
www.EBooksWorld.ir

Exam Ref 70-761
Querying Data with
Transact-SQL

Itzik Ben-Gan

www.EBooksWorld.ir

Exam Ref 70-761 Querying Data with Transact-SQL

Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2017 by Itzik Ben-Gan

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms, and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/. No patent liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-1-5093-0433-2
ISBN-10: 1-5093-0433-9

Library of Congress Control Number: 2017935711

First Printing April 2017

Trademarks

Microsoft and the trademarks listed at https://www.microsoft.com on the “Trademarks” webpage are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an “as is” basis. The authors, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this book or programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief

Acquisitions Editor

Development Editor

Managing Editor

Senior Project Editor

Editorial Production

Copy Editor

Indexer

Proofreader

Technical Editor

Cover Designer

Greg Wiegand

Trina MacDonald

Troy Mott

Sandra Schroeder

Tracey Croom

Backstop Media

Christina Rudloff

Julie Grady

Christina Rudloff

Dejan Sarka

Twist Creative, Seattle

www.EBooksWorld.ir

http://www.pearsoned.com/permissions/
https://www.microsoft.com

In memory of my dad, Gabriel Ben-Gan, who appreciated the
beauty of numbers, logic and puzzles.

—Itzik

www.EBooksWorld.ir

This page intentionally left blank

www.EBooksWorld.ir

Contents at a glance

Introduction	 xi

Preparing for the exam	 xv

CHAPTER 1	 Manage data with Transact-SQL	 1

CHAPTER 2	 Query data with advanced Transact-SQL components	 129

CHAPTER 3	 Program databases by using Transact-SQL	 221

Index	 325

www.EBooksWorld.ir

This page intentionally left blank

www.EBooksWorld.ir

vii

Contents

	 Introduction	 xi
Organization of this book. xi

Microsoft certifications . xii

Acknowledgments . xii

Free ebooks from Microsoft Press. xii

Microsoft Virtual Academy. xiii

Quick access to online references. xiii

Errata, updates, & book support. xiii

We want to hear from you . xiv

Stay in touch . xiv

Preparing for the exam	 xv

Chapter 1	 Manage data with Transact-SQL	 1
Skill 1.1: Create Transact-SQL SELECT queries . 1

Understanding the foundations of T-SQL	 2

Understanding logical query processing	 10

Getting started with the SELECT statement	 17

Filtering data with predicates	 21

Sorting data	 28

Filtering data with TOP and OFFSET-FETCH	 33

Combining sets with set operators	 39

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

https://aka.ms/tellpress

www.EBooksWorld.ir

https://www.aka.ms/tellpress

viii Contents

Skill 1.2: Query multiple tables by using joins . 45

Cross joins	 46

Inner joins	 48

Outer joins	 52

Queries with composite joins and NULLs in join columns	 58

Multi-join queries	 65

Skill 1.3: Implement functions and aggregate data 67

Type conversion functions	 68

Date and time functions	 69

Character functions	 72

CASE expressions and related functions	 76

System functions	 79

Arithmetic operators and aggregate functions	 83

Search arguments	 86

Function determinism	 90

Skill 1.4: Modify data . 93

Inserting data	 93

Updating data	 100

Deleting data	 107

Merging data	 110

Using the OUTPUT option	 115

Impact of structural changes on data	 121

Chapter summary. 124

Thought experiment. 125

Thought experiment answer. 126

Chapter 2	 Query data with advanced Transact-SQL components	 129
Skill 2.1: Query data by using subqueries and APPLY 129

Subqueries	 130

The APPLY operator	 137

Skill 2.2: Query data by using table expressions . 141

Table expressions, described	 142

Table expressions or temporary tables?	 142

Derived tables	 143

www.EBooksWorld.ir

ixContents

Common table expressions	 146

Views and inline table-valued functions	 148

Skill 2.3: Group and pivot data by using queries . 150

Writing grouped queries	 151

Pivoting and Unpivoting Data	 160

Using Window Functions	 167

Skill 2.4: Query temporal data and non-relational data 176

System-versioned temporal tables	 177

Query and output XML data	 192

Query and output JSON data	 205

Chapter summary. 216

Thought experiment. 218

Thought experiment answer. 218

Chapter 3	 Program databases by using Transact-SQL	 221
Skill 3.1: Create database programmability objects by

using Transact-SQL . 221

Views	 222

User-defined functions	 237

Stored procedures	 250

Skill 3.2: Implement error handling and transactions 263

Understanding transactions	 264

Error handling with TRY-CATCH	 282

Skill 3.3: Implement data types and NULLs . 306

Working with data types	 306

Handling NULLs	 314

Chapter summary. 321

Thought experiment  . 322

Thought experiment answer. 323

Index	 325

www.EBooksWorld.ir

This page intentionally left blank

www.EBooksWorld.ir

xiIntroduction

Introduction

The 70-761 exam focuses on T-SQL querying and programming constructs. Whether you’re
taking it as part of a Microsoft data platform related certification path, or to assess your

T-SQL skills for any other reason, this is a crucial exam, since it covers the essential language
constructs. If you need to do work with any of the Microsoft data platform technologies, a
good grasp of T-SQL is vital.

The exam covers query constructs like filtering, grouping and sorting, combining data
from multiple tables using joins, subqueries, set operators, modifying data, as well as some
aspects of data definition like choosing data types and enforcing data integrity. The exam
also covers more advanced query constructs like pivoting and unpivoting data, using win-
dow functions, grouping sets, using the APPLY operator, the complexities of NULLs, as well as
implicit conversions. The exam covers querying system-versioned temporal tables, as well as
XML and JSON data. The exam also covers T-SQL modules and programmatic constructs like
views, user-defined functions, and stored procedures, as well as working with transactions
and error handling.

This exam is intended for SQL Server database administrators, system engineers, and
developers with two or more years of experience who are seeking to validate their skills and
knowledge in writing queries.

This book covers every major topic area found on the exam, but it does not cover every
exam question. Only the Microsoft exam team has access to the exam questions, and Microsoft
regularly adds new questions to the exam, making it impossible to cover specific questions.
You should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely comfort-
able with, use the “Need more review?” links you’ll find in the text to find more information
and take the time to research and study the topic. Great information is available on MSDN,
TechNet, and in blogs and forums.

Organization of this book

This book is organized by the “Skills measured” list published for the exam. The “Skills measured”
list is available for each exam on the Microsoft Learning website: https://aka.ms/examlist. Each
chapter in this book corresponds to a major topic area in the list, and the technical tasks in
each topic area determine a chapter’s organization. If an exam covers six major topic areas,
for example, the book will contain six chapters.

www.EBooksWorld.ir

https://www.aka.ms/examlist

xii Introduction

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premises and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

MORE INFO  ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifications,
go to https://www.microsoft.com/learning.

Acknowledgments

Itzik Ben-Gan Writing a book is a demanding yet rewarding project. A big part of what makes
it rewarding is that you get to work with other people, and together create something that will
hopefully contribute to increase technological and scientific knowledge out there. I’d like to
recognize those who were involved in this book for their contributions. Special thanks to Trina
MacDonald, my editor, for your outstanding handling of the project. Many thanks to Dejan
Sarak who tech edited the book, as well as wrote the section about querying XML and JSON
data. I know I can always count on you both in terms of your depth of knowledge and ethics.
Thanks, are also due to Troy Mott, the book’s Development Editor, Christina Rudloff, the Copy
Editor, Ellie Volckhausen who handled the book’s layout, and Julie Grady, the book’s Indexer.
Lastly, to Lilach, my wife, for helping with the first reviews, and for giving reason to what I do.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from
Microsoft Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and
Mobi for Kindle formats, ready for you to download at:

https://aka.ms/mspressfree

Check back often to see what is new!

www.EBooksWorld.ir

https://www.microsoft.com/learning
https://www.aka.ms/mspressfree

xiiiIntroduction

Microsoft Virtual Academy

Build your knowledge of Microsoft technologies with free expert-led online training from
Microsoft Virtual Academy (MVA). MVA offers a comprehensive library of videos, live events,
and more to help you learn the latest technologies and prepare for certification exams. You’ll
find what you need here:

https://www.microsoftvirtualacademy.com

Quick access to online references

Throughout this book are addresses to webpages that the author has recommended you visit
for more information. Some of these addresses (also known as URLs) can be painstaking to
type into a web browser, so we’ve compiled all of them into a single list that readers of the
print edition can refer to while they read.

Download the list at https://aka.ms/exam761transactsql/downloads.

The URLs are organized by chapter and heading. Every time you come across a URL in the
book, find the hyperlink in the list to go directly to the webpage.

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

https://aka.ms/exam761transactsql/errata

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
https://support.microsoft.com.

Download the source code and sample database from the book’s website

https://aka.ms/exam761transactsql/detail

The author also created a personal companion website for the book, which you can find at
http://tsql.solidq.com/books/er70761.

In order to run the code samples from the book, you will need access to SQL Server 2016
with Service Pack1 or later, or Azure SQL Database.

www.EBooksWorld.ir

https://www.microsoftvirtualacademy.com
https://www.aka.ms/exam761transactsql/downloads
https://www.aka.ms/exam761transactsql/errata
https://www.support.microsoft.com
https://www.aka.ms/exam761transactsql/detail
http://www.tsql.solidq.com/books/er70761

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

https://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers go
directly to the editors at Microsoft Press. (No personal information will be requested.) Thanks
in advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

www.EBooksWorld.ir

https://www.aka.ms/tellpress
http://www.twitter.com/MicrosoftPress

xvIntroduction

Important: How to use this book to study for the exam
Certification exams validate your on-the-job experience and product knowledge. To gauge
your readiness to take an exam, use this Exam Ref to help you check your understanding of the
skills tested by the exam. Determine the topics you know well and the areas in which you need
more experience. To help you refresh your skills in specific areas, we have also provided “Need
more review?” pointers, which direct you to more in-depth information outside the book.

The Exam Ref is not a substitute for hands-on experience. This book is not designed to
teach you new skills.

We recommend that you round out your exam preparation by using a combination of
available study materials and courses. Learn more about available classroom training at
https://www.microsoft.com/learning. Microsoft Official Practice Tests are available for many
exams at https://aka.ms/practicetests. You can also find free online courses and live events
from Microsoft Virtual Academy at https://www.microsoftvirtualacademy.com.

This book is organized by the “Skills measured” list published for the exam. The
“Skills measured” list for each exam is available on the Microsoft Learning website:
https://aka.ms/examlist.

Note that this Exam Ref is based on publicly available information and the author’s
experience. To safeguard the integrity of the exam, authors do not have access to the exam
questions.

www.EBooksWorld.ir

https://www.microsoft.com/learning
https://www.aka.ms/practicetests
https://www.microsoftvirtualacademy.com
https://www.aka.ms/examlist

This page intentionally left blank

www.EBooksWorld.ir

		 	 1

C H A P T E R 1

Manage data with
Transact-SQL
Transact-SQL (T-SQL) is the main language used to manage and manipulate data in

Microsoft SQL Server and Azure SQL Database. If you work with any of the Microsoft
SQL products—as a developer, DBA, BI professional, data
analyst, data scientist, or in any other capacity—you need to
know your T-SQL. Exam 70-761 is a foundational exam that
tests your T-SQL querying knowledge, and is a required part
of several of the Microsoft SQL certification paths.

This chapter focuses on managing data with T-SQL. It
covers the elements of the SELECT statement, how to com-
bine data from multiple tables with set operators and joins,
use of built-in functions, and how to modify data.

Skills in this chapter:
■■ Create Transact-SQL SELECT queries

■■ Query multiple tables by using joins

■■ Implement functions and aggregate data

■■ Modify data

Skill 1.1: Create Transact-SQL SELECT queries

To write correct and robust T-SQL code, it’s important to first understand the roots of the
language, as well as a concept called logical query processing. You also need to understand
the structure of the SELECT statement and how to use its clauses to perform data manipula-
tion tasks like filtering and sorting. You often need to combine data from different sources,
and one of the ways to achieve this in T-SQL is using set operators.

I M P O R T A N T

Have you read
page xv?
It contains valuable
information regarding
the skills you need to
pass the exam.

www.EBooksWorld.ir

	 2	 Chapter 1	 Manage data with Transact-SQL

This section covers how to:
■■ Identify proper SELECT query structure

■■ Write specific queries to satisfy business requirements

■■ Construct results from multiple queries using set operators

■■ Distinguish between UNION and UNION ALL behavior

■■ Identify the query that would return expected results based on provided table
structure and/or data

Understanding the foundations of T-SQL
Many aspects of computing, like programming languages, evolve based on intuition and the
current trend. Without strong foundations, their lifespan can be very short, and if they do
survive, often the changes are very rapid due to changes in trends. T-SQL is different, mainly
because it has strong foundations—mathematics. You don’t need to be a mathematician to
write SQL well (though it certainly doesn’t hurt), but as long as you understand what those
foundations are, and some of their key principles, you will better understand the language
you are dealing with. Without those foundations, you can still write T-SQL code—even code
that runs successfully—but it will be like eating soup with a fork!

Evolution of T-SQL
As mentioned, unlike many other aspects of computing, T-SQL is based on strong mathemati-
cal foundations. Understanding some of the key principles from those foundations can help
you better understand the language you are dealing with. Then you will think in T-SQL terms
when coding in T-SQL, as opposed to coding with T-SQL while thinking in procedural terms.

Figure 1-1 illustrates the evolution of T-SQL from its core mathematical foundations.

FIGURE 1-1  Evolution of T-SQL

T-SQL is the main language used to manage and manipulate data in the Microsoft rela-
tional database management systems (RDBMSs) SQL Server (the box product), and Azure SQL
Database (the cloud platform). The code base for both the cloud platform and the box prod-

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 3

uct is one unified code base. For simplicity I will use the term SQL Server in reference to both,
as far as T-SQL is concerned. SQL Server also supports other languages, like Microsoft Visual
C# and Microsoft Visual Basic, but T-SQL is usually the preferred language for data manage-
ment and manipulation.

T-SQL is a dialect of standard SQL. SQL is a standard of both the International Organization
for Standards (ISO) and the American National Standards Institute (ANSI). The two standards
for SQL are basically the same. The SQL standard keeps evolving with time. Following is a list
of the major revisions of the standard so far:

■■ SQL-86

■■ SQL-89

■■ SQL-92

■■ SQL:1999

■■ SQL:2003

■■ SQL:2006

■■ SQL:2008

■■ SQL:2011

All leading database vendors, including Microsoft, implement a dialect of SQL as the main
language to manage and manipulate data in their database platforms. Therefore, the core
language elements look the same. However, each vendor decides which features to implement,
and which features to not implement. Also, the standard sometimes leaves some aspects as
an implementation choice. Each vendor also usually implements extensions to the standard in
cases where the vendor feels that an important feature isn’t covered by the standard.

Writing in a standard way is considered a best practice. When you do so, your code is
more portable. Your knowledge is more portable, too, because it is easy for you to start
working with new platforms. When the dialect you’re working with supports both a standard
and a nonstandard way to do something, you should always prefer the standard form as your
default choice. You should consider a nonstandard option only when it has some important
benefit to you that is not covered by the standard alternative.

As an example of when to choose the standard form, T-SQL supports two “not equal to”
operators: <> and !=. The former is standard and the latter is not. In this case, the choice
should be obvious: go for the standard one!

As an example of when the choice of standard or nonstandard depends on the circumstanc-
es, consider the following: T-SQL supports multiple functions that convert a source expression
to a target type. Among them are the CAST and CONVERT functions. The former is standard
and the latter isn’t. The nonstandard CONVERT function has a style argument that CAST doesn’t
support. Because CAST is standard, you should consider it your default choice for conversions.
You should consider using CONVERT only when you need to rely on the style argument.

Yet another example of choosing the standard form is in the termination of T-SQL state-
ments. According to standard SQL, you should terminate your statements with a semicolon.

www.EBooksWorld.ir

	 4	 Chapter 1	 Manage data with Transact-SQL

The T-SQL documentation specifies that not terminating all statements with a semicolon is a
deprecated feature, but T-SQL currently doesn’t enforce this for all statements, rather only in
cases where there would otherwise be ambiguity of code elements. For example, a statement
preceding the WITH clause of a common table expression (CTE) has to be terminated because
this clause can also be used to define a table hint in the preceding statement. As another
example, the MERGE statement has to be terminated due to possible ambiguity of the MERGE
keyword. You should still follow the standard and terminate all of your statements even where
it is currently not required.

Standard SQL is based on the relational model, which is a mathematical model for data
management and manipulation. The relational model was initially created and proposed
by Edgar F. Codd in 1969. After its creation, it has been explained and further developed by
Codd, Chris Date, Hugh Darwen, and others.

A common misconception is that the name “relational” has to do with relationships
between tables (that is, foreign keys). Actually, the true source for the model’s name is the
mathematical concept relation.

A relation in the relational model is what SQL represents with a table. The two are not
synonymous. You could say that a table is an attempt by SQL to represent a relation (in addi-
tion to a relation variable, but that’s not necessary to get into here). Some say that it is not a
very successful attempt. Even though SQL is based on the relational model, it deviates from it
in a number of ways. But it’s important to note that as you understand the model’s principles,
you can use SQL—or more precisely, the dialect you are using—in a relational way. More on
this, including a further reading recommendation, is in the next section, “Using T-SQL in a
relational way.”

Getting back to a relation, which is what SQL attempts to represent with a table: a relation
has a heading and a body. The heading is a set of attributes (what SQL attempts to represent
with columns), each of a given type. An attribute is identified by name and type name. The
body is a set of tuples (what SQL attempts to represent with rows). Each tuple’s heading is the
heading of the relation. Each value of each tuple’s attribute is of its respective type.

Some of the most important aspects to understand about T-SQL stem from the relational
model’s core foundations: set theory and predicate logic.

Remember that the heading of a relation is a set of attributes, and the body is a set of
tuples. So what is a set? According to the creator of mathematical set theory, Georg Cantor, a
set is described as follows:

By a “set” we mean any collection M into a whole of definite, distinct objects
m (which are called the “elements” of M) of our perception or of our thought.

—George Cantor, in
“Georg Cantor” by Joseph
W. Dauben (Princeton
University Press, 1990)

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 5

There are a number of very important elements in this definition that, if understood,
should have direct implications on your T-SQL coding practices. One element that requires
notice is the term whole. A set should be considered as a whole. This means that you do not
interact with the individual elements of the set, rather with the set as a whole.

Notice the term distinct; a set has no duplicates. Codd once remarked on the no duplicates
aspect: ”If something is true, then saying it twice won’t make it any truer.“ For example, the
set {a, b, c} is considered equal to the set {a, a, b, c, c, c}.

Another critical aspect of a set doesn’t explicitly appear in the aforementioned definition
by Cantor, but rather is implied; there’s no relevance to the order of elements in a set. In con-
trast, a sequence (which is an ordered set), does have an order to its elements. Combining the
no duplicates and no relevance to order aspects means that the collection {a, b, c} is a set,
but the collection {b, a, c, c, a, c} isn’t.

The other branch of mathematics that the relational model is based on is called predicate
logic. A predicate is an expression that when attributed to some object, makes a proposition
either true or false. For example, “salary greater than $50,000” is a predicate. You can evalu-
ate this predicate for a specific employee, in which case you have a proposition. For example,
suppose that for a particular employee, the salary is $60,000. When you evaluate the proposi-
tion for that employee, you get a true proposition. In other words, a predicate is a parameter-
ized proposition.

The relational model uses predicates as one of its core elements. You can enforce data
integrity by using predicates. You can filter data by using predicates. You can even use predi-
cates to define the data model itself. You first identify propositions that need to be stored
in the database. Here’s an example proposition: an order with order ID 10248 was placed on
February 12, 2017 by the customer with ID 7, and handled by the employee with ID 3. You
then create predicates from the propositions by removing the data and keeping the heading.
Remember, the heading is a set of attributes, each identified by name and type name. In this
example, you have orderid INT, orderdate DATE, custid INT, and empid INT.

Using T-SQL in a relational way
As mentioned, T-SQL is based on SQL, which in turn is based on the relational model. Howev-
er, there are a number of ways in which SQL, and therefore T-SQL, deviates from the relational
model. But T-SQL gives you enough tools so that if you understand the relational model, you
can use the language in a relational manner, and thus write more correct code.

MORE INFO  SQL AND RELATIONAL THEORY

For detailed information about the differences between SQL and the relational model, and
how to use SQL in a relational way, see SQL and Relational Theory, 3rd Edition by C. J. Date
(O’Reilly Media, 2015). It’s an excellent book that all database practitioners should read.

Remember that a relation has a heading and a body. The heading is a set of attributes and
the body is a set of tuples. Remember that a set is supposed to be considered as a whole.

www.EBooksWorld.ir

	 6	 Chapter 1	 Manage data with Transact-SQL

What this translates to in T-SQL is that you’re supposed to write queries that interact with the
tables as a whole. You should try to avoid using iterative constructs like cursors and loops that
iterate through the rows one at a time. You should also try to avoid thinking in iterative terms
because this kind of thinking is what leads to iterative solutions.

For people with a procedural programming background, the natural way to interact with
data (in a file, record set, or data reader) is with iterations. So using cursors and other iterative
constructs in T-SQL is, in a way, an extension to what they already know. However, the correct
way from the relational model’s perspective is not to interact with the rows one at a time,
rather, use relational operations and return a relational result. This, in T-SQL, translates to
writing queries.

Remember also that a set has no duplicates. In other words, it has unique members. T-SQL
doesn’t always enforce this rule. For example, you can create a table without a key. In such
a case, you are allowed to have duplicate rows in the table. To follow relational theory, you
need to enforce uniqueness in your tables. For example, you can enforce uniqueness in your
tables by using a primary key, or a unique constraint.

Even when the table doesn’t allow duplicate rows, a query against the table can still return
duplicate rows in its result. Consider the following query:

USE TSQLV4;

SELECT country
FROM HR.Employees;

The query is issued against the TSQLV4 sample database. It returns the country attribute
of the employees stored in the HR.Employees table. According to the relational model, a
relational operation against a relation is supposed to return a relation. In this case, this should
translate to returning the set of countries where there are employees, with an emphasis on
set, as in no duplicates. However, T-SQL doesn’t attempt to remove duplicates by default.

Here’s the output of this query:

country

USA
USA
USA
USA
UK
UK
UK
USA
UK

In fact, T-SQL is based more on multiset theory than on set theory. A multiset (also known
as a bag or a superset) in many respects is similar to a set, but can have duplicates. As men-
tioned, T-SQL does give you enough tools so that if you want to follow relational theory, you
can do so. For example, the language provides you with a DISTINCT clause to remove dupli-
cates. Here’s the revised query:

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 7

SELECT DISTINCT country
FROM HR.Employees;

Here’s the revised query’s output:

Country

UK
USA

Another fundamental aspect of a set is that there’s no relevance to the order of the ele-
ments. For this reason, rows in a table have no particular order, conceptually. So when you
issue a query against a table and don’t indicate explicitly that you want to return the rows in
particular presentation order, the result is supposed to be relational. Therefore, you shouldn’t
assume any specific order to the rows in the result; never mind what you know about the
physical representation of the data, for example, when the data is indexed.

As an example, consider the following query:

SELECT empid, lastname
FROM HR.Employees;

When this query was run on one system, it returned the following output, which looks like
it is sorted by the column lastname:

empid lastname
----------- --------------------
8 Cameron
1 Davis
9 Doyle
2 Funk
7 King
3 Lew
5 Mortensen
4 Peled
6 Suurs

Even if the rows were returned in a different order, the result would have still been con-
sidered correct. SQL Server can choose between different physical access methods to process
the query, knowing that it doesn’t need to guarantee the order in the result. For example, SQL
Server could decide to parallelize the query or scan the data in file order (as opposed to index
order).

If you do need to guarantee a specific presentation order to the rows in the result, you
need to add an ORDER BY clause to the query, as follows:

SELECT empid, lastname
FROM HR.Employees
ORDER BY empid;

This time, the result isn’t relational, it’s what standard SQL calls a cursor. The order of
the rows in the output is guaranteed based on the empid attribute. Here’s the output of
this query:

www.EBooksWorld.ir

	 8	 Chapter 1	 Manage data with Transact-SQL

empid lastname
----------- --------------------
1 Davis
2 Funk
3 Lew
4 Peled
5 Mortensen
6 Suurs
7 King
8 Cameron
9 Doyle

The heading of a relation is a set of attributes; as such, the attributes are unordered and
unique. This means that you are supposed to identify an attribute by name and type name.
Conversely, T-SQL does keep track of ordinal positions of columns based on their order of ap-
pearance in the table definition. When you issue a query with SELECT *, you are guaranteed to
get the columns in the result based on definition order. Also, T-SQL allows referring to ordinal
positions of columns from the result in the ORDER BY clause, as follows:

SELECT empid, lastname
FROM HR.Employees
ORDER BY 1;

Beyond the fact that this practice is not relational, think about the potential for error if at
some point you change the SELECT list and forget to change the ORDER BY list accordingly.
Therefore, the recommendation is to always indicate the names of the attributes that you
need to order by.

T-SQL has another deviation from the relational model in that it allows defining result
columns based on an expression without assigning a name to the target column. For example,
the following query is valid in T-SQL:

SELECT empid, firstname + ' ' + lastname
FROM HR.Employees;

This query generates the following output:

empid
----------- -------------------------------
1 Sara Davis
2 Don Funk
3 Judy Lew
4 Yael Peled
5 Sven Mortensen
6 Paul Suurs
7 Russell King
8 Maria Cameron
9 Patricia Doyle

But according to the relational model, all attributes must have names. In order for the
query to be relational, you need to assign an alias to the target attribute. You can do so by
using the AS clause, as follows:

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 9

SELECT empid, firstname + ' ' + lastname AS fullname
FROM HR.Employees;

Also, with T-SQL a query can return multiple result columns with the same name. For ex-
ample, consider a join between two tables, T1 and T2, both with a column called keycol. With
T-SQL, a SELECT list can look like the following:

SELECT T1.keycol, T2.keycol ...

For the result to be relational, all attributes must have unique names, so you would need
to use different aliases for the result attributes as follows:

SELECT T1.keycol AS key1, T2.keycol AS key2 ...

As for predicates, following the law of excluded middle in mathematical logic, a predicate
can evaluate to true or false. In other words, predicates are supposed to use two-valued logic.
However, Codd wanted to reflect the possibility for values to be missing in his model. He
referred to two kinds of missing values: missing but applicable (A-Values marker) and missing
but inapplicable (I-Values marker). As an example for a missing but applicable case, consider
a mobilephone attribute of an employee. Suppose that an employee has a mobile phone, but
did not want to provide this information, for example, for privacy reasons. As an example for
a missing but inapplicable case, consider a salescommission attribute of an employee. This
attribute is applicable only to sales people, but not to other kinds of employees. According
to Codd, a language based on his model should provide two different markers for the two
cases. T-SQL—again, based on standard SQL—implements only one general-purpose marker
called NULL for any kind of missing value. This leads to three-valued predicate logic. Namely,
when a predicate compares two values, for example, mobilephone = ‘(425) 555-0136’, if both
are present, the result evaluates to either true or false. But if at least one of them is NULL, the
result evaluates to a third logical value—unknown. That’s the case both when you use the
equality operator = and when you use an inequality operator such as: <>, >, >=, <, <=.

Note that some believe that a valid relational model should follow two-valued logic, and
strongly object to the concept of NULLs in SQL. But as mentioned, the creator of the rela-
tional model believed in the idea of supporting missing values, and predicates that extend
beyond two-valued logic. What’s important from a perspective of coding with T-SQL is to
realize that if the database you are querying supports NULLs, their treatment is far from be-
ing trivial. That is, you need to carefully understand what happens when NULLs are involved
in the data you’re manipulating with various query constructs, like filtering, sorting, grouping,
joining, or intersecting. Hence, with every piece of code you write with T-SQL, you want to ask
yourself whether NULLs are possible in the data you’re interacting with. If the answer is yes,
you want to make sure that you understand the treatment of NULLs in your query, and ensure
that your tests address treatment of NULLs specifically.

www.EBooksWorld.ir

	10	 Chapter 1	 Manage data with Transact-SQL

Using correct terminology
Your use of terminology reflects on your knowledge. Therefore, you should make an effort to
understand and use correct terminology. When discussing T-SQL–related topics, people often
use incorrect terms. And if that’s not enough, even when you do realize what the correct
terms are, you also need to understand the differences between the terms in T-SQL and those
in the relational model.

As an example of incorrect terms in T-SQL, people often use the terms “field” and “record”
to refer to what T-SQL calls “column” and “row,” respectively. Fields and records are physical.
Fields are what you have in user interfaces in client applications, and records are what you
have in files and cursors. Tables are logical, and they have logical rows and columns.

Another example of an incorrect term is referring to “NULL values.” A NULL is a marker for
a missing value—not a value itself. Hence, the correct usage of the term is either just “NULL”
or “NULL marker.” Personally, I prefer the former.

Besides using correct T-SQL terminology, it’s also important to understand the differences
between T-SQL terms and their relational counterparts. Remember from the previous section
that T-SQL attempts to represent a relation with a table, a tuple with a row, and an attribute
with a column; but the T-SQL concepts and their relational counterparts differ in a number
of ways. As long as you are conscious of those differences, you can, and should, strive to use
T-SQL in a relational way.

Understanding logical query processing
T-SQL has both logical and physical sides to it. The logical side is the conceptual interpreta-
tion of the query that explains what the correct result of the query is. The physical side is the
processing of the query by the database engine. Physical processing must produce the result
defined by logical query processing. To achieve this goal, the database engine can apply op-
timization. Optimization can rearrange steps from logical query processing or remove steps
altogether, but only as long as the result remains the one defined by logical query processing.
The focus of this section is logical query processing—the conceptual interpretation of the
query that guarantees returning what I defined as the correct result.

T-SQL as a declarative English-like language
T-SQL, being based on standard SQL, is a declarative English-like language. In this language,
declarative means you define what you want, as opposed to imperative languages that define
also how to achieve what you want. Standard SQL describes the logical interpretation of the
declarative request (the “what” part), but it’s the database engine’s responsibility to figure out
how to physically process the request (the “how” part).

For this reason, it is important not to draw any performance-related conclusions from
what you are reviewing about logical query processing. That’s because logical query process-
ing only defines the correctness of the query. When addressing performance aspects of the
query, you need to understand how optimization works. As mentioned, optimization can be

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 11

quite different from logical query processing because it’s allowed to change things as long as
the result achieved is the one defined by logical query processing.

It’s interesting to note that the standard language SQL wasn’t originally called so; rather,
it was called SEQUEL; an acronym for “structured English query language.” But then due to a
trademark dispute with an airline company, the language was renamed to SQL, for “structured
query language.” Still, the point is that you provide your instructions in an English-like man-
ner. For example, consider the instruction, “Bring me a soda from the refrigerator.” Observe
that in the English instruction, the object comes before the location. Consider the following
request in T-SQL:

SELECT shipperid, phone, companyname
FROM Sales.Shippers;

Observe the similarity of the query’s keyed-in order to English. The query first indicates the
SELECT list with the attributes you want to return, and then the FROM clause with the table
you want to query.

Now try to think of the order in which the request needs to be logically interpreted. For
example, how would you define the instructions to a robot instead of a human? The original
English instruction to get a soda from the refrigerator would probably need to be revised to
something like, “Go to the refrigerator; open the door; get a soda; bring it to me.”

Similarly, the logical processing of a query must first know which table is being queried
before it can know which attributes can be returned from that table. Therefore, contrary to
the keyed-in order of the previous query, the logical query processing has to be as follows:

FROM Sales.Shippers
SELECT shipperid, phone, companyname

This is a basic example with just two query clauses. Of course, things can get more com-
plex. If you understand the concept of logical query processing well, you will be able to ex-
plain many things about the way the language behaves—things that are very hard to explain
otherwise.

Logical query processing phases
This section covers logical query processing and the phases involved. The main statement
used to retrieve data in T-SQL is the SELECT statement. Following are the main query clauses
specified in the order that you are supposed to type them (known as “keyed-in order”):

1.	 SELECT

2.	 FROM

3.	 WHERE

4.	 GROUP BY

5.	 HAVING

6.	 ORDER BY

www.EBooksWorld.ir

	12	 Chapter 1	 Manage data with Transact-SQL

But as mentioned, the logical query processing order, which is the conceptual interpreta-
tion order, is different. It starts with the FROM clause. Here is the logical query processing
order of the six main query clauses:

1.	 FROM

2.	 WHERE

3.	 GROUP BY

4.	 HAVING

5.	 SELECT

6.	 ORDER BY

Each phase operates on one or more tables as inputs and returns a virtual table as output.
The output table of one phase is considered the input to the next phase. This is in accord with
operations on relations that yield a relation. Note that if an ORDER BY is specified, the result
isn’t relational. This means that you can’t operate on such result with an outer query because
an outer query expects a relation as input.

Consider the following query as an example:

SELECT country, YEAR(hiredate) AS yearhired, COUNT(*) AS numemployees
FROM HR.Employees
WHERE hiredate >= '20140101'
GROUP BY country, YEAR(hiredate)
HAVING COUNT(*) > 1
ORDER BY country, yearhired DESC;

This query is issued against the HR.Employees table. It filters only employees that were
hired in or after the year 2014. It groups the remaining employees by country and the hire
year. It keeps only groups with more than one employee. For each qualifying group, the
query returns the hire year and count of employees, sorted by country and hire year, in de-
scending order.

The following sections provide a brief description of what happens in each phase accord-
ing to logical query processing.

1. EVALUATE THE FROM CLAUSE
In the first phase, the FROM clause is evaluated. That’s where you indicate the tables you want
to query and table operators like joins if applicable. If you need to query just one table, you
indicate the table name as the input table in this clause. Then, the output of this phase is a
table result with all rows from the input table. That’s the case in the following query: the input
is the HR.Employees table (nine rows), and the output is a table result with all nine rows (only
a subset of the attributes are shown):

empid country hiredate
------ -------- ----------
1 USA 2013-05-01
2 USA 2013-08-14
3 USA 2013-04-01

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 13

4 USA 2014-05-03
5 UK 2014-10-17
6 UK 2014-10-17
7 UK 2015-01-02
8 USA 2015-03-05
9 UK 2015-11-15

2. FILTER ROWS BASED ON THE WHERE CLAUSE
The second phase filters rows based on the predicate in the WHERE clause. Only rows for
which the predicate evaluates to true are returned.

In this query, the WHERE filtering phase filters only rows for employees hired on or after
January 1, 2014. Six rows are returned from this phase and are provided as input to the next
one. Here’s the result of this phase:

empid country hiredate
------ -------- ----------
4 USA 2014-05-03
5 UK 2014-10-17
6 UK 2014-10-17
7 UK 2015-01-02
8 USA 2015-03-05
9 UK 2015-11-15

A typical mistake made by people who don’t understand logical query processing is at-
tempting to refer in the WHERE clause to a column alias defined in the SELECT clause. You
can’t do this because the WHERE clause is evaluated before the SELECT clause. As an example,
consider the following query:

SELECT country, YEAR(hiredate) AS yearhired
FROM HR.Employees
WHERE yearhired >= 2014;

This query fails with the following error:

Msg 207, Level 16, State 1, Line 114
Invalid column name 'yearhired'.

If you understand that the WHERE clause is evaluated before the SELECT clause, you realize
that this attempt is wrong because at this phase, the attribute yearhired doesn’t yet exist. You
can indicate the expression YEAR(hiredate) >= 2014 in the WHERE clause. Better yet, for opti-
mization reasons that are discussed later in Skill 1.3 in the section “Search arguments,” use the
form hiredate >= ‘20140101’ as done in the original query.

3. GROUP ROWS BASED ON THE GROUP BY CLAUSE
This phase defines a group for each distinct combination of values in the grouped elements
from the input virtual table. It then associates each input row to its respective group. The
query you’ve been working with groups the rows by country and YEAR(hiredate). Within the six
rows in the input table, this step identifies four groups. Here are the groups and the detail rows
that are associated with them (redundant information removed for purposes of illustration).

www.EBooksWorld.ir

	14	 Chapter 1	 Manage data with Transact-SQL

group group detail detail detail
country year(hiredate) empid country hiredate
-------- --------------- --------------- -----------
UK 2014 5 UK 2014-10-17
 6 UK 2014-10-17
UK 2015 7 UK 2015-01-02
 9 UK 2015-11-15
USA 2014 4 USA 2014-05-03
USA 2015 8 USA 2015-03-05

As you can see, the group UK, 2014 has two associated detail rows with employees 5 and
6; the group for UK, 2015 also has two associated detail rows with employees 7 and 9; the
group for USA, 2014 has one associated detail row with employee 4; the group for USA, 2015
also has one associated detail row with employee 8.

The final result of this query has one row representing each group (unless filtered out).
Therefore, expressions in all phases that take place after the current grouping phase are
somewhat limited. All expressions processed in subsequent phases must guarantee a single
value per group. If you refer to an element from the GROUP BY list (for example, country), you
already have such a guarantee, so such a reference is allowed. However, if you want to refer to
an element that is not part of your GROUP BY list (for example, empid), it must be contained
within an aggregate function like MAX. That’s because multiple values are possible in the ele-
ment within a single group, and the only way to guarantee that just one will be returned is to
aggregate the values.

4. FILTER GROUPS BASED ON THE HAVING CLAUSE
This phase is also responsible for filtering data based on a predicate, but it is evaluated after
the data has been grouped; hence, it is evaluated per group and filters groups as a whole. As
is usual in T-SQL, the filtering predicate can evaluate to true, false, or unknown. Only groups
for which the predicate evaluates to true are returned from this phase. In this case, the HAV-
ING clause uses the predicate COUNT(*) > 1, meaning filter only country and hire year groups
that have more than one employee. If you look at the number of rows that were associated
with each group in the previous step, you will notice that only the groups UK, 2014 and UK,
2015 qualify. Hence, the result of this phase has the following remaining groups, shown here
with their associated detail rows.

group group detail detail detail
country year(hiredate) empid country hiredate
-------- --------------- --------------- -----------
UK 2014 5 UK 2014-10-17
 6 UK 2014-10-17
UK 2015 7 UK 2015-01-02
 9 UK 2015-11-15

It’s important to understand the difference between WHERE and HAVING. The WHERE
clause is evaluated before rows are grouped, and therefore is evaluated per row. The HAVING
clause is evaluated after rows are grouped, and therefore is evaluated per group.

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 15

5. PROCESS THE SELECT CLAUSE
The fifth phase is the one responsible for processing the SELECT clause. What’s interesting
about it is the point in logical query processing where it gets evaluated—almost last. That’s
interesting considering the fact that the SELECT clause appears first in the query.

This phase includes two main steps. The first step is evaluating the expressions in the SE-
LECT list and producing the result attributes. This includes assigning attributes with names if
they are derived from expressions. Remember that if a query is a grouped query, each group
is represented by a single row in the result. In the query, two groups remain after the process-
ing of the HAVING filter. Therefore, this step generates two rows. In this case, the SELECT list
returns for each country and order year group a row with the following attributes: country,
YEAR(hiredate) aliased as yearhired, and COUNT(*) aliased as numemployees.

The second step in this phase is applicable if you indicate the DISTINCT clause, in which
case this step removes duplicates. Remember that T-SQL is based on multiset theory more
than it is on set theory, and therefore, if duplicates are possible in the result, it’s your respon-
sibility to remove those with the DISTINCT clause. In this query’s case, this step is inapplicable.
Here’s the result of this phase in the query:

country yearhired numemployees
--------------- ----------- ------------
UK 2014 2
UK 2015 2

The fifth phase returns a relational result. Therefore, the order of the rows isn’t guaran-
teed. In this query’s case, there is an ORDER BY clause that guarantees the order in the result,
but this will be discussed when the next phase is described. What’s important to note is that
the outcome of the phase that processes the SELECT clause is still relational.

Also, remember that this phase assigns column aliases, like yearhired and numemployees.
This means that newly created column aliases are not visible to clauses processed in previous
phases, like FROM, WHERE, GROUP BY, and HAVING.

Note that an alias created by the SELECT phase isn’t even visible to other expressions that
appear in the same SELECT list. For example, the following query isn’t valid:

SELECT empid, country, YEAR(hiredate) AS yearhired, yearhired - 1 AS prevyear
FROM HR.Employees;

This query generates the following error:

Msg 207, Level 16, State 1, Line 117
Invalid column name 'yearhired'.

The reason that this isn’t allowed is that all expressions that appear in the same logical
query-processing step are treated as a set, and a set has no order. In other words, conceptu-
ally, T-SQL evaluates all expressions that appear in the same phase in an all-at-once manner.
Note the use of the word conceptually. SQL Server won’t necessarily physically process all
expressions at the same point in time, but it has to produce a result as if it did. This behavior
is different than many other programming languages where expressions usually get evaluated

www.EBooksWorld.ir

	16	 Chapter 1	 Manage data with Transact-SQL

in a left-to-right order, making a result produced in one expression visible to the one that ap-
pears to its right. But T-SQL is different.

6. HANDLE PRESENTATION ORDERING
The sixth phase is applicable if the query has an ORDER BY clause. This phase is responsible
for returning the result in a specific presentation order according to the expressions that
appear in the ORDER BY list. The query indicates that the result rows should be ordered first
by country (in ascending order by default), and then by yearhired, descending, yielding the
following output:

country yearhired numemployees
--------------- ----------- ------------
UK 2015 2
UK 2014 2

Notice that the ORDER BY clause is the first and only clause that is allowed to refer to col-
umn aliases defined in the SELECT clause. That’s because the ORDER BY clause is the only one
to be evaluated after the SELECT clause.

Unlike in previous phases where the result was relational, the output of this phase isn’t
relational because it has a guaranteed order. The result of this phase is what standard SQL
calls a cursor. Note that the use of the term cursor here is conceptual. T-SQL also supports an
object called a cursor that is defined based on a result of a query, and that allows fetching
rows one at a time in a specified order.

You might care about returning the result of a query in a specific order for presentation
purposes or if the caller needs to consume the result in that manner through some cursor
mechanism that fetches the rows one at a time. But remember that such processing isn’t
relational. If you need to process the query result in a relational manner—for example, define
a table expression like a view based on the query—the result will need to be relational. Also,
sorting data can add cost to the query processing. If you don’t care about the order in which
the result rows are returned, you can avoid this unnecessary cost by not adding an ORDER BY
clause.

A query can specify the TOP or OFFSET-FETCH filtering options. If it does, the same ORDER
BY clause that is normally used to define presentation ordering also defines which rows to
filter for these options. It’s important to note that such a filter is processed after the SELECT
phase evaluates all expressions and removes duplicates (in case a DISTINCT clause was speci-
fied). You might even consider the TOP and OFFSET-FETCH filters as being processed in their
own phase number 7. The query doesn’t indicate such a filter, and therefore, this phase is
inapplicable in this case.

For more information about logical query processing, see the following article series on
the topic in SQL Server Pro magazine:

■■ Part 1 at http://sqlmag.com/sql-server/logical-query-processing-what-it-and-what-it-
means-you

■■ Part 2 at http://sqlmag.com/sql-server/logical-query-processing-clause-and-joins

www.EBooksWorld.ir

http://www.sqlmag.com/sql-server/logical-query-processing-what-it-and-what-it-means-you
http://www.sqlmag.com/sql-server/logical-query-processing-what-it-and-what-it-means-you
http://www.sqlmag.com/sql-server/logical-query-processing-clause-and-joins

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 17

■■ Part 3 at http://sqlmag.com/sql-server/logical-query-processing-clause-and-apply

■■ Part 4: http://sqlmag.com/sql-server/logical-query-processing-clause-and-pivot

■■ Part 5 at http://sqlmag.com/sql-server/logical-query-processing-part-5-clause-and-
unpivot

■■ Part 6 at http://sqlmag.com/sql-server-2016/logical-query-processing-part-6-where-
clause

■■ Part 7 at http://sqlmag.com/sql-server/logical-query-processing-part-7-group-and-
having

■■ Part 8 at http://sqlmag.com/sql-server/logical-query-processing-part-8-select-and-order

Getting started with the SELECT statement
The FROM and SELECT clauses are two principal clauses that appear in almost every query
that retrieves data. This section explains the purpose of these clauses, how to use them, and
best practices associated with them. It also explains what regular and irregular identifiers are,
and how to delimit identifiers.

The FROM clause
According to logical query processing, the FROM clause is the first clause to be evaluated
logically in a SELECT query. The FROM clause has two main roles:

■■ It’s the clause where you indicate the tables that you want to query.

■■ It’s the clause where you can apply table operators like joins to input tables.

This section focuses on the first role.

As a basic example, assuming you are connected to the sample database TSQLV4, the fol-
lowing query uses the FROM clause to specify that HR.Employees is the table being queried:

SELECT empid, firstname, lastname, country
FROM HR.Employees;

Observe the use of the two-part name to refer to the table. The first part (HR) is the
schema name and the second part (Employees) is the table name. In some cases, T-SQL sup-
ports omitting the schema name, as in FROM Employees, in which case it uses an implicit
schema name resolution process. It is considered a best practice to always explicitly indicate
the schema name. This practice can prevent you from ending up with a schema name that
you did not intend to use, and can also remove the cost involved in the implicit resolution
process, although this cost is minor.

In the FROM clause, you can alias the queried tables with your chosen names. You can use
the form <table> <alias>, as in HR.Employees E, or <table> AS <alias>, as in HR.Employees AS
E. The latter form is more readable. When using aliases, the convention is to use short names,
typically one letter that is somehow indicative of the queried table, like E for Employees.
Then, when referring to an ambiguous column name in a multi-table query (same column

www.EBooksWorld.ir

http://www.sqlmag.com/sql-server/logical-query-processing-clause-and-apply
http://www.sqlmag.com/sql-server/logical-query-processing-clause-and-pivot
http://www.sqlmag.com/sql-server/logical-query-processing-part-5-clause-and-unpivot
http://www.sqlmag.com/sql-server/logical-query-processing-part-5-clause-and-unpivot
http://www.sqlmag.com/sql-server-2016/logical-query-processing-part-6-where-clause
http://www.sqlmag.com/sql-server-2016/logical-query-processing-part-6-where-clause
http://www.sqlmag.com/sql-server/logical-query-processing-part-7-group-and-having
http://www.sqlmag.com/sql-server/logical-query-processing-part-7-group-and-having
http://www.sqlmag.com/sql-server/logical-query-processing-part-8-select-and-order

	18	 Chapter 1	 Manage data with Transact-SQL

name appears in multiple queried tables), to avoid ambiguity, you add the table alias as a
column prefix.

Note that if you assign an alias to a table, you basically rename the table for the duration
of the query. The original table name isn’t visible anymore; only the alias is. Normally, you can
prefix a column name you refer to in a query with the table name, as in Employees.empid.
However, if you aliased the Employees table as E, the reference Employees.empid is invalid;
you have to use E.empid, as the following example demonstrates:

SELECT E.empid, firstname, lastname, country
FROM HR.Employees AS E;

If you try running this code by using the full table name as the column prefix, the code
will fail.

The SELECT clause
The SELECT clause of a query has two main roles:

■■ It evaluates expressions that define the attributes in the query’s result, assigning them
with aliases if needed.

■■ Using a DISTINCT clause, you can eliminate duplicate rows in the result if needed.

Let’s start with the first role. Take the following query as an example:

SELECT empid, firstname, lastname
FROM HR.Employees;

The FROM clause indicates that the HR.Employees table is the input table of the query.
The SELECT clause then projects only three of the attributes from the input as the returned
attributes in the result of the query.

T-SQL supports using an asterisk (*) as an alternative to listing all attributes from the input
tables, but this is considered a bad practice for a number of reasons. Often, you need to re-
turn only a subset of the input attributes, and using an * is just a matter of laziness. By return-
ing more attributes than you really need, you can prevent SQL Server from using what would
normally be considered covering indexes with respect to the interesting set of attributes. You
also send more data than is needed over the network, and this can have a negative impact on
the system’s performance. In addition, the underlying table definition could change over time;
even if, when the query was initially authored, * really represented all attributes you needed;
it might not be the case anymore at a later point in time. For these reasons and others, it is
considered a best practice to always explicitly list the attributes that you need.

In the SELECT clause, you can assign your own aliases to the expressions that define the
result attributes. There are a number of supported forms of aliasing: <expression> AS <alias>
as in empid AS employeeid, <expression> <alias> as in empid employeeid, and <alias> =
<expression> as in employeeid = empid.

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 19

NOTE  COLUMN ALIASES

The first form with the AS clause is recommended to use because it’s both standard and is
the most readable. The second form is both less readable and makes it hard to spot a bug
involving a missing comma.

Consider the following query:

SELECT empid, firstname lastname
FROM HR.Employees;

The developer who authored the query intended to return the attributes empid, firstname,
and lastname but missed indicating the comma between firstname and lastname. The query
doesn’t fail; instead, it returns the following result:

empid lastname
----------- ----------
1 Sara
2 Don
3 Judy
...

Although not the author’s intention, SQL Server interprets the request as assigning the
alias lastname to the attribute firstname instead of returning both. If you’re used to aliasing
expressions with the space form as a common practice, it will be harder for you to spot such
bugs.

There are two main uses for intentional attribute aliasing. One is renaming—when you
need the result attribute to be named differently than the source attribute—for example, if
you need to name the result attribute employeeid instead of empid, as follows:

SELECT empid AS employeeid, firstname, lastname
FROM HR.Employees;

Another use is to assign a name to an attribute that results from an expression that would
otherwise be unnamed. For example, suppose you need to generate a result attribute from an
expression that concatenates the firstname attribute, a space, and the lastname attribute. You
use the following query:

SELECT empid, firstname + N' ' + lastname
FROM HR.Employees;

You get a nonrelational result because the result attribute has no name:

empid
----------- -------------------------------
1 Sara Davis
2 Don Funk
3 Judy Lew
...

By aliasing the expression, you assign a name to the result attribute, making the result of
the query relational, as follows.

www.EBooksWorld.ir

	20	 Chapter 1	 Manage data with Transact-SQL

SELECT empid, firstname + N' ' + lastname AS fullname
FROM HR.Employees;

Here’s an abbreviated form of the result of this query:

empid fulllname
----------- -------------------------------
1 Sara Davis
2 Don Funk
3 Judy Lew
...

Remember that if duplicates are possible in the result, T-SQL won’t try to eliminate those
unless instructed. A result with duplicates is considered nonrelational because relations—be-
ing sets—are not supposed to have duplicates. Therefore, if duplicates are possible in the
result, and you want to eliminate them in order to return a relational result, you can do so by
adding a DISTINCT clause, as in the following query:

SELECT DISTINCT country, region, city
FROM HR.Employees;

The HR.Employees table has nine rows but five distinct locations; hence, the output of this
query has five rows:

country region city
--------------- --------------- ---------------
UK NULL London
USA WA Kirkland
USA WA Redmond
USA WA Seattle
USA WA Tacoma

There’s an interesting difference between standard SQL and T-SQL in terms of minimal SE-
LECT query requirements. According to standard SQL, a SELECT query must have at minimum
FROM and SELECT clauses. Conversely, T-SQL supports a SELECT query with only a SELECT
clause and without a FROM clause. Such a query is as if issued against an imaginary table that
has only one row. For example, the following query is invalid according to standard SQL, but
is valid according to T-SQL:

SELECT 10 AS col1, 'ABC' AS col2;

The output of this query is a single row with attributes resulting from the expressions with
names assigned using the aliases:

col1 col2
----------- ----
10 ABC

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 21

Delimiting identifiers
When referring to identifiers of attributes, schemas, tables, and other objects, there are cases
in which you are required to use delimiters versus cases in which the use of delimiters is
optional. T-SQL supports both a standard form to delimit identifiers using double quotation
marks, as in “Sales”.”Orders”, as well as a proprietary form using square brackets, as in [Sales].
[Orders]. The latter is the more commonly used, and recommended, form in T-SQL.

When the identifier is regular, delimiting it is optional. In a regular identifier, the identifier
complies with the rules for formatting identifiers. The rules say that the first character must
be a letter defined by the Unicode Standard 3.2 (a-z, A-Z, and letters from other Unicode
languages), underscore (_), at sign (@), or number sign (#). Subsequent characters can include
letters, decimal numbers, at sign, dollar sign ($), number sign, or underscore. The identifier
cannot be a reserved keyword in T-SQL, cannot have embedded spaces, and must not include
supplementary characters.

An identifier that doesn’t comply with these rules must be delimited. For example, an
attribute called 2017 is considered an irregular identifier because it starts with a digit, and
therefore must be delimited as “2017” or [2017]. A regular identifier such as y2017 can be
referenced without delimiters simply as y2017, or optionally it can be delimited. You might
prefer not to delimit regular identifiers because the delimiters tend to clutter the code.

Filtering data with predicates
Filtering data is one of the most fundamental aspects of T-SQL querying. Almost every query
that you write involves some form of filtering. This section covers filtering data with predi-
cates. Later sections in this skill cover filtering data with the TOP and OFFSET-FETCH options.

Predicates and three-valued-logic
Let’s use the HR.Employees table to demonstrate a few filtering examples. Run the following
code to show the contents of this table:

SELECT empid, firstname, lastname, country, region, city
FROM HR.Employees;

This query generates the following output:

empid firstname lastname country region city
----- ---------- ---------- -------- ------- ---------
1 Sara Davis USA WA Seattle
2 Don Funk USA WA Tacoma
3 Judy Lew USA WA Kirkland
4 Yael Peled USA WA Redmond
5 Sven Mortensen UK NULL London
6 Paul Suurs UK NULL London
7 Russell King UK NULL London
8 Maria Cameron USA WA Seattle
9 Patricia Doyle UK NULL London

www.EBooksWorld.ir

	22	 Chapter 1	 Manage data with Transact-SQL

Consider the following query, which filters only employees from the US:

SELECT empid, firstname, lastname, country, region, city
FROM HR.Employees
WHERE country = N'USA';

In case you’re wondering why the literal ‘USA’ is preceded with the letter N as a prefix,
that’s to denote a Unicode character string literal, because the country column is of the data
type NVARCHAR. Had the country column been of a regular character string data type, such
as VARCHAR, the literal should have been just ‘USA’.

When NULLs are not possible in the data that you’re filtering, such as in the above ex-
ample, T-SQL uses two-valued logic; namely, for any given row the predicate can evaluate to
either true or false. The filter returns only the rows for which the predicate evaluates to true
and discards the ones for which the predicate evaluates to false. Therefore, this query returns
the following output:

empid firstname lastname country region city
----- ---------- ---------- -------- ------- ---------
1 Sara Davis USA WA Seattle
2 Don Funk USA WA Tacoma
3 Judy Lew USA WA Kirkland
4 Yael Peled USA WA Redmond
8 Maria Cameron USA WA Seattle

However, when NULLs are possible in the data, things get trickier. For instance, consider
the following query:

SELECT empid, firstname, lastname, country, region, city
FROM HR.Employees
WHERE region = N'WA';

Here you’re looking for only those employees who are from Washington (have WA in the
region attribute). It’s clear that the predicate evaluates to true for rows that have WA in the
region attribute and that those rows are returned. It’s also clear that the predicate would have
evaluated to false had there been any rows with a present region other than WA, for example
CA, and that those rows would have been discarded. However, remember that the predicate
evaluates to unknown for rows that have a NULL in the region attribute, and that the WHERE
clause discards such rows. This happens to be the desired behavior in our case because you
know that when the region is NULL, it can’t be Washington. However, remember that even
when you use the inequality operator <> a comparison with a NULL yields unknown. For in-
stance, suppose that you wanted to return only employees with a region other than Washing-
ton, and that you used the following query in attempt to achieve this:

SELECT empid, firstname, lastname, country, region, city
FROM HR.Employees
WHERE region <> N'WA';

The predicate evaluates to false for rows with WA in the region attribute and those
rows are discarded. The predicate would have evaluated to true had there been rows with
a present region other than WA, and those rows would have been returned. However, the

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 23

predicate evaluates to unknown for rows with NULL in the region attribute, and those rows
get discarded, even though you know that if region is NULL, it cannot be Washington. This
query returns an empty set because our sample data contains only rows with either WA or
NULL in the region attribute:

empid firstname lastname country region city
----- ---------- ---------- -------- ------- ---------

This is an example where you need to intervene and add some logic to your query to also
return the rows where the region attribute is NULL. Be careful though not to use an equality
operator when looking for a NULL because remember that nothing is considered equal to a
NULL—not even another NULL. The following query still returns an empty set:

SELECT empid, firstname, lastname, country, region, city
FROM HR.Employees
WHERE region <> N'WA'
 OR region = NULL;

T-SQL supports the IS NULL and IS NOT NULL operators to check if a NULL is or isn’t pres-
ent, respectively. Here’s the solution query that correctly handles NULLs:

SELECT empid, firstname, lastname, country, region, city
FROM HR.Employees
WHERE region <> N'WA'
 OR region IS NULL;

This query generates the following output:

empid firstname lastname country region city
----- ---------- ---------- -------- ------- ---------
5 Sven Mortensen UK NULL London
6 Paul Suurs UK NULL London
7 Russell King UK NULL London
9 Patricia Doyle UK NULL London

Combining predicates
You can combine predicates in the WHERE clause by using the logical operators AND and
OR. You can also negate predicates by using the NOT logical operator. This section starts by
describing important aspects of negation and then discusses combining predicates.

Negation of true and false is straightforward—NOT true is false, and NOT false is true.

What can be surprising to some is what happens when you negate unknown—NOT un-
known is still unknown. Recall from the previous section the query that returned all employ-
ees from Washington; the query used the predicate region = N’WA’ in the WHERE clause.
Suppose that you want to return the employees that are not from WA, and for this you use
the predicate NOT region = N’WA’. It’s clear that cases that return false from the positive
predicate (say the region is NY) return true from the negated predicate. It’s also clear that
cases that return true from the positive predicate (say the region is WA) return false from the
negated predicate. However, when the region is NULL, both the positive predicate and the

www.EBooksWorld.ir

	24	 Chapter 1	 Manage data with Transact-SQL

negated one return unknown and the row is discarded. So the right way for you to include
NULL cases in the result—if that’s what you know that you need to do—is to use the IS NULL
operator, as in NOT region = N’WA’ OR region IS NULL.

As for combining predicates, there are several interesting things to note. Some precedence
rules determine the logical evaluation order of the different predicates. The NOT operator
precedes AND and OR, and AND precedes OR. For example, suppose that the WHERE filter in
your query had the following combination of predicates:

WHERE col1 = 'w' AND col2 = 'x' OR col3 = 'y' AND col4 = 'z'

Because AND precedes OR, you get the equivalent of the following:

WHERE (col1 = 'w' AND col2 = 'x') OR (col3 = 'y' AND col4 = 'z')

Trying to express the operators as pseudo functions, this combination of operators is
equivalent to OR(AND(col1 = ‘w’, col2 = ‘x’), AND(col3 = ‘y’, col4 = ‘z’)).

Because parentheses have the highest precedence among all operators, you can always
use those to fully control the logical evaluation order that you need, as the following example
shows:

WHERE col1 = 'w' AND (col2 = 'x' OR col3 = 'y') AND col4 = 'z'

Again, using pseudo functions, this combination of operators and use of parentheses is
equivalent to AND(col1 = ‘w’, OR(col2 = ‘x’, col3 = ‘y’), col4 = ‘z’).

Recall that all expressions that appear in the same logical query-processing phase—for ex-
ample, the WHERE phase—are conceptually evaluated at the same point in time. For example,
consider the following filter predicate:

WHERE propertytype = 'INT' AND CAST(propertyval AS INT) > 10

Suppose that the table being queried holds different property values. The propertytype
column represents the type of the property (an INT, a DATE, and so on), and the propertyval
column holds the value in a character string. When propertytype is ‘INT’, the value in proper-
tyval is convertible to INT; otherwise, not necessarily.

Some assume that unless precedence rules dictate otherwise, predicates will be evaluated
from left to right, and that short-circuiting will take place when possible. In other words, if the
first predicate propertytype = ‘INT’ evaluates to false, SQL Server won’t evaluate the second
predicate CAST(propertyval AS INT) > 10 because the result is already known. Based on this
assumption, the expectation is that the query should never fail trying to convert something
that isn’t convertible.

The reality, though, is different. SQL Server does internally support a short-circuit con-
cept; however, due to the all-at-once concept in the language, it is not necessarily going to
evaluate the expressions in left-to-right order. It could decide, based on cost-related reasons,
to start with the second expression, and then if the second expression evaluates to true,
to evaluate the first expression as well. This means that if there are rows in the table where

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 25

propertytype is different than ‘INT’, and in those rows propertyval isn’t convertible to INT, the
query can fail due to a conversion error.

You can deal with this problem in a number of ways. A simple option is to use the TRY_
CAST function instead of CAST. When the input expression isn’t convertible to the target
type, TRY_CAST returns a NULL instead of failing. And comparing a NULL to anything yields
unknown. Eventually, you will get the correct result, without allowing the query to fail. So
your WHERE clause should be revised as follows:

WHERE propertytype = 'INT' AND TRY_CAST(propertyval AS INT) > 10

Filtering character data
In many respects, filtering character data is the same as filtering other types of data. This
section covers a couple of items that are specific to character data: proper form of literals and
the LIKE predicate.

