

doOnRequest() logs Requested 128, the value chosen by zip operator. Even when the
source is infinite or very large, we should see at most 128 messages such as Got: ...
afterward from a well-behaving Observable. doOnNext() is another callback that we
can take advantage of. Another useful operator that you should use fairly often is doO
nError(). It invokes callback every time an error notification flows from upstream.

Monitoring and Debugging | 271

www.EBooksWorld.ir

You cannot use doOnError() for any error handling; it is for logging only. It does not
consume the error notification, which keeps propagating downstream:

Observable<String> obs = Observable
 .<String>error(new RuntimeException("Swallowed"))
 .doOnError(th -> log.warn("onError", th))
 .onErrorReturn(th -> "Fallback");

As clean as onErrorReturn() looks, it is very easy to swallow exceptions with it. It
does provide the exception that we want to replace with a fallback value, but logging
it is our responsibility. To keep functions small and composable, logging the error
first in doOnError() and then handling the exception in the following line silently is a
little bit more robust. Forgetting to log the exception is rarely a good idea and must
be a careful decision, not an oversight.

Other operators are rather self-explanatory, with the possible exception of this pair:

doOnEach()

This is invoked for each Notification, namely onNext(), onCompleted(), and
onError(). It can accept either a lambda invoked for each Notofication or an
Observer.

doOnTerminate()

This is invoked when either onCompleted() or onError() occurs. It is impossible
to distinguish between them, so it might be better to use doOnCompleted() and
doOnError() independently.

Measuring and Monitoring
Callbacks are not only useful for logging. Having various telemetric probes built into
your application (like simple counters, timers, distribution histograms, and so on)
and available externally can greatly reduce troubleshooting time as well as give great
insight into what an application is doing. There are many libraries that simplify col‐
lecting and publishing metrics, one of them being Dropwizard metrics. Before you
begin using this library, you need to do a little bit of setup:

import com.codahale.metrics.MetricRegistry;
import com.codahale.metrics.Slf4jReporter;
import org.slf4j.LoggerFactory;

MetricRegistry metricRegistry = new MetricRegistry();
Slf4jReporter reporter = Slf4jReporter
 .forRegistry(metricRegistry)
 .outputTo(LoggerFactory.getLogger(SomeClass.class))
 .build();
reporter.start(1, TimeUnit.SECONDS);

272 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

http://metrics.dropwizard.io:

MetricRegistry is a factory for various metrics. Additionally, we set up a Slf4jRe
porter that will push a current snapshot of statistics to a given SLF4J logger. Other
reporters publishing to Graphite and Ganglia are available. Having this basic setup
you can being monitoring your streams.

One of the simplest metrics you can think of is a simple Counter that can be incre‐
mented or decremented. You can use it to measure the number of events that flew
through the stream:

final Counter items = metricRegistry.counter("items");
observable
 .doOnNext(x -> items.inc())
 .subscribe(...);

After you subscribe to this Observable, Counter will being showing how many items
were generated so far. This information becomes even more useful when you publish
it to an external monitoring server like Graphite and put it on a chart over time.

Another important metric that you might want to capture is how many items are
being concurrently processed right at that moment. For example, flatMap() can
easily spin hundreds and more concurrent Observables and subscribe to all of them.
Knowing how many such Observables we have (think about open database connec‐
tions, web sockets, and so on) can give significant insight into the system:

Observable<Long> makeNetworkCall(long x) {
 //...
}

Counter counter = metricRegistry.counter("counter");
observable
 .doOnNext(x -> counter.inc())
 .flatMap(this::makeNetworkCall)
 .doOnNext(x -> counter.dec())
 .subscribe(...);

When an event appears from upstream, we increment the counter. When an event
appears after flatMap() (which means one of the asynchronous operations just emit‐
ted something), we decrement it. In an idle system, the counter is always zero, but
when an upstream observable produces a lot of events and makeNetworkCall() is
relatively slow, this counter skyrockets, clearly indicating where the bottleneck is.

The preceding example assumes that makeNetworkCall() always returns just one
item and never fails (never completes with onError()). If instead you want to meas‐
ure the time between subscription to the internal Observable (when the work
actually began) and its completion, it is equally straightforward:

observable
 .flatMap(x ->

Monitoring and Debugging | 273

www.EBooksWorld.ir

http://graphite.readthedocs.org:
http://ganglia.info

 makeNetworkCall(x)
 .doOnSubscribe(counter::inc)
 .doOnTerminate(counter::dec)
)
 .subscribe(...);

One of the most complex metrics is Timer, which measures the duration between two
points in time. I cannot overstate the value of such a metric—we can measure net‐
work call latency, database query time, user response time, and much more. The way
we typically measure time is by taking a snapshot of the current time, doing some
lengthy operation, and then noting the difference between the time now and then.
This is encapsulated in the Metrics library like this:

import com.codahale.metrics.Timer;

Timer timer = metricRegistry.timer("timer");
Timer.Context ctx = timer.time();
//some lengthy operation...
ctx.stop();

The API keeps the operation start time encapsulated in Timer.Context and assumes
that the code we are benchmarking is blocking. But what if we want to measure the
time between subscription to an Observable for which we have no control and its
termination? doOnSubscribe() and doOnTerminate() are insufficient here because
we cannot pass Timer.Context between them. Luckily, RxJava is flexible enough to
tackle this problem anyway by one extra layer of composition:

Observable<Long> external = //...

Timer timer = metricRegistry.timer("timer");

Observable<Long> externalWithTimer = Observable
 .defer(() -> Observable.just(timer.time()))
 .flatMap(timerCtx ->
 external.doOnCompleted(timerCtx::stop));

We use a little trick. First, we lazily start time with a help of the defer() operator.
This way, the timer starts exactly when subscription happens. Later, we (in a way)
replace the Timer.Context instance with the actual Observable that we want to
benchmark (external). However, before we return external Observable, we stop
our running timer. You can use this technique to measure the time between subscrip‐
tion and termination of any Observable over which you have no control.

If you need more comprehensive and enterprise-ready solutions for your monitoring
layer, consider using RxJava-powered Hystrix. This library will be one of the case
studies in the Chapter 8 (see “Managing Failures with Hystrix” on page 291).

274 | Chapter 7: Testing and Troubleshooting

www.EBooksWorld.ir

Summary
Every reactive library or framework, due to their asynchronous and event-driven
nature, is challenging when it comes to debugging and troubleshooting. RxJava is no
exception here, but it provides a handful of tools that make developers’ and opera‐
tions’ life easier.

• First, RxJava embraces errors and make it easy to handle and manage.
• Secondly, it provides facilities for monitoring and debugging streams in real-

time.
• Finally, it has excellent unit-testing support.

As a matter of fact, being able to take full control over the system clock is immensely
useful for time-sensitive operators. RxJava can be difficult to troubleshoot at first. Yet
it provides a clear API and strict contract as opposed to superficially simpler blocking
code that has hidden race conditions and poor throughput.

Summary | 275

www.EBooksWorld.ir

www.EBooksWorld.ir

CHAPTER 8

Case Studies

Tomasz Nurkiewicz

This chapter shows examples of selected use cases of RxJava in real-life applications.
The API of Reactive Extensions is very powerful but there must be a source of Observ
ables somewhere. Creating an Observable from scratch can be challenging due to
backpressure and the Rx contract, which must be followed. The good news is that
there are many libraries and frameworks out there that support RxJava natively. Also
RxJava turned out to be very useful on some platforms that are inherently asynchro‐
nous.

Throughout this chapter, you will see how RxJava improves the design and enhances
the capabilities of existing architectures. We will also explore more complex topics
that can arise when deploying reactive applications to production, such as memory
leaks. When you’ve finished this chapter, you should be convinced that RxJava is
mature and versatile enough to implement a variety of use cases in real, modern
applications.

Android Development with RxJava
RxJava is very popular among Android developers. First, graphic user interfaces are
inherently event driven, with events coming from various actions like key presses or
mouse movements. Second, Android, just like Swing or many other GUI environ‐
ments, is very unforgiving when it comes to threads. The main Android thread
should not be blocked to avoid freezing the user interface; however, all updates to the
user interface must happen in that main thread. These issues will be addressed in
“Schedulers in Android” on page 285. But if there is just one thing you should try to
learn about RxJava in Android, be sure to go through the next section that explains
memory leaks and how to avoid them easily.

277

www.EBooksWorld.ir

Avoiding Memory Leaks in Activities
One pitfall unique to Android is Activity-related memory leak. It happens when an
Observer holds a strong reference to any GUI component that in turn references the
entire parent Activity instance. When you rotate the screen of your mobile device or
press the back button, the Android operating system destroys the current Activity
and eventually tries to garbage collect it. Activities are fairly large objects, so eagerly
cleaning them up is important. However if your Observer holds a reference to such
an Activity, it might never be garbage-collected, leading to memory leak and device
killing your application in its entirety. Take the following innocent code:

public class MainActivity extends AppCompatActivity {

 private final byte[] blob = new byte[32 * 1024 * 1024];

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView text = (TextView) findViewById(R.id.textView);
 Observable
 .interval(100, TimeUnit.MILLISECONDS)
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(x -> {
 text.setText(Long.toString(x));
 });
 }

}

The blob field is there just to speed up the memory-leak effects; imagine MainActiv
ity being quite a complex tree of objects, instead. This simple application superfi‐
cially looks fine. Every 100 milliseconds it updates a text field with the current
counter value. But if you rotate your device a couple of times it crashes with OutOfMe
moryError for some reason. Here is what happens:

1. MainActivity is created, and during onCreate() we subscribe to interval().
2. Every 100 milliseconds, we update text with the current counter value. Ignore

mainThread() Scheduler for a second, it will be explained in “Schedulers in
Android” on page 285.

3. The device changes orientation.
4. MainActivity is destroyed, a new one is created, and onCreate() is executed

again.
5. We currently have two Observable.interval() running because we never

unsubscribed from the first one.

278 | Chapter 8: Case Studies

www.EBooksWorld.ir

The fact that we have two intervals running at the same time, the first one being a
leftover from the destroyed Activity is not the worst part. The interval() operator
uses a background thread (via computation() Scheduler) to emit counter events.
These events are subsequently propagated to Observer, one of them holding a refer‐
ence to TextView which in turn holds a reference to old MainActivity. The thread
emitting interval() events becomes the new GC root; therefore, everything it refer‐
ences directly or indirectly is not eligible for garbage collection. That being said, even
though the first instance of MainActivity was destroyed, it cannot be garbage-
collected and the memory of our blob cannot be reclaimed. Every change of orienta‐
tion (or whenever Android decides to destroy a particular Activity) increases
memory leak. The solution is simple: let interval() know when it is no longer
needed by unsubscribing from it (see “Controlling Listeners by Using Subscription
and Subscriber<T>” on page 32). Just like onCreate(), Android has a callback on
destruction called onDestroy():

private Subscription subscription;

@Override
protected void onCreate(Bundle savedInstanceState) {
 //...
 subscription = Observable
 .interval(100, TimeUnit.MILLISECONDS)
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(x -> {
 text.setText(Long.toString(x));
 });
}

@Override
protected void onDestroy() {
 super.onDestroy();
 subscription.unsubscribe();
}

That is all there is to it. When an Observable is created as part of Activity’s lifecycle,
make sure to unsusbcribe from it when the Activity is destroyed. Calling unsusb
cribe() will detach Observer from Observable so that it is eligible for garbage col‐
lection. Together with Observer, the entire MainActivity can be collected, as well.
Also the interval() itself will stop emitting events because no one is listening to
them. Double win.

When you create multiple Observables together with some Activity, holding a ref‐
erence to all Subscriptions can become tedious. A CompositeSubscription is a
handy container in such cases. Each Subscription can simply be inserted into Compo
siteSubscription and on destruction we can unsubscribe all of them in one easy
step:

Android Development with RxJava | 279

www.EBooksWorld.ir

private CompositeSubscription allSubscriptions = new CompositeSubscription();

@Override
protected void onCreate(Bundle savedInstanceState) {
 //...
 Subscription subscription = Observable
 .interval(100, TimeUnit.MILLISECONDS)
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(x -> {
 text.setText(Long.toString(x));
 });
 allSubscriptions.add(subscription);
}

@Override
protected void onDestroy() {
 super.onDestroy();
 allSubscriptions.unsubscribe();
}

It is worth mentioning that unsubscribing from an Observable that is no longer in
use is a good practice in any environment. But on resource-constrained mobile devi‐
ces, this becomes particularly important. Now that you are aware of the pitfalls of
memory management on Android, it is time to redesign your mobile applications.
First, we will explore Retrofit, an HTTP client with built-in RxJava support that is
particularly popular on mobile environments.

Retrofit with Native RxJava Support
Retrofit is a popular library for making HTTP requests, especially in the Android
ecosystem. It is neither Android-specific nor the only choice for an HTTP client.
However, because it natively supports RxJava, it is a good choice for mobile applica‐
tions, both written with RxJava in mind or only willing to properly handle HTTP
code. The main advantage of using RxJava in network-related code is its ability to
jump between threads easily. Before we begin experimenting with Retrofit, you will
need the following dependencies. The library itself, an adapter for RxJava, and a con‐
verter for Jackson JSON parser:

compile 'com.squareup.retrofit2:retrofit:2.0.1'
compile 'com.squareup.retrofit2:adapter-rxjava:2.0.1'
compile 'com.squareup.retrofit2:converter-jackson:2.0.1'

Retrofit promotes a type-safe way of interacting with RESTful services by asking you
to first declare a Java interface without implementation. This interface is later trans‐
lated into an HTTP request transparently. For the purpose of the exercise, we will be
interacting with Meetup API, a popular service for organizing events. One of the end‐
points returns a list of cities near a given location:

280 | Chapter 8: Case Studies

www.EBooksWorld.ir

http://square.github.io/retrofit/
http://www.meetup.com/meetup_api/

import retrofit2.http.GET;
import retrofit2.http.Query;

public interface MeetupApi {

 @GET("/2/cities")
 Observable<Cities> listCities(
 @Query("lat") double lat,
 @Query("lon") double lon
);

}

Retrofit will translate the method call to listCities() into a network call. Under the
hood, we will be making an HTTP GET request to /2/cities?lat=...&lon=...
resource. Notice the return type. First, we have the strongly typed Cities rather than
String or weakly typed map-of-maps. But more important, Cities comes from an
Observable that will emit this object when a response arrives. Cities class maps
most of the fields found in JSON received from the server, getters, and setters omit‐
ted:

public class Cities {
 private List<City> results;
}

public class City {
 private String city;
 private String country;
 private Double distance;
 private Integer id;
 private Double lat;
 private String localizedCountryName;
 private Double lon;
 private Integer memberCount;
 private Integer ranking;
 private String zip;
}

Such an approach provides a good balance between abstraction (using high-level con‐
cepts like method calls and strongly-typed responses) and low-level details (asyn‐
chronous nature of network call). Although HTTP has request-response semantics,
we model inevitable latency with Observable so that it is not hidden behind a leaky
blocking RPC (remote procedure call) abstraction. Unfortunately, there is quite a bit
of glue code that you must configure in order to interact with this particular API.
Your mileage may vary, but it is important to see the steps required to properly parse
the JSON response:

import com.fasterxml.jackson.databind.DeserializationFeature;
import com.fasterxml.jackson.databind.ObjectMapper;

Android Development with RxJava | 281

www.EBooksWorld.ir

import com.fasterxml.jackson.databind.PropertyNamingStrategy;
import retrofit2.Retrofit;
import retrofit2.adapter.rxjava.RxJavaCallAdapterFactory;
import retrofit2.converter.jackson.JacksonConverterFactory;

ObjectMapper objectMapper = new ObjectMapper();
objectMapper.setPropertyNamingStrategy(
 PropertyNamingStrategy.CAMEL_CASE_TO_LOWER_CASE_WITH_UNDERSCORES);
objectMapper.configure(
 DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);

Retrofit retrofit = new Retrofit.Builder()
 .baseUrl("https://api.meetup.com/")
 .addCallAdapterFactory(
 RxJavaCallAdapterFactory.create())
 .addConverterFactory(
 JacksonConverterFactory.create(objectMapper))
 .build();

First, we need to tune ObjectMapper from the Jackson library to seamlessly convert
the underscore field names to camel-case convention used in Java Beans—for exam‐
ple, localized_country_name in JSON to localizedCountryName in City class. Sec‐
ond, we want to avoid fields that are not mapped in our bean classes. Especially JSON
APIs tend to evolve by adding new fields that clients did not support earlier. A rea‐
sonable default is to ignore such fields and use only those that are meaningful to us.
Therefore, the server can add new fields to response as the system grows without
breaking existing clients.

Having an instance of Retrofit, we can finally synthesize MeetupApi implementation
to be used throughout the client code:

MeetupApi meetup = retrofit.create(MeetupApi.class);

At last, with our MeetupApi we can make some HTTP requests and use the power of
RxJava. Let’s build a more comprehensive example. Using the Meetup API, we first
grab a list of all cities and towns nearby a given location:

double warsawLat = 52.229841;
double warsawLon = 21.011736;
Observable<Cities> cities = meetup.listCities(warsawLat, warsawLon);
Observable<City> cityObs = cities
 .concatMapIterable(Cities::getResults);
Observable<String> map = cityObs
 .filter(city -> city.distanceTo(warsawLat, warsawLon) < 50)
 .map(City::getCity);

First, we expand an Observable<Cities> with just one item into Observable<City>
with one item per found city using concatMapIterable(). Then, we filter out only
cities closer than 50 kilometers to the initial location. Finally, we extract a city name.

282 | Chapter 8: Case Studies

www.EBooksWorld.ir

Our next goal is to find the population of each city found in the vicinity of Warsaw to
see how many people live within a radius of 50 kilometers. To achieve that, we must
consult another API delivered by GeoNames. One method searches for location by a
given name and, among other attributes, returns its population. We will again use
Retrofit to connect to that API:

public interface GeoNames {

 @GET("/searchJSON")
 Observable<SearchResult> search(
 @Query("q") String query,
 @Query("maxRows") int maxRows,
 @Query("style") String style,
 @Query("username") String username);

}

A JSON object must be mapped to data objects (getters and setters omitted):

class SearchResult {
 private List<Geoname> geonames = new ArrayList<>();
}

public class Geoname {
 private String lat;
 private String lng;
 private Integer geonameId;
 private Integer population;
 private String countryCode;
 private String name;
}

The way to instantiate GeoNames is similar to MeetupApi:

GeoNames geoNames = new Retrofit.Builder()
 .baseUrl("http://api.geonames.org")
 .addCallAdapterFactory(RxJavaCallAdapterFactory.create())
 .addConverterFactory(JacksonConverterFactory.create(objectMapper))
 .build()
 .create(GeoNames.class);

Suddenly our sample application uses two different APIs and mashes them together
very uniformly. For each city name, we would like to consult the GeoNames API and
extract the population:

Observable<Long> totalPopulation = meetup
 .listCities(warsawLat, warsawLon)
 .concatMapIterable(Cities::getResults)
 .filter(city -> city.distanceTo(warsawLat, warsawLon) < 50)
 .map(City::getCity)
 .flatMap(geoNames::populationOf)
 .reduce(0L, (x, y) -> x + y);

Android Development with RxJava | 283

www.EBooksWorld.ir

http://bit.ly/2d5e7TL

If you think about it for a while, the preceding program is doing quite a lot of work in
this concise form. First it asks MeetupApi for a list of cities and later for each city it
fetches the population. Population responses (possibly coming asynchronously) are
later totaled using reduce(). In the end, this whole computational pipeline ends up as
Observable<Long>, emitting one long value whenever the population from all cities
is accumulated. This shows the true power of RxJava, how streams from different
sources can be seamlessly combined. For example, the populationOf() method is
actually quite a complex chain of operators making an HTTP request to GeoNames
and extracting population by city name:

public interface GeoNames {

 default Observable<Integer> populationOf(String query) {
 return search(query)
 .concatMapIterable(SearchResult::getGeonames)
 .map(Geoname::getPopulation)
 .filter(p -> p != null)
 .singleOrDefault(0)
 .doOnError(th ->
 log.warn("Falling back to 0 for {}", query, th))
 .onErrorReturn(th -> 0)
 .subscribeOn(Schedulers.io());
 }

 default Observable<SearchResult> search(String query) {
 return search(query, 1, "LONG", "some_user");
 }

 @GET("/searchJSON")
 Observable<SearchResult> search(
 @Query("q") String query,
 @Query("maxRows") int maxRows,
 @Query("style") String style,
 @Query("username") String username
);

}

A generic search() method at the bottom is wrapped using default methods so that it
is easier to use. After receiving a SearchResult object wrapped in JSON, we unwrap
all individual search results, make sure the population was not absent in the response,
and in case of any errors we simply return 0. Finally, we make sure each population
request is invoked on an io() scheduler to allow better concurrency. subscribeOn()
is actually crucial here. Without it, every request for population for each city would
be sequential, drastically increasing the overall latency. However, because for each city
flatMap() will invoke the populationOf() method and subscribe to it when needed,
data about each city is fetched concurrently. In fact, we can also add a timeout()
operator to each population request, as well, to achieve an even better response time

284 | Chapter 8: Case Studies

www.EBooksWorld.ir

at the cost of incomplete data. Without RxJava, implementing this scenario would
require a lot of manual thread-pool integration. Even with CompletableFuture (see
“CompletableFuture and Streams” on page 193) the task is nontrivial. Yet RxJava with
noninvasive concurrency and powerful operators make it possible to write both fast
and easy to understand, concise code.

Combining two different APIs, both driven by Retrofit, works like a charm. However,
there is nothing that prevents us from combining entirely unrelated Observables; for
example, one coming from Retrofit, another from a JDBC call, and yet another one
receiving a JMS message. All these use cases are fairly easy to implement, neither
leaking the abstraction nor giving too many details about the nature of the underlying
stream implementation.

Schedulers in Android
One of the very first mistakes that every Android developer makes is blocking the UI
thread. On Android there is one designated main thread that interacts bi-
directionally with the user interface (UI). Callbacks from native widgets invoke our
handlers on main thread but also widget updates (changing labels, drawing) must
occur within that thread. This restriction greatly simplifies the UI internal architec‐
ture but also has serious downsides:

• Attempting any time-consuming operation (typically blocking network call)
within callback handling, a UI event will prevent other events from being han‐
dled, causing the UI to freeze. Eventually, the operating system will kill such mis‐
behaving applications

• Updating the UI—for example, when a blocking network call completed—must
occur on the main thread. We must somehow ask the operating system to invoke
updating code within that main thread.

Amazingly, RxJava has two built-in mechanisms for that. You can run side-effecting
tasks in the background using subscribeOn(), whereas jumping back to the main
thread is easy with observeOn(). These two operators were explained in “Declarative
Subscription with subscribeOn()” on page 150, and they fit perfectly on Android. All
you need is a special Scheduler that is aware of the Android environment and its
main thread. This Scheduler was already partially implemented in “Scheduler imple‐
mentation details overview” on page 146, but luckily we do not have to implement it
ourselves. You begin your journey with RxJava on Android by adding this small
dependency:

compile 'io.reactivex:rxandroid:1.1.0'

This small library will add the AndroidSchedulers class to your CLASSPATH, which
is essential for writing concurrent code on Android with RxJava. Using the Android

Android Development with RxJava | 285

www.EBooksWorld.ir

1 This can change with the release of Android N; for more information, check out this guide to using Java 8
features.

Schedulers is best explained by means of an example. We would like to make a call
to the Meetup API (see “Retrofit with Native RxJava Support” on page 280), fetch a
list of cities nearby a given location, and then display them:

button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 meetup
 .listCities(52.229841, 21.011736)
 .concatMapIterable(extractCities())
 .map(toCityName())
 .toList()
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(
 putOnListView(),
 displayError());
 }

 //...

});

This chapter is the only place in the book that does not use any lambda expressions
from Java 8. As of this writing, Android supports Java 7 and does not allow closures
natively.1 Therefore, we extracted anonymous inner classes into separate methods to
improve readability. If you find this syntax too verbose (even if you are not using
RxJava), you can experiment with retrolambda that backports lambdas to older ver‐
sions of Java and works on Android. On vanilla Android, all transformations and
callbacks look as follows:

//Cities::getResults
Func1<Cities, Iterable<City>> extractCities() {
 return new Func1<Cities, Iterable<City>>() {
 @Override
 public Iterable<City> call(Cities cities) {
 return cities.getResults();
 }
 };
}

//City::getCity
Func1<City, String> toCityName() {
 return new Func1<City, String>() {
 @Override
 public String call(City city) {

286 | Chapter 8: Case Studies

www.EBooksWorld.ir

http://bit.ly/2d5eAFw
http://bit.ly/2d5eAFw
https://github.com/orfjackal/retrolambda

 return city.getCity();
 }
 };
}

//cities -> listView.setAdapter(...)
Action1<List<String>> putOnListView() {
 return new Action1<List<String>>() {
 @Override
 public void call(List<String> cities) {
 listView.setAdapter(new ArrayAdapter(
 MainActivity.this, R.layout.list, cities));
 }
 };
}

//throwable -> {...}
Action1<Throwable> displayError() {
 return new Action1<Throwable>() {
 @Override
 public void call(Throwable throwable) {
 Log.e(TAG, "Error", throwable);
 Toast.makeText(MainActivity.this,
 "Unable to load cities",
 Toast.LENGTH_SHORT)
 .show();
 }
 };
}

Here is what happens. When a button is clicked (we will get rid of callbacks in “UI
Events as Streams” on page 288), we make an HTTP request via Retrofit. Retrofit pro‐
duces an Observable<Cities> that we further transform by extracting only relevant
information. We end up with List<String> representing nearby cities. This list is
eventually displayed on screen.

The use of two schedulers is actually crucial. Without subscribeOn(), Retrofit will
use a caller thread to make an HTTP call, causing Observable to become blocking.
This means that the HTTP request will attempt to block the main Android thread,
which is immediately picked up by an operating system and fails with NetworkOnMain
ThreadException. The traditional way of running network code in the background is
by either creating a new Thread or using AsyncTask. The advantages of subscri
beOn() are obvious: code is much cleaner, less invasive, and has built-in declarative
error handling via onError notification.

The observeOn() invocation is equally important. When all transformations are
done, we invoke a UI update only on the main thread because we want to carry out as
little processing as possible there. Without observeOn() that shifts execution to main
Thread() our Observable would attempt updating listView from a background

Android Development with RxJava | 287

www.EBooksWorld.ir

2 A similar utility exists for Swing.

thread, which fails immediately with CalledFromWrongThreadException. Again,
observeOn() is much more convenient than postDelayed() from the
android.os.Handler class (that AndroidSchedulers.mainThread() uses under the
hood).

Flexibility of schedulers combined with the API simplicity is very compelling to many
Android developers. RxJava offers a simpler, cleaner but also safer way of tackling the
complexity of concurrent programming on mobile devices.

On Memory Leaks

The preceding example has one major flaw that can lead to mem‐
ory leak. The Observer keeps a reference to the enclosing Android
Activity and can outlive it. This problem was explained and dealt
with in “Avoiding Memory Leaks in Activities” on page 278.

UI Events as Streams
From the syntax level, RxJava aims to avoid callback hell by replacing nested callbacks
with declarative transformations. Therefore, setOnClickListener() enclosing
Observable looked a bit disturbing. Fortunately, there is a library that translates
Android UI events into streams.2 Simply add the following dependency to your
project:

compile 'com.jakewharton.rxbinding:rxbinding:0.4.0'

From this point, we can replace an imperative callback registration with a handy
pipeline:

RxView
 .clicks(button)
 .flatMap(listCities(52.229841, 21.011736))
 .delay(2, TimeUnit.SECONDS)
 .concatMapIterable(extractCities())
 .map(toCityName())
 .toList()
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(
 putOnListView(),
 displayError());

Func1<Void, Observable<Cities>> listCities(final double lat, final double lon) {
 return new Func1<Void, Observable<Cities>>() {
 @Override

288 | Chapter 8: Case Studies

www.EBooksWorld.ir

https://github.com/ReactiveX/RxSwing

 public Observable<Cities> call(Void aVoid) {
 return meetup.listCities(lat, lon);
 }
 };
}

Rather than registering a callback that creates and transforms Observable locally, we
begin with Observable<Void> representing button clicks. Clicking a button does not
convey any information; thus, it is Void. Each click event triggers an asynchronous
HTTP request returning Observable<Cities>. Everything else stays pretty much the
same. If you think this is just a minor readability improvement, consider composing
multiple GUI event streams.

Imagine that you have two text fields; one for entering latitude and another one for
longitude. Any time either of them changes, you would like to make an HTTP
request looking for all cities nearby that location. However, to avoid unnecessary net‐
work traffic when the user is still typing, we want to implement a certain delay. The
network request is initiated only when no changes occurred to any text field for one
second. This is very similar to autocomplete text fields that have a slight delay to
avoid excessive network usage, but in this case we have to take two inputs together
into account. The implementation using RxJava and RxBinding is very elegant:

import android.widget.EditText;
import com.jakewharton.rxbinding.widget.RxTextView;
import com.jakewharton.rxbinding.widget.TextViewAfterTextChangeEvent;

EditText latText = //...
EditText lonText = //...

Observable<Double> latChanges = RxTextView
 .afterTextChangeEvents(latText)
 .flatMap(toDouble());
Observable<Double> lonChanges = RxTextView
 .afterTextChangeEvents(lonText)
 .flatMap(toDouble());

Observable<Cities> cities = Observable
 .combineLatest(latChanges, lonChanges, toPair())
 .debounce(1, TimeUnit.SECONDS)
 .flatMap(listCitiesNear());

And all transformations (note how verbose the code is when lambda expressions are
not an option):

Func1<TextViewAfterTextChangeEvent, Observable<Double>> toDouble() {
 return new Func1<TextViewAfterTextChangeEvent, Observable<Double>>() {
 @Override
 public Observable<Double> call(TextViewAfterTextChangeEvent e) {
 String s = e.editable().toString();

Android Development with RxJava | 289

www.EBooksWorld.ir

 try {
 return Observable.just(Double.parseDouble(s));
 } catch (NumberFormatException e) {
 return Observable.empty();
 }
 }
 };
}

//return Pair::new
Func2<Double, Double, Pair<Double, Double>> toPair() {
 return new Func2<Double, Double, Pair<Double, Double>>() {
 @Override
 public Pair<Double, Double> call(Double lat, Double lon) {
 return new Pair<>(lat, lon);
 }
 };
}

//return latLon -> meetup.listCities(latLon.first, latLon.second)
Func1<Pair<Double, Double>, Observable<Cities>> listCitiesNear() {
 return new Func1<Pair<Double, Double>, Observable<Cities>>() {
 @Override
 public Observable<Cities> call(Pair<Double, Double> latLon) {
 return meetup.listCities(latLon.first, latLon.second);
 }
 };
}

First, RxTextView.afterTextChangeEvents() transforms the imperative callbacks
invoked by EditText whenever the content changes. We create two such streams for
latitude and longitude separately. On the fly, we transform TextViewAfterTextChan
geEvent into a double, silently dropping the malformed inputs. Having two streams
of doubles, we combine them using combineLatest() so that we receive a stream of
pairs every time either of the inputs change. The final piece is debounce() (see “Skip‐
ping Stale Events by Using debounce()” on page 221), which waits one second before
forwarding such pairs just in case another edit (either of latitude or longitude) fol‐
lows shortly. Thanks to debounce(), we avoid unnecessary network calls while the
user is typing. The rest of the application remains the same.

This example nicely shows how reactive programming propagates up from Retrofit to
user components so that everything in the application becomes a composition of
streams. Just make sure that you unsubscribe from afterTextChangeEvents(); fail‐
ing to do so can lead to memory leak.

290 | Chapter 8: Case Studies

www.EBooksWorld.ir

Managing Failures with Hystrix
A distributed system is one in which the failure of a computer you didn’t even
know existed can render your own computer unusable.

—Leslie Lamport, 1987

RxJava has many operators that support writing scalable, reactive, and resilient appli‐
cations:

• Declarative concurrency with Schedulers (“Multithreading in RxJava” on page
140)

• Timeouts (“Timing Out When Events Do Not Occur” on page 251) and various
error handling mechanisms (“Error Handling” on page 243, “Retrying After Fail‐
ures” on page 254)

• Parallelizing work with flatMap() (“flatMap() as Asynchronous Chaining Oper‐
ator” on page 131) and limiting the concurrency at the same time (“Controlling
the concurrency of flatMap()” on page 76).

Yet, to write robust and resilient applications, especially in the cloud environment or
when using microservices architecture, more features are needed that do not belong
to core RxJava. In this section, we take a quick look at Hystrix, a library for managing,
isolating, and handling failures in distributed environments. Hystrix allows you to
wrap actions that can potentially fail and apply clever logic around such code. This
includes:

• Bulkhead pattern by cutting off misbehaving actions entirely for a certain time
• Failing fast by applying timeouts, limiting concurrency, and implementing a so-

called circuit breaker
• Batching requests by collapsing small orders into one big order
• Collecting, publishing, and visualizing performance statistics

One of the greatest strengths of Hystrix is a circuit breaker, a mechanism for turning
off temporarily broken dependencies so that their failures do not cascade. If failures
are not handled properly in a distributed system, they tend to propagate to down‐
stream dependencies, just like exceptions propagate throughout the stack. In a dis‐
tributed system, one end user request can easily require making tens if not hundreds
of requests to various upstream dependencies. One broken service, even nonessential,
can take down the entire system, failing every single request.

Interestingly, slow service can be even worse than a failing one. If every single user
request is failing instantaneously with a friendly error message, the situation is bad.
But if your users do not get any response at all and simply wait infinitely, the situation

Managing Failures with Hystrix | 291

www.EBooksWorld.ir

https://github.com/Netflix/Hystrix

is much worse. The typical reaction (admit it!) is trying to refresh a web page. This
rarely helps but more often it just starts another request, further overflowing the sys‐
tem. One slow service causes delays to further cascade, bringing the entire system to a
stall. Suddenly, all services using the slow one become slow and the situation cascades
recursively. Hystrix attempts to shield such broken dependencies and stop cascading
of failures.