A literal has a type. If you write an expression that involves operands of different types,
SQL Server will have to apply implicit conversion to align the types. Depending on the cir-
cumstances, implicit conversions can sometimes hurt performance. It is important to know
the proper form of literals of different types and make sure you use the right ones. A classic
example for using incorrect literal types is with Unicode character strings (NVARCHAR and
NCHAR types). The right form for a Unicode character string literal is to prefix the literal with
a capital N and delimit the literal with single quotation marks, for example, N’literal’. For a
regular character string literal, you just delimit the literal with single quotation marks, for
example, ‘literal’. It’s a typical bad habit to specify a regular character string literal when the
filtered column is of a Unicode type, as in the following example:

SELECT empid, firstname, lastname
FROM HR.Employees
WHERE lastname = 'Davis';

Because the column and the literal have different types, SQL Server implicitly converts one
operand’s type to the other. In this example, fortunately, SQL Server converts the literal’s type
to the column’s type, so it can still efficiently rely on indexing. However, there can be cases
where implicit conversion hurts performance. It is a best practice to use the proper form as
follows:

SELECT empid, firstname, lastname
FROM HR.Employees
WHERE lastname = N'Davis';

T-SQL provides the LIKE predicate, which you can use to filter character string data (regular
and Unicode) based on pattern matching. The form of a predicate using LIKE is as follows:

<column> LIKE <pattern>

The LIKE predicate supports wildcards that you can use in your patterns. Table 1-1 de-
scribes the available wildcards, their meaning, and an example demonstrating their use.

www.EBooksWorld.ir

	26	 Chapter 1	 Manage data with Transact-SQL

TABLE 1-1  Wildcards used in LIKE patterns

Wildcard Meaning Example

% (percent sign) Any string including an empty one ‘D%’: string starting with D

_ (underscore) A single character ‘_D%’: string where second character is D

[<character list>] A single character from a list ‘[AC]%’: string where first character is A
or C

[<character range>] A single character from a range ‘[0-9]%’: string where first character is
a digit

[̂ <character list or range>] A single character that is not in
the list or range

‘[̂ 0-9]%’: string where first character is
not a digit

As an example, suppose you want to return all employees whose last name starts with the let-
ter D. You would use the following query:

SELECT empid, firstname, lastname
FROM HR.Employees
WHERE lastname LIKE N'D%';

This query returns the following output:

empid firstname lastname
----------- ---------- --------------------
1 Sara Davis
9 Patricia Doyle

If you want to look for a character that is considered a wildcard, you can indicate it after
a character that you designate as an escape character by using the ESCAPE keyword. For ex-
ample, the expression col1 LIKE ‘!_%’ ESCAPE ‘!’ looks for strings that start with an underscore
(_) by using an exclamation point (!) as the escape character. Alternatively, you can place the
wildcard in square brackets, as in col1 LIKE ‘[_]%’.

Filtering date and time data
There are several important considerations when filtering date and time data. You want to
think of things like how to express literals and how to filter ranges. Suppose that you need to
query the Sales.Orders table and return only orders placed on February 12, 2016. You use the
following query:

SELECT orderid, orderdate, empid, custid
FROM Sales.Orders
WHERE orderdate = '02/12/16';

If you’re an American, this form probably means February 12, 2016, to you. However, if
you’re British, this form probably means December 2, 2016. If you’re Japanese, it probably
means December 16, 2002. The question is, when SQL Server converts this character string to
a date and time type to align it with the filtered column’s type, how does it interpret the val-
ue? As it turns out, it depends on the language of the login that runs the code. Each login has
a default language associated with it, and the default language sets various session options

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 27

on the login’s behalf, including one called DATEFORMAT. A login with us_english will have the
DATEFORMAT setting set to mdy, British to dmy, and Japanese to ymd. The problem is, how
do you as a developer express a date if you want it to be interpreted the way you intended,
regardless of who runs your code?

There are two main approaches. One is to use a form that is considered language-neutral.
For example, the form ‘20160212’ is always interpreted as ymd, regardless of your language.
Note that the form ‘2016-02-12’ is considered language-neutral only for the data types DATE,
DATETIME2, and DATETIMEOFFSET. Unfortunately, due to historic reasons, this form is consid-
ered language-dependent for the types DATETIME and SMALLDATETIME. The advantage of
the form without the separators is that it is language-neutral for all date and time types. So
the recommendation is to write the query as follows:

SELECT orderid, orderdate, empid, custid
FROM Sales.Orders
WHERE orderdate = '20160212';

Another approach is to explicitly convert the string to the target type using the CONVERT
function, and indicating the style number that represents the style that you used. You can
find the documentation of the CONVERT function with the different style numbers that it
supports at https://msdn.microsoft.com/en-GB/library/ms187928.aspx. For instance, to use the
U.S. style, specify style number 101, as CONVERT(DATE, ‘02/12/2016’, 101).

When filtering data stored in a DATETIME data type, you need to be very careful with
ranges. To demonstrate why, first run the following code to create a table called Sales.Orders2
and populate it with a copy of the data from Sales.Orders, using the DATETIME data type for
the orderdate attribute:

DROP TABLE IF EXISTS Sales.Orders2;

SELECT orderid, CAST(orderdate AS DATETIME) AS orderdate, empid, custid
INTO Sales.Orders2
FROM Sales.Orders;

Suppose you need to filter only the orders that were placed in April 2016. You use the fol-
lowing query in attempt to achieve this, thinking that the DATETIME type supports a three-
digit precision as the fraction of the second:

SELECT orderid, orderdate, empid, custid
FROM Sales.Orders2
WHERE orderdate BETWEEN '20160401' AND '20160430 23:59:59.999';

In practice, though, the precision of DATETIME is three and a third milliseconds. Because
999 is not a multiplication of this precision, the value is rounded up to the next millisecond,
which happens to be the midnight of the next day. To make matters worse, when people want
to store only a date in a DATETIME type, they store the date with midnight in the time, so
besides returning orders placed in April 2016, this query also returns all orders placed in May
1, 2016. Here’s the output of this query, shown here in abbreviated format:

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-GB/library/ms187928.aspx

	28	 Chapter 1	 Manage data with Transact-SQL

orderid orderdate empid custid
----------- ----------------------- ----------- -----------
10990 2016-04-01 00:00:00.000 2 20
...
11063 2016-04-30 00:00:00.000 3 37
11064 2016-05-01 00:00:00.000 1 71
11065 2016-05-01 00:00:00.000 8 46
11066 2016-05-01 00:00:00.000 7 89

(77 row(s) affected)

The recommended way to express a date and time range is with a closed-open interval as
follows:

SELECT orderid, orderdate, empid, custid
FROM Sales.Orders2
WHERE orderdate >= '20160401' AND orderdate < '20160501';

This time the output contains only the orders placed in April 2016.

Sorting data
One of the most confusing aspects of working with T-SQL is understanding when a query re-
sult is guaranteed to be ordered versus when it isn’t. Correct understanding of this aspect of
the language ties directly to the foundations of T-SQL—particularly mathematical set theory.
If you understand this from the very early stages of writing T-SQL code, you will have a much
easier time than many who simply have incorrect assumptions and expectations from the
language.

Consider the following query as an example:

SELECT empid, firstname, lastname, city, MONTH(birthdate) AS birthmonth
FROM HR.Employees
WHERE country = N'USA' AND region = N'WA';

Is there a guarantee that the rows will be returned in particular order, and if so, what is
that order? Some make an intuitive assumption that the rows will be returned in insertion
order; some assume primary key order; some assume clustered index order; others know that
there’s no guarantee for any kind of order.

Remember that a table in T-SQL is supposed to represent a relation; a relation is a set, and
a set has no order to its elements. With this in mind, unless you explicitly instruct the query
otherwise, the result of a query has no guaranteed order. For example, this query gave the
following output when run on one system:

empid firstname lastname city birthmonth
----------- ---------- -------------------- --------------- -----------
1 Sara Davis Seattle 12
2 Don Funk Tacoma 2
3 Judy Lew Kirkland 8
4 Yael Peled Redmond 9
8 Maria Cameron Seattle 1

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 29

It might seem like the output is sorted by empid, but that’s not guaranteed. What could
be more confusing is that if you run the query repeatedly, it seems like the result keeps being
returned in the same order; but again, that’s not guaranteed. When the database engine (SQL
Server in this case) processes this query, it knows that it can return the data in any order be-
cause there is no explicit instruction to return the data in a specific order. It could be that, due
to optimization and other reasons, the SQL Server database engine chose to process the data
in a particular way this time. There’s even some likelihood that such choices will be repeated if
the physical circumstances remain the same. But there’s a big difference between what’s likely
to happen due to optimization and other reasons, and what’s actually guaranteed.

The database engine can—and sometimes does—change choices that can affect the order
in which rows are returned, knowing that it is free to do so. Examples for such changes in
choices include changes in data distribution, availability of physical structures such as indexes,
and availability of resources like CPU and memory. Also, with changes in the engine after
an upgrade to a newer version of the product, or even after application of a service pack,
optimization aspects can change. In turn, such changes could affect, among other things, the
order of the rows in the result.

In short, this cannot be stressed enough: A query that doesn’t have an explicit instruc-
tion to return the rows in a particular order doesn’t guarantee the order of rows in the result.
When you do need such a guarantee, the only way to provide it is by adding an ORDER BY
clause to the query.

For example, if you want to return information about employees from Washington in the
US, sorted by city, you specify the city column in the ORDER BY clause as follows:

SELECT empid, firstname, lastname, city, MONTH(birthdate) AS birthmonth
FROM HR.Employees
WHERE country = N'USA' AND region = N'WA'
ORDER BY city;

Here’s the output of this query:

empid firstname lastname city birthmonth
----------- ---------- -------------------- --------------- -----------
3 Judy Lew Kirkland 8
4 Yael Peled Redmond 9
8 Maria Cameron Seattle 1
1 Sara Davis Seattle 12
2 Don Funk Tacoma 2

If you don’t indicate a direction for sorting, ascending order is assumed by default. You
can be explicit and specify city ASC, but it means the same thing as not indicating the direc-
tion. For descending ordering, you need to explicitly specify DESC, as follows:

SELECT empid, firstname, lastname, city, MONTH(birthdate) AS birthmonth
FROM HR.Employees
WHERE country = N'USA' AND region = N'WA'
ORDER BY city DESC;

This time, the output shows the rows in city order, descending direction:

www.EBooksWorld.ir

	30	 Chapter 1	 Manage data with Transact-SQL

empid firstname lastname city birthmonth
----------- ---------- -------------------- --------------- -----------
2 Don Funk Tacoma 2
1 Sara Davis Seattle 12
8 Maria Cameron Seattle 1
4 Yael Peled Redmond 9
3 Judy Lew Kirkland 8

The city column isn’t unique within the filtered country and region, and therefore, the
ordering of rows with the same city (see Seattle, for example) isn’t guaranteed. In such a case,
it is said that the ordering isn’t deterministic. Just like a query without an ORDER BY clause
doesn’t guarantee order among result rows in general, a query with ORDER BY city, when city
isn’t unique, doesn’t guarantee order among rows with the same city. Fortunately, you can
specify multiple expressions in the ORDER BY list, separated by commas. One use case of this
capability is to apply a tiebreaker for ordering. For example, you could define empid as the
secondary sort column, as follows:

SELECT empid, firstname, lastname, city, MONTH(birthdate) AS birthmonth
FROM HR.Employees
WHERE country = N'USA' AND region = N'WA'
ORDER BY city, empid;

Here’s the output of this query:

empid firstname lastname city birthmonth
----------- ---------- -------------------- --------------- -----------
3 Judy Lew Kirkland 8
4 Yael Peled Redmond 9
1 Sara Davis Seattle 12
8 Maria Cameron Seattle 1
2 Don Funk Tacoma 2

The ORDER BY list is now unique; hence, the ordering is deterministic. As long as the un-
derlying data doesn’t change, the results are guaranteed to be repeatable, in addition to their
presentation ordering. You can indicate the ordering direction on an expression-by-expres-
sion basis, as in ORDER BY col1 DESC, col2, col3 DESC (col1 descending, then col2 ascending,
then col3 descending).

With T-SQL, you can sort by ordinal positions of columns in the SELECT list, but it is consid-
ered a bad practice. Consider the following query as an example:

SELECT empid, firstname, lastname, city, MONTH(birthdate) AS birthmonth
FROM HR.Employees
WHERE country = N'USA' AND region = N'WA'
ORDER BY 4, 1;

In this query, you’re asking to order the rows by the fourth expression in the SELECT list
(city), and then by the first (empid). In this particular query, it is equivalent to using ORDER
BY city, empid. However, this practice is considered a bad one for a number of reasons. For
one, T-SQL does keep track of ordinal positions of columns in a table, in addition to in a query
result, but this is nonrelational. Recall that the heading of a relation is a set of attributes, and

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 31

a set has no order. Also, when you are using ordinal positions, it is very easy after making
changes to the SELECT list to miss changing the ordinals accordingly. For example, suppose
that you decide to apply changes to your previous query, returning city right after empid in
the SELECT list. You apply the change to the SELECT list but forget to change the ORDER BY
list accordingly, and end up with the following query:

SELECT empid, city, firstname, lastname, MONTH(birthdate) AS birthmonth
FROM HR.Employees
WHERE country = N'USA' AND region = N'WA'
ORDER BY 4, 1;

Now the query is ordering the data by lastname and empid instead of by city and empid.
In short, it’s a best practice to refer to column names, or expressions based on column names,
and not to ordinal positions.

Note that you can order the result rows by elements that you’re not returning. For ex-
ample, the following query returns, for each qualifying employee, the employee ID and city,
ordering the result rows by the employee birth date:

SELECT empid, city
FROM HR.Employees
WHERE country = N'USA' AND region = N'WA'
ORDER BY birthdate;

Here’s the output of this query:

empid city
----------- ---------------
4 Redmond
1 Seattle
2 Tacoma
8 Seattle
3 Kirkland

Of course, the result would appear much more meaningful if you included the birthdate
attribute, but if it makes sense for you not to, it’s perfectly valid. The rule is that you can order
the result rows by elements that are not part of the SELECT list, as long as those elements
would have normally been allowed there. This rule changes when the DISTINCT clause is also
specified, and for a good reason. When DISTINCT is used, duplicates are removed; then the
result rows don’t necessarily map to source rows in a one-to-one manner, rather than one-to-
many. For example, try to reason why the following query isn’t valid:

SELECT DISTINCT city
FROM HR.Employees
WHERE country = N'USA' AND region = N'WA'
ORDER BY birthdate;

You can have multiple employees—each with a different birth date—from the same city.
But you’re returning only one row for each distinct city in the result. So given one city (say,
Seattle) with multiple employees, which of the employee birth dates should apply as the
ordering value? The query won’t just pick one; rather, it simply fails.

www.EBooksWorld.ir

	32	 Chapter 1	 Manage data with Transact-SQL

So, in case the DISTINCT clause is used, you are limited in the ORDER BY list to only ele-
ments that appear in the SELECT list, as in the following query:

SELECT DISTINCT city
FROM HR.Employees
WHERE country = N'USA' AND region = N'WA'
ORDER BY city;

Now the query is perfectly sensible, returning the following output:

city

Kirkland
Redmond
Seattle
Tacoma

What’s also interesting to note about the ORDER BY clause is that it gets evaluated con-
ceptually after the SELECT clause—unlike most other query clauses. This means that col-
umn aliases assigned in the SELECT clause are actually visible to the ORDER BY clause. As an
example, the following query uses the MONTH function to return the birth month, assigning
the expression with the column alias birthmonth. The query then refers to the column alias
birthmonth directly in the ORDER BY clause:

SELECT empid, firstname, lastname, city, MONTH(birthdate) AS birthmonth
FROM HR.Employees
WHERE country = N'USA' AND region = N'WA'
ORDER BY birthmonth;

This query returns the following output:

empid firstname lastname city birthmonth
----------- ---------- -------------------- --------------- -----------
8 Maria Cameron Seattle 1
2 Don Funk Tacoma 2
3 Judy Lew Kirkland 8
4 Yael Peled Redmond 9
1 Sara Davis Seattle 12

Another tricky aspect of ordering is treatment of NULLs. Recall that a NULL represents a
missing value, so when comparing a NULL to anything, you get the logical result unknown.
That’s the case even when comparing two NULLs. So it’s not that trivial to ask how NULLs
should behave in terms of sorting. Should they all sort together? If so, should they sort before
or after non-NULL values? Standard SQL says that NULLs should sort together, but leaves it to
the implementation to decide whether to sort them before or after non-NULL values. In SQL
Server the decision was to sort them before non-NULLs (when using an ascending direction).
As an example, the following query returns for each order the order ID and shipped date,
ordered by the latter:

SELECT orderid, shippeddate
FROM Sales.Orders
WHERE custid = 20
ORDER BY shippeddate;

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 33

Remember that unshipped orders have a NULL in the shippeddate column; hence, they
sort before shipped orders, as the query output shows:

orderid shippeddate
----------- -----------
11008 NULL
11072 NULL
10258 2014-07-23
10263 2014-07-31
…

Standard SQL supports the options NULLS FIRST and NULLS LAST to control how NULLs
sort, but T-SQL doesn’t support this option. As an interesting challenge, see if you can figure
out how to sort the orders by shipped date ascending, but have NULLs sort last. (Hint: You
can specify expressions in the ORDER BY clause; think of how to use the CASE expression to
achieve this task.)

So remember, a query without an ORDER BY clause returns a relational result (at least from
an ordering perspective), and hence doesn’t guarantee any order. The only way to guarantee
order is with an ORDER BY clause. According to standard SQL, a query with an ORDER BY
clause conceptually returns a cursor and not a relation.

Creating the right indexes can help SQL Server avoid the need to actually sort the data to
address an ORDER BY request. Without good indexes, SQL Server needs to sort the data, and
sorting can be expensive, especially when a large set is involved. If you don’t need to return
the data sorted, make sure you do not specify an ORDER BY clause, to avoid unnecessary
costs.

Filtering data with TOP and OFFSET-FETCH
Besides supporting filters that are based on predicates, like the WHERE filter, T-SQL also sup-
ports filters that are based on a number, or percent of rows and ordering. Those are the TOP
and OFFSET-FETCH filters. The former is used in a lot of common filtering tasks, and the latter
is typically used in more specialized paging-related tasks.

Filtering data with TOP
With the TOP option, you can filter a requested number or percent of rows from the query
result based on indicated ordering. You specify the TOP option in the SELECT clause followed
by the requested number of rows in parentheses (as a BIGINT typed value). The ordering
specification of the TOP filter is based on the same ORDER BY clause that is normally used for
presentation ordering.

As an example, the following query returns the three most recent orders:

SELECT TOP (3) orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC;

www.EBooksWorld.ir

	34	 Chapter 1	 Manage data with Transact-SQL

You specify 3 as the number of rows you want to filter, and orderdate DESC as the ordering
specification. So you get the three rows with the most recent order dates. Here’s the output of
this query:

orderid orderdate custid empid
----------- ---------- ----------- -----------
11077 2016-05-06 65 1
11076 2016-05-06 9 4
11075 2016-05-06 68 8

EXAM TIP

T-SQL supports specifying the number of rows to filter using the TOP option in SELECT
queries without parentheses, but that’s only for backward-compatibility reasons. The cor-
rect syntax is with parentheses.

You can also specify a percent of rows to filter instead of a number. To do so, specify a
FLOAT value in the range 0 through 100 in the parentheses, and the keyword PERCENT after
the parentheses, as follows:

SELECT TOP (1) PERCENT orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC;

The PERCENT option computes the ceiling of the resulting number of rows if it’s not whole.
In this example, without the TOP option, the number of rows in the result is 830. Filtering 1
percent gives you 8.3, and then the ceiling of this value gives you 9; hence, the query returns
9 rows:

orderid orderdate custid empid
----------- ---------- ----------- -----------
11074 2016-05-06 73 7
11075 2016-05-06 68 8
11076 2016-05-06 9 4
11077 2016-05-06 65 1
11070 2016-05-05 44 2
11071 2016-05-05 46 1
11072 2016-05-05 20 4
11073 2016-05-05 58 2
11067 2016-05-04 17 1

The TOP option isn’t limited to a constant input; instead, it allows you to specify a self-con-
tained expression. From a practical perspective, this capability is especially important when
you need to pass a parameter or a variable as input, as the following code demonstrates:

DECLARE @n AS BIGINT = 5;

SELECT TOP (@n) orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC;

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 35

This query generates the following output:

orderid orderdate custid empid
----------- ---------- ----------- -----------
11074 2016-05-06 73 7
11075 2016-05-06 68 8
11076 2016-05-06 9 4
11077 2016-05-06 65 1
11070 2016-05-05 44 2

In most cases, you need your TOP option to rely on some ordering specification, but as it
turns out, an ORDER BY clause isn’t mandatory. For example, the following query is technically
valid:

SELECT TOP (3) orderid, orderdate, custid, empid
FROM Sales.Orders;

However, the query isn’t deterministic. The query filters three rows, but you have no
guarantee which three rows will be returned. You end up getting whichever three rows SQL
Server happened to access first, and that’s dependent on physical data layout and optimiza-
tion choices, none of which is guaranteed to be repeatable. For example, this query gave the
following output on one system:

orderid orderdate custid empid
----------- ---------- ----------- -----------
10248 2014-07-04 85 5
10249 2014-07-05 79 6
10250 2014-07-08 34 4

But there’s no guarantee that the same rows will be returned if you run the query again. If
you are really after three arbitrary rows, it might be a good idea to add an ORDER BY clause
with the expression (SELECT NULL) to let people know that your choice is intentional and not
an oversight. Here’s how your query would look:

SELECT TOP (3) orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY (SELECT NULL);

Note that even when you do have an ORDER BY clause, in order for the query to be
completely deterministic, the ordering must be unique. For example, consider again the first
query from this section:

SELECT TOP (3) orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC;

The orderdate column isn’t unique, so the ordering in case of ties is arbitrary. When I ran
this query on my system, I received the following output.

www.EBooksWorld.ir

	36	 Chapter 1	 Manage data with Transact-SQL

orderid orderdate custid empid
----------- ---------- ----------- -----------
11077 2016-05-06 65 1
11076 2016-05-06 9 4
11075 2016-05-06 68 8

But what if there are other rows in the result without TOP that have the same order date
as in the last row here? You don’t always care about guaranteeing deterministic or repeatable
results; but if you do, two options are available to you. One option is to ask to include all ties
with the last row by adding the WITH TIES option, as follows:

SELECT TOP (3) WITH TIES orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC;

Of course, this could result in returning more rows than you asked for, as the output of this
query shows:

orderid orderdate custid empid
----------- ---------- ----------- -----------
11074 2016-05-06 73 7
11075 2016-05-06 68 8
11076 2016-05-06 9 4
11077 2016-05-06 65 1

Now the selection of rows is deterministic, but still the presentation order between rows
with the same order date isn’t.

The other option to guarantee determinism is to break the ties by adding a tiebreaker
that makes the ordering unique. For example, in case of ties in the order date, suppose you
wanted to use the order ID, descending, as the tiebreaker. To do so, add orderid DESC to your
ORDER BY clause, as follows:

SELECT TOP (3) orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC, orderid DESC;

Now both the selection of rows and presentation order are deterministic. This query gen-
erates the following output:

orderid orderdate custid empid
----------- ---------- ----------- -----------
11077 2016-05-06 65 1
11076 2016-05-06 9 4
11075 2016-05-06 68 8

Filtering data with OFFSET-FETCH
The OFFSET-FETCH option is a filtering option that, like TOP, you can use to filter data based
on a specified number of rows and ordering. But unlike TOP, it is standard, and also has a
skipping capability, making it useful for ad-hoc paging purposes.

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 37

The OFFSET and FETCH clauses appear right after the ORDER BY clause, and in fact, in
T-SQL, they require an ORDER BY clause to be present. You first specify the OFFSET clause
indicating how many rows you want to skip (0 if you don’t want to skip any); you then op-
tionally specify the FETCH clause indicating how many rows you want to filter. For example,
the following query defines ordering based on order date descending, followed by order ID
descending; it then skips the first 50 rows and fetches the next 25 rows:

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC, orderid DESC
OFFSET 50 ROWS FETCH NEXT 25 ROWS ONLY;

Here’s an abbreviated form of the output:

orderid orderdate custid empid
----------- ---------- ----------- -----------
11027 2016-04-16 10 1
11026 2016-04-15 27 4
...
11004 2016-04-07 50 3
11003 2016-04-06 78 3

The ORDER BY clause now plays two roles: One role is telling the OFFSET-FETCH option
which rows it needs to filter. Another role is determining presentation ordering in the query.

As mentioned, in T-SQL, the OFFSET-FETCH option requires an ORDER BY clause to be
present. Also, in T-SQL—contrary to standard SQL—a FETCH clause requires an OFFSET clause
to be present. So if you do want to filter some rows but skip none, you still need to specify
the OFFSET clause with 0 ROWS.

In order to make the syntax intuitive, you can use the keywords NEXT or FIRST inter-
changeably. When skipping some rows, it might be more intuitive to you to use the keywords
FETCH NEXT to indicate how many rows to filter; but when not skipping any rows, it might be
more intuitive to you to use the keywords FETCH FIRST, as follows:

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC, orderid DESC
OFFSET 0 ROWS FETCH FIRST 25 ROWS ONLY;

For similar reasons, you can use the singular form ROW or the plural form ROWS inter-
changeably, both for the number of rows to skip and for the number of rows to filter. But it’s
not like you will get an error if you say FETCH NEXT 1 ROWS or FETCH NEXT 25 ROW. It’s up
to you to use a proper form, just like with English.

In T-SQL, a FETCH clause requires an OFFSET clause, but the OFFSET clause doesn’t require
a FETCH clause. In other words, by indicating an OFFSET clause, you’re requesting to skip
some rows; then by not indicating a FETCH clause, you’re requesting to return all remaining
rows. For example, the following query requests to skip 50 rows, returning all the rest.

www.EBooksWorld.ir

	38	 Chapter 1	 Manage data with Transact-SQL

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC, orderid DESC
OFFSET 50 ROWS;

This query generates the following output, shown here in abbreviated form:

orderid orderdate custid empid
----------- ---------- ----------- -----------
11027 2016-04-16 10 1
11026 2016-04-15 27 4
...
10249 2014-07-05 79 6
10248 2014-07-04 85 5

(780 row(s) affected)

As mentioned earlier, the OFFSET-FETCH option requires an ORDER BY clause. But what
if you need to filter a certain number of rows based on arbitrary order? To do so, you can
specify the expression (SELECT NULL) in the ORDER BY clause, as follows:

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY (SELECT NULL)
OFFSET 0 ROWS FETCH FIRST 3 ROWS ONLY;

This code simply filters three arbitrary rows. Here’s the output that I got when running
this query on our system:

orderid orderdate custid empid
----------- ---------- ----------- -----------
10248 2014-07-04 85 5
10249 2014-07-05 79 6
10250 2014-07-08 34 4

With both the OFFSET and the FETCH clauses, you can use expressions as inputs. This is
very handy when you need to compute the input values dynamically. For example, suppose
that you’re implementing a paging solution where you return to the user one page of rows at
a time. The user passes as input parameters to your procedure or function the page number
they are after (@pagenum parameter) and page size (@pagesize parameter). This means that
you need to skip as many rows as @pagenum minus one times @pagesize, and fetch the next
@pagesize rows. This can be implemented using the following code (using local variables for
simplicity):

DECLARE @pagesize AS BIGINT = 25, @pagenum AS BIGINT = 3;

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate DESC, orderid DESC
OFFSET (@pagenum - 1) * @pagesize ROWS FETCH NEXT @pagesize ROWS ONLY;

With these inputs, the code returns the following output:

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 39

orderid orderdate custid empid
----------- ---------- ----------- -----------
11027 2016-04-16 10 1
11026 2016-04-15 27 4
...
11004 2016-04-07 50 3
11003 2016-04-06 78 3

You can feel free to change the input values and see how the result changes accordingly.

EXAM TIP

In terms of logical query processing, the TOP and OFFSET-FETCH filters are processed after
the FROM, WHERE, GROUP, HAVING and SELECT phases. You can consider these filters
as being an extension to the ORDER BY clause. So, for example, if the query is a grouped
query, and also involves a TOP or OFFSET-FETCH filter, the filter is applied after grouping.
The same applies if the query has a DISTINCT clause and/or ROW_NUMBER calculation as
part of the SELECT clause, as well as a TOP or OFFSET-FETCH filter. The filter is applied after
the DISTINCT clause and/or ROW_NUMBER calculation.

Because the OFFSET-FETCH option is standard and TOP isn’t, in cases where they are logi-
cally equivalent, it’s recommended to stick to the former. Remember that OFFSET-FETCH also
has an advantage over TOP in the sense that it supports a skipping capability. However, for
now, OFFSET-FETCH does not support options similar to TOP’s PERCENT and WITH TIES, even
though the standard does define them.

From a performance standpoint, you should consider indexing the ORDER BY columns to
support the TOP and OFFSET-FETCH options. Such indexing serves a similar purpose to index-
ing filtered columns and can help avoid scanning unnecessary data as well as sorting.

MORE INFO  ON TOP AND OFFSET-FETCH

For more information on the TOP and OFFSET-FETCH filters, see the free sample chapter
of the book, “T-SQL Querying: Chapter 5 - TOP and OFFSET-FETCH.” This book is more
advanced, and includes detailed coverage of optimization aspects. You can find the
online version of this chapter at https://www.microsoftpressstore.com/articles/article.
aspx?p=2314819. You can download the PDF version of this chapter at https://ptgmedia.
pearsoncmg.com/images/9780735685048/samplepages/9780735685048.pdf.

Combining sets with set operators
Set operators operate on two result sets of queries, comparing complete rows between the
results. Depending on the result of the comparison and the operator used, the operator
determines whether to return the row or not. T-SQL supports the operators: UNION, UNION
ALL, INTERSECT, and EXCEPT.

www.EBooksWorld.ir

https://www.microsoftpressstore.com/articles/article.aspx?p=2314819
https://www.microsoftpressstore.com/articles/article.aspx?p=2314819
https://www.ptgmedia.pearsoncmg.com/images/9780735685048/samplepages/9780735685048.pdf
https://www.ptgmedia.pearsoncmg.com/images/9780735685048/samplepages/9780735685048.pdf

	40	 Chapter 1	 Manage data with Transact-SQL

The general form of code using these operators is as follows:

<query 1>
<operator>
<query 2>
[ORDER BY <order_by_list>];

When working with these operators you need to remember the following guidelines:

■■ Because complete rows are matched between the result sets, the number of columns
in the queries has to be the same and the column types of corresponding columns
need to be compatible (implicitly convertible).

■■ These operators use distinctness-based comparison and not equality based. Conse-
quently, a comparison between two NULLs yields true, and a comparison between a
NULL and a non-NULL value yields a false. This is in contrast to filtering clauses like
WHERE, ON, and HAVING, which yield unknown when comparing a NULL with any-
thing using both equality and inequality operators.

■■ Because these operators are set operators and not cursor operators, the individual
queries are not allowed to have ORDER BY clauses.

■■ You can optionally add an ORDER BY clause that determines presentation ordering of
the result of the set operator.

■■ The column names of result columns are determined by the first query.

EXAM TIP

The term set operator is not a precise term to describe the UNION, INERSECT, and EXCEPT
operators, rather relational operator is a better term. Whereas in mathematical set theory
you can unify a set of teachers with a set of prime numbers, in relational theory, you can’t.
You can only unify two relations that share the same attributes. This is explained in Dejan
Sarka’s blog post on the topic at http://sqlblog.com/blogs/dejan_sarka/archive/2014/01/10/
sql-set-operators-set-really.aspx. However, both the SQL community and the official T-SQL
documentation use the term set operator. Also, chances are that the same terminology will
be used in the exam. Therefore, I am using this terminology in this book.

UNION and UNION ALL
The UNION operator unifies the results of the two input queries. As a set operator, UNION
has an implied DISTINCT property, meaning that it does not return duplicate rows. Figure 1-2
shows an illustration of the UNION operator.

www.EBooksWorld.ir

http://www.sqlblog.com/blogs/dejan_sarka/archive/2014/01/10/sql-set-operators-set-really.aspx
http://www.sqlblog.com/blogs/dejan_sarka/archive/2014/01/10/sql-set-operators-set-really.aspx

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 41

FIGURE 1-2  The UNION operator

As an example for using the UNION operator, the following query returns locations that
are employee locations, or customer locations, or both:

SELECT country, region, city
FROM HR.Employees

UNION

SELECT country, region, city
FROM Sales.Customers;

This query generates the following output, shown here in abbreviated form:

country region city
--------------- --------------- ---------------
Argentina NULL Buenos Aires
Austria NULL Graz
Austria NULL Salzburg
...

(71 row(s) affected)

The HR.Employees table has nine rows, and the Sales.Customers table has 91 rows, but there
are 71 distinct locations in the unified results; hence, the UNION operator returns 71 rows.

If you want to keep the duplicates—for example, to later group the rows and count occur-
rences—you need to use the UNION ALL operator instead of UNION. The UNION ALL opera-
tor unifies the results of the two input queries, but doesn’t try to eliminate duplicates.

As an example, the following query unifies employee locations and customer locations us-
ing the UNION ALL operator:

SELECT country, region, city
FROM HR.Employees

UNION ALL

SELECT country, region, city
FROM Sales.Customers;

www.EBooksWorld.ir

	42	 Chapter 1	 Manage data with Transact-SQL

Because UNION ALL doesn’t attempt to remove duplicates, the result has 100 rows (nine
employees and 91 customers):

country region city
--------------- --------------- ---------------
USA WA Seattle
USA WA Tacoma
USA WA Kirkland
USA WA Redmond
UK NULL London
UK NULL London
UK NULL London
USA WA Seattle
UK NULL London
Germany NULL Berlin
...

(100 row(s) affected)

If the sets you’re unifying are disjoint and there’s no potential for duplicates, UNION and
UNION ALL returns the same result. However, it’s important to use UNION ALL in such a case
from a performance standpoint because with UNION, SQL Server can try to eliminate dupli-
cates, incurring unnecessary cost. Figure 1-3 shows the query execution plans for both the
UNION (top plan) and UNION ALL (bottom) queries.

FIGURE 1-3  Query plan for UNION and UNION ALL operators

www.EBooksWorld.ir

	 Skill 1.1: Create Transact-SQL SELECT queries 	 Chapter 1	 43

NOTE  DISPALYING AN ACTUAL EXECUTION PLAN

To see graphical execution plans in SQL Server Management Studio (SSMS) click the
Include Actual Execution Plan button, or press Ctrl+M, and run the code. The plans
appear in the Execution Plan tab. You can find tips about analyzing query plans efficiently
at http://sqlmag.com/t-sql/understanding-query-plans.

Observe that both plans start the same by scanning the two input tables and then concat-
enating (unifying) the results. But only the UNION operator includes an extra step with the
Sort (Distinct Sort) operator to eliminate duplicates.

INTERSECT
The INTERSECT operator returns only distinct rows that are common to both sets. In other
words, if a row appears at least once in the first set and at least once in the second set, it ap-
pears once in the result of the INTERSECT operator.

Figure 1-4 shows an illustration of the INTERSECT operator.

FIGURE 1-4  The INTERSECT operator

As an example, the following code uses the INTERSECT operator to return distinct loca-
tions that are both employee and customer locations (locations where there’s at least one
employee and at least one customer):

SELECT country, region, city
FROM HR.Employees

INTERSECT

SELECT country, region, city
FROM Sales.Customers;

This query generates the following output:

country region city
--------------- --------------- ---------------
UK NULL London
USA WA Kirkland
USA WA Seattle

www.EBooksWorld.ir

http://www.sqlmag.com/t-sql/understanding-query-plans

	44	 Chapter 1	 Manage data with Transact-SQL

Observe that the location (UK, NULL, London) was returned because it appears in both
sides. When comparing the NULLs in the region column in the rows from the two sides, the
INTERSECT operator considered them as not distinct from each other. Also note that never
mind how many times the same location appears in each side, as long as it appears at least
once in both sides, it’s returned only once in the output.

EXCEPT
The EXCEPT operator performs set difference. It returns distinct rows that appear in the result
of the first query but not the second. In other words, if a row appears at least once in the first
query result and zero times in the second, it’s returned once in the output.

Figure 1-5 shows an illustration of the EXCEPT operator.

FIGURE 1-5  The EXCEPT operator

As an example for using EXCEPT, the following query returns locations that are employee
locations but not customer locations:

SELECT country, region, city
FROM HR.Employees

EXCEPT

SELECT country, region, city
FROM Sales.Customers;

This query generates the following output:

country region city
--------------- --------------- ---------------
USA WA Redmond
USA WA Tacoma

With UNION and INTERSECT, the order of the input queries doesn’t matter. However, with
EXCEPT, there’s different meaning to:

<query 1> EXCEPT <query 2>

Versus:

<query 2> EXCEPT <query 1>

www.EBooksWorld.ir

	 Skill 1.2: Query multiple tables by using joins 	 Chapter 1	 45

Finally, set operators have precedence: INTERSECT precedes UNION and EXCEPT, and
UNION and EXCEPT are evaluated from left to right based on their position in the expression.
Consider the following set operators:

<query 1> UNION <query 2> INTERSECT <query 3>;

First, the intersection between query 2 and query 3 takes place, and then a union between
the result of the intersection and query 1. You can always force precedence by using paren-
theses. So, if you want the union to take place first, you use the following form:

(<query 1> UNION <query 2>) INTERSECT <query 3>;

When you’re done, run the following code for cleanup:

DROP TABLE IF EXISTS Sales.Orders2;

Skill 1.2: Query multiple tables by using joins

Often, data that you need to query is spread across multiple tables. The tables are usually
related through keys, such as a foreign key in one side and a primary key in the other. Then
you can use joins to query the data from the different tables and match the rows that need
to be related. This section covers the different types of joins that T-SQL supports: cross, inner,
and outer.

This section covers how to:
■■ Write queries with join statements based on provided tables, data, and

requirements

■■ Determine proper usage of INNER JOIN, LEFT/RIGHT/FULL OUTER JOIN,
and CROSS JOIN

■■ Construct multiple JOIN operators using AND and OR

■■ Determine the correct results when presented with multi-table SELECT
statements and source data

■■ Write queries with NULLs on joins

Before running the code samples in this skill, add a row to the Suppliers table by running
the following code:

USE TSQLV4;

INSERT INTO Production.Suppliers
 (companyname, contactname, contacttitle, address, city, postalcode, country, phone)
 VALUES(N'Supplier XYZ', N'Jiru', N'Head of Security', N'42 Sekimai Musashino-shi',
 N'Tokyo', N'01759', N'Japan', N'(02) 4311-2609');

www.EBooksWorld.ir

	46	 Chapter 1	 Manage data with Transact-SQL

Cross joins
A cross join is the simplest type of join, though not the most commonly used one. This join
performs what’s known as a Cartesian product of the two input tables. In other words, it
performs a multiplication between the tables, yielding a row for each combination of rows
from both sides. If you have m rows in table T1 and n rows in table T2, the result of a cross
join between T1 and T2 is a virtual table with m × n rows. Figure 1-6 provides an illustration
of a cross join.

FIGURE 1-6  Cross join

www.EBooksWorld.ir

	 Skill 1.2: Query multiple tables by using joins 	 Chapter 1	 47

The left table has three rows with the key values A, B, and C. The right table has four rows
with the key values B1, C1, C2, and D1. The result is a table with 12 rows containing all pos-
sible combinations of rows from the two input tables.

Consider an example from the TSQLV4 sample database. This database contains a table
called dbo.Nums that has a column called n with a sequence of integers from 1 and on. Your
task is to use the Nums table to generate a result with a row for each weekday (1 through 7)
and shift number (1 through 3), assuming there are three shifts a day. The result can later be
used as the basis for building information about activities in the different shifts in the differ-
ent days. With seven days in the week, and three shifts every day, the result should have 21
rows.

Here’s a query that achieves the task by performing a cross join between two instances
of the Nums table—one representing the days (aliased as D), and the other representing the
shifts (aliased as S):

USE TSQLV4;

SELECT D.n AS theday, S.n AS shiftno
FROM dbo.Nums AS D
 CROSS JOIN dbo.Nums AS S
WHERE D.n <= 7
 AND S.N <= 3
ORDER BY theday, shiftno;

Here’s the output of this query:

theday shiftno
----------- -----------
1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3
4 1
4 2
4 3
5 1
5 2
5 3
6 1
6 2
6 3
7 1
7 2
7 3

www.EBooksWorld.ir

	48	 Chapter 1	 Manage data with Transact-SQL

The Nums table has 100,000 rows. According to logical query processing, the first step
in the processing of the query is evaluating the FROM clause. The cross join operates in the
FROM clause, performing a Cartesian product between the two instances of Nums, yielding
a table with 10,000,000,000 rows (not to worry, that’s only conceptually). Then the WHERE
clause filters only the rows where the column D.n is less than or equal to 7, and the column
S.n is less than or equal to 3. After applying the filter, the result has 21 qualifying rows. The
SELECT clause then returns D.n aliasing it theday, and S.n aliasing it shiftno.

Fortunately, SQL Server doesn’t have to follow logical query processing literally as long as
it can return the correct result. That’s what optimization is all about—returning the result as
fast as possible. SQL Server knows that with a cross join followed by a filter it can evaluate the
filters first (which is especially efficient when there are indexes to support the filters), and then
match the remaining rows. This optimization technique is called predicate pushdown.

Note the importance of aliasing the tables in the join. For one, it’s convenient to refer to
a table by using a shorter name. But in a self-join like ours, table aliasing is mandatory. If you
don’t assign different aliases to the two instances of the table, you end up with an invalid
result because there are duplicate column names even when including the table name as a
prefix. By aliasing the tables differently, you can refer to columns in an unambiguous way us-
ing the form table_alias.column_name, as in D.n versus S.n.

Also, note that in addition to supporting the syntax for cross joins with the CROSS JOIN
keywords, both standard SQL and T-SQL support an older syntax where you specify a comma
between the table names, as in FROM T1, T2. However, for a number of reasons, it is recom-
mended to stick to the newer syntax; it is less prone to errors and allows for more consistent
code.

Inner joins
With an inner join, you can match rows from two tables based on a predicate—usually one
that compares a primary key value in one side to a foreign key value in another side. Figure
1-7 illustrates an inner join.

www.EBooksWorld.ir

	 Skill 1.2: Query multiple tables by using joins 	 Chapter 1	 49

FIGURE 1-7  Inner join

The letters represent primary key values in the left table and foreign key values in the right
table. Assuming the join is an equijoin (using a predicate with an equality operator such as
lefttable.keycol = righttable.keycol), the inner join returns only matching rows for which the
predicate evaluates to true. Rows for which the predicate evaluates to false or unknown are
discarded.

As an example, the following query returns suppliers from Japan and the products they
supply:

SELECT
 S.companyname AS supplier, S.country,
 P.productid, P.productname, P.unitprice
FROM Production.Suppliers AS S

www.EBooksWorld.ir

	50	 Chapter 1	 Manage data with Transact-SQL

 INNER JOIN Production.Products AS P
 ON S.supplierid = P.supplierid
WHERE S.country = N'Japan';

Here’s the output of this query:

supplier country productid productname unitprice
--------------- -------- ----------- -------------- ----------
Supplier QOVFD Japan 9 Product AOZBW 97.00
Supplier QOVFD Japan 10 Product YHXGE 31.00
Supplier QWUSF Japan 13 Product POXFU 6.00
Supplier QWUSF Japan 14 Product PWCJB 23.25
Supplier QWUSF Japan 15 Product KSZOI 15.50
Supplier QOVFD Japan 74 Product BKAZJ 10.00

Observe that the join’s matching predicate is specified in the ON clause. It matches sup-
pliers and products that share the same supplier ID. Rows from either side that don’t find a
match in the other are discarded. For example, suppliers from Japan with no related products
aren’t returned.

NOTE  INDEXING FOREIGN KEY COLUMNS

Often, when joining tables, you join them based on a foreign key–unique key relationship.
For example, there’s a foreign key defined on the supplierid column in the Production.
Products table (the referencing table), referencing the primary key column supplierid in
the Production.Suppliers table (the referenced table). It’s also important to note that when
you define a primary key or unique constraint, SQL Server creates a unique index on the
constraint columns to enforce the constraint’s uniqueness property. But when you define
a foreign key, SQL Server doesn’t create any indexes on the foreign key columns. Such
indexes could improve the performance of joins based on those relationships. Because SQL
Server doesn’t create such indexes automatically, it’s your responsibility to identify the
cases where they can be useful and create them. So when working on index tuning, one
interesting area to examine is foreign key columns, and evaluating the benefits of creating
indexes on those.

Regarding the last query, again, notice the convenience of using short table aliases when
needing to refer to ambiguous column names like supplierid. Observe that the query uses
table aliases to prefix even nonambiguous column names such as s.country. This practice
isn’t mandatory as long as the column name is not ambiguous, but it is still considered a best
practice for clarity.

A very common question is, “What’s the difference between the ON and the WHERE
clauses, and does it matter if you specify your predicate in one or the other?” The answer is
that for inner joins it doesn’t matter. Both clauses serve the same filtering purpose. Both filter
only rows for which the predicate evaluates to true and discard rows for which the predicate
evaluates to false or unknown. In terms of logical query processing, the WHERE is evaluated
right after the FROM, so conceptually it is equivalent to concatenating the predicates with an
AND operator, forming a conjunction of predicates. SQL Server knows this, and therefore can

www.EBooksWorld.ir

	 Skill 1.2: Query multiple tables by using joins 	 Chapter 1	 51

internally rearrange the order in which it evaluates the predicates in practice, and it does so
based on cost estimates.

For these reasons, if you wanted, you could rearrange the placement of the predicates
from the previous query, specifying both in the ON clause, and still retain the original mean-
ing, as follows:

SELECT
 S.companyname AS supplier, S.country,
 P.productid, P.productname, P.unitprice
FROM Production.Suppliers AS S
 INNER JOIN Production.Products AS P
 ON S.supplierid = P.supplierid
 AND S.country = N'Japan';

For many people, though, it’s intuitive to specify the predicate that matches columns
from both sides in the ON clause, and predicates that filter columns from only one side in
the WHERE clause. Also think about the potential that in the future you will need to change
an inner join to an outer join, where there’s a difference between the roles that the ON and
WHERE clauses play, as I describe in the next section. But again, with inner joins it doesn’t
matter. In the discussion of outer joins in the next section, you will see that, with those, ON
and WHERE play different roles; you need to figure out, according to your needs, which is the
appropriate clause for each of your predicates.

As another example for an inner join, the following query joins two instances of the
HR.Employees table to match employees with their managers (a manager is also an employee,
hence the self-join):

SELECT E.empid,
 E.firstname + N' ' + E.lastname AS emp,
 M.firstname + N' ' + M.lastname AS mgr
FROM HR.Employees AS E
 INNER JOIN HR.Employees AS M
 ON E.mgrid = M.empid;

This query generates the following output:

empid emp mgr
----------- ------------------------------- -------------------------------
2 Don Funk Sara Davis
3 Judy Lew Don Funk
4 Yael Peled Judy Lew
5 Sven Mortensen Don Funk
6 Paul Suurs Sven Mortensen
7 Russell King Sven Mortensen
8 Maria Cameron Judy Lew
9 Patricia Doyle Sven Mortensen

Observe the join predicate: ON E.mgrid = M.empid. The employee instance is aliased as E
and the manager instance as M. To find the right matches, the employee’s manager ID needs
to be equal to the manager’s employee ID.

www.EBooksWorld.ir

	52	 Chapter 1	 Manage data with Transact-SQL

Note that only eight rows were returned even though there are nine rows in the table. The
reason is that the CEO (Sara Davis, employee ID 1) has no manager, and therefore, her mgrid
column is NULL. Remember that an inner join does not return rows that don’t find matches.

As with cross joins, both standard SQL and T-SQL support an older syntax for inner joins
where you specify a comma between the table names, and then all predicates in the WHERE
clause. But as mentioned, it is considered best practice to stick to the newer syntax with the
JOIN keyword. When using the older syntax, if you forget to indicate the join predicate, you
end up with an unintentional cross join. When using the newer syntax, an inner join isn’t valid
syntactically without an ON clause, so if you forget to indicate the join predicate, the parser
will generate an error.

Because an inner join is the most commonly used type of join, the standard decided to
make it the default in case you specify just the JOIN keyword. So T1 JOIN T2 is equivalent to
T1 INNER JOIN T2.

Outer joins
With outer joins, you can request to preserve all rows from one or both sides of the join,
never mind if there are matching rows in the other side based on the ON predicate.

By using the keywords LEFT OUTER JOIN (or LEFT JOIN for short), you ask to preserve the
left table. The join returns what an inner join normally would—that is, matches (call those
inner rows). In addition, the join also returns rows from the left table that have no matches
in the right table (call those outer rows), with NULLs used as placeholders in the right side.
Figure 1-8 shows an illustration of a left outer join.

www.EBooksWorld.ir

	 Skill 1.2: Query multiple tables by using joins 	 Chapter 1	 53

FIGURE 1-8  Left outer join

Unlike in the inner join, the left row with the key A is returned even though it has no match
in the right side. It’s returned with NULLs as placeholders in the right side.

As an example, the following query returns suppliers from Japan and the products they
supply, including suppliers from Japan that don’t have related products.

www.EBooksWorld.ir

	54	 Chapter 1	 Manage data with Transact-SQL

SELECT
 S.companyname AS supplier, S.country,
 P.productid, P.productname, P.unitprice
FROM Production.Suppliers AS S
 LEFT OUTER JOIN Production.Products AS P
 ON S.supplierid = P.supplierid
WHERE S.country = N'Japan';

This query generates the following output:

supplier country productid productname unitprice
--------------- -------- ----------- -------------- ----------
Supplier QOVFD Japan 9 Product AOZBW 97.00
Supplier QOVFD Japan 10 Product YHXGE 31.00
Supplier QOVFD Japan 74 Product BKAZJ 10.00
Supplier QWUSF Japan 13 Product POXFU 6.00
Supplier QWUSF Japan 14 Product PWCJB 23.25
Supplier QWUSF Japan 15 Product KSZOI 15.50
Supplier XYZ Japan NULL NULL NULL

Because the Production.Suppliers table is the preserved side of the join, Supplier XYZ is
returned even though it has no matching products. As you recall, an inner join did not return
this supplier.

It is very important to understand that, with outer joins, the ON and WHERE clauses play
very different roles, and therefore, they aren’t interchangeable. The WHERE clause still plays a
simple filtering role—namely, it keeps true cases and discards false and unknown cases. In our
query, the WHERE clause filters only suppliers from Japan, so suppliers that aren’t from Japan
simply don’t show up in the output.

However, the ON clause doesn’t play a simple filtering role; rather, it’s a more sophisti-
cated matching role. In other words, a row in the preserved side will be returned whether the
ON predicate finds a match for it or not. So the ON predicate only determines which rows
from the nonpreserved side get matched to rows from the preserved side—not whether to
return the rows from the preserved side. In our query, the ON clause matches rows from both
sides by comparing their supplier ID values. Because it’s a matching predicate (as opposed
to a filter), the join won’t discard suppliers; instead, it only determines which products get
matched to each supplier. But even if a supplier has no matches based on the ON predicate,
the supplier is still returned. In other words, ON is not final with respect to the preserved side
of the join. WHERE is final. So when in doubt, whether to specify the predicate in the ON or
WHERE clauses, ask yourself: Is the predicate used to filter or match? Is it supposed to be final
or nonfinal?

With this in mind, guess what happens if you specify both the predicate that compares the
supplier IDs from both sides, and the one comparing the supplier country to Japan in the ON
clause? Try it.

www.EBooksWorld.ir

	 Skill 1.2: Query multiple tables by using joins 	 Chapter 1	 55

SELECT
 S.companyname AS supplier, S.country,
 P.productid, P.productname, P.unitprice
FROM Production.Suppliers AS S
 LEFT OUTER JOIN Production.Products AS P
 ON S.supplierid = P.supplierid
 AND S.country = N'Japan';

Observe what’s different in the result (shown here in abbreviated form) and see if you can
explain in your own words what the query returns now:

supplier country productid productname unitprice
--------------- -------- ---------- -------------- ----------
Supplier SWRXU UK NULL NULL NULL
Supplier VHQZD USA NULL NULL NULL
Supplier STUAZ USA NULL NULL NULL
Supplier QOVFD Japan 9 Product AOZBW 97.00
Supplier QOVFD Japan 10 Product YHXGE 31.00
Supplier QOVFD Japan 74 Product BKAZJ 10.00
Supplier EQPNC Spain NULL NULL NULL
Supplier QWUSF Japan 13 Product POXFU 6.00
Supplier QWUSF Japan 14 Product PWCJB 23.25
Supplier QWUSF Japan 15 Product KSZOI 15.50
...

(34 row(s) affected)

Now that both predicates appear in the ON clause, both serve a matching purpose. What
this means is that all suppliers are returned—even those that aren’t from Japan. But in order
to match a product to a supplier, the supplier IDs in both sides need to match, and the sup-
plier country needs to be Japan.

Just like you can use a left outer join to preserve the left side, you can use a right outer
join to preserve the right side. Use the keywords RIGHT OUTER JOIN (or RIGHT JOIN in short).
Figure 1-9 shows an illustration of a right outer join.

www.EBooksWorld.ir

	56	 Chapter 1	 Manage data with Transact-SQL

FIGURE 1-9  Right outer join

T-SQL also supports a full outer join (FULL OUTER JOIN, or FULL JOIN in short) that pre-
serves both sides. Figure 1-10 shows an illustration of this type of join.

www.EBooksWorld.ir

	 Skill 1.2: Query multiple tables by using joins 	 Chapter 1	 57

FIGURE 1-10  Full outer join

A full outer join returns the matched rows, which are normally returned from an inner join;
plus rows from the left that don’t have matches in the right, with NULLs used as placehold-
ers in the right side; plus rows from the right that don’t have matches in the left, with NULLs
used as placeholders in the left side. It’s not common to need a full outer join because most
relationships between tables allow only one of the sides to have rows that don’t have matches
in the other, in which case, a one-sided outer join is needed.

www.EBooksWorld.ir

	58	 Chapter 1	 Manage data with Transact-SQL

Queries with composite joins and NULLs in join columns
Some joins can be a bit tricky to handle, for instance when the join columns can have NULLs,
or when you have multiple join columns—what’s known as a composite join. This section
focuses on such cases.

Earlier in the inner joins section is a query that matched employees and their managers.
Remember that the inner join eliminated the CEO’s row because the mgrid is NULL in that
row, and therefore the join found no matching manager. If you want to include the CEO’s row,
you need to use an outer join to preserve the side representing the employees (E) as follows:

SELECT E.empid,
 E.firstname + N' ' + E.lastname AS emp,
 M.firstname + N' ' + M.lastname AS mgr
FROM HR.Employees AS E
 LEFT OUTER JOIN HR.Employees AS M
 ON E.mgrid = M.empid;

Here’s the output of this query, this time including the CEO’s row:

empid emp mgr
----------- ------------------------------- -------------------------------
1 Sara Davis NULL
2 Don Funk Sara Davis
3 Judy Lew Don Funk
4 Yael Peled Judy Lew
5 Sven Mortensen Don Funk
6 Paul Suurs Sven Mortensen
7 Russell King Sven Mortensen
8 Maria Cameron Judy Lew
9 Patricia Doyle Sven Mortensen

As a reminder, the order of the output is not guaranteed unless you add an ORDER BY
clause to the query. This means that theoretically you can have the results returned in a dif-
ferent order than mine.

When you need to join tables that are related based on multiple columns, the join is called
a composite join and the ON clause typically consists of a conjunction of predicates (predi-
cates separated by AND operators) that match the corresponding columns from the two
sides. Sometimes you need more complex predicates, especially when NULLs are involved.
I’ll demonstrate this by using a pair of tables. One table is called EmpLocations and it holds
employee locations and the number of employees in each location. Another table is called
CustLocations and it holds customer locations and the number of customers in each location.
Run the following code to create these tables and populate them with sample data:

DROP TABLE IF EXISTS dbo.EmpLocations;

SELECT country, region, city, COUNT(*) AS numemps
INTO dbo.EmpLocations
FROM HR.Employees
GROUP BY country, region, city;

ALTER TABLE dbo.EmpLocations ADD CONSTRAINT UNQ_EmpLocations
 UNIQUE CLUSTERED(country, region, city);

www.EBooksWorld.ir

	 Skill 1.2: Query multiple tables by using joins 	 Chapter 1	 59

DROP TABLE IF EXISTS dbo.CustLocations;

SELECT country, region, city, COUNT(*) AS numcusts
INTO dbo.CustLocations
FROM Sales.Customers
GROUP BY country, region, city;

ALTER TABLE dbo.CustLocations ADD CONSTRAINT UNQ_CustLocations
 UNIQUE CLUSTERED(country, region, city);

There’s a key defined in both tables on the location attributes: country, region, and city. In-
stead of using a primary key constraint I used a unique constraint to enforce the key because
the region attribute allows NULLs, and between the two types of constraints, only the latter
allows NULLs. I also specified the CLUSTERED keyword in the unique constraint definitions to
have SQL Server create a clustered index type to enforce the constraint’s uniqueness prop-
erty. This index will be beneficial in supporting joins between the tables based on the location
attributes as well filters based on those attributes.

Query the EmpLocations table to see its contents:

SELECT country, region, city, numemps
FROM dbo.EmpLocations;

This query generates the following output:

country region city numemps
--------------- --------------- --------------- -----------
UK NULL London 4
USA WA Kirkland 1
USA WA Redmond 1
USA WA Seattle 2
USA WA Tacoma 1

Query the CustLocations table:

SELECT country, region, city, numcusts
FROM dbo.CustLocations;

This query generates the following output, shown here in abbreviated form:

country region city numcusts
--------------- --------------- --------------- -----------
Argentina NULL Buenos Aires 3
Austria NULL Graz 1
Austria NULL Salzburg 1
Belgium NULL Bruxelles 1
Belgium NULL Charleroi 1
Brazil RJ Rio de Janeiro 3
Brazil SP Campinas 1
Brazil SP Resende 1
Brazil SP Sao Paulo 4
Canada BC Tsawassen 1
...

(69 row(s) affected)

www.EBooksWorld.ir

	60	 Chapter 1	 Manage data with Transact-SQL

Suppose that you needed to join the two tables returning only matched locations, with
both the employee and customer counts returned along with the location attributes. Your
first attempt might be to write a composite join with an ON clause that has a conjunction of
simple equality predicates as follows:

SELECT EL.country, EL.region, EL.city, EL.numemps, CL.numcusts
FROM dbo.EmpLocations AS EL
 INNER JOIN dbo.CustLocations AS CL
 ON EL.country = CL.country
 AND EL.region = CL.region
 AND EL.city = CL.city;

This query generates the following output:

country region city numemps numcusts
--------------- --------------- --------------- ----------- -----------
USA WA Kirkland 1 1
USA WA Seattle 2 1

The problem is that the region column supports NULLs representing cases where the
region is irrelevant (missing but inapplicable) and when you compare NULLs with an equality-
based predicate the result is the logical value unknown, in which case the row is discarded.
For instance, the location UK, NULL, London appears in both tables, and therefore you expect
to see it in the result of the join, but you don’t. A common way for people to resolve this
problem is to use the ISNULL or COALESCE functions to substitute a NULL in both sides with a
value that can’t normally appear in the data, and this way when both sides are NULL you get
a true back from the comparison. Here’s an example for implementing this solution using the
ISNULL function:

SELECT EL.country, EL.region, EL.city, EL.numemps, CL.numcusts
FROM dbo.EmpLocations AS EL
 INNER JOIN dbo.CustLocations AS CL
 ON EL.country = CL.country
 AND ISNULL(EL.region, N'<N/A>') = ISNULL(CL.region, N'<N/A>')
 AND EL.city = CL.city;

This time the query generates the correct result:

country region city numemps numcusts
--------------- --------------- --------------- ----------- -----------
UK NULL London 4 6
USA WA Kirkland 1 1
USA WA Seattle 2 1

The problem with this approach is that once you apply manipulation to a column, SQL
Server cannot trust that the result values preserve the same ordering behavior as the original
values. This can negatively affect the ability of SQL Server to rely on index ordering when it
optimizes the query. Our query gets the plan shown in Figure 1-11.

www.EBooksWorld.ir

	 Skill 1.2: Query multiple tables by using joins 	 Chapter 1	 61

FIGURE 1-11  Plan for query with ISNULL

The plan scans the clustered index on EmpLocations, and for each row (employee location)
performs a seek in the clustered index on CustLocations. However, notice that the seek relies
on only the country attribute in the seek predicate. It cannot rely on the region and city at-
tributes because of the manipulation that you applied to the region attribute. The predicates
involving the region and city attributes appear as residual predicates (under the Predicate
property). This means that for each employee location row, the Clustered Index Seek operator
that is applied to the CustLocations index performs a range scan of the entire customer loca-
tion’s country that is equal to the current employee location’s country. The residual predicates
that are based on region and city then determine whether to keep or discard each row. That’s
a lot of unnecessary effort.

The optimizer picked the nested loops strategy in the plan shown in Figure 1-11 be-
cause the sample tables that we used are so tiny. With bigger, more realistic, table sizes, the
optimizer typically chooses a merge join algorithm when the data is preordered by the join
columns in both sides. This algorithm processes both sides of the join based on join column
order, and in a way, zips matching rows together. The data can either be pulled preordered
from an index, or explicitly sorted. As mentioned, applying manipulation to join columns
breaks the ordering property of the data, and therefore even if it’s preordered in an index,
the optimizer cannot trust this order. To illustrate how this can affect the merge algorithm,
force it in our query by adding the MERGE join hint as follows.

www.EBooksWorld.ir

	62	 Chapter 1	 Manage data with Transact-SQL

SELECT EL.country, EL.region, EL.city, EL.numemps, CL.numcusts
FROM dbo.EmpLocations AS EL
 INNER MERGE JOIN dbo.CustLocations AS CL
 ON EL.country = CL.country
 AND ISNULL(EL.region, N'<N/A>') = ISNULL(CL.region, N'<N/A>')
 AND EL.city = CL.city;

The plan for this query is shown in Figure 1-12.

FIGURE 1-12  Plan for query with ISNULL and MERGE algorithm

Observe that the clustered indexes on both tables are scanned in an Orderd: False fash-
ion, meaning that the scan is not requested to return the data in index order. Then the join
columns sort both sides explicitly before being merged.

You can handle NULLs in a manner that gives you the desired logical meaning and that at
the same time is considered order preserving by the optimizer using the predicate: (EL.region
= CL.region OR (EL.region IS NULL AND CL.region IS NULL)). Here’s the complete solution
query:

SELECT EL.country, EL.region, EL.city, EL.numemps, CL.numcusts
FROM dbo.EmpLocations AS EL
 INNER JOIN dbo.CustLocations AS CL
 ON EL.country = CL.country
 AND (EL.region = CL.region OR (EL.region IS NULL AND CL.region IS NULL))
 AND EL.city = CL.city;

The plan for this query is shown in Figure 1-13.

www.EBooksWorld.ir

	 Skill 1.2: Query multiple tables by using joins 	 Chapter 1	 63

FIGURE 1-13  Plan with order preservation

Notice that this time all predicates show up as seek predicates.

Similarly, with the new predicate, the optimizer can rely on index order when using the
merge join algorithm. To demonstrate this, again, force this algorithm by adding the MERGE
join hint as follows:

SELECT EL.country, EL.region, EL.city, EL.numemps, CL.numcusts
FROM dbo.EmpLocations AS EL
 INNER MERGE JOIN dbo.CustLocations AS CL
 ON EL.country = CL.country
 AND (EL.region = CL.region OR (EL.region IS NULL AND CL.region IS NULL))
 AND EL.city = CL.city;

The plan for this query is shown in Figure 1-14.

www.EBooksWorld.ir

	64	 Chapter 1	 Manage data with Transact-SQL

FIGURE 1-14  Plan with order preservation and MERGE algorithm

Observe that the plan scans both clustered indexes in order, and that there’s no explicit
sorting taking place prior to the merge join.

Recall that when set operators combine query results they compare corresponding attri-
butes using distinctness and not equality, producing true when comparing two NULLs. How-
ever, one drawback that set operators have is that they compare complete rows. Unlike joins,
which allow comparing a subset of the attributes and return additional ones in the result, set
operators must compare all attributes from the two input queries. But in T-SQL, you can com-
bine joins and set operators to benefit from the advantages of both tools. Namely, rely on the
distinctness-based comparison of set operators and the ability of joins to return additional
attributes beyond what you compare. In our querying task, the solution looks like this:

SELECT EL.country, EL.region, EL.city, EL.numemps, CL.numcusts
FROM dbo.EmpLocations AS EL
 INNER JOIN dbo.CustLocations AS CL
 ON EXISTS (SELECT EL.country, EL.region, EL.city
 INTERSECT
 SELECT CL.country, CL.region, CL.city);

For each row that is evaluated by the join, the set operator performs an intersection of
the employee location attributes and customer location attributes using FROM-less SELECT
statements, each producing one row. If the locations intersect, the result is one row, in which
case the EXISTS predicate returns true, and the evaluated row is considered a match. If the
locations don’t intersect, the result is an empty set, in which case the EXISTS predicate returns
false, and the evaluated row is not considered a match. Remarkably, Microsoft added logic to
the optimizer to consider this form order-preserving. The plan for this query is the same as
the one shown earlier in Figure 1-13.

Use the following code to force the merge algorithm in the query:

SELECT EL.country, EL.region, EL.city, EL.numemps, CL.numcusts
FROM dbo.EmpLocations AS EL
 INNER MERGE JOIN dbo.CustLocations AS CL
 ON EXISTS (SELECT EL.country, EL.region, EL.city

www.EBooksWorld.ir

	 Skill 1.2: Query multiple tables by using joins 	 Chapter 1	 65

 INTERSECT
 SELECT CL.country, CL.region, CL.city);

Also here the ordering property of the data is preserved and you get the plan shown ear-
lier in Figure 1-14, where the clustered indexes of both sides are scanned in order and there’s
no need for explicit sorting prior to performing the merge join.

When you’re done, run the following code for cleanup:

DROP TABLE IF EXISTS dbo.CustLocations;
DROP TABLE IF EXISTS dbo.EmpLocations;

Multi-join queries
It’s important to remember that a join in T-SQL takes place conceptually between two tables
at a time. A multi-join query evaluates the joins conceptually from left to right. So the result
of one join is used as the left input to the next join. If you don’t understand this, you can end
up with logical bugs, especially when outer joins are involved. (With inner and cross-joins, the
order cannot affect the meaning.)

As an example, suppose that you wanted to return all suppliers from Japan, and matching
products where relevant. For this, you need an outer join between Production.Suppliers and
Production.Products, preserving Suppliers. But you also want to include product category
information, so you add an inner join to Production.Categories, as follows:

SELECT
 S.companyname AS supplier, S.country,
 P.productid, P.productname, P.unitprice,
 C.categoryname
FROM Production.Suppliers AS S
 LEFT OUTER JOIN Production.Products AS P
 ON S.supplierid = P.supplierid
 INNER JOIN Production.Categories AS C
 ON C.categoryid = P.categoryid
WHERE S.country = N'Japan';

This query generates the following output:

supplier country productid productname unitprice categoryname
--------------- ------- ---------- -------------- ---------- -------------
Supplier QOVFD Japan 9 Product AOZBW 97.00 Meat/Poultry
Supplier QOVFD Japan 10 Product YHXGE 31.00 Seafood
Supplier QWUSF Japan 13 Product POXFU 6.00 Seafood
Supplier QWUSF Japan 14 Product PWCJB 23.25 Produce
Supplier QWUSF Japan 15 Product KSZOI 15.50 Condiments
Supplier QOVFD Japan 74 Product BKAZJ 10.00 Produce

Supplier XYZ from Japan was discarded. Can you explain why?

Conceptually, the first join included outer rows (suppliers with no products) but produced
NULLs as placeholders in the product attributes in those rows. Then the join to Production.
Categories compared the NULLs in the categoryid column in the outer rows to categoryid

www.EBooksWorld.ir

	66	 Chapter 1	 Manage data with Transact-SQL

values in Production.Categories, and discarded those rows. In short, the inner join that fol-
lowed the outer join nullified the outer part of the join. In fact, if you look at the query plan
for this query, you will find that the optimizer didn’t even bother to process the join between
Production.Suppliers and Production.Products as an outer join. It detected the contradiction
between the outer join and the subsequent inner join, and converted the first join to an inner
join too.

There are a number of ways to address this problem. One is to use a LEFT OUTER in both
joins, like so:

SELECT
 S.companyname AS supplier, S.country,
 P.productid, P.productname, P.unitprice,
 C.categoryname
FROM Production.Suppliers AS S
 LEFT OUTER JOIN Production.Products AS P
 ON S.supplierid = P.supplierid
 LEFT OUTER JOIN Production.Categories AS C
 ON C.categoryid = P.categoryid
WHERE S.country = N'Japan';

Another option is to use an interesting capability in the language—separate some of the
joins to their own independent logical phase. What you’re after is a left outer join between
Production.Suppliers and the result of the inner join between Production.Products and Pro-
duction.Categories. You can phrase your query exactly like this:

SELECT
 S.companyname AS supplier, S.country,
 P.productid, P.productname, P.unitprice,
 C.categoryname
FROM Production.Suppliers AS S
 LEFT OUTER JOIN
 (Production.Products AS P
 INNER JOIN Production.Categories AS C
 ON C.categoryid = P.categoryid)
 ON S.supplierid = P.supplierid
WHERE S.country = N'Japan';

With both fixes, the query generates the correct result, including suppliers who currently
don’t have related products:

supplier country productid productname unitprice categoryname
--------------- -------- ---------- -------------- ---------- -------------
Supplier QOVFD Japan 9 Product AOZBW 97.00 Meat/Poultry
Supplier QOVFD Japan 10 Product YHXGE 31.00 Seafood
Supplier QOVFD Japan 74 Product BKAZJ 10.00 Produce
Supplier QWUSF Japan 13 Product POXFU 6.00 Seafood
Supplier QWUSF Japan 14 Product PWCJB 23.25 Produce
Supplier QWUSF Japan 15 Product KSZOI 15.50 Condiments
Supplier XYZ Japan NULL NULL NULL NULL

Note that the important change that made the difference is the arrangement of the ON
clauses with respect to the joined tables. The ON clause ordering is what defines the logi-

www.EBooksWorld.ir

	 Skill 1.3: Implement functions and aggregate data 	 Chapter 1	 67

cal join ordering. Each ON clause must appear right below the two units that it joins. By
specifying the ON clause that matches attributes from Production.Products and Production.
Categories first, you set this inner join to be logically evaluated first. Then the second ON
clause handles the left outer join by matching an attribute from Production.Suppliers with an
attribute from the result of the inner join. Curiously, T-SQL doesn’t really require the paren-
theses that I added to the query; remove those and rerun the query, and you will see that it
runs successfully. However, it’s recommended to use those for clarity.

EXAM TIP

Multi join queries that mix different join types are very common in practice and there-
fore there’s a high likelihood that questions about those will show up in the exam. Make
sure that you understand the pitfalls in mixing join types, especially when an outer join is
subsequently followed by an inner join, which discards the outer rows that were produced
by the outer join.

When you’re done, run the following code to delete the supplier row that you added at
the beginning of this skill:

DELETE FROM Production.Suppliers WHERE supplierid > 29;

Skill 1.3: Implement functions and aggregate data

T-SQL supports many built-in functions that you can use to manipulate data. Scalar-valued
functions return a single value and table-valued functions return a table result. Use of built-in
functions can improve developer productivity, but you also need to understand cases where
their use in certain context can end up negatively affecting query performance. It’s also im-
portant to understand the concept of function determinism and its effects on your queries.

Note that this skill is not meant to be an exhaustive coverage of all functions that T-SQL
supports—this would require a whole book in its own right. Instead, this chapter explains key as-
pects of working with functions, usually in the context of certain types of data, like date and time
data, or character data. For more details about built-in functions, see the topic “Built-in Functions
(Transact-SQL)” at http://msdn.microsoft.com/en-us/library/ms174318(v=SQL.110).aspx.

This section covers how to:
■■ Construct queries using scalar-valued and table-valued functions

■■ Identify the impact of function usage to query performance and WHERE
clause sargability

■■ Identify the differences between deterministic and non-deterministic functions

■■ Use built-in aggregate functions

■■ Use arithmetic functions, date-related functions, and system functions

www.EBooksWorld.ir

http://www.msdn.microsoft.com/en-us/library/ms174318(v=SQL.110).aspx

	68	 Chapter 1	 Manage data with Transact-SQL

Type conversion functions
T-SQL supports a number of functions that can convert a source expression to a target data
type. In my examples I use constants as the source values to demonstrate the use of the func-
tions, but typically you apply such functions to columns or expressions based on columns as
part of a query.

The two fundamental functions that T-SQL supports for conversion purposes are CAST
and CONVERT. The former is standard whereas the latter is proprietary in T-SQL. The CAST
function’s syntax is CAST(source_expression AS target_type. For example, CAST(‘100’ AS INT)
converts the source character string constant to the target integer value 100. The CON-
VERT function is handy when you need to specify a style for the conversion. Its syntax is
CONVERT(target_type, source_expression [, style_number]). You can find the supported style
numbers and their meaning at https://msdn.microsoft.com/en-us/library/ms187928.aspx. For
instance, when converting a character string to a date and time type or the other way around,
you can specify the style number to avoid ambiguity in case the form you use is considered
language dependent. As an example, the expression CONVERT(DATE, ‘01/02/2017’, 101) con-
verts the input string to a date using the U.S. style, meaning January 2, 2017. The expression
CONVERT(DATE, ‘01/02/2017’, 103) uses the British/French style, meaning February 1, 2017.

The PARSE function is an alternative to CONVERT when you want to parse a character
string input to a target type, but instead of using cryptic style numbers, it uses a more user-
friendly .NET culture name. For instance, the expression PARSE(‘01/02/2017’ AS DATE USING
‘en-US’) uses the English US culture, parsing the input as a date meaning January 2, 2017. The
expression PARSE(‘01/02/2017’ AS DATE USING ‘en-GB’) uses the English Great Britain culture,
parsing the input as a date meaning February 1, 2017. Note though that this function is sig-
nificantly slower than CONVERT, so I personally stay away from using it.

One of the problems with CAST, CONVERT, and PARSE is that if the function fails to convert
a value within a query, the whole query fails and stops processing. As an alternative to these
functions, T-SQL supports the TRY_CAST, TRY_CONVERT, and TRY_PARSE functions, which be-
have the same as their counterparts when the conversion is valid, but return a NULL instead
of failing when the conversion isn’t valid. As an example, run the following code to try and
convert two strings to dates using the CONVERT function:

SELECT CONVERT(DATE, '14/02/2017', 101) AS col1,
 CONVERT(DATE, '02/14/2017', 101) AS col2;

The first value doesn’t convert successfully and therefore this code fails with the following
error:

Msg 241, Level 16, State 1, Line 26
Conversion failed when converting date and/or time from character string.

Use the TRY_CONVERT function instead of CONVERT, like so:

SELECT TRY_CONVERT(DATE, '14/02/2017', 101) AS col1,
 TRY_CONVERT(DATE, '02/14/2017', 101) AS col2;

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms187928.aspx

	 Skill 1.3: Implement functions and aggregate data 	 Chapter 1	 69

This time the code doesn’t fail, but the first expression returns a NULL, as the following
output shows:

col1 col2
---------- ----------
NULL 2017-02-14

Lastly, the FORMAT function is an alternative to the CONVERT function when you want to
format an input expression of some type as a character string, but instead of using cryp-
tic style numbers, you specify a .NET format string and culture, if relevant. For instance,
to format an input date and time value, such as now, as a character string using the form
‘yyyy-MM-dd’, use the expression: FORMAT(SYSDATETIME(), ‘yyyy-MM-dd’). You can use
any format string supported by the .NET Framework. (For details, see the topics “FORMAT
(Transact-SQL)” and “Formatting Types in the .NET Framework” at https://msdn.microsoft.com/
en-us/library/hh213505.aspx and http://msdn.microsoft.com/en-us/library/26etazsy.aspx.).
Note that like PARSE, the FORMAT function is also quite slow, so when you need to format a
large number of values in a query, you typically get much better performance with alternative
built-in functions.

Date and time functions
T-SQL supports a number of date and time functions that allow you to manipulate your date
and time data. This section covers some of the important functions supported by T-SQL and
provides some examples. For the full list, as well as the technical details and syntax, see the
T-SQL documentation for the topic at https://msdn.microsoft.com/en-us/library/ms186724.aspx.

Current date and time
One important category of functions is the category that returns the current date and time.

The functions in this category are GETDATE, CURRENT_TIMESTAMP, GETUTCDATE, SYSDATE-
TIME, SYSUTCDATETIME, and SYSDATETIMEOFFSET. GETDATE is T-SQL–specific, returning the
current date and time in the SQL Server instance you’re connected to as a DATETIME data
type. CURRENT_TIMESTAMP is the same, only it’s standard, and hence the recommended one
to use. SYSDATETIME and SYSDATETIMEOFFSET are similar, only returning the values as the
more precise DATETIME2 and DATETIMEOFFSET types (including the time zone offset from
UTC), respectively. Note that there are no built-in functions to return the current date and
the current time. To get such information, simply cast the SYSDATETIME function to DATE or
TIME, respectively. For example, to get the current date, use CAST(SYSDATETIME() AS DATE).
The GETUTCDATE function returns the current date and time in UTC terms as a DATETIME
type, and SYSUTCDATETIME does the same, only returning the result as the more precise
DATETIME2 type.

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/hh213505.aspx
https://www.msdn.microsoft.com/en-us/library/hh213505.aspx
http://www.msdn.microsoft.com/en-us/library/26etazsy.aspx
https://www.msdn.microsoft.com/en-us/library/ms186724.aspx

	70	 Chapter 1	 Manage data with Transact-SQL

Date and time parts
This section covers date and time functions that either extract a part from a date and time
value (like DATEPART) or construct a date and time value from parts (like DATEFROMPARTS).

Using the DATEPART function, you can extract from an input date and time value a desired
part, such as a year, minute, or nanosecond, and return the extracted part as an integer. For
example, the expression DATEPART(month, ‘20170212’) returns 2. T-SQL provides the func-
tions YEAR, MONTH, and DAY as abbreviations to DATEPART, not requiring you to specify the
part. The DATENAME function is similar to DATEPART, only it returns the name of the part
as a character string, as opposed to the integer value. Note that the function is language
dependent. That is, if the effective language in your session is us_english, the expression
DATENAME(month, ‘20170212’) returns ‘February’, but for Italian, it returns ‘febbraio.'

T-SQL provides a set of functions that construct a desired date and time value from its nu-
meric parts. You have such a function for each of the six available date and time types: DATE-
FROMPARTS, DATETIME2FROMPARTS, DATETIMEFROMPARTS, DATETIMEOFFSETFROMPARTS,
SMALLDATETIMEFROMPARTS, and TIMEFROMPARTS. For example, to build a DATE value from
its parts, you would use an expression such as DATEFROMPARTS(2017, 02, 12).

Finally, the EOMONTH function computes the respective end of month date for the input
date and time value. For example, suppose that today was February 12, 2017. The expression
EOMONTH(SYSDATETIME()) would then return the date ‘2017-02-29’. This function supports a
second optional input indicating how many months to add to the result (or subtract if nega-
tive).

Add and diff functions
T-SQL supports addition and difference date and time functions called DATEADD and DATE-
DIFF.

DATEADD is a very commonly used function. With it, you can add a requested number
of units of a specified part to a specified date and time value. For example, the expression
DATEADD(year, 1, ‘20170212’) adds one year to the input date February 12, 2017.

DATEDIFF is another commonly used function; it returns the difference in terms of a re-
quested part between two date and time values. For example, the expression DATEDIFF(day,
‘20160212’, ‘20170212’) computes the difference in days between February 12, 2016 and
February 12, 2017, returning the value 366. Note that this function looks only at the parts
from the requested one and above in the date and time hierarchy—not below. For example,
the expression DATEDIFF(year, ‘20161231’, ‘20170101’) looks only at the year part, and hence
returns 1. It doesn’t look at the month and day parts of the values.

The DATEDIFF function returns a value of an INT type. If the difference doesn’t fit in a
four-byte integer, use the DATEDIFF_BIG function instead. This function returns the result as a
BIGINT type.

www.EBooksWorld.ir

	 Skill 1.3: Implement functions and aggregate data 	 Chapter 1	 71

Offset
T-SQL supports three functions related to date and time values with an offset: SWITCHOFF-
SET, TODATETIMEOFFSET, and AT TIME ZONE.

The SWITCHOFFSET function returns an input DATETIMEOFFSET value adjusted to a re-
quested target offset (from the UTC time zone). For example, consider the expression SWITC
HOFFSET(SYSDATETIMEOFFSET(), ‘-08:00’). Regardless of the offset of the SQL Server instance
you are connected to, you request to present the current date and time value in terms of
offset ‘-08:00’. If the system’s offset is, say, ‘-05:00’, the function will compensate for this by
subtracting three hours from the input value.

The TODATETIMEOFFSET function is used for a different purpose. You use it to construct
a DATETIMEOFFSET value from two inputs: the first is a date and time value that is not
offset-aware, and the second is the offset. You can use this function to convert a value that
is not offset aware to a target offset typed value without the need to manually convert the
value and the offset to character strings with the right style and then to DATETIMEOFFSET.
You can also use this function when migrating from data that is not offset-aware, where
you keep the local date and time value in one attribute, and the offset in another, to offset-
aware data. Say you have the local date and time in an attribute called mydatetime, and
the offset in an attribute called theoffset. You add an attribute called mydatetimeoffset of
a DATETIMEOFFSET type to the table. You then update the new attribute to the expression
TODATETIMEOFFSET(mydatetime, theoffset), and then drop the original attributes mydate-
time and theoffset from the table.

The following code demonstrates using both functions:

SELECT
 SWITCHOFFSET('20170212 14:00:00.0000000 -05:00', '-08:00') AS [SWITCHOFFSET],
 TODATETIMEOFFSET('20170212 14:00:00.0000000', '-08:00') AS [TODATETIMEOFFSET];

This code generates the following output:

SWITCHOFFSET TODATETIMEOFFSET
---------------------------------- ----------------------------------
2017-02-12 11:00:00.0000000 -08:00 2017-02-12 14:00:00.0000000 -08:00

What’s tricky about both functions is that many time zones support a daylight savings
concept where twice a year you move the clock by an hour. So when you capture the date
and time value, you need to make sure that you also capture the right offset depending on
whether it’s currently daylight savings or not. For instance, in the time zone Pacific Standard
Time the offset from UTC is ‘-07:00’ when it’s daylight savings time and ‘-08:00’ when it isn’t.

T-SQL supports a function called AT TIME ZONE that can be used instead of both the
SWITCHOFFSET and the TODATETIMEOFFSET functions, and that uses named time zones
instead of offsets. This way you don’t need to worry about capturing the right offset and
whether it’s daylight savings time or not, you just capture the time zone name. When the
input value is of a DATETIMEOFFSET type, the function assumes that you want to treat the
conversion similar to SWITCHOFFSET. For instance, never mind what’s the current time zone

www.EBooksWorld.ir

	72	 Chapter 1	 Manage data with Transact-SQL

setting in the current instance, suppose that you want to return now as a DATETIMEOFFSET
value in the time zone Pacific Standard Time. You use the expression: SYSDATETIMEOFFSET()
AT TIME ZONE ‘Pacific Standard Time’. If when you’re running this code it’s currently daylight
savings, the function will switch the input value to offset ‘-07:00’, otherwise to ‘-08:00’.

When the input value is not an offset-aware value, the AT TIME ZONE function assumes
that you want to treat the conversion similar to TODATETIMEOFFSET and that the source
value is already of the target time zone. Again, you don’t need to worry about daylight sav-
ings considerations. Based on the point in the year, the function will know whether to apply
daylight savings time. Here’s an example demonstrating the use of the function with an input
that is not offset-aware:

DECLARE @dt AS DATETIME2 = '20170212 14:00:00.0000000';
SELECT @dt AT TIME ZONE 'Pacific Standard Time';

This code generates the following output:

2017-02-12 14:00:00.0000000 -08:00

The get the set of supported time zones query the view sys.time_zone_info.

When you store date and time values as a type that is not offset aware and you can
present them as DATETIMEOFFSET values of a different target time zone, you need to apply
the AT TIME ZONE function twice—once to convert the value to DATETIMEOFFSET with the
source time zone and another to switch the now DATETIMEOFFSET value from its current time
zone to the target one. For instance, suppose that you have a column called lastmodified that
is typed as DATETIME2 and holds the value in UTC terms. You want to present it in the time
zone Pacific Standard Time. You use the following expression: lastmodified AT TIME ZONE
‘UTC’ AT TIME ZONE ‘Pacific Standard Time.’

Character functions
T-SQL was not really designed to support very sophisticated character string manipulation
functions, so you won’t find a very large set of such functions. This section describes the char-
acter string functions that T-SQL does support, arranged in categories.

Concatenation
Character string concatenation is a very common need. T-SQL supports two ways to concat-
enate strings—one with the plus (+) operator, and another with the CONCAT function.

Here’s an example for concatenating strings in a query by using the + operator:

SELECT empid, country, region, city,
 country + N', ' + region + N', ' + city AS location
FROM HR.Employees;

www.EBooksWorld.ir

	 Skill 1.3: Implement functions and aggregate data 	 Chapter 1	 73

This query generates the following output:

empid country region city location
----------- --------------- --------------- --------------- ----------------
1 USA WA Seattle USA, WA, Seattle
2 USA WA Tacoma USA, WA, Tacoma
3 USA WA Kirkland USA, WA, Kirkland
4 USA WA Redmond USA, WA, Redmond
5 UK NULL London NULL
6 UK NULL London NULL
7 UK NULL London NULL
8 USA WA Seattle USA, WA, Seattle
9 UK NULL London NULL

Observe that when any of the inputs is NULL, the + operator returns a NULL. That’s
standard behavior that can be changed by turning off a session option called CONCAT_NULL_
YIELDS_NULL, though it’s not recommended to rely on such nonstandard behavior. If you
want to substitute a NULL with an empty string, there are a number of ways for you to do this
programmatically. One option is to use ISNULL or COALESCE functions to replace a NULL with
an empty string. For example, in this data, only region can be NULL, so you can use the fol-
lowing query to replace a comma plus region with an empty string when region is NULL:

SELECT empid, country, region, city,
 country + ISNULL(N', ' + region, N'') + N', ' + city AS location
FROM HR.Employees;

Another option is to use the CONCAT function which, unlike the + operator, substitutes a
NULL input with an empty string. Here’s how the query looks:

SELECT empid, country, region, city,
 CONCAT(country, N', ' + region, N', ' + city) AS location
FROM HR.Employees;

Here’s the output of this query:

empid country region city location
----------- --------------- --------------- --------------- ----------------
1 USA WA Seattle USA, WA, Seattle
2 USA WA Tacoma USA, WA, Tacoma
3 USA WA Kirkland USA, WA, Kirkland
4 USA WA Redmond USA, WA, Redmond
5 UK NULL London UK, London
6 UK NULL London UK, London
7 UK NULL London UK, London
8 USA WA Seattle USA, WA, Seattle
9 UK NULL London UK, London

Observe that this time, when region was NULL, it was replaced with an empty string.

www.EBooksWorld.ir

	74	 Chapter 1	 Manage data with Transact-SQL

Substring extraction and position
This section covers functions that you can use to extract a substring from a string, and iden-
tify the position of a substring within a string.

With the SUBSTRING function, you can extract a substring from a string given as the first
argument, starting with the position given as the second argument, and a length given as the
third argument. For example, the expression SUBSTRING(‘abcde’, 1, 3) returns ‘abc’. If the third
argument is greater than what would get you to the end of the string, the function doesn’t
fail; instead, it just extracts the substring until the end of the string.

The LEFT and RIGHT functions extract a requested number of characters from the left and
right ends of the input string, respectively. For example, LEFT(‘abcde’, 3) returns ‘abc’ and
RIGHT(‘abcde’, 3) returns ‘cde’.

The CHARINDEX function returns the position of the first occurrence of the string provided
as the first argument within the string provided as the second argument. For example, the
expression CHARINDEX(‘ ‘,’Inigo Montoya’) looks for the first occurrence of a space in the sec-
ond input, returning 6 in this example. Note that you can provide a third argument indicating
to the function the position where to start looking.

You can combine, or nest, functions in the same expression. For example, suppose you
query a table with an attribute called fullname formatted as ‘<first> <last>’, and you need to
write an expression that extracts the first name part. You can use the following expression:

LEFT(fullname, CHARINDEX(' ', fullname) - 1)

T-SQL also supports a function called PATINDEX that, like CHARINDEX, you can use to
locate the first position of a string within another string. But whereas with CHARINDEX you’re
looking for a constant string, with PATINDEX you’re looking for a pattern. The pattern is
formed very similar to the LIKE patterns that you’re probably familiar with, where you use
wildcards like % for any string, _ for a single character, and square brackets ([]) representing a
single character from a certain list or range. If you’re not familiar with such pattern construc-
tion, see the topics “PATINDEX (Transact-SQL)” and “LIKE (Transact-SQL)” in the T-SQL docu-
mentation at https://msdn.microsoft.com/en-us/library/ms188395.aspx and https://msdn.mi-
crosoft.com/en-us/library/ms179859.aspx. As an example, the expression PATINDEX(‘%[0-9]%’,
‘abcd123efgh’) looks for the first occurrence of a digit (a character in the range 0–9) in the
second input, returning the position 5 in this case.

String length
T-SQL provides two functions that you can use to measure the length of an input value—LEN
and DATALENGTH.

The LEN function returns the length of an input string in terms of the number of charac-
ters. Note that it returns the number of characters, not bytes, whether the input is a regular
character or Unicode character string. For example, the expression LEN(N’xyz’) returns 3. If
there are any trailing spaces, LEN removes them.

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/library/ms188395.aspx
https://msdn.mi-crosoft.com/en-us/library/ms179859.aspx
https://msdn.mi-crosoft.com/en-us/library/ms179859.aspx

	 Skill 1.3: Implement functions and aggregate data 	 Chapter 1	 75

The DATALENGTH function returns the length of the input in terms of number of bytes.
This means, for example, that if the input is a Unicode character string, it will count 2 bytes
per character. For example, the expression DATALENGTH(N’xyz’) returns 6. Note also that, un-
like LEN, the DATALENGTH function doesn’t remove trailing spaces.

String alteration
T-SQL supports a number of functions that you can use to apply alterations to an input string.
Those are REPLACE, REPLICATE, and STUFF.

With the REPLACE function, you can replace in an input string provided as the first argu-
ment all occurrences of the string provided as the second argument, with the string provided
as the third argument. For example, the expression REPLACE(‘.1.2.3.’, ‘.’, ‘/’) substitutes all oc-
currences of a dot (.) with a slash (/), returning the string ‘/1/2/3/’.

The REPLICATE function allows you to replicate an input string a requested number of
times. For example, the expression REPLICATE(‘0’, 10) replicates the string ‘0’ ten times, re-
turning ‘0000000000’.

The STUFF function operates on an input string provided as the first argument; then, from
the character position indicated as the second argument, deletes the number of characters
indicated by the third argument. Then it inserts in that position the string specified as the
fourth argument. For example, the expression STUFF(‘,x,y,z’, 1, 1, ‘’) removes the first character
from the input string, returning ‘x,y,z’.

Formatting
This section covers functions that you can use to apply formatting options to an input string.
Those are the UPPER, LOWER, LTRIM, RTRIM, and FORMAT functions.

The first four functions are self-explanatory (uppercase form of the input, lowercase form
of the input, input after removal of leading spaces, and input after removal of trailing spaces).
Note that there’s no TRIM function that removes both leading and trailing spaces; to achieve
this, you need to nest one function call within another, as in RTRIM(LTRIM(<input>)).

As mentioned earlier, with the FORMAT function, you can format an input value based
on a .NET format string. I demonstrated an example with date and time values. As another
example, this time with numeric values, the expression FORMAT(1759, ‘0000000000’) formats
the input number as a character string with a fixed size of 10 characters with leading zeros,
returning ‘0000001759’. The same thing can be achieved with the format string ‘d10’, mean-
ing decimal value with 10 digits, with the expression FORMAT(1759, ‘d10’).

String splitting
T-SQL supports a table-valued function called STRING_SPLIT that accepts a charter string with
a separated list of values provided as the first input, and a character string with the separator
as the second input, and returns a result set with a column called value holding the individual
split strings. The function supports all character string types for both inputs—regular and

www.EBooksWorld.ir

	76	 Chapter 1	 Manage data with Transact-SQL

Unicode. The type of the result value column, which is actually named value, is NVARCHAR if
the first input is of a Unicode character string type, and VARCHAR otherwise.

As an example, the following code splits an input string that holds a separated list of order
IDs:

DECLARE @orderids AS VARCHAR(MAX) = N'10248,10542,10731,10765,10812';

SELECT value
FROM STRING_SPLIT(@orderids, ',');

This code generates the following output:

Value

10248
10542
10731
10765
10812

Suppose that @orderids is a parameter provided to a stored procedure or a function, and
that routine is supposed to split those IDs, and join the result with the Sales.Orders table to
return information about the input orders. You achieve this with the following query, using a
local variable here for simplicity:

DECLARE @orderids AS VARCHAR(MAX) = N'10248,10542,10731,10765,10812';

SELECT O.orderid, O.orderdate, O.custid, O.empid
FROM STRING_SPLIT(@orderids, ',') AS K
 INNER JOIN Sales.Orders AS O
 ON O.orderid = CAST(K.value AS INT);

This query generates the following output:

orderid orderdate custid empid
----------- ---------- ----------- -----------
10248 2014-07-04 85 5
10542 2015-05-20 39 1
10812 2016-01-02 66 5
10765 2015-12-04 63 3
10731 2015-11-06 14 7

CASE expressions and related functions
T-SQL supports an expression called CASE and a number of related functions that you can use
to apply conditional logic to determine the returned value. Many people incorrectly refer to
CASE as a statement. A statement performs some kind of an action or controls the flow of the
code, and that’s not what CASE does; CASE returns a value, and hence is an expression.

The CASE expression has two forms—the simple form and the searched form. Here’s an
example of the simple CASE form issued against the sample database TSQLV4.

www.EBooksWorld.ir

	 Skill 1.3: Implement functions and aggregate data 	 Chapter 1	 77

SELECT productid, productname, unitprice, discontinued,
 CASE discontinued
 WHEN 0 THEN 'No'
 WHEN 1 THEN 'Yes'
 ELSE 'Unknown'
 END AS discontinued_desc
FROM Production.Products;

The simple form compares an input expression (in this case the attribute discontinued) to
multiple possible scalar when expressions (in this case, 0 and 1), and returns the result expres-
sion (in this case, ‘No’ and ‘Yes’, respectively) associated with the first match. If there’s no
match and an ELSE clause is specified, the else expression (in this case, ‘Unknown’) is returned.
If there’s no ELSE clause, the default is ELSE NULL. Here’s an abbreviated form of the output of
this query:

productid productname unitprice discontinued discontinued_desc
----------- -------------- --------------------- ------------ -----------------
1 Product HHYDP 18.00 0 No
2 Product RECZE 19.00 0 No
3 Product IMEHJ 10.00 0 No
4 Product KSBRM 22.00 0 No
5 Product EPEIM 21.35 1 Yes
6 Product VAIIV 25.00 0 No
...

The searched form of the CASE expression is more flexible. Instead of comparing an input
expression to multiple possible expressions, it uses predicates in the WHEN clauses, and the
first predicate that evaluates to true determines which when expression is returned. If none is
true, the CASE expression returns the else expression. Here’s an example:

SELECT productid, productname, unitprice,
 CASE
 WHEN unitprice < 20.00 THEN 'Low'
 WHEN unitprice < 40.00 THEN 'Medium'
 WHEN unitprice >= 40.00 THEN 'High'
 ELSE 'Unknown'
 END AS pricerange
FROM Production.Products;

In this example, the CASE expression returns a description of the product’s unit price
range. When the unit price is below $20.00, it returns ‘Low’, when it’s $20.00 or more and
below $40.00, it returns ‘Medium’, and when it’s $40.00 or more, it returns ‘High’. There’s an
ELSE clause for safety; if the input is NULL, the else expression returned is ‘Unknown’. Notice
that the second when predicate didn’t need to check whether the value is $20.00 or more
explicitly. That’s because the when predicates are evaluated in order and the first when predi-
cate did not evaluate to true. Here’s an abbreviated form of the output of this query.

www.EBooksWorld.ir

	78	 Chapter 1	 Manage data with Transact-SQL

productid productname unitprice pricerange
----------- -------------- --------------------- ----------
1 Product HHYDP 18.00 Low
2 Product RECZE 19.00 Low
3 Product IMEHJ 10.00 Low
4 Product KSBRM 22.00 Medium
5 Product EPEIM 21.35 Medium
...

T-SQL supports a number of functions that can be considered as abbreviates of the CASE
expression. Those are the standard COALESCE and NULLIF functions, and the nonstandard
ISNULL, IIF, and CHOOSE.

The COALESCE function accepts a list of expressions as input and returns the first that
is not NULL, or NULL if all are NULLs. If all inputs are the untyped NULL constant, as in
COALESCE(NULL, NULL, NULL), SQL Server generates an error. For example, the expression
COALESCE(NULL, ‘x’, ‘y’) returns ‘x’. More generally, the expression:

COALESCE(<exp1>, <exp2>, ..., <expn>)

is similar to the following:

CASE
 WHEN <exp1> IS NOT NULL THEN <exp1>
 WHEN <exp2> IS NOT NULL THEN <exp2>
 ...
 WHEN <expn> IS NOT NULL THEN <expn>
 ELSE NULL
END

A typical use of COALESCE is to substitute a NULL with something else. For example, the expres-
sion COALESCE(region, ‘’) returns region if it’s not NULL and returns an empty string if it is NULL.

T-SQL supports a nonstandard function called ISNULL that is similar to the standard
COALESCE, but it’s a bit more limited in the sense that it supports only two inputs. Like
COALESCE, it returns the first input that is not NULL. So, instead of COALESCE(region, ‘’), you
could use ISNULL(region, ‘’). If there’s a requirement to use standard code in the application
when possible, you should prefer COALESCE in such a case.

There are a few interesting differences between COALESCE and ISNULL that you should be
aware of when working with these functions. One is which input determines the type of the
output. Consider the following code:

DECLARE
 @x AS VARCHAR(3) = NULL,
 @y AS VARCHAR(10) = '1234567890';

SELECT COALESCE(@x, @y) AS [COALESCE], ISNULL(@x, @y) AS [ISNULL];

Here’s the output of this code:

COALESCE ISNULL
---------- ------
1234567890 123

www.EBooksWorld.ir

	 Skill 1.3: Implement functions and aggregate data 	 Chapter 1	 79

Observe that the type of the COALESCE expression is determined by the returned element,
whereas the type of the ISNULL expression is determined by the first input.

The other difference is when you use the SELECT INTO statement, which writes a query re-
sult into a target table, including creating the table. Suppose the SELECT list of a SELECT INTO
statement contains the expressions COALESCE(col1, 0) AS newcol1 versus ISNULL(col1, 0) AS
newcol1. If the source attribute col1 is defined as NOT NULL, both expressions will produce
an attribute in the result table defined as NOT NULL. However, if the source attribute col1 is
defined as allowing NULLs, COALESCE will create a result attribute allowing NULLs, whereas
ISNULL will create one that disallows NULLs.

T-SQL also supports the standard NULLIF function. This function accepts two input expres-
sions, returns NULL if they are equal, and returns the first input if they are not. For example,
consider the expression NULLIF(col1, col2). If col1 is equal to col2, the function returns a
NULL; otherwise, it returns the col1 value.

As for IIF and CHOOSE, these are nonstandard T-SQL functions that were added to simplify
migrations from Microsoft Access platforms. Because these functions aren’t standard and
there are simple standard alternatives with CASE expressions, it is not usually recommended
that you use them. However, when you are migrating from Access to SQL Server, these func-
tions can help with smoother migration, and then gradually you can refactor your code to use
the available standard functions. With the IIF function, you can return one value if an input
predicate is true and another value otherwise. The function has the following form:

IIF(<predicate>, <true_result>, <false_or_unknown_result>)

This expression is equivalent to the following:

CASE WHEN <predicate> THEN <true_result> ELSE <false_or_unknown_result> END

For example, the expression IIF(orderyear = 2017, qty, 0) returns the value in the qty at-
tribute when the orderyear attribute is equal to 2017, and zero otherwise.

The CHOOSE function allows you to provide a position and a list of expressions, and re-
turns the expression in the indicated position. The function takes the following form:

CHOOSE(<pos>, <exp1>, <exp2>, …, <expn>)

For example, the expression CHOOSE(2, ‘x’, ‘y’, ‘z’) returns ‘y’. Again, it’s straightforward
to replace a CHOOSE expression with a logically equivalent CASE expression; but the point
in supporting CHOOSE, as well as IIF, is to simplify migrations from Access to SQL Server as a
temporary solution.

System functions
System functions return information about various aspects of the system. Here I highlight a
few of the functions. You can find the full list in the Transact-SQL documentation at
https://msdn.microsoft.com/en-us/library/ms187786.aspx.

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms187786.aspx

	80	 Chapter 1	 Manage data with Transact-SQL

The @@ROWCOUNT and ROWCOUNT_BIG functions
The @@ROWCOUNT function is a very popular function that returns the number of rows
affected by the last statement that you executed. It’s very common to use it to check if the
previous statement affected any rows by checking that the function’s result is zero or greater
than zero. For example, the following code queries the input employee row, and prints a mes-
sage if the requested employee was not found:

DECLARE @empid AS INT = 10;

SELECT empid, firstname, lastname
FROM HR.Employees
WHERE empid = @empid;

IF @@ROWCOUNT = 0
 PRINT CONCAT('Employee ', CAST(@empid AS VARCHAR(10)), ' was not found.');

This code generates the following output:

empid firstname lastname
----------- ---------- --------------------

(0 row(s) affected)

Employee 10 was not found.

The @@ROWCOUNT function returns an INT typed value. If the row count can exceed
the maximum INT value (2,147,483,647), use the ROWCOUNT_BIG function, which returns a
BIGINT typed value.

Compression functions
T-SQL supports a function called COMPRESS that enables you to compress an input character
or binary string using the GZIP algorithm into a result binary string. It also supports a function
called DECOMPRESS that allows you to decompress a previously compressed string.

Note that you need to explicitly invoke the COMPRESS function to compress the input
string before you store the result compressed binary string in a table. For example, supposed
that you have a stored procedure parameter called @notes of the type NVARCHAR(MAX) that
you need to compress and store the result in a table, in a column called notes. As part of your
INSERT statement against the target table, the VALUES clause includes the expression COM-
PRESS(@notes) as the target value for the target column. Your code might look like this:

INSERT INTO dbo.MyNotes(notes)
 VALUES(COMPRESS(@notes));

When you later query the table, you use the expression DECOMPRESS(notes) to decom-
press the column value. However, because the result is a binary string, you need to convert
it to the target type using the expression CAST(DECOMPRESS(notes) AS NVARCHAR(MAX)).
Your code might look like this.

www.EBooksWorld.ir

	 Skill 1.3: Implement functions and aggregate data 	 Chapter 1	 81

SELECT keycol
 CAST(DECOMPRESS(notes) AS NVARCHAR(MAX)) AS notes
FROM dbo.MyNotes;

Context info and session context
When you need to pass information from one level in the call stack to another, you usually
use parameters. For instance, if you want to pass something to a procedure, you use an input
parameter, and if you want to return something back, you use an output parameter. However,
certain modules in T-SQL, for example, triggers, are by design niladic, meaning they don’t
support parameters. One technique to pass information between an outer level and a niladic
module is to use either context info or session context.

Context info is a binary string of up to 128 bytes that is associated with your session. You
write to it using the SET CONTEXT_INFO command and read it using the CONTEXT_INFO
function. For example, the following code writes the value ‘us_english,' after converting it to a
binary string, as the current session’s context info:

DECLARE @mycontextinfo AS VARBINARY(128) = CAST('us_english' AS VARBINARY(128));
SET CONTEXT_INFO @mycontextinfo;

You can read the context info from anywhere in your session, including triggers as follows:

SELECT CAST(CONTEXT_INFO() AS VARCHAR(128)) AS mycontextinfo;

This code generates the following output:

Mycontextinfo

us_english

The tricky thing about context info is that there’s only one such binary string for the ses-
sion. If you need to use it to store multiple values from different places in the code, you need
to designate different parts of it for the different values. Every time you need to store a value,
you need to read the current contents, and reconstruct it with the new value planted in the
right section, being careful not to overwrite existing used parts. The potential to corrupt
meaningful information is high.

T-SQL provides a tool called session context as a more convenient and robust alternative
to context info. With session context, you store key-value pairs, where the key is a name of a
sysname type (internally mapped to NVARCHAR(128)) that you assign to your session’s vari-
able, and the value is a SQL_VARIANT typed value that is associated with the key. You can also
mark the pair as read only, and then until the session resets, no one will be able to overwrite
the value associated with that key. You create the key and set its associated value using the
sp_set_session_context stored procedure and read it using the SESSION_CONTEXT function.

As an example, the following code creates a key called language and associates with it the
value ‘us_english’, marking it as read only.

www.EBooksWorld.ir

	82	 Chapter 1	 Manage data with Transact-SQL

EXEC sys.sp_set_session_context
 @key = N'language', @value = 'us_english', @read_only = 1;

Then when you need to read the value from anywhere in your session, you use the follow-
ing code:

SELECT SESSION_CONTEXT(N'language') AS [language];

This code generates the following output:

Language

us_english

GUID and identity functions
T-SQL provides a number of solutions for generating values that you can use as keys for your
rows. T-SQL also provides system functions to generate and query the newly generated keys.

If you need to generate a key that is globally unique, even across systems, you use the
NEWID function to generate it as a UNIQUEIDENTIFER typed value. As an example, run the
following code:

SELECT NEWID() AS myguid;

You can run this code several times and see that every time you get a different globally
unique identifier (GUID). For instance, in one of my executions of this code I got the following
output:

Myguid

203B8382-77E4-4B7E-B6B9-260CC7A9CB8C

If you want the GUIDs to always increase within the machine, use the NEWSEQUENTIALID
system function instead. Note that you cannot invoke this function independently, rather only
as an expression in a default constraint that is associated with a column.

If you need a numeric key generator, you use either a sequence object or the identity
column property. The former is an independent object in the database that you create
using the CREATE SEQUENCE command. Once created, every time you need a new value,
you invoke the function NEXT VALUE FOR <sequence_name>. The latter is a property of a
column in a table. SQL Server generates a new key only as part of an INSERT statement that
you submit against the target table, where you ignore the column with the identity property.
After adding the row, you query the system function SCOPE_IDENTITY to get the last identity
value that was generated in the same session and scope. In the same scope I mean that if a
trigger was fired and also added a row to a table with an identity property, this will not affect
the value that the function will return. If you want to get the last identity value generated in
your session, irrespective of scope, you query the system function @@IDENTITY. You can find
examples for using both the identity property and the sequence object later in this chapter in
Skill 1.4.

www.EBooksWorld.ir

	 Skill 1.3: Implement functions and aggregate data 	 Chapter 1	 83

Arithmetic operators and aggregate functions
T-SQL supports the four classic arithmetic operators + (add), - (subtract), * (multiply), / (divide),
as well as the fifth operator % (modulo). The last computes the remainder of an integer division.
T-SQL also supports aggregate functions, which you apply to a set of rows, and get a single
value back.

Arithmetic operators
For the most part, work with these arithmetic operators is intuitive. They follow classic arith-
metic operator precedence rules, which say that multiplication, division and modulo precede
addition and subtraction. To change precedence of operations, use parentheses because they
precede arithmetic operators. For example, consider the following expression:

SELECT 2 + 3 * 2 + 10 / 2;

It is equivalent to the following expression:

SELECT 2 + (3 * 2) + (10 / 2);

The result of this expression is 13.

If you want to evaluate the operations from left to right, you need to use parentheses as
follows:

SELECT ((2 + 3) * 2 + 10) / 2;

This expression evaluates to 10.

The data types of the operands in an arithmetic computation determine the data type of
the result. If the operands are integers, the result of arithmetic operations is an integer. With
this in mind, consider the following expression:

SELECT 9 / 2;

With integer division, the result of this expression is 4 and not 4.5. Obviously, when using
constants, you can simply specify numeric values instead of integer values to get numeric
division; however, when the operands are integer columns or parameters, but you need
numeric division, you have two options. One option is to explicitly cast the operands to a
numeric type with the appropriate precision and scale as follows:

DECLARE @p1 AS INT = 9, @p2 AS INT = 2;
SELECT CAST(@p1 AS NUMERIC(12, 2)) / CAST(@p2 AS NUMERIC(12, 2));

The rules for determining the precision and scale of the result of the computation can be
found at https://msdn.microsoft.com/en-us/library/ms190476.aspx. The result of this expres-
sion is 4.500000000000000. The operation here is division. The applicable formula to calcu-
late the precision here is p1 - s1 + s2 + max(6, s1 + p2 + 1), which when applied to our inputs
results in 27. The formula for the scale is max(6, s1 + p2 + 1), which in this case results in 15.

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms190476.aspx

	84	 Chapter 1	 Manage data with Transact-SQL

Another option is to multiply the first operand by a numeric constant, and this way force
implicit conversion of both the first and the second operands to a numeric type as follows:

DECLARE @p1 AS INT = 9, @p2 AS INT = 2;
SELECT 1.0 * @p1 / @p2;

Aggregate functions
An aggregate function is a function that you apply to a set of rows and get a single value
back. T-SQL supports aggregate functions such as SUM, COUNT, MIN, MAX, AVG and others.
You can find the full list at https://msdn.microsoft.com/en-us/library/ms173454.aspx.

Aggregate functions ignore NULL inputs when applied to an expression. The COUNT(*)
aggregate just counts rows, and returns the result as an INT value. Use COUNT_BIG to return
the row count as a BIGINT value. If you want to apply an aggregate function to distinct values,
add the DISTINCT clause, as in COUNT(DISTINCT custid).

You can apply aggregate functions in explicit grouped queries as the following example
shows:

SELECT empid, SUM(qty) AS totalqty
FROM Sales.OrderValues
GROUP BY empid;

In a grouped query the aggregate is applied per group, and returns a single value per
group, as part of the single result row that represents the group. This query generates the
following output:

empid totalqty
----------- -----------
9 2670
3 7852
6 3527
7 4654
1 7812
4 9798
5 3036
2 6055
8 5913

An aggregate function can also be applied as a scalar aggregate in an implied grouped
query. The presence of the aggregate function causes the query to be considered a grouped
one, as in the following example:

SELECT SUM(qty) AS totalqty FROM Sales.OrderValues;

This query returns the grand total quantity 51,317.

Like with arithmetic operators, also with aggregate functions like AVG, the data type of the
input determines the data type of the result. For instance, the following query produces an
integer average:

SELECT AVG(qty) AS avgqty FROM Sales.OrderValues;

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms173454.aspx

	 Skill 1.3: Implement functions and aggregate data 	 Chapter 1	 85

The result of this average is the integer 61.

You can use the two aforementioned options that I described for arithmetic operations to
get a numeric average. Either explicitly cast the input to a numeric type as follows:

SELECT AVG(CAST(qty AS NUMERIC(12, 2))) AS avgqty FROM Sales.OrderValues;

Or implicitly as follows:

SELECT AVG(1.0 * qty) AS avgqty FROM Sales.OrderValues;

This time you get the result 61.827710.

If you’re wondering why the scale of the result value here is 6 digits, the AVG function is
handled internally as a sum divided by a count. The scale of the input expression (1.0 * qty) is
the sum of the scales of the operands (1 for 1.0 and 0 for the integer qty), which in our case is
1. The sum aggregate’s scale is the maximum scale among the input values, which in our case
is 1. Then the scale of the result of the division between the sum and the count is based on
the formula max(6, s1 + p2 + 1), which in our case is 6.

As an alternative to grouping, aggregate functions can be applied in windowed queries, as
window aggregates. This, as well as further aspects of grouping and aggregation are covered
in Chapter 2, Skill 2.3.

Example involving arithmetic operators and aggregate functions
As mentioned, the % (modulo) operator computes the remainder of an integer division. Sup-
pose that you were tasked with computing the median quantity (qty column) from the Sales.
OrderValues view using a continuous distribution model. This means that if there are an odd
number of rows you need to return the middle quantity, and if there are an even number of
rows, you need to return the average of the two middle quantities. Using the COUNT aggre-
gate, you can first count how many rows there are and store in a variable called @cnt. Then
you can compute parameters for the OFFSET-FETCH filter to specify, based on qty ordering,
how many rows to skip (offset value) and how many to filter (fetch value). The number of rows
to skip is (@cnt - 1) / 2. It’s clear that for an odd count this calculation is correct because you
first subtract 1 for the single middle value, before you divide by 2.

This also works correctly for an even count because the division used in the expression is
integer division; so, when subtracting 1 from an even count, you’re left with an odd value.
When dividing that odd value by 2, the fraction part of the result (.5) is truncated. The num-
ber of rows to fetch is 2 - (@cnt % 2). The idea is that when the count is odd the result of the
modulo operation is 1, and you need to fetch 1 row. When the count is even the result of the
modulo operation is 0, and you need to fetch 2 rows. By subtracting the 1 or 0 result of the
modulo operation from 2, you get the desired 1 or 2, respectively. Finally, to compute the
median quantity, take the one or two result quantities, and apply an average after converting
the input integer value to a numeric one as follows:

DECLARE @cnt AS INT = (SELECT COUNT(*) FROM Sales.OrderValues);

SELECT AVG(1.0 * qty) AS median

www.EBooksWorld.ir

	86	 Chapter 1	 Manage data with Transact-SQL

FROM (SELECT qty
 FROM Sales.OrderValues
 ORDER BY qty
 OFFSET (@cnt - 1) / 2 ROWS FETCH NEXT 2 - @cnt % 2 ROWS ONLY) AS D;

You cannot apply the AVG aggregate directly in the query with the OFFSET-FETCH filter.
That’s because if you did, there would have been implied grouping, which happens in the
third step of logical query processing. Then the reference to the detail qty column in the OR-
DER BY clause, which is processed in the sixth logical query processing step, would have been
invalid. Therefore, the solution defines a derived table (a table subquery in the FROM clause)
called D that represents the one or two quantities that need to participate in the median
calculation, and then the outer query handles the average calculation. This query returns the
median quantity 50.000000.

Search arguments
One of the most important aspects of query tuning to know is what a search argument is. A
search argument, or SARG in short, is a filter predicate that enables the optimizer to rely on
index order. The filter predicate uses the following form (or a variant with two delimiters of a
range, or with the operand positions flipped):

WHERE <column> <operator> <expression>

Such a filter is sargable if:

1.	 You don’t apply manipulation to the filtered column.

2.	 The operator identifies a consecutive range of qualifying rows in the index. That’s the
case with operators like =, >, >=, <, <=, BETWEEN, LIKE with a known prefix, and so on.
That’s not the case with operators like <>, LIKE with a wildcard as a prefix.

In most cases, when you apply manipulation to the filtered column, the optimizer doesn’t
try to be too smart and understand the meaning of the calculation, and if index ordering
can still be relied on. It simply assumes that the result values might sort differently than the
source values, and therefore index ordering can’t be trusted. This, for example, can prevent
the ability to rely on the index to filter the data by applying a seek and range scan.

As an example, consider the following query:

SELECT orderid, orderdate
FROM Sales.Orders
WHERE YEAR(orderdate) = 2015;

The plan for this query is shown in Figure 1-15.

www.EBooksWorld.ir

	 Skill 1.3: Implement functions and aggregate data 	 Chapter 1	 87

FIGURE 1-15  Plan with an index scan for example with date range

There is a nonclustered covering index defined on the orderdate column as the leading
key, with orderid being implicitly part of the index because it’s the clustered index key. Clearly,
the qualifying rows appear in a consecutive range in the index. However, the manipulation
applied to the orderdate column with the YEAR function prevents the filter’s sargability, and
causes the optimizer to scan the whole index. The predicate is applied as a residual predicate,
and shows up under the scan’s Predicate property.

The alternative that is considered a search argument expresses the predicate as a range,
without applying manipulation to the filtered column as follows:

SELECT orderid, orderdate
FROM Sales.Orders
WHERE orderdate >= '20150101'
 AND orderdate < '20160101';

The plan for this query is shown in Figure 1-16.

FIGURE 1-16  Plan with an index seek for example with date range

This time the plan applies a seek in the index and a range scan in the index leaf, physically
touching only qualifying rows. The predicate appears under the Seek Predicates property.

Note that in some rare cases, Microsoft added logic to the optimizer to convert a nonsar-
gable predicate to a sargable one. For instance, when using the predicate CAST(dt AS DATE)
= ‘20170212’, where dt is an indexed date and time typed column, SQL Server can compute
two delimiters in an open-open interval, and then process the filter with a sargable predicate

www.EBooksWorld.ir

	88	 Chapter 1	 Manage data with Transact-SQL

where the column is greater than the first delimiter and less than the second. But because it’s
so uncommon for SQL Server to do such conversions, it’s a best practice to make sure that
you write in a sargable way to begin with.

There are plenty more typical examples where people fall into such traps. For instance,
consider the following query:

DECLARE @todt AS DATE = '20151231';

SELECT orderid, orderdate
FROM Sales.Orders
WHERE DATEADD(day, -1, orderdate) < @todt;

This query resides in a stored procedure or user defined function that accepts a parameter
called @todt (emulated here with an ad-hoc batch with a local variable), and is supposed to
return all orders that were placed prior to the day after the input parameter. As written, the
query isn’t sargable due to the manipulated filtered column. The plan for this query is similar
to the one shown earlier in Figure 1-15, only with the current query’s filter predicate.

A simple mathematical transformation, applying a plus one day to the parameter instead
of a minus one day to the column enables sargability as follows:

DECLARE @todt AS DATE = '20151231';

SELECT orderid, orderdate
FROM Sales.Orders
WHERE orderdate < DATEADD(day, 1, @todt);

The plan for this query is similar to the one shown earlier in Figure 1-16, only with the cur-
rent query’s filter predicate.

As another example, the following query returns employees with a last name that starts
with the letter D:

SELECT empid, lastname
FROM HR.Employees
WHERE LEFT(lastname, 1) = N'D';

This filter isn’t sargable due to the function LEFT that is applied to the lastname column,
and therefore the plan for this query is similar to the one shown earlier in Figure 1-15, only
with the index idx_nc_lastname and the current query’s filter predicate.

The sargable alternative is to use the LIKE predicate as follows:

SELECT empid, lastname
FROM HR.Employees
WHERE lastname LIKE N'D%';

When using the LIKE predicate with a known prefix SQL Server internally translates the
pattern to a closed-open interval, and process the filter as a range that is greater than or
equal to the first delimiter and less than the second delimiter. The plan for this query is similar
to the one shown earlier in Figure 1-16.

www.EBooksWorld.ir

	 Skill 1.3: Implement functions and aggregate data 	 Chapter 1	 89

Yet another common example is when filtering a NULLable column. Consider the following
query:

DECLARE @dt AS DATE = '20150212';

SELECT orderid, shippeddate
FROM Sales.Orders
WHERE shippeddate = @dt;

There’s an index defined on the shippeddate column, with the orderid column implicitly
included. Clearly, this filter is sargable, but there is a bug in this query. Unshipped orders are
marked with a NULL in the shippeddate column, so when you want to see unshipped orders
you pass a NULL as input as follows:

DECLARE @dt AS DATE = NULL;

SELECT orderid, shippeddate
FROM Sales.Orders
WHERE shippeddate = @dt;

This query uses an equality-based comparison, where a comparison between anything and
a NULL, including between two NULLs, yields unknown, and therefore the result is an empty
set.

One of the common techniques that people use to cope with such cases is to use the
COALESCE or ISNULL function to replace a NULL in both sides with a value that can’t normally
appear in the data as follows:

DECLARE @dt AS DATE = NULL;

SELECT orderid, shippeddate
FROM Sales.Orders
WHERE ISNULL(shippeddate, '99991231') = ISNULL(@dt, '99991231');

You do get the correct result, but the filter isn’t sargable, so the plan for this query is
similar to the one shown earlier in Figure 1-15, only with the current index and query filter
predicate.

One recommended solution that is considered sargable is to use the IS NULL predicate to
check for NULLs as follows:

DECLARE @dt AS DATE = NULL;

SELECT orderid, shippeddate
FROM Sales.Orders
WHERE shippeddate = @dt
 OR (shippeddate IS NULL AND @dt IS NULL);

The plan for this query is similar to the one shown earlier in Figure 1-16.

www.EBooksWorld.ir

	90	 Chapter 1	 Manage data with Transact-SQL

This solution is correct, but if you have a conjunction of multiple predicates based on
NULLable columns that you need to filter by, your WHERE clause will end up being long and
convoluted. Recall the trick you used in the joins section when comparing NULLable columns
using the EXISTS predicate and the INTERSECT set operator. You can apply the same trick here
as follows:

DECLARE @dt AS DATE = NULL;

SELECT orderid, shippeddate
FROM Sales.Orders
WHERE EXISTS (SELECT shippeddate INTERSECT SELECT @dt);

With multiple columns you simply extend the SELECT lists in both sides. Set operators
use a distinctness-based comparison and not an equality-based one, giving you the desired
meaning without the need for special handling of NULLs. What’s more, remarkably this form
is sargable and therefore the plan for this query is also similar to the one shown earlier in
Figure 1-16.

In the same way that manipulation of a filtered column prevents the sargability of a filter,
such manipulation breaks the ordering property of the data. This means that even if there’s
an index on a column, SQL Server cannot rely on the index order to support an order-based
algorithm for presentation ordering, window-function ordering, joining, grouping, distinct-
ness, and so on.

Function determinism
Function determinism is a characteristic that indicates whether the function is guaranteed to
return the same result given the same set of input values (including an empty set) in different
invocations. If the function provides such a guarantee, it is said to be deterministic; other-
wise, it is said to be nondeterministic. I am not going to go over the full list of functions and
their determinism quality here. You can find the details at https://msdn.microsoft.com/en-us/
library/ms178091.aspx. Here I am going to describe the different categories of determinism
and illustrate each with a couple of examples. I also describe the limitations that nondeter-
ministic functions impose.

There are three main categories of function determinism. There are functions that are al-
ways deterministic, those that are deterministic when invoked in a certain way, and those that
are always nondeterministic.

Examples for functions that are always deterministic: all string functions, COALESCE, ISNULL,
ABS, SQRT and many others. For instance, the expression ABS(-1759) always returns 1759.

Certain functions are either deterministic or not depending on how they’re used. For
example, the CAST function is not deterministic when converting from a character string to
a date and time type or the other way around because the interpretation of the value might
depend on the login’s language. For instance, the expression CAST(‘02/12/17’ AS DATE)

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms178091.aspx
https://www.msdn.microsoft.com/en-us/library/ms178091.aspx

	 Skill 1.3: Implement functions and aggregate data 	 Chapter 1	 91

converts to February 12, 2017 under us_english, December 2, 2017 under British, and Decem-
ber 17, 2002 under Swedish and Japanese. The same applies to CONVERT when using certain
styles. Another example is the RAND function. This function returns a float in the range 0
through 1. When using it with a seed, it is deterministic. For instance, run the following code
several times:

SELECT RAND(1759);

You keep getting the same result, 0.746348756684839.

When you invoke the function without a seed, SQL Server computes a new seed based on
the previous invocation and you get a pseudo random value. Run the following code several
times and notice that you keep getting different results:

SELECT RAND();

In pseudo, I mean that even though technically without a seed the function is considered
nondeterministic, if invoked right after an invocation with a seed, the result is repeatable. Run
the following code several times:

SELECT RAND(1759);
SELECT RAND();

You repeatedly get the following output:

0.746348756684839

0.201391138037653

Certain functions are always nondeterministic, for example SYSDATETIME and NEWID. The
former returns the current date and time value as a DATETIME2 typed value, and the latter
returns a globally unique identifier as a UNIQUEIDENTIFIER typed value. NEWID returns a
fairly random value, but its type is awkward to work with. To get a random integer value in a
certain range, for instance, 1 through 10, use the following expression:

SELECT 1 + ABS(CHECKSUM(NEWID())) % 10;

By applying CHECKSUM to the result of NEWID you get a random integer. The absolute
value modulo 10 gives you a random value in the range 0 through 9. Adding the result to 1
gives you a random value in the range 1 through 10.