The First Steps with Hystrix
There are several reasons to study Hystrix in this book. First, it is built on top of
RxJava, which makes it a great practical example of reactive extensions in real life.
Second, we can invoke the Hystrix command and get Observable in return. Finally,
but most important, Hystrix supports nonblocking commands (see “Nonblocking
Commands with HystrixObservableCommand” on page 294).

Before we proceed, let’s explore how to use Hystrix in the simplest, blocking scenario.
A rule of thumb is to use Hystrix whenever execution escapes our process or
machine. Making a network call (but also accessing I/O) significantly increases the
risk of failure: risks can include unpredictable latencies, network partitions, and
packet loss. When we identify such a potentially dangerous block of code, we wrap it
in a HystrixCommand:

import org.apache.commons.io.IOUtils;
import com.netflix.hystrix.HystrixCommand;
import com.netflix.hystrix.HystrixCommandGroupKey;

class BlockingCmd extends HystrixCommand<String> {

 public BlockingCmd() {
 super(HystrixCommandGroupKey.Factory.asKey("SomeGroup"));
 }

 @Override
 protected String run() throws IOException {
 final URL url = new URL("http://www.example.com");
 try (InputStream input = url.openStream()) {
 return IOUtils.toString(input, StandardCharsets.UTF_8);
 }
 }

}

Blocking code that can potentially fail is wrapped inside a run() method. The result‐
ing type T of that method is defined by a generic type of HystrixCommand<T>. If we
would like to parameterize the action (e.g., use a different URL), it must be passed via
constructor. HystrixCommand is an implementation of the Command design pattern,
as defined in the seminal Design Patterns: Elements of Reusable Object-Oriented Soft‐
ware by Erich Gamma et al. (Addison-Wesley).

292 | Chapter 8: Case Studies

www.EBooksWorld.ir

3 In fact, execute() is implemented in terms of queue(), which in turn is implemented with toObservable().

Having an instance of HystrixCommand, we must now somehow execute it. There are
a couple of ways to block: on-command execution or by obtaining a pre-Java 8
Future, neither which are very interesting to us:

String string = new BlockingCmd().execute();
Future<String> future = new BlockingCmd().queue();

The execute() method invokes the run() method indirectly through a safety net of
timeouts, advanced error handling, and so on. You can read more about that in
“Bulkhead Pattern and Fail-Fast” on page 295. The method blocks and returns only
when the underlying run() completes or throws an exception. In that case, the excep‐
tion is propagated to the caller. queue(), on the other hand, is nonblocking but
returns Future<T>, instead. The old Future interface is not particularly reactive, thus
we are not very interested in both execute() and queue() throughout this book.

Notice that we always create a new instance of BlockingCmd—you
cannot reuse a command instance for multiple executions. Hystrix
Commands are supposed to be created directly before execution and
never reused. In practice, you typically parametrize command
upon construction so reusability of instance is questionable any‐
way.

Hystrix supports Observable as a first-class citizen,3 being able to return command
result as a stream:

Observable<String> eager = new BlockingCmd().observe();
Observable<String> lazy = new BlockingCmd().toObservable();

The semantic difference between observe() and toObservable() is quite important.
toObservable() converts a command to a lazy and cold Observable—the command
will not be executed until someone actually subscribes to this Observable. Moreover,
the Observable is not cached, so each subscribe() will trigger command execution.
observe(), in contrast, invokes the command asynchronously straight away, return‐
ing a hot but also cached Observable. As we learned in “Embracing Laziness” on
page 121, lazy Observables are quite handy; for example, we can create them at any
point in time but skip subscription and avoid any side effects like making network
call. We can also very effectively batch requests. However, with a cold Observable
there is a risk of accidentally invoking an action multiple times in case of more than
one subscriber. The cache() operator can help in these circumstances. In general
laziness allows the most efficient concurrency so you should prefer toObservable()
over observe() unless you have a very valid point to eagerly invoke a command.

Managing Failures with Hystrix | 293

www.EBooksWorld.ir

Having an Observable, you can apply all sorts of operators; for example, you can
retry failed commands using retry():

Observable<String> retried = new BlockingCmd()
 .toObservable()
 .doOnError(ex -> log.warn("Error ", ex))
 .retryWhen(ex -> ex.delay(500, MILLISECONDS))
 .timeout(3, SECONDS);

The preceding pipeline invokes a command, but in case of failure retries after 500
milliseconds. However, retrying can take up to three seconds; above that TimeoutEx
ception is thrown (see “Timing Out When Events Do Not Occur” on page 251).
Later we will see how timeouts built into Hystrix can help, as well.

Nonblocking Commands with HystrixObservableCommand
If your application was designed with RxJava in mind, the chances are that your
actions involving third-party services or unknown libraries are already modeled as
Observables. The basic HystrixCommand supports only blocking code. If your inter‐
actions with the outside world are already an Observable that you want to further
protect via Hystrix, the HystrixObservableCommand is much better suited:

public class CitiesCmd extends HystrixObservableCommand<Cities> {

 private final MeetupApi api;
 private final double lat;
 private final double lon;

 protected CitiesCmd(MeetupApi api, double lat, double lon) {
 super(HystrixCommandGroupKey.Factory.asKey("Meetup"));
 this.api = api;
 this.lat = lat;
 this.lon = lon;
 }

 @Override
 protected Observable<Cities> construct() {
 return api.listCities(lat, lon);
 }
}

The MeetupApi was introduced in “Retrofit with Native RxJava Support” on page 280,
and it can return Observable<Cities>. Hystrix transparently wraps this Observable
by adding fault-tolerance features that we will discover shortly. The CitiesCmd com‐
mand is also much more typical compared to BlockingCmd because it accepts a few
parameters in its constructor. We can also pass a stubbed MeetupApi instance in unit
tests to verify the behavior of command.

294 | Chapter 8: Case Studies

www.EBooksWorld.ir

The advantage of the HystrixObservableCommand over HystrixCommand is that the
former does not require a thread pool to operate. HystrixCommands are always exe‐
cuted in a bound thread pool, whereas Observable commands do not require any
extra threads. Of course, Observable returned from construct() (notice that it is no
longer named run()) can still use some threads, depending on the underlying imple‐
mentation.

Knowing how to create commands in Hystrix and how they fit into the RxJava eco‐
system, it’s time to see in action what features Hystrix actually does provide.

Bulkhead Pattern and Fail-Fast
Bulkheads are large walls across a ship’s hull that create watertight compartments. In
case of water leak, bulkheads keep water in just one compartment, preventing the
ship from sinking. The same engineering principle can be applied to distributed sys‐
tems. When one component in your architecture fails, it should be isolated. The sys‐
tem should work even if an individual component is broken broken.

Another engineering pattern that works great in software is the circuit breaker. The
responsibility of a circuit breaker is to interrupt flow of electricity and protect various
devices from overload or even catching fire. The circuit breaker can be reset (man‐
ually or automatically) when the danger is gone. But, wouldn’t this cause the power to
be cut off your lights or heat or (in worst case scenario) your router? Not necessarily.
Those other electrical networks might be protected by other circuit breakers, and
thus they will still work. And most important, your house did not catch fire.

Hystrix implements both of these patterns in the area of system integration. Every
single command has a timeout (by default 1 second) and limited concurrency (by
default up to 10 concurrent commands from a given group). These rather aggressive
limits ensure that commands are not consuming too many resources like threads and
memory. Also, by applying timeouts we do not introduce excessive latency. We can
compare this behavior to the bulkhead in ship, because if one of our dependencies
begins to fail (remember, excessively high latency is indistinguishable from failure),
this problem will not affect our entire system. Timeouts and limited concurrency sig‐
nificantly reduce the number of threads blocked on an external system.

A circuit breaker, on the other hand, is even more clever. What if we discover that a
dependency that used to respond within 100 milliseconds times-out after 1 second
almost all the time. If calling this misbehaving dependency was part of some broader
request processing, nearly every transaction is now one second slower. Without Hys‐
trix, the latency could have been much bigger but timeouts can be achieved with pure
RxJava. Hystrix does much more than that. If it discovers that a particular command
keeps failing (either with an exception or timeout) too often (by default 50% of all
invocations) within certain time window (by default 10 seconds) it opens a circuit.

Managing Failures with Hystrix | 295

www.EBooksWorld.ir

What happens then is very interesting. Hystrix no longer invokes your failing com‐
mand, at all. Instead, it throws an exception immediately, failing fast.

It’s time to see Hystrix in action. First we need to mock-up MeetupApi using Mockito
so that it always fails with some unacceptable latency:

import static org.mockito.BDDMockito.given;
import static org.mockito.Matchers.anyDouble;
import static org.mockito.Mockito.mock;

MeetupApi api = mock(MeetupApi.class);
given(api.listCities(anyDouble(), anyDouble())).willReturn(
 Observable
 .<Cities>error(new RuntimeException("Broken"))
 .doOnSubscribe(() -> log.debug("Invoking"))
 .delay(2, SECONDS)
);

The default timeout is one second, so in fact you will never really see the "Broken"
exception because timeout will kick in first. Now, we would like to invoke MeetupApi
multiple times concurrently and see how Hystrix behaves:

Observable
 .interval(50, MILLISECONDS)
 .doOnNext(x -> log.debug("Requesting"))
 .flatMap(x ->
 new CitiesCmd(api, 52.229841, 21.011736)
 .toObservable()
 .onErrorResumeNext(ex -> Observable.empty()),
 5)

Using the interval() operator, we emit an event every 50 milliseconds. On each
event, we invoke CitiesCmd and swallow errors. Remember that in real projects you
will most likely want to at least log them using the doOnError() callback. Every 50
milliseconds Hystrix invokes our command and notices it times out after 1 second.
The command is actually even slower, but Hystrix prematurely interrupts it. When
you subscribe and run this program you will notice that CitiesCmd is invoked several
times but then suddenly stops. Although the "Requesting" message still appears
every 50 milliseconds, the command is no longer invoked.

Hystrix figured out via some heuristics that CitiesCmd is somewhat broken and thus
no longer calls it. Instead, whenever you attempt to call this command, the resulting
Observable fails immediately with an exception. This is a circuit breaker kicking in
and failing fast. Your command is no longer invoked because Hystrix realized it keeps
failing and there is no point in further calling it. When the failure rate exceeds 50%,
the circuit breaker opens and every subsequent attempt to call a command fails
instantaneously. By failure, Hystrix assumes either an exception or a timeout.

296 | Chapter 8: Case Studies

www.EBooksWorld.ir

The advantages of the circuit breaker are twofold. From the perspective of the appli‐
cation invoking the command, it would have failed anyway, but we get a response
faster, thus leading to better user experience. But it is even more interesting from the
server perspective—or whatever was the target of the request made within a com‐
mand. If your command keeps failing or timing out, it might be a sign that your
dependency (another service, database) is having difficulties. This can be a restart,
peak of traffic, or a very long GC pause. By cutting off this command with a circuit
breaker, you give the system room to breathe for a while. Maybe when the load spike
ends or internal job queue empties, the system will become responsive and healthy
again. This prevents your system from performing a distributed denial of service
(DDoS) attack on itself.

So how will Hystrix recognize that a downstream dependency is fine again and close
the circuit? Luckily, this process is automatic. In the previous example, at some point
in time we stopped seeing the "Invoking" log message, which implied that the circuit
was open and the command is no longer executed at all. This is not entirely true.
Once in a while (by default every five seconds), Hystrix will let one request and
invoke the command, checking whether it is fine this time. All other clients in the
meantime are still failing fast. If this single request succeeds, Hystrix assumes the
command is now healthy and closes the circuit; otherwise, the circuit remains open.

This property is known as self-healing and it is an important concept in computer sys‐
tems. Hystrix helps in two fronts. By temporarily turning off broken commands, it
allows downstream dependencies to recover. After they recover, the system returns
back to normal operations. Without mechanisms like this, even a minor glitch can
lead to cascading failures and manual restarts in order to restore the stability of vari‐
ous components.

Batching and Collapsing Commands
One of the most advanced features of Hystrix is the batching requests. Imagine that
you are making several small downstream requests throughout the course of han‐
dling one single upstream request. For example, suppose that you are displaying a list
of books, and for each book you must ask an external system for its rating:

Observable<Book> allBooks() { /* ... */ }
Observable<Rating> fetchRating(Book book) { /* ... */ }

The allBooks() method returns a stream of Books that we want to process, whereas
fetchRating() retrieves a Rating for each and every Book. Naive implementation
would simply iterate over all books and retrieve Rating one after another. Fortu‐
nately, running subtasks asynchronously in RxJava is very simple:

Observable<Rating> ratings = allBooks()
 .flatMap(this::fetchRating);

Managing Failures with Hystrix | 297

www.EBooksWorld.ir

4 Diagrams generated using this GitHub repo.

The diagrams that follow compare calling fetchRatings() sequentially versus using
flatMap(). The phases are send for transferring request, proc for server-side process‐
ing, and recv for transferring the response. The following image illustrates fetching
sequentially:4

The following image illustrates fetching using flatMap():

This works great and generally we see a satisfying performance. All fetchRating()
invocations are executed concurrently and greatly improve latency. However if you
consider that each invocation of fetchRating() implies a fixed amount of network
latency, calling it for dozens of books seems wasteful. Making one batch request for
all books and receiving one response with all ratings sounds much more productive:

Notice that all phases: sending, processing, and receiving, are slightly slower. All of
them either transfer or process more data, so this is understandable. Therefore, the
total latency is actually higher compared to multiple small requests. The improve‐
ment is questionable. But you must look at a bigger picture.

Although the latency of an individual request increased, system throughput is proba‐
bly greatly improved. The number of concurrent connections we can perform, net‐
work throughput and JVM threads are limited and scarce resources. If the
dependency you request has limited throughput, it is easy to saturate it with relatively
few transactions that take advantage of concurrency. A selfishly utilized flatMap()
improves latency of single request but can degrade performance of all other requests
by saturating resources. Therefore, we might want to sacrifice a little bit of latency in
order to achieve much better overall throughput without generating too much load
on downstream dependencies. In the end, the latency is actually improved, as well:
requests are more fair in sharing resources, so the latency is more predictable.

298 | Chapter 8: Case Studies

www.EBooksWorld.ir

https://github.com/drom/wavedrom

So how do we achieve batching? Hystrix knows about every single command you exe‐
cute. When it discovers that you are about to start two similar commands at the same
time (e.g., to fetch two Ratings) at the same time it can collapse these two commands
into one bigger batch command. This batch command is invoked, and when batch
response arrives, replies are mapped back to individual requests. First, we need an
implementation of the batch command that can retrieve multiple Ratings at once:

class FetchManyRatings extends HystrixObservableCommand<Rating> {

 private final Collection<Book> books;

 protected FetchManyRatings(Collection<Book> books) {
 super(HystrixCommandGroupKey.Factory.asKey("Books"));
 this.books = books;
 }

 @Override
 protected Observable<Rating> construct() {
 return fetchManyRatings(books);
 }

}

The fetchManyRatings() method takes several books as an argument and emits sev‐
eral Rating instances. Internally, it can make a single batch HTTP request asking for
several ratings, as opposed to the fetchRating(book) method, which always retrieves
just one. Asking for more than one Rating is surely slower but definitely faster than
asking for ratings sequentially. But we do not want to go through the hassle of man‐
ually batching several individual requests and then unzipping the batch response.
This might be easy when dealing with a single transaction, but what if we have multi‐
ple concurrent clients, each asking for some Rating? When two independent requests
from two browsers hit our server, we would still like to batch these two requests
together and make just one downstream call. However, this would require interthread
synchronization and some global registry of all requests. Imagine one thread trying to
invoke a given command and another thread invoking the same command (with dif‐
ferent arguments) just milliseconds later. We would like to wait a little bit after the
first request attempted to start a command, just in case another thread wants to
invoke the same command shortly thereafter. In that case, we want to capture these
two requests, merge them together, make just one batch request, and map batch
response back to individual requests. This is precisely what Hystrix is doing with a
little help from us:

public class FetchRatingsCollapser
 extends HystrixObservableCollapser<Book, Rating,
Rating, Book> {

 private final Book book;

Managing Failures with Hystrix | 299

www.EBooksWorld.ir

 public FetchRatingsCollapser(Book book) {
 //Explained below
 }

 public Book getRequestArgument() {
 return book;
 }

 protected HystrixObservableCommand<Rating> createCommand(
 Collection<HystrixCollapser.CollapsedRequest<Rating, Book>> requests) {
 //Explained below
 }

protected void onMissingResponse(
 HystrixCollapser.CollapsedRequest<Rating, Book> r)
{
 r.setException(new RuntimeException("Not found for: "
+ r.getArgument()));
}

 protected Func1<Book, Book> getRequestArgumentKeySelector() {
 return x -> x;
 }

 protected Func1<Rating, Rating> getBatchReturnTypeToResponseTypeMapper() {
 return x -> x;
 }

 protected Func1<Rating, Book> getBatchReturnTypeKeySelector() {
 return Rating::getBook;
 }

}

There is a lot of code here, so let’s dissect it step by step. When we want to retrieve
one Rating for a given Book, we create an instance of FetchRatingsCollapser like
that:

Observable<Rating> ratingObservable =
 new FetchRatingsCollapser(book).toObservable();

The client code is entirely oblivious to the batching and collapsing that’s happening,
thanks to HystrixObservableCollapser. From the outside, we use it as if it were
retrieving one Rating for one Book. But internally, there are a few interesting details
that allow batching. First, in the constructor, apart from storing Book for this request
we configure the collapsing of requests:

public FetchRatingsCollapser(Book book) {
 super(withCollapserKey(HystrixCollapserKey.Factory.asKey("Books"))
 .andCollapserPropertiesDefaults(HystrixCollapserProperties.Setter()
 .withTimerDelayInMilliseconds(20)
 .withMaxRequestsInBatch(50)

300 | Chapter 8: Case Studies

www.EBooksWorld.ir

)
 .andScope(Scope.GLOBAL));
 this.book = book;
}

20 milliseconds configured with withTimerDelayInMilliseconds() is the length of
time window during which collapsing occurs (the default is 10 milliseconds). When
the first individual request occurs, a 20 millisecond timer delays its actual invocation.
Within that time, Hystrix waits for other requests to come, possibly from other
threads. Hystrix speculatively delays the first request to see if more commands of the
same type arrive. When this time elapses or as many as 50 requests are already
queued up (withMaxRequestsInBatch(50) parameter), the gate is opened. At this
point, the library is supposed to invoke all queued commands in a single batch. But
Hystrix will not magically batch your command into one; you must instruct it how to
do this. Here’s how to do that:

protected HystrixObservableCommand<Rating>
createCommand(
 Collection<HystrixCollapser.CollapsedRequest<Rating,
Book>> requests) {
 List<Book> books = requests.stream()
 .map(c -> c.getArgument())
 .collect(toList());
 return new FetchManyRatings(books);
}

The responsibility of the createCommand() method is to translate individual requests
into one batch command. It receives a collection of all requests that were gathered
within the 20 milliseconds time frame and should now be merged into a single, batch
request. In our case, we construct an instance of FetchManyRatings command that
takes all Books for which we requested Ratings. Hystrix then invokes our batch com‐
mand and subscribes for multiple responses. Notice that HystrixObservableCommand
is allowed to return multiple values, which is exactly what we are looking for.