Most nondeterministic functions are invoked once per query. That’s the case for instance
with SYSDATETIME and RAND (when invoked without a seed). The NEWID function is an ex-
ception in the sense that it gets invoked per row. Consider the following query:

SELECT empid, SYSDATETIME() AS dtnow, RAND() AS rnd, NEWID() AS newguid
FROM HR.Employees;

In one of the executions of this query on my system I got the following result (formatted as
two outputs to fit on the page).

www.EBooksWorld.ir

	92	 Chapter 1	 Manage data with Transact-SQL

empid dtnow rnd
------ --------------------------- ------------------
2 2016-10-02 09:35:46.8024874 0.980769010450262
7 2016-10-02 09:35:46.8024874 0.980769010450262
1 2016-10-02 09:35:46.8024874 0.980769010450262
5 2016-10-02 09:35:46.8024874 0.980769010450262
6 2016-10-02 09:35:46.8024874 0.980769010450262
8 2016-10-02 09:35:46.8024874 0.980769010450262
3 2016-10-02 09:35:46.8024874 0.980769010450262
9 2016-10-02 09:35:46.8024874 0.980769010450262
4 2016-10-02 09:35:46.8024874 0.980769010450262

empid newguid
------ ------------------------------------
2 F2EC6CC7-E986-4A43-9ED9-1A08C56600D2
7 74A018CF-5E95-4C7F-BA8F-D707A3DD5177
1 B894EAAF-07C8-4CC1-AD20-4CE7DA4AFB81
5 10B86C1F-BD18-4E7E-8A70-195A239B54EA
6 20514C7A-4F3C-4C3F-BFBB-014E5FAC6B85
8 86C29355-16B2-4A48-9068-039ABBD56B85
3 D923AEBB-0FD7-424D-93C2-E68E199A24C1
9 E2940155-3C66-4F1A-BBF9-0D001AF9A4AB
4 2B3BE2DD-00CE-494E-B52C-989CA71A36E9

Keep this in mind, for instance, if you want to return the results ordered randomly, or
select a random set of rows. For instance, suppose that you need to return a random set of
three employees, and you use the following query in attempt to achieve this:

SELECT TOP (3) empid, firstname, lastname
FROM HR.Employees
ORDER BY RAND();

Run this code repeatedly and you probably keep getting the same result. Because the
RAND function returns the same value in all rows, the ORDER BY is meaningless here. To get
different random values in the different rows, order by NEWID, or for even better random
distribution, apply CHECKSUM to NEWID as follows:

SELECT TOP (3) empid, firstname, lastname
FROM HR.Employees
ORDER BY CHECKSUM(NEWID());

Note that the use of a nondeterministic function in a computed column prevents the
ability to create an index on the column. Similarly, the use of a nondeterministic function in a
view prevents the ability to create a clustered index on the view. That’s the case whether the
function is always nondeterministic, or nondeterministic in certain cases.

www.EBooksWorld.ir

	 Skill 1.4: Modify data 	 Chapter 1	 93

Skill 1.4: Modify data

The T-SQL support for data manipulation language (DML) includes both statements that
retrieve data (SELECT) and statements that modify data (INSERT, UPDATE, DELETE, TRUNCATE
TABLE, and MERGE). The previous skills focused on data retrieval; this skill focuses on data
modification.

This section covers how to:
■■ Write INSERT, UPDATE, and DELETE statements

■■ Determine which statements can be used to load data to a table based on
its structure and constraints

■■ Construct Data Manipulation Language (DML) statements using the
OUTPUT statement

■■ Determine the results of Data Definition Language (DDL) statements on
supplied tables and data

Inserting data
T-SQL supports a number of different methods that you can use to insert data into your
tables. Those include statements like INSERT VALUES, INSERT SELECT, INSERT EXEC, and SE-
LECT INTO. This section covers these statements and demonstrates how to use them through
examples.

Some of the code examples in this section use a table called Sales.MyOrders. Use the fol-
lowing code to create such a table in the sample database TSQLV4:

USE TSQLV4;
DROP TABLE IF EXISTS Sales.MyOrders;
GO

CREATE TABLE Sales.MyOrders
(
 orderid INT NOT NULL IDENTITY(1, 1)
 CONSTRAINT PK_MyOrders_orderid PRIMARY KEY,
 custid INT NOT NULL,
 empid INT NOT NULL,
 orderdate DATE NOT NULL
 CONSTRAINT DFT_MyOrders_orderdate DEFAULT (CAST(SYSDATETIME() AS DATE)),
 shipcountry NVARCHAR(15) NOT NULL,
 freight MONEY NOT NULL
);

Observe that the orderid column has an identity property defined with a seed 1 and an
increment 1. This property generates the values in this column automatically when rows are
inserted. As an alternative to the identity property you can use a sequence object to gener-

www.EBooksWorld.ir

	94	 Chapter 1	 Manage data with Transact-SQL

ate surrogate keys. For details about the sequence object and a comparison between the two
options, see the following articles:

■■ Sequences part 1 at http://sqlmag.com/sql-server/sequences-part-1

■■ Sequences part 2 at http://sqlmag.com/sql-server/sequences-part-2

■■ Sequence and identity performance at http://sqlmag.com/sql-server/sequence-and-
identity-performance

Also observe that the orderdate column has a default constraint with an expression that
returns the current system’s date.

INSERT VALUES
With the INSERT VALUES statement, you can insert one or more rows into a target table
based on value expressions. Here’s an example for a statement inserting one row into the
Sales.MyOrderValues table:

INSERT INTO Sales.MyOrders(custid, empid, orderdate, shipcountry, freight)
 VALUES(2, 19, '20170620', N'USA', 30.00);

Specifying the target column names after the table name is optional but considered a best
practice. That’s because it enables you to control the source value to target column associa-
tion, irrespective of the order in which the columns were defined in the table.

Without the target column list, you must specify the values in column definition order. If
the underlying table definition changes but the INSERT statements aren’t modified accord-
ingly, this can result in either errors, or worse, values written to the wrong columns.

The INSERT VALUES statement does not specify a value for a column with an identity prop-
erty because the property generates the value for the column automatically. Observe that the
previous statement doesn’t specify the orderid column. If you do want to provide your own
value instead of letting the identity property do it for you, you need to first turn on a session
option called IDENTITY_INSERT, as follows:

SET IDENTITY_INSERT <table> ON;

When you’re done, you need to remember to turn it off.

Note that in order to use this option, you need quite strong permissions; you need to be
the owner of the table or have ALTER permissions on the table.

Besides using the identity property, there are other ways for a column to get its value
automatically in an INSERT statement. A column can have a default constraint associated with
it like the orderdate column in the Sales.MyOrders table. If the INSERT statement doesn’t
specify a value for the column explicitly, SQL Server will use the default expression to gener-
ate that value. For example, the following statement doesn’t specify a value for orderdate,
and therefore SQL Server uses the default expression:

INSERT INTO Sales.MyOrders(custid, empid, shipcountry, freight)
 VALUES(3, 11, N'USA', 10.00);

www.EBooksWorld.ir

http://www.sqlmag.com/sql-server/sequences-part-1
http://www.sqlmag.com/sql-server/sequences-part-2
http://www.sqlmag.com/sql-server/sequence-and-identity-performance
http://www.sqlmag.com/sql-server/sequence-and-identity-performance

	 Skill 1.4: Modify data 	 Chapter 1	 95

Another way to achieve the same behavior is to specify the column name in the names
list and the keyword DEFAULT in the respective element in the VALUES list. Here’s an INSERT
example demonstrating this:

INSERT INTO Sales.MyOrders(custid, empid, orderdate, shipcountry, freight)
 VALUES(3, 17, DEFAULT, N'USA', 30.00);

If you don’t specify a value for a column, SQL Server first checks whether the column gets
its value automatically—for example, from an identity property or a default constraint. If
that’s not the case, SQL Server checks whether the column allows NULLs, in which case it as-
sumes a NULL. If that’s not the case, SQL Server generates an error.

The INSERT VALUES statement doesn’t limit you to inserting only one row; rather, it en-
ables you to insert multiple rows. Simply separate the rows with commas, as follows:

INSERT INTO Sales.MyOrders(custid, empid, orderdate, shipcountry, freight) VALUES
 (2, 11, '20170620', N'USA', 50.00),
 (5, 13, '20170620', N'USA', 40.00),
 (7, 17, '20170620', N'USA', 45.00);

Note that the entire statement is considered one transaction, meaning that if any row fails
to enter the target table, the entire statement fails and no row is inserted.

To see the result of running all INSERT examples in this section, query the table by using
the following query:

SELECT * FROM Sales.MyOrders;

NOTE  SELECT * 

As explained earlier, using SELECT * in production code is considered a bad practice. Here,
SELECT * is used only for ad hoc querying purposes to examine the contents of tables after
applying changes.

When I ran this code on my system, it returned the following output:

orderid custid empid orderdate shipcountry freight
-------- ------- ------ ---------- ------------ --------
1 2 19 2017-06-20 USA 30.00
2 3 11 2017-02-12 USA 10.00
3 3 17 2017-02-12 USA 30.00
4 2 11 2017-06-20 USA 50.00
5 5 13 2017-06-20 USA 40.00
6 7 17 2017-06-20 USA 45.00

Remember that some of the INSERT examples relied on the default expression associated
with the orderdate column, so naturally the dates you get reflect the date when you ran those
examples.

www.EBooksWorld.ir

	96	 Chapter 1	 Manage data with Transact-SQL

INSERT SELECT
The INSERT SELECT statement inserts the result set returned by a query into the specified tar-
get table. As with INSERT VALUES, the INSERT SELECT statement supports optionally specify-
ing the target column names. Also, you can omit columns that get their values automatically
from an identity property, default constraint, or when allowing NULLs.

As an example, the following code inserts into the Sales.MyOrders table the result of a
query against Sales.Orders returning orders shipped to customers in Norway:

SET IDENTITY_INSERT Sales.MyOrders ON;

INSERT INTO Sales.MyOrders(orderid, custid, empid, orderdate, shipcountry, freight)
 SELECT orderid, custid, empid, orderdate, shipcountry, freight
 FROM Sales.Orders
 WHERE shipcountry = N'Norway';

SET IDENTITY_INSERT Sales.MyOrders OFF;

The code turns on the IDENTITY_INSERT option against Sales.MyOrders in order to use the
original order IDs and not let the identity property generate those.

Query the table after running this code:

SELECT * FROM Sales.MyOrders;

This query generates the following output (mostly new rows shown for brevity):

orderid custid empid orderdate shipcountry freight
-------- ------- ------ ---------- ------------ --------
1 2 19 2017-06-20 USA 30.00
2 3 11 2017-02-12 USA 10.00
3 3 17 2017-02-12 USA 30.00
...
10387 70 1 2014-12-18 Norway 93.63
10520 70 7 2015-04-29 Norway 13.37
10639 70 7 2015-08-20 Norway 38.64
10831 70 3 2016-01-14 Norway 72.19
10909 70 1 2016-02-26 Norway 53.05
11015 70 2 2016-04-10 Norway 4.62

Setting IDENTITY_INSERT to OFF causes the current identity value of the table to be set to
the current maximum value in the identity column. In our example, the current identity value
was set to 11015. If you now add another row to the table, the order ID will be set to 11016.

www.EBooksWorld.ir

	 Skill 1.4: Modify data 	 Chapter 1	 97

INSERT EXEC
With the INSERT EXEC statement, you can insert the result set (or sets) returned by a dynamic
batch or a stored procedure into the specified target table. Much like the INSERT VALUES and
INSERT SELECT statements, INSERT EXEC supports specifying an optional target column list,
and allows omitting columns that accept their values automatically.

To demonstrate the INSERT EXEC statement, the following example uses a procedure
called Sales.OrdersForCountry, which accepts a ship country as input and returns orders
shipped to the input country. Run the following code to create the Sales.OrdersForCountry
procedure:

DROP PROC IF EXISTS Sales.OrdersForCountry;
GO

CREATE PROC Sales.OrdersForCountry
 @country AS NVARCHAR(15)
AS

SELECT orderid, custid, empid, orderdate, shipcountry, freight
FROM Sales.Orders
WHERE shipcountry = @country;
GO

Run the following code to invoke the stored procedure with Portugal as the input country,
and insert the result of the procedure into the Sales.MyOrders table:

SET IDENTITY_INSERT Sales.MyOrders ON;

INSERT INTO Sales.MyOrders(orderid, custid, empid, orderdate, shipcountry, freight)
 EXEC Sales.OrdersForCountry
 @country = N'Portugal';

SET IDENTITY_INSERT Sales.MyOrders OFF;

Here as well, the code turns on the IDENTITY_INSERT option against the target table so
that the INSERT statement can specify the values for the identity column instead of letting the
property assign those.

Query the table after running the INSERT statement and notice the new additions of the
orders that were shipped to Portugal:

SELECT * FROM Sales.MyOrders;

www.EBooksWorld.ir

	98	 Chapter 1	 Manage data with Transact-SQL

INSERT EXEC works even when the source dynamic batch or stored procedure has more
than one query. But that’s as long as all queries return result sets that are compatible with the
target table definition.

SELECT INTO
The SELECT INTO statement involves a query (the SELECT part) and a target table (the INTO
part). The statement creates the target table based on the definition of the source and inserts
the result rows from the query into that table. The statement copies from the source some
aspects of the data definition like the column names, types, nullability, and identity property,
in addition to the data itself. Certain aspects of the data definition aren’t copied like indexes,
constraints, triggers, permissions, and others. If you want to include these aspects, you need
to script them from the source and apply them to the target.

The following code shows an example for a SELECT INTO statement that queries the Sales.
Orders table returning orders shipped to Norway, creates a target table called Sales.MyOr-
ders, and stores the query’s result in the target table:

DROP TABLE IF EXISTS Sales.MyOrders;

SELECT orderid, custid, orderdate, shipcountry, freight
INTO Sales.MyOrders
FROM Sales.Orders
WHERE shipcountry = N'Norway';

As mentioned, the SELECT INTO statement creates the target table based on the definition
of the source. You don’t have direct control over the definition of the target. If you want tar-
get columns to be defined different than the source, you need to apply some manipulation.

For example, the source orderid column has an identity property, and hence the target
column is defined with an identity property as well. If you want the target column not to have
the property, you need to apply some kind of manipulation, like orderid + 0 AS orderid. Note
that after you apply manipulation, the target column definition allows NULLs. If you want the
target column to be defined as not allowing NULLs, you need to use the ISNULL function,
returning a non-NULL value in case the source is a NULL. This is just an artificial expression
that lets SQL Server know that the outcome cannot be NULL and, hence, the column can be
defined as not enabling NULLs. For example, you could use an expression such as this one:
ISNULL(orderid + 0, -1) AS orderid.

Similarly, the source custid column is defined in the source as allowing NULLs. To make the
target column be defined as NOT NULL, use the expression ISNULL(custid, -1) AS custid.

If you want the target column’s type to be different than the source, you can use the
CAST or CONVERT functions. But remember that in such a case, the target column definition
enables NULLs even if the source column disallowed NULLs, because you applied manipula-
tion to the source column. As with the previous examples, you can use the ISNULL function
to make SQL Server define the target column as not enabling NULLs. For example, to convert
the orderdate column from its source type DATETIME to DATE in the target, and disallow
NULLs, use the expression ISNULL(CAST(orderdate AS DATE), ‘19000101’) AS orderdate.

www.EBooksWorld.ir

	 Skill 1.4: Modify data 	 Chapter 1	 99

To put it all together, the following code uses a query similar to the previous example, only
defining the orderid column without the identity property as NOT NULL, the custid column as
NOT NULL, and the orderdate column as DATE NOT NULL:

DROP TABLE IF EXISTS Sales.MyOrders;

SELECT
 ISNULL(orderid + 0, -1) AS orderid, -- get rid of identity property
 -- make column NOT NULL
 ISNULL(custid, -1) AS custid, -- make column NOT NULL
 empid,
 ISNULL(CAST(orderdate AS DATE), '19000101') AS orderdate,
 shipcountry, freight
INTO Sales.MyOrders
FROM Sales.Orders
WHERE shipcountry = N'Norway';

Remember that SELECT INTO does not copy constraints from the source table, so if you
need those, it’s your responsibility to define them in the target. For example, the following
code defines a primary key constraint in the target table:

ALTER TABLE Sales.MyOrders
 ADD CONSTRAINT PK_MyOrders PRIMARY KEY(orderid);

Query the table to see the result of the SELECT INTO statement:

SELECT * FROM Sales.MyOrders;

You get the following output:

orderid custid empid orderdate shipcountry freight
-------- ------- ------ ---------- ------------ --------
10387 70 1 2014-12-18 Norway 93.63
10520 70 7 2015-04-29 Norway 13.37
10639 70 7 2015-08-20 Norway 38.64
10831 70 3 2016-01-14 Norway 72.19
10909 70 1 2016-02-26 Norway 53.05
11015 70 2 2016-04-10 Norway 4.62

One of the benefits of using SELECT INTO is that when the database’s recovery model is
not set to full, but instead to either simple or bulk logged, the statement uses an optimized
logging mode. This can potentially result in a faster insert compared to when full logging is
used. You can find details about recovery models at https://msdn.microsoft.com/en-us/library/
ms189275.aspx. You can find further details on data loading performance at https://msdn.
microsoft.com/en-us/library/dd425070.aspx.

The SELECT INTO statement also has drawbacks. One of them is that you have only limited
control over the definition of the target table. Earlier in this lesson, you reviewed how to
control the definition of the target columns indirectly. But some things you simply cannot
control—for example the filegroup of the target table.

Also, remember that SELECT INTO involves both creating a table and populating it with
data. This means that both the metadata related to the target table and the data are exclusively

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms189275.aspx
https://www.msdn.microsoft.com/en-us/library/ms189275.aspx
https://www.msdn.microsoft.com/en-us/library/dd425070.aspx
https://www.msdn.microsoft.com/en-us/library/dd425070.aspx

	100	 Chapter 1	 Manage data with Transact-SQL

locked until the SELECT INTO transaction finishes. As a result, you can run into blocking
situations due to conflicts related to both data and metadata access.

When you are done, run the following code for cleanup:

DROP TABLE IF EXISTS Sales.MyOrders;

Updating data
T-SQL supports the UPDATE statement to enable you to update existing data in your tables.
In this section, you review both the standard UPDATE statement and also about a few T-SQL
extensions to the standard. You also review modifying data by using joins. You also review
nondeterministic updates. Finally, you review how to update with variables, and how all-at-
once operations affect updates.

Both the current section, which covers updating data, and the next one, which covers
deleting data, use sample data involving tables called Sales.MyCustomers with customer data,
Sales.MyOrders with order data, and Sales.MyOrderDetails with order lines data. These tables
are made as initial copies of the tables Sales.Customers, Sales.Orders, and Sales.OrderDetails
from the TSQLV4 sample database. By working with copies of the original tables, you can
safely run code samples that update and delete rows without worrying about making chang-
es to the original tables. Use the following code to create and populate the sample tables:

DROP TABLE IF EXISTS Sales.MyOrderDetails, Sales.MyOrders, Sales.MyCustomers;

SELECT * INTO Sales.MyCustomers FROM Sales.Customers;
ALTER TABLE Sales.MyCustomers
 ADD CONSTRAINT PK_MyCustomers PRIMARY KEY(custid);

SELECT * INTO Sales.MyOrders FROM Sales.Orders;
ALTER TABLE Sales.MyOrders
 ADD CONSTRAINT PK_MyOrders PRIMARY KEY(orderid);

SELECT * INTO Sales.MyOrderDetails FROM Sales.OrderDetails;
ALTER TABLE Sales.MyOrderDetails
 ADD CONSTRAINT PK_MyOrderDetails PRIMARY KEY(orderid, productid);

UPDATE statement
T-SQL supports the standard UPDATE statement, which enables you to update existing rows in
a table. The standard UPDATE statement has the following form:

UPDATE <target table>
 SET <col 1> = <expression 1>,
 ...,
 <col n> = <expression n>
WHERE <predicate>;

You specify the target table name in the UPDATE clause. If you want to filter a subset of
rows, you indicate a WHERE clause with a predicate. Only rows for which the predicate evalu-
ates to true are updated. Rows for which the predicate evaluates to false or unknown are not

www.EBooksWorld.ir

	 Skill 1.4: Modify data 	 Chapter 1	 101

affected. An UPDATE statement without a WHERE clause affects all rows. You assign values to
target columns in the SET clause. The source expressions can involve columns from the table,
in which case their values before the update are used.

As an example, you modify rows in the Sales.MyOrderDetails table representing order
lines associated with order 10251. First, query those rows to examine their state prior to the
update:

SELECT *
FROM Sales.MyOrderDetails
WHERE orderid = 10251;

You get the following output:

orderid productid unitprice qty discount
----------- ----------- --------------------- ------ ---------
10251 22 16.80 6 0.050
10251 57 15.60 15 0.050
10251 65 16.80 20 0.000

The following code demonstrates an UPDATE statement that adds a five percent discount
to these order lines:

UPDATE Sales.MyOrderDetails
 SET discount += 0.05
WHERE orderid = 10251;

Notice the use of the compound assignment operator discount += 0.05. This assignment
is equivalent to discount = discount + 0.05. T-SQL supports such enhanced operators for all
binary assignment operators: += (add), -= (subtract), *= (multiply), /= (divide), %= (modulo),
&= (bitwise and), |= (bitwise or), ^= (bitwise xor), += (concatenate).

Query again the order lines associated with order 10251 to see their state after the update:

SELECT *
FROM Sales.MyOrderDetails
WHERE orderid = 10251;

You get the following output showing an increase of five percent in the discount:

orderid productid unitprice qty discount
----------- ----------- --------------------- ------ ---------
10251 22 16.80 6 0.100
10251 57 15.60 15 0.100
10251 65 16.80 20 0.050

Use the following code to reduce the discount in the aforementioned order lines by five
percent:

UPDATE Sales.MyOrderDetails
 SET discount -= 0.05
WHERE orderid = 10251;

These rows should now be back to their original state before the first update.

www.EBooksWorld.ir

	102	 Chapter 1	 Manage data with Transact-SQL

EXAM TIP

If you’re using a cursor to iterate through rows of a table (you can find details on cursors
at https://msdn.microsoft.com/en-us/library/ms180169.aspx), you can modify the table row
that the cursor is currently positioned on by using the filter WHERE CURRENT OF <cur-
sor_name>. For example, suppose that you iterate through rows of a table called MyTable
using a cursor called MyCursor. Based on some condition that is met, you want to increase
the current row’s discount by five percent. You achieve this using the statement:

UPDATE dbo.MyTable SET discount += 0.05 WHERE CURRENT OF MyCursor;

UPDATE based on join
Standard SQL doesn’t support using joins in UPDATE statements, but T-SQL does. The idea is
that you might want to update rows in a table, and refer to related rows in other tables for
filtering and assignment purposes.

As an example, suppose that you want to add a five percent discount to order lines associ-
ated with orders placed by customers from Norway. The rows you need to modify are in the
Sales.MyOrderDetails table. But the information you need to examine for filtering purposes
is in rows in the Sales.MyCustomers table. In order to match a customer with its related order
lines, you need to join Sales.MyCustomers with Sales.MyOrders, and then join the result with
Sales.MyOrderDetails. Note that it’s not sufficient to examine the shipcountry column in Sales.
MyOrders; instead, you must check the country column in Sales.MyCustomers.

Based on your knowledge of joins, if you wanted to write a SELECT statement returning the
order lines that are the target for the update, you would write a query like the following one:

SELECT OD.*
FROM Sales.MyCustomers AS C
 INNER JOIN Sales.MyOrders AS O
 ON C.custid = O.custid
 INNER JOIN Sales.MyOrderDetails AS OD
 ON O.orderid = OD.orderid
WHERE C.country = N'Norway';

This query identifies 16 order lines, all currently with a discount value of 0.000.

In order to perform the desired update, simply replace the SELECT clause from the last
query with an UPDATE clause, indicating the alias of the table that is the target for the
UPDATE (OD in this case), and the assignment in the SET clause, as follows:

UPDATE OD
 SET OD.discount += 0.05
FROM Sales.MyCustomers AS C
 INNER JOIN Sales.MyOrders AS O
 ON C.custid = O.custid
 INNER JOIN Sales.MyOrderDetails AS OD
 ON O.orderid = OD.orderid
WHERE C.country = N'Norway';

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms180169.aspx

	 Skill 1.4: Modify data 	 Chapter 1	 103

Note that you can refer to elements from all tables involved in the statement in the source
expressions, but you’re allowed to modify only one target table at a time. Rerun the SELECT
query to examine the affected order lines, and you find that they now have a discount value
of 0.050.

To get the previous order lines back to their original state, run an UPDATE statement that
reduces the discount by five percent:

UPDATE OD
 SET OD.discount -= 0.05
FROM Sales.MyCustomers AS C
 INNER JOIN Sales.MyOrders AS O
 ON C.custid = O.custid
 INNER JOIN Sales.MyOrderDetails AS OD
 ON O.orderid = OD.orderid
WHERE C.country = N'Norway';

Nondeterministic UPDATE
You should be aware that the proprietary T-SQL UPDATE syntax based on joins could be non-
deterministic. The statement is nondeterministic when multiple source rows match one target
row. Unfortunately, in such a case, SQL Server doesn’t generate an error or even a warning.
Instead, SQL Server silently performs a nondeterministic UPDATE where it arbitrarily chooses
one of the source rows.

As an example, the following query matches customers with their related orders, returning
the customers’ postal codes, as well as shipping postal codes from related orders:

SELECT C.custid, C.postalcode, O.shippostalcode
FROM Sales.MyCustomers AS C
 INNER JOIN Sales.MyOrders AS O
 ON C.custid = O.custid
ORDER BY C.custid;

This query generates the following output:

custid postalcode shippostalcode
----------- ---------- --------------
1 10092 10154
1 10092 10156
1 10092 10155
1 10092 10154
1 10092 10154
1 10092 10154
2 10077 10182
2 10077 10181
...

Each customer row is repeated in the output for each matching order. This means that
each customer’s only postal code is repeated in the output as many times as the number of
matching orders. It’s important for the purposes of this example to remember that there is
only one postal code per customer. The shipping postal code is associated with an order, so as

www.EBooksWorld.ir

	104	 Chapter 1	 Manage data with Transact-SQL

you can realize, there can be multiple distinct shipping postal codes per customer. With this in
mind, consider the following UPDATE statement:

UPDATE C
 SET C.postalcode = O.shippostalcode
FROM Sales.MyCustomers AS C
 INNER JOIN Sales.MyOrders AS O
 ON C.custid = O.custid;

There are 89 customers that have matching orders—some with multiple matches. SQL
Server doesn’t generate an error though; instead it arbitrarily chooses for each target row
which source row is to be considered for the update, returning the following message:

(89 row(s) affected)

Query the rows from the Sales.Customers table after the update:

SELECT custid, postalcode
FROM Sales.MyCustomers
ORDER BY custid;

This generated the following output on one system, but your results could be different:

custid postalcode
----------- ----------
1 10154
2 10182
...

(91 row(s) affected)

Note that the table has 91 rows, but because only 89 of those customers have related
orders, the previous UPDATE statement affected 89 rows.

As to which source row gets chosen for each target row, the choice isn’t exactly random,
but arbitrary; in other words, it’s optimization-dependent. At any rate, you do not have any
logical elements in the language to control this choice. The recommended approach is simply
not to use such nondeterministic UPDATE statements, rather have logic in your solution to
break ties.

For example, suppose that you want to update the customer’s postal code with the ship-
ping postal code from the customer’s first order (based on the sort order of orderdate, orde-
rid). You can achieve this using the following code:

UPDATE C
 SET C.postalcode = A.shippostalcode
FROM Sales.MyCustomers AS C
 CROSS APPLY (SELECT TOP (1) O.shippostalcode
 FROM Sales.MyOrders AS O
 WHERE O.custid = C.custid
 ORDER BY orderdate, orderid) AS A;

www.EBooksWorld.ir

	 Skill 1.4: Modify data 	 Chapter 1	 105

The book covers the APPLY operator and correlated subqueries in Chapter 2. For now,
suffice to say that for each customer, the operator applies a subquery that identifies its most
recent order. Customers who don’t have orders aren’t affected. Can’t wait till Chapter 2 and
feel like watching a movie? Grab some popcorn and watch the following video seminar about
the APPLY operator at http://aka.ms/BoostTSQL.

SQL Server generates the following message:

(89 row(s) affected)

Query the Sales.MyCustomers table after the update:

SELECT custid, postalcode
FROM Sales.MyCustomers
ORDER BY custid;

You get the following output:

custid postalcode
----------- ----------
1 10154
2 10180
...

(91 row(s) affected)

If you want to use the most-recent order as the source for the update, simply use descend-
ing sort order in both columns: ORDER BY orderdate DESC, orderid DESC.

UPDATE with a variable
Sometimes you need to modify a row and also collect the result of the modified columns into
variables. You can handle such a need with a combination of UPDATE and SELECT statements,
but this would require two visits to the row. T-SQL supports a specialized UPDATE syntax that
allows achieving the task by using one statement and one visit to the row.

As an example, run the following query to examine the current state of the order line as-
sociated with order 10250 and product 51:

SELECT *
FROM Sales.MyOrderDetails
WHERE orderid = 10250
 AND productid = 51;

This code generates the following output:

orderid productid unitprice qty discount
----------- ----------- --------------------- ------ ---------
10250 51 42.40 35 0.150

Suppose that you need to modify the row, increasing the discount by five percent, and col-
lect the new discount into a variable called @newdiscount. You can achieve this using a single
UPDATE statement, as follows.

www.EBooksWorld.ir

http://www.aka.ms/BoostTSQL

	106	 Chapter 1	 Manage data with Transact-SQL

DECLARE @newdiscount AS NUMERIC(4, 3) = NULL;

UPDATE Sales.MyOrderDetails
 SET @newdiscount = discount += 0.05
WHERE orderid = 10250
 AND productid = 51;

SELECT @newdiscount;

As you can see, the UPDATE and WHERE clauses are similar to those you use in normal
UPDATE statements. But the SET clause uses the assignment @newdiscount = discount +=
0.05, which is equivalent to using @newdiscount = discount = discount + 0.05. The statement
assigns the result of discount + 0.05 to discount, and then assigns the result to the variable @
newdiscount. The last SELECT statement in the code returns the new discount 0.200.

When you’re done, issue the following code to undo the last change:

UPDATE Sales.MyOrderDetails
 SET discount -= 0.05
WHERE orderid = 10250
 AND productid = 51;

UPDATE all-at-once
Earlier in the book as part of the discussion about logical query processing I explained that
expressions that appear in the same logical phase are treated as a set, in an all-at-once man-
ner. The all-at-once concept also has implications on UPDATE statements. To demonstrate
those implications, this section uses a table called T1. Use the following code to create the
table T1 and insert a row into it:

DROP TABLE IF EXISTS dbo.T1;

CREATE TABLE dbo.T1
(
 keycol INT NOT NULL
 CONSTRAINT PK_T1 PRIMARY KEY,
 col1 INT NOT NULL,
 col2 INT NOT NULL
);

INSERT INTO dbo.T1(keycol, col1, col2) VALUES(1, 100, 0);

Next, examine the following code but don’t run it yet:

DECLARE @add AS INT = 10;

UPDATE dbo.T1
 SET col1 += @add, col2 = col1
WHERE keycol = 1;

SELECT * FROM dbo.T1;

www.EBooksWorld.ir

	 Skill 1.4: Modify data 	 Chapter 1	 107

Can you guess what should be the value of col2 in the modified row after the update? If
you guessed 110, you were not thinking of the assignments as a set, all-at-once. All assign-
ments use the original values of the row as the source values, irrespective of their order of
appearance. So the assignment col2 = col1 doesn’t get the col1 value after the change, but
rather before the change—namely 100. To verify this, run the previous code.

You get the following output:

keycol col1 col2
----------- ----------- -----------
1 110 100

When you’re done, run the following code for cleanup:

DROP TABLE IF EXISTS dbo.T1;

Deleting data
T-SQL supports two statements that you can use to delete rows from a table: DELETE and
TRUNCATE TABLE. This section describes these statements, the differences between them,
and different aspects of working with them.

This section uses the same sample data that was used in the previous section. As a re-
minder, the sample data involves the tables Sales.MyCustomers, Sales.MyOrders, and Sales.
MyOrderDetails, which are initially created as copies of the tables Sales.Customers, Sales.
Orders, and Sales.OrderDetails, respectively. Use the following code to recreate tables and
repopulate them with sample data:

DROP TABLE IF EXISTS Sales.MyOrderDetails, Sales.MyOrders, Sales.MyCustomers;

SELECT * INTO Sales.MyCustomers FROM Sales.Customers;
ALTER TABLE Sales.MyCustomers
 ADD CONSTRAINT PK_MyCustomers PRIMARY KEY(custid);

SELECT * INTO Sales.MyOrders FROM Sales.Orders;
ALTER TABLE Sales.MyOrders
 ADD CONSTRAINT PK_MyOrders PRIMARY KEY(orderid);

SELECT * INTO Sales.MyOrderDetails FROM Sales.OrderDetails;
ALTER TABLE Sales.MyOrderDetails
 ADD CONSTRAINT PK_MyOrderDetails PRIMARY KEY(orderid, productid);

DELETE statement
With the DELETE statement, you can delete rows from a table. You can optionally specify a
predicate to restrict the rows to be deleted. The general form of a DELETE statement looks
like the following:

DELETE FROM <table>
WHERE <predicate>;

www.EBooksWorld.ir

	108	 Chapter 1	 Manage data with Transact-SQL

If you don’t specify a predicate, all rows from the target table are deleted. As with un-
qualified updates, you need to be especially careful about accidentally deleting all rows by
highlighting only the DELETE part of the statement, missing the WHERE part.

The following example deletes all order lines containing product ID 11 from the Sales.
MyOrderDetails table:

DELETE FROM Sales.MyOrderDetails
WHERE productid = 11;

You get a message indicating that 38 rows were affected.

The tables used by the examples in this chapter are very small, but in a more realistic pro-
duction environment, the volumes of data are likely to be much bigger. A DELETE statement
is fully logged (you can find details on the transaction log at https://msdn.microsoft.com/
en-us/library/ms190925.aspx) and as a result, large deletes can take a long time to complete,
and much longer to roll back if you need to terminate them. Such large deletes can cause
the transaction log to increase in size dramatically during the process. They can also result in
lock escalation, meaning that SQL Server escalates fine-grained locks like row or page locks
to a full-blown table lock. Such escalation can result in blocking access to all table data by
other processes. You can find details on locking at https://technet.microsoft.com/en-us/library/
ms190615(v=sql.105).aspx.

To prevent the aforementioned problems from happening, you can split your large delete
into smaller chunks. You can achieve this by using a DELETE statement with a TOP option that
limits the number of affected rows in a loop. Here’s an example for implementing such a solu-
tion:

WHILE 1 = 1
BEGIN
 DELETE TOP (1000) FROM Sales.MyOrderDetails
 WHERE productid = 12;

 IF @@rowcount < 1000 BREAK;
END

As you can see, the code uses an infinite loop (WHILE 1 = 1 is always true). In each itera-
tion, a DELETE statement with a TOP option limits the number of affected rows to no more
than 1,000 at a time. Then the IF statement checks if the number of affected rows is less than
1,000; in such a case, the last iteration deleted the last chunk of qualifying rows. After the last
chunk of rows has been deleted, the code breaks from the loop. With this sample data, there
are only 14 qualifying rows in total. So if you run this code, it is done after one round, break
from the loop, and return. But with a large number of qualifying rows, say, millions, you’d very
likely be better off with such a solution.

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms190925.aspx
https://www.msdn.microsoft.com/en-us/library/ms190925.aspx
https://www.technet.microsoft.com/en-us/library/ms190615(v=sql.105).aspx
https://www.technet.microsoft.com/en-us/library/ms190615(v=sql.105).aspx

	 Skill 1.4: Modify data 	 Chapter 1	 109

EXAM TIP

Similar to the UPDATE WHERE CURRENT OF syntax, if you’re using a cursor to iterate
through rows of a table, you can delete the table row that the cursor is currently posi-
tioned on by using the syntax DELETE WHERE CURRENT OF. For example, suppose that you
iterate through rows of a table called MyTable using a cursor called MyCursor. Based on
some condition that is met, you want to delete the current row. You achieve this using the
statement:

DELETE FROM dbo.MyTable WHERE CURRENT OF MyCursor;

TRUNCATE TABLE statement
TRUNCATE TABLE is an optimized statement that deletes all rows from the target table or
partition. Unlike the DELETE statement, the TRUNCATE TABLE statement doesn’t support a
filter. Also, whereas the DELETE statement is fully logged and therefore tends to be quite slow,
the TRUNCATE table statement uses an optimized logging mode and therefore is significantly
faster.

For example, the following statement truncates the table Sales.MyOrderDetails:

TRUNCATE TABLE Sales.MyOrderDetails;

Suppose that you had a partitioned table called MyTable and you wanted to truncate par-
titions 1, 2 and 11 to 20. You would achieve this with the following code:

TRUNCATE TABLE MyTable WITH (PARTITIONS(1, 2, 11 TO 20));

Besides the performance difference and the fact that TRUNCATE TABLE doesn’t support a
filter, there are a few additional differences compared to the DELETE statement:

■■ You cannot assign direct TRUNCATE TABLE permissions, rather at minimum you need
ALTER permission on the target table. A common workaround is to place the TRUN-
CATE TABLE statement in a module, like a stored procedure, and assign the required
permission to the module using the EXECUTE AS clause.

■■ If there’s a column with an identity property in the target table, DELETE doesn’t reset
the property whereas TRUNCATE TABLE does.

■■ If there are any foreign keys pointing to the target table, a DELETE statement is sup-
ported as long as there are no related rows in the referencing table, but a TRUNCATE
TABLE statement isn’t. You need to first drop the foreign keys, truncate the table, and
then recreate the foreign keys.

■■ If there are any indexed views based on the table, a DELETE statement is supported
whereas a TRUNCATE TABLE statement isn’t.

Clearly, if you need to delete all rows from a table or a partition but leave the table defini-
tion in place, the recommended tool to use is the TRUNCATE TABLE statement.

www.EBooksWorld.ir

	110	 Chapter 1	 Manage data with Transact-SQL

DELETE based on a join
Much like the proprietary syntax that T-SQL supports for an UPDATE statement based on a
join, T-SQL supports similar syntax for a DELETE statement based on a join. The idea is to al-
low you to delete rows from one table based on the presence of related rows in other tables,
with the ability to apply a filter predicate that is based on attributes in the related tables.

As an example, the following statement deletes orders placed by customers from the US:

DELETE FROM O
FROM Sales.MyOrders AS O
 INNER JOIN Sales.MyCustomers AS C
 ON O.custid = C.custid
WHERE C.country = N'USA';

Notice that there are two FROM clauses. The second is mandatory and is similar to the
FROM clause in a SELECT statement. That’s where you apply table operators like joins. The
first FROM clause appears right after the DELETE clause and is optional. That’s where you
specify the target for the delete. In our case it’s the alias O representing the Sales.MyOrders
table.

When you’re done, run the following code for cleanup:

DROP TABLE IF EXISTS Sales.MyOrderDetails, Sales.MyOrders, Sales.MyCustomers;

Merging data
With the MERGE statement, you can merge data from a source table into a target table. The
statement has many practical uses in both online transaction processing (OLTP) scenarios and
in data warehousing ones. As an example of an OLTP use case, suppose that you have a table
that isn’t updated directly by your application; instead, you get the delta of changes periodi-
cally from an external system. You first load the delta of changes into a staging table, and
then use the staging table as the source for the merge operation into the target.

As an example for a data warehousing scenario, suppose that you maintain aggregated
views of the data in your data warehouse. Using the MERGE statement, you can apply chang-
es that were applied to detail rows into the aggregated form.

These are just a couple of typical use cases; there are many more. This lesson describes the
MERGE statement and its different options, and demonstrates its use through examples.

Using the MERGE statement
With the MERGE statement, you can merge data from a source table or table expression into
a target table. This statement is mostly standard, with one proprietary extension by Microsoft
of a clause called WHEN NOT MATCHED BY SOURCE. The general form of the MERGE state-
ment is as follows:

www.EBooksWorld.ir

	 Skill 1.4: Modify data 	 Chapter 1	 111

MERGE INTO <target table> AS TGT
USING <SOURCE TABLE> AS SRC
 ON <merge predicate>
WHEN MATCHED [AND <predicate>] -- two clauses allowed:
 THEN <action> -- one with UPDATE one with DELETE
WHEN NOT MATCHED [BY TARGET] [AND <predicate>] -- one clause allowed:
 THEN INSERT... –- if indicated, action must be INSERT
WHEN NOT MATCHED BY SOURCE [AND <predicate>] -- two clauses allowed:
 THEN <action>; -- one with UPDATE one with DELETE

The following are the clauses of the statement and their roles:	

■■ MERGE INTO <target table>  This clause defines the target table for the operation.
You can alias the table in this clause if you want.

■■ USING <source table>  This clause defines the source table for the operation. You
can alias the table in this clause if you want. Note that the USING clause is designed
similar to a FROM clause in a SELECT query, meaning that in this clause you can define
table operators like joins, refer to a table expression like a derived table or a common
table expression (CTE), or even refer to a table function like OPENROWSET. The out-
come of the USING clause is eventually a table result, and that table is considered the
source of the merge operation.

■■ ON <merge predicate>  In this clause, you specify a predicate that matches rows be-
tween the source and the target and defines whether a source row is or isn’t matched
by a target row. Note that this clause isn’t a filter like the ON clause in a join.

■■ WHEN MATCHED [AND <predicate>] THEN <action>  This clause defines an ac-
tion to take when a source row is matched by a target row. Because a target row exists,
an INSERT action isn’t allowed in this clause. The two actions that are enabled are
UPDATE and DELETE. If you want to apply different actions in different conditions, you
can specify two WHEN MATCHED clauses, each with a different additional predicate to
determine when to apply an UPDATE and when to apply a DELETE.

■■ WHEN NOT MATCHED [BY TARGET] [AND <predicate>] THEN <action> 
This clause defines what action to take when a source row is not matched by a target
row. Because a target row does not exist, the only action allowed in this clause (if you
choose to include this clause in the statement) is INSERT. Using UPDATE or DELETE
holds no meaning when a target row doesn’t exist. You can still add an additional
predicate that must be true in order to perform the action.

■■ WHEN NOT MATCHED BY SOURCE [AND <predicate>] THEN <action> 
This clause is a proprietary extension by Microsoft to the standard MERGE statement
syntax. It defines an action to take when a target row exists, but it is not matched by a
source row. Because a target row exists, you can apply either an UPDATE or a DELETE,
but not an INSERT. If you want, you can have two such clauses with different additional
predicates that define when to use an UPDATE and when to use a DELETE.

To demonstrate examples of the MERGE statement, this section uses the Sales.MyOrders
table and the Sales.SeqOrderIDs sequence. Use the following code to create these objects.

www.EBooksWorld.ir

	112	 Chapter 1	 Manage data with Transact-SQL

DROP TABLE IF EXISTS Sales.MyOrders;
DROP SEQUENCE IF EXISTS Sales.SeqOrderIDs;

CREATE SEQUENCE Sales.SeqOrderIDs AS INT
 MINVALUE 1
 CACHE 10000;

CREATE TABLE Sales.MyOrders
(
 orderid INT NOT NULL
 CONSTRAINT PK_MyOrders_orderid PRIMARY KEY
 CONSTRAINT DFT_MyOrders_orderid
 DEFAULT(NEXT VALUE FOR Sales.SeqOrderIDs),
 custid INT NOT NULL
 CONSTRAINT CHK_MyOrders_custid CHECK(custid > 0),
 empid INT NOT NULL
 CONSTRAINT CHK_MyOrders_empid CHECK(empid > 0),
 orderdate DATE NOT NULL
);

Notice that the sequence is defined to start with the value 1, and uses a cache size of
10,000 for performance reasons. The cache size defines how frequently to write a recoverable
value to disk. To request a new key from the sequence, you use the function NEXT VALUE
FOR <sequence_name>. Our code defines a default constraint with the function call for the
orderid column to automate the creation of keys when new rows are inserted.

Suppose that you need to define a stored procedure that accepts as input parameters
attributes of an order. If an order with the input order ID already exists in the Sales.MyOrders
table, you need to update the row, setting the values of the nonkey columns to the new ones.
If the order ID doesn’t exist in the target table, you need to insert a new row. Because this
book doesn’t cover stored procedures until Chapter 3, the examples in this section use local
variables for now. A MERGE statement in a stored procedure simply refers to the procedure’s
input parameters instead of the local variables.

The first things to identify in a MERGE statement are the target and the source tables. The
target is easy—it’s the Sales.MyOrders table. The source is supposed to be a table or table
expression, but in this case, it’s just a set of input parameters making an order. To turn the
inputs into a table expression, you can define a derived table based on the VALUES clause,
which is also known as a table value constructor. The following MERGE statement updates the
target row if the source key exists in the target, and inserts a new row if it doesn’t:

DECLARE
 @orderid AS INT = 1, @custid AS INT = 1,
 @empid AS INT = 2, @orderdate AS DATE = '20170212';

MERGE INTO Sales.MyOrders WITH (SERIALIZABLE) AS TGT
USING (VALUES(@orderid, @custid, @empid, @orderdate))
 AS SRC(orderid, custid, empid, orderdate)
 ON SRC.orderid = TGT.orderid
WHEN MATCHED THEN
 UPDATE
 SET TGT.custid = SRC.custid,

www.EBooksWorld.ir

	 Skill 1.4: Modify data 	 Chapter 1	 113

 TGT.empid = SRC.empid,
 TGT.orderdate = SRC.orderdate
WHEN NOT MATCHED THEN
 INSERT VALUES(SRC.orderid, SRC.custid, SRC.empid, SRC.orderdate);

Observe that the MERGE predicate compares the source order ID with the target order
ID. When a match is found (the source order ID is matched by a target order ID), the MERGE
statement performs an UPDATE action that updates the values of the nonkey columns in the
target to those from the respective source row.

When a match isn’t found (the source order ID is not matched by a target order ID), the
MERGE statement inserts a new row with the source order information into the target.

IMPORTANT  MERGE CONFLICTS

Suppose that a certain key K doesn’t yet exist in the target table. Two processes, P1 and P2,
run a MERGE statement such as the previous one at the same time with the same source
key K. It is normally possible for the MERGE statement issued by P1 to insert a new row
with the key K between the points in time when the MERGE statement issued by P2 checks
whether the target already has that key and inserts rows. In such a case, the MERGE state-
ment issued by P2 fails due to a primary key violation. To prevent such a failure, use the
hint SERIALIZABLE or HOLDLOCK (both have equivalent meanings) against the target as
shown in the previous statement. This hint means that the statement uses a serializable
isolation level to serialize access to the data, meaning that once you get access to the data,
it’s as if you’re the only one interacting with it.

Remember that you cleared the Sales.MyOrders table at the beginning of this section. So if
you run the previous code for the first time, it performs an INSERT action against the target. If
you run it a second time, it performs an UPDATE action.

Regarding the second run of the code, notice that it’s a waste to issue an UPDATE action
when the source and target rows are completely identical. An update costs you resources and
time, and furthermore, if there are any triggers or auditing activity taking place, they consider
the target row as updated. There is a way to avoid such an update when there’s no real value
change. Remember that each WHEN clause in the MERGE statement allows an additional
predicate that must be true in order for the respective action to be applied. You can add a
predicate that says that at least one of the nonkey column values in the source and the target
must be different in order to apply the UPDATE action. Your code would look like the follow-
ing:

DECLARE
 @orderid AS INT = 1, @custid AS INT = 1,
 @empid AS INT = 2, @orderdate AS DATE = '20170212';

MERGE INTO Sales.MyOrders WITH (SERIALIZABLE) AS TGT
USING (VALUES(@orderid, @custid, @empid, @orderdate))
 AS SRC(orderid, custid, empid, orderdate)
 ON SRC.orderid = TGT.orderid

www.EBooksWorld.ir

	114	 Chapter 1	 Manage data with Transact-SQL

WHEN MATCHED AND (TGT.custid <> SRC.custid
 OR TGT.empid <> SRC.empid
 OR TGT.orderdate <> SRC.orderdate) THEN
 UPDATE
 SET TGT.custid = SRC.custid,
 TGT.empid = SRC.empid,
 TGT.orderdate = SRC.orderdate
WHEN NOT MATCHED THEN
 INSERT VALUES(SRC.orderid, SRC.custid, SRC.empid, SRC.orderdate);

Note that if any of the nonkey columns use NULLs, you need to add extra logic for correct
NULL treatment. For instance, suppose that the custid column used NULLs. The predicates for
this column would be:

 TGT.custid <> SRC.custid
 OR (TGT.custid IS NULL AND SRC.custid IS NOT NULL)
 OR (TGT.custid IS NOT NULL AND SRC.custid IS NULL)

Alternatively, similar to the way you matched rows in a join using a set operator, you can
identify a difference here between the source and target rows as follows:

WHEN MATCHED AND EXISTS(SELECT SRC.* EXCEPT SELECT TGT.*) THEN UPDATE

Remember that a set operator uses distinctness in the comparison, and one NULL is dis-
tinct from a non-NULL value, but not distinct from another NULL. When there is a difference
between the source and target rows, the EXCEPT operator returns one row, the EXISTS predi-
cate returns true, and the MERGE statement applies the update. When the source and target
rows are the same, the set operator yields an empty set, EXISTS returns false, and the MERGE
statement doesn’t proceed with the update.

What’s interesting about the USING clause where you define the source for the MERGE op-
eration is that it’s designed like the FROM clause in a SELECT statement. This means that you
can define table operators like JOIN, APPLY, PIVOT, and UNPIVOT; and use table expressions
like derived tables, CTEs, views, inline table functions, and even table functions like OPEN-
ROWSET and OPENXML. You can refer to real tables, temporary tables, or table variables as
the source. Ultimately, the USING clause returns a table result, and that table result is used as
the source for the MERGE statement.

T-SQL extends standard SQL by supporting a third clause called WHEN NOT MATCHED
BY SOURCE. With this clause, you can define an action to take against the target row when
the target row exists but is not matched by a source row. The allowed actions are UPDATE
and DELETE. For example, suppose that you want to add such a clause to the last example to
indicate that if a target row exists and it is not matched by a source row, you want to delete
the target row. Here’s how your MERGE statement would look (this time using a table variable
with multiple orders as the source):

DECLARE @Orders AS TABLE
(
 orderid INT NOT NULL PRIMARY KEY,
 custid INT NOT NULL,
 empid INT NOT NULL,

www.EBooksWorld.ir

	 Skill 1.4: Modify data 	 Chapter 1	 115

 orderdate DATE NOT NULL
);

INSERT INTO @Orders(orderid, custid, empid, orderdate)
 VALUES (2, 1, 3, '20170212'),
 (3, 2, 2, '20170212'),
 (4, 3, 5, '20170212');

-- update where exists (only if different), insert where not exists,
-- delete when exists in target but not in source
MERGE INTO Sales.MyOrders AS TGT
USING @Orders AS SRC
 ON SRC.orderid = TGT.orderid
WHEN MATCHED AND EXISTS(SELECT SRC.* EXCEPT SELECT TGT.*) THEN
 UPDATE
 SET TGT.custid = SRC.custid,
 TGT.empid = SRC.empid,
 TGT.orderdate = SRC.orderdate
WHEN NOT MATCHED THEN
 INSERT VALUES(SRC.orderid, SRC.custid, SRC.empid, SRC.orderdate)
WHEN NOT MATCHED BY SOURCE THEN
 DELETE;

Before you ran this statement, only one row in the table had order ID 1. So the statement
inserted the three rows with order IDs 2, 3, and 4, and deleted the row that had order ID 1.
Query the current state of the table:

SELECT * FROM Sales.MyOrders;

You get the following output with the three remaining rows:

orderid custid empid orderdate
----------- ----------- ----------- ----------
2 1 3 2017-02-12
3 2 2 2017-02-12
4 3 5 2017-02-12

You can find more information about the MERGE statement at http://sqlmag.com/sql-serv-
er/merge-statement-tips.

Using the OUTPUT option
T-SQL supports an OUTPUT clause for modification statements, which you can use to return
information from modified rows. You can use the output for purposes like auditing, archiving
and others. This section covers the OUTPUT clause with the different types of modification
statements and demonstrates using the clause through examples. I use the same Sales.
MyOrders table and Sales.SeqOrderIDs sequence from the Merging data section in my
examples, so make sure you still have them around. Run the following code to clear the table
and reset the sequence start value to 1:

TRUNCATE TABLE Sales.MyOrders;
ALTER SEQUENCE Sales.SeqOrderIDs RESTART WITH 1;

www.EBooksWorld.ir

http://www.sqlmag.com/sql-serv-er/merge-statement-tips
http://www.sqlmag.com/sql-serv-er/merge-statement-tips

	116	 Chapter 1	 Manage data with Transact-SQL

The design of the OUTPUT clause is very similar to that of the SELECT clause in the sense
that you can specify expressions and assign them with result column aliases. One difference
from the SELECT clause is that, in the OUTPUT clause, when you refer to columns from the
modified rows, you need to prefix the column names with the keywords inserted or deleted.
Use the prefix inserted when the rows are inserted rows and the prefix deleted when they
are deleted rows. In an UPDATE statement, inserted represents the state of the rows after the
update and deleted represents the state before the update.

You can have the OUTPUT clause return a result set back to the caller much like a SELECT
does. Or you can add an INTO clause to direct the output rows into a target table. In fact, you
can have two OUTPUT clauses if you like—the first with INTO directing the rows into a table,
and the second without INTO, returning a result set from the query. If you do use the INTO
clause, the target table cannot participate in either side of a foreign key relationship and can-
not have triggers defined on it.

INSERT with OUTPUT
The OUTPUT clause can be used in an INSERT statement to return information from the
inserted rows. An example for a practical use case is when you have a multi-row INSERT state-
ment that generates new keys by using the identity property or a sequence, and you need to
know which new keys were generated.

For example, suppose that you need to query the Sales.Orders table and insert orders
shipped to Norway to the Sales.MyOrders table. You are not going to use the original order
IDs in the target rows; instead, let the sequence object generate those for you. But you need
to get back information from the INSERT statement about which order IDs were generated,
plus additional columns from the inserted rows. To achieve this, simply add an OUTPUT clause
to the INSERT statement right before the query. List the columns that you need to return from
the inserted rows and prefix them with the keyword inserted, as follows:

INSERT INTO Sales.MyOrders(custid, empid, orderdate)
 OUTPUT
 inserted.orderid, inserted.custid, inserted.empid, inserted.orderdate
 SELECT custid, empid, orderdate
 FROM Sales.Orders
 WHERE shipcountry = N'Norway';

This code generates the following output:

orderid custid empid orderdate
----------- ----------- ----------- ----------
1 70 1 2014-12-18
2 70 7 2015-04-29
3 70 7 2015-08-20
4 70 3 2016-01-14
5 70 1 2016-02-26
6 70 2 2016-04-10

www.EBooksWorld.ir

	 Skill 1.4: Modify data 	 Chapter 1	 117

You can see that the sequence object generated the order IDs 1 through 6 for the new
rows. If you need to store the result in a table instead of returning it back to the caller, add an
INTO clause with an existing target table name as follows:

 OUTPUT
 inserted.orderid, inserted.custid, inserted.empid, inserted.orderdate
 INTO SomeTable(orderid, custid, empid, orderdate)

In an INSERT statement you’re not allowed to use the deleted prefix given how there are
no deleted rows.

 DELETE with OUTPUT
You can use the OUTPUT clause to return information from deleted rows in a DELETE state-
ment. You need to prefix the columns that you refer to with the keyword deleted. In a DELETE
statement you’re not allowed to use the inserted prefix given that there are no inserted rows.

The following example deletes the rows from the Sales.MyOrders table where the employ-
ee ID is equal to 1. Using the OUTPUT clause, the code returns the order IDs of the deleted
orders:

DELETE FROM Sales.MyOrders
 OUTPUT deleted.orderid
WHERE empid = 1;

This code generates the following output:

orderid

1
5

Remember that if you need to persist the output rows in a table—for example, for ar-
chiving purposes—you can add an INTO clause with the target table name.

UPDATE with OUTPUT
You can use the OUTPUT clause to return information from modified rows in an UPDATE
statement. With updated rows, you have access to both the old and the new images of the
modified rows. To refer to columns from the original state of the row before the update,
prefix the column names with the keyword deleted. To refer to columns from the new state of
the row after the update, prefix the column names with the keyword inserted.

As an example, the following UPDATE statement adds a day to the order date of all orders
that were handled by employee 7:

UPDATE Sales.MyOrders
 SET orderdate = DATEADD(day, 1, orderdate)
 OUTPUT
 inserted.orderid,
 deleted.orderdate AS old_orderdate,
 inserted.orderdate AS neworderdate
WHERE empid = 7;

www.EBooksWorld.ir

	118	 Chapter 1	 Manage data with Transact-SQL

The code uses the OUTPUT clause to return the order IDs of the modified rows, in addi-
tion to the order dates—both before and after the update. This code generates the following
output:

orderid old_orderdate neworderdate
----------- ------------- ------------
2 2015-04-29 2015-04-30
3 2015-08-20 2015-08-21

MERGE with OUTPUT
You can use the OUTPUT clause with the MERGE statement, but there are special consider-
ations with this statement. Remember that one MERGE statement can apply different actions
against the target table. And suppose that when returning output rows, you need to know
which action (INSERT, UPDATE, or DELETE) affected the output row. For this purpose, SQL
Server provides you with the $action function. This function returns a string (‘INSERT’, ‘UP-
DATE’, or ‘DELETE’) indicating the action.

As explained before, you can refer to columns from the deleted rows with the deleted
prefix and to columns from the inserted rows with the inserted prefix. Rows affected by an
INSERT action have values in the inserted row and NULLs in the deleted row. Rows affected
by a DELETE action have NULLs in the inserted row and values in the deleted row. Rows af-
fected by an UPDATE action have values in both. So, for example, if you want to return the
key of the affected row (assuming the key itself wasn’t modified), you can use the expression
COALESCE(inserted.orderid, deleted.orderid).

The following example demonstrates the use of the MERGE statement with the OUTPUT
clause, returning the output of the $action function to indicate which action affected the row,
and the key of the modified row:

MERGE INTO Sales.MyOrders AS TGT
USING (VALUES(1, 70, 1, '20151218'), (2, 70, 7, '20160429'), (3, 70, 7, '20160820'),
 (4, 70, 3, '20170114'), (5, 70, 1, '20170226'), (6, 70, 2, '20170410'))
 AS SRC(orderid, custid, empid, orderdate)
 ON SRC.orderid = TGT.orderid
WHEN MATCHED AND EXISTS(SELECT SRC.* EXCEPT SELECT TGT.*) THEN
 UPDATE SET TGT.custid = SRC.custid,
 TGT.empid = SRC.empid,
 TGT.orderdate = SRC.orderdate
WHEN NOT MATCHED THEN
 INSERT VALUES(SRC.orderid, SRC.custid, SRC.empid, SRC.orderdate)
WHEN NOT MATCHED BY SOURCE THEN
 DELETE
OUTPUT
 $action AS the_action,
 COALESCE(inserted.orderid, deleted.orderid) AS orderid;

This code generates the following output:

the_action orderid
---------- -----------
INSERT 1

www.EBooksWorld.ir

	 Skill 1.4: Modify data 	 Chapter 1	 119

UPDATE 2
UPDATE 3
UPDATE 4
INSERT 5
UPDATE 6

The output shows that two rows were inserted and two were updated.

EXAM TIP

In INSERT, UPDATE, and DELETE statements, you can only refer to columns from the target
table in the OUTPUT clause. In a MERGE statement you can refer to columns from both the
target and the source. For example, suppose that in the multi-row INSERT example from
the INSERT with OUTPUT section you wanted the OUTPUT clause to return both the source
key and the target key. This cannot be done directly in the INSERT statement because
you don’t have access to the source table. You can achieve this with the MERGE statement
instead. Because an INSERT action is only allowed when the merge predicate is false, simply
use a condition that is always false, such as 1 = 2. The revised example would be as follows:

MERGE INTO Sales.MyOrders AS TGT
USING (SELECT orderid, custid, empid, orderdate
 FROM Sales.Orders
 WHERE shipcountry = N’Norway’) AS SRC
 ON 1 = 2
WHEN NOT MATCHED THEN
 INSERT(custid, empid, orderdate) VALUES(custid, empid, orderdate)
OUTPUT
 SRC.orderid AS srcorderid, inserted.orderid AS tgtorderid,
 inserted.custid, inserted.empid, inserted.orderdate;

At this point, run the following code to clear the table and reset the sequence start value
to 1:

TRUNCATE TABLE Sales.MyOrders;
ALTER SEQUENCE Sales.SeqOrderIDs RESTART WITH 1;

Nested DML
Suppose you need to capture output from a modification statement, but you are interested
only in a subset of the output rows and not all of them. T-SQL has a solution for this in the
form of nested DML (data manipulation language).

With T-SQL, you can define something that looks like a derived table based on a modifica-
tion with an OUTPUT clause. Then you can have an outer INSERT SELECT statement against a
target table, with the source table being this special derived table. The outer INSERT SELECT
can have a WHERE clause that filters the output rows from the derived table, inserting only the
rows that satisfy the search condition into the target. The outer INSERT SELECT statement can-
not have other elements besides WHERE like table operators, GROUP BY, HAVING, and so on.

www.EBooksWorld.ir

	120	 Chapter 1	 Manage data with Transact-SQL

As an example of nested DML, consider the previous MERGE statement. Suppose that you
need to capture only the rows affected by an INSERT action in a table variable for further
processing. You can achieve this by using the following code:

DECLARE @InsertedOrders AS TABLE
(
 orderid INT NOT NULL PRIMARY KEY,
 custid INT NOT NULL,
 empid INT NOT NULL,
 orderdate DATE NOT NULL
);

INSERT INTO @InsertedOrders(orderid, custid, empid, orderdate)
 SELECT orderid, custid, empid, orderdate
 FROM (MERGE INTO Sales.MyOrders AS TGT
 USING (VALUES(1, 70, 1, '20151218'), (2, 70, 7, '20160429'), (3, 70, 7, '20160820'),
 (4, 70, 3, '20170114'), (5, 70, 1, '20170226'), (6, 70, 2, '20170410'))
 AS SRC(orderid, custid, empid, orderdate)
 ON SRC.orderid = TGT.orderid
 WHEN MATCHED AND EXISTS(SELECT SRC.* EXCEPT SELECT TGT.*) THEN
 UPDATE SET TGT.custid = SRC.custid,
 TGT.empid = SRC.empid,
 TGT.orderdate = SRC.orderdate
 WHEN NOT MATCHED THEN
 INSERT VALUES(SRC.orderid, SRC.custid, SRC.empid, SRC.orderdate)
 WHEN NOT MATCHED BY SOURCE THEN
 DELETE
 OUTPUT
 $action AS the_action, inserted.*) AS D
 WHERE the_action = 'INSERT';

SELECT * FROM @InsertedOrders;

Notice the derived table D that is defined based on the MERGE statement with the
OUTPUT clause. The OUTPUT clause returns, among other things, the result of the $action
function, naming the target column the_action. The code uses an INSERT SELECT statement
with the source being the derived table D and the target table being the table variable @In-
sertedOrders. The WHERE clause in the outer query filters only the rows that have the INSERT
action.

When you run the previous code for the first time, you get the following output:

orderid custid empid orderdate
----------- ----------- ----------- ----------
1 70 1 2015-12-18
2 70 7 2016-04-29
3 70 7 2016-08-20
4 70 3 2017-01-14
5 70 1 2017-02-26
6 70 2 2017-04-10

Run it for the second time. It should return an empty set this time.

www.EBooksWorld.ir

	 Skill 1.4: Modify data 	 Chapter 1	 121

Impact of structural changes on data
This section describes the impact of structural changes like adding, dropping, and altering
columns on data. In the examples in this section I use the Sales.MyOrders table and Sales.
SeqOrderIDs sequence from the Merging data section. Run the following code to populate
the table with initial sample data:

TRUNCATE TABLE Sales.MyOrders;
ALTER SEQUENCE Sales.SeqOrderIDs RESTART WITH 1;
INSERT INTO Sales.MyOrders(custid, empid, orderdate)
 VALUES(70, 1, '20151218'), (70, 7, '20160429'), (70, 7, '20160820'),
 (70, 3, '20170114'), (70, 1, '20170226'), (70, 2, '20170410');

Adding a column
In order to add a column to a table, you use the following syntax:

ALTER TABLE < table_name > ADD <column_definition> [<column_constraint>] [WITH VALUES];

If the table is empty, you can add a column that doesn’t allow NULLs and also doesn’t get
its values somehow automatically. If the table isn’t empty, such an attempt fails. To demon-
strate this, run the following code:

ALTER TABLE Sales.MyOrders ADD requireddate DATE NOT NULL;

This attempt fails with the following error:

Msg 4901, Level 16, State 1, Line 608
ALTER TABLE only allows columns to be added that can contain nulls, or have a DEFAULT
definition specified, or the column being added is an identity or timestamp column, or
alternatively if none of the previous conditions are satisfied the table must be empty
to allow addition of this column. Column 'requireddate' cannot be added to non-empty
table 'MyOrders' because it does not satisfy these conditions.

Read the error message carefully. Observe that in order to add a column to a nonempty
table, the column either needs to allow NULLs, or somehow get its values automatically. For
instance, you can associate a default constraint with the column when you add it. You can
also indicate that you want the default expression to be applied to the existing rows by add-
ing the WITH VALUES clause as follows:

ALTER TABLE Sales.MyOrders
 ADD requireddate DATE NOT NULL
 CONSTRAINT DFT_MyOrders_requireddate DEFAULT ('19000101') WITH VALUES;

Note that if the column is defined as NOT NULL as in our case, the default expression is
applied with or without this clause. If the column allows NULLs, without the clause a NULL is
used and with the clause the default expression is used.

Query the table after adding this column and notice that the requireddate is January 1,
1900 in all rows.

www.EBooksWorld.ir

	122	 Chapter 1	 Manage data with Transact-SQL

Dropping a column
In order to drop a column from a table, you use the following syntax:

ALTER TABLE <table_name> DROP COLUMN <column_name>;

The attempt to drop the column fails when the column:

■■ Is used in an index.

■■ Is used in a default, check, foreign key, unique, or primary key constraint.

■■ Is bound to a default object or a rule.

For example, try to drop the requireddate column by running the following code:

ALTER TABLE Sales.MyOrders DROP COLUMN requireddate;

This attempt fails because there’s a default constraint associated with the column. You get
the following error:

Msg 5074, Level 16, State 1, Line 631
The object 'DFT_MyOrders_requireddate' is dependent on column 'requireddate'.
Msg 4922, Level 16, State 9, Line 631
ALTER TABLE DROP COLUMN requireddate failed because one or more objects access this
column.

In order to drop the column, you need to drop the constraint first.

Altering a column
In order to alter a column, you use the following syntax:

ALTER TABLE <table_name> ALTER COLUMN <column_definition> WITH (ONLINE = ON | OFF);

There are a number of cases where the attempt to alter the column fails (partial list):

■■ When used in a primary key or foreign key constraint.

■■ When used in a check or unique constraint, unless you’re just keeping or increasing the
length of a variable-length column.

■■ When used in a default constraint, unless you’re changing the length, precision, or
scale of a column as long as the data type is not changed.

As an example, run the following code in attempt to change the data type of the required-
date column from DATE to DATETIME:

ALTER TABLE Sales.MyOrders ALTER COLUMN requireddate DATETIME NOT NULL;

This attempts fails with the following error because there’s a default constraint associated
with the column.

www.EBooksWorld.ir

	 Skill 1.4: Modify data 	 Chapter 1	 123

Msg 5074, Level 16, State 1, Line 649
The object 'DFT_MyOrders_requireddate' is dependent on column 'requireddate'.
Msg 4922, Level 16, State 9, Line 649
ALTER TABLE ALTER COLUMN requireddate failed because one or more objects access this
column.

In terms of nullability, if a column is included in a primary key constraint you cannot alter it
from NOT NULL to NULL, otherwise you can. For example, run the following code:

ALTER TABLE Sales.MyOrders ALTER COLUMN requireddate DATE NULL;

This code completes successfully.

As for altering a column that allows NULLs to not allowing NULLs, this is allowed as long as
there are no NULLs present in the data. Run the following code:

ALTER TABLE Sales.MyOrders ALTER COLUMN requireddate DATE NOT NULL;

This code completes successfully.

If there are NULLs present in the data, an attempt to add the NOT NULL constraint fails. In
a similar way, attempting to add a primary key or unique constraint fails if duplicates exist in
the data. With check and foreign key constraints you do have control over whether existing
data is verified or not. By default SQL Server uses a WITH CHECK mode that verifies that the
existing data meets the constraint’s requirements, and fails the attempt to add the constraint
if the data is invalid. However, you can specify the WITH NOCHECK option to ask SQL Server
not to verify existing data.

For many column alteration operations, SQL Server supports indicating the option ONLINE
= ON (it is OFF by default). With this option set to ON, the table is available while the alter
operation is in progress. Examples for operations that can be done online include a change in
the data type, nullability, precision, length and others.

If you need to alter a column to start or stop getting its values from a sequence object you
can achieve this easily by either adding or dropping a default constraint with the NEXT VALUE
FOR function call. For instance, the orderid column in the Sales.MyOrders table gets its values
from the Sales.SeqOrderIDs sequence using a default constraint. To drop the default con-
straint from the existing table, use the following code:

ALTER TABLE Sales.MyOrders DROP CONSTRAINT DFT_MyOrders_orderid;

To add the constraint, use the following code:

ALTER TABLE Sales.MyOrders ADD CONSTRAINT DFT_MyOrders_orderid
 DEFAULT(NEXT VALUE FOR Sales.SeqOrderIDs) FOR orderid;

With identity, it’s not that simple. You’re not allowed to alter a column to add or remove
the identity property. So if you need to apply such a change, it’s a very expensive offline
operation that involves creating another table, copying the data, dropping the original table,
and renaming the new table to the original table name.

www.EBooksWorld.ir

	124	 Chapter 1	 Manage data with Transact-SQL

EXAM TIP

Despite the fact that the exam tries to measure your real life knowledge and proficiency
with the subject matter, keep in mind that the exam puts you in different conditions than
in real life. For example, when you take the exam you don’t have access to any online or
offline resources, unlike in life. This means that you need to memorize the syntax of the
different T-SQL statements that are covered by the exam. Also, try to focus on what the
question is asking exactly, and what seems to be the most correct answer to the question,
as opposed to what is considered the best practice or how you would have done things.

For more information about altering tables see the official documentation on the topic at
https://msdn.microsoft.com/en-us/library/ms190273.aspx.

When you’re done, run the following code for cleanup:

DROP TABLE IF EXISTS Sales.MyOrders;
DROP SEQUENCE IF EXISTS Sales.SeqOrderIDs;

Chapter summary

■■ Understanding the foundations of T-SQL is key to writing correct and robust code.

■■ Logical query processing describes the conceptual interpretation of a query, and
evaluates the major query clauses in the following order: FROM, WHERE, GROUP BY,
HAVING, SELECT, ORDER BY.

■■ Use the WHERE clause to filter data based on predicates and always remember to think
of NULLs and the three-valued-logic (true, false and unknown).

■■ Use the ORDER BY clause in the outer query to apply presentation ordering to the
query result, and remember that a query without an order by clause does not guaran-
tee presentation order, despite any observed behavior.

■■ Use the UNION, UNION ALL, INTERSECT and EXCEPT operators to combine query
results. These operators use distinctness-based comparison unlike the WHERE, ON and
HAVING clauses, which use equality-based comparison.

■■ Joins allow you to combine rows from tables and return both matched attributes and
additional attributes from both sides.

■■ Cross joins return a Cartesian product of the two inputs.

■■ Inner joins return only matching rows from the two sides.

■■ Outer joins return both matching rows and rows without matches from the nonpre-
served side or sides.

■■ In an outer join the ON clauses serves a matching purpose and the WHERE clause a
filtering purpose.

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms190273.aspx

	 Thought experiment	 Chapter 1	 125

■■ If NULLs are present in the join columns you need to add special handling. Avoid ap-
plying manipulation on the join columns to preserve the data’s ordering property and
allow efficient use of indexing.

■■ T-SQL provides you with built-in functions of various categories such as string, date
and time, conversion, system, and others.

■■ Scalar-valued functions return a single value; table-valued functions return a table
result and are used in the FROM clause of a query. Aggregate functions are applied
to a set and return a single value, and can be used in grouped queries and windowed
queries.

■■ When at all possible, try to avoid applying manipulation to filtered columns to enable
filter sargability and efficient use of indexes.

■■ Function determinism determines whether the function is guaranteed to return the
same output given the same set of inputs.

■■ T-SQL supports the following statements to modify data: INSERT, SELECT INTO,
UPDATE, DELETE, TRUNCATE TABLE, and MERGE.

■■ Use the OUTPUT clause in a modification statement to return data from the modified
rows for purposes like auditing, archiving, and others. You can either return the result
set to the caller, or write it to a table using the INTO clause.

■■ Make sure you understand the impact that structural changes to a table like adding,
altering and dropping columns have on existing data.

Thought experiment

In this thought experiment, demonstrate your skills and knowledge of the topics covered in
this chapter. You can find the answer to this thought experiment in the next section.

You’re being interviewed for a T-SQL developer role in the IT department of a large tech-
nology company. Answer the following questions to the best of your knowledge:

1.	 How come you cannot use an alias you define in the SELECT list in the WHERE clause,
or even the same SELECT clause? Where can you use such an alias?

2.	 What are the differences between joins and set operators?

3.	 What could prevent SQL Server from treating a query filter optimally, meaning, from
using an index efficiently to support the filter? What other query elements could also
be affected in a similar manner and what can you do to get optimal treatment?

4.	 What is the difference between the ON and WHERE clauses?

5.	 Explain what function determinism means and what are the implications of using non-
deterministic functions?

6.	 What are the differences between DELETE and TRUNCATE TABLE?

www.EBooksWorld.ir

	126	 Chapter 1	 Manage data with Transact-SQL

7.	 You need to perform a multi-row insert into a target table that has a column with an
identity property. You need to capture the newly generated identity values for further
processing. How can you achieve this?

8.	 When should you use the WITH VALUES clause explicitly as part of adding a column to
a table?

Thought experiment answer

This section contains the solution to the thought experiment.

1.	 According to logical query processing, which describes the conceptual interpreta-
tion of a query, the order in which the major query clauses are interpreted is: FROM,
WHERE, GROUP BY, HAVING, SELECT, ORDER BY. You cannot use an alias that is created
in the SELECT clause in clauses that are processed in an earlier step. This explains why
you cannot use such an alias in the FROM, WHERE, GROUP BY and HAVING clauses. As
for why you cannot use such an alias in other expressions in the same SELECT clause,
that’s because all expressions that appear in the same logical query-processing step
are treated as a set, and a set has no order. The only clause that can refer to aliases that
are created in the SELECT clause is the ORDER BY clause, because that’s the only clause
that is evaluated after the SELECT clause.

2.	 A join can compare a subset of the elements from the input tables while returning
elements that it doesn’t compare. Also, a join uses equality (or inequality) based com-
parison as the join predicate, whereas a comparison between two NULLs or between a
NULL and anything yields unknown. A set operator implicitly compares all expressions
in corresponding positions in the two input queries. Also, a set operator uses distinct-
ness-based comparison, whereas a comparison between two NULLs yields true, and a
comparison between a NULL and a non-NULL value yields false.

3.	 Manipulation of the filtered column in most cases prevents the filter’s sargability. This
means that the optimizer cannot rely on index order, for instance, to perform a seek
within the index. In a similar way, manipulation of a column can prevent the optimizer
from relying on index order for purposes of joining, grouping, and ordering.

4.	 In an outer join the ON clause serves a matching purpose. It determines which rows
from the preserved side get matched with which rows from the non-preserved side.
It cannot determine which rows from the preserved side of the join are returned—it’s
predetermined that all of them are returned. The WHERE clause serves a simpler filter-
ing meaning. It determines which rows from the result of the FROM clause to keep and
which to discard. In an inner join both ON and WHERE serve the same simple filtering
meaning.

5.	 A function is said to be deterministic if given the same set of input values it is guaran-
teed to return repeatable results, otherwise it is said to be nondeterministic. If you use
a nondeterministic function in a computed column, you cannot create an index on that

www.EBooksWorld.ir

	 Thought experiment answer	 Chapter 1	 127

column. Similarly, if you use a nondeterministic function in a view, you cannot create a
clustered index on the view.

6.	 DELETE supports a filter, is fully logged, and does not reset the current identity value.
TRUNCATE TABLE has no filter, is minimally logged and therefore much faster than
DELETE, and does reset the current identity value. Unlike DELETE, TRUNCATE TABLE is
disallowed if there’s an indexed view based on the table, or a foreign key pointing to
the table, even if there are no related rows in the referencing table.

7.	 Use the OUTPUT clause and write the newly generated identity values along with
any other data that you need from the inserted rows aside, for example into a table
variable. You can then use the data from the table variable in the next step where you
apply further processing.

8.	 When the column is defined as a nullable one, and you want to apply the default
expression that is associated with the column in the new rows, you need to specify
the WITH VALUES clause explicitly. If the column is defined as NOT NULL, and you
associate a default expression with it, the default expression is applied even when not
specifying the WITH VALUES clause explicitly.

www.EBooksWorld.ir

This page intentionally left blank

www.EBooksWorld.ir

		 	 129

C H A P T E R 2

Query data with advanced
Transact-SQL components
This chapter covers a number of T-SQL components that allow you to manipulate and

analyze data, some of which might be considered more advanced than the ones
covered in Chapter 1, “Manage data with Transact-SQL.” You will learn how to nest queries
and use the APPLY operator, work with table expressions, apply data analysis calculations
with grouping, pivoting, and windowing, query historical data from temporal tables, and
query and output XML and JSON data.

Skills in this chapter:
■■ Query data by using subqueries and APPLY

■■ Query data by using table expressions

■■ Group and pivot data by using queries

■■ Query temporal data and non-relational data

Skill 2.1: Query data by using subqueries and APPLY

This skill focuses on the nesting of queries, known as subqueries, and the APPLY operator,
which allows you to apply a table subquery to each row from some table.

This section covers how to:
■■ Determine the results of queries using subqueries and table joins

■■ Evaluate performance differences between table joins and correlated
subqueries based on provided data and query plans

■■ Distinguish between the use of CROSS APPLY and OUTER APPLY

■■ Write APPLY statements that return a given data set based on supplied data

www.EBooksWorld.ir

	130	 Chapter 2	 Query data with advanced Transact-SQL components

Subqueries
Subqueries can be self-contained—independent of the outer query; or they can be corre-
lated—namely, having a reference to a column from the table in the outer query. In terms of
the result of the subquery, it can be scalar, multi-valued (table with a single column), or multi-
column table-valued (table with multiple columns).

This section starts by covering the simpler self-contained subqueries, and then continues
to correlated subqueries.

Self-contained subqueries
Self-contained subqueries are subqueries that have no dependency on the outer query. If you
want, you can highlight the inner query in SSMS and run it independently. This makes the
troubleshooting of problems with self-contained subqueries easier compared to correlated
subqueries.

As mentioned, a subquery can return different forms of results. It can return a single value,
table with multiple values in a single column, or even a multi-column table result. Table-val-
ued subqueries, or table expressions, are discussed in Skill 2.2 later in this chapter.

Subqueries that return a single value, or scalar subqueries, can be used where a single-val-
ued expression is expected, like in one side of a comparison. For example, the following query
uses a self-contained subquery to return the products with the minimum unit price:

USE TSQLV4;

SELECT productid, productname, unitprice
FROM Production.Products
WHERE unitprice =
 (SELECT MIN(unitprice)
 FROM Production.Products);

Here’s the output of this query.

productid productname unitprice
---------- -------------- ----------
33 Product ASTMN 2.50

As you can see, the subquery returns the minimum unit price from the Production.
Products table. The outer query then returns information about products with the minimum
unit price. Try highlighting only the inner query and executing it, and you will find that this is
possible.

Note that if what’s supposed to be a scalar subquery returns in practice more than one
value, the code fails at run time. If the scalar subquery returns an empty set, it is converted to
a NULL.

A subquery can also return multiple values in the form of a single column and multiple
rows. Such a subquery can be used where a multi-valued result is expected—for example,

www.EBooksWorld.ir

	 Skill 2.1: Query data by using subqueries and APPLY 	 Chapter 2	 131

when using the IN predicate. As an example, the following query uses a multi-valued sub-
query to return products supplied by suppliers from Japan.

SELECT productid, productname, unitprice
FROM Production.Products
WHERE supplierid IN
 (SELECT supplierid
 FROM Production.Suppliers
 WHERE country = N'Japan');

This query generates the following output.

productid productname unitprice
---------- -------------- ----------
9 Product AOZBW 97.00
10 Product YHXGE 31.00
13 Product POXFU 6.00
14 Product PWCJB 23.25
15 Product KSZOI 15.50
74 Product BKAZJ 10.00

The inner query returns supplier IDs of suppliers from Japan. The outer query then returns
information about products whose supplier ID is in the set returned by the subquery. As with
predicates in general, you can negate an IN predicate, so if you wanted to return products
supplied by suppliers that are not from Japan, simply change IN to NOT IN.

T-SQL supports a few esoteric predicates that operate on subqueries. Those are ALL, ANY
and SOME. They are rarely used because there are usually simpler and more intuitive alterna-
tives, but since there’s a chance that they will be mentioned in the exam, you want to make
sure that you are familiar with them. Following is the form for using these elements:

SELECT <select_list>
FROM <table>
WHERE <expression> <operator> {ALL | ANY | SOME} (<subquery>);

The ALL predicate returns true only if when applying the operator to the input expression
and all values returned by the subquery, you get a true in all cases. For example, the following
query is an alternative solution to the one shown earlier for returning the product with the
minimum unit price:

SELECT productid, productname, unitprice
FROM Production.Products
WHERE unitprice <= ALL (SELECT unitprice FROM Production.Products);

The way the query is phrased is “return the products where the unit price is less than or
equal to all product unit prices.”

The ANY and SOME predicates have identical meaning. Suffice that you get a true for at
least one of the values returned by the subquery for the whole predicate to return true. As
an example, the following query returns all products with a unit price that is greater than the
minimum.

www.EBooksWorld.ir

	132	 Chapter 2	 Query data with advanced Transact-SQL components

SELECT productid, productname, unitprice
FROM Production.Products
WHERE unitprice > ANY (SELECT unitprice FROM Production.Products);

The way the query is phrased is “return the products where the unit price is greater than
any product unit prices.” This will be false only for the product with the minimum price.

Correlated subqueries
Correlated subqueries are subqueries where the inner query has a reference to a column from
the table in the outer query. They are trickier to work with compared to self-contained sub-
queries because you can’t just highlight the inner portion and run it independently.

As an example, suppose that you need to return products with the minimum unit price
per category. You can use a correlated subquery to return the minimum unit price out of the
products where the category ID is equal to the one in the outer row (the correlation), as fol-
lows:

SELECT categoryid, productid, productname, unitprice
FROM Production.Products AS P1
WHERE unitprice =
 (SELECT MIN(unitprice)
 FROM Production.Products AS P2
 WHERE P2.categoryid = P1.categoryid);

This query generates the following output:

categoryid productid productname unitprice
----------- ---------- -------------- ----------
1 24 Product QOGNU 4.50
2 3 Product IMEHJ 10.00
3 19 Product XKXDO 9.20
4 33 Product ASTMN 2.50
5 52 Product QSRXF 7.00
6 54 Product QAQRL 7.45
7 74 Product BKAZJ 10.00
8 13 Product POXFU 6.00

Notice that the outer query and the inner query refer to different instances of the same
table, Production.Products. In order for the subquery to be able to distinguish between the
two, you must assign different aliases to the different instances. The query assigns the alias
P1 to the outer instance and P2 to the inner instance, and by using the table alias as a prefix,
you can refer to columns in an unambiguous way. The subquery uses a correlation in the
predicate P2.categoryid = P1.categoryid, meaning that it filters only the products where the
category ID is equal to the one in the outer row. So, when the outer row has category ID 1,
the inner query returns the minimum unit price out of all products where the category ID is
1. And when the outer row has category ID 2, the inner query returns the minimum unit price
out of all the products where the category ID is 2; and so on.

As another example of a correlated subquery, the following query returns customers who
placed orders on February 12, 2016:

www.EBooksWorld.ir

	 Skill 2.1: Query data by using subqueries and APPLY 	 Chapter 2	 133

SELECT custid, companyname
FROM Sales.Customers AS C
WHERE EXISTS
 (SELECT *
 FROM Sales.Orders AS O
 WHERE O.custid = C.custid
 AND O.orderdate = '20070212');

This query generates the following output:

custid companyname
------- ---------------
45 Customer QXPPT
48 Customer DVFMB
76 Customer SFOGW

The EXISTS predicate accepts a subquery as input and returns true when the subquery
returns at least one row and false otherwise. In this case, the subquery returns orders placed
by the customer whose ID is equal to the customer ID in the outer row (the correlation) and
where the order date is February 12, 2016. So the outer query returns a customer only if
there’s at least one order placed by that customer on the date in question.

As a predicate, EXISTS doesn’t need to return the result set of the subquery; rather, it
returns only true or false, depending on whether the subquery returns any rows. For this rea-
son, the query optimizer ignores the SELECT list of the subquery, and therefore, whatever you
specify there will not affect optimization choices like index selection.

As with other predicates, you can negate the EXISTS predicate as well. The following query
negates the previous query’s predicate, returning customers who did not place orders on
February 12, 2016:

SELECT custid, companyname
FROM Sales.Customers AS C
WHERE NOT EXISTS
 (SELECT *
 FROM Sales.Orders AS O
 WHERE O.custid = C.custid
 AND O.orderdate = '20160212');

This query generates the following output, shown here in abbreviated form:

custid companyname
------- ---------------
72 Customer AHPOP
58 Customer AHXHT
25 Customer AZJED
18 Customer BSVAR
91 Customer CCFIZ
...

www.EBooksWorld.ir

	134	 Chapter 2	 Query data with advanced Transact-SQL components

Optimization of subqueries versus joins
When comparing the performance of solutions using subqueries versus solutions using joins,
you will find that it’s not like one tool always performs better than the other. There are cases
where you will get the same query execution plans for both, cases where subqueries perform
better, and cases where joins perform better. Ultimately, in performance critical cases you will
want to test solutions based on both tools. However, there are specific aspects of these tools
where SQL Server is known to handle one better than the other that you want to make sure
that you’re aware of.

I’ll start with an example where subqueries are optimized less efficiently than joins. If you
have multiple subqueries that need to apply computations such as aggregates based on the
same set of rows, SQL Server will perform a separate access to the data for each subquery.
With a join, you can apply multiple aggregate calculations based on the same access to the
data. For example, suppose that you need to query the Sales.Orders table and compute for
each order the percent of the current freight value out of the customer total, as well as the
difference from the customer average. You create the following covering index to support
your solutions:

CREATE INDEX idx_cid_i_frt_oid
 ON Sales.Orders(custid) INCLUDE(freight, orderid);

Here’s the solution for the task using correlated subqueries:

SELECT orderid, custid, freight,
 freight / (SELECT SUM(O2.freight)
 FROM Sales.Orders AS O2
 WHERE O2.custid = O1.custid) AS pctcust,
 freight - (SELECT AVG(O3.freight)
 FROM Sales.Orders AS O3
 WHERE O3.custid = O1.custid) AS diffavgcust
FROM Sales.Orders AS O1;

Here’s the solution for the task using a derived table and a join:

SELECT O.orderid, O.custid, O.freight,
 freight / totalfreight AS pctcust,
 freight - avgfreight AS diffavgcust
FROM Sales.Orders AS O
 INNER JOIN (SELECT custid, SUM(freight) AS totalfreight, AVG(freight) AS avgfreight
 FROM Sales.Orders
 GROUP BY custid) AS A
 ON O.custid = A.custid;

The query in the derived table A (more on derived tables in Skill 2.2) computes the cus-
tomer aggregates, and the outer query joins the detail and the aggregates based on a match
between the customer IDs and computes the percent and difference from the average.

Figure 2-1 shows the execution plans for both solutions. Query 1 represents the solution
with the subqueries and Query 2 represents the solution with the join.

www.EBooksWorld.ir

	 Skill 2.1: Query data by using subqueries and APPLY 	 Chapter 2	 135

FIGURE 2-1  Query plans for solutions that compute percent of total and difference from the average

Observe in the first plan that the index is accessed three times; once for the detail refer-
ence to the table (instance O1) and two additional times for the two subqueries (instances
O2 and O3). In the second plan the index is accessed only twice; once for the detail reference
(instance O), and only one more time for the computation of both aggregates. Also notice the
relative cost of each query plan out of the entire batch; the first plan costs twice as much as
the second.

When you’re done, run the following code for cleanup:

DROP INDEX idx_cid_i_frt_oid ON Sales.Orders;

In the second example, consider a case where SQL Server optimizes subqueries better than
joins. For this example, first run the following code to add a shipper row into the Sales.Ship-
pers table:

INSERT INTO Sales.Shippers(companyname, phone)
 VALUES('Shipper XYZ', '(123) 456-7890');

Your task is to write a solution that returns shippers who didn’t handle any orders yet. The
important index for this task is a nonclustered index on the shipperid column in the Sales.
Orders table, which already exists.

Here’s a solution to the task based on a subquery.

www.EBooksWorld.ir

	136	 Chapter 2	 Query data with advanced Transact-SQL components

SELECT S.shipperid
FROM Sales.Shippers AS S
WHERE NOT EXISTS
 (SELECT *
 FROM Sales.Orders AS O
 WHERE O.shipperid = S.shipperid);

Here’s a solution to the task based on a join:

SELECT S.shipperid
FROM Sales.Shippers AS S
 LEFT OUTER JOIN Sales.Orders AS O
 ON S.shipperid = O.shipperid
WHERE O.orderid IS NULL;

Figure 2-2 shows the execution plans for both queries. Query 1 represents the solution
based on the subquery and Query 2 represents the solution based on the join.

FIGURE 2-2  Query plans for solutions that identify shippers without orders

Both plans use a Nested Loops algorithm to process the join. In this algorithm the outer
input of the loop scans shipper rows from the Sales.Shippers table. For each shipper row, the
inner input of the loop looks for matching orders in the nonclustered index on Sales.Orders.
The key difference between the plans is that with the subquery-based solution the optimizer
is capable of using a specialized optimization called Anti Semi Join. With this optimization, as
soon as a match is found, the execution short circuits (notice the Top operator with the Top
Expression property set to 1). With the join-based solution a shipper row is matched with all

www.EBooksWorld.ir

	 Skill 2.1: Query data by using subqueries and APPLY 	 Chapter 2	 137

of its corresponding orders, and later the plan filters only the shippers that didn’t have any
matches. Observe the relative cost of each query plan out of the entire batch. The plan for the
subquery-based solution costs less than half of the plan for the join-based solution. At the
time of writing, SQL Server does not use the Anti Semi Join optimization for queries based on
an actual join, but does so for queries based on subqueries and set operators.

When you’re done, run the following code to delete the new shipper row:

DELETE FROM Sales.Shippers WHERE shipperid > 3;

In short, when optimizing your solutions, it’s important to be informed about cases where
one tool does better than another. Also, make sure to keep an open mind, test different solu-
tions, compare their run times and query plans, and eventually choose the optimal one.

The APPLY operator
The APPLY operator is a powerful operator that you can use to apply some query logic to
each row from a table. The operator evaluates the left input first, and for each of its rows,
applies a derived table query or table function that you provide as the right input. Let’s refer
to the right input in short as a table expression (more on table expressions in Skill 2.2). What’s
interesting about the APPLY operator as compared to a join is that a join treats its two inputs
as a set of inputs, and recall that a set has no order. This means that if any of the join inputs is
a query, you cannot refer in that query to elements from the other side. In other words—cor-
relations aren’t allowed. Conversely, the APPLY operator evaluates the left side first, and for
each of the left rows, applies the table expression that you provide as the right input. As a
result, the query in the right side can have references to elements from the left side. If this
sounds similar to a correlated subquery, that’s for a good reason. The references from the
right side to elements from the left are correlations. However, with normal subqueries you’re
generally limited to returning only one column, whereas with an applied table expression you
can return a whole table result with multiple columns and multiple rows. This means that you
can replace the use of cursors in some cases with the APPLY operator.

For example, suppose that you have a query that performs some logic for a particular
supplier. And let’s also suppose that you need to apply this query logic to each supplier from
the Production.Suppliers table. You could use a cursor to iterate through the suppliers, and
in each iteration invoke the query for the current supplier. Instead, you can use the APPLY
operator, providing the Production.Suppliers table as the left input, and a table expression
based on your query as the right input. You can correlate the supplier ID in the inner query of
the right table expression to the supplier ID from the left table.

The two forms of the APPLY operator—CROSS and OUTER—are described in the next sec-
tions.

Before running the code samples in these sections, add a row to the Suppliers table by
running the following code:

INSERT INTO Production.Suppliers

www.EBooksWorld.ir

	138	 Chapter 2	 Query data with advanced Transact-SQL components

 (companyname, contactname, contacttitle, address, city, postalcode, country, phone)
 VALUES(N'Supplier XYZ', N'Jiru', N'Head of Security', N'42 Sekimai Musashino-shi',
 N'Tokyo', N'01759', N'Japan', N'(02) 4311-2609');

CROSS APPLY
The CROSS APPLY operator operates on left and right inputs. The right table expression can
have a correlation to elements from the left table. The right table expression is applied to
each row from the left input. What’s special about the CROSS APPLY operator as compared to
OUTER APPLY is that if the right table expression returns an empty set for a left row, the left
row isn’t returned. The reason that this operator is called CROSS APPLY is that per the left row,
the operator behaves like a cross join between that row and the result set returned for it from
the right input. Figure 2-3 shows an illustration of the CROSS APPLY operator.

FIGURE 2-3  The CROSS APPLY operator

www.EBooksWorld.ir

	 Skill 2.1: Query data by using subqueries and APPLY 	 Chapter 2	 139

The letters X, Y, and Z represent key values from the left table. F represents the table ex-
pression provided as the right input, and in parentheses, you can see the key value from the
left row passed as the correlated element. On the right side of the illustration, you can see the
result returned from the right table expression for each left row. Then at the bottom, you can
see the result of the CROSS APPLY operator, where left rows are matched with the respective
right rows that were returned for them. Notice that a left row that gets an empty set back from
the right table expression isn’t returned. That’s just like with a cross join between one row and
zero rows; the result is an empty set. Such is the case with the row with the key value Z.

As an example, consider the following query, which returns the two products with the low-
est unit prices for supplier 1:

SELECT TOP (2) productid, productname, unitprice
FROM Production.Products
WHERE supplierid = 1
ORDER BY unitprice, productid;

This query generates the following output.

productid productname unitprice
---------- -------------- ----------
3 Product IMEHJ 10.00
1 Product HHYDP 18.00

Suppose that you need to apply this logic to each of the suppliers from Japan that you
have in the Production.Suppliers table. You don’t want to use a cursor to iterate through the
suppliers one at a time and invoke a separate query for each. Instead, you can use the CROSS
APPLY operator, like so:

SELECT S.supplierid, S.companyname AS supplier, A.*
FROM Production.Suppliers AS S
 CROSS APPLY (SELECT TOP (2) productid, productname, unitprice
 FROM Production.Products AS P
 WHERE P.supplierid = S.supplierid
 ORDER BY unitprice, productid) AS A
WHERE S.country = N'Japan';

This query generates the following output.

supplierid supplier productid productname unitprice
----------- --------------- ---------- -------------- ----------
4 Supplier QOVFD 74 Product BKAZJ 10.00
4 Supplier QOVFD 10 Product YHXGE 31.00
6 Supplier QWUSF 13 Product POXFU 6.00
6 Supplier QWUSF 15 Product KSZOI 15.50

As you can see in the query, the left input to the APPLY operator is the Production.Sup-
pliers table, with only suppliers from Japan filtered. The right table expression is a correlated
derived table returning the two products with the lowest prices for the left supplier. Because
the APPLY operator applies the right table expression to each supplier from the left, you get
the two products with the lowest prices for each supplier from Japan. Because the CROSS

www.EBooksWorld.ir

	140	 Chapter 2	 Query data with advanced Transact-SQL components

APPLY operator doesn’t return left rows for which the right table expression returns an empty
set, suppliers from Japan who don’t have any related products aren’t returned.

OUTER APPLY
The OUTER APPLY operator extends what the CROSS APPLY operator does by also including
in the result rows from the left side that get an empty set back from the right side. NULLs are
used as placeholders for the result columns from the right side. In other words, the OUTER
APPLY operator preserves the left side. In a sense, for each single left row, the difference
between OUTER APPLY and CROSS APPLY is similar to the difference between a LEFT OUTER
JOIN and a CROSS JOIN. Figure 2-4 shows an illustration of the OUTER APPLY operator:

FIGURE 2-4  The OUTER APPLY operator

Observe that this time the left row with the key value Z is preserved.

www.EBooksWorld.ir

	 Skill 2.2: Query data by using table expressions 	 Chapter 2	 141

Let’s re-examine the example returning the two products with the lowest prices per
supplier from Japan: If you use the OUTER APPLY operator instead of CROSS APPLY, you will
preserve the left side. Here’s the revised query.

SELECT S.supplierid, S.companyname AS supplier, A.*
FROM Production.Suppliers AS S
 OUTER APPLY (SELECT TOP (2) productid, productname, unitprice
 FROM Production.Products AS P
 WHERE P.supplierid = S.supplierid
 ORDER BY unitprice, productid) AS A
WHERE S.country = N'Japan';

Here’s the output of this query.

supplierid supplier productid productname unitprice
----------- --------------- ---------- -------------- ----------
4 Supplier QOVFD 74 Product BKAZJ 10.00
4 Supplier QOVFD 10 Product YHXGE 31.00
6 Supplier QWUSF 13 Product POXFU 6.00
6 Supplier QWUSF 15 Product KSZOI 15.50
30 Supplier XYZ NULL NULL NULL

Observe that supplier 30 was preserved this time even though it has no related products.

When you’re done, run the following code to delete the supplier row that you added
earlier:

DELETE FROM Production.Suppliers WHERE supplierid > 29;

MORE INFO  ON APPLY

For more information and examples of creative uses of the APPLY operator, make sure to
watch the Microsoft Virtual Academy video seminar “Boost your T-SQL with the APPLY
operator” at http://aka.ms/BoostTSQL or at https://channel9.msdn.com/Series/Boost-Your-
T-SQL-With-the-APPLY-Operator.

MORE INFO  ON LOGICAL ASPECTS OF APPLY

For details about the logical aspects of APPLY, see “Logical Query Processing: The FROM
Clause and APPLY” at http://sqlmag.com/sql-server/logical-query-processing-clause-and-apply.

Skill 2.2: Query data by using table expressions

This skill focuses on querying data by using table expressions. It starts with a description of
what table expressions are, compares them to temporary tables, and then provides the details
about the different kinds of table expressions.

www.EBooksWorld.ir

http://www.aka.ms/BoostTSQL
https://www.channel9.msdn.com/Series/Boost-Your-T-SQL-With-the-APPLY-Operator
https://www.channel9.msdn.com/Series/Boost-Your-T-SQL-With-the-APPLY-Operator
http://www.sqlmag.com/sql-server/logical-query-processing-clause-and-apply

	142	 Chapter 2	 Query data with advanced Transact-SQL components

This section covers how to:
■■ Identify basic components of table expressions

■■ Define usage differences between table expressions and temporary tables

■■ Construct recursive table expressions to meet business requirements

Table expressions, described
Table expressions are named queries. You write an inner query that returns a relational result
set, name it, and query it from an outer query. T-SQL supports four forms of table expres-
sions: derived tables, common table expressions (CTEs), views and inline table-valued func-
tions.

The first two forms are visible only to the statement that defines them. As for the last two
forms, you preserve the definition of the table expression in the database as an object; there-
fore, it’s reusable, and you can also control access to the object with permissions.

Note that because a table expression is supposed to represent a relation, the inner query
defining it needs to be relational. This means that all columns returned by the inner query
must have names (use aliases if the column is a result of an expression), and all column names
must be unique. Also, the inner query is not allowed to have an ORDER BY clause. (Remember,
a set has no order.) There’s an exception to the last rule: If you use the TOP or OFFSET-FETCH
option in the inner query, the ORDER BY serves a meaning that is not related to presenta-
tion ordering; rather, it’s part of the filter’s specification. So if the inner query uses the TOP
or OFFSET-FETCH option, it’s allowed to have an ORDER BY clause as well. But then the outer
query has no presentation ordering guarantees if it doesn’t have its own ORDER BY clause.

Table expressions or temporary tables?
It’s important to note that, from a performance standpoint, when SQL Server optimizes
queries involving table expressions, it first unnests, or inlines, the table expression’s logic,
and therefore interacts with the underlying tables directly. It does not somehow persist the
table expression’s result in an internal work table and then interact with that work table. If for
optimization reasons you do need to persist the result of a query for further processing, you
should be using a temporary table or table variable.

There are cases where the use of table expressions is more optimal than temporary tables.
For instance, imagine that you need to query some table T1 only once, then interact with the
result of that query from some outer query, and finally interact with the result of that outer
query from yet another outer query. You do not want to pay the penalty of writing the inter-
mediate results physically to some temporary table, rather, you want the physical processing
to interact directly with the underlying table. To achieve this, define a table expression based
on the query against T1, give it a name, say D1, and then write an outer query against D1.
Behind the scenes, SQL Server will unnest, or inline, the logic of the inner queries, like pealing
the layers of an onion, and the query plan will interact directly with T1.

www.EBooksWorld.ir

	 Skill 2.2: Query data by using table expressions 	 Chapter 2	 143

There are cases where you will get more optimal treatment when using temporary tables
(which you create like regular tables, and name with a # sign as a prefix, such as #T1) or table
variables (which you declare, and name with the @ sign as a prefix, such as @T1). That’s
typically the case when you have some expensive query, like one that scans large tables,
joins them, and groups and aggregates the data. You need to interact with that query result
multiple times—whether with a single query that joins multiple instances of the result or with
multiple separate queries. If you use a table expression, the physical treatment repeats the
work for each reference. In such cases you want to persist the result of the expensive work in
a temporary table or table variable, and then interact with that temporary object a number of
times. Between table variables and temporary tables, the main difference from an optimiza-
tion perspective is that SQL Server maintains full blown statistics on temporary tables but very
minimal statistics on table variables. Therefore, cardinality estimates (estimates for row counts
during optimization) tend to be more accurate with temporary tables. So, when dealing with
very small amounts of data like just a few rows, typically it’s recommended to use table vari-
ables since that’s the assumption that the optimizer makes any way. With larger table sizes,
the recommendation is to use temporary tables, to allow better estimates, that will hopefully
result in more optimal plans.

The following sections describe the different forms of table expressions that T-SQL sup-
ports.

Derived tables
A derived table is a named table subquery. You define the derived table’s inner query in
parentheses in the FROM clause of the outer query, and specify the name of the derived table
after the parentheses.

Before demonstrating the use of derived tables, this section describes a query that returns
a certain desired result. Then it explains a need that cannot be addressed directly in the
query, and shows how you can address that need by using a derived table (or any other table
expression type for that matter).

Consider the following query, which computes row numbers for products, partitioned by
categoryid, and ordered by unitprice and productid:

USE TSQLV4;

SELECT
 ROW_NUMBER() OVER(PARTITION BY categoryid
 ORDER BY unitprice, productid) AS rownum,
 categoryid, productid, productname, unitprice
FROM Production.Products;

This query generates the following output, shown here in abbreviated form:

rownum categoryid productid productname unitprice
------- ----------- ---------- -------------- ----------
1 1 24 Product QOGNU 4.50
2 1 75 Product BWRLG 7.75

www.EBooksWorld.ir

	144	 Chapter 2	 Query data with advanced Transact-SQL components

3 1 34 Product SWNJY 14.00
4 1 67 Product XLXQF 14.00
5 1 70 Product TOONT 15.00
...
1 2 3 Product IMEHJ 10.00
2 2 77 Product LUNZZ 13.00
3 2 15 Product KSZOI 15.50
4 2 66 Product LQMGN 17.00
5 2 44 Product VJIEO 19.45
...

You learn about the ROW_NUMBER function, as well as other window functions, in Skill 2.3;
but for now, suffice it to say that the ROW_NUMBER function computes unique increment-
ing integers from 1 and is based on indicated ordering, possibly within partitions of rows. As
you can see in the query’s result, the ROW_NUMBER function generates unique incrementing
integers starting with 1 based on unitprice and productid ordering, within each partition
defined by categoryid.

The thing with the ROW_NUMBER function—and window functions in general—is that
they are only allowed in the SELECT and ORDER BY clauses of a query. So, what if you want to
filter rows based on such a function’s result? For example, suppose you want to return only
the rows where the row number is less than or equal to 2; namely, in each category you want
to return the two products with the lowest unit prices, with the product ID used as a tiebreak-
er. You are not allowed to refer to the ROW_NUMBER function in the query’s WHERE clause.
Remember also that according to logical query processing, you’re not allowed to refer to a
column alias that was assigned in the SELECT list in the WHERE clause, because the WHERE
clause is conceptually evaluated before the SELECT clause.

You can circumvent the restriction by using a table expression. You write a query such as
the previous query that computes the window function in the SELECT clause, and assign a
column alias to the result column. You then define a table expression based on that query,
and refer to the column alias in the outer query’s WHERE clause, like so:

SELECT categoryid, productid, productname, unitprice
FROM (SELECT
 ROW_NUMBER() OVER(PARTITION BY categoryid
 ORDER BY unitprice, productid) AS rownum,
 categoryid, productid, productname, unitprice
 FROM Production.Products) AS D
WHERE rownum <= 2;

This query generates the following output, shown here in abbreviated form:

categoryid productid productname unitprice
----------- ---------- -------------- ----------
1 24 Product QOGNU 4.50
1 75 Product BWRLG 7.75
2 3 Product IMEHJ 10.00
2 77 Product LUNZZ 13.00
3 19 Product XKXDO 9.20
3 47 Product EZZPR 9.50
...

www.EBooksWorld.ir

	 Skill 2.2: Query data by using table expressions 	 Chapter 2	 145

As you can see, the derived table is defined in the FROM clause of the outer query in
parentheses, followed by the derived table name. Then the outer query is allowed to refer to
column aliases that were assigned by the inner query. That’s a classic use of table expressions.

EXAM TIP

During the exam pay attention to multi-choice questions where some of the suggested
answers include invalid code. For instance, code that defines an alias in the SELECT list and
refers to that alias in clauses that are evaluated before the SELECT, like the WHERE clause,
or even the same SELECT clause itself. Make sure that you identify the answer with the valid
syntax after eliminating the ones that are invalid.

Two column aliasing options are available to you when working with derived tables: both
inline and external. With the inline form, you specify the column alias as part of the expres-
sion, as in <expression> AS alias. The last query used the inline form to assign the alias rownum
to the expression with the ROW_NUMBER function. With the external aliasing form, you don’t
specify result column aliases as part of the column expressions; instead, you name all target
columns right after the derived table’s name, as in FROM (…) AS D(rownum, categoryid, pro-
ductid, productname, unitprice). With the external form, you must specify all target column
names and not just those that are results of computations. If you use both inline and external
aliases, the external ones prevail as far as the outer query is concerned.

There are a couple of problematic aspects to working with derived tables that stem from
the fact that a derived table is defined in the FROM clause of the outer query. One problem
has to do with cases where you want to refer to one derived table from another. In such a
case, you end up nesting derived tables, and nesting often complicates the logic, making it
hard to follow and increasing the likelihood for errors. Consider the following general form of
nesting of derived tables:

SELECT ...
FROM (SELECT
 FROM (SELECT ...
 FROM T1
 WHERE ...) AS D1
 WHERE ...) AS D2
WHERE ...;

The other problem with derived tables has to do with the fact that a join treats its two
inputs as a set, meaning no order; the two inputs are evaluated in an all-at-once manner. As
a result, if you define a derived table as the left input of the join, that derived table is not vis-
ible to the right input of the join. This means that if you want to join multiple instances of the
same derived table, you can’t. You have no choice but to duplicate the code, defining multiple
derived tables based on the same query. The general form of such a query looks like this:

SELECT ...
FROM (SELECT ...
 FROM T1) AS D1
 INNER JOIN

www.EBooksWorld.ir

	146	 Chapter 2	 Query data with advanced Transact-SQL components

 (SELECT ...
 FROM T1) AS D2
 ON ...;

The derived tables D1 and D2 are based on the same query. This repetition of code in-
creases the likelihood for errors when you need to make revisions to the inner queries.

Common table expressions
A common table expression (CTE) is a similar concept to a derived table in the sense that it’s
a named table expression that is visible only to the statement that defines it. Like a query
against a derived table, a query against a CTE involves three main parts:

■■ The inner query

■■ The name you assign to the query and its columns

■■ The outer query

However, with CTEs, the arrangement of the three parts is different. Recall that with de-
rived tables the inner query appears in the FROM clause of the outer query—in the middle
of things. With CTEs, you first name the CTE, then specify the inner query, and then the outer
query—a much more modular approach:

WITH <CTE_name>
AS
(
 <inner_query>
)
<outer_query>;

Recall the example from the section about derived tables where you returned for each
product category the two products with the lowest unit prices. Here’s how you can imple-
ment the same task with a CTE:

WITH C AS
(
 SELECT
 ROW_NUMBER() OVER(PARTITION BY categoryid
 ORDER BY unitprice, productid) AS rownum,
 categoryid, productid, productname, unitprice
 FROM Production.Products
)
SELECT categoryid, productid, productname, unitprice
FROM C
WHERE rownum <= 2;

As you can see, it’s a similar concept to derived tables, except the inner query is not
defined in the middle of the outer query. Instead, first you name the table expression, then
define the inner query—from start to end andthen the outer query—from start to end. This
design leads to much clearer code that is easier to understand.

You don’t nest CTEs like you do derived tables. If you need to define multiple CTEs, you
simply separate them by commas. Each can refer to the previously defined CTEs, and the

www.EBooksWorld.ir

	 Skill 2.2: Query data by using table expressions 	 Chapter 2	 147

outer query can refer to all of them. After the outer query terminates, all CTEs defined in that
WITH statement are gone. The fact that you don’t nest CTEs makes it easier to follow the logic
and therefore reduces the chances for errors. For example, if you want to refer to one CTE
from another, you can use the following general form:

WITH C1 AS
(
 SELECT ...
 FROM T1
 WHERE ...
),
C2 AS
(
 SELECT
 FROM C1
 WHERE ...
)
SELECT ...
FROM C2
WHERE ...;

Because the CTE name is assigned before the start of the outer query, you can refer to
multiple instances of the same CTE name, unlike with derived tables. The general form looks
like the following.

WITH C AS
(
 SELECT ...
 FROM T1
)
SELECT ...
FROM C AS C1
 INNER JOIN C AS C2
 ON ...;

EXAM TIP

Since in the last example the outer query has multiple reference to the same CTE name, the
underlying work is going to be repeated. If the inner query performs expensive work, and
generates a fairly small result set, a table expression might not be the best choice. In such a
case you should consider persisting the inner query’s result in a temporary table first, and
then joining two instances of that temporary table.

CTEs also have a recursive form. The body of the recursive query has two or more que-
ries, usually separated by a UNION ALL operator. At least one of the queries in the CTE body,
known as the anchor member, is a query that returns a valid relational result. The anchor
query is invoked only once. In addition, at least one of the queries in the CTE body, known as
the recursive member, has a reference to the CTE name. This query is invoked repeatedly until
it returns an empty result set. In each iteration, the reference to the CTE name from the re-
cursive member represents the previous result set. Then the reference to the CTE name from

www.EBooksWorld.ir

	148	 Chapter 2	 Query data with advanced Transact-SQL components

the outer query represents the unified results of the invocation of the anchor member and all
invocations of the recursive member.

As an example, the following code uses a recursive CTE to return the management chain,
leading all the way up to the CEO for a specified employee:

WITH EmpsCTE AS
(
 SELECT empid, mgrid, firstname, lastname, 0 AS distance
 FROM HR.Employees
 WHERE empid = 9

 UNION ALL

 SELECT M.empid, M.mgrid, M.firstname, M.lastname, S.distance + 1 AS distance
 FROM EmpsCTE AS S
 JOIN HR.Employees AS M
 ON S.mgrid = M.empid
)
SELECT empid, mgrid, firstname, lastname, distance
FROM EmpsCTE;

This code returns the following output.

empid mgrid firstname lastname distance
----------- ----------- ---------- -------------------- -----------
9 5 Patricia Doyle 0
5 2 Sven Mortensen 1
2 1 Don Funk 2
1 NULL Sara Davis 3

As you can see, the anchor member returns the row for employee 9. Then the recur-
sive member is invoked repeatedly, and in each round joins the previous result set with the
HR.Employees table to return the direct manager of the employee from the previous round.
The recursive query stops as soon as it returns an empty set—in this case, after not finding
a manager of the CEO. Then the outer query returns the unified results of the invocation of
the anchor member (the row for employee 9) and all invocations of the recursive member (all
managers above employee 9).

Views and inline table-valued functions
As you learned in the previous sections, derived tables and CTEs are table expressions that are
visible only in the scope of the statement that defines them. After that statement terminates,
the table expression is gone. Hence, derived tables and CTEs are not reusable. For reusability,
you need to store the definition of the table expression as an object in the database, and for
this you can use either views or inline table-valued functions. Because these are objects in the
database, you can control access by assigning permissions.

The main difference between views and inline table-valued functions is that the former
doesn’t accept input parameters and the latter does. As an example, suppose you need to

www.EBooksWorld.ir

	 Skill 2.2: Query data by using table expressions 	 Chapter 2	 149

persist the definition of the query with the row number computation from the examples in
the previous sections. To achieve this, you create the following view:

DROP VIEW IF EXISTS Sales.RankedProducts;
GO
CREATE VIEW Sales.RankedProducts
AS

SELECT
 ROW_NUMBER() OVER(PARTITION BY categoryid
 ORDER BY unitprice, productid) AS rownum,
 categoryid, productid, productname, unitprice
FROM Production.Products;
GO

Note that it’s not the result set of the view that is stored in the database; rather, only its
definition is stored. Now that the definition is stored, the object is reusable. Whenever you
need to query the view, it’s available to you, assuming you have the permissions to query it:

SELECT categoryid, productid, productname, unitprice
FROM Sales.RankedProducts
WHERE rownum <= 2;

As for inline table-valued functions, they are very similar to views in concept; however,
as mentioned, they do support input parameters. So if you want to define something like a
view with parameters, the closest you have is an inline table-valued function. As an example,
consider the recursive CTE from the section about CTEs that retuned the management chain
leading all the way up to the CEO for a specified employee. Suppose that you wanted to
encapsulate the logic in a table expression for reusability, but also wanted to parameterize
the input employee instead of using the constant 9. You can achieve this by using an inline
table-valued function with the following definition:

DROP FUNCTION IF EXISTS HR.GetManagers;
GO
CREATE FUNCTION HR.GetManagers(@empid AS INT) RETURNS TABLE
AS

RETURN
 WITH EmpsCTE AS
 (
 SELECT empid, mgrid, firstname, lastname, 0 AS distance
 FROM HR.Employees
 WHERE empid = @empid

 UNION ALL

 SELECT M.empid, M.mgrid, M.firstname, M.lastname, S.distance + 1 AS distance
 FROM EmpsCTE AS S
 JOIN HR.Employees AS M
 ON S.mgrid = M.empid
)
 SELECT empid, mgrid, firstname, lastname, distance
 FROM EmpsCTE;
GO

www.EBooksWorld.ir

	150	 Chapter 2	 Query data with advanced Transact-SQL components

Observe that the header assigns the function with a name (HR.GetManagers), defines the
input parameter (@empid AS INT), and indicates that the function returns a table result (de-
fined by the returned query). Then the function has a RETURN clause returning the result of
the recursive query, and the anchor member of the recursive CTE filters the employee whose
ID is equal to the input employee ID. When querying the function, you pass a specific input
employee ID as the following example shows:

SELECT *
FROM HR.GetManagers(9) AS M;

EXAM TIP

You’re not limited to only issuing SELECT statements against table expressions, rather
you can also modify data through them. The outer statement could be INSERT, UPDATE,
DELETE and MERGE. Since the table expression is merely a reflection of data from some
underlying table, it’s the underlying table that is actually modified.

When you’re done, run the following code for cleanup:

DROP VIEW IF EXISTS Sales.RankedProducts;
DROP FUNCTION IF EXISTS HR.GetManagers;

Skill 2.3: Group and pivot data by using queries

This skill covers various data analysis tools that T-SQL supports. It covers aggregating data
with both grouped queries and windowed queries. It covers the ability to group the data in
multiple different ways by defining what’s called grouping sets. It also covers data rotation
with pivoting and unpivoting techniques.

This section covers how to:
■■ Use windowing functions to group and rank the results of a query

■■ Distinguish between using windowing functions and GROUP BY

■■ Construct complex GROUP BY clauses using GROUPING SETS, and CUBE

■■ Construct PIVOT and UNPIVOT statements to return desired results based
on supplied data

■■ Determine the impact of NULL values in PIVOT and UNPIVOT queries

www.EBooksWorld.ir

	 Skill 2.3: Group and pivot data by using queries 	 Chapter 2	 151

Writing grouped queries
You can use grouped queries to define groups in your data, and then you can perform data
analysis computations per group. You group the data by a set of expressions known as a
grouping set. Traditional T-SQL queries define a single grouping set; namely, they group the
data in only one way. T-SQL also supports defining multiple grouping sets in one query.

Working with a single grouping set
With grouped queries, you can arrange the rows you’re querying in groups and apply data
analysis computations like aggregate functions against those groups. A query becomes a
grouped query when you use a group function, a GROUP BY clause, or both.

A query that invokes a group aggregate function but doesn’t have an explicit GROUP BY
clause arranges all rows in one group. Such an aggregate is referred to as a scalar aggregate.
Consider the following query as an example:

USE TSQLV4;

SELECT COUNT(*) AS numorders
FROM Sales.Orders;

This query generates the following output.

numorders

830

Because there’s no explicit GROUP BY clause, all rows queried from the Sales.Orders table
are arranged in one group, and then the COUNT(*) function counts the number of rows in
that group. Grouped queries return one result row per group, and because the query defines
only one group, it returns only one row in the result set.

Using an explicit GROUP BY clause, you can group the rows based on a specified group-
ing set of expressions. For example, the following query groups the rows by shipper ID and
counts the number of rows (orders, in this case) per distinct group:

SELECT shipperid, COUNT(*) AS numorders
FROM Sales.Orders
GROUP BY shipperid;

This query generates the following output:

shipperid numorders
----------- -----------
1 249
2 326
3 255

The query identifies three groups because there are three distinct shipper IDs.

www.EBooksWorld.ir

	152	 Chapter 2	 Query data with advanced Transact-SQL components

The grouping set can be made of multiple elements. For example, the following query
groups the rows by shipper ID and shipped year:

SELECT shipperid, YEAR(shippeddate) AS shippedyear,
 COUNT(*) AS numorders
FROM Sales.Orders
GROUP BY shipperid, YEAR(shippeddate);

This query generates the following output:

shipperid shippedyear numorders
----------- ----------- -----------
1 2014 36
2 2015 143
1 NULL 4
3 2016 73
3 NULL 6
3 2014 51
2 2016 116
2 NULL 11
1 2015 130
3 2015 125
1 2016 79
2 2014 56

Notice that you get a group for each distinct shipper ID and shipped year combination
that exists in the data, even when the shipped year is NULL. Remember that a NULL in the
shippeddate column represents unshipped orders, so a NULL in the shippedyear column
represents the group of unshipped orders for the respective shipper.

If you need to filter entire groups, you need a filtering option that is evaluated at the
group level—unlike the WHERE clause, which is evaluated at the row level. For this, T-SQL
provides the HAVING clause. Like the WHERE clause, the HAVING clause uses a predicate but
evaluates the predicate per group as opposed to per row. This means that you can refer to
aggregate computations because the data has already been grouped.

For example, suppose that you need to group only shipped orders by shipper ID and
shipping year, and filter only groups having fewer than 100 orders. You can use the following
query to achieve this task:

SELECT shipperid, YEAR(shippeddate) AS shippedyear,
 COUNT(*) AS numorders
FROM Sales.Orders
WHERE shippeddate IS NOT NULL
GROUP BY shipperid, YEAR(shippeddate)
HAVING COUNT(*) < 100;

This query generates the following output.

www.EBooksWorld.ir

	 Skill 2.3: Group and pivot data by using queries 	 Chapter 2	 153

shipperid shippedyear numorders
----------- ----------- -----------
1 2014 36
3 2016 73
3 2014 51
1 2016 79
2 2014 56

Notice that the query filters only shipped orders in the WHERE clause. This filter is applied
at the row level conceptually before the data is grouped. Next the query groups the data by
shipper ID and shipped year. Then the HAVING clause filters only groups that have a count of
rows (orders) that is less than 100. Finally, the SELECT clause returns the shipper ID, shipped
year, and count of orders per remaining group.

T-SQL supports a number of aggregate functions. Those include COUNT(*) and a few gen-
eral set functions (as they are categorized by standard SQL) like COUNT, SUM, AVG, MIN, and
MAX. General set functions are applied to an expression and ignore NULLs.

The following query invokes the COUNT(*) function, in addition to a number of general set
functions, including COUNT:

SELECT shipperid,
 COUNT(*) AS numorders,
 COUNT(shippeddate) AS shippedorders,
 MIN(shippeddate) AS firstshipdate,
 MAX(shippeddate) AS lastshipdate,
 SUM(val) AS totalvalue
FROM Sales.OrderValues
GROUP BY shipperid;

This query generates the following output:

shipperid numorders shippedorders firstshipdate lastshipdate totalvalue
----------- ----------- ------------- ------------- ------------ -----------
3 255 249 2014-07-15 2016-05-01 383405.53
1 249 245 2014-07-10 2016-05-04 348840.00
2 326 315 2014-07-11 2016-05-06 533547.69

Notice the difference between the results of COUNT(shippeddate) and COUNT(*). The
former ignores NULLs in the shippeddate column, and therefore the counts are less than or
equal to those produced by the latter.

With aggregate functions, you can work with distinct occurrences by specifying a DIS-
TINCT clause before the expression, as follows:

SELECT shipperid, COUNT(DISTINCT shippeddate) AS numshippingdates
FROM Sales.Orders
GROUP BY shipperid;

This query generates the following output.

www.EBooksWorld.ir

	154	 Chapter 2	 Query data with advanced Transact-SQL components

shipperid numshippingdates
----------- -----------------
1 188
2 215
3 198

Note that the DISTINCT option is available not only to the COUNT function, but also to
other general set functions. However, it’s more common to use it with COUNT.

From a logical query processing perspective, the GROUP BY clause is evaluated after the
FROM and WHERE clauses, and before the HAVING, SELECT, and ORDER BY clauses. So the
last three clauses already work with a grouped table, and therefore the expressions that they
support are limited. Each group is represented by only one result row; therefore, all expres-
sions that appear in those clauses must guarantee a single result value per group. There’s no
problem referring directly to elements that appear in the GROUP BY clause because each of
those returns only one distinct value per group. But if you want to refer to elements from
the underlying tables that don’t appear in the GROUP BY list, you must apply an aggregate
function to them. That’s how you can be sure that the expression returns only one value per
group. As an example, the following query isn’t valid:

SELECT S.shipperid, S.companyname, COUNT(*) AS numorders
FROM Sales.Shippers AS S
 INNER JOIN Sales.Orders AS O
 ON S.shipperid = O.shipperid
GROUP BY S.shipperid;

This query generates the following error:

Msg 8120, Level 16, State 1, Line 58
Column 'Sales.Shippers.companyname' is invalid in the select list because it is not
contained in either an aggregate function or the GROUP BY clause.

Even though you know that there can’t be more than one distinct company name per
distinct shipper ID, T-SQL doesn’t know this. Because the S.companyname column neither ap-
pears in the GROUP BY list nor is it contained in an aggregate function, it’s not allowed in the
HAVING, SELECT, and ORDER BY clauses.