When values begin to emerge from FetchManyRatings, we must somehow map the
Rating instances to independent requests. Remember that at this point we might
have several individual threads and transactions, each waiting for just one Rating.
This routing and dispatching of batch response to small individual requests occurs
more or less automatically with the help of the following methods:

getRequestArgumentKeySelector()

This maps from an individual request argument (Book) into a key that will later
be used to map a batch response. In our case, we simply use the same Book
instance, thus the identity x -> x transformation.

Managing Failures with Hystrix | 301

www.EBooksWorld.ir

getBatchReturnTypeToResponseTypeMapper()

This maps one item from the batch response to one individual response. Again,
the identity x -> x transformation is sufficient in our case.

getBatchReturnTypeKeySelector()

You use this to instruct Hystrix which request key (Book) this particular response
(Rating) answers. For simplicities sake, each Rating returned from a batch
response has a getBook() method that indicates to which Book it is related.

Having all these methods in place (especially the last one: getBatchReturnTypeKeySe
lector()), Hystrix prepares a map of individual requests by request key (Book) and
whenever a new Rating appears from batch response it can automatically map that
response to request.

That’s quite a bit of plumbing to get batching to work, but it pays off quickly. When
multiple clients access the same downstream dependency—for example, a cache
server—we can collect many requests into one. This significantly cuts bandwidth
costs. When our dependency is a bottleneck and throughput is limited, collapsing
requests greatly reduces load on that dependency. However, batching introduces extra
latency on the client side. With a default configuration of 10 milliseconds (withTimer
DelayInMilliseconds(10)), under high load each request is delayed on average by 5
milliseconds. The actual delay depends on whether the request just started a new
timer or appeared just before current batch is about to collapse.

Notice that batching makes no sense under low load. If very rarely more than one
request forms a batch, you barely added an extra delay of 10 milliseconds to each
request. This is the time Hystrix pointlessly waits, hoping for other requests to come.
Thus, tuning of request batching is important. First, if your timer delay is 10 milli‐
seconds, batching makes sense only when you make at least 100 requests per second.
Otherwise, very rarely more than one request forms a batch.

Tuning withTimerDelayInMilliseconds

It’s tempting to have a very long timer delay to let as many requests
into a single batch as possible. Values like 100 milliseconds or even
1 second are fine but will work best in offline systems that generate
a lot of traffic and where latency is not an issue.

Batching is a feature that works best under high load. Thus Hystrix provides quite
comprehensive monitoring mechanism that helps you to understand the overall sys‐
tem performance.

302 | Chapter 8: Case Studies

www.EBooksWorld.ir

Monitoring and Dashboards
To work properly, Hystrix must collect a lot of statistics internally for each command
over time, like counting successful and failed invocations and response time distribu‐
tion. It would be kind of selfish to keep this precious data inside of the library, but not
to worry: Hystrix provides several ways to digest it. You can subscribe to several types
of streams prepared by Hystrix that emit events about occurrences within the library.
For example, the following code creates a stream of HystrixCommandCompletion
events emitted every time a command FetchRating completes:

import com.netflix.hystrix.metric.HystrixCommandCompletion;
import com.netflix.hystrix.metric.HystrixCommandCompletionStream;

Observable<HystrixCommandCompletion> stats =
 HystrixCommandCompletionStream
 .getInstance(HystrixCommandKey.Factory.asKey("FetchRating"))
 .observe();

HystrixCommandCompletionStream is a factory of such streams, but there are many
others like HystrixCommandStartStream or HystrixCollapserEventStream. Having
these streams inside your application allows you to build more sophisticated moni‐
toring mechanisms. For example, if you want to know how many times given com‐
mand failed per second, try this:

import static com.netflix.hystrix.HystrixEventType.FAILURE;

HystrixCommandCompletionStream
 .getInstance(HystrixCommandKey.Factory.asKey("FetchRating"))
 .observe()
 .filter(e -> e.getEventCounts().getCount(FAILURE) > 0)
 .window(1, TimeUnit.SECONDS)
 .flatMap(Observable::count)
 .subscribe(x -> log.info("{} failures/s", x));

But building a monitoring infrastructure on top of these streams requires a bit of
design and work. Also you might want to externalize monitoring from the actual
application. Hystrix, via the hystrix-metrics-event-stream module, supports
pushing all aggregated metrics via HTTP. If your application already runs on top of
or has an embedded servlet container, it is enough to add a built-in HystrixMetrics
StreamServlet to your mappings. Otherwise, you can start a tiny container yourself:

import
 com.netflix.hystrix.contrib.metrics.eventstream.
 HystrixMetricsStreamServlet;
import org.eclipse.jetty.server.Server;
import org.eclipse.jetty.servlet.ServletContextHandler;
import org.eclipse.jetty.servlet.ServletHolder;
import static org.eclipse.jetty.servlet.ServletContextHandler.NO_SESSIONS;

Managing Failures with Hystrix | 303

www.EBooksWorld.ir

//...

ServletContextHandler context = new ServletContextHandler(NO_SESSIONS);
HystrixMetricsStreamServlet servlet = new HystrixMetricsStreamServlet();
context.addServlet(new ServletHolder(servlet), "/hystrix.stream");
Server server = new Server(8080);
server.setHandler(context);
server.start();

Whether you mapped a servlet to an existing container or started your own, you can
now access Hystrix statistics streamed in real time. Notice that this connection is not
plain request-response but rather a server-sent events (SSEs) stream. Every second, a
new packet of statistics in JSON format is pushed to the client:

$ curl -v localhost:8080/hystrix.stream
> GET /hystrix.stream HTTP/1.1
...
< HTTP/1.1 200 OK
< Content-Type: text/event-stream;charset=UTF-8

ping:

data: {
 "currentConcurrentExecutionCount": 2,
 "errorCount": 0,
 "errorPercentage": 0,
 "group": "Books",
 "isCircuitBreakerOpen": false,
 "latencyExecute": {/* ... */},
 "latencyExecute_mean": 0,
 "latencyTotal": {"0":18, "25":80, "50":98, "75":120, "90":138,
 "95":146, "99":159, "99.5":159, "100":167},
 "latencyTotal_mean": 0,
 "name": "FetchRating",
 "propertyValue_circuitBreakerErrorThresholdPercentage": 50,
 "propertyValue_circuitBreakerSleepWindowInMilliseconds": 5000,
 "propertyValue_executionIsolationSemaphoreMaxConcurrentRequests": 10,
 "propertyValue_executionTimeoutInMilliseconds": 1000,
 "requestCount": 334
 ...
}

data: { ...

Even in this stripped down sample, you can see which command is measured, what is
the latency distribution (from 0th to 100th percentile), is a circuit breaker open, and
what are its parameters (error threshold, timeouts, and so on). This continuous
stream of data can further be consumed by custom monitoring tools and dashboards.
Yet again, Hystrix comes to the rescue and provides a very robust dashboard written
almost entirely in JavaScript that runs in the browser. All this standalone application

304 | Chapter 8: Case Studies

www.EBooksWorld.ir

—implemented in hystrix-dashboard—needs is a URL to your hystrix.stream.
The following graphic shows a sample dashboard:

For each command, there is a similar tile, each presenting several important telemet‐
ric details, including the following

• Number of commands executed, grouped by: success (289), timeout (14), failure
(31), short-circuited (0), and so on

• Latency percentiles (for example, we see that 90% of all requests took no longer
than 147 milliseconds) and short-term history on the chart

• Circuit breaker status and overall throughput
• Thread pool statistics if we use blocking HystrixCommand

The dashboard also can display streams aggregated from multiple servers via Turbine.
That is the reason why we see the number of hosts and cluster throughput as well,
even though the stream comes from just one machine. An Hystrix dashboard is very
useful because it can quickly show status of multiple commands in near real time. It is
also color coded, so if some commands begin to fail, their corresponding tiles become
red.

Hystrix is a useful tool in distributed systems where failures are inevitable. The com‐
mand pattern allows us to encapsulate and isolate error domains. Great integration
with RxJava make it a good choice in reactive applications that require better error
handling.

Managing Failures with Hystrix | 305

www.EBooksWorld.ir

https://github.com/Netflix/Turbine

Querying NoSQL Databases
A typical application these days has two high-latency origins of data: network calls
(mostly HTTP) and database queries. Retrofit (see “Retrofit with Native RxJava Sup‐
port” on page 280) is a fantastic source of Observables that are backed by an asyn‐
chronous HTTP call. When it comes to database access, we spent quite some time
looking at SQL databases (see “Relational Database Access” on page 187) that are his‐
torically blocking due to the JDBC API design. NoSQL databases are more modern in
that regard and often provide asynchronous, nonblocking client drivers. In this chap‐
ter, we will briefly explore Couchbase and MongoDB drivers that have native RxJava
support and can return Observable for each external call.

Couchbase Client API
Couchbase Server is a modern document database in the NoSQL family. What is
interesting is that Couchbase supports RxJava as first-class citizen in its client API.
Reactive extensions are not only used as a wrapper but are officially supported and
idiomatic when interacting with the database. Many other storage engines have a
nonblocking, asynchronous API but the creators of Couchbase chose RxJava as the
best foundation for the client layer.

As an example, let’s query the example dataset called travel-sample, which happens
to have a document for ID route_14197. In a sample dataset, the route document
looks as follows:

{
 "id": 14197,
 "type": "route",
 "airline": "B6",
 "airlineid": "airline_3029",
 "sourceairport": "PHX",
 "destinationairport": "BOS",
 "stops": 0,
 "equipment": "320",
 "schedule": [
 {
 "day": 0,
 "utc": "22:12:00",
 "flight": "B6928"
 },
 {
 "day": 0,
 "utc": "06:40:00",
 "flight": "B6387"
 },
 ...
 {
 "day": 1,

306 | Chapter 8: Case Studies

www.EBooksWorld.ir

http://www.couchbase.com

5 This characteristic is similar to Language Integrated Query (LINQ) on .NET platform.

 "utc": "08:16:00",
 "flight": "B6922"
 }
 ...

Every query returns an Observable, and from this point, we can safely transform
retrieved records in whatever way we find suitable:

CouchbaseCluster cluster = CouchbaseCluster.create();
cluster
 .openBucket("travel-sample")
 .get("route_14197")
 .map(AbstractDocument::content)
 .map(json -> json.getArray("schedule"))
 .concatMapIterable(JsonArray::toList)
 .cast(Map.class)
 .filter(m -> ((Number)m.get("day")).intValue() == 0)
 .map(m -> m.get("flight").toString())
 .subscribe(flight -> System.out.println(flight));

An AsyncBucket.get() returns an Observable<JsonDocument>. JSON documents
are inherently loosely typed so in order to extract meaningful information we must
traverse them with prior knowledge of their structure.

Knowing what the document looks like in advance, it is easy to understand transfor‐
mations on JsonDocument. The sequence of transformations first extracts the "sched
ule" element and further pulls all of the "flight" nodes that are for the "day" node
equal to 0. The Observer eventually receives strings of "B6928", "B6387", and so on.
Amazingly, RxJava works equally good for the following:

• Data retrieval, including timeouts, caching, and error handling
• Data transformation, like extracting, filtering, drilling down into data, and aggre‐

gating

This shows the power of the Observable abstraction that you can use in very differ‐
ent scenarios while still exposing the same concise API.5

MongoDB Client API
Just like Couchbase, MongoDB allows storing arbitrary JSON-like documents
without any predefined schema. The client library has first-class support for RxJava
allowing both asynchronous storing and querying of data. The following example
does both of these. It first inserts 12 documents into the database; as soon as the batch
insert is done, it queries them back:

Querying NoSQL Databases | 307

www.EBooksWorld.ir

https://www.mongodb.org

import com.mongodb.rx.client.*;
import org.bson.Document;
import java.time.Month;

MongoCollection<Document> monthsColl = MongoClients
 .create()
 .getDatabase("rx")
 .getCollection("months");

Observable
 .from(Month.values())
 .map(month -> new Document()
 .append("name", month.name())
 .append("days_not_leap", month.length(false))
 .append("days_leap", month.length(true))
)
 .toList()
 .flatMap(monthsColl::insertMany)
 .flatMap(s -> monthsColl.find().toObservable())
 .toBlocking()
 .subscribe(System.out::println);

The Month class is an enum having values from January to December. Also, we can
easily obtain any month’s length in both leap and nonleap years. First, we create
twelve BSON (binary JSON) documents, each representing one month with its
length. Then we batch insert List<Document> using insertMany() in MongoCollec
tion. This yields an Observable<Success> (the value itself does not contain any
meaningful information; it is a singleton). When the Success event appears, we can
query the database by calling find().toObservable(). Hopefully, the 12 documents
we just inserted are found. Excluding the automatically assigned _id property for
clarity, this is what is printed at the very end:

Document{{name=JANUARY, days_not_leap=31, days_leap=31}}
Document{{name=FEBRUARY, days_not_leap=28, days_leap=29}}
Document{{name=MARCH, days_not_leap=31, days_leap=31}}
...

Again, the true power comes from composition. With MongoDB’s RxJava driver, you
can easily query multiple collections at the same time and achieve concurrency
without really thinking about it much. The code snippet that follows makes two con‐
current requests to MongoDB and another one to some pricing service. Note that
first() is not an operator on Observable; rather, it is a MongoDB operator that
returns an Observable after constructing a query. find() is equivalent to the WHERE
clause in SQL, whereas projection() represent SELECT. first() is like LIMIT 1:

Observable<Integer> days = db.getCollection("months")
 .find(Filters.eq("name", APRIL.name()))
 .projection(Projections.include("days_not_leap"))
 .first()

308 | Chapter 8: Case Studies

www.EBooksWorld.ir

 .map(doc -> doc.getInteger("days_not_leap"));
Observable<Instant> carManufactured = db.getCollection("cars")
 .find(Filters.eq("owner.name", "Smith"))
 .first()
 .map(doc -> doc.getDate("manufactured"))
 .map(Date::toInstant);

Observable<BigDecimal> pricePerDay = dailyPrice(LocalDateTime.now());
Observable<Insurance> insurance = Observable
 .zip(days, carManufactured, pricePerDay,
 (d, man, price) -> {
 //Create insurance
 });

Technically, you can mix and match any Observables, irrespective of their nature and
source. The preceding example makes two queries to MongoDB to two different col‐
lections and another query in dailyPrice() that can—for example, return an Observ
able from Retrofit making an HTTP call. The bottom line is this: the source of
Observable is irrelevant, you can compose asynchronous computations and requests
any way you like. Do you plan on querying multiple databases combined with web
services and local file system operation? All of these can run concurrently and be
composed together with the same ease. After you grasp how RxJava behaves in gen‐
eral, every source of Observable is the same on the surface.

Camel Integration
In “Retrofit with Native RxJava Support” on page 280 we learned how to make an
HTTP request with excellent RxJava support. However, there are many other ways to
integrate systems, and a lot of them are built into the Apache Camel framework.
Camel has an astounding set of integration components with which you can connect
and exchange abstract messages with more than two hundred platforms. These
include technologies like AMQP, Amazon Web Services, Cassandra, ElasticSearch,
file system, FTP, Google APIs, JDBC, Kafka, MongoDB, SMTP, XMP, and much,
much more. Most of these components are capable of pushing abstract messages to
the client; for example, when new email arrives or a new file appears on the file sys‐
tem.