You can use a number of workarounds. One solution is to add the S.companyname column
to the GROUP BY list, as follows:

SELECT S.shipperid, S.companyname,
 COUNT(*) AS numorders
FROM Sales.Shippers AS S
 INNER JOIN Sales.Orders AS O
 ON S.shipperid = O.shipperid
GROUP BY S.shipperid, S.companyname;

This query generates the following output.

www.EBooksWorld.ir

	 Skill 2.3: Group and pivot data by using queries 	 Chapter 2	 155

shipperid companyname numorders
----------- -------------- -----------
1 Shipper GVSUA 249
2 Shipper ETYNR 326
3 Shipper ZHISN 255

Another workaround is to apply an aggregate function like MAX to the column, as follows:

SELECT S.shipperid,
 MAX(S.companyname) AS companyname,
 COUNT(*) AS numorders
FROM Sales.Shippers AS S
 INNER JOIN Sales.Orders AS O
 ON S.shipperid = O.shipperid
GROUP BY S.shipperid;

In this case, the aggregate function is an artificial one because there can’t be more than
one distinct company name per distinct shipper ID. The first workaround, though, tends to
produce more optimal plans, and also seems to be the more natural solution.

The third workaround is to group and aggregate the rows from the Orders table first, de-
fine a table expression based on the grouped query, and then join the table expression with
the Shippers table to get the shipper company names. Here’s the solution’s code:

WITH C AS
(
 SELECT shipperid, COUNT(*) AS numorders
 FROM Sales.Orders
 GROUP BY shipperid
)
SELECT S.shipperid, S.companyname, numorders
FROM Sales.Shippers AS S
 INNER JOIN C
 ON S.shipperid = C.shipperid;

SQL Server usually optimizes the third solution like it does the first. The first solution might
be preferable because it involves much less code.

MORE INFO  ON USER DEFINED AGGREGATES

SQL Server also allows you to create user defined aggregates (UDA) using .NET code based
on the Common Language Runtime (CLR). It provides some built-in CLR UDAs for the
spatial data types GEOMETRY and GEOGRAPHY and also allows you to create new UDAs
operating on spatial types as inputs. For more details see the topic “CLR User-Defined Ag-
gregates” in books online at https://msdn.microsoft.com/en-us/library/ms131057.aspx.

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms131057.aspx

	156	 Chapter 2	 Query data with advanced Transact-SQL components

Working with multiple grouping sets
With T-SQL, you can define multiple grouping sets in the same query. In other words, you can
use one query to group the data in more than one way. T-SQL supports three clauses that al-
low defined multiple grouping sets: GROUPING SETS, CUBE, and ROLLUP. You use these in the
GROUP BY clause.

You can use the GROUPING SETS clause to list all grouping sets that you want to define in
the query. As an example, the following query defines four grouping sets:

SELECT shipperid, YEAR(shippeddate) AS shipyear, COUNT(*) AS numorders
FROM Sales.Orders
WHERE shippeddate IS NOT NULL -- exclude unshipped orders
GROUP BY GROUPING SETS
(
 (shipperid, YEAR(shippeddate)),
 (shipperid),
 (YEAR(shippeddate)),
 ()
);

You list the grouping sets separated by commas within the outer pair of parentheses,
which belongs to the GROUPING SETS clause. You use an inner pair of parentheses to enclose
each grouping set. If you don’t indicate an inner pair of parentheses, each individual element
is considered a separate grouping set.

This query defines four grouping sets. One of them is the empty grouping set, which de-
fines one group with all rows for computation of grand aggregates. The query generates the
following output:

shipperid shipyear numorders
----------- ----------- -----------
1 2014 36
2 2014 56
3 2014 51
NULL 2014 143
1 2015 130
2 2015 143
3 2015 125
NULL 2015 398
1 2016 79
2 2016 116
3 2016 73
NULL 2016 268
NULL NULL 809
3 NULL 249
1 NULL 245
2 NULL 315

The output combines the results of grouping and aggregating the data of four different
grouping sets. As you can see in the output, NULLs are used as placeholders in rows where an
element isn’t part of the grouping set. For example, in result rows that are associated with the

www.EBooksWorld.ir

	 Skill 2.3: Group and pivot data by using queries 	 Chapter 2	 157

grouping set (shipperid), the shipyear result column is set to NULL. Similarly, in rows that are
associated with the grouping set (YEAR(shippeddate)), the shipperid column is set to NULL.

You can achieve the same result by writing four separate grouped queries—each defining
only a single grouping set—and unifying their results with a UNION ALL operator. However,
such a solution would involve much more code and won’t get optimized as efficiently as the
query with the GROUPING SETS clause.

T-SQL supports two additional clauses called CUBE and ROLLUP, which you can consider as
abbreviations of the GROUPING SETS clause. The CUBE clause accepts a list of expressions as
inputs and defines all possible grouping sets that can be generated from the inputs—includ-
ing the empty grouping set. For example, the following query is a logical equivalent of the
previous query that used the GROUPING SETS clause:

SELECT shipperid, YEAR(shippeddate) AS shipyear, COUNT(*) AS numorders
FROM Sales.Orders
WHERE shippeddate IS NOT NULL
GROUP BY CUBE(shipperid, YEAR(shippeddate));

The CUBE clause defines all four possible grouping sets from the two inputs:

■■ (shipperid, YEAR(shippeddate))

■■ (shipperid)

■■ (YEAR(shippeddate))

■■ ()

The ROLLUP clause is also an abbreviation of the GROUPING SETS clause, but you use it
when there’s a natural hierarchy formed by the input elements. In such a case, only a subset
of the possible grouping sets is really interesting. Consider, for example, a location hierarchy
made of the elements shipcountry, shipregion, and shipcity, in this order. It’s only interest-
ing to roll up the data in one direction, computing aggregates for the following grouping
sets:

■■ (shipcountry, shipregion, shipcity)

■■ (shipcountry, shipregion)

■■ (shipcountry)

■■ ()

The other grouping sets are simply not interesting. For example, even though the same
city name can appear in different places in the world, it’s not interesting to aggregate all of
the occurrences—irrespective of region and country.

So, when the elements form a hierarchy, you use the ROLLUP clause and this way avoid
computing unnecessary aggregates. Here’s an example of a query using the ROLLUP clause
based on the aforementioned hierarchy:

SELECT shipcountry, shipregion, shipcity, COUNT(*) AS numorders
FROM Sales.Orders
GROUP BY ROLLUP(shipcountry, shipregion, shipcity);

www.EBooksWorld.ir

	158	 Chapter 2	 Query data with advanced Transact-SQL components

This query generates the following output (shown here in abbreviated form):

shipcountry shipregion shipcity numorders
--------------- --------------- --------------- -----------
Argentina NULL Buenos Aires 16
Argentina NULL NULL 16
Argentina NULL NULL 16
...
USA AK Anchorage 10
USA AK NULL 10
USA CA San Francisco 4
USA CA NULL 4
USA ID Boise 31
USA ID NULL 31
...
USA NULL NULL 122
...
NULL NULL NULL 830

As mentioned, NULLs are used as placeholders when an element isn’t part of the group-
ing set. If all grouped columns disallow NULLs in the underlying table, you can identify the
rows that are associated with a single grouping set based on a unique combination of NULLs
and non-NULLs in those columns. A problem arises in identifying the rows that are associ-
ated with a single grouping set when a grouped column allows NULLs—as is the case with the
shipregion column. How do you tell whether a NULL in the result represents a placeholder
(meaning “all regions”) or an original NULL from the table (meaning “missing region”)? T-SQL
provides two functions to help address this problem: GROUPING and GROUPING_ID.

The GROUPING function accepts a single element as input and returns 0 when the element
is part of the grouping set and 1 when it isn’t. In other words, 0 defines a detail element and 1
defines a hyperaggregate. The following query demonstrates using the GROUPING function:

SELECT
 shipcountry, GROUPING(shipcountry) AS grpcountry,
 shipregion , GROUPING(shipregion) AS grpregion,
 shipcity , GROUPING(shipcity) AS grpcity,
 COUNT(*) AS numorders
FROM Sales.Orders
GROUP BY ROLLUP(shipcountry, shipregion, shipcity);

This query generates the following output (shown here in abbreviated form):

shipcountry grpcountry shipregion grpregion shipcity grpcitry numorders
------------ ---------- ----------- ---------- ------------- ---------- ----------
Argentina 0 NULL 0 Buenos Aires 0 16
Argentina 0 NULL 0 NULL 1 16
Argentina 0 NULL 1 NULL 1 16
...
USA 0 AK 0 Anchorage 0 10
USA 0 AK 0 NULL 1 10
USA 0 CA 0 San Francisco 0 4

www.EBooksWorld.ir

	 Skill 2.3: Group and pivot data by using queries 	 Chapter 2	 159

USA 0 CA 0 NULL 1 4
USA 0 ID 0 Boise 0 31
USA 0 ID 0 NULL 1 31
...
USA 0 NULL 1 NULL 1 122
...
NULL 1 NULL 1 NULL 1 830

Now you can identify a grouping set by looking for 0s in the elements that are part of the
grouping set (detail elements) and 1s in the rest (aggregate elements).

Another function that you can use to identify the grouping sets is GROUPING_ID. This
function accepts the list of grouped columns as inputs and returns an integer representing a
bitmap. The rightmost bit represents the rightmost input. The bit is 0 when the respective ele-
ment is part of the grouping set and 1 when it isn’t. Each bit represents 2 raised to the power
of the bit position minus 1; so, the rightmost bit represents 1, the one to the left of it 2, then
4, then 8, and so on. The result integer is the sum of the values representing elements that are
not part of the grouping set because their bits are turned on. Here’s a query demonstrating
the use of this function:

SELECT GROUPING_ID(shipcountry, shipregion, shipcity) AS grp_id,
 shipcountry, shipregion, shipcity,
 COUNT(*) AS numorders
FROM Sales.Orders
GROUP BY ROLLUP(shipcountry, shipregion, shipcity);

This query generates the following output (shown here in abbreviated form):

grp_id shipcountry shipregion shipcity numorders
----------- --------------- --------------- --------------- -----------
0 Argentina NULL Buenos Aires 16
1 Argentina NULL NULL 16
3 Argentina NULL NULL 16
...
0 USA AK Anchorage 10
1 USA AK NULL 10
0 USA CA San Francisco 4
1 USA CA NULL 4
0 USA ID Boise 31
1 USA ID NULL 31
...
3 USA NULL NULL 122
...
7 NULL NULL NULL 830

The last row in this output represents the empty grouping set—none of the three ele-
ments is part of the grouping set. Therefore, the respective bits (values 1, 2, and 4) are turned
on. The sum of the values that those bits represent is 7.

www.EBooksWorld.ir

	160	 Chapter 2	 Query data with advanced Transact-SQL components

NOTE  GROUPING SETS ALGEBRA

You can specify multiple GROUPING SETS, CUBE, and ROLLUP clauses in the GROUP BY
clause separated by commas. By doing so, you achieve a multiplication effect. For example
the clause CUBE(a, b, c) defines eight grouping sets and the clause ROLLUP(x, y, z) defines
four grouping sets. By specifying a comma between the two, as in CUBE(a, b, c), ROLLUP(x,
y, z), you multiply them and get 32 grouping sets. If you place a CUBE or ROLLUP clause
within a GROUPING SETS clause, you achieve an addition effect. For example, the expres-
sion GROUPING SETS((x, y, z), (z), CUBE(a, b, c)) adds the two grouping sets defined explic-
itly by the GROUPING SETS clause and the eight defined implicitly by the CUBE clause and
produces ten grouping sets in total.

MORE INFO  ON GROUPED QUERIES

For coverage of the logical query processing aspects of grouping, see “Logical Query
Processing Part 7: GROUP BY and HAVING” at http://sqlmag.com/sql-server/logical-query-
processing-part-7-group-and-having.

Pivoting and Unpivoting Data
Pivoting is a specialized case of grouping and aggregating of data. Unpivoting is, in a sense,
the inverse of pivoting. T-SQL supports native operators for both. Let’s first describe the
PIVOT operator and then the UNPIVOT operator.

Pivoting Data
Pivoting is a technique that groups and aggregates data, transitioning it from a state of rows
to a state of columns. In all pivot queries, you need to identify three elements:

1.	 What do you want to see on rows? This element is known as the on rows, or grouping
element.

2.	 What do you want to see on columns? This element is known as the on cols, or spread-
ing element.

3.	 What do you want to see in the intersection of each distinct row and column value?
This element is known as the data, or aggregation element.

As an example of a pivot request, suppose that you want to query the Sales.Orders table.
You want to return a row for each distinct customer ID (the grouping element), a column for
each distinct shipper ID (the spreading element), and in the intersection of each customer and
shipper you want to see the sum of freight values (the aggregation element). With T-SQL, you
can achieve such a pivoting task by using the PIVOT table operator. The recommended form
for a pivot query (more on why it’s the recommended form later) is generally like the following.

www.EBooksWorld.ir

http://www.sqlmag.com/sql-server/logical-query-processing-part-7-group-and-having
http://www.sqlmag.com/sql-server/logical-query-processing-part-7-group-and-having

	 Skill 2.3: Group and pivot data by using queries 	 Chapter 2	 161

WITH PivotData AS
(
 SELECT
 < grouping column >,
 < spreading column >,
 < aggregation column >
 FROM < source table >
)
SELECT < select list >
FROM PivotData
 PIVOT(< aggregate function >(< aggregation column >)
 FOR < spreading column > IN (< distinct spreading values >)) AS P;

This recommended general form is made of the following elements:

■■ You define a table expression (like the one named PivotData) that returns the three
elements that are involved in pivoting, which in this example are custid, shipperid
and freight from Sales.Orders. It is not recommended to query the underlying source
table directly; the reason for this is explained shortly.

■■ You issue the outer query against the table expression and apply the PIVOT operator
to that table expression. The PIVOT operator returns a table result. You need to assign
an alias to that table, for example, P.

■■ The specification for the PIVOT operator starts by indicating an aggregate function ap-
plied to the aggregation element—in this example, SUM(freight).

■■ Then you specify the FOR clause followed by the spreading column, which in this ex-
ample is shipperid.

■■ Then you specify the IN clause followed by the list of distinct values that appear in the
spreading element, separated by commas. What used to be values in the spreading
column (in this example, shipper IDs) become column names in the result table. There-
fore, the items in the list should be expressed as column identifiers. Remember that if
a column identifier is irregular, it has to be delimited. Because shipper IDs are integers,
they have to be delimited: [1],[2],[3].

Following this recommended syntax for pivot queries, the following query addresses our
task (return customer IDs on rows, shipper IDs on columns, and the total freight in the inter-
sections):

WITH PivotData AS
(
 SELECT
 custid, -- grouping column
 shipperid, -- spreading column
 freight -- aggregation column
 FROM Sales.Orders
)
SELECT custid, [1], [2], [3]
FROM PivotData
 PIVOT(SUM(freight) FOR shipperid IN ([1],[2],[3])) AS P;

www.EBooksWorld.ir

	162	 Chapter 2	 Query data with advanced Transact-SQL components

This query generates the following output (shown here in abbreviated form):

custid 1 2 3
------- -------- -------- --------
1 95.03 61.02 69.53
2 43.90 NULL 53.52
3 63.09 116.56 88.87
4 41.95 358.54 71.46
5 189.44 1074.51 295.57
6 0.15 126.19 41.92
7 217.96 215.70 190.00
8 16.16 175.01 NULL
9 341.16 419.57 597.14
10 129.42 162.17 502.36
...

(89 row(s) affected)

EXAM TIP

As you can see in the output, in cases where a shipper hasn’t shipped any orders for a customer,
the result of the aggregate is NULL. If you need to return something else instead of a NULL in
such cases, say, zero, apply the ISNULL or COALESCE function to the result columns in the outer
query’s SELECT list. For example ISNULL([1], 0.00). Your revised query would look like this:

WITH PivotData AS
(
 SELECT
 custid,
 shipperid,
 freight
 FROM Sales.Orders
)
SELECT custid,
 ISNULL([1], 0.00) AS [1],
 ISNULL([2], 0.00) AS [2],
 ISNULL([3], 0.00) AS [3]
FROM PivotData
 PIVOT(SUM(freight) FOR shipperid IN ([1],[2],[3])) AS P;

This code generates the following output:

custid 1 2 3
------- -------- -------- --------
1 95.03 61.02 69.53
2 43.90 0.00 53.52
3 63.09 116.56 88.87
4 41.95 358.54 71.46
5 189.44 1074.51 295.57
6 0.15 126.19 41.92
7 217.96 215.70 190.00
8 16.16 175.01 0.00
9 341.16 419.57 597.14
10 129.42 162.17 502.36
...

Make sure that whenever you write T-SQL code you always think about NULLs and how you
want to handle them.

www.EBooksWorld.ir

	 Skill 2.3: Group and pivot data by using queries 	 Chapter 2	 163

If you look carefully at the specification of the PIVOT operator, you will notice that you in-
dicate the aggregation and spreading elements, but not the grouping element. The grouping
element is identified by elimination—it’s what’s left from the queried table besides the ag-
gregation and spreading elements. This is why it is recommended to prepare a table expres-
sion for the pivot operator returning only the three elements that should be involved in the
pivoting task. If you query the underlying table directly (Sales.Orders in this case), all columns
from the table besides the aggregation (freight) and spreading (shipperid) columns will im-
plicitly become your grouping elements. This includes even the primary key column orderid.
So instead of getting a row per customer, you end up getting a row per order. You can see it
for yourself by running the following code:

SELECT custid, [1], [2], [3]
FROM Sales.Orders
 PIVOT(SUM(freight) FOR shipperid IN ([1],[2],[3])) AS P;

This query generates the following output (shown here in abbreviated form):

custid 1 2 3
------- ------- ------- -------
85 NULL NULL 32.38
79 11.61 NULL NULL
34 NULL 65.83 NULL
84 41.34 NULL NULL
76 NULL 51.30 NULL
34 NULL 58.17 NULL
14 NULL 22.98 NULL
68 NULL NULL 148.33
88 NULL 13.97 NULL
35 NULL NULL 81.91
...

(830 row(s) affected)

You get 830 rows back because there are 830 rows in the Sales.Orders table. By defining a
table expression as was shown in the recommended solution, you control which columns will
be used as the grouping columns. If you return custid, shipperid, and freight in the table
expression, and use the last two as the spreading and aggregation elements, respectively, the
PIVOT operator implicitly assumes that custid is the grouping element. Therefore, it groups
the data by custid, and as a result, returns a single row per customer.

You should be aware of a few limitations of the PIVOT operator.

www.EBooksWorld.ir

	164	 Chapter 2	 Query data with advanced Transact-SQL components

■■ The aggregation and spreading elements cannot directly be results of expressions;
instead, they must be column names from the queried table. You can, however, apply
expressions in the query defining the table expression, assign aliases to those expres-
sions, and then use the aliases in the PIVOT operator.

■■ The COUNT(*) function isn’t allowed as the aggregate function used by the PIVOT
operator. If you need a count, you have to use the general COUNT(<col name>) aggre-
gate function. A simple workaround is to define a dummy column in the table expres-
sion made of a constant, as in 1 AS agg_col, and then in the PIVOT operator apply
the aggregate function to that column: COUNT(agg_col). In this case you can also use
SUM(agg_col) as an alternative.

■■ A PIVOT operator is limited to using only one aggregate function.

■■ The IN clause of the PIVOT operator accepts a static list of spreading values. It doesn’t
support a subquery as input. You need to know ahead what the distinct values are in
the spreading column and specify those in the IN clause. When the list isn’t known
ahead, you can use dynamic SQL to construct and execute the query string after
querying the distinct values from the data. You can find an example for building and
executing a pivot query dynamically at http://sqlmag.com/sql-server/logical-query-
processing-clause-and-pivot.

Unpivoting Data
Unpivoting data can be considered the inverse of pivoting. The starting point is some pivoted
data. When unpivoting data, you rotate the input data from a state of columns to a state of
rows. Just like T-SQL supports the native PIVOT table operator to perform pivoting, it sup-
ports a native UNPIVOT operator to perform unpivoting. Like PIVOT, UNPIVOT is implement-
ed as a table operator that you use in the FROM clause. The operator operates on the input
table that is provided to its left, which could be the result of other table operators, like joins.
The outcome of the UNPIVOT operator is a table result that can be used as the input to other
table operators that appear to its right.

To demonstrate unpivoting, use as an example a sample table called Sales.FreightTotals.
The following code creates the sample data and queries it to show its contents:

USE TSQLV4;
DROP IF EXISTS TABLE Sales.FreightTotals;
GO

WITH PivotData AS
(
 SELECT
 custid, -- grouping column
 shipperid, -- spreading column
 freight -- aggregation column
 FROM Sales.Orders
)
SELECT *
INTO Sales.FreightTotals

www.EBooksWorld.ir

http://www.sqlmag.com/sql-server/logical-query-processing-clause-and-pivot
http://www.sqlmag.com/sql-server/logical-query-processing-clause-and-pivot

	 Skill 2.3: Group and pivot data by using queries 	 Chapter 2	 165

FROM PivotData
 PIVOT(SUM(freight) FOR shipperid IN ([1],[2],[3])) AS P;

SELECT * FROM Sales.FreightTotals;

This code generates the following output, shown here in abbreviated form:

custid 1 2 3
------- -------- -------- --------
1 95.03 61.02 69.53
2 43.90 NULL 53.52
3 63.09 116.56 88.87
4 41.95 358.54 71.46
5 189.44 1074.51 295.57
6 0.15 126.19 41.92
7 217.96 215.70 190.00
8 16.16 175.01 NULL
9 341.16 419.57 597.14
10 129.42 162.17 502.36
...

As you can see, the source table has a row for each customer and a column for each ship-
per (shippers 1, 2, and 3). The intersection of each customer and shipper has the total freight
values. The unpivoting task at hand is to return a row for each customer and shipper holding
the customer ID in one column, the shipper ID in a second column, and the freight value in a
third column.

Unpivoting always takes a set of source columns and rotates those to multiple rows,
generating two target columns: one to hold the source column values and another to hold
the source column names. The source columns already exist, so their names should be known
to you. But the two target columns are created by the unpivoting solution, so you need to
choose names for those. In our example, the source columns are [1], [2], and [3]. As for names
for the target columns, you need to decide on those. In this case, it might be suitable to call
the values column freight and the names column shipperid. So remember, in every unpivot-
ing task, you need to identify the three elements involved:

1.	 The name you want to assign to the target values column (in this case, freight).

2.	 The name you want to assign to the target names column (in this case, shipperid).

3.	 The set of source columns that you’re unpivoting (in this case, [1],[2],[3]).

After you identify these three elements, you use the following query form to handle the
unpivoting task:

SELECT < column list >, < names column >, < values column >
FROM < source table >
 UNPIVOT(< values column > FOR < names column > IN(<source columns>)) AS U;

Based on this syntax, the following query addresses the current task:

SELECT custid, shipperid, freight
FROM Sales.FreightTotals
 UNPIVOT(freight FOR shipperid IN([1],[2],[3])) AS U;

This query generates the following output (shown here in abbreviated form).

www.EBooksWorld.ir

	166	 Chapter 2	 Query data with advanced Transact-SQL components

custid shipperid freight
------- ---------- --------
1 1 95.03
1 2 61.02
1 3 69.53
2 1 43.90
2 3 53.52
3 1 63.09
3 2 116.56
3 3 88.87
4 1 41.95
4 2 358.54
4 3 71.46
...

NOTE  UNPIVOT AND NULLS

Besides unpivoting the data, the UNPIVOT operator filters out rows with NULLs in the value
column (freight in this case). The assumption is that those represent inapplicable cases.
There was no escape from keeping NULLs in the source if the column was applicable to at
least one other customer. But after unpivoting the data, there’s no reason to keep a row for
a certain customer-shipper pair if it’s inapplicable—if that shipper did not ship orders to
that customer. However, if you want to return rows for cases that were NULL originally, you
need to prepare a table expression where you replace the NULLs with some other value
using the ISNULL or COALESCE function, and then in the outer query replace that value
back with a NULL using the NULLIF function. Here’s how you apply this technique to our
example:

WITH C AS
(
 SELECT custid,
 ISNULL([1], 0.00) AS [1],
 ISNULL([2], 0.00) AS [2],
 ISNULL([3], 0.00) AS [3]
 FROM Sales.FreightTotals
)
SELECT custid, shipperid, NULLIF(freight, 0.00) AS freight
FROM C
 UNPIVOT(freight FOR shipperid IN([1],[2],[3])) AS U;

This time the output includes rows with NULLs:

custid shipperid freight
------- ---------- --------
1 1 95.03
1 2 61.02
1 3 69.53
2 1 43.90
2 2 NULL
2 3 53.52
3 1 63.09
3 2 116.56

www.EBooksWorld.ir

	 Skill 2.3: Group and pivot data by using queries 	 Chapter 2	 167

3 3 88.87
4 1 41.95
4 2 358.54
4 3 71.46
...

Naturally you need to replace the NULL with a value that normally can’t appear in your
data.

In terms of data types, the names column is defined as a Unicode character string (NVAR-
CHAR(128)). The values column is defined with the same type as the type of the source
columns that were unpivoted. For this reason, the types of all columns that you’re unpivoting
must be the same.

Just like with the PIVOT operator, in a static query the UNPIVOT operator requires you to
hard code the columns that you want to unpivot. If you don’t want to hard code those, you
can query the column names from the sys.columns view, construct the UNPIVOT query string,
and execute it with dynamic SQL. Also, the UNPIVOT operator is limited to unpivoting only
one measure (one values column). If you need to unpivot multiple measures, you need to use
an alternative solution that is based on the APPLY operator. The below resources provide fur-
ther reading material with examples for constructing and executing dynamic queries as well
as unpivoting multiple measures.

When you’re done, run the following code for cleanup:

DROP TABLE IF EXISTS Sales.FreightTotals;

MORE INFO  ON PIVOT AND UNPIVOT

For more information about the logical query processing aspects of the PIVOT and
UNPIVOT operators, see “Logical Query Processing: The FROM Clause and PIVOT” at
https://sqlmag.com/sql-server/logical-query-processing-clause-and-pivot and “Logical
Query Processing Part 5: The FROM Clause and UNPIVOT” at https://sqlmag.com/sql-
server/logical-query-processing-part-5-clause-and-unpivot.

Using Window Functions
Like group functions, window functions also enable you to perform data analysis computa-
tions. The difference between the two is in how you define the set of rows for the function
to work with. With group functions, you use grouped queries to arrange the queried rows in
groups, and then the group functions are applied to each group. You get one result row per
group—not per underlying row. With window functions, you define the set of rows per func-
tion—and then return one result value per underlying row and function. You define the set of
rows for the function to work with using a clause called OVER.

This section covers three types of window functions: aggregate, ranking, and offset.

www.EBooksWorld.ir

https://www.sqlmag.com/sql-server/logical-query-processing-clause-and-pivot
https://www. sqlmag.com/sql-server/logical-query-processing-part-5-clause-and-unpivot
https://www.sqlmag.com/sql-server/logical-query-processing-part-5-clause-and-unpivot

	168	 Chapter 2	 Query data with advanced Transact-SQL components

Window aggregate functions
Window aggregate functions are the same as the group aggregate functions (for example,
SUM, COUNT, AVG, MIN, and MAX), except window aggregate functions are applied to a
window of rows defined by the OVER clause.

One of the benefits of using window functions is that unlike grouped queries, windowed
queries do not hide the detail—they return a row for every underlying query’s row. This
means that you can mix detail and aggregated elements in the same query, and even in the
same expression. Using the OVER clause, you define a set of rows for the function to work
with per underlying row. In other words, a windowed query defines a window of rows per
function and row in the underlying query.

As mentioned, you use an OVER clause to define a window of rows for the function. The
window is defined with respect to the current row. When using empty parentheses, the OVER
clause represents the entire underlying query’s result set. For example, the expression SUM(val)
OVER() represents the grand total of all rows in the underlying query. You can use a window
partition clause to restrict the window. For example, the expression SUM(val) OVER(PARTITION
BY custid) represents the current customer’s total. As an example, if the current row has
customer ID 1, the OVER clause filters only those rows from the underlying query’s result set
where the customer ID is 1; hence, the expression returns the total for customer 1.

Here’s an example of a query against the Sales.OrderValues view returning for each order
the customer ID, order ID, and order value; using window functions, the query also returns the
grand total of all values and the customer total:

SELECT custid, orderid, val,
 SUM(val) OVER(PARTITION BY custid) AS custtotal,
 SUM(val) OVER() AS grandtotal
FROM Sales.OrderValues;

This query generates the following output (shown here in abbreviated form):

custid orderid val custtotal grandtotal
------- -------- ------- ---------- -----------
1 10643 814.50 4273.00 1265793.22
1 10692 878.00 4273.00 1265793.22
1 10702 330.00 4273.00 1265793.22
1 10835 845.80 4273.00 1265793.22
1 10952 471.20 4273.00 1265793.22
1 11011 933.50 4273.00 1265793.22
2 10926 514.40 1402.95 1265793.22
2 10759 320.00 1402.95 1265793.22
2 10625 479.75 1402.95 1265793.22
2 10308 88.80 1402.95 1265793.22
...

The grand total is of course the same for all rows. The customer total is the same for all
rows with the same customer ID.

You can mix detail elements and windowed aggregates in the same expression. For ex-
ample, the following query computes for each order the percent of the current order value
out of the customer total, and also the percent of the grand total:

www.EBooksWorld.ir

	 Skill 2.3: Group and pivot data by using queries 	 Chapter 2	 169

SELECT custid, orderid, val,
 CAST(100.0 * val / SUM(val) OVER(PARTITION BY custid) AS NUMERIC(5, 2)) AS pctcust,
 CAST(100.0 * val / SUM(val) OVER() AS NUMERIC(5, 2)) AS pcttotal
FROM Sales.OrderValues;

This query generates the following output (shown here in abbreviated form):

custid orderid val pctcust pcttotal
------- -------- ------- -------- ---------
1 10643 814.50 19.06 0.06
1 10692 878.00 20.55 0.07
1 10702 330.00 7.72 0.03
1 10835 845.80 19.79 0.07
1 10952 471.20 11.03 0.04
1 11011 933.50 21.85 0.07
2 10926 514.40 36.67 0.04
2 10759 320.00 22.81 0.03
2 10625 479.75 34.20 0.04
2 10308 88.80 6.33 0.01
...

The sum of all percentages out of the grand total is 100. The sum of all percentages out of
the customer total is 100 for each partition of rows with the same customer.

Window aggregate functions support another filtering option called window frame. The
idea is that you define ordering within the partition by using a window order clause, and then
based on that order, you can confine a frame of rows between two delimiters. You define the
delimiters by using a window frame clause. The window frame clause requires a window order
clause to be present because a set has no order, and without order, limiting rows between
two delimiters would have no meaning.

In the window frame clause, you indicate the window frame unit (ROWS or RANGE) and
the window frame extent (the delimiters). With the ROWS window frame unit, you can indicate
the delimiters as one of three options:

■■ UNBOUNDED PRECEDING or FOLLOWING, meaning the beginning or end of the
partition, respectively.

■■ CURRENT ROW, obviously representing the current row.

■■ <n> ROWS PRECEDING or FOLLOWING, meaning n rows before or after the current,
respectively.

As an example, suppose that you wanted to query the Sales.OrderValues view and com-
pute the running total values from the beginning of the current customer’s activity until the
current order, assuming a sort based on orderdate and orderid as a tiebreaker. You need to
use the SUM aggregate. You partition the window by custid. You order the window by or-
derdate, orderid. You then frame the rows from the beginning of the partition (UNBOUNDED
PRECEDING) until the current row. Your query should look like the following.

SELECT custid, orderid, orderdate, val,
 SUM(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS runningtotal
FROM Sales.OrderValues;

www.EBooksWorld.ir

	170	 Chapter 2	 Query data with advanced Transact-SQL components

This query generates the following output (shown here in abbreviated form):

custid orderid orderdate val runningtotal
----------- ----------- ---------- ------- -------------
1 10643 2015-08-25 814.50 814.50
1 10692 2015-10-03 878.00 1692.50
1 10702 2015-10-13 330.00 2022.50
1 10835 2016-01-15 845.80 2868.30
1 10952 2016-03-16 471.20 3339.50
1 11011 2016-04-09 933.50 4273.00
2 10308 2014-09-18 88.80 88.80
2 10625 2015-08-08 479.75 568.55
2 10759 2015-11-28 320.00 888.55
2 10926 2016-03-04 514.40 1402.95
...

Observe how the values keep accumulating from the beginning of the customer partition
until the current row. By the way, instead of the verbose form of the frame extent ROWS BE-
TWEEN UNBOUNDED PRECEDING AND CURRENT ROW, you can use the shorter form ROWS
UNBOUNDED PRECEDING, and retain the same meaning.

Using window aggregate functions to perform computations such as running totals, you
typically get much better performance compared to using joins or subqueries and group ag-
gregate functions. Window functions lend themselves to good optimization—especially when
using UNBOUNDED PRECEDING as the first delimiter.

From an indexing standpoint, an optimal index to support window functions is one created
on the partitioning and ordering elements as the key list, and includes the rest of the ele-
ments from the query for coverage. I like to think of this index as a POC index as an acronym
for partitioning, ordering and covering. With such an index in place SQL Server won’t need to
explicitly sort the data, rather pull it preordered from the index.

EXAM TIP

In terms of logical query processing, a query’s result is established when you get to the
SELECT phase—after the FROM, WHERE, GROUP BY, and HAVING phases have been
processed. Because window functions are supposed to operate on the underlying query’s
result set, they are allowed only in the SELECT and ORDER BY clauses. If you need to refer
to the result of a window function in any clause that is evaluated before the SELECT clause,
you need to use a table expression. You invoke the window function in the SELECT clause
of the inner query, assigning the expression with a column alias. Then you can refer to that
column alias in the outer query in all clauses.

Suppose that you need to filter the result of the last query, returning only those rows
where the running total is less than 1,000.00. The following code achieves this by defining a
common table expression (CTE) based on the previous query and then doing the filtering in
the outer query:

WITH RunningTotals AS
(

www.EBooksWorld.ir

	 Skill 2.3: Group and pivot data by using queries 	 Chapter 2	 171

 SELECT custid, orderid, orderdate, val,
 SUM(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS runningtotal
 FROM Sales.OrderValues
)
SELECT *
FROM RunningTotals
WHERE runningtotal < 1000.00;

This query generates the following output (shown here in abbreviated form):

custid orderid orderdate val runningtotal
----------- ----------- ---------- ------- -------------
1 10643 2015-08-25 814.50 814.50
2 10308 2014-09-18 88.80 88.80
2 10625 2015-08-08 479.75 568.55
2 10759 2015-11-28 320.00 888.55
3 10365 2014-11-27 403.20 403.20
...

As another example for a window frame extent, if you wanted the frame to include only
the last three rows, you would use the form ROWS BETWEEN 2 PRECEDING AND CURRENT
ROW.

As for the RANGE window frame extent, according to standard SQL, it allows you to define
delimiters based on an offset from the current row’s ordering value, as opposed to an offset
in terms of a number of rows. However, T-SQL has a limited implementation of the RANGE
option, supporting only UNBOUNDED (PRECEDING and FOLLOWING) and CURRENT ROW as
delimiters. One subtle difference between ROWS and RANGE when using the same delimit-
ers is that the former doesn’t include peers (tied rows in terms of the ordering values) and the
latter does.

IMPORTANT  IMPLICIT RANGE

The ROWS option usually gets optimized much better than RANGE when using the same
delimiters. If you define a window with a window order clause but without a window frame
clause, the default is RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.
Therefore, unless you are after the special behavior you get from RANGE that includes
peers, make sure you explicitly use the ROWS option. Even if you do need RANGE, it might
be a good idea to mention it explicitly to let everyone know that your choice was inten-
tional and not an oversight. SQL Server 2016 eliminates this performance problem when
using columnstore technology and the batch mode Window Aggregate operator. For
details, see “What You Need to Know about the Batch Mode Window Aggregate Operator
in SQL Server 2016: Part 3” at http://sqlmag.com/sql-server/what-you-need-know-about-
batch-mode-window-aggregate-operator-sql-server-2016-part-3.

www.EBooksWorld.ir

http://www.sqlmag.com/sql-server/what-you-need-know-about-batch-mode-window-aggregate-operator-sql-server-2016-part-3
http://www.sqlmag.com/sql-server/what-you-need-know-about-batch-mode-window-aggregate-operator-sql-server-2016-part-3

	172	 Chapter 2	 Query data with advanced Transact-SQL components

Window Ranking Functions
With window ranking functions, you can rank rows within a partition based on specified
ordering. As with the other window functions, if you don’t indicate a window partition clause,
the entire underlying query result is considered one partition. The window order clause is
mandatory. Window ranking functions do not support a window frame clause. T-SQL supports
four window ranking functions: ROW_NUMBER, RANK, DENSE_RANK, and NTILE.

The following query demonstrates the use of these functions:

SELECT custid, orderid, val,
 ROW_NUMBER() OVER(ORDER BY val) AS rownum,
 RANK() OVER(ORDER BY val) AS rnk,
 DENSE_RANK() OVER(ORDER BY val) AS densernk,
 NTILE(100) OVER(ORDER BY val) AS ntile100
FROM Sales.OrderValues;

This query generates the following output (shown here in abbreviated form):

custid orderid val rownum rnk densernk ntile100
------- -------- ------ ------- ---- --------- ---------
12 10782 12.50 1 1 1 1
27 10807 18.40 2 2 2 1
66 10586 23.80 3 3 3 1
76 10767 28.00 4 4 4 1
54 10898 30.00 5 5 5 1
88 10900 33.75 6 6 6 1
48 10883 36.00 7 7 7 1
41 11051 36.00 8 7 7 1
71 10815 40.00 9 9 8 1
38 10674 45.00 10 10 9 2
53 11057 45.00 11 10 9 2
75 10271 48.00 12 12 10 2
...

IMPORTANT  ORDERING OF RESULT

The sample query doesn’t have a presentation ORDER BY clause, and therefore, there’s no
assurance that the rows will be presented in any particular order. The window order clause
only determines ordering for the window function’s computation. If you invoke a window
function in your query but don’t specify a presentation ORDER BY clause, there’s no guar-
antee that the rows will be presented in the same order as the window function’s ordering.
If you need such a guarantee, you need to add a presentation ORDER BY clause.

The ROW_NUMBER function computes unique incrementing integers starting with 1 within
the window partition based on the window ordering. Because the example query doesn’t
have a window partition clause, the function considers the entire query’s result set as one
partition; hence, the function assigns unique row numbers across the entire query’s result set.

Note that if the ordering isn’t unique, the ROW_NUMBER function is not deterministic. For
example, notice in the result that two rows have the same ordering value of 36.00, but the

www.EBooksWorld.ir

	 Skill 2.3: Group and pivot data by using queries 	 Chapter 2	 173

two rows were assigned with different row numbers. That’s because the function must gener-
ate unique integers in the partition. Currently, there’s no explicit tiebreaker, and therefore the
choice of which row gets the higher row number is arbitrary (optimization dependent). If you
need a deterministic computation (guaranteed repeatable results), you need to add a tie-
breaker. For example, you can add the primary key to make the ordering unique, as in ORDER
BY val, orderid.

RANK and DENSE_RANK differ from ROW_NUMBER in the sense that they assign the same
ranking value to all rows that share the same ordering value. The RANK function returns the
number of rows in the partition that have a lower ordering value than the current, plus 1. For
example, consider the rows in the sample query’s result that have an ordering value of 45.00.
Nine rows have ordering values that are lower than 45.00; hence, these rows got the rank 10
(9 + 1).

The DENSE_RANK function returns the number of distinct ordering values that are lower
than the current, plus 1. For example, the same rows that got the rank 10 got the dense
rank 9. That’s because these rows have an ordering value 45.00, and there are eight distinct
ordering values that are lower than 45.00. Because RANK considers the count of rows and
DENSE_RANK considers the count of distinct values, the former can have gaps between result
ranking values, and the latter cannot have gaps. Because the RANK and DENSE_RANK func-
tions compute the same ranking value to rows with the same ordering value, both functions
are deterministic even when the ordering isn’t unique. In fact, if you use unique ordering,
both functions return the same result as the ROW_NUMBER function. So usually these func-
tions are interesting to use when the ordering isn’t unique.

NOTE  FUNCTION DETERMINISM

The official T-SQL documentation has a section describing function determinism at https://
msdn.microsoft.com/en-us/library/ms178091.aspx. You will notice that this article considers
all window ranking functions as nondeterministic. That’s because it seems that SQL Server
doesn’t consider the partitioning and ordering values technically as the function’s inputs.
With all window ranking functions, two different rows can get two different rank values,
and therefore are considered nondeterministic. This means you can’t create indexes on
computed columns and indexed views when using such functions. The aspect of determin-
ism that I described is a bit different and not related to restrictions on indexing. In my use
of the concept of determinism I was referring to whether two rows with the same parti-
tioning and ordering values are guaranteed to get the same rank value or not.

With the NTILE function, you can arrange the rows within the partition in a requested
number of equally sized tiles, based on the specified ordering. You specify the desired
number of tiles as input to the function. In the sample query, you requested 100 tiles. There
are 830 rows in the result set, so the base tile size is 830 / 100 = 8 with a remainder of 30. Be-

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms178091.aspx
https://www.msdn.microsoft.com/en-us/library/ms178091.aspx

	174	 Chapter 2	 Query data with advanced Transact-SQL components

cause there is a remainder of 30, the first 30 tiles are assigned with an additional row. Namely,
tiles 1 through 30 will have nine rows each, and all remaining tiles (31 through 100) will have
eight rows each. Observe in the result of this sample query that the first nine rows (according
to val ordering) are assigned with tile number 1, then the next nine rows are assigned with
tile number 2, and so on. Like ROW_NUMBER, the NTILE function isn’t deterministic when
the ordering isn’t unique. If you need to guarantee determinism, you need to define unique
ordering.

EXAM TIP

As explained in the discussion of window aggregate functions, window functions are al-
lowed only in the SELECT and ORDER BY clauses of the query. If you need to refer to those
in other clauses—for example, in the WHERE clause—you need to use a table expression
such as a CTE. You invoke the window function in the inner query’s SELECT clause, and
assign the expression with a column alias. Then you refer to that column alias in the outer
query’s WHERE clause. That’s a common need with ranking calculations. I demonstrated
this earlier in Skill 2.2 when discussing table expressions.

Window Offset Functions
Window offset functions return an element from a single row that is in a given offset from the
current row in the window partition, or from the first or last row in the window frame. T-SQL
supports the following window offset functions: LAG, LEAD, FIRST_VALUE, and LAST_VALUE.
The LAG and LEAD functions rely on an offset with respect to the current row, and the FIRST_
VALUE and LAST_VALUE functions operate on the first or last row in the frame, respectively.

The LAG and LEAD functions support window partition and ordering clauses. They don’t
support a window frame clause. The LAG function returns an element from the row in the
current partition that is a requested number of rows before the current row (based on the
window ordering), with 1 assumed as the default offset. The LEAD function returns an ele-
ment from the row that is in the requested offset after the current row.

As an example, the following query uses the LAG and LEAD functions to return along with
each order the value of the previous customer’s order, in addition to the value from the next
customer’s order:

SELECT custid, orderid, orderdate, val,
 LAG(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid) AS prev_val,
 LEAD(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid) AS next_val
FROM Sales.OrderValues;

This query generates the following output (shown here in abbreviated form, with presen-
tation ordering not guaranteed):

www.EBooksWorld.ir

	 Skill 2.3: Group and pivot data by using queries 	 Chapter 2	 175

custid orderid orderdate val prev_val next_val
----------- ----------- ---------- ------- --------- ---------
1 10643 2015-08-25 814.50 NULL 878.00
1 10692 2015-10-03 878.00 814.50 330.00
1 10702 2015-10-13 330.00 878.00 845.80
1 10835 2016-01-15 845.80 330.00 471.20
1 10952 2016-03-16 471.20 845.80 933.50
1 11011 2016-04-09 933.50 471.20 NULL
2 10308 2014-09-18 88.80 NULL 479.75
2 10625 2015-08-08 479.75 88.80 320.00
2 10759 2015-11-28 320.00 479.75 514.40
2 10926 2016-03-04 514.40 320.00 NULL
...

Because an explicit offset wasn’t specified, both functions relied on the default offset of
1. If you want a different offset than 1, you specify it as the second argument, as in LAG(val,
3). Notice that if a row does not exist in the requested offset, the function returns a NULL by
default. If you want to return a different value in such a case, specify it as the third argument,
as in LAG(val, 3, 0).

The FIRST_VALUE and LAST_VALUE functions return a value expression from the first or last
rows in the window frame, respectively. Naturally, the functions support window partition,
order, and frame clauses. As an example, the following query returns along with each order
the values of the customer’s first and last orders:

SELECT custid, orderid, orderdate, val,
 FIRST_VALUE(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS first_val,
 LAST_VALUE(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid
 ROWS BETWEEN CURRENT ROW
 AND UNBOUNDED FOLLOWING) AS last_val
FROM Sales.OrderValues
ORDER BY custid, orderdate, orderid;

This query generates the following output (shown here in abbreviated form):

custid orderid orderdate val first_val last_val
------- -------- ---------- ------- ---------- ---------
1 10643 2015-08-25 814.50 814.50 933.50
1 10692 2015-10-03 878.00 814.50 933.50
1 10702 2015-10-13 330.00 814.50 933.50
1 10835 2016-01-15 845.80 814.50 933.50
1 10952 2016-03-16 471.20 814.50 933.50
1 11011 2016-04-09 933.50 814.50 933.50
2 10308 2014-09-18 88.80 88.80 514.40
2 10625 2015-08-08 479.75 88.80 514.40
2 10759 2015-11-28 320.00 88.80 514.40
2 10926 2016-03-04 514.40 88.80 514.40
...

www.EBooksWorld.ir

	176	 Chapter 2	 Query data with advanced Transact-SQL components

IMPORTANT  DEFAULT FRAME

As a reminder, when a window frame is applicable to a function but you do not specify an
explicit window frame clause, the default is RANGE BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW. For performance reasons, it is generally recommended to avoid the
RANGE option; to do so, you need to be explicit with the ROWS clause. Also, if you’re after
the first row in the partition, using the FIRST_VALUE function with the default frame at least
gives you the correct result. However, if you’re after the last row in the partition, using
the LAST_VALUE function with the default frame won’t give you what you want because
the last row in the default frame is the current row. So with the LAST_VALUE, you need to
be explicit about the window frame in order to get what you are after. And if you need
an element from the last row in the partition, the second delimiter in the frame should be
UNBOUNDED FOLLOWING.Note  Book on Window Functions

For more detailed information about window functions, their optimization, and practical
uses, refer to the book Microsoft SQL Server 2012 High-Performance T-SQL Using Window
Functions, by Itzik Ben-Gan (Microsoft Press, 2012).

MORE INFO  ON ADVANCED USES OF WINDOW FUNCTIONS

You can also find examples for advanced uses of window functions in a video recording of
the session “Run, Total, Run!” at https://www.youtube.com/watch?v=KM83eVqHHPA&featu
re=youtu.be.

MORE INFO  ON STATISTICAL WINDOW FUNCTIONS

For details and examples about statistical window functions known as window distribution
functions, see “Microsoft SQL Server 2012: How to Write T-SQL Window Functions, Part 2
Using offset and distribution functions” at http://sqlmag.com/sql-server-2012/microsoft-
sql-server-2012-how-write-t-sql-window-functions-part-2.

Skill 2.4: Query temporal data and non-relational data

This skill covers querying temporal data using system-versioned temporal tables. It also cov-
ers using T-SQL to query and output JSON data as well as to query and output XML data.

The sections about XML and JSON were written by Data Platform MVP, Dejan Sarka.

www.EBooksWorld.ir

https://www.youtube.com/watch?v=KM83eVqHHPA&feature=youtu.be
http://www.sqlmag.com/sql-server-2012/microsoft-sql-server-2012-how-write-t-sql-window-functions-part-2
http://www.sqlmag.com/sql-server-2012/microsoft-sql-server-2012-how-write-t-sql-window-functions-part-2
https://www.youtube.com/watch?v=KM83eVqHHPA&feature=youtu.be

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 177

This section covers how to:
■■ Query historic data by using temporal tables

■■ Query and output JSON data

■■ Query and output XML data

System-versioned temporal tables
Companies often need to be able to track changes to their data. That’s for purposes like
auditing, point in time analysis, comparing current with older states, slowly-changing dimen-
sions, restoring older state of rows due to an error, and others. Normally, you can only access
the current state of the data in your tables. If you need to be able to access older states, you
need a solution that tracks changes to the data. One of the solutions that companies used in
the past was to create a history table that keeps older states of modified rows and triggers
that automatically write history data to that table whenever the current table is modified. In
SQL Server 2016 and Azure SQL Database there’s no need for this anymore thanks to the sup-
port for a feature called system-versioned temporal tables. I’ll just use the term temporal tables
in short.

SQL Server supports marking a table as a temporal table using an option called SYSTEM_
VERSIONING and connecting it to a history table. When you modify data, you interact only
with the current table, and SQL Server behind the scenes writes historical states of modified
rows to the history table. Also when you read data, you query only the current table. You use
a clause called FOR SYSTEM_TIME that allows you to request earlier states of the data at a
previous point or period of time.

At the date of writing SQL Server currently supports only system-versioned temporal
tables, meaning that the system transaction time determines the effective time of the change.
The SQL Standard also supports what’s called application-time period tables where the appli-
cation defines the validity period of a row. With this feature, you can set a change to be effec-
tive in a future period. For example, suppose that there’s a planned price change of a product
during an upcoming holiday period. Then bi-temporal tables combine system versioning and
application versioning.

The following sections cover creating, modifying and querying temporal tables.

Creating tables
You can mark a table as a temporal table when you create it, or alter an existing table to be-
come a temporal table. Also, you can have SQL Server create the related history table for you,
or provide an already existing history table.

There are certain elements that are required in the table definition in order to mark it as a
temporal one:

■■ A primary key constraint.

www.EBooksWorld.ir

	178	 Chapter 2	 Query data with advanced Transact-SQL components

■■ Two DATETIME2 columns with your chosen precision to store the start and end of the
validity period of the row (stored in the UTC time zone). The period is expressed as a
closed-open interval, meaning that the start is inclusive and the end is exclusive.

■■ The start column needs to be marked with the clause GENERATED ALWAYS AS ROW
START.

■■ The end column needs to be marked with the clause GENERATED ALWAYS AS ROW
END.

■■ The designation of the pair of columns that store the row’s validity period with the
clause PERIOD FOR SYSTEM_TIME (<startcol>, <endcol>).

■■ The table option SYSTEM_VERSIONING needs to be set to ON.

■■ A linked history table, which SQL Server can create for you.

As an example, run the following code to create a table called dbo.Products in the TSQLV4
database as a temporal table (not to be confused with the already existing Production.Prod-
ucts table):

USE TSQLV4;

CREATE TABLE dbo.Products
(
 productid INT NOT NULL
 CONSTRAINT PK_dboProducts PRIMARY KEY(productid),
 productname NVARCHAR(40) NOT NULL,
 supplierid INT NOT NULL,
 categoryid INT NOT NULL,
 unitprice MONEY NOT NULL,
-- below are additions related to temporal table
 validfrom DATETIME2(3)
 GENERATED ALWAYS AS ROW START HIDDEN NOT NULL,
 validto DATETIME2(3)
 GENERATED ALWAYS AS ROW END HIDDEN NOT NULL,
 PERIOD FOR SYSTEM_TIME (validfrom, validto)
)
WITH (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.ProductsHistory));

Observe the use of the optional HIDDEN property for the period columns. With this prop-
erty, the period columns are not returned when using SELECT * rather only when referring to
them explicitly.

Regarding the history table, if you don’t specify one at all, SQL Server creates it for you
with the naming convention: MSSQL_TemporalHistoryFor_<object_id>. If you do specify a
history table as in the above example, SQL Server first checks if it already exists. If it does, SQL
Server by default applies a consistency check to verify that there are no overlapping periods.
You can opt not to perform the consistency check by specifying DATA_CONSISTENCY_CHECK
= OFF. If the specified history table doesn’t exist, SQL Server will create it for you using your
chosen name. SQL Server creates the history table with the following characteristics:

■■ No primary key.

■■ A clustered index on (<endcol>, <startcol>), with page compression.

www.EBooksWorld.ir

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 179

■■ The period columns are not marked with GENERATED ALWAYS AS ROW START/END or
HIDDEN.

■■ There’s no designation of period columns with the clause PERIOD FOR SYSTEM_TIME.

■■ The table is not marked with the option SYSTEM_VERSIONING.

You can see that a table is a temporal table in SQL Server Management Studio (SSMS).
In Object Explorer, expand the Tables folder under the TSQLV4 database, and then the dbo.
Products table, as shown in Figure 2-5.

FIGURE 2-5  Object Explorer

Observe the table with the clock icon to the left of the current table name and the fact
that it says System-Versioned in parentheses after the table name. Also, observe the con-
nected history table below the current table, and the fact that it says History in parentheses
after the history table name.

If you need to turn an existing table to become a temporal table, you do so by first alter-
ing the table and adding the period columns with the aforementioned designations, and then
altering the table to mark it as system-versioned and connecting it to a history table. You will
need to add default constraints to the period columns to set initial values in the existing rows.
The end column in the current table has to store the maximum possible value in the data type
with the select precision. Once the table is marked as a temporal table, you can drop the de-

www.EBooksWorld.ir

	180	 Chapter 2	 Query data with advanced Transact-SQL components

fault constraints if you wish since SQL Server will automatically set the period column values
moving forward. For example, if the dbo.Products wasn’t already a temporal table, you would
have turned it to become one by using the following code (don’t actually run this code since
our table is already temporal):

BEGIN TRAN;

ALTER TABLE dbo.Products ADD
 validfrom DATETIME2(3) GENERATED ALWAYS AS ROW START HIDDEN NOT NULL
 CONSTRAINT DFT_Products_validfrom DEFAULT('19000101'),
 validto DATETIME2(3) GENERATED ALWAYS AS ROW END HIDDEN NOT NULL
 CONSTRAINT DFT_Products_validto DEFAULT('99991231 23:59:59.999'),
 PERIOD FOR SYSTEM_TIME (validfrom, validto);

ALTER TABLE dbo.Products
 SET (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.ProductsHistory));

ALTER TABLE dbo.Products DROP CONSTRAINT DFT_Products_validfrom, DFT_Products_validto;

COMMIT TRAN;

SQL Server supports altering temporal tables. You alter the current table and SQL Server
takes care of applying the relevant changes to the history table for you. For instance, suppose
that you want to add a column called discontinued to the Products table. You alter the cur-
rent table by running the following code:

ALTER TABLE dbo.Products
 ADD discontinued BIT NOT NULL
 CONSTRAINT DFT_Products_discontinued DEFAULT(0);

SQL Server adds the same column to the history table with the specified default value 0 in
existing rows, if such were present, but does not add a default constraint in the history table.

Similarly, if you want to drop a column, you alter only the current table, and SQL Server
takes care of dropping it from the history table. You will want to start by dropping the default
constraint, and then the column. For example, run the following code to drop the column
discontinued from the Products table:

ALTER TABLE dbo.Products
 DROP CONSTRAINT DFT_Products_discontinued;

ALTER TABLE dbo.Products
 DROP COLUMN discontinued;

SQL Server also drops the column discontinued from the history table for you.

www.EBooksWorld.ir

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 181

Modifying data
When you modify data in a temporal table, you do so just like with a normal table. You sub-
mit your changes to the current table, and SQL Server takes care of writing history rows to the
history table when relevant. A couple of things to remember:

1.	 SQL Server records the change times in the UTC time zone.

2.	 If you apply multiple changes in a transaction, the transaction start time is considered
the effective change time for all changes in the transaction.

When you insert rows into the current table, SQL Server sets the start column to the trans-
action’s start time and the end time to the maximum possible point in time in the data type.
No rows need to be written to the history table. I ran the examples in this section on Novem-
ber 11th, 2016, so all of the period columns will have this date in the examples. Suppose that
at 14:07:26.263 (UTC) you run the following code:

INSERT INTO dbo.Products(productid, productname, supplierid, categoryid, unitprice)
 SELECT productid, productname, supplierid, categoryid, unitprice
 FROM Production.Products
 WHERE productid <= 10;

Query the current table after inserting the data:

SELECT productid, supplierid, unitprice, validfrom, validto
FROM dbo.Products;

Notice that in order to return the period columns, the query refers to them explicitly since
these columns are marked as hidden in our table. This query generates the following output
(of course, in this case the validfrom column will reflect the time I ran the insert):

productid supplierid unitprice validfrom validto
---------- ----------- ---------- ------------------------ ------------------------
1 1 18.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
2 1 19.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
3 1 10.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
4 2 22.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
5 2 21.35 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
6 3 25.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
7 3 30.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
8 3 40.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
9 4 97.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
10 4 31.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999

As mentioned, when you insert data, only the current table is affected. Query the history
table:

SELECT productid, unitprice, validfrom, validto
FROM dbo.ProductsHistory;

www.EBooksWorld.ir

	182	 Chapter 2	 Query data with advanced Transact-SQL components

This query generates an empty set:

productid supplierid unitprice validfrom validto
---------- ----------- ---------- ------------------------ ------------------------

When you delete rows, SQL Server moves the affected rows to the history table, and sets
the end column to the start time of the transaction that applied the change. Suppose that you
run the following code to delete the row for product 10 at 14:08:41.758:

DELETE FROM dbo.Products
WHERE productid = 10;

An update is handled as a delete plus insert. In other words, the current table will have the
new state of the modified rows, with the start column set to the change time, and the history
table will have the old state of the modified rows, with the end column set to the change
time. For example, suppose that you run the following code at 14:09:18.584:

UPDATE dbo.Products
 SET unitprice *= 1.05
WHERE supplierid = 3;

Products 6, 7 and 8 are affected.

Run the following code to query the current table after these changes:

SELECT productid, supplierid, unitprice, validfrom, validto
FROM dbo.Products;

This query generates the following output:

productid supplierid unitprice validfrom validto
---------- ----------- ---------- ------------------------ ------------------------
1 1 18.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
2 1 19.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
3 1 10.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
4 2 22.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
5 2 21.35 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
6 3 26.25 2016-11-01 14:09:18.584 9999-12-31 23:59:59.999
7 3 31.50 2016-11-01 14:09:18.584 9999-12-31 23:59:59.999
8 3 42.00 2016-11-01 14:09:18.584 9999-12-31 23:59:59.999
9 4 97.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999

Observe that product 10 isn’t present in the table, and products 6, 7 and 8, which are
supplied by supplier 3, show the new prices, and a validity period starting at 2016-11-01
14:09:18.584.

Query the history table:

SELECT productid, supplierid, unitprice, validfrom, validto
FROM dbo.ProductsHistory;

www.EBooksWorld.ir

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 183

This query generates the following output:

productid supplierid unitprice validfrom validto
---------- ----------- ---------- ------------------------ ------------------------
10 4 31.00 2016-11-01 14:07:26.263 2016-11-01 14:08:41.758
6 3 25.00 2016-11-01 14:07:26.263 2016-11-01 14:09:18.584
7 3 30.00 2016-11-01 14:07:26.263 2016-11-01 14:09:18.584
8 3 40.00 2016-11-01 14:07:26.263 2016-11-01 14:09:18.584

Observe that the old states of both deleted and updated rows are recorded in the history
table, and notice their validity periods start with the insert time and end with the delete/up-
date time.

As mentioned, when you modify data in a temporal table, the transaction start time is con-
sidered the effective time of the change. If you have multiple modifications within the same
user transaction, they will all have the same effective modification time. For example, consider
the following code, which modifies three different rows within a single transaction, with five
second intervals between the modifications:

BEGIN TRAN;

PRINT CAST(SYSUTCDATETIME() AS DATETIME2(3));

UPDATE dbo.Products
 SET unitprice *= 0.95
WHERE productid = 1;

WAITFOR DELAY '00:00:05.000';

UPDATE dbo.Products
 SET unitprice *= 0.90
WHERE productid = 2;

WAITFOR DELAY '00:00:05.000';

UPDATE dbo.Products
 SET unitprice *= 0.85
WHERE productid = 3;

COMMIT TRAN;

The PRINT statement reported the following time as the transaction start time when run-
ning this code on my system:

2016-11-01 14:10:43.470

Run the following code to query the modified rows from the current table:

SELECT productid, supplierid, unitprice, validfrom, validto
FROM dbo.Products
WHERE productid IN (1, 2, 3);

www.EBooksWorld.ir

	184	 Chapter 2	 Query data with advanced Transact-SQL components

This query generates the following output:

productid supplierid unitprice validfrom validto
---------- ----------- ---------- ------------------------ ------------------------
1 1 17.10 2016-11-01 14:10:43.470 9999-12-31 23:59:59.999
2 1 17.10 2016-11-01 14:10:43.470 9999-12-31 23:59:59.999
3 1 8.50 2016-11-01 14:10:43.470 9999-12-31 23:59:59.999

Notice that all three rows show the same validfrom value, which is the transaction start
time reported earlier. The older state of the modified rows was written to the history table
with the validto value set to the transaction start time.

If you update the same row multiple times in the same transaction, a curious thing hap-
pens. The original and last states of the row will naturally have nonzero length intervals as the
validity period; however, the in-between states will have degenerate intervals as the validity
period where the validfrom value will be equal to the validto value. That’s the result of using
the transaction start time as the effective time of all changes in the transaction. Since the
validity period is a closed-open interval, conceptually, it’s as if those states lasted zero time. If
you query the history table directly, you will see those rows that have a degenerate interval as
the validity period. If you query the temporal table using the FOR SYSTEM_TIME clause to ask
for a previous point or period of time, SQL Server will discard those rows.