Camel also provides an RxJava adapter so that you can work with incoming messages
in a more declarative, reactive way.

Consuming Files with Camel
We can integrate with hundreds of systems in the same, uniform way, using RxJava’s
Observables and operators. For example, suppose that you want to monitor a filesys‐
tem for new files (compare with “Polling Periodically for Changes” on page 138).
With Camel’s support for RxJava, this task is very simple:

Camel Integration | 309

www.EBooksWorld.ir

http://camel.apache.org

CamelContext camel = new DefaultCamelContext();
ReactiveCamel reactiveCamel = new ReactiveCamel(camel);

reactiveCamel
 .toObservable("file:/home/user/tmp")
 .subscribe(e ->
 log.info("New file: {}", e));

This is it. After creating DefaultCamelContext and ReactiveCamel, we are ready to
begin consuming messages. Every integration platform supported by Camel is enco‐
ded via URI, file:/home/user in our case. By calling toObservable() with such a
URI, we create generic Observable<Message> that will emit an event every time a
new file appears in the designated directory. The URI itself for each type of integra‐
tion has dozens of configuration options. For example, by adding ?recur

sive=true&noop=true to file URI, we are asking Camel to look for files recursively
and to not delete them after discovery.

Receiving Messages from Kafka
Consuming data by polling the filesystem for changes is a surprisingly popular inte‐
gration technique, just like polling an FTP directory. But if you need a more robust,
faster, and reliable communication protocol, you should instead choose message
brokers based on the JMS specification or Kafka. Kafka is an open source publish–
subscribe message broker. It was designed to be fault tolerant and capable of handling
hundreds of thousands of messages per second. Kafka has a native Java API, but using
it from the Observable perspective is very tempting. The Camel integration is pretty
much the same, apart from a different URI:

reactiveCamel
 .toObservable("kafka:localhost:9092?topic=demo&groupId=rx")
 .map(Message::getBody)
 .subscribe(e ->
 log.info("Message: {}", e));

The idea that you can consume abstract messages from virtually any platform using
the same Observable API is astonishingly powerful. Camel provides the necessary
physical connection behind a consistent interface, whereas RxJava further enhances
this API with a plethora of operators. Camel and Retrofit (see “Retrofit with Native
RxJava Support” on page 280) are great starting points for reactive extensions in your
application. After you have a stable source of Observables, it is much easier to propa‐
gate reactive behavior further and further down in your stack.

Java 8 Streams and CompletableFuture
Sometimes there is a confusion as to which abstraction to use for concurrent pro‐
gramming, especially since Java 8. There are a few competing APIs that allow you to

310 | Chapter 8: Case Studies

www.EBooksWorld.ir

http://kafka.apache.org

express asynchronous computation in a clean way. This section compares all of them
to help you choose the right tool for the job. The available abstractions include the
following:

CompletableFuture

CompletableFuture introduced in Java 8 is a much more powerful extension to
the well-recognized Future from the java.util.concurrent package. Completa
bleFuture allows registering an asynchronous callback when Future completes
or fails rather than blocking and waiting for the result. But the true strength
comes from the composition and transformation capabilities, similar to what
Observable.map() and flatMap() offer. Despite being introduced in standard
JDK, not a single class in standard Java library depends or uses CompletableFu
ture. It is perfectly usable but not very well integrated into the Java ecosystem. To
learn about portability concerns with RxJava, see “A Short Introduction to Com‐
pletableFuture” on page 193.

Parallel Stream
Just like CompletableFutures, streams in java.util.stream were introduced in
JDK 8. Streams are a way to declare a sequence of operations like mapping, filter‐
ing, and so on prior to execution. All operations on a stream are lazy until a ter‐
minal operation is used, like collect() or reduce(). Also JDK can automatically
parallelize some operations on all available cores, which sounds very compelling.
Parallel streams promise transparent mapping, filtering, or even sorting of large
datasets on multiple cores. Streams are typically generated from a collection but
can just as well be created on the fly and infinite.

rx.Observable

An Observable represents a stream of events appearing in unpredictable
moments in time. It can represent zero, one, fixed, or infinite number of events,
available immediately or over time. Observable can terminate with completion
or error event. You should be fairly comfortable with what Observable is by now.

rx.Single

When RxJava matured it became apparent that a specialized type that represents
exactly one result is beneficial. The Single type is a stream that either completes
with exactly one value or with an error. In that sense, it is much like Completable
Future, but Singles are lazy, meaning that they do not begin computation until
subscribed. Single was described in “Observable versus Single” on page 202.

rx.Completable

Sometimes we invoke a certain computation purely for side effects, not expecting
any result. Sending an email or storing a record in a database are examples of
such operations that involve I/O (this can benefit from asynchronous processing)

Java 8 Streams and CompletableFuture | 311

www.EBooksWorld.ir

but do not return any meaningful result. Traditionally, CompletableFu

ture<Void> or Observable<Void> was used in such scenarios. However, the even
more specific Completable type better expresses the intent of asynchronous com‐
putation without result. Completable can notify about completion or error in
concurrent execution and just like all other Rx types, it is lazy.

Obviously, there are other ways of expressing asynchronous computation, such as the
following:

• Flux and Mono from project Reactor. These types are somewhat similar to Observ
able and Single, respectively.

• ListenableFuture from Guava.

However, we will keep our list of choices short by limiting it to JDK and RxJava.
Before we continue, let me state that if your application already uses CompletableFu
ture rather consistently, you should probably stick to it. Some APIs provided by Com
pletableFuture are a bit awkward, but in general this class delivers quite good
support for reactive programming. Moreover, we can expect more and more frame‐
works to take advantage and idiomatically support it. Supporting RxJava in third-
party libraries is more difficult because it requires additional dependency, whereas
CompletableFuture is part of JDK.

Usefulness of Parallel Streams
Let’s shift for a moment and discuss parallel streams from the standard JDK. In Java
8, when you transform a moderately big collection of objects you can transform them
declaratively with optional parallelism:

List<Person> people = //...

List<String> sorted = people
 .parallelStream()
 .filter(p -> p.getAge() >= 18)
 .map(Person::getFirstName)
 .sorted(Comparator.comparing(String::toLowerCase))
 .collect(toList());

Notice the parallelStream() rather than conventional stream() in the preceding
code snippet. By using parallelStream(), we ask for terminal operation like col
lect() to be performed in parallel rather than sequentially. Of course, this should not
have any impact on the result but is supposed to be much faster. Under the hood,
what parallelStream() does is split an input collection into multiple chunks, invoke
operations on each one of them in parallel, and then combine the results in a divide-
and-conquer spirit.

312 | Chapter 8: Case Studies

www.EBooksWorld.ir

https://projectreactor.io
http://bit.ly/2d3XllF

Many operators are very straightforward to parallelize—for example, map() and fil
ter()—others are a bit more difficult (like sorted()) because after sorting every
chunk separately we must combine them together, which in the case of sorting means
merging two sorted sequences. Some operations are inherently difficult or impossible
to parallelize without further assumptions. For example, reduce() can be performed
only if the accumulating function is associative.

Same Results?

There are operators that can yield different results under sequential
stream() and parallelStream(). For example, findFirst() oper‐
ator returns the very first element encountered in a stream. On the
other hand, a findAny() operator exists that seemingly does the
same thing. But whereas findFirst() always returns the very first
value from the stream, findAny() is free to return any value when
executed on parallel stream.
This can occur for example when the filter() operator was used
prior to findFirst() or findAny(). Execution of parallel
Stream() is free to split the input stream—for example, into two
halves and perform filtering in parallel on each half independently.
If filtering the second half yields any matching value first, fin
dAny() will return it, even if some matching values exist in first half
as well. findFirst() guarantees to return the first matching value
globally, so it must wait for the result of filtering of both halves.
Both methods have their merits and should be used deliberately.

Ideally, taking Amdahl’s law into account on a four-CPU machine, we can expect up
to four times faster execution. But parallel streams have their drawbacks. To begin
with, for small streams and short pipelines of transformations the cost of context
switching can be significant to the point at which parallel streams are slower than
their sequential counterparts. The problem of too fine-grained a concurrency can
potentially occur in RxJava as well, therefore it supports declarative concurrency via
Schedulers (see “What Is a Scheduler?” on page 141). The situation with parallel
streams is different.

Ever wondered why this framework is called parallel and not concurrent streams? Par‐
allel streams were only designed for CPU-intensive work and have a hardcoded
thread pool (ForkJoinPool, to be precise) that is aligned with the number of CPUs
we have. This pool is available statically and globally under ForkJoinPool.common
Pool(). Every parallel stream, as well as some CompletableFuture callbacks within
JVM share this ForkJoinPool. All parallel streams in the entire JVM (so in multiple
applications if you are deploying WAR files onto application server) share the same
small pool. This is generally fine because parallel streams were designed for parallel

Java 8 Streams and CompletableFuture | 313

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Amdahl%27s_law

tasks, which really need the CPU 100% of the time. Thus, if multiple parallel streams
are invoked concurrently they do compete for CPU, no matter what.

But imagine one selfish application running an I/O operation within a parallel
stream:

//DON'T DO THIS
people
 .parallelStream()
 .forEach(this::publishOverJms);

publishOverJms() sends a JMS message for each person in a stream. We intention‐
ally chose JMS sending. It seems fast, but due to delivery guarantees a JMS send will
most likely touch either network (to notify message broker) or disk (to persist mes‐
sage locally). This tiny amount of I/O latency is enough to hold precious ForkJoin
Pool.commonPool() threads for an excessively long time. Even though this program
is not using CPU, no other code within JVM is allowed to execute parallel stream.
Now imagine if this were not sending over JMS but retrieving data from web service
or making an expensive database query. parallelStream() can only ever be used for
entirely CPU-bound tasks, otherwise the performance of the JVM takes a significant
hit.

This does not imply that parallel streams are bad. However, due to the fixed thread
pool powering them they are of very limited use. Certainly, parallel streams from JDK
are not a replacement for Observable.flatMap() or other concurrency mechanisms.
Parallel streams work best when executed, well…in parallel. But concurrent tasks that
do not require the CPU 100% of the time—for example, being blocked on network or
disk—are better off using other mechanisms.

Knowing the limitations of streams lets us compare futures and RxJava to see where
they fit best.

Choosing the Appropriate Concurrency Abstraction
The closest equivalent to CompletableFuture in RxJava is Single. You can also use
Observable, keeping in mind that it can emit any number of values. One big differ‐
ence between futures and RxJava types is the laziness of the latter. When you have a
reference to CompletableFuture, you can be sure that background computation
already began, whereas Single and Observable will most likely begin to work only
when you subscribe to them. Knowing this semantic discrepancy, you can fairly easily
interchange CompletableFuture with Observable (see “CompletableFuture and
Streams” on page 193) and Single (see “Interoperability with Observable and Com‐
pletableFuture” on page 207).

For rare cases in which the result of asynchronous computation is unavailable or
irrelevant, CompletableFuture<Void> or Observable<Void> was used. Whereas the

314 | Chapter 8: Case Studies

www.EBooksWorld.ir

former is quite straightforward, the latter might suggest a potentially infinite stream
of empty events, whatever that means. Using rx.Single<Void> sounds as bad as a
future of Void. Thus, rx.Completable was introduced. Use Completable when your
architecture has many operations that have no meaningful result (but might result in
an exception). One example of such architecture is command-query separation
(CQS) wherein commands are asynchronous and by definition have no result.

When to Choose Observable?
When your application deals with a stream of events appearing over time (e.g., user
logins, GUI events, and push notifications), Observable is unbeatable. We never
mentioned it, but since version 1.0, Java has offered java.util.Observable, which
allows registering Observers and notifying them at the same time. Yet it lacks the fol‐
lowing:

• Composition capabilities (no operators)
• Generics (Observer has one update() method taking the Object representing an

arbitrary notification payload)
• Performance (synchronized keyword used everywhere, java.util.Vector

internally)
• Separation of concerns (in some sense, it combines Observable and PublishSub
ject under the same interface)

• Concurrency support (all observers are notified sequentially)
• Immutability

Observable from JDK is the best of what we can get in standard Java for declarative
modeling of events, right after addListener() methods in the GUI packages. If your
domain explicitly mentions events or flow of data, rx.Observable<T> is hard to beat.
The declarative expressiveness combined with a broad family of operators can solve
many of the problems you can come across. For cold Observables, you can take
advantage of backpressure to control the throughput, whereas in case of hot Observa
bles, you can use many flow control operators like buffer().

Memory Consumption and Leaks
RxJava is all about streams of events being processed in memory and on the fly. It
provides a consistent, rich API abstracting away the details of the event source. Ide‐
ally, we should keep only a very limited, fixed set of events in memory, between the
producer emitting events and the consumer storing them or forwarding to another
component. In reality, some components, especially when misused, can consume an
unlimited amount of memory. Obviously, memory is limited and we will eventually

Memory Consumption and Leaks | 315

www.EBooksWorld.ir

http://bit.ly/2d5sFTj
http://bit.ly/2d5sFTj

6 In RxJava 1.1.6, it is actually a HashSet.

encounter either OutOfMemoryError or a never-ending garbage collection loop. This
sections shows you a few examples of uncontrolled consumption and memory leaks
in RxJava and how to prevent them. A special type of memory leak, related to missing
unsubscriptions, was described in “Avoiding Memory Leaks in Activities” on page
278, in the Android section.

Operators Consuming Uncontrolled Amounts of Memory
There are operators that can consume any amount of memory depending only on the
nature of your stream. We will look at just few of them and try to take some safety
measures to avoid leaks.

distinct() caching all seen events

For example, distinct(), by definition, must store all encountered keys since the
subscription. The default overload of distinct() compares all seen events so far with
an internal cache set. If the same event (with respect to equals()) did not appear yet
in the stream, it is emitted and added to the cache for the future. This cache is never
evicted6 to guarantee that the same event never again appears. You can easily imagine
that if events are fairly big or frequent, this internal cache will just keep growing,
leading to memory leak.

For the purpose of this demonstration, we will use the following event simulating a
big chunk of data:

class Picture {
 private final byte[] blob = new byte[128 * 1024];
 private final long tag;

 Picture(long tag) { this.tag = tag; }

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (!(o instanceof Picture)) return false;
 Picture picture = (Picture) o;
 return tag == picture.tag;
 }

 @Override
 public int hashCode() {
 return (int) (tag ^ (tag >>> 32));
 }

 @Override

316 | Chapter 8: Case Studies

www.EBooksWorld.ir

 public String toString() {
 return Long.toString(tag);
 }
}

The following program is executed against a very memory constraint environment (-
mx32M: 32 MB of heap), emitting fairly large events as fast as it can:

Observable
 .range(0, Integer.MAX_VALUE)
 .map(Picture::new)
 .distinct()
 .sample(1, TimeUnit.SECONDS)
 .subscribe(System.out::println);

After running this, OutOfMemoryError appears very quickly because the internal
cache of distinct() can no longer hold more Picture instances. The CPU usage
shortly before crash is also quite severe due to the garbage collector being determined
to free some space. But even if rather than using the entire Picture as a key used to
distinguish events we use only Picture.tag the program still crashes, only much
later:

distinct(Picture::getTag)

This type of leak is even more dangerous. The problem slowly escalates without us
noticing, until it finally explodes in the least expected moment, often under high load.
To prove that distinct() is the root of memory leak, check out a similar program
that does not use distinct() but instead counts how many events were emitted per
second without any buffering. Your mileage may vary, but you can expect hundreds
of thousands of large messages per second processed without much pressure on
garbage collection or memory:

Observable
 .range(0, Integer.MAX_VALUE)
 .map(Picture::new)
 .window(1, TimeUnit.SECONDS)
 .flatMap(Observable::count)
 .subscribe(System.out::println);

So how do you avoid memory leaks related to distinct()?

• Avoid distinct() altogether. As simple as that, this operator is inherently dan‐
gerous when used incorrectly.

• Choose your key wisely. Ideally it should have finite and small value space. Enum
and byte are OK, long or String probably not. If you cannot prove that a given
type will only ever have very limited number of values (like enum) you are risking
memory leak.

Memory Consumption and Leaks | 317

www.EBooksWorld.ir

• Consider distinctUntilChanged() instead, which keeps track of only the last
seen event, not all of them.

• Do you really need uniqueness from the very beginning or can you maybe relax
this requirement? Maybe you somehow know that duplicates can ever appear
only within 10 seconds of one another? Then consider running distinct() on a
small window:

Observable
 .range(0, Integer.MAX_VALUE)
 .map(Picture::new)
 .window(10, TimeUnit.SECONDS)
 .flatMap(Observable::distinct)

Every 10 seconds we start a new window (see “Buffering Events to a List” on page
214) and ensure that there are no duplicates within that window. The window() oper‐
ator emits an Observable of all events that occurred within each time window.
Unique (with respect to distinct()) values in that window are immediately emitted.
When the 10-second window is over, a new window starts, but more importantly, the
cache associated with the old window is garbage-collected. Of course, within these 10
seconds we can still have a critical number of events causing OutOfMemoryError, so it
is better to use a window of fixed length (e.g., window(1000)) rather than fixed time.
Also, if nondistinct events appeared unfortunately right at the end of one window and
at the beginning of the next window, we will not discover a duplicate. This is a trade-
off of which you must be aware.