As an example, run the following code to update the same row multiple times in the same
transaction:

BEGIN TRAN;

PRINT CAST(SYSUTCDATETIME() AS DATETIME2(3));

UPDATE dbo.Products
 SET unitprice = 1.0
WHERE productid = 9;

WAITFOR DELAY '00:00:05.000';

UPDATE dbo.Products
 SET unitprice = 2.0
WHERE productid = 9;

WAITFOR DELAY '00:00:05.000';

UPDATE dbo.Products
 SET unitprice = 3.0
WHERE productid = 9;

COMMIT TRAN;

The PRINT statement reported the following transaction start time when I ran this code on
my system:

2016-11-01 14:11:38.113

www.EBooksWorld.ir

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 185

Query the current table:

SELECT productid, unitprice, validfrom, validto
FROM dbo.Products
WHERE productid = 9;

This query generates the following output, showing the current state:

productid unitprice validfrom validto
---------- ---------- ------------------------ ------------------------
9 3.00 2016-11-01 14:11:38.113 9999-12-31 23:59:59.999

Query history table:

SELECT productid, unitprice, validfrom, validto
FROM dbo.ProductsHistory
WHERE productid = 9;

This query generates the following output, showing that two of the states have a degener-
ate interval as the validity period:

productid unitprice validfrom validto
---------- ---------- ------------------------ ------------------------
9 97.00 2016-11-01 14:07:26.263 2016-11-01 14:11:38.113
9 1.00 2016-11-01 14:11:38.113 2016-11-01 14:11:38.113
9 2.00 2016-11-01 14:11:38.113 2016-11-01 14:11:38.113

Querying data
You can directly query the current and history tables, and get current and historical states of
the rows. However, to simplify the code, SQL Server enables you to ask for the state of the
data at a previous point or period of time by querying only the current table and specifying a
clause called FOR SYSTEM_TIME. Using different subclauses you can specify either a point or a
period during which the rows were valid. Behind the scenes, SQL Server will retrieve the data
from both the current and history tables as needed, and return a single unified set of rows
as the result set of the query. You can also query views with the FOR SYSTEM_TIME clause,
provided that there’s at least one underlying table that is a temporal table. SQL Server will
propagate the clause to the underlying temporal tables.

If you want to run the code samples in this section and get the same results as the ones
I’ll provide, you need to populate the tables with the same data as in mine. Run the following
code to achieve this:

USE TSQLV4;

-- drop tables if exist
IF OBJECT_ID(N'dbo.Products', N'U') IS NOT NULL
BEGIN
 IF OBJECTPROPERTY(OBJECT_ID(N'dbo.Products', N'U'), N'TableTemporalType') = 2
 ALTER TABLE dbo.Products SET (SYSTEM_VERSIONING = OFF);
 DROP TABLE IF EXISTS dbo.ProductsHistory, dbo.Products;
END;
GO

www.EBooksWorld.ir

	186	 Chapter 2	 Query data with advanced Transact-SQL components

-- create and populate Products table
CREATE TABLE dbo.Products
(
 productid INT NOT NULL
 CONSTRAINT PK_dboProducts PRIMARY KEY(productid),
 productname NVARCHAR(40) NOT NULL,
 supplierid INT NOT NULL,
 categoryid INT NOT NULL,
 unitprice MONEY NOT NULL,
 validfrom DATETIME2(3) NOT NULL,
 validto DATETIME2(3) NOT NULL
);

INSERT INTO dbo.Products
 (productid, productname, supplierid, categoryid, unitprice, validfrom, validto)
VALUES
 (1, 'Product HHYDP', 1, 1, 17.10, '20161101 14:10:43.470', '99991231 23:59:59.999'),
 (2, 'Product RECZE', 1, 1, 17.10, '20161101 14:10:43.470', '99991231 23:59:59.999'),
 (3, 'Product IMEHJ', 1, 2, 8.50, '20161101 14:10:43.470', '99991231 23:59:59.999'),
 (4, 'Product KSBRM', 2, 2, 22.00, '20161101 14:07:26.263', '99991231 23:59:59.999'),
 (5, 'Product EPEIM', 2, 2, 21.35, '20161101 14:07:26.263', '99991231 23:59:59.999'),
 (6, 'Product VAIIV', 3, 2, 26.25, '20161101 14:09:18.584', '99991231 23:59:59.999'),
 (7, 'Product HMLNI', 3, 7, 31.50, '20161101 14:09:18.584', '99991231 23:59:59.999'),
 (8, 'Product WVJFP', 3, 2, 42.00, '20161101 14:09:18.584', '99991231 23:59:59.999'),
 (9, 'Product AOZBW', 4, 6, 3.00, '20161101 14:11:38.113', '99991231 23:59:59.999');

-- create and populate ProductsHistory table
CREATE TABLE dbo.ProductsHistory
(
 productid INT NOT NULL,
 productname NVARCHAR(40) NOT NULL,
 supplierid INT NOT NULL,
 categoryid INT NOT NULL,
 unitprice MONEY NOT NULL,
 validfrom DATETIME2(3) NOT NULL,
 validto DATETIME2(3) NOT NULL,
 INDEX ix_ProductsHistory CLUSTERED(validto, validfrom)
 WITH (DATA_COMPRESSION = PAGE)
);

INSERT INTO dbo.ProductsHistory
 (productid, productname, supplierid, categoryid, unitprice, validfrom, validto)
VALUES
 (1, 'Product HHYDP', 1, 1, 18.00, '20161101 14:07:26.263', '20161101 14:10:43.470'),
 (2, 'Product RECZE', 1, 1, 19.00, '20161101 14:07:26.263', '20161101 14:10:43.470'),
 (3, 'Product IMEHJ', 1, 2, 10.00, '20161101 14:07:26.263', '20161101 14:10:43.470'),
 (6, 'Product VAIIV', 3, 2, 25.00, '20161101 14:07:26.263', '20161101 14:09:18.584'),
 (7, 'Product HMLNI', 3, 7, 30.00, '20161101 14:07:26.263', '20161101 14:09:18.584'),
 (8, 'Product WVJFP', 3, 2, 40.00, '20161101 14:07:26.263', '20161101 14:09:18.584'),
 (9, 'Product AOZBW', 4, 6, 97.00, '20161101 14:07:26.263', '20161101 14:11:38.113'),
 (9, 'Product AOZBW', 4, 6, 1.00, '20161101 14:11:38.113', '20161101 14:11:38.113'),
 (9, 'Product AOZBW', 4, 6, 2.00, '20161101 14:11:38.113', '20161101 14:11:38.113'),
 (10, 'Product YHXGE', 4, 8, 31.00, '20161101 14:07:26.263', '20161101 14:08:41.758');

-- enable system versioning

www.EBooksWorld.ir

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 187

ALTER TABLE dbo.Products ADD PERIOD FOR SYSTEM_TIME (validfrom, validto);

ALTER TABLE dbo.Products ALTER COLUMN validfrom ADD HIDDEN;
ALTER TABLE dbo.Products ALTER COLUMN validto ADD HIDDEN;

ALTER TABLE dbo.Products
 SET (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.ProductsHistory));

Query the current table to see its contents:

SELECT productid, supplierid, unitprice, validfrom, validto
FROM dbo.Products;

This query generates the following output:

productid supplierid unitprice validfrom validto
---------- ----------- ---------- ------------------------ ------------------------
1 1 17.10 2016-11-01 14:10:43.470 9999-12-31 23:59:59.999
2 1 17.10 2016-11-01 14:10:43.470 9999-12-31 23:59:59.999
3 1 8.50 2016-11-01 14:10:43.470 9999-12-31 23:59:59.999
4 2 22.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
5 2 21.35 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
6 3 26.25 2016-11-01 14:09:18.584 9999-12-31 23:59:59.999
7 3 31.50 2016-11-01 14:09:18.584 9999-12-31 23:59:59.999
8 3 42.00 2016-11-01 14:09:18.584 9999-12-31 23:59:59.999
9 4 3.00 2016-11-01 14:11:38.113 9999-12-31 23:59:59.999

Query the history table to see its contents:

SELECT productid, supplierid, unitprice, validfrom, validto
FROM dbo.ProductsHistory;

This query generates the following output:

productid supplierid unitprice validfrom validto
---------- ----------- ---------- ------------------------ ------------------------
10 4 31.00 2016-11-01 14:07:26.263 2016-11-01 14:08:41.758
6 3 25.00 2016-11-01 14:07:26.263 2016-11-01 14:09:18.584
7 3 30.00 2016-11-01 14:07:26.263 2016-11-01 14:09:18.584
8 3 40.00 2016-11-01 14:07:26.263 2016-11-01 14:09:18.584
1 1 18.00 2016-11-01 14:07:26.263 2016-11-01 14:10:43.470
2 1 19.00 2016-11-01 14:07:26.263 2016-11-01 14:10:43.470
3 1 10.00 2016-11-01 14:07:26.263 2016-11-01 14:10:43.470
9 4 97.00 2016-11-01 14:07:26.263 2016-11-01 14:11:38.113
9 4 1.00 2016-11-01 14:11:38.113 2016-11-01 14:11:38.113
9 4 2.00 2016-11-01 14:11:38.113 2016-11-01 14:11:38.113

A commonly used subclause of the FOR SYSTEM_TIME clause is AS OF @dt. It returns the
rows that were valid during the input point in time @dt. Since the validity period is a closed-
open interval, you get the rows where @dt >= validfrom AND @dt < validto (@dt is on or
after validfrom and before validto). In other words, the validity period starts on or before @dt
and ends after @dt.

www.EBooksWorld.ir

	188	 Chapter 2	 Query data with advanced Transact-SQL components

Recall that I issued the first insertion into the Products table at 14:07:26.263. Run the fol-
lowing code to query the state of the data at a point in time prior to the first insertion:

SELECT productid, supplierid, unitprice
FROM dbo.Products FOR SYSTEM_TIME AS OF '20161101 14:06:00.000';

You get an empty set back.

Run the following code to query the state of the data after the first insertion and before
any other modification:

SELECT productid, supplierid, unitprice
FROM dbo.Products FOR SYSTEM_TIME AS OF '20161101 14:07:55.000';

This query generates the following output:

productid supplierid unitprice
---------- ----------- ----------
4 2 22.00
5 2 21.35
10 4 31.00
6 3 25.00
7 3 30.00
8 3 40.00
1 1 18.00
2 1 19.00
3 1 10.00
9 4 97.00

You can also query multiple instances of the table, each with a different point in time as in-
put to the AS OF clause, and this way compare different states of the data at different points
in time. For example, the following query identifies products that experienced an increase in
the unit price between the points 14:08:55 and 14:10:55, and returns the percent of increase in
the price:

SELECT T1.productid, T1.productname,
 CAST((T2.unitprice / T1.unitprice - 1.0) * 100.0 AS NUMERIC(10, 2)) AS pct
FROM dbo.Products FOR SYSTEM_TIME AS OF '20161101 14:08:55.000' AS T1
 INNER JOIN dbo.Products FOR SYSTEM_TIME AS OF '20161101 14:10:55.000' AS T2
 ON T1.productid = T2.productid
 AND T2.unitprice > T1.unitprice;

This query generates the following output:

productid productname pct
---------- -------------- -----
6 Product VAIIV 5.00
7 Product HMLNI 5.00
8 Product WVJFP 5.00

It would appear that three products experience a five percent increase in their price.

The second subclause of the FOR SYSTEM_TIME clause is FROM @start TO @end. It returns
all rows that have a validity period that intersects with the input period, exclusive of the two
input delimiters. You get the rows where validfrom < @end AND validto > @start. Namely

www.EBooksWorld.ir

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 189

the validity interval starts before the input interval ends and ends after the input interval
starts. As mentioned, the FOR SYSTEM_TIME clause discards degenerate intervals with all
subclauses.

As an example, the following query returns the versions of product 9 that were valid
during a period that ended after 2016-11-01 14:00:00.000 and started before 2016-11-01
14:11:38.113 (intersection excluding the edges):

SELECT productid, supplierid, unitprice, validfrom, validto
FROM dbo.Products
 FOR SYSTEM_TIME FROM '20161101 14:00:00.000' TO '20161101 14:11:38.113'
WHERE productid = 9;

This query generates the following output:

productid supplierid unitprice validfrom validto
---------- ----------- ---------- ------------------------ ------------------------
9 4 97.00 2016-11-01 14:07:26.263 2016-11-01 14:11:38.113

The output shows that there’s only one version that qualifies. The product row experienced
a change at 2016-11-01 14:11:38.113, but since both input delimiters are excluded, that version
isn’t returned. In order to include the input end time, use the subclause BETWEEN @start AND
@end instead. You get the rows where validfrom <= @end AND validto > @start. Namely,
the validity interval starts on or before the input interval ends and ends after the input interval
starts.

Here’s the same query as the last, only this time using BETWEEN instead of FROM:

SELECT productid, supplierid, unitprice, validfrom, validto
FROM dbo.Products
 FOR SYSTEM_TIME BETWEEN '20161101 14:00:00.000' AND '20161101 14:11:38.113'
WHERE productid = 9;

This time the query returns two versions of the row for product 9:

productid supplierid unitprice validfrom validto
---------- ----------- ---------- ------------------------- ------------------------
9 4 3.00 2016-11-01 14:11:38.113 9999-12-31 23:59:59.999
9 4 97.00 2016-11-01 14:07:26.263 2016-11-01 14:11:38.113

The CONTAINED IN(@start, @end) subclause returns rows with a validity period that is
entirely contained within the input period, inclusive of both input delimiters. You get the rows
where validfrom >= @start AND validto <= @end. Meaning, that the validity interval starts
on or after the input interval starts and ends on or before the input interval ends.

As an example, the following code returns the rows with a validity that is contained in the
period that starts with 2016-11-01 14:07:00.000 and ends with 2016-11-01 14:10:00.000:

SELECT productid, supplierid, unitprice, validfrom, validto
FROM dbo.Products
 FOR SYSTEM_TIME CONTAINED IN('20161101 14:07:00.000', '20161101 14:10:00.000');

www.EBooksWorld.ir

	190	 Chapter 2	 Query data with advanced Transact-SQL components

This query generates the following output:

productid supplierid unitprice validfrom validto
---------- ----------- ---------- ------------------------ ------------------------
10 4 31.00 2016-11-01 14:07:26.263 2016-11-01 14:08:41.758
6 3 25.00 2016-11-01 14:07:26.263 2016-11-01 14:09:18.584
7 3 30.00 2016-11-01 14:07:26.263 2016-11-01 14:09:18.584
8 3 40.00 2016-11-01 14:07:26.263 2016-11-01 14:09:18.584

What’s interesting is that you would expect the SQL Server optimizer to realize that since
all rows in the current table have a validity period that ends with the maximum value in the
type, there’s no need to internally access the current table at all. But that’s not the case. Ex-
amine the execution plan that SQL Server creates for this query as shown in Figure 2-6.

FIGURE 2-6  Query plan when CHECK constraint doesn’t exist

Notice that both tables are accessed.

What you can do to help the optimizer figure out it doesn’t need to access the current
table is to add a CHECK constraint that verifies that the validto column value is indeed the
maximum possible value in the type, like so:

ALTER TABLE dbo.Products
 ADD CONSTRAINT CHK_Products_validto
 CHECK (validto = '99991231 23:59:59.999');

Rerun the CONTAINED IN query after adding the constraint and examine the plan for this
query as shown in Figure 2-7.

FIGURE 2-7  Query plan when CHECK constraint exists

www.EBooksWorld.ir

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 191

This time based on a contradiction detection the optimizer realizes that it doesn’t need to
access the current table.

The ALL subclause simply returns all versions, from both the current and history table,
excluding degenerate intervals. As an example, the following query returns all versions of all
rows from the Products table:

SELECT productid, supplierid, unitprice, validfrom, validto
FROM dbo.Products FOR SYSTEM_TIME ALL
ORDER BY productid, validfrom, validto;

This query generates the following output:

productid supplierid unitprice validfrom validto
---------- ----------- ---------- ------------------------ ------------------------
1 1 18.00 2016-11-01 14:07:26.263 2016-11-01 14:10:43.470
1 1 17.10 2016-11-01 14:10:43.470 9999-12-31 23:59:59.999
2 1 19.00 2016-11-01 14:07:26.263 2016-11-01 14:10:43.470
2 1 17.10 2016-11-01 14:10:43.470 9999-12-31 23:59:59.999
3 1 10.00 2016-11-01 14:07:26.263 2016-11-01 14:10:43.470
3 1 8.50 2016-11-01 14:10:43.470 9999-12-31 23:59:59.999
4 2 22.00 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
5 2 21.35 2016-11-01 14:07:26.263 9999-12-31 23:59:59.999
6 3 25.00 2016-11-01 14:07:26.263 2016-11-01 14:09:18.584
6 3 26.25 2016-11-01 14:09:18.584 9999-12-31 23:59:59.999
7 3 30.00 2016-11-01 14:07:26.263 2016-11-01 14:09:18.584
7 3 31.50 2016-11-01 14:09:18.584 9999-12-31 23:59:59.999
8 3 40.00 2016-11-01 14:07:26.263 2016-11-01 14:09:18.584
8 3 42.00 2016-11-01 14:09:18.584 9999-12-31 23:59:59.999
9 4 97.00 2016-11-01 14:07:26.263 2016-11-01 14:11:38.113
9 4 3.00 2016-11-01 14:11:38.113 9999-12-31 23:59:59.999
10 4 31.00 2016-11-01 14:07:26.263 2016-11-01 14:08:41.758

Remember that the period columns store the time in the UTC time zone. If you want to
present the values in a desired target time zone, you can use the AT TIME ZONE function to
achieve this. There are a couple of things to think about, though. One is that you need one
conversion from a non-offset type to an offset type using <period_column> AT TIME ZONE
‘UTC’, and another conversion to switch the UTC value to the target time zone. Another is
that when the validto value is the maximum in the type, you don’t want to switch its offset,
but rather keep it as UTC. You can use a CASE expression to achieve this. As an example, the
following query returns all versions of rows from the Products table and presents the period
column values in the time zone Pacific Standard Time:

SELECT productid, unitprice,
 validfrom AT TIME ZONE 'UTC' AT TIME ZONE 'Pacific Standard Time' AS validfrom,
 CASE
 WHEN validto = '99991231 23:59:59.999'
 THEN validto AT TIME ZONE 'UTC'
 ELSE validto AT TIME ZONE 'UTC' AT TIME ZONE 'Pacific Standard Time'
 END AS validto
FROM dbo.Products FOR SYSTEM_TIME ALL
ORDER BY productid, validfrom, validto;

www.EBooksWorld.ir

	192	 Chapter 2	 Query data with advanced Transact-SQL components

This query generates the following output:

productid unitprice validfrom validto
---------- ---------- ------------------------------- -------------------------------
1 18.00 2016-11-01 07:07:26.263 -07:00 2016-11-01 07:10:43.470 -07:00
1 17.10 2016-11-01 07:10:43.470 -07:00 9999-12-31 23:59:59.999 +00:00
2 19.00 2016-11-01 07:07:26.263 -07:00 2016-11-01 07:10:43.470 -07:00
2 17.10 2016-11-01 07:10:43.470 -07:00 9999-12-31 23:59:59.999 +00:00
3 10.00 2016-11-01 07:07:26.263 -07:00 2016-11-01 07:10:43.470 -07:00
3 8.50 2016-11-01 07:10:43.470 -07:00 9999-12-31 23:59:59.999 +00:00
4 22.00 2016-11-01 07:07:26.263 -07:00 9999-12-31 23:59:59.999 +00:00
5 21.35 2016-11-01 07:07:26.263 -07:00 9999-12-31 23:59:59.999 +00:00
6 25.00 2016-11-01 07:07:26.263 -07:00 2016-11-01 07:09:18.584 -07:00
6 26.25 2016-11-01 07:09:18.584 -07:00 9999-12-31 23:59:59.999 +00:00
7 30.00 2016-11-01 07:07:26.263 -07:00 2016-11-01 07:09:18.584 -07:00
7 31.50 2016-11-01 07:09:18.584 -07:00 9999-12-31 23:59:59.999 +00:00
8 40.00 2016-11-01 07:07:26.263 -07:00 2016-11-01 07:09:18.584 -07:00
8 42.00 2016-11-01 07:09:18.584 -07:00 9999-12-31 23:59:59.999 +00:00
9 97.00 2016-11-01 07:07:26.263 -07:00 2016-11-01 07:11:38.113 -07:00
9 3.00 2016-11-01 07:11:38.113 -07:00 9999-12-31 23:59:59.999 +00:00
10 31.00 2016-11-01 07:07:26.263 -07:00 2016-11-01 07:08:41.758 -07:00

When you’re done, run the following code for cleanup:

IF OBJECT_ID(N'dbo.Products', N'U') IS NOT NULL
BEGIN
 IF OBJECTPROPERTY(OBJECT_ID(N'dbo.Products', N'U'), N'TableTemporalType') = 2
 ALTER TABLE dbo.Products SET (SYSTEM_VERSIONING = OFF);
 DROP TABLE IF EXISTS dbo.ProductsHistory, dbo.Products;
END;

Query and output XML data
XML is a widely used standard for data exchange, that calls Web services methods, configura-
tion files, and more. This section starts with a short introduction to XML. After that, you learn
how to create XML as a result of a query by using different flavors of the FOR XML clause. The
section finishes with information on shredding XML to relational tables by using the OPENX-
ML rowset function.

The following is an example of an XML document, created with the FOR XML clause of the
SELECT statement:

<CustomersOrders>
 <Customer custid="1" companyname="Customer NRZBB">
 <Order orderid="10692" orderdate="2007-10-03T00:00:00" />
 <Order orderid="10702" orderdate="2007-10-13T00:00:00" />
 <Order orderid="10952" orderdate="2008-03-16T00:00:00" />
 </Customer>
 <Customer custid="2" companyname="Customer MLTDN">
 <Order orderid="10308" orderdate="2006-09-18T00:00:00" />
 <Order orderid="10926" orderdate="2008-03-04T00:00:00" />
 </Customer>
</CustomersOrders>

www.EBooksWorld.ir

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 193

As you can see, XML uses tags to name parts of an XML document. These parts are called
elements. Every begin tag, such as <Customer>, must have a corresponding end tag, in this
case </Customer>. If an element has no nested elements, the notation can be abbreviated to
a single tag that denotes the beginning and end of an element, such as <Order … />. Ele-
ments can be nested, and tags cannot be interleaved; the end tag of a parent element must
be after the end tag of the last nested element. If every begin tag has a corresponding end
tag, and if tags are nested properly, the XML document is well-formed.

XML documents are ordered. This does not mean they are ordered by any specific element
value; it means that the position of elements matters. For example, the element with orderid
equal to 10702 in the preceding example is the second Order element under the first Cus-
tomer element.

XML is case-sensitive Unicode text. You should never forget that XML is case sensitive. In
addition, some characters in XML, such as <, which introduces a tag, are processed as markup
and have special meanings. If you want to include these characters in the values of your XML
document, they must be escaped using an ampersand (&), followed by a special code, fol-
lowed by a semicolon (;), as shown in Table 2-1.

TABLE 2-1  Characters with special values in XML documents

Character Replacement text

& (ampersand) &

“ (quotation mark) "

< (less than) <

> (greater than) >

‘ (apostrophe) '

Alternatively, you can use the special XML CDATA section written as <![CDATA[...]]>. You
can replace the three dots with any character string that does not include the string literal
“]]>”; this will prevent special characters in the string from being parsed as XML markup.

XML can have a prolog at the beginning of the document, denoting the XML version and
encoding of the document, such as <?xml version=”1.0” encoding=”ISO-8859-15”?>.

In addition to XML documents, you can also have XML fragments. The only difference
between a document and a fragment is that a document has a single root node, like <Custo-
mersOrders> in the preceding example. If you delete this node, you get an XML fragment.

As you can see from the example, elements can have attributes. Attributes have their own
names, and their values are enclosed in quotes. This is attribute-centric presentation. How-
ever, you can write XML differently; every attribute can be a nested element of the original
element. This is element-centric presentation.

Element names do not have to be unique, because they can be referred to by their posi-
tion; however, to distinguish between elements from different business areas, different de-
partments, or different companies, you can add namespaces. You declare namespaces used in

www.EBooksWorld.ir

	194	 Chapter 2	 Query data with advanced Transact-SQL components

the root element of an XML document. You can also use an alias for every single namespace.
Then you prefix element names with a namespace alias.

XML is very flexible. There are very few rules for creating a well-formed XML document.
In an XML document, the actual data is mixed with metadata, such as element and attribute
names. Because XML is text, it is very convenient for exchanging data between different
systems and even between different platforms. However, when exchanging data, it becomes
important to have metadata fixed. If you had to import a document with customers’ orders,
as in the preceding examples, every couple of minutes, you’d definitely want to automate the
import process. Imagine how hard you’d have to work if the metadata changed with every
new import.

Many different standards have evolved to describe the metadata of XML documents.
Currently, the most widely used metadata description is with XML Schema Description (XSD)
documents. XSD documents are XML documents that describe the metadata of other XML
documents. The schema of an XSD document is predefined. With the XSD standard, you can
specify element names, data types, and number of occurrences of an element, constraints,
and more.

MORE INFO  ON XML SCHEMAS

For details about XML schemas, see the MSDN article “Understanding XML Schema” at
https://msdn.microsoft.com/en-us/library/aa468557.aspx.

When you check whether an XML document complies with a schema, you validate the
document. A document with a predefined schema is said to be a typed XML document.

Producing and using XML in queries
With the T-SQL SELECT statement, you can create all of the XML outputs that are shown in
this section. This section explains how you can convert a query result set to XML by using the
FOR XML clause of the SELECT statement. Here you will learn about the most useful options
and directives of this clause.

MORE INFO   ON THE FOR XML CLAUSE

For additional information about the FOR XML clause, please refer to the Books Online
for SQL Server 2016 article “FOR XML (SQL Server)” at https://msdn.microsoft.com/en-us/
library/ms178107.aspx.

The first option for creating XML from a query result is the RAW option. The XML created
is quite close to the relational (tabular) presentation of the data. In RAW mode, every row
from the returned result set converts to a single element named row, and columns translate
to the attributes of this element. Here is an example of a query that creates the RAW version
of the FOR XML output:

SELECT Customer.custid, Customer.companyname,

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/aa468557.aspx
https://www.msdn.microsoft.com/en-us/library/ms178107.aspx
https://www.msdn.microsoft.com/en-us/library/ms178107.aspx

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 195

 [Order].orderid, [Order].orderdate
FROM Sales.Customers AS Customer
 INNER JOIN Sales.Orders AS [Order]
 ON Customer.custid = [Order].custid
WHERE Customer.custid <= 2
 AND [Order].orderid %2 = 0
ORDER BY Customer.custid, [Order].orderid
FOR XML RAW;

This query generates the following output:

<row custid="1" companyname="Customer NRZBB" orderid="10692" orderdate="2015-10-03" />
<row custid="1" companyname="Customer NRZBB" orderid="10702" orderdate="2015-10-13" />
<row custid="1" companyname="Customer NRZBB" orderid="10952" orderdate="2016-03-16" />
<row custid="2" companyname="Customer MLTDN" orderid="10308" orderdate="2014-09-18" />
<row custid="2" companyname="Customer MLTDN" orderid="10926" orderdate="2016-03-04" />

You can notice that the result is actually an XML fragment and not an XML document,
because the root node is missing. You can enhance the RAW mode by renaming the row ele-
ment, adding a root element, including namespaces, and making the XML returned element-
centric.

The FOR XML AUTO option gives you nice XML documents with nested elements, and it
is not complicated to use. In AUTO and RAW modes, you can use the keyword ELEMENTS to
produce element-centric XML. The WITH NAMESPACES clause, preceding the SELECT part of
the query, defines namespaces and aliases in the returned XML. Here is an example of a query
with the FOR XML AUTO option used, element-centric, with a namespace defined:

WITH XMLNAMESPACES('ER70761-CustomersOrders' AS co)
SELECT [co:Customer].custid AS [co:custid],
 [co:Customer].companyname AS [co:companyname],
 [co:Order].orderid AS [co:orderid],
 [co:Order].orderdate AS [co:orderdate]
FROM Sales.Customers AS [co:Customer]
 INNER JOIN Sales.Orders AS [co:Order]
 ON [co:Customer].custid = [co:Order].custid
WHERE [co:Customer].custid <= 2
 AND [co:Order].orderid %2 = 0
ORDER BY [co:Customer].custid, [co:Order].orderid
FOR XML AUTO, ELEMENTS, ROOT('CustomersOrders');

The T-SQL table and column aliases in the query are used to produce element names, pre-
fixed with a namespace. A colon is used in XML to separate the namespace from the element
name. The WHERE clause of the query limits the output to two customers, with only every
second order for each customer retrieved. The output is quite a nice element-centric XML
document. This query produces the following result (shown here in abbreviated form):

<CustomersOrders xmlns:co="ER70761-CustomersOrders">
 <co:Customer>
 <co:custid>1</co:custid>
 <co:companyname>Customer NRZBB</co:companyname>
 <co:Order>
 <co:orderid>10692</co:orderid>

www.EBooksWorld.ir

	196	 Chapter 2	 Query data with advanced Transact-SQL components

 <co:orderdate>2015-10-03</co:orderdate>
 </co:Order>
…
 <co:custid>2</co:custid>
 <co:companyname>Customer MLTDN</co:companyname>
 <co:Order>
…
 </co:Order>
 </co:Customer>
</CustomersOrders>

Note that a proper ORDER BY clause is very important. With the SELECT statement, you
are actually formatting the returned XML. Without the ORDER BY clause, the order of rows
returned is unpredictable, and you can get a weird XML document with an element repeated
multiple times with just part of nested elements every time.

It is not only the ORDER BY clause that is important; the order of columns in the SELECT
clause also influences the XML returned. SQL Server uses column order to determine the
nesting of elements. The order of the columns should follow one-to-many relationships. A
customer can have many orders; therefore, you should have customer columns before order
columns in your query.

You might be vexed by the fact that you have to take care of column order; in a relation,
the order of columns and rows is not important. Nevertheless, you have to realize that the
result of your query is not a relation; it is text in XML format, and parts of your query are used
for formatting the text.

There are additional more detailed options for formatting the returned XML document by
using the FOR XML PATH option. In addition, besides the XML document, you can also return
the XSD schema of the document with the XMLSCHEMA directive.

Besides generating XML from a query, you can also do the opposite: convert XML to
tables. Converting XML to relational tables is known as shredding XML. You shred XML with
the OPENXML rowset function.

The OPENXML function provides a rowset over in-memory XML documents by using the
Document Object Model (DOM) presentation. Before parsing the DOM, you need to prepare
it. To prepare the DOM presentation of XML, you need to call the system stored procedure
sys.sp_xml_preparedocument. After you shred the document, you must remove the DOM
presentation by using the system procedure sys.sp_xml_removedocument.

The OPENXML function uses the following parameters:

■■ An XML DOM document handle, returned by sp_xml_preparedocument

■■ An XPath expression to find the nodes you want to map to rows of a rowset returned

■■ A description of the rowset returned

■■ Mapping between XML nodes and rowset columns

The document handle is an integer. This is the simplest parameter. The XPath expression is
specified as rowpattern, which defines how XML nodes translate to rows. The path to a node
is used as a pattern; nodes below the selected node define rows of the returned rowset.

www.EBooksWorld.ir

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 197

You can map XML elements or attributes to rows and columns by using the WITH clause
of the OPENXML function. In this clause, you can specify an existing table, which is used as a
template for the rowset returned, or you can define a table with syntax similar to the CREATE
TABLE statement syntax.

The OPENXML function accepts an optional third parameter, called flags, which allows you
to specify the mapping used between the XML data and the relational rowset. The value 1
means attribute-centric mapping, and 2 means element-centric. Flag value 8 can be com-
bined with values 1 and 2 with a bitwise OR (|) operator to get both attribute and element-
centric mapping. The XML used for the following OPENXML examples uses attributes and
elements; for example, custid is the attribute and companyname is the element. The intention
of this slightly overcomplicated XML is to show you the difference between attribute-centric
and element-centric mappings. The following code shreds an XML by using 11 for the flag
parameter (8 | 1 | 2).

DECLARE @DocHandle AS INT;
DECLARE @XmlDocument AS NVARCHAR(1000);
SET @XmlDocument = N'
<CustomersOrders>
 <Customer custid="1">
 <companyname>Customer NRZBB</companyname>
 <Order orderid="10692">
 <orderdate>2015-10-03T00:00:00</orderdate>
 </Order>
 <Order orderid="10702">
 <orderdate>2015-10-13T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2016-03-16T00:00:00</orderdate>
 </Order>
 </Customer>
 <Customer custid="2">
 <companyname>Customer MLTDN</companyname>
 <Order orderid="10308">
 <orderdate>2014-09-18T00:00:00</orderdate>
 </Order>
 <Order orderid="10926">
 <orderdate>2016-03-04T00:00:00</orderdate>
 </Order>
 </Customer>
</CustomersOrders>';
-- Create an internal representation
EXEC sys.sp_xml_preparedocument @DocHandle OUTPUT, @XmlDocument;
-- Attribute- and element-centric mapping
-- Combining flag 8 with flags 1 and 2
SELECT *
FROM OPENXML (@DocHandle, '/CustomersOrders/Customer', 11)
 WITH (custid INT,
 companyname NVARCHAR(40));
-- Remove the DOM
EXEC sys.sp_xml_removedocument @DocHandle;

www.EBooksWorld.ir

	198	 Chapter 2	 Query data with advanced Transact-SQL components

This query produces the following result:

custid companyname
----------- --
1 Customer NRZBB
2 Customer MLTDN

MORE INFO  ON OPENXML

For more details about the OPENXML function, please refer to the “OPENXML (Transact-
SQL)” topic at https://msdn.microsoft.com/en-us/library/ms186918.aspx.

Querying XML data with XQuery
XQuery is a standard language for browsing XML instances and returning XML output. It is
much richer than XPath expressions—an older standard, which you can use for simple navi-
gation only. With XQuery, you can navigate as with XPath; however, you can also loop over
nodes, shape the returned XML instance, and much more.

XQuery, like XML, is case sensitive. For example, if you write Data() instead of data(), you
will get an error stating that there is no Data() function. XQuery returns sequences. Sequences
can include atomic values or complex values (XML nodes). Any node, such as an element, at-
tribute, text, processing instruction, comment, or document, can be included in the sequence.
Of course, you can format the sequences to get well-formed XML.

Every identifier in XQuery is a qualified name, or a QName. A QName consists of a local
name and, optionally, a namespace prefix. You define namespaces in the prolog, which ap-
pears at the beginning of your XQuery expression. You separate the prolog from the query
body with a semicolon. In addition, in T-SQL, you can declare namespaces used in XQuery
expressions in advance in the WITH clause of the SELECT statement. If your XML uses a single
namespace, you can also declare it as the default namespace for all elements in the XQuery
prolog.

XQuery uses about 50 predefined data types. Do not worry too much about XQuery types;
you’ll never use most of them. This paragraph lists only the most important ones, without
going into details about them. XQuery data types are divided into node types and atomic
types. The node types include attribute, comment, element, namespace, text, processing-
instruction, and document-node. The most important atomic types you might use in queries
are xs:boolean, xs:string, xs:QName, xs:date, xs:time, xs:datetime, xs:float, xs:double, xs:decimal
and xs:integer. Just as there are many data types, there are dozens of functions in XQuery as
well.

A basic way to navigate in the XML document using XQuery is with XPath expressions.
With XQuery, you can specify a path absolutely or relatively from the current node. XQuery
takes care of the current position in the document; it means you can refer to a path relatively,
starting from current node, where you navigated through a previous path expression. Every

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms186918.aspx

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 199

path consists of a sequence of steps, listed from left to right. A complete path might take the
following form: Node-name/child::element-name[@attribute-name=value].

The real power of XQuery lies in the so-called FLWOR expressions. FLWOR is the acronym
for for, let, where, order by, and return. A FLWOR expression is actually a for each loop. You
can use it to iterate through a sequence returned by an XPath expression. Although you typi-
cally iterate through a sequence of nodes, you can use FLWOR expressions to iterate through
any sequence. You can limit the nodes to be processed with a predicate, sort the nodes, and
format the returned XML. The parts of a FLWOR statement are:

■■ For  With a for clause, you bind iterator variables to input sequences. Input sequenc-
es are either sequences of nodes or sequences of atomic values. You create atomic
value sequences using literals or functions.

■■ Let  With the optional let clause, you assign a value to a variable for a specific itera-
tion. The expression used for an assignment can return a sequence of nodes or a
sequence of atomic values.

■■ Where  With the optional where clause, you filter the iteration.

■■ Order by  Using the order by clause, you can control the order in which the elements
of the input sequence are processed. You control the order based on atomic values.

■■ Return  The return clause is evaluated once per iteration, and the results are re-
turned to the client in the iteration order. With this clause, you format the resulting
XML.

Here is an example of a SELECT statement with a complex XQuery expression that uses all
of the five FLWOR expressions:

DECLARE @x AS XML = N'
<CustomersOrders>
 <Customer custid="1">
 <!-- Comment 111 -->
 <companyname>Customer NRZBB</companyname>
 <Order orderid="10692">
 <orderdate>2015-10-03T00:00:00</orderdate>
 </Order>
 <Order orderid="10702">
 <orderdate>2015-10-13T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2016-03-16T00:00:00</orderdate>
 </Order>
 </Customer>
 <Customer custid="2">
 <!-- Comment 222 -->
 <companyname>Customer MLTDN</companyname>
 <Order orderid="10308">
 <orderdate>2014-09-18T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2016-03-04T00:00:00</orderdate>
 </Order>

www.EBooksWorld.ir

	200	 Chapter 2	 Query data with advanced Transact-SQL components

 </Customer>
</CustomersOrders>';
SELECT @x.query('for $i in CustomersOrders/Customer/Order
 let $j := $i/orderdate
 where $i/@orderid < 10900
 order by ($j)[1]
 return
 <Order-orderid-element>
 <orderid>{data($i/@orderid)}</orderid>
 {$j}
 </Order-orderid-element>')
 AS [Filtered, sorted and reformatted orders with let clause];

This query produces the following XML fragment:

<Order-orderid-element>
 <orderid>10308</orderid>
 <orderdate>2014-09-18T00:00:00</orderdate>
</Order-orderid-element>
<Order-orderid-element>
 <orderid>10692</orderid>
 <orderdate>2015-10-03T00:00:00</orderdate>
</Order-orderid-element>
<Order-orderid-element>
 <orderid>10702</orderid>
 <orderdate>2015-10-13T00:00:00</orderdate>
</Order-orderid-element>

MORE INFO  ON XQUERY

For more details on XQuery, please refer to the MSDN topic “XQuery Language Reference
(SQL Server)” at https://msdn.microsoft.com/en-us/library/ms189075.aspx.

The XML data type
In SQL Server, you can store XML as simple text. However, plain text representation means
having no knowledge of the structure built into an XML document. You can decompose the
text, store it in multiple relational tables, and use relational technologies to manipulate the
data. Relational structures are quite static and not so easy to change. Think of dynamic or
volatile XML structures. Storing XML data in a native XML data type solves these problems,
enabling functionality attached to the type that can accommodate support for a wide variety
of XML technologies. SQL Server supports a native XML data type.

In the XQuery introduction in this chapter, you saw the XML data type. The XQuery expres-
sion was a parameter for the query() method of this type. The XML data type supports five
methods that accept an XQuery expression as a parameter. Those methods enable querying
(the query() method), retrieving atomic values (the value() method), existence checks (the
exist() method), modifying sections within the XML data (the modify() method) as opposed
to overwriting the whole thing, and shredding XML data into multiple rows in a result set (the
nodes() method).

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms189075.aspx

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 201

The value() method of the XML data type returns a scalar value, so it can be specified
anywhere where scalar values are allowed, for example in the SELECT list of a query. Note that
the value() method accepts an XQuery expression as the first input parameter. The second
parameter is the SQL Server data type returned. The value() method must return a scalar
value; therefore, you have to specify the position of the element in the sequence you are
browsing, even if you know that there is only one.

You can use the exist() method to test if a specific node exists in an XML instance. Typical
usage of this clause is in the WHERE clause of T-SQL queries. The exist() method returns a
bit, a flag that represents true or false. It can return the following:

■■ 1, representing true, if the XQuery expression in a query returns a nonempty result.
That means that the node searched for exists in the XML instance.

■■ 0, representing false, if the XQuery expression returns an empty result.

■■ NULL, if the XML instance is NULL.

The query() method, as the name implies, is used to query XML data. You already know
this method from an earlier example. It returns an instance of an untyped XML value.

The XML data type is a large object type. The amount of data stored in a column of this
type can be very large. It would not be very practical to replace the complete value when
all you need is just to change a small portion of it, for example, a scalar value of some
subelement. The SQL Server XML data type provides you with the modify() method, simi-
lar in concept to the WRITE method that can be used in a T-SQL UPDATE statement for
VARCHAR(MAX) and the other MAX types. You invoke the modify() method in an UPDATE
T-SQL statement.

The W3C standard doesn’t support data modification with XQuery. However, SQL Server
provides its own language extensions to support data modification with XQuery. SQL Server
XQuery supports three data modification language (DML) keywords for data modification:
insert, delete, and replace value of.

The nodes() method is useful when you want to shred an XML value into relational data.
Its purpose is therefore the same as the purpose of the OPENXML rowset function introduced
earlier. However, using the nodes() method is usually much faster than preparing the DOM
with a call to sp_xml_preparedocument, executing a SELECT ... FROM OPENXML statement,
and calling sp_xml_removedocument. The nodes() method prepares DOM internally, during
the execution of the SELECT statement. The OPENXML approach could be faster if you pre-
pared the DOM once and then shredded it multiple times in the same batch.

The result of the nodes() method is a result set that contains logical copies of the origi-
nal XML instances. In those logical copies, the context node of every row instance is set to
one of the nodes identified by the XQuery expression, meaning that you get a row for every
single node from the starting point defined by the XQuery expression. The nodes() method
returns copies of the XML values, so you have to use additional methods to extract the scalar
values out of them. The nodes() method has to be invoked for every row in the table. With
the T-SQL APPLY operator, you can invoke a right table expression for every row of a left table
expression in the FROM part.

www.EBooksWorld.ir

	202	 Chapter 2	 Query data with advanced Transact-SQL components

You will learn how to use an XML data type inside your database through an example.
This example shows how you can make a relational database schema dynamic. The example
extends the Products table from the TSQLV4 database.

Suppose that you need to store some specific attributes only for beverages and other
attributes only for condiments. For example, you need to store the percentage of recom-
mended daily allowance (RDA) of vitamins only for beverages, and a short description only for
condiments to indicate the condiment’s general character (such as sweet, spicy, or salty). You
could add an XML data type column to the Production.Products table; for this example, call it
additionalattributes. Because the other product categories have no additional attributes, this
column has to be nullable. The following code alters the Production.Products table to add
this column:

ALTER TABLE Production.Products
 ADD additionalattributes XML NULL;

Before inserting data in the new column, you might want to constrain the values of this
column. You should use a typed XML, which is an XML validated against a schema. With an
XML schema, you constrain the possible nodes, the data type of those nodes, and more. In
SQL Server, you can validate XML data against an XML schema collection. This is exactly what
you need for a dynamic schema; if you could validate XML data against a single schema only,
you could not use an XML data type for a dynamic schema solution, because XML instances
would be limited to a single schema. Validation against a collection of schemas enables
support of different schemas for beverages and condiments. If you wanted to validate XML
values only against a single schema, you would define only a single schema in the collection.

You create the schema collection by using the CREATE XML SCHEMA COLLECTION T-SQL
statement. You have to supply the XML schema, an XSD document, as input. Creating the
schema is a task that should not be taken lightly. If you make an error in the schema, some
invalid data might be accepted and some valid data might be rejected.

The easiest way to create XML schemas is to create relational tables first, and then use
the XMLSCHEMA option of the FOR XML clause. Store the resulting XML value (the schema)
in a variable, and provide the variable as input to the CREATE XML SCHEMA COLLECTION
statement. The following code creates two auxiliary empty tables for beverages and condi-
ments, and then uses a SELECT statement with the FOR XML clause to create an XML schema
from those tables. Then it stores the schemas in a variable, and creates a schema collection
from that variable. Finally, after the schema collection is created, the code drops the auxiliary
tables.

-- Auxiliary tables
CREATE TABLE dbo.Beverages(percentvitaminsRDA INT);
CREATE TABLE dbo.Condiments(shortdescription NVARCHAR(50));
GO
-- Store the schemas in a variable and create the collection
DECLARE @mySchema AS NVARCHAR(MAX) = N'';
SET @mySchema +=
 (SELECT *
 FROM Beverages

www.EBooksWorld.ir

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 203

 FOR XML AUTO, ELEMENTS, XMLSCHEMA('Beverages'));
SET @mySchema +=
 (SELECT *
 FROM Condiments
 FOR XML AUTO, ELEMENTS, XMLSCHEMA('Condiments'));
SELECT CAST(@mySchema AS XML);
CREATE XML SCHEMA COLLECTION dbo.ProductsAdditionalAttributes AS @mySchema;
GO
-- Drop auxiliary tables
DROP TABLE dbo.Beverages, dbo.Condiments;
GO

The next step is to alter the XML column from a well-formed state to a schema-validated
one:

ALTER TABLE Production.Products
 ALTER COLUMN additionalattributes
 XML(dbo.ProductsAdditionalAttributes);

Before using the new data type, you have to take care of one more issue. How do you
prevent binding the wrong schema to a product of a specific category? For example, how do
you prevent binding a condiments schema to a beverage? You could solve this issue with a
trigger; however, having a declarative constraint—a check constraint—is preferable. This is
why the code added namespaces to the schemas. You need to check whether the namespace
is the same as the product category name. You cannot use XML data type methods inside
constraints. You have to create two additional functions: one retrieves the XML namespace of
the additionalattributes XML column, and the other retrieves the category name of a product.
In the check constraint, you can check whether the return values of both functions are equal.
Here is the code that creates both functions and adds a check constraint to the Production.
Products table:

-- Function to retrieve the namespace
CREATE FUNCTION dbo.GetNamespace(@chkcol AS XML)
 RETURNS NVARCHAR(15)
AS
BEGIN
 RETURN @chkcol.value('namespace-uri((/*)[1])','NVARCHAR(15)');
END;
GO
-- Function to retrieve the category name
CREATE FUNCTION dbo.GetCategoryName(@catid AS INT)
 RETURNS NVARCHAR(15)
AS
BEGIN
 RETURN
 (SELECT categoryname
 FROM Production.Categories
 WHERE categoryid = @catid);
END;
GO
-- Add the constraint
ALTER TABLE Production.Products ADD CONSTRAINT ck_Namespace

www.EBooksWorld.ir

	204	 Chapter 2	 Query data with advanced Transact-SQL components

 CHECK (dbo.GetNamespace(additionalattributes) =
 dbo.GetCategoryName(categoryid));
GO

The infrastructure is prepared. Run the following code to try and insert some valid XML
data into your new column:

-- Beverage
UPDATE Production.Products
 SET additionalattributes = N'
<Beverages xmlns="Beverages">
 <percentvitaminsRDA>27</percentvitaminsRDA>
</Beverages>'
WHERE productid = 1;
-- Condiment
UPDATE Production.Products
 SET additionalattributes = N'
<Condiments xmlns="Condiments">
 <shortdescription>very sweet</shortdescription>
</Condiments>'
WHERE productid = 3;

To test whether the schema validation and check constraint work, you should try to insert
some invalid data as well:

-- String instead of int
UPDATE Production.Products
 SET additionalattributes = N'
<Beverages xmlns="Beverages">
 <percentvitaminsRDA>twenty seven</percentvitaminsRDA>
</Beverages>'
WHERE productid = 1;
-- Wrong namespace
UPDATE Production.Products
 SET additionalattributes = N'
<Condiments xmlns="Condiments">
 <shortdescription>very sweet</shortdescription>
</Condiments>'
WHERE productid = 2;
-- Wrong element
UPDATE Production.Products
 SET additionalattributes = N'
<Condiments xmlns="Condiments">
 <unknownelement>very sweet</unknownelement>
</Condiments>'
WHERE productid = 3;

You should get errors for all three UPDATE statements. You can check the data with the
SELECT statement.

When you are done, run the following code for cleanup:

ALTER TABLE Production.Products
 DROP CONSTRAINT ck_Namespace;
ALTER TABLE Production.Products
 DROP COLUMN additionalattributes;

www.EBooksWorld.ir

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 205

DROP XML SCHEMA COLLECTION dbo.ProductsAdditionalAttributes;
DROP FUNCTION dbo.GetNamespace;
DROP FUNCTION dbo.GetCategoryName;

MORE INFO  ON THE XML DATA TYPE

For more information on the XML data type, please refer to the MSDN topic “XML Data Type
and Columns (SQL Server)” at https://msdn.microsoft.com/en-us/library/hh403385.aspx.

The XML data type is actually a large object type. There can be up to 2 gigabytes (GB) of
data in every single column value. Scanning through the XML data sequentially is not a very
efficient way of retrieving a simple scalar value. With relational data, you can create an index
on a filtered column, allowing an index seek operation instead of a table scan. Similarly, you
can index XML columns with specialized XML indexes. The first index you create on an XML
column is the primary XML index. This index contains a shredded persisted representation of
the XML values. For each XML value in the column, the index creates several rows of data. The
number of rows in the index is approximately the number of nodes in the XML value. Such an
index alone can speed up searches for a specific element by using the exist() method. After
creating the primary XML index, you can create up to three other types of secondary XML
indexes:

■■ PATH  This secondary XML index is especially useful if your queries specify path
expressions. It speeds up the exist() method better than the primary XML index. Such
an index also speeds up queries that use the value() method for a fully specified path.

■■ VALUE  This secondary XML index is useful if queries are value-based and the path is
not fully specified or it includes a wildcard.

■■ PROPERTY  This secondary XML index is very useful for queries that retrieve one or
more values from individual XML instances using the value() method.

The primary XML index has to be created first. It can be created only on tables with a
clustered primary key.

MORE INFO  ON XML INDEXES

For details on how to create, use and maintain XML indexes, please refer to the MSDN topic
“XML Indexes (SQL Server)” at https://msdn.microsoft.com/en-us/library/ms191497.aspx.

Query and output JSON data
Although XML is a standard for many years, many developers do not like it because it is
somehow too verbose. Especially when you use element-centric XML, you have each element
name for every value listed twice in your XML document. In addition, XML is not very clear
for reading. Don’t understand this incorrectly: XML is here to stay. It is the standard for many
things, for example for calling Web services, for storing configurations, for exchanging data,

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/hh403385.aspx
https://www.msdn.microsoft.com/en-us/library/ms191497.aspx

	206	 Chapter 2	 Query data with advanced Transact-SQL components

and more. Nevertheless, a new simplified standard called JSON evolved in the last decade.
JSON is simpler, easier to read than XML, focused on data exchange.

NOTE  JSON SPECIFICATION

You can read the full JSON specification in “The JSON Data Interchange Format” document
at http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf.

Let’s start with a simple example again. The following document is showing the same data
that was used for the first XML example earlier in this chapter, just this time in JSON format,
produced with the FOR JSON clause of the T-SQL SELECT statement:

[
 {
 "custid":1,
 "companyname":"Customer NRZBB",
 "Order":[
 {
 "orderid":10692,
 "orderdate":"2015-10-03"
 },
 {
 "orderid":10702,
 "orderdate":"2015-10-13"
 },
 {
 "orderid":10952,
 "orderdate":"2016-03-16"
 }
]
 },
 {
 "custid":2,
 "companyname":"Customer MLTDN",
 "Order":[
 {
 "orderid":10308,
 "orderdate":"2014-09-18"
 },
 {
 "orderid":10926,
 "orderdate":"2016-03-04"
 }
]
 }
]

At first glance, you might think that JSON is even more verbose than XML. However, the
number of characters is approximately the same as in the first XML example, which is attri-
bute-centric, and is approximately 40% lower than it would be in an element-centric XML. In
addition, the JSON data is formatted in a very extensive way, using as many lines as possible.
SQL Server Management Studio (SSMS) does not format JSON in such a nice way as it does

www.EBooksWorld.ir

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 207

XML. It returns JSON as a character string, which you can find at https://jsonformatter.curious-
concept.com/.

You can also see from the previous example that JSON is readable and simple. A JSON
object (or document) consists of collections of name – value pairs known as object members.
The name and the value are separated by a colon. Object member separator is a comma. Curly
brackets are wrapping collections. Name is always a string, while JSON supports only four
primitive data types for values: string, number, Boolean, and null. In addition, a value can be
of one of two complex data types: an array or a nested JSON object. Arrays are enclosed in
brackets. Names don’t need to be unique.

Like XML documents, JSON objects also use special characters, and you need to escape
them using a backslash (\), followed by a special code, as shown in Table 2-2.

TABLE 2-2  Characters with special values in JSON objects

Character Replacement text

“ (quotation mark) \”

\ (backslash) \\

/ (slash) \/

Backspace \b

form feed \f

new line \l

carriage return \r

horizontal tab \t

In addition, the FOR JSON clause returns control characters (characters with ASCII code 00
to 31) in the JSON output in \u<code> format, where <code> is in hexadecimal format, for
example CHAR(0) as \u0000 and CHAR(31) as u\001f.

Producing JSON output from queries
The first, simple option to generate JSON objects from T-SQL query results, is the FOR JSON
AUTO clause. With this option, SQL Server formats the JSON output automatically, based on
the order of columns in the SELECT list and on the order of tables in the FROM list. You can’t
change this format. The following query was used to produce the JSON output shown at the
beginning of this section:

SELECT Customer.custid, Customer.companyname,
 [Order].orderid, [Order].orderdate
FROM Sales.Customers AS Customer
 INNER JOIN Sales.Orders AS [Order]
 ON Customer.custid = [Order].custid
WHERE Customer.custid <= 2
 AND [Order].orderid %2 = 0
ORDER BY Customer.custid, [Order].orderid
FOR JSON AUTO;

www.EBooksWorld.ir

https://www.jsonformatter.curious-concept.com/
https://www.jsonformatter.curious-concept.com/

	208	 Chapter 2	 Query data with advanced Transact-SQL components

If you noticed, JSON does not support even date and time data types. Of course, the natu-
ral question is how SQL Server data types are converted to JSON data types. Table 2-3 shows
the conversion rules.

TABLE 2-3  SQL Server to JSON data type conversion rules

Category SQL Server type JSON type

String char, varchar, nchar, nvarchar string

Numeric tinyint, smallint, int, bigint, real, float, decimal, numeric number

Boolean Bit Boolean – true or false

date & time date, time, datetime, datetime2, datetimeoffset string

Binary BASE64-encoded string BASE64-encoded string

CLR user-defined CLR types, geometry, geography not supported

Other uniqueidentifier, money string

You have much more influence on the format of the JSON returned with the FOR JSON
PATH clause. In the PATH mode, you can wrap and nest objects using multiple levels of hierar-
chy. The following query is very simple, showing the basic usage of the PATH mode:

SELECT TOP (2) custid, companyname, contactname
FROM Sales.Customers
ORDER BY custid
FOR JSON PATH;

The formatted result is:

[
 {
 "custid":1,
 "companyname":"Customer NRZBB",
 "contactname":"Allen, Michael"
 },
 {
 "custid":2,
 "companyname":"Customer MLTDN",
 "contactname":"Hassall, Mark"
 }
]

Your first formatting option is to use dot-separated alias names for the column names. The
dot-separated aliases produce nested objects. The following query shows the usage of dot
separated alias; for the sake of brevity, it limits the result set to a single customer:

SELECT custid AS [CustomerId],
 companyname AS [Company],
 contactname AS [Contact.Name]
FROM Sales.Customers
WHERE custid = 1
FOR JSON PATH;

www.EBooksWorld.ir

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 209

The formatted result is:

[
 {
 "CustomerId":1,
 "Company":"Customer NRZBB",
 "Contact":{
 "Name":"Allen, Michael"
 }
 }
]

Of course, you can combine data from multiple tables. Just take care to use the same first
part of the member name (or the column alias) for the data you want to nest together, as
shown in the following example:

SELECT c.custid AS [Customer.Id],
 c.companyname AS [Customer.Name],
 o.orderid AS [Order.Id],
 o.orderdate AS [Order.Date]
FROM Sales.Customers AS c
 INNER JOIN Sales.Orders AS o
 ON c.custid = o.custid
WHERE c.custid = 1
 AND o.orderid = 10692
ORDER BY c.custid, o.orderid
FOR JSON PATH;

Here is the result:

[
 {
 "Customer":{
 "Id":1,
 "Name":"Customer NRZBB"
 },
 "Order":{ '
 "Id":10692,
 "Date":"2015-10-03"
 }
 }
]

Of course, the next question is whether you could nest orders inside customers. You can
use more than one dot in column aliases, like you would nest namespaces in a .NET applica-
tion. The following query shows how to produce multiple nesting levels:

SELECT c.custid AS [Customer.Id],
 c.companyname AS [Customer.Name],
 o.orderid AS [Customer.Order.Id],
 o.orderdate AS [Customer.Order.Date]
FROM Sales.Customers AS c
 INNER JOIN Sales.Orders AS o
 ON c.custid = o.custid
WHERE c.custid = 1

www.EBooksWorld.ir

	210	 Chapter 2	 Query data with advanced Transact-SQL components

 AND o.orderid = 10692
ORDER BY c.custid, o.orderid
FOR JSON PATH;

And here is the formatted result:

[
 {
 "Customer":{
 "Id":1,
 "Name":"Customer NRZBB",
 "Order":{
 "Id":10692,
 "Date":"2015-10-03"
 }
 }
 }
]

In the FOR JSON clause, in both AUTO and PATH modes, you can specify three additional
clauses:

■■ ROOT  Adds a single, top level member.

■■ INCLUDE_NULL_VALUES  Include nulls in the output. Nulls are by default excluded
from the JSON output.

■■ WITHOUT_ARRAY_WRAPPER  Removes square brackets around the output.

The following query removes the array wrapper from the result:

SELECT c.custid AS [Customer.Id],
 c.companyname AS [Customer.Name],
 o.orderid AS [Customer.Order.Id],
 o.orderdate AS [Customer.Order.Date]
FROM Sales.Customers AS c
 INNER JOIN Sales.Orders AS o
 ON c.custid = o.custid
WHERE c.custid = 1
 AND o.orderid = 10692
ORDER BY c.custid, o.orderid
FOR JSON PATH,
 WITHOUT_ARRAY_WRAPPER;

The query returns the following result:

{
 "Customer":{
 "Id":1,
 "Name":"Customer NRZBB",
 "Order":{
 "Id":10692,
 "Date":"2015-10-03"
 }
 }
}

www.EBooksWorld.ir

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 211

You cannot remove the array wrapper brackets and have a root element at the same time.
The following query adds a root element instead of the brackets:

SELECT c.custid AS [Customer.Id],
 c.companyname AS [Customer.Name],
 o.orderid AS [Customer.Order.Id],
 o.orderdate AS [Customer.Order.Date]
FROM Sales.Customers AS c
 INNER JOIN Sales.Orders AS o
 ON c.custid = o.custid
WHERE c.custid = 1
 AND o.orderid = 10692
ORDER BY c.custid, o.orderid
FOR JSON PATH,
 ROOT('Customer 1');

Here’s the result of this query:

{
 "Customer 1":[
 {
 "Customer":{
 "Id":1,
 "Name":"Customer NRZBB",
 "Order":{
 "Id":10692,
 "Date":"2015-10-03"
 }
 }
 }
]
}

Notice that the elements inside the root element are still treated as an array, and hence are
enclosed in brackets.

Finally, the following query removes the array wrapper and includes nulls in the output:

SELECT c.custid AS [Customer.Id],
 c.companyname AS [Customer.Name],
 o.orderid AS [Customer.Order.Id],
 o.orderdate AS [Customer.Order.Date],
 NULL AS [Customer.Order.Delivery]
FROM Sales.Customers AS c
 INNER JOIN Sales.Orders AS o
 ON c.custid = o.custid
WHERE c.custid = 1
 AND o.orderid = 10692
ORDER BY c.custid, o.orderid
FOR JSON PATH,
 WITHOUT_ARRAY_WRAPPER,
 INCLUDE_NULL_VALUES;

Here’s the result of this query:

{

www.EBooksWorld.ir

	212	 Chapter 2	 Query data with advanced Transact-SQL components

 "Customer":{
 "Id":1,
 "Name":"Customer NRZBB",
 "Order":{
 "Id":10692,
 "Date":"2015-10-03",
 "Delivery":null
 }
 }
}

This should be enough to give you an idea how to format JSON output using the SELECT
statement.

MORE INFO  ON FOR JSON CLAUSE

For more information about the FOR JSON clause, please read the MSDN article “Format
Query Results as JSON with FOR JSON (SQL Server)” at https://msdn.microsoft.com/en-us/
library/dn921882.aspx.

Convert JSON data to tabular format
Of course, you don’t just produce JSON from T-SQL queries, you can also read JSON data and
present it in tabular format. Just like you shred XML with the OPENXML function, you shred
JSON with the OPENJSON function. The function accepts two parameters: the JSON expres-
sion and the path where to start processing the JSON fragment. The second argument is
optional; if you don’t provide it, the whole JSON object is processed. The returned table can
have an implicit schema, or you define an explicit schema in the WITH clause.

When you don’t define an explicit schema, the OPENJSON function returns a table with
three columns:

■■ key  The name of the JSON property.

■■ value  The actual value of the JSON property.

■■ type  JSON data type of the value as a tiny integer. Table 2-4 shows the possible val-
ues of this column and their meaning.