Buffering events with toList() and buffer()

The fact that toList() can consume an unlimited amount of memory is quite obvi‐
ous. Moreover, using toList() for infinite streams makes no sense. toList() emits
just one item on completion of upstream source—when the completion is not
expected, toList() will never emit anything. But it will continue to aggregate all
events in memory. Using toList() for very long streams is also questionable. You
should find a way of consuming the events on the fly or at least limiting the number
of upstream events using operators like take().

toList() makes sense when you need to look at all events of finite Observable at the
same time. This is rarely the case, you can apply predicates (like allMatch() and any
Match()), count items (count()), or reduce them to single aggregate value
(reduce()) without ever needing all events in memory at the same time. One use case
could be transforming an Observable<Observable<T>> into Observable<List<T>>
where the inner Observable has known fixed length:

.window(100)

.flatMap(Observable::toList)

318 | Chapter 8: Case Studies

www.EBooksWorld.ir

This is equivalent to the following:

.buffer(100)

Which brings us to buffer(). Before using buffer(), think deeply if you really need
to have a List<T> of all events within a time frame. Maybe an Observable<T> is
enough, for example, suppose that you need to know whether there were more than
five incidents of high priority in each second having an Observable<Incident>. You
want to produce an Observable<Boolean> that every second either emits true if a
large number of high priority incidents occurred within that second, or false other‐
wise. With buffer(), this is quite straightforward:

Observable<Incident> incidents = //...

Observable<Boolean> danger = incidents
 .buffer(1, TimeUnit.SECONDS)
 .map((List<Incident> oneSecond) -> oneSecond
 .stream()
 .filter(Incident::isHIghPriority)
 .count() > 5);

However, window() does not require buffering events into intermediate List but for‐
wards them on the fly. window() is equally convenient for the same task but keeps
constant memory usage.

Observable<Boolean> danger = incidents
 .window(1, TimeUnit.SECONDS)
 .flatMap((Observable<Incident> oneSecond) ->
 oneSecond
 .filter(Incident::isHIghPriority)
 .count()
 .map(c -> (c > 5))
);

Observable actually has much richer API compared to Stream from the JDK so you
might find yourself converting a Java Collection to Observable just for the sake of
better operators. For example, streams do not have support for a sliding window or
zipping.

That being said, you should prefer window() over buffer() when possible, especially
when the size of internal List accumulated in bufer() is impossible to predict and
manage.

Caching with cache() and ReplaySubject

The cache() operator is another obvious memory consumer. Even worse than dis
tinct(), cache() keeps a reference to every single event that it ever received from
upstream. It makes sense to use cache() for Observables that are known to have
fixed, short length. For example, when Observable is used to model an asynchronous

Memory Consumption and Leaks | 319

www.EBooksWorld.ir

7 Before backpressure was introduced in RxJava, that is how zip() was working. You could easily run into
unsynchronized streams leading to slow memory leak. If you are curious how zip() was reimplemented,
backpressure was first added to in version 0.20.0-RC2.

response of some component, using cache() is safe and desirable. Otherwise, each
Observer will trigger the request again, potentially leading to unanticipated side
effects. Conversely, caching long, possibly infinite Observables, especially hot ones,
makes very little sense. In the case of hot Observables, you are probably not interes‐
ted in historic events anyway.

The same story goes for ReplaySubject (see “rx.subjects.Subject” on page 51). Every‐
thing you place in such a Subject must be stored so that subsequent Observers get all
notifications, not only the future ones. The suggestions for both cache() and Replay
Subject are pretty much the same. If you find yourself using them, it is up to you to
guarantee that the source you are caching is finite and relatively short. Also if possible
try not to keep a reference to a cached Observable for too long, so that it can be
garbage-collected after a while.

Backpressure keeps memory usage low
Remember how we zipped together two sources of events that were producing events
at a different pace in “When Streams Are Not Synchronized with One Another: com‐
bineLatest(), withLatestFrom(), and amb()” on page 83? If you try to zip two sources,
one of which is even slightly slower than the other, zip()/zipWith() operators must
temporarily buffer the faster stream while waiting for corresponding events from the
slower one:

Observable<Picture> fast = Observable
 .interval(10, MICROSECONDS)
 .map(Picture::new);
Observable<Picture> slow = Observable
 .interval(11, MICROSECONDS)
 .map(Picture::new);

Observable
 .zip(fast, slow, (f, s) -> f + " : " + s)

You might expect this code to eventually crash with OutOfMemoryError because zip()
supposedly7 keeps its ever-growing buffer of events from fast, waiting for the slow
stream. But this is not the case; in fact, we almost immediately get the dreadful Mis
singBackpressureException. The zip() (and zipWith()) operator does not blindly
receive events at whatever throughput the upstream dictates. Instead, these operators
take advantage of backpressure (see “Backpressure” on page 226) and only request as
little data as possible. Therefore, if upstream Observables are cold and implemented

320 | Chapter 8: Case Studies

www.EBooksWorld.ir

properly, zip() will simply slow down the faster Observable by requesting less data
than it could technically produce.

In the case of interval(), though, the mechanism does not work this way. The inter
val() operator is cold because it starts the counter only when someone subscribes
and each Observer gets its own independent stream. Yet, after we already subscribed
to interval(), there is no way of slowing it down, by definition it must emit events at
a certain frequency. Therefore, it must ignore backpressure requests and possibly lead
to MissingBackpressureException. All we can do is drop the excess events (see
“Producers and Missing Backpressure” on page 233):

Observable
 .zip(
 fast.onBackpressureDrop(),
 slow.onBackpressureDrop(),
 (f, s) -> f + " : " + s)

But in case of MissingBackpressureException, how is it better than OutOfMemoryEr
ror? Well, missing backpressure fails fast, whereas out of memory can build up
slowly, consuming precious memory that could have been allocated elsewhere. But
missing backpressure can also occur in the least expected moment—for example,
when garbage collection happens. “Verifying emitted events” on page 263 discusses
how to unit test backpressure behavior.

Summary
It is much easier to begin with RxJava when some source of Observables appears in
our codebase. Implementing a new Observable from scratch is error-prone, so when
various libraries (like Hystrix, Retrofit, database client drivers) have native RxJava
support, it is much easier to begin. In “From Collections to Observables” on page 118
we slowly refactored existing application from imperative, collection-oriented style to
stream-oriented, declarative approach. But after you introduce libraries that are sour‐
ces of asynchronous Observables, the refactoring becomes much easier. The more
streams you have in your application, the more reactive API propagates up. It begins
at the data-acquisition level (database, web service and so on) and bubbles to service
and web layer. Suddenly our entire stack is written reactively. At some point, when
the usage of RxJava reaches a certain critical point in the project, there is no longer a
need for toBlocking(), because everything is a stream, top to bottom.

Summary | 321

www.EBooksWorld.ir

www.EBooksWorld.ir

CHAPTER 9

Future Directions

Ben Christensen

Because we took a long time in the 0.x phase before locking down the APIs in RxJava
1.0, it is a fairly mature and stable release. Also, as a result of our decision to support
Experimental and Beta markers on APIs, ongoing experimentation can continue
before promoting an API to Final. However, the 0.x/1.x phase still ended up with a
few decisions that warrant a breaking release; hence, a version 2.0 is being worked on.

Fundamentally, it will be very similar to 1.x, so it won’t require much change in your
thinking nor will it be a significant change for usage. Even as 2.0 is released, this book
will still apply in most regards. So why a version 2?

Reactive Streams
The first reason is to natively support the Reactive Streams API. Despite the RxJava
team being involved in the collaboration that led to Reactive Streams, RxJava v1 APIs
were already locked in and couldn’t change to adopt the interfaces in Reactive
Streams. Thus, RxJava v1 requires an adaptor, even though it semantically behaves
mostly like Reactive Streams. Version 2 will directly implement the Reactive Streams
types and comply with the spec so as to better support interoperability across the Java
community.

Observable and Flowable
Another reason is to split the Observable type into two types: Observable and Flowa
ble. It was a mistake to make everything require backpressure because not all use
cases warrant it. It has a slight performance overhead, but the primary reason why
this was a mistake is that it adds significant mental complexity to using Observable
and greatly increases the difficulty of creating custom operators.

323

www.EBooksWorld.ir

http://bit.ly/2d5x8Fv
http://www.reactive-streams.org

Pure push use cases should be able to use Observable as originally designed by Erik
Meijer without considering the request(n) semantics of Reactive Streams. These use
cases are quite common. Basically, all user interface (UI) use cases, such as on
Android, are pure push; the use of request(n) is confusing at best and unnecessarily
complicates things. Yes, the onBackpressureDrop style operators can be quite useful
in these cases, but those should be opt-in.

Thus, version 2 is going to return Observable back to being pure push without
request(n) and it will not implement the Reactive Streams types or spec. A new type,
Flowable will be added, which will be the “Observable with backpressure” that imple‐
ments the Reactive Streams Publisher type and spec. The name “Flowable” was
inspired by the Java 9 java.util.concurrent.Flow, which adopts the Reactive
Streams interfaces.

Having Observable and Flowable will also better communicate in public APIs what
the behavior of the data source is. If it is an Observable, it will push and the con‐
sumer must be ready. If it is a Flowable, it will do pull-push and only send as many
items as requested by the consumer. Bridging between them will be possible, similar
to how RxJava v1 does it, but it will be far more explicit, such as observable.toFlowa
ble(Strategy.DROP) which converts an Observable into a Flowable with the appro‐
priate backpressure strategy to apply if data is pushed faster than the consumer can
handle.

Performance
The last major reason for version 2 is the ability to improve overall performance
(reduce overhead) as it is no longer bound by the architectural limits of the version 1
design. This is partly achieved by reducing the allocation amount when building up
chains of operators, subscribing to, and running them. By default, Subscribers are
no longer wrapped into a SafeSubscriber (Flowable.safeSubscribe() is provided
for that) and there is no longer a need to cancel (unsubscribe in version 2 terminol‐
ogy) the chain on a terminal event.

The second source of performance improvements is an internal optimization meth‐
odology called operator-fusion (which extends the Reactive-Streams protocol), greatly
reducing the backpressure and queue-management overhead in many typical syn‐
chronous flow setups (and sometimes in asynchronous flows as well). In some bench‐
marks, throughput with backpressure-enabled flows are only 20–30% slower than
Java 8’s Stream (which is synchronous pull) implementation compared to the 100–
200% slower throughput of version 1.

324 | Chapter 9: Future Directions

www.EBooksWorld.ir

Migration
Because RxJava is heavily entrenched in applications, a breaking change would be
very difficult to adopt. Thus, version 2 is going to have a different package name and
Maven artifact IDs so that both version 1 and version 2 can coexist in an application.

v1 package v2 package v1 Maven v2 Maven
rx.* io.reactivex.* io.reactivex:rxjava io.reactivex.rxjava2:rxjava

Migrating from RxJava version 1 to version 2 will primarily come down to the follow‐
ing:

1. Changing package from rx. to io.reactivex.
2. If backpressure is wanted, changing from Observable to Flowable

RxJava v2 resides in the 2.x branch on GitHub, and the DESIGN.md document is an
effort by the community to capture the design decisions for version 2. Further infor‐
mation on the differences between versions 1 and 2 can be found on GitHub.

Migration | 325

www.EBooksWorld.ir

http://bit.ly/2d5x8Fv
http://bit.ly/2d42b29

www.EBooksWorld.ir

APPENDIX A

More HTTP Server Examples

This appendix expands the contents of “Beating the C10k Problem” on page 165 by
providing more examples of HTTP servers. These examples are not essential to
understand Chapter 5, but you might find them interesting. Also, some of these
examples are included in the benchmarks.

fork() Procedure in C Language
We will try to implement a concurrent HTTP server using C. If you are familiar with
C, you will find the following program fairly straightforward. Otherwise, do not
worry, you are not obligated to understand all of the details, just the overall idea.
Invoking fork() makes a copy of the current process, so that suddenly two processes
appear in the operating system: the original one (parent) and a child. This second
process has the exact same variables and state, the only difference is the result value
of fork():

#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <netinet/in.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
 signal(SIGCHLD, SIG_IGN);
 struct sockaddr_in serv_addr;
 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = INADDR_ANY;
 serv_addr.sin_port = htons(8080);
 int server_socket = socket(AF_INET, SOCK_STREAM, 0);
 if(server_socket < 0) {

327

www.EBooksWorld.ir

 perror("socket");
 exit(1);
 }
 if(bind(server_socket,
 (struct sockaddr *) &serv_addr,
 sizeof(serv_addr)) < 0) {
 perror("bind");
 exit(1);
 }
 listen(server_socket, 100);
 struct sockaddr_in cli_addr;
 socklen_t clilen = sizeof(cli_addr);
 while (1) {
 int client_socket = accept(
 server_socket, (struct sockaddr *) &cli_addr, &clilen);
 if(client_socket < 0) {
 perror("accept");
 exit(1);
 }
 int pid = fork();
 if (pid == 0) {
 close(server_socket);
 char buffer[1024];
 while(1) {
 if(read(client_socket,buffer,255) < 0) {
 perror("read");
 exit(1);
 }
 if(write(client_socket,
 "HTTP/1.1 200 OK\r\nContent-length: 2\r\n\r\nOK",
 40) < 0) {
 perror("write");
 exit(1);
 }
 }
 } else {
 if(pid < 0) {
 perror("fork");
 exit(1);
 }
 }
 close(client_socket);
 }
 return 0;
}

What really matters is the fork() invocation. In the parent (original process), it
returns the PID (process ID) of the child process. In the child (copied process) it
returns 0. In some sense, fork() is executed once (in the parent process) but returns
twice. If we discovered that we are a child process (fork() == 0), we are supposed to
handle the client connection. The server_socket is managed by the parent, so we

328 | Appendix A: More HTTP Server Examples

www.EBooksWorld.ir

can close it in the child. At the same time (concurrently!), the parent process closes
the client_socket (the child process has it still open anyway) and can accept()
another client connection. Of course, a parent can fork multiple child processes at the
same time, achieving higher concurrency.

Thread per Connection
Knowing that one thread is not enough to scale a server properly (see “Single threa‐
ded server” on page 167), we are about to rewrite it using some threading techniques.
Before we jump into implementation, let’s rework the SingleThread class a little bit
to avoid duplication in further examples:

abstract class HttpServer {

 void run(int port) throws IOException {
 final ServerSocket serverSocket = new ServerSocket(port, 100);
 while (!Thread.currentThread().isInterrupted()) {
 final Socket client = serverSocket.accept();
 handle(new ClientConnection(client));
 }
 }

 abstract void handle(ClientConnection clientConnection);
}

The ClientConnection class:

import org.apache.commons.io.IOUtils;

class ClientConnection implements Runnable {

 public static final byte[] RESPONSE = (
 "HTTP/1.1 200 OK\r\n" +
 "Content-length: 2\r\n" +
 "\r\n" +
 "OK").getBytes();

 public static final byte[] SERVICE_UNAVAILABLE = (
 "HTTP/1.1 503 Service unavailable\r\n").getBytes();

 private final Socket client;

 ClientConnection(Socket client) {
 this.client = client;
 }

 public void run() {
 try {
 while (!Thread.currentThread().isInterrupted()) {
 readFullRequest();
 client.getOutputStream().write(RESPONSE);

More HTTP Server Examples | 329

www.EBooksWorld.ir

 }
 } catch (Exception e) {
 e.printStackTrace();
 IOUtils.closeQuietly(client);
 }
 }

 private void readFullRequest() throws IOException {
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(client.getInputStream()));
 String line = reader.readLine();
 while (line != null && !line.isEmpty()) {
 line = reader.readLine();
 }
 }

 public void serviceUnavailable() {
 try {
 client.getOutputStream().write(SERVICE_UNAVAILABLE);
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }

}

This was just plain refactoring: we moved common boilerplate code like listening to
client connections in a loop to base class. Also, handling of the client connection was
factored out into a separate ClientConnection class. Extra serviceUnavailable()
will be used a little bit later. The only responsibility of the actual implementation of
the HttpServer is to somehow invoke run() of the ClientConnection—for example,
directly in refactored SingleThread:

public class SingleThread extends HttpServer {

 public static void main(String[] args) throws Exception {
 new SingleThread().run(8080);
 }

 @Override
 void handle(ClientConnection clientConnection) {
 clientConnection.run();
 }
}

Having this basic framework, we can quickly build more scalable implementation that
spawns new Thread per each ClientConnection:

public class ThreadPerConnection extends HttpServer {

 public static void main(String[] args) throws IOException {
 new ThreadPerConnection().run(8080);

330 | Appendix A: More HTTP Server Examples

www.EBooksWorld.ir

 }

 @Override
 void handle(ClientConnection clientConnection) {
 new Thread(clientConnection).start();
 }
}

Taking advantage of the fact that ClientConnection is also Runnable, we simply start
a Thread handling each new connection. Now the problem of the server being
blocked by a slow client is mitigated: handling of the connection occurs in the back‐
ground so that when data is read from and written to the client Socket, the main
thread can keep accepting new connections. Of course, if two clients connect at the
same time the main thread will start two background threads and continue operating.

Creating new threads without any limit has some drawbacks. On 64 bit JVM 1.8, each
thread consumes 1,024 KB of RAM by default (see -Xss flag). A thousand concurrent
connections, even idle, mean 1,000 threads and about 1 GB of stack space. Now, do
not be confused, stack space is independent from heap space, so your application will
consume far more than this a gigabyte.

Thread Pool of Connections
This time we will create a pool of idle threads at the outset, waiting for incoming con‐
nections. When a new ClientConnection wrapping client Socket appears, the first
idle thread from a pool is taken. A thread pool has many advantages over simply cre‐
ating threads on demand:

• Thread is already initialized and started, therefore you do not have to wait or
warm up, reducing client latency.

• We put a sharp limit on the total number of threads running in our system so
that we can safely reject connections under peak load rather than crashing.

• A thread pool has a configurable queue that can temporarily hold short peaks of
load.

• If both the pool and queue are saturated, there is also a configurable rejection
policy (error, running in client thread instead, etc.).

If we want to have a full control over threads being created, a thread pool is a much
better approach compared to simply creating a new thread every time. But what is
more important, we can put a strict limit on the total number of client threads and
manage spikes:

class ThreadPool extends HttpServer {

 private final ThreadPoolExecutor executor;

More HTTP Server Examples | 331

www.EBooksWorld.ir

 public static void main(String[] args) throws IOException {
 new ThreadPool().run(8080);
 }

 public ThreadPool() {
 BlockingQueue<Runnable> workQueue = new ArrayBlockingQueue<>(1000);
 executor = new ThreadPoolExecutor(100, 100, 0L,
 MILLISECONDS, workQueue,
 (r, ex) -> {
 ((ClientConnection) r).serviceUnavailable();
 });
 }

 @Override
 void handle(ClientConnection clientConnection) {
 executor.execute(clientConnection);
 }

}

When a ClientConnection needs to be handled, we off-load this task to a dedicated
ThreadPoolExecutor internally managing 100 threads. There is a bounded queue in
front of that pool (1,000 tasks) so in case of excessively large volumes of requests
RejectedExecutionHandler kicks in. Our server simply calls serviceUnavailable()
returning 503 immediately to the client (fail-fast behavior, see also “Managing Fail‐
ures with Hystrix” on page 291) rather than making the client wait endlessly.

Servlet 3.0 specification made it possible to write scalable applications on top of asyn‐
chronous servlets. The idea is to decouple the processing request from the container
thread. Whenever the application wants to send the response, it can do it from any
thread at any point in time. The original container thread that picked up the request
might be already gone or it might be handling some other request. This is a revolu‐
tionary idea; however, the rest of the application must be built this way. Otherwise,
the application is more responsive (the container thread pool is almost never satura‐
ted), but if there is another user thread that must process that request, we just shifted
the problem of thread explosion into a different place. When the number of threads
reaches several hundred or a few thousand, the application begins to misbehave; for
example, it begins responding slowly due to frequent garbage collection cycles and
context switching.

332 | Appendix A: More HTTP Server Examples

www.EBooksWorld.ir

APPENDIX B

A Decision Tree of Observable Operators

This appendix aims to help you find the appropriate operator from the RxJava uni‐
verse. With more than a hundred possible options, it is getting increasingly complex
to find a built-in operator that suits our needs best. The content of this appendix is
entirely copied from the official RxJava documentation, A Decision Tree of Observa‐
ble Operators, under Apache License Version 2.0. However, back references lead to
proper chapters in the book rather than online documentation. Most often there is an
entire chapter covering a given operator; sometimes there is just a brief mention or
example.

• I want to create a new Observable…
— that emits a particular item just(), see “Creating Observables” on page 34…

— that was returned from a function called at subscribe-time: start(), see
rxjava-async module.

— that was returned from an Action, Callable, Runnable, or something of
that sort, called at subscribe-time: from(), fromCallable(),: fromRunna
ble(), see “Creating Observables” on page 34 and “Infinite Streams” on
page 38.

— after a specified delay: timer(), see “Timing: timer() and interval()” on
page 43.

— that pulls its emissions from a particular Array, Iterable, or something like
that: from(), see “Creating Observables” on page 34.

— by retrieving it from a future: from(), see “Creating Observables” on page 34
and “CompletableFuture and Streams” on page 193.

— that obtains its sequence from a Future: from(), see “Creating Observables”
on page 34.

333

www.EBooksWorld.ir

http://bit.ly/2cOMRGL
http://bit.ly/2cOMRGL
http://bit.ly/2cONiAT

— that emits a sequence of items repeatedly: repeat(), see “Reusing Operators
Using compose()” on page 108.

— from scratch, with custom logic: create(), see “Mastering Observable.cre‐
ate()” on page 35.

— for each observer that subscribes: defer(), see “Embracing Laziness” on page
121.

— that emits a sequence of integers: range(), see “Creating Observables” on page
34…
— at particular intervals of time: interval(), see “Timing: timer() and inter‐

val()” on page 43…
— after a specified delay: timer(), see “Timing: timer() and interval()”

on page 43.
— that completes without emitting items: empty(), see “Creating Observables”

on page 34.
— that does nothing at all: never(), see “Creating Observables” on page 34

• I want to create an Observable by combining other Observables…
— and emitting all of the items from all of the Observables in whatever order

they are received: merge(), see “Treating Several Observables as One Using
merge()” on page 77.

— and emitting all of the items from all of the Observables, one Observable at a
time: concat(), see “Ways of Combining Streams: concat(), merge(), and
switchOnNext()” on page 97.

— by combining the items from two or more Observables sequentially to come
up with new items to emit…
— whenever each of the Observables has emitted a new item: zip(), see

“Pairwise Composing Using zip() and zipWith()” on page 79.
— whenever any of the Observables has emitted a new item: combineLat

est(), see “When Streams Are Not Synchronized with One Another:
combineLatest(), withLatestFrom(), and amb()” on page 83.

— by means of Pattern and Plan intermediaries And/Then/when(), see
rxjava-joins module.

— and emitting the items from only the most-recently emitted of those Observa
bles: switch(), see “Ways of Combining Streams: concat(), merge(), and
switchOnNext()” on page 97.

• I want emit the items from an Observable after transforming them…

334 | Appendix B: A Decision Tree of Observable Operators

www.EBooksWorld.ir

— one at a time with a function: map(), see “Core Operators: Mapping and Fil‐
tering” on page 61.

— by emitting all of the items emitted by corresponding Observables: flat
Map(), see “Wrapping Up Using flatMap()” on page 67…
— one Observable at a time, in the order they are emitted: concatMap(), see

“Preserving Order Using concatMap()” on page 75.
— based on all of the items that preceded them: scan(), see “Scanning Through

the Sequence with Scan and Reduce” on page 88.
— by attaching a timestamp to them: timestamp(), see “When Streams Are Not

Synchronized with One Another: combineLatest(), withLatestFrom(), and
amb()” on page 83.

— into an indicator of the amount of time that lapsed before the emission of the
item: timeInterval(), see “Timing Out When Events Do Not Occur” on page
251.

• I want to shift the items emitted by an Observable forward in time before ree‐
mitting them: delay(), see “Postponing Events Using the delay() Operator” on
page 72.

• I want to transform items and notifications from an Observable into items and
reemit them…
— by wrapping them in Notification objects: materialize(), see “Verifying

emitted events” on page 263…
— which I can then unwrap again with: dematerialize().

• I want to ignore all items emitted by an Observable and only pass along its com‐
pleted/error notification: ignoreElements(), see “flatMap() as Asynchronous
Chaining Operator” on page 131.

• I want to mirror an Observable but prefix items to its sequence: startWith(),
see “withLatestFrom() operator” on page 85…
— only if its sequence is empty: defaultIfEmpty().

• I want to collect items from an Observable and reemit them as buffers of items:
buffer(), see “Buffering events with toList() and buffer()” on page 318…
— containing only the last items emitted: takeLastBuffer().

• I want to split one Observable into multiple Observables (window(), see “Mov‐
ing window” on page 220)…
— so that similar items end up on the same Observable: groupBy(), see

“Criteria-Based Splitting of Stream Using groupBy()” on page 104.
• I want to retrieve a particular item emitted by an Observable…

A Decision Tree of Observable Operators | 335

www.EBooksWorld.ir

— the last item emitted before it completed: last(), see “Slicing and Dicing
Using skip(), takeWhile(), and Others” on page 94.

— the sole item it emitted: single(), see “Asserting Observable Has Exactly One
Item Using single()” on page 92.

— the first item it emitted: first(), see “Slicing and Dicing Using skip(), take‐
While(), and Others” on page 94.

• I want to reemit only certain items from an Observable…
— by filtering out those that do not match some predicate: filter(), see “Core

Operators: Mapping and Filtering” on page 61.
— that is, only the first item: first(), see “Slicing and Dicing Using skip(), take‐

While(), and Others” on page 94.
— that is, only the first item_s_: take(), see “Slicing and Dicing Using skip(),

takeWhile(), and Others” on page 94.
— that is, only the last item: last(), see “Slicing and Dicing Using skip(), take‐

While(), and Others” on page 94.
— that is, only item n: elementAt(), see “Slicing and Dicing Using skip(), take‐

While(), and Others” on page 94.
— that is, only those items after the first items…

— that is, after the first n items: skip(), see “Slicing and Dicing Using skip(),
takeWhile(), and Others” on page 94.

— that is, until one of those items matches a predicate: skipWhile(), see
“Timing Out When Events Do Not Occur” on page 251.

— that is, after an initial period of time: skip().
— that is, after a second Observable emits an item: skipUntil().

— that is, those items except the last items…
— that is, except the last n items: skipLast(), see “Slicing and Dicing Using

skip(), takeWhile(), and Others” on page 94.
— that is, until one of those items matches a predicate: takeWhile(), see

“Slicing and Dicing Using skip(), takeWhile(), and Others” on page 94.
— that is, except items emitted during a period of time before the source

completes: skipLast().
— that is, except items emitted after a second Observable emits an item:

takeUntil().
— by sampling the Observable periodically: sample(), see “Taking Periodic

Samples and Throttling” on page 212.

336 | Appendix B: A Decision Tree of Observable Operators

www.EBooksWorld.ir

— by only emitting items that are not followed by other items within some dura‐
tion: debounce(), see “Skipping Stale Events by Using debounce()” on page
221.

— by suppressing items that are duplicates of already-emitted items: dis
tinct(), see “Dropping Duplicates Using distinct() and distinctUntil‐
Changed()” on page 92…
— if they immediately follow the item they are duplicates of: distinctUntil

Changed(), see “Dropping Duplicates Using distinct() and distinctUntil‐
Changed()” on page 92.

— by delaying my subscription to it for some time after it begins emitting items:
delaySubscription().

A Decision Tree of Observable Operators | 337

www.EBooksWorld.ir

www.EBooksWorld.ir

Index

A
ab load tool, 177
accumulators, 89
acknowledgements, xxii
Activity-related memory leaks, 278-280
Akka toolkit, 41
Amdahl's law, 313
Android development

avoiding memory leaks, 278-280
overview of, 277
Retrofit library, 280-285
UI events as streams, 288-290
using schedulers, 285-288

Apache Camel, 309
Apache Commons Lang library, 108
application patterns

asynchronous chaining operators, 131-136
batching requests, 158
composing observables, 123
concurrency and, 154-158
declarative concurrency, 159-163
declarative subscription, 150-153
embracing laziness, 121
imperative concurrency, 125-131
lazy paging and concatenation, 124
moving from collections to Observables,

118
multithreading in RxJava, 140
polling periodically for changes, 138
replacing callbacks with streams, 136-138
translating Observables to plain collections,

118-121
using schedulers, 141-150, 163

ArrayBlockingQueue, 226

asynchronous network requests, xvii
asynchronous vs. synchronous execution, 5-8
AsyncSubject, 52

B
backpressure

built-in, 231-233
definition of term, 227
function of, 227
honoring requested data amounts, 237
producers and missing backpressure excep‐

tions, 233-236
purpose of, 226
in RxJava, 227-230

batching requests, 158, 297-302
BehaviorSubject, 52
benchmarking tools, 177
blocking programs, 127
BlockingObservable class, 118-121
buffering

benefits of, 214
by time periods, 217-220
events to lists, 215-217

bulkhead pattern, 295-297

C
C10k problem

approaches to scalability, 166
blocking vs. reactive servers, 177-182
challenges of, 165
nonblocking HTTP servers, 169-176
scalability and, 183
traditional thread-based HTTP servers, 167

callback hell, 3, 45

339

www.EBooksWorld.ir

Camel, 309
Campbell, George, xviii
cardinality

Completable type and, 19
composition and, 16
event streams and, 15
multiple-value representations, 16
in Observable vs. Future, 15
single-valued representations, 17
support for zero to infinity, 19

Cartesian product, 81
case studies

Android development with RxJava, 277-290
Camel integration, 309-310
Java 8 streams and CompetableFuture,

310-315
managing failure with Hystrix, 291-305
memory consumption and leaks, 315-321
querying NoSQL databases, 306-309

changes, polling for, 138
circuit breaker pattern, 295-297
cold vs. hot streams, 43, 225
Command design, 292
command-query separation (CQS), 315
comments and questions, xxii
Completable class, 311
CompletableFuture class

benefits of, 193
interoperability with Observable, 198-202
and Java 8 streams, 310-315
nonblocking code with, 194
vs. Observable, 195
ticket-booking example, 196

Composite design patterns, 149
concurrency

achieving in RxJava, 8-12
adopting, xvii
declarative, 140, 159-163
definition of term, 8
efficient use of, 2
imperative, 125-131
with subscribeOn(), 154-158

Concurrent Programming in Java (Lea), 3
ConnectableObservable

coordinating multiple subscribers, 53
hot vs. cold streams, 225
lifecycle of, 56-59
single subscriptions with, 54

contact information, xxii

Couchbase, 306-307
custom operators

implementing advanced operators, 110-115
reusing operators, 108-110

D
dashboards, monitoring, 303-305
data-driven design, 104
database systems

accessing relational databases, 187-192
NoSQL databases, 306-309

debugging
doOn()… callbaks, 270-272
measuring and monitoring, 272-274
schedulers in unit testing, 260-262
virtual time, 258-260

declarative concurrency, 140, 159-163
declarative subscription, 150-153
Design Patterns: Elements of Reusable Object-

Oriented Software (Gamma), 28, 292
Dropwizard metrics, 272
duality, 13
duplicates, dropping, 92-94, 212

E
eager execution vs. lazy execution, 12
errata, xxii
error handling

declarative try-catch replacement, 247-251
exceptions, 244-247
guidelines for reactive systems, 243
retrying after failures, 254-258
timeouts, 251-254

Event Dispatch Thread (EDT), 147
exceptions, 244-247
ExecutorCompletionService, 133, 194

F
fail-fast safety feature, 182, 295-297
failures, retrying after, 254-258
File Transfer Protocol (FTP), 140
filtering (see mapping and filtering)
flow control

buffering events to lists, 214-220
moving windows, 220
periodic sampling and throttling, 212-214
purpose of, 211
skipping stale events, 221-226

340 | Index

www.EBooksWorld.ir

fork() invocation, 327-329
Functional Reactive Programming (FRP), 2

G
Gamma, Erich, 28, 292
Gatling, 177
Goetz, Brian, 3
Graphite, 273
Gregg, Brendan, 20

H
hot vs. cold streams, 43, 225
HTTP clients, 184-187, 280
HTTP servers

blocking vs. reactive, 177-182
fork() procedure in C language, 327-329
nonblocking, 169-176
scalability and, 183
thread per connection, 329-331
thread pool of connections, 331
traditional thread-based, 167

Husain, Jafar, xvii
Hystrix

batching and collapsing commands,
297-302

benefits of, 291
bulkhead pattern and fail-fast, 295-297
first steps with, 292-294
monitoring with, 274, 303-305
nonblocking commands with, 294

I
I/O (input/output)

blocking vs. nonblocking, 20-25
limitations imposed on scalability, 165
with thread-based HTTP servers, 167

imperative, definition of term, 2
Implementing Domain-Driven Design (Ver‐

non), 104
Iteratable<T>, 28

J
Jackson library, 280
Jacobs, Matt, xviii
Java 8 streams

available abstractions, 310
concurrency abstraction selection, 314
selecting Observable, 315

usefulness of parallel streams, 312-314
Java Concurrency in Practice (Goetz), 3
Java Database Connectivity (JDBC), 187
Java Message Service (JMS), 136
java.util.stream, 311
JMeter, 177

K
Kafka, 227, 310
Kant, Nitesh, 20
Karnok, Dávid, xviii

L
lazy execution

vs. eager, 12
lazy paging and concatenation, 124
making Observable lazy, 121

Lea, Doug, 3
LinkedBlockingQueue, 226
LISTEN (SQL statement), 189-192
lists, buffering events to, 214-220

M
mapping and filtering

1-to-1 transformations, 64-67
core operators, 61-64
order of events, 73
postponing events, 72
preserving event order, 75-77
simple example of, 62
spawning asynchronous computation, 67-72

marble diagrams
amb() operator, 87
combineLatest() operator, 84
concatWith() operator, 123
distinctUntilChanged() operator, 139
flatMap() operator, 67
map() operator, 64
merge() operator, 78
structure of, 62
toList() operator, 119
zip() operator, 79
zipWith() operator, 79

mechanical sympathy, 20-25
Mechanical Sympathy (forum), 3
Meijer, Erik, xviii
memory consumption and leaks

in Android development, 278-280

Index | 341

www.EBooksWorld.ir

backpressure and, 320
caching, 319
challenges of, 315
distinct() operator, 316
event buffering, 318

MissingBackpressureException, 233-236
MongoDB, 307
monitoring and debugging

doOn…() callbacks, 270-272
Hystrix dashboards, 303-305
measuring and monitoring, 272-274

moving windows, 220
mutable accumulators, 91

N
Netflix API, xviii
Netty, 169-176
NoSQL databases

Couchbase Server, 306-307
MongoDB, 307-309

NOTIFY (SQL statement), 189-192
null, 114

O
Observable. cache() operator, 319
Observable.all(predicate) operator, 96
Observable.amb() operator, 87-88

marble diagram of, 87
Observable.ambWith() operator, 88
Observable.buffer() operator, 61, 214-221, 318
Observable.cache() operator, 37, 44
Observable.collect() operator, 91
Observable.combineLatest() operator, 83-85

marble diagram of, 84
Observable.compose() operator, 108-110
Observable.concat() operator, 97-104
Observable.concatMap() operator, 75
Observable.concatWith() operator, 97-104

marble diagram of, 123
Observable.contains(value) operator, 96
Observable.count() operator, 96
Observable.create() operator, 35-38, 35, 211,

242
Observable.debounce() operator, 221-226
Observable.delay() operator, 61, 72
Observable.distinct() operator, 92-94, 140, 316
Observable.distinctUntilChanged() operator,

93
marble diagram for, 139

Observable.doOn()… callback operators,
270-272

Observable.doOnNext() operator, 56, 66
Observable.elementA tOrDefault() operator, 96
Observable.elementAt(n) operator, 96
Observable.empty() operator, 34
Observable.error() operator, 34
Observable.exists(predicate) operator, 96
Observable.filter() operator

applying multiple times, 63
function of, 61, 66
marble diagram of, 62

Observable.first() operator, 95
Observable.firstOrDefault() operator, 96
Observable.flat MapIterable() operator, 69
Observable.flatMap() operator

asynchronous chaining with, 131-136
controlling concurrency of, 76
marble diagram of, 64, 67
order of events after, 73-75
using, 67-72

Observable.flatMapIterable() operator, 192, 241
Observable.from(values) operator, 34
Observable.fromCallable() operator, 42
Observable.getOrders() operator, 70
Observable.groupBy() operator, 104-107, 158
Observable.ignoreElements() operator, 134
Observable.interval() operator, 43, 212
Observable.just(value) operator, 34
Observable.last() operator, 95
Observable.lastOrDefault() operator, 96
Observable.lift() operator, 110-115
Observable.loadRecordsFor() operator, 74
Observable.map() operator, 61, 64-67, 111
Observable.merge() operator, 77-79, 97-104

marble diagram of, 78
Observable.never() operator, 34
Observable.observeOn() operator, 159-163
Observable.onBackpressureBuffer() operator,

235-241
Observable.onErrorResumeNext() operator,

249
Observable.onErrorReturn() operator, 248
Observable.publish() operator, 56
Observable.publish().refCount() operator, 54
Observable.range() operator, 228-230
Observable.range(from, n) operator, 34
Observable.recognize() operator, 69
Observable.reduce() operator, 90

342 | Index

www.EBooksWorld.ir

Observable.refCount() operator, 55
Observable.sample() operator, 212
Observable.scan() operator, 88-91
Observable.serialize() operator, 42, 53
Observable.single() operator, 92
Observable.singleOrDefault() operator, 96
Observable.skip(n) operator, 94
Observable.skipLast(n) operator, 95
Observable.startWith() operator, 86
Observable.subscribe() operator

coordinating multiple subscribers, 53
managing multiple subscribers, 37
manually managing subscribers, 49
single subscriptions, 54
unsubscribing, 33
watching Observable with, 30

Observable.subscribeOn() operator, 129-131,
150-158

Observable.switchOnNext() operator, 97-104
Observable.take(n) operator, 94
Observable.takeFirst(predicate) operator, 95
Observable.takeLast(n) operator, 95
Observable.takeUntil() operator, 33
Observable.takeUntil(predicate) operator, 95
Observable.takeWhile(predicate) operator, 95
Observable.throttleLast() operator, 214
Observable.throttleWithTimeout() operator,

222
Observable.timeout() operator, 251-254
Observable.timer() operator, 43
Observable.timestamp() operator, 83
Observable.toBlocking() operator, 119
Observable.toList() operator, 119-121, 318

marble diagram of, 119
Observable.unsubscribe() operator, 33
Observable.window() operator, 220
Observable.withLatestFrom() operator, 85
Observable.zip() operator, 79-83

marble diagram of, 79
Observable.zipWith() operator, 79-83

marble diagram of, 79
Observable.…OrDefault() operators, 96
Observable<HttpResponse>, 29
Observable<T>

advanced operators for, 88-94
controlling listeners, 32
creating Observables

error propagation, 42
factory methods for, 34

hot vs. cold streams, 43
infinite data streams and, 38-42
Observable.create(), 35-38
timing with timer() and interval(), 43

examples of, 28
handling more than one, 77-88
vs. Iterable<T>, 28
vs. other abstractions, 311
steam of events represented by, 27
subscribing to notifications from, 30
types of events produced, 29
use case, 45-51

Observable<Tweet>, 28
Observable<Void>, 29
Observer<T>, 32
online resources, xx
OnNext* events, 29, 53
operators and transformations (see also indi‐

vidual operators)
advanced operators, 88-94
benefits of, 61
chaining operators, 131-136
decision tree for selecting, 333-337
for backpressure, 226-242
for combining/separating streams, 94-107
for flow control, 211-226
for mapping and filtering, 61-77
for more than one Observable, 77-88
marble diagrams of, 62
purpose of operators, 61
writing custom operators, 107-115

P
pairwise composing, 79-83
parallel streams, 311, 312-314
parallelism

achieving in RxJava, 8-12
definition of term, 8

periodic sampling, 212-214
PostgreSQL, 189-192
producer-consumer coordination (see back‐

pressure; flow control)
projection, 104
property-based testing, 258
publish-subscribe pattern, 28
PublishSubject, 52
pushing vs. pulling data, 4, 119

Index | 343

www.EBooksWorld.ir

R
reactive applications

abstraction for single elements, 202-209
benefits of, 165
HTTP clients, 184-187
nonblocking methods for, 193-202
relational database access, 187-192
solving C10k (scalbility) problems, 165-183

reactive extensions
benefits of, xix
ConnectableObservable

coordinating multiple subscribers, 53
lifecycle of, 56-59
single subscriptions, 54

controlling listeners, 32
creating Observables

error propagation, 42
factory methods for, 34
hot vs. cold streams, 43
infinite data streams and, 38-42
Observable.create() operator, 35-38
timing with timer() and interval(), 43

Observable<T> event representation, 27, 29
Observable<T> examples, 28
Observable<T> vs. Iterable<T>, 28
Subject class, 51-53
subscribing to notifications, 30-32
use case, 45-51

Reactive Manifesto, 243
reactive programming (see also RxJava)

applying to existing applications, 117-164
benefits of, xix
defined, 1
efficiency gained with, 20-25
examples of, 1
vs. Functional Reactive Programming, 2
prerequisites to learning, xvii
reactive-functional vs. reactive-imperative, 2
scenarios for, 3
testing and troubleshooting, 243-275

Reactive Streams initiative, 227
reactive, definition of term, 2
reactive-functional, definition of term, 2
reactive-imperative, definition of term, 2
relational databases, accessing, 187-192
rendezvous algorithms, 228
ReplaySubject, 52, 320
resources, online, xx
ResultSet, 237

Retrofit library, 280-285
retrolambda, 286
rx.Observable<T> (see Observable<T>)
rx.Single<T> (see Single class)
rx.subjects.Subject (see Subject class)
RxAndroid project, 147
RxJava

basic concepts
async vs. sync, 5-8
blocking vs. nonblocking IO, 20-25
cardinality, 15-19
concurrency and parallelism, 8-12
duality, 13
lazy vs. eager types, 12
Observable type, 4
pushing vs. pulling data, 4

benefits and drawbacks of, 25, 27
case studies, 277-321
concept of, 1
developer community, 1
documentation, xx
vs. Functional Reactive Programming, 2
history of, xvii-xix
open source library, 1
operators and transformations in, 61-115
producer-consumer coordination, 211-242
reactive extensions for, 27-59
version 2.0, 323-325
version covered, xix

RxNetty, 169-176, 184-187

S
Safari Books Online, xxi
sampling, periodic, 212-214
Scheduler class

in Android development, 285-288
implementation details overview, 146-150
other uses for schedulers, 163
Schedulers.computation(), 142, 163
Schedulers.from(Executor executor), 143
Schedulers.immediate(), 144
Schedulers.io(), 142
Schedulers.newThread(), 141
Schedulers.test(), 146
Schedulers.trampoline(), 144
unit testing and, 260-262
uses for, 141

self-healing systems, 297
server-sent events (SSEs), 304

344 | Index

www.EBooksWorld.ir

servers (see HTTP servers)
Single class

combining responses, 205
creating and consuming, 203-205
interoperability with Observable and Com‐

pletableFuture, 207
vs. other abstractions, 311
uses for, 202
when to use, 208
zip() operator, 205

Spock framework, 259
Spring framework, 136
stale events, skipping, 221-226
Subject class

AsyncSubject, 52
BehaviorSubject, 52
error propagation in, 52
onNext() and, 53
PublishSubject, 52
pulling and pushing data with, 51
ReplaySubject, 52

Subscriber<T>, 32
synchronous execution

vs. asynchronous, 5-8
SyncOnSubscribe class, 239

T
testing and troubleshooting

error handling, 243-258
monitoring and debugging, 270-274
unit testing, 262-270

thread-per-Socket model, 166
throttling, 212-214
time periods, buffering by, 214-220
timeouts, 251-254
transformations (see operators and transforma‐

tions)
try-catch statements, 247-251
Tull, Aaron, xviii
Turbine, 305
typographical conventions, xx

U
unit testing, 260-270

V
Vernon, Vaughn, 104

W
Wiretap pattern, 66

Index | 345

www.EBooksWorld.ir

About the Authors
Tomasz Nurkiewicz is a software engineer at Allegro. He has spent the last decade
coding in Java and loves backend development. He is passionate about JVM lan‐
guages and open source technologies. He is also a frequent blogger for DZone and
speaks at leading Java conferences around the world. Tomasz can be reached on Twit‐
ter @tnurkiewicz and on his blog.

Ben Christensen is a software engineer focused on resilience, scale, and distributed
systems. Open source projects created while addressing these requirements include
Hystrix and RxJava.

Colophon
The animal on the cover of Reactive Programming with RxJava is a grison, or a South
American wolverine (Galictis cuja and Galictis vittata).

Grisons grow up to 24 inches in length and weigh between 2–6 pounds. The main
difference between the two extant species, the greater grison and the lesser grison, are
their size. The grison resembles the skunk in coloring—with a sharp white stripe that
extends from its forehead to the back of its neck; however, its body is more robust,
with a wider neck, shorter legs, and a smaller tail.

Grisons often live in semi-open shrubbery and low-elevation woodlands or forests.
They burrow and nest in holes in fallen trees or crevices in rocks. They mostly con‐
sume fruit and small animals.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from a Hungarian Plate. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.EBooksWorld.ir

https://github.com/Netflix/Hystrix
https://github.com/ReactiveX/RxJava
http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Introduction
	Who Should Read This Book
	Note from Ben Christensen
	Note from Tomasz Nurkiewicz
	Navigating This Book
	Online Resources
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	From Ben
	From Tomasz

	Chapter 1. Reactive Programming with RxJava
	Reactive Programming and RxJava
	When You Need Reactive Programming
	How RxJava Works
	Push versus Pull
	Async versus Sync
	Concurrency and Parallelism
	Lazy versus Eager
	Duality
	Cardinality

	Mechanical Sympathy: Blocking versus Nonblocking I/O
	Reactive Abstraction

	Chapter 2. Reactive Extensions
	Anatomy of rx.Observable
	Subscribing to Notifications from Observable
	Capturing All Notifications by Using Observer<T>

	Controlling Listeners by Using Subscription and Subscriber<T>
	Creating Observables
	Mastering Observable.create()
	Infinite Streams
	Timing: timer() and interval()
	Hot and Cold Observables

	Use Case: From Callback API to Observable Stream
	Manually Managing Subscribers

	rx.subjects.Subject
	ConnectableObservable
	Single Subscription with publish().refCount()
	ConnectableObservable Lifecycle

	Summary

	Chapter 3. Operators and Transformations
	Core Operators: Mapping and Filtering
	1-to-1 Transformations Using map()
	Wrapping Up Using flatMap()
	Postponing Events Using the delay() Operator
	Order of Events After flatMap()
	Preserving Order Using concatMap()

	More Than One Observable
	Treating Several Observables as One Using merge()
	Pairwise Composing Using zip() and zipWith()
	When Streams Are Not Synchronized with One Another: combineLatest(), withLatestFrom(), and amb()

	Advanced Operators: collect(), reduce(), scan(), distinct(), and groupBy()
	Scanning Through the Sequence with Scan and Reduce
	Reduction with Mutable Accumulator: collect()
	Asserting Observable Has Exactly One Item Using single()
	Dropping Duplicates Using distinct() and distinctUntilChanged()

	Slicing and Dicing Using skip(), takeWhile(), and Others
	Ways of Combining Streams: concat(), merge(), and switchOnNext()
	Criteria-Based Splitting of Stream Using groupBy()
	Where to Go from Here?

	Writing Customer Operators
	Reusing Operators Using compose()
	Implementing Advanced Operators Using lift()

	Summary

	Chapter 4. Applying Reactive Programming to Existing Applications
	From Collections to Observables
	BlockingObservable: Exiting the Reactive World
	Embracing Laziness
	Composing Observables
	Lazy paging and concatenation

	Imperative Concurrency
	flatMap() as Asynchronous Chaining Operator
	Replacing Callbacks with Streams
	Polling Periodically for Changes
	Multithreading in RxJava
	What Is a Scheduler?
	Declarative Subscription with subscribeOn()
	subscribeOn() Concurrency and Behavior
	Batching Requests Using groupBy()
	Declarative Concurrency with observeOn()
	Other Uses for Schedulers

	Summary

	Chapter 5. Reactive from Top to Bottom
	Beating the C10k Problem
	Traditional Thread-Based HTTP Servers
	Nonblocking HTTP Server with Netty and RxNetty
	Benchmarking Blocking versus Reactive Server
	Reactive HTTP Servers Tour

	HTTP Client Code
	Nonblocking HTTP Client with RxNetty

	Relational Database Access
	NOTIFY AND LISTEN on PostgreSQL Case Study

	CompletableFuture and Streams
	A Short Introduction to CompletableFuture
	Interoperability with CompletableFuture

	Observable versus Single
	Creating and Consuming Single
	Combining Responses Using zip, merge, and concat
	Interoperability with Observable and CompletableFuture
	When to Use Single?

	Summary

	Chapter 6. Flow Control and Backpressure
	Flow Control
	Taking Periodic Samples and Throttling
	Buffering Events to a List
	Moving window
	Skipping Stale Events by Using debounce()

	Backpressure
	Backpressure in RxJava
	Built-in Backpressure
	Producers and Missing Backpressure
	Honoring the Requested Amount of Data

	Summary

	Chapter 7. Testing and Troubleshooting
	Error Handling
	Where Are My Exceptions?
	Declarative try-catch Replacement
	Timing Out When Events Do Not Occur
	Retrying After Failures

	Testing and Debugging
	Virtual Time
	Schedulers in Unit Testing

	Unit Testing
	Monitoring and Debugging
	doOn…() Callbacks
	Measuring and Monitoring

	Summary

	Chapter 8. Case Studies
	Android Development with RxJava
	Avoiding Memory Leaks in Activities
	Retrofit with Native RxJava Support
	Schedulers in Android
	UI Events as Streams

	Managing Failures with Hystrix
	The First Steps with Hystrix
	Nonblocking Commands with HystrixObservableCommand
	Bulkhead Pattern and Fail-Fast
	Batching and Collapsing Commands
	Monitoring and Dashboards

	Querying NoSQL Databases
	Couchbase Client API
	MongoDB Client API

	Camel Integration
	Consuming Files with Camel
	Receiving Messages from Kafka

	Java 8 Streams and CompletableFuture
	Usefulness of Parallel Streams
	Choosing the Appropriate Concurrency Abstraction
	When to Choose Observable?

	Memory Consumption and Leaks
	Operators Consuming Uncontrolled Amounts of Memory

	Summary

	Chapter 9. Future Directions
	Reactive Streams
	Observable and Flowable
	Performance
	Migration

	Appendix A. More HTTP Server Examples
	fork() Procedure in C Language
	Thread per Connection
	Thread Pool of Connections

	Appendix B. A Decision Tree of Observable Operators
	Index
	About the Authors
	Colophon