TABLE 2-4  Characters with special values in JSON objects

Type value JSON data type

0 null

1 string

2 number

3 true/false

4 array

5 object

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/dn921882.aspx
https://www.msdn.microsoft.com/en-us/library/dn921882.aspx

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 213

Since the OPENJSON function can return only one table, it converts only the first level of
JSON object properties as rows. Remember, a JSON object can have nested objects. The fol-
lowing code shows the simplest usage of the OPENJSON function:

DECLARE @json AS NVARCHAR(MAX) = N'
{
 "Customer":{
 "Id":1,
 "Name":"Customer NRZBB",
 "Order":{
 "Id":10692,
 "Date":"2015-10-03",
 "Delivery":null
 }
 }
}';
SELECT *
FROM OPENJSON(@json);

The result of this code is a single row for the Customer element (abbreviated):

key value type
----------- --- ----
Customer { "Id":1, "Name":"Custom... 5

As you can see, only the first level property is converted to a single row. To return proper-
ties of nested objects, you need to use the path parameter, like so:

DECLARE @json AS NVARCHAR(MAX) = N'
{
 "Customer":{
 "Id":1,
 "Name":"Customer NRZBB",
 "Order":{
 "Id":10692,
 "Date":"2015-10-03",
 "Delivery":null
 }
 }
}';
SELECT *
FROM OPENJSON(@json,'$.Customer');

This query returns all properties of the customer element, generating the following output:

key value type
----------- --- ----
Id 1 2
Name Customer NRZBB 1
Order { "Id":10692, "Dat... 5

In the path property, you can specify either lax or strict mode of checking for the JSON
elements. Lax is the default and it means relaxed mode. If a property does not exist, you get

www.EBooksWorld.ir

	214	 Chapter 2	 Query data with advanced Transact-SQL components

an empty table. In strict mode, if you refer to a non-existing property, you get an error. The
following code shows this on a simple example:

DECLARE @json AS NVARCHAR(MAX) = N'
{
 "Customer":{
 "Name":"Customer NRZBB"
 }
}';
SELECT *
FROM OPENJSON(@json,'lax $.Buyer');
SELECT *
FROM OPENJSON(@json,'strict $.Buyer');

The first query returns an empty table, whereas the second query returns an empty table
and an error.

Finally, I’ll show how you can define an explicit schema in the WITH clause. The following
query extracts customer id as integer, customer name as string, and customer orders as a
nested JSON object of type NVARCHAR(MAX) from the JSON input:

DECLARE @json AS NVARCHAR(MAX) = N'
{
 "Customer":{
 "Id":1,
 "Name":"Customer NRZBB",
 "Order":{
 "Id":10692,
 "Date":"2015-10-03",
 "Delivery":null
 }
 }
}';
SELECT *
FROM OPENJSON(@json)
WITH
 (
 CustomerId INT '$.Customer.Id',
 CustomerName NVARCHAR(20) '$.Customer.Name',
 Orders NVARCHAR(MAX) '$.Customer.Order' AS JSON
);

Here is the result:

CustomerId CustomerName Orders
---------- -------------- --
1 Customer NRZBB { "Id":10692, "Date":"2015-10-03",

MORE INFO  ON THE OPENJSON FUNCTION

For more details on the OPENJSON function, please refer to the “OPENJSON (Transact-
SQL)” MSDN topic at https://msdn.microsoft.com/en-us/library/dn921885.aspx.

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/dn921885.aspx

	 Skill 2.4: Query temporal data and non-relational data 	 Chapter 2	 215

In addition to shredding JSON data to rows with the OPENJSON rowset function, you can
also extract a scalar value from JSON text with the JSON_VALUE function or an object or an
array with the JSON_QUERY function. The following code shows how to use these two func-
tions:

DECLARE @json AS NVARCHAR(MAX) = N'
{
 "Customer":{
 "Id":1,
 "Name":"Customer NRZBB",
 "Order":{
 "Id":10692,
 "Date":"2015-10-03",
 "Delivery":null
 }
 }
}';
SELECT JSON_VALUE(@json, '$.Customer.Id') AS CustomerId,
 JSON_VALUE(@json, '$.Customer.Name') AS CustomerName,
 JSON_QUERY(@json, '$.Customer.Order') AS Orders;

The query returns the same result as the previous query that used the OPENJSON function:

CustomerId CustomerName Orders
---------- -------------- ---
1 Customer NRZBB { "Id":10692, "Date":"2015-10-03",...

You can also update JSON text with the JSON_MODIFY function. You can update a scalar
value of a property, add a new property and its value, add an element to an array, delete a
property, and more. The function returns the modified JSON text. Here is an example of us-
age of this function:

DECLARE @json AS NVARCHAR(MAX) = N'
{
 "Customer":{
 "Id":1,
 "Name":"Customer NRZBB",
 "Order":{
 "Id":10692,
 "Date":"2015-10-03",
 "Delivery":null
 }
 }
}';
-- Update name
SET @json = JSON_MODIFY(@json, '$.Customer.Name', 'Modified first name');

-- Delete Id
SET @json = JSON_MODIFY(@json, '$.Customer.Id', NULL)

-- Insert last name
SET @json = JSON_MODIFY(@json, '$.Customer.LastName', 'Added last name')

PRINT @json;

www.EBooksWorld.ir

	216	 Chapter 2	 Query data with advanced Transact-SQL components

The modified JSON document is shown below.

{
 "Customer":{

 "Name":"Modified first name",
 "Order":{
 "Id":10692,
 "Date":"2015-10-03",
 "Delivery":null
 }
 ,"LastName":"Added last name"}
}

For storing XML, SQL Server provides native XML data type. There is no native JSON data
type. You can store JSON in a NVARCHAR(MAX) column. You can test the validity of the JSON
document with the ISJSON function. The following example shows how to use this function:

SELECT ISJSON ('str') AS s1, ISJSON ('') AS s2,
 ISJSON ('{}') AS s3, ISJSON ('{"a"}') AS s4,
 ISJSON ('{"a":1}') AS s5;

And here is the result:

s1 s2 s3 s4 s5
----------- ----------- ----------- ----------- -----------
0 0 1 0 1

As you can see, JSON support in SQL Server is not yet a first-class citizen like XML, but you
do have the means to both produce JSON data as a character string output from queries, as
well as shred JSON data to tabular form.

Chapter summary

■■ Self-contained subqueries are independent of the outer query. They are convenient to
troubleshoot since you can always highlight the inner query and execute it independently.

■■ Correlated subqueries have references to columns from the tables in the outer query
and are generally more complex to work with.

■■ There are cases where SQL Server handles subqueries more efficiently then joins, and
cases where the opposite is true. It’s important to understand those cases, and also
make sure that when performance is critical, you test both options and compare their
performance.

■■ Using the APPLY operator you can apply a table expression to each row from some
table. The CROSS APPLY operator doesn’t return the left row if the right side is an
empty set, whereas the OUTER APPLY operator does.

■■ Table expressions are named queries that help you simplify and reuse code. T-SQL
supports four kinds of table expressions: derived tables, CTEs, views and inline table-
valued functions.

www.EBooksWorld.ir

	 Chapter summary	 Chapter 2	 217

■■ Use derived tables and CTEs when you need to use the table expression only in one
statement. Use views and inline table-valued functions when you need to reuse the
table expression. If there are no parameters involved, use views, otherwise use inline
table-valued functions.

■■ Use table expressions when you don’t want to persist the inner query’s result in a work
table, and temporary tables or table variables when you do.

■■ T-SQL supports both traditional grouped queries that define one grouping set, and
grouped queries that define multiple grouping sets using the clauses GROUPING SETS,
CUBE and ROLLUP. Use the GROUPING_ID function to compute a grouping set identifier.

■■ Use the PIVOT operator to pivot data from a state of rows to columns, and the UN-
PIVOT operator to unpivot data from a state of columns to rows. With PIVOT, make
sure to use a table expression that project the elements involved to avoid grouping
implicitly by undesired columns. With UNPIVOT, remember that the operator removes
rows with NULLs.

■■ Window functions allow you to perform data analysis calculations against the underly-
ing query result without hiding the detail. T-SQL supports aggregate, ranking, offset
and statistical window functions.

■■ System-versioned temporal tables allow you to keep track of the history of changes
to your data for long periods of time. You enable system versioning on a table, and
connect it to a corresponding history table. Temporal tables use a pair of DATETIME2
columns to represent the start and end of the validity period of the row.

■■ You modify the current table as usual, and SQL Server keeps track of historical states of
rows in the history table automatically.

■■ To read data, you query the current table with the FOR SYSTEM_TIME clause. Using the
AT subclause you request to return the state of the data at a specified point in time.
Using the FROM, BETWEEN and CONTAINED IN subclauses, you request to return the
states of the data that were valid during a specified period of time. Using the ALL sub-
clause, you request to see all states of the rows, both current and historical.

■■ You create XML documents as output of a SELECT statement with the FOR XML clause.
You can read XML data and shred it to tabular format with the OPENXML function.
You can store XML data in SQL Server in a column of the XML data type. You can use
methods of this column to extract scalar values, XML fragments, modify XML data, and
more. You use XQuery expressions as parameters to the XML data type methods to
navigate to the appropriate element or attribute.

■■ There is no native JSON data type in SQL Server. However, you can create JSON docu-
ments from queries with the FOR JSON clause, shred JSON documents to tabular for-
mat with the OPENJSON function, extract scalar values and JSON fragments with the
JSON_VALUE and JSON_QUERY functions, modify JSON data with the JSON_MODIFY
function, and test validity with the ISJSON function.

www.EBooksWorld.ir

	218	 Chapter 2	 Query data with advanced Transact-SQL components

Thought experiment

In this thought experiment, demonstrate your skills and knowledge of the topics covered in
this chapter. You can find the answer to this thought experiment in the next section.

You’re hired as a consultant to serve as a subject matter expert in a large database migra-
tion project. In one of the preliminary stages of the project you have a meeting with the
company’s DBAs, who pose a few questions. Demonstrate your expertise by answering the
following questions:

1.	 Generally, when solving tasks with T-SQL, is it more efficient to use joins or subqueries?

2.	 What is the difference between a self-contained subquery and a correlated one?

3.	 In what way is the APPLY operator different than joins and subqueries? Can you pro-
vide an example when it should be used?

4.	 From a performance perspective, is it better to use table expressions or temporary
tables?

5.	 What are the limitations of the PIVOT operator in T-SQL?

6.	 What are the limitations of the UNPIVOT operator in T-SQL?

7.	 What is the best way in T-SQL to compute running totals, and what are the perfor-
mance considerations that you need to be aware of when using such computations?

8.	 Why can’t you place a row number calculation in the WHERE clause if you want to filter
a range of row numbers?

9.	 How would you quickly create, with minimal effort, an element-centric XML document
from a T-SQL SELECT result set?

10.	 What is the difference between the JSON_VALUE and JSON_QUERY functions?

Thought experiment answer

This section contains the solution to the thought experiment.

1.	 You’re not going to be perceived as a proper consultant unless you start your answer
with “it depends.” The answer to this question is no different. It’s very rare in T-SQL that
one tool is always better than another. But it is important to know what are the cases
when each tool does better, and also how to tell which is better when you’re not sure.
Joins tend to do better when you need to apply multiple calculations, like aggregates,
based on the same set of rows. With subqueries you access the data separately for
each aggregate and with joins you access the data once for all aggregates. However,
when looking for nonmatches, joins currently aren’t optimized with the Anti Semi Join
optimization, whereas subqueries are. With this optimization SQL Server short circuits
the work as soon as a match is found, resulting typically in less effort.

www.EBooksWorld.ir

	 Thought experiment answer	 Chapter 2	 219

When you’re not certain which solution is better, test your solutions. The run time is
ultimately what the user cares about. If there’s a significant performance difference,
you want to try and identify what SQL Server does differently by comparing the query
execution plans.

2.	 When the inner query is completely independent of the outer query, it’s a self-
contained subquery. It can be highlighted and executed independently. A correlated
subquery has references to columns from tables in the outer query. It cannot be run
independently, making it harder to troubleshoot.

3.	 A join treats its two inputs as a set, therefore if a join input is a query (table expres-
sion), the query cannot refer to elements from the other input; in other words, a join
doesn’t support correlations. A subqueries can be correlated, but normally subqueries
are limited to returning only one column. The APPLY operator combines the advan-
tages of both joins and subqueries. Like in a join, if an input is a table expression, it
can return multiple columns and multiple rows. Like a subquery, the right side can
have correlations to elements from the left side. An example for a case where APPLY is
handy is when you need to return the three most recent orders for each employee. You
use the CROSS APPLY operator where the left input is the HR.Employees table and the
right input is a correlated derived table where you use a TOP query against the Sales.
Orders table, correlating the order’s employee ID with the employee’s employee ID.

4.	 Table expressions don’t persist the result of the inner query physically anywhere. When
you’re querying a table expression, SQL Server inlines the inner query logic, and the
physical processing interacts directly with the underlying table’s data. Temporary
tables and table variables do persist the result set that you store in them. So usually
you want to use temporary tables when you have a result set that is expensive to cre-
ate, and you need to interact with it multiple times. If you need to interact with the
result only once, and the use of the temporary object is more about simplifying your
solution or circumventing language limitations such as ones related to reuse of column
aliases, you typically want to use table expressions in such cases.

5.	 The PIVOT operator is limited to only one aggregate. If you use the COUNT aggregate,
you’re limited to COUNT(*). In a static query, you have to hard code the spreading val-
ues. If you don’t want to hard code those, you have to construct and execute the query
string with dynamic SQL.

6.	 The UNPIVOT operator removes rows with NULLs in the value column. It doesn’t make
this step optional. It requires all columns that you’re unpivoting to have exactly the
same data type. It supports only one measure (values column). Like with PIVOT, in a
static query you have to hard code the columns that you’re unpivoting, or otherwise
build and execute the query string with dynamic SQL.

7.	 The best way is with a window aggregate function with the frame ROWS UNBOUNDED
PRECEDING. This is much more efficient than doing this with joins or subqueries. You
can support the calculation with a POC index (partitioning, ordering, covering) to avoid
the need for explicit sorting. You want to be careful not to use the RANGE option,

www.EBooksWorld.ir

	220	 Chapter 2	 Query data with advanced Transact-SQL components

which is much more expensive. You want to remember that if you specify a window or-
der clause but don’t specify the window frame unit (ROWS or RANGE), you get RANGE
by default. So, you need to make sure to explicitly use ROWS. If you use columnstore
technology, the running total calculation can be optimized with a highly efficient batch
mode Window Aggregate operator.

8.	 That’s because as a window function, the ROW_NUMBER function is supposed to be
applied to the underlying query result. In logical query processing terms, the underly-
ing query result is established only when you get to the SELECT phase (step 5), after
FROM, WHERE, GROUP BY and HAVING. For this reason, you can only use window
functions in the SELECT and ORDER BY clauses of a query. If you need to refer to them
in clauses that are processed before the SELECT clause, like the WHERE clause, write a
query where you invoke the window function in the SELECT and assign it with an alias,
and then have the outer query refer to that alias in the WHERE clause.

9.	 You should use the FOR XML AUTO, ELEMENTS, ROOT(‘Root Name’) clause. You could
use also FOR XML PATH, but this would not be with minimal effort. You need the ELE-
MENTS sub-clause to generate an element-centric XML. Finally, you need the ROOT
sub-clause because without root you get an XML fragment and not an XML document.

10.	 You extract a scalar value from JSON text with the JSON_VALUE function and an object
or an array with the JSON_QUERY function.

www.EBooksWorld.ir

		 	 221

C H A P T E R 3

Program databases by using
Transact-SQL
This chapter covers programmability features in T-SQL. It starts with programmability

objects like views, user-defined functions, and stored procedures. It then covers
handling errors with the TRY-CATCH construct, and working with transactions. The chapter
completes with coverage of handling of data types and treatment of NULLs.

Skills in this chapter:
■■ Create database programmability objects by using Transact-SQL

■■ Implement error handling and transactions

■■ Implement data types and NULLs

Skill 3.1: Create database programmability objects by
using Transact-SQL

This skill focuses on working with programmability objects using T-SQL. It covers simplifying
and reusing query logic using views; encapsulating single expressions, queries, and multiple
statements in user-defined functions; and lastly, working with stored procedures.

NOTE  CREATE OR ALTER

SQL Server 2016 starting with Service Pack 1 and Azure SQL Database support the
CREATE OR ALTER command for views, user-defined functions, stored procedures, and
triggers. This command creates the object if it doesn’t exist and alters it if it already ex-
ists. Prior to the introduction of this command, it was up to you to handle logic, such as
checking if the object already existed before dropping it with the DROP command, or us-
ing the DROP IF EXISTS command (introduced in SQL Server 2016 RTM), creating it with
the CREATE command, or altering it with the ALTER command. Many examples in this skill
use the CREATE OR ALTER command. If you’re running this book’s code samples on SQL
Server 2016, make sure that you have at minimum Service Pack 1 installed because that’s
when this command was introduced. If you’re using Azure SQL Database, there’s nothing
special that you need to do because the CREATE OR ALTER command is supported there.

www.EBooksWorld.ir

	222	 Chapter 3	 Program databases by using Transact-SQL

This section covers how to:
■■ Create stored procedures, table-valued and scalar-valued user-defined

functions, and views

■■ Implement input and output parameters in stored procedures

■■ Identify whether to use scalar-valued or table-valued functions

■■ Distinguish between deterministic and non-deterministic functions

■■ Create indexed views

Views
A view is a reusable named query, or table expression, whose definition is stored as an object
in the database. It is accessible to users who were granted with permissions to query it. You
can also modify data in underlying tables through it.

Views enable you to simplify the database’s data model for users by presenting them with
customized views of the data. For example, views can join underlying tables to simplify re-
porting queries. Instead of repeating complex queries in multiple places in the code, they can
achieve reusability by querying the view. If you need to alter the structure of tables, you can
use views to provide the application with backward compatible representation of the data.
Views can also be used as a security layer, by granting users with access to the view but not to
the underlying tables. This way, users can see only the customized representation of the data
that you want them to see.

Working with views
There’s probably no better way to start the discussion about working with views than by
jumping straight to an example. The following code creates a view called Sales.OrderTotals in
the TSQLV4 database:

USE TSQLV4;
GO
CREATE OR ALTER VIEW Sales.OrderTotals
 WITH SCHEMABINDING
AS

SELECT
 O.orderid, O.custid, O.empid, O.shipperid, O.orderdate,
 O.requireddate, O.shippeddate,
 SUM(OD.qty) AS qty,
 CAST(SUM(OD.qty * OD.unitprice * (1 - OD.discount))
 AS NUMERIC(12, 2)) AS val
FROM Sales.Orders AS O
 INNER JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
GROUP BY
 O.orderid, O.custid, O.empid, O.shipperid, O.orderdate,
 O.requireddate, O.shippeddate;
GO

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 223

This view computes total order quantities and net values by joining the Sales.Orders and
Sales.OrderDetails tables, grouping the data by the order elements, and aggregating the
quantities and net values.

Notice the GO batch separator after the USE TSQLV4 statement. The CREATE OR ALTER
VIEW statement must be the first statement in the batch. The same applies to the CREATE
VIEW and ALTER VIEW statements.

Also, notice the use of the SCHEMABINDING option in the view’s header. This option
prevents structural changes to dependent tables and columns while the view exists. This op-
tion is not set by default, but there are situations where it’s mandatory, such as if you want
to create an index on the view. Some, including myself, see this option as a best practice that
increases system stability since it helps you avoid having objects in the database that depend
on nonexistent or altered objects. However, you do need to be aware that the use of SCHEM-
ABINDING does increase the complexity of handling structural changes, such as ones done as
part of application upgrades. Such changes require dropping and recreating schema-bound
objects before and after the change, respectively.

Recall the discussion about table expressions in Chapter 2, Skill 2.2. I explained that a view
is one of the kinds of table expressions that T-SQL supports in addition to derived tables,
CTEs, and inline table-valued functions. I also explained that the inner query has to follow
three requirements:

■■ All columns must have names. This means that if the column is a result of a computa-
tion, you must assign it with an alias.

■■ All column names must be unique. This means that if you join tables and you want to
return columns with the same name from the different tables, you have to assign the
columns with different aliases.

■■ The inner query is not allowed to have an ORDER BY clause, unless this clause sup-
ports a TOP or OFFSET-FETCH filter. Either way, unless the outer query against the view
has its own ORDER BY clause, presentation ordering for the rows in the result is not
guaranteed.

If you need to assign aliases to target columns, you can use an inline aliasing form where
you assign the alias as part of the expression, such as in the example above for the result col-
umns qty and val. As an alternative, you could use an external aliasing form where you specify
the target column names right after the view name in parentheses, like so:

CREATE OR ALTER VIEW Sales.OrderTotals
 (orderid, custid, empid, shipperid, orderdate, requireddate, shippeddate,
 qty, val)...

Run the following code to query the view that you just created:

SELECT orderid, orderdate, custid, empid, val
FROM Sales.OrderTotals;

You get the following output, shown here in abbreviated form:

www.EBooksWorld.ir

	224	 Chapter 3	 Program databases by using Transact-SQL

orderid orderdate custid empid val
-------- ---------- ------- ------ --------
10248 2014-07-04 85 5 440.00
10249 2014-07-05 79 6 1863.40
10250 2014-07-08 34 4 1552.60
10251 2014-07-08 84 3 654.06
10252 2014-07-09 76 4 3597.90
10253 2014-07-10 34 3 1444.80
10254 2014-07-11 14 5 556.62
10255 2014-07-12 68 9 2490.50
10256 2014-07-15 88 3 517.80
10257 2014-07-16 35 4 1119.90
...

SQL Server typically doesn’t persist the view’s result anywhere; rather it internally keeps the
query text and some additional metadata information about the view and its columns in cata-
log objects. When you query the view, SQL Server expands the view definition and queries
the underlying tables. This can be seen in the execution plan of the last query in Figure 3-1.

FIGURE 3-1  Execution plan for query against Sales.OrderTotals view

Observe that the plan has no mention of the view; rather it shows that the clustered in-
dexes of the Orders and OrderDetails tables are scanned. You would get the same plan if you
issued the following query straight against the underlying tables:

SELECT
 O.orderid, O.orderdate, O.custid, O.empid,
 CAST(SUM(OD.qty * OD.unitprice * (1 - OD.discount))
 AS NUMERIC(12, 2)) AS val
FROM Sales.Orders AS O
 INNER JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
GROUP BY
 O.orderid, O.custid, O.empid, O.shipperid, O.orderdate,
 O.requireddate, O.shippeddate;

If you want to get the definition of an existing view (or other module), use the OBJECT_
DEFINITION function, like so:

PRINT OBJECT_DEFINITION(OBJECT_ID(N’Sales.OrderTotals’));

T-SQL supports defining views based on a query against a CTE. As an example, the fol-
lowing code defines a view called Sales.CustLast5OrderDates based on a query that for each
customer, returns the last five distinct order dates:

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 225

CREATE OR ALTER VIEW Sales.CustLast5OrderDates
 WITH SCHEMABINDING
AS

WITH C AS
(
 SELECT
 custid, orderdate,
 DENSE_RANK() OVER(PARTITION BY custid ORDER BY orderdate DESC) AS pos
 FROM Sales.Orders
)
SELECT custid, [1], [2], [3], [4], [5]
FROM C
 PIVOT(MAX(orderdate) FOR pos IN ([1], [2], [3], [4], [5])) AS P;
GO

If you need a refresher of the meaning and syntax of the DENSE_RANK function and PIVOT
operator, those were covered in Chapter 2, Skill 2.3. Examine the code and make sure you un-
derstand it well. The query that defines the CTE named C returns for each order the customer
ID, order date, and dense rank of the order date (descending) for the customer. The outer
query against C groups the data implicitly by the customer ID, and pivots the five most recent
distinct order dates using the artificial MAX aggregate. The aggregate is artificial in the sense
that for each customer and position there’s only one distinct order date, but the PIVOT syntax
requires you to use an aggregate function to return it.

Notice the use of square brackets to delimit the target column names representing the
positions of the order dates. In T-SQL, irregular identifiers such as ones that start with a digit
must be delimited. If you remove the delimiters from the columns in the IN clause, you get a
syntax error. If you remove them from the columns in the SELECT list, instead of getting the
values of the columns [1], [2] and on, which represent order dates, you get back the constants
1, 2, and on. Try it.

Query the view:

SELECT custid, [1], [2], [3], [4], [5]
FROM Sales.CustLast5OrderDates;

This code generates the following output, shown here in abbreviated form:

custid 1 2 3 4 5
----------- ---------- ---------- ---------- ---------- ----------
1 2016-04-09 2016-03-16 2016-01-15 2015-10-13 2015-10-03
2 2016-03-04 2015-11-28 2015-08-08 2014-09-18 NULL
3 2016-01-28 2015-09-25 2015-09-22 2015-06-19 2015-05-13
4 2016-04-10 2016-03-16 2016-03-03 2016-02-02 2015-12-24
5 2016-03-04 2016-02-06 2016-02-03 2016-01-28 2016-01-16
6 2016-04-29 2016-03-17 2016-01-27 2015-07-29 2015-06-27
7 2016-01-12 2015-09-23 2015-08-12 2015-06-30 2015-06-12
8 2016-03-24 2015-12-29 2014-10-10 NULL NULL
9 2016-05-06 2016-03-11 2016-03-06 2016-02-09 2016-02-05
10 2016-04-24 2016-04-23 2016-04-16 2016-03-27 2016-03-25
...

www.EBooksWorld.ir

	226	 Chapter 3	 Program databases by using Transact-SQL

A view can even be defined based on multiple CTEs. Consider the following example,
which defines a view called CustTop5OrderValues:

CREATE OR ALTER VIEW Sales.CustTop5OrderValues
 WITH SCHEMABINDING
AS

WITH C1 AS
(
 SELECT
 O.orderid, O.custid,
 CAST(SUM(OD.qty * OD.unitprice * (1 - OD.discount))
 AS NUMERIC(12, 2)) AS val
 FROM Sales.Orders AS O
 INNER JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
 GROUP BY
 O.orderid, O.custid
),
C2 AS
(
 SELECT
 custid, val,
 ROW_NUMBER() OVER(PARTITION BY custid ORDER BY val DESC, orderid DESC) AS pos
 FROM C1
)
SELECT custid, [1], [2], [3], [4], [5]
FROM C2
 PIVOT(MAX(val) FOR pos IN ([1], [2], [3], [4], [5])) AS P;
GO

The code defines a CTE called C1, which computes net order values. The code then defines
a CTE called C2, which queries the CTE called C1. It computes row numbers that position
orders within each customer partition, ordered by value, descending, and then order ID, de-
scending, as a tiebreaker. The last step is a query against C2 that pivots the five highest order
values for each customer to five separate columns named [1], [2], [3], [4] and [5].

Run the following code to query the view:
SELECT custid, [1], [2], [3], [4], [5]
FROM Sales.CustTop5OrderValues;

This code generates the following output, shown here in abbreviated form:

custid 1 2 3 4 5
------- -------- -------- -------- -------- --------
1 933.50 878.00 845.80 814.50 471.20
2 514.40 479.75 320.00 88.80 NULL
3 2082.00 1940.85 813.37 749.06 660.00
4 4441.25 2142.90 1641.00 1477.00 899.00
5 3815.25 3192.65 2222.40 2048.21 1835.70
6 858.00 677.00 625.00 464.00 330.00
7 7390.20 1994.52 1838.20 1761.00 1420.00
8 3026.85 982.00 224.00 NULL NULL
9 2550.00 2436.18 1979.23 1948.50 1930.40
10 4422.00 3118.00 1892.25 1832.80 1447.50
...

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 227

As another example for a view that is based on multiple CTEs, the following code creates a
view called Sales.OrderValuePcts:

CREATE OR ALTER VIEW Sales.OrderValuePcts
 WITH SCHEMABINDING
AS

WITH OrderTotals AS
(
 SELECT
 O.orderid, O.custid,
 SUM(OD.qty * OD.unitprice * (1 - OD.discount)) AS val
 FROM Sales.Orders AS O
 INNER JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
 GROUP BY
 O.orderid, O.custid
),
GrandTotal AS
(
 SELECT SUM(val) AS grandtotalval FROM OrderTotals
),
CustomerTotals AS
(
 SELECT custid, SUM(val) AS custtotalval
 FROM OrderTotals
 GROUP BY custid
)
SELECT
 O.orderid, O.custid,
 CAST(O.val AS NUMERIC(12, 2)) AS val,
 CAST(O.val / G.grandtotalval * 100.0 AS NUMERIC(5, 2)) AS pctall,
 CAST(O.val / C.custtotalval * 100.0 AS NUMERIC(5, 2)) AS pctcust
FROM OrderTotals AS O
 CROSS JOIN GrandTotal AS G
 INNER JOIN CustomerTotals AS C
 ON O.custid = C.custid;
GO

The OrderTotals CTE computes net order values; the CTE GrandTotal computes the grand
total value, and the CTE CustomerTotals computes customer total values. The outer query
joins all three CTEs and computes percentages of the order value out of both the grand total
and the customer total.

Run the following code to query the view:

SELECT orderid, custid, val, pctall, pctcust
FROM Sales.OrderValuePcts;

This code generates the following output, shown here in abbreviated form:

www.EBooksWorld.ir

	228	 Chapter 3	 Program databases by using Transact-SQL

orderid custid val pctall pctcust
-------- ------- ------- ------- --------
10835 1 845.80 0.07 19.79
10952 1 471.20 0.04 11.03
10643 1 814.50 0.06 19.06
10692 1 878.00 0.07 20.55
11011 1 933.50 0.07 21.85
10702 1 330.00 0.03 7.72
10625 2 479.75 0.04 34.20
10759 2 320.00 0.03 22.81
10308 2 88.80 0.01 6.33
10926 2 514.40 0.04 36.67
...

As a reminder, in Chapter 2 you learned about window functions, which could be used as
an alternative to grouping and joining. The same task can be achieved with much less code
with window functions, like so:

CREATE OR ALTER VIEW Sales.OrderValuePcts
 WITH SCHEMABINDING
AS

WITH OrderTotals AS
(
 SELECT
 O.orderid, O.custid,
 CAST(SUM(OD.qty * OD.unitprice * (1 - OD.discount)) AS NUMERIC(12, 2)) AS val
 FROM Sales.Orders AS O
 INNER JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
 GROUP BY
 O.orderid, O.custid
)
SELECT
 orderid, custid, val,
 CAST(val / SUM(val) OVER() * 100.0 AS NUMERIC(5, 2)) AS pctall,
 CAST(val / SUM(val) OVER(PARTITION BY custid) * 100.0 AS NUMERIC(5, 2)) AS pctcust
FROM OrderTotals;
GO

Views can also be used to restrict access to only filtered representation of the data. For
instance, suppose that you want to grant users from the US branch access to only customers
from the US. You can achieve this by creating a view that filters only customers from the US,
like so:

CREATE OR ALTER VIEW Sales.USACusts
 WITH SCHEMABINDING
AS

SELECT
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax
FROM Sales.Customers
WHERE country = N’USA’;
GO

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 229

You then grant users from the US branch permissions to query the view, and do not grant
permissions to access the underlying table directly.

View attributes
As you have noticed, all view definitions in my examples specify the SCHEMABINDING option.
This option prevents structural changes to underlying objects while the view exists. To dem-
onstrate what can happen without this option, run the following code to alter the view from
the last example in the previous section to not include the SCHEMABINDING option:

CREATE OR ALTER VIEW Sales.USACusts
AS

SELECT
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax
FROM Sales.Customers
WHERE country = N’USA’;
GO

It’s important to remember that when you alter a view, either with the ALTER VIEW com-
mand, or with the CREATE OR ALTER VIEW command, you have to specify again any view
attributes that you want to preserve. The main benefit in altering a view, as opposed to drop-
ping and recreating it, is that permissions are preserved.

Now that our view does not include the SCHEMABINDING option, you’re allowed to alter
the underlying table definition. Run the following code to drop the address column from the
table (in a transaction that you roll back to undo the change):

BEGIN TRAN;
 ALTER TABLE Sales.Customers DROP COLUMN address;
ROLLBACK TRAN; -- undo change

The code runs successfully.

Alter the view to include the SCHEMABINDING attribute:

CREATE OR ALTER VIEW Sales.USACusts
 WITH SCHEMABINDING
AS

SELECT
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax
FROM Sales.Customers
WHERE country = N’USA’;
GO

Try to drop the column again:

ALTER TABLE Sales.Customers DROP COLUMN address;

This time the attempt is rejected, and you get the following errors:

www.EBooksWorld.ir

	230	 Chapter 3	 Program databases by using Transact-SQL

Msg 5074, Level 16, State 1, Line 247
The object ‘USACusts’ is dependent on column ‘address’.
Msg 4922, Level 16, State 9, Line 247
ALTER TABLE DROP COLUMN address failed because one or more objects access this column.

T-SQL supports a view attribute called ENCRYPTION that causes SQL Server to obfuscate
the object definition that is stored internally. Without this attribute, you can get the object
definition by using the OBJECT_DEFINITION function, like so:

SELECT OBJECT_DEFINITION(OBJECT_ID(N’Sales.USACusts’));

This code returns the requested view’s definition. Alternatively you can use the sp_help-
text procedure, or query the sys.syscomments view directly. Next, alter the view definition to
include the ENCRYPTION attribute, like so (don’t forget to re-specify the SCHEMABINDING
option otherwise the view is altered without it):

CREATE OR ALTER VIEW Sales.USACusts
 WITH SCHEMABINDING, ENCRYPTION
AS

SELECT
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax
FROM Sales.Customers
WHERE country = N’USA’;
GO

Run the following code to try and get the object definition:

SELECT OBJECT_DEFINITION(OBJECT_ID(N’Sales.USACusts’));

This time the code returns a NULL.

Modifying data through views
You’re not limited to only issuing SELECT queries against table expressions, such as views,
rather, you’re also allowed to issue modification statements against those. Because a table ex-
pression is a reflection of data from some underlying tables, it’s those underlying tables that
are affected by the modification. If you’re modifying the data through a view, you do need
appropriate permissions assigned to you against the view.

To demonstrate this capability, I use the Sales.USACusts view, which you create by running
the following code:

CREATE OR ALTER VIEW Sales.USACusts
 WITH SCHEMABINDING
AS

SELECT
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax
FROM Sales.Customers
WHERE country = N’USA’;
GO

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 231

Run the following code to add a customer to the Sales.Customers table through the view:

INSERT INTO Sales.USACusts(
 companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax)
VALUES(
 N’Customer AAAAA’, N’Contact AAAAA’, N’Title AAAAA’, N’Address AAAAA’,
 N’Redmond’, N’WA’, N’11111’, N’USA’, N’111-1111111’, N’111-1111111’);

Query the underlying table to make sure that the new row made it there:

SELECT custid, companyname, country
FROM Sales.Customers
WHERE custid = SCOPE_IDENTITY();

You get the following output confirming that it did:

custid companyname country
----------- -- ---------------
92 Customer AAAAA USA

There are some very sensible restrictions on modifications through table expressions. One
of them is that if the inner query joins multiple tables, INSERT and UPDATE statements are
allowed to affect only one target table at a time. Also, you cannot insert rows through a table
expression if it doesn’t include at least one column from the underlying table that doesn’t
somehow get its values automatically (for example by allowing NULLs or having a default
value).

Note that normally, you are allowed to insert and update rows through the view even if
the modification contradicts the inner query’s filter. In our example, you can insert customers
from a non-US country, or update an existing customer’s country to one other than the US.
The effect seems strange because the underlying Sales.Customers table becomes modified,
but when you query the view, you won’t see the modified rows because they don’t satisfy the
view’s filter anymore.

As an example, run the following code to add a customer from the UK through the view:

INSERT INTO Sales.USACusts(
 companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax)
VALUES(
 N’Customer BBBBB’, N’Contact BBBBB’, N’Title BBBBB’, N’Address BBBBB’,
 N’London’, NULL, N’22222’, N’UK’, N’222-2222222’, N’222-2222222’);

The code runs successfully, and the row is added to the underlying table.

Query the view to look for the new customer:

SELECT custid, companyname, country
FROM Sales.USACusts
WHERE custid = SCOPE_IDENTITY();

You get an empty set back:

custid companyname country
----------- -- ---------------

www.EBooksWorld.ir

	232	 Chapter 3	 Program databases by using Transact-SQL

Query the underlying table to look for the new customer:

SELECT custid, companyname, country
FROM Sales.Customers
WHERE custid = SCOPE_IDENTITY();

This time you do get the new customer row back:

custid companyname country
----------- -- ---------------
93 Customer BBBBB UK

T-SQL supports an option called CHECK OPTION that prevents inserting or updating rows
through the view if the change contradicts the inner query’s filter. This option has a somewhat
similar effect to a CHECK constraint in a table. You add it at the end of the inner query, like so:

CREATE OR ALTER VIEW Sales.USACusts
 WITH SCHEMABINDING
AS

SELECT
 custid, companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax
FROM Sales.Customers
WHERE country = N’USA’
WITH CHECK OPTION;
GO

Run the following code to try again to add a customer from the UK through the view:

INSERT INTO Sales.USACusts(
 companyname, contactname, contacttitle, address,
 city, region, postalcode, country, phone, fax)
VALUES(
 N’Customer CCCCC’, N’Contact CCCCC’, N’Title CCCCC’, N’Address CCCCC’,
 N’London’, NULL, N’33333’, N’UK’, N’333-3333333’, N’333-3333333’);

This time the code fails and you get the following error:

Msg 550, Level 16, State 1, Line 352
The attempted insert or update failed because the target view either specifies WITH
CHECK OPTION or spans a view that specifies WITH CHECK OPTION and one or more rows
resulting from the operation did not qualify under the CHECK OPTION constraint.
The statement has been terminated.

Curiously, the CHECK option in a view does differ from a CHECK constraint in a table in
how the two handle NULLs, if those are allowed in the target column. For example, suppose
that the country column allowed NULLs. A CHECK constraint based on the predicate country
= N’USA’ would have allowed rows with a NULL country, whereas a view with a filter based on
the same predicate and the CHECK option would have regected such rows.

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 233

Indexed views
Recall that when you query a view, SQL Server expands the view definition, and optimizes the
code against the underlying tables. I demonstrated this earlier. But what if the inner query is
quite expensive, and you query the view frequently? You want to avoid the repetition of the
work that is involved every time you query the view. To achieve this, you create a clustered
index on the view, and this way you persist the view’s result within the clustered index B-tree
structure. There is an extra cost every time you modify data in the underlying tables because
SQL Server needs to modify the indexed view, like it would need to modify other indexes on
the tables. So, similar to regular indexes, the tradeoff is faster queries at the cost of extra write
cost and space.

To demonstrate the use of indexed views, I use the Sales.OrderTotals view from the previ-
ous examples, which you create by running the following code:

CREATE OR ALTER VIEW Sales.OrderTotals
 WITH SCHEMABINDING
AS

SELECT
 O.orderid, O.custid, O.empid, O.shipperid, O.orderdate,
 O.requireddate, O.shippeddate,
 SUM(OD.qty) AS qty,
 CAST(SUM(OD.qty * OD.unitprice * (1 - OD.discount))
 AS NUMERIC(12, 2)) AS val
FROM Sales.Orders AS O
 INNER JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
GROUP BY
 O.orderid, O.custid, O.empid, O.shipperid, O.orderdate,
 O.requireddate, O.shippeddate;
GO

The first index that you create on the view has to be clustered and unique. Run the follow-
ing code to try and create such an index on the view:

CREATE UNIQUE CLUSTERED INDEX idx_cl_orderid ON Sales.OrderTotals(orderid);

As it turns out, there are restrictions and requirements to allow you to create an indexed
view. One of them is that the view header has to have the SCHEMABINDING attribute, which
in our case is fulfilled. Another is that if the query is a grouped query, it has to include the
COUNT_BIG aggregate. SQL Server needs to track the group row counts to know when a
group needs to be eliminated as a result of deletes or updates of underlying detail rows. Con-
sequently, your attempt to create the index fails, and you get the following error:

Msg 10138, Level 16, State 1, Line 98
Cannot create index on view ‘TSQLV4.Sales.OrderTotals’ because its select list does not
include a proper use of COUNT_BIG. Consider adding COUNT_BIG(*) to select list.

To satisfy this requirement, you alter the view definition and add the COUNT_BIG function
by running the following code:

www.EBooksWorld.ir

	234	 Chapter 3	 Program databases by using Transact-SQL

CREATE OR ALTER VIEW Sales.OrderTotals
 WITH SCHEMABINDING
AS

SELECT
 O.orderid, O.custid, O.empid, O.shipperid, O.orderdate,
 O.requireddate, O.shippeddate,
 SUM(OD.qty) AS qty,
 CAST(SUM(OD.qty * OD.unitprice * (1 - OD.discount))
 AS NUMERIC(12, 2)) AS val,
 COUNT_BIG(*) AS numorderlines
FROM Sales.Orders AS O
 INNER JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
GROUP BY
 O.orderid, O.custid, O.empid, O.shipperid, O.orderdate,
 O.requireddate, O.shippeddate;
GO

Try to create the index again:

CREATE UNIQUE CLUSTERED INDEX idx_cl_orderid ON Sales.OrderTotals(orderid);

The attempt fails again with the following error:

Msg 8668, Level 16, State 0, Line 124
Cannot create the clustered index ‘idx_cl_orderid’ on view ‘TSQLV4.Sales.OrderTotals’
because the select list of the view contains an expression on result of aggregate
function or grouping column. Consider removing expression on result of aggregate
function or grouping column from select list.

As it turns out, you’re not allowed to manipulate the result of an aggregate calculation,
and our query casts the total order value, which is computed with the SUM aggregate, to NU-
MERIC(12, 2). In order to be able to create the index, you need to remove the manipulation
that is applied by the CAST function, like so:

CREATE OR ALTER VIEW Sales.OrderTotals
 WITH SCHEMABINDING
AS

SELECT
 O.orderid, O.custid, O.empid, O.shipperid, O.orderdate,
 O.requireddate, O.shippeddate,
 SUM(OD.qty) AS qty,
 SUM(OD.qty * OD.unitprice * (1 - OD.discount)) AS val,
 COUNT_BIG(*) AS numorderlines
FROM Sales.Orders AS O
 INNER JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
GROUP BY
 O.orderid, O.custid, O.empid, O.shipperid, O.orderdate,
 O.requireddate, O.shippeddate;
GO

Try again to create the index:

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 235

CREATE UNIQUE CLUSTERED INDEX idx_cl_orderid ON Sales.OrderTotals(orderid);

This time the index is created successfully.

To recap, the view has to include SCHEMABINDING, the first index has to be clustered and
unique, if the query is a grouped query it has to include the COUNT_BIG aggregate functions,
and you’re not allowed to manipulate the result of aggregate functions. You can find a more
complete list of requirements and restriction at https://msdn.microsoft.com/en-us/library/
ms191432.aspx.

Once you successfully created a clustered index on a view, you’re allowed to create ad-
ditional nonclustered indexes. Run the following code to create a number of nonclustered
indexes on the Sales.OrderTotal view:

CREATE NONCLUSTERED INDEX idx_nc_custid ON Sales.OrderTotals(custid);
CREATE NONCLUSTERED INDEX idx_nc_empid ON Sales.OrderTotals(empid);
CREATE NONCLUSTERED INDEX idx_nc_shipperid ON Sales.OrderTotals(shipperid);
CREATE NONCLUSTERED INDEX idx_nc_orderdate ON Sales.OrderTotals(orderdate);
CREATE NONCLUSTERED INDEX idx_nc_shippeddate ON Sales.OrderTotals(shippeddate);

Run the following code to query the view:

SELECT orderid, custid, empid, shipperid, orderdate,
 requireddate, shippeddate, qty, val, numorderlines
FROM Sales.OrderTotals;

As long as you’re running the code on an Enterprise or Developer edition of SQL Server,
the optimizer considers using indexes on the view without any special instructions. This can
be seen in the execution plan of the last query, as shown in Figure 3-2.

FIGURE 3-2  Query plan with index on OrderTotals view

If you’re using a non-Enterprise or Developer edition of SQL Server, you need to indicate
the NOEXPAND hint against the view in order for SQL Server to not expand the view defini-
tion, but rather consider using the index on the view. The following query demonstrates using
this hint:

SELECT orderid, custid, empid, shipperid, orderdate,
 requireddate, shippeddate, qty, val, numorderlines
FROM Sales.OrderTotals WITH (NOEXPAND);

Curiously, as long as you do use Enterprise or Developer edition, SQL Server considers
using the indexes on the view even when you query the underlying tables. For example, con-
sider the following query.

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms191432.aspx
https://www.msdn.microsoft.com/en-us/library/ms191432.aspx

	236	 Chapter 3	 Program databases by using Transact-SQL

SELECT
 O.orderid, O.custid, O.empid, O.shipperid, O.orderdate,
 O.requireddate, O.shippeddate,
 SUM(OD.qty) AS qty,
 CAST(SUM(OD.qty * OD.unitprice * (1 - OD.discount))
 AS NUMERIC(12, 2)) AS val
FROM Sales.Orders AS O
 INNER JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
GROUP BY
 O.orderid, O.custid, O.empid, O.shipperid, O.orderdate,
 O.requireddate, O.shippeddate;

The plan for this query is shown in Figure 3-3.

FIGURE 3-3  Another query plan with index on OrderTotals view

Recall that you had to remove the CAST function that you originally applied to the SUM
aggregate that computed the net order value in order to create the indexed view. If you want
the user to be able to query a simplified view with the casted value, you could create an in-
termediate indexed view without the CAST expression, and then a non-indexed view with the
original name that adds the CAST expression, like so:

-- create intermediate view
CREATE OR ALTER VIEW Sales.VOrderTotals
 WITH SCHEMABINDING
AS

SELECT
 O.orderid, O.custid, O.empid, O.shipperid, O.orderdate,
 O.requireddate, O.shippeddate,
 SUM(OD.qty) AS qty,
 SUM(OD.qty * OD.unitprice * (1 - OD.discount)) AS val,
 COUNT_BIG(*) AS numorderlines
FROM Sales.Orders AS O
 INNER JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
GROUP BY
 O.orderid, O.custid, O.empid, O.shipperid, O.orderdate,
 O.requireddate, O.shippeddate;
GO

-- create indexes on view
CREATE UNIQUE CLUSTERED INDEX idx_cl_orderid ON Sales.VOrderTotals(orderid);
CREATE NONCLUSTERED INDEX idx_nc_custid ON Sales.VOrderTotals(custid);
CREATE NONCLUSTERED INDEX idx_nc_empid ON Sales.VOrderTotals(empid);
CREATE NONCLUSTERED INDEX idx_nc_shipperid ON Sales.VOrderTotals(shipperid);
CREATE NONCLUSTERED INDEX idx_nc_orderdate ON Sales.VOrderTotals(orderdate);

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 237

CREATE NONCLUSTERED INDEX idx_nc_shippeddate ON Sales.VOrderTotals(shippeddate);

-- create view with CAST
CREATE OR ALTER VIEW Sales.OrderTotals
 WITH SCHEMABINDING
AS

SELECT
 orderid, custid, empid, shipperid, orderdate, requireddate, shippeddate, qty,
 CAST(val AS NUMERIC(12, 2)) AS val
FROM Sales.VOrderTotals;
GO

Run the following code to query the view:

SELECT orderid, custid, empid, shipperid, orderdate,
 requireddate, shippeddate, qty, val
FROM Sales.OrderTotals;

The plan for this query is shown in Figure 3-4.

FIGURE 3-4  Query plan with index on VOrderTotals view

Observe that the clustered index on the VOrderTotals view is used.

When you’re done, run the following code for cleanup:

DROP VIEW IF EXISTS
 Sales.OrderTotals, Sales.VOrderTotals, Sales.CustLast5OrderDates,
 Sales.CustTop5OrderValues, Sales.OrderValuePcts, Sales.USACusts;

User-defined functions
A user-defined function (UDF) is a routine that accepts parameters, applies calculations, and
returns either a scalar-valued or a table-valued result. SQL Server supports developing func-
tions using either T-SQL, or the common language runtime (CLR). The focus of the exam—and
hence the book’s—is the T-SQL kind.

A user-defined function can appear in places in your code where a scalar-valued or
table-valued expression can appear, such as in a query, a computed column, and a CHECK
constraint. It can even appear in the definition of another user-defined function. You can use
a user-defined function to replace a stored procedure when you want to be able to query its
result. You can use it as an alternative to a view with parameters, since views don’t support
parameters. You can even use a user-defined function to query an indexed view, and with pa-
rameter support, improve its functionality. You can also use a user-defined function to define
a filter for a security policy as part of an implementation of row level security.

www.EBooksWorld.ir

	238	 Chapter 3	 Program databases by using Transact-SQL

There are a number of restrictions and limitations on user-defined functions. Within user-
define functions you cannot:

■■ Use error handling

■■ Modify data (other than in table variables)

■■ Use data definition language (DDL)

■■ Use temporary tables

■■ Use dynamic SQL

You can find a more complete list of requirements and restrictions at https://msdn.microsoft.
com/en-us/library/ms191320.aspx.

Some of the examples in this section use a table called dbo.Employees (not to be confused
with HR.Employees from the sample database). Run the following code to create this table
and populate it with sample data:

SET NOCOUNT ON;
USE TSQLV4;
DROP TABLE IF EXISTS dbo.Employees;
GO
CREATE TABLE dbo.Employees
(
 empid INT NOT NULL CONSTRAINT PK_Employees PRIMARY KEY,
 mgrid INT NULL
 CONSTRAINT FK_Employees_Employees REFERENCES dbo.Employees,
 empname VARCHAR(25) NOT NULL,
 salary MONEY NOT NULL,
 CHECK (empid <> mgrid)
);

INSERT INTO dbo.Employees(empid, mgrid, empname, salary)
 VALUES(1, NULL, ‘David’, $10000.00),
 (2, 1, ‘Eitan’, $7000.00),
 (3, 1, ‘Ina’, $7500.00),
 (4, 2, ‘Seraph’, $5000.00),
 (5, 2, ‘Jiru’, $5500.00),
 (6, 2, ‘Steve’, $4500.00),
 (7, 3, ‘Aaron’, $5000.00),
 (8, 5, ‘Lilach’, $3500.00),
 (9, 7, ‘Rita’, $3000.00),
 (10, 5, ‘Sean’, $3000.00),
 (11, 7, ‘Gabriel’, $3000.00),
 (12, 9, ‘Emilia’ , $2000.00),
 (13, 9, ‘Michael’, $2000.00),
 (14, 9, ‘Didi’, $1500.00);

CREATE UNIQUE INDEX idx_unc_mgr_emp_i_name_sal ON dbo.Employees(mgrid, empid)
 INCLUDE(empname, salary);

T-SQL supports three kinds of user-defined functions: scalar, inline table valued and multi-
statement table valued. The upcoming sections cover these three types.

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms191320.aspx
https://www.msdn.microsoft.com/en-us/library/ms191320.aspx

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 239

Scalar user-defined functions
A scalar user-defined function accepts parameters, applies calculations, and returns a single
value. It has a body with flow that can have multiple statements, including queries, and even-
tually it must invoke a RETURN clause to return the result value. The header of the function
defines the input parameters as well as the return type using a RETURNS clause.

As an example, the following code defines a function called dbo.SubtreeTotalSalaries:

CREATE OR ALTER FUNCTION dbo.SubtreeTotalSalaries(@mgr AS INT)
 RETURNS MONEY
WITH SCHEMABINDING
AS
BEGIN
 DECLARE @totalsalary AS MONEY;

 WITH EmpsCTE AS
 (
 SELECT empid, salary
 FROM dbo.Employees
 WHERE empid = @mgr

 UNION ALL

 SELECT S.empid, S.salary
 FROM EmpsCTE AS M
 INNER JOIN dbo.Employees AS S
 ON S.mgrid = M.empid
)
 SELECT @totalsalary = SUM(salary)
 FROM EmpsCTE;

 RETURN @totalsalary;
END;
GO

The header of the function defines an input parameter called @mgr representing an input
manager ID, and MONEY as the returned type. It specifies the SCHEMABINDING option to
prevent structural changes to dependent objects (the Employees table in our case). The body
of the function resides between the mandatory BEGIN and END clauses. The code in the func-
tion’s body declares a local variable called @totalsalary. It then uses a recursive query that
identifies the input manager’s subordinates (direct and indirect). The outer statement of the
CTE then assigns the total salaries of the input manager and all identified subordinates to the
variable. Finally, the code returns the value stored in @totalsalary.

EXAM TIP

Remember that during the exam you don’t have access to any online or offline resources
that can help you figure out the syntax of T-SQL commands. Make sure to memorize the
syntax for defining the different types of user-defined functions.

www.EBooksWorld.ir

	240	 Chapter 3	 Program databases by using Transact-SQL

Use the following code to test the function, asking for the total salaries of the subtree of
manager 8 (Lilach):

SELECT dbo.SubtreeTotalSalaries(8) AS subtreetotal;

This code returns the following output:

Subtreetotal

3500.00

With most object types, T-SQL allows you to omit the schema name when referring to the
object, in which case it uses implicit schema name resolution. With scalar UDFs, you must use
the two-part name including the schema. For instance, try calling the function again, but this
time without the schema:

SELECT SubtreeTotalSalaries(8) AS subtreetotal;

You get the following error:

Msg 195, Level 15, State 10, Line 553
‘SubtreeTotalSalaries’ is not a recognized built-in function name.

SQL Server looks for a built-in function with the specified name and since it can’t find one,
it fails.

As mentioned, you can invoke a user-defined function as part of a query. For example, the
following code queries the Employees table, and invokes the function for each employee to
return the total salaries of the respective employee’s subtree:

SELECT empid, mgrid, empname, salary,
 dbo.SubtreeTotalSalaries(empid) AS subtreetotal
FROM dbo.Employees;

This code generates the following output:

empid mgrid empname salary subtreetotal
------ ------ -------- --------- -------------
1 NULL David 10000.00 62500.00
2 1 Eitan 7000.00 28500.00
3 1 Ina 7500.00 24000.00
4 2 Seraph 5000.00 5000.00
5 2 Jiru 5500.00 12000.00
6 2 Steve 4500.00 4500.00
7 3 Aaron 5000.00 16500.00
8 5 Lilach 3500.00 3500.00
10 5 Sean 3000.00 3000.00
9 7 Rita 3000.00 8500.00
11 7 Gabriel 3000.00 3000.00
12 9 Emilia 2000.00 2000.00
13 9 Michael 2000.00 2000.00
14 9 Didi 1500.00 1500.00

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 241

EXAM TIP

The input and output parameters of functions are not limited to simple types like INT,
DATE, and MONEY. They can be more complex types like XML, HIERARCHYID, GEOMETRY,
GEOGRAPHY, and user-defined CLR types. Also, input parameters can be assigned with a
default, as in @p AS INT = 0. However, when you invoke the function, if you wish to rely on
the default value, you must specify the keyword DEFAULT instead of passing a value. You
cannot just omit the parameter like you do with stored procedures.

There is an interesting difference between invoking a built-in nondeterministic function
like SYSDATETIME directly in a query, and invoking it indirectly from a user-defined function
that you then invoke in a query. Recall from Skill 1.3 in Chapter 1 that a deterministic function
is guaranteed to return the same output across calls given the same inputs, and a nondeter-
ministic function isn’t. When you invoke a nondeterministic function directly in a query, SQL
Server executes it only once for the entire query. The NEWID function is an exception to this
rule because SQL Server executes it once per row. When you invoke a nondeterministic built-
in function indirectly, from within a user-defined function, and then invoke the user-defined
function in a query, the function gets executed once per row.

As an example, the following code queries the Sales.Orders table, and invokes the functions
SYSDATETIME (returns the current date and time), RAND without a seed (returns a random float
value in the range 0 through 1), and NEWID (returns a globally unique identifier) in the SELECT list:

SELECT orderid, SYSDATETIME() AS [SYSDATETIME], RAND() AS [RAND], NEWID() AS [NEWID]
FROM Sales.Orders;

This code generated the following output on my system (your result naturally differs):

orderid SYSDATETIME RAND NEWID
-------- --------------------------- ------------------ -------------------------------

11008 2016-11-23 09:41:20.0517170 0.115119415679133 DF00ED3F-53B9-4034-9D4D-
ABF33F3625F0
11019 2016-11-23 09:41:20.0517170 0.115119415679133 F3AB18AE-E897-4714-B7E5-
6962E26237C0
11039 2016-11-23 09:41:20.0517170 0.115119415679133 1D0D899C-8477-4617-B7C9-
797554059AA4
11040 2016-11-23 09:41:20.0517170 0.115119415679133 AF6386D7-122F-43E6-90EF-
AB432A9C03EB
11045 2016-11-23 09:41:20.0517170 0.115119415679133 EC3857B7-854A-4121-8CD5-
74B5B36DB279
...
11050 2016-11-23 09:41:20.0517170 0.115119415679133 9CAA81D2-4A3A-4B36-A8C8-
A1F92D78FC66
11055 2016-11-23 09:41:20.0517170 0.115119415679133 58E95547-DA18-4EAE-BC5C-
09252F266510
11063 2016-11-23 09:41:20.0517170 0.115119415679133 138CE9F6-7FFE-41E0-A507-
4190183CC203
11067 2016-11-23 09:41:20.0517170 0.115119415679133 CB864AFA-0D44-4435-90DA-
A718F200C85D
11069 2016-11-23 09:41:20.0517170 0.115119415679133 CC8B555C-DD9F-45C0-A2AE-
4E468ECED251

www.EBooksWorld.ir

	242	 Chapter 3	 Program databases by using Transact-SQL

Observe that both SYSDATETIME and RAND return the same result in all rows even though
they are nondeterministic functions. As mentioned, most nondeterministic built-in functions
are invoked once per query. Also observe that NEWID behaves differently; it is invoked once
per row.

T-SQL supports invoking nondeterministic built-in functions within user-defined functions,
as long as they don’t have any side effects on the system. The functions SYSDATETIME, RAND
(without an input seed), and NEWID are all nondeterministic functions. The SYSDATETIME
function doesn’t have any side effects on the system and therefore is allowed in user-defined
functions. As an example, run the following code to create the user-defined function MySYS-
DATETIME:

CREATE OR ALTER FUNCTION dbo.MySYSDATETIME() RETURNS DATETIME2
AS
BEGIN
 RETURN SYSDATETIME();
END;
GO

The function is created successfully.

The NEWID and RAND functions both have side effects in the sense that one function call
leaves a mark behind that affects a subsequent function call. Consequently, you’re not al-
lowed to invoke NEWID and RAND within user-defined functions. As an example, run the fol-
lowing code in attempt to create a user-defined function called MyRand that calls the built-in
RAND function:

CREATE OR ALTER FUNCTION dbo.MyRAND() RETURNS FLOAT
AS
BEGIN
 RETURN RAND();
END;
GO

The attempt to create the function fails with the following error:

Msg 443, Level 16, State 1, Procedure MyRAND, Line 4 [Batch Start Line 516]
Invalid use of a side-effecting operator ‘rand’ within a function.

Curiously, if you invoke the built-in side-effecting function from a view, SQL Server does
allow you to query the view from within a user-defined function. This allows you to circum-
vent the aforementioned restriction. As an example, run the following code to create a view
called VRAND that invokes the built-in function RAND and returns the result as a column
called myrand:

CREATE OR ALTER VIEW dbo.VRAND
AS

SELECT RAND() AS myrand;
GO

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 243

Next, run the following code to create the function MyRAND, which returns the result of a
query against the view:

CREATE OR ALTER FUNCTION dbo.MyRAND() RETURNS FLOAT
AS
BEGIN
 RETURN (SELECT myrand FROM dbo.VRAND);
END;
GO

Run the following code to query the Sales.Orders table and invoke the functions MySYS-
DATETIME and MyRAND:

SELECT orderid, dbo.MySYSDATETIME() AS mysysdatetime, dbo.MyRAND() AS myrand
FROM Sales.Orders;

This code generates the following output:

orderid mysysdatetime myrand
----------- --------------------------- ----------------------
11008 2016-11-23 09:47:46.5503588 0.0641387937377291
11019 2016-11-23 09:47:46.5518609 0.397630436473708
11039 2016-11-23 09:47:46.5518609 0.906453593195041
11040 2016-11-23 09:47:46.5518609 0.50133925878664
11045 2016-11-23 09:47:46.5518609 0.867531671551516
...
11050 2016-11-23 09:47:46.5634261 0.666663850667723
11055 2016-11-23 09:47:46.5634261 0.452951660618415
11063 2016-11-23 09:47:46.5634261 0.286359018535061
11067 2016-11-23 09:47:46.5634261 0.265970755632963
11069 2016-11-23 09:47:46.5634261 0.453168331889983

Observe that SQL Server executed the user-defined functions once per row, unlike earlier
when you invoked the built-in functions directly, in which case SQL Server executed the func-
tions only once for the entire query.

Note that in order to use a user-defined function in a persisted computed column or in
an indexed view, the function needs to be deterministic. What this means is that the user-
defined function must not call nondeterministic functions, plus you need to define it with
the SCHEMABINDING attribute. As an example, run the following code to create the function
ENDOFYEAR, which accepts a date as input, and returns the corresponding end of year date:

CREATE OR ALTER FUNCTION dbo.ENDOFYEAR(@dt AS DATE) RETURNS DATE
AS
BEGIN
 RETURN DATEFROMPARTS(YEAR(@dt), 12, 31);
END;
GO

Notice that the function’s header does not include the SCHEMABINDING attribute. As
such, the user-defined function isn’t guaranteed to be deterministic. Next, run the following

www.EBooksWorld.ir

	244	 Chapter 3	 Program databases by using Transact-SQL

code in attempt to create a table with a persistent computed column that is based on the
function that you just created:

DROP TABLE IF EXISTS dbo.T1;
GO
CREATE TABLE dbo.T1
(
 keycol INT NOT NULL IDENTITY CONSTRAINT PK_T1 PRIMARY KEY,
 dt DATE NOT NULL,
 dtendofyear AS dbo.ENDOFYEAR(dt) PERSISTED
);

SQL Server rejects the attempt with the following error:

Msg 4936, Level 16, State 1, Line 574
Computed column ‘dtendofyear’ in table ‘T1’ cannot be persisted because the column is
non-deterministic.

Run the following code to recreate the function, only this time with the SCHEMABINDING
attribute:

CREATE OR ALTER FUNCTION dbo.ENDOFYEAR(@dt AS DATE)
 RETURNS DATE
WITH SCHEMABINDING
AS
BEGIN
 RETURN DATEFROMPARTS(YEAR(@dt), 12, 31);
END;
GO

Run the following code in attempt to create the table again:

CREATE TABLE dbo.T1
(
 keycol INT NOT NULL IDENTITY CONSTRAINT PK_T1 PRIMARY KEY,
 dt DATE NOT NULL,
 dtendofyear AS dbo.ENDOFYEAR(dt) PERSISTED
);

This time the code completes successfully.

Inline table-valued user-defined functions
An inline table-valued user-defined function is very similar in concept to a view in the sense
that it’s based on a single query, and you interact with it like a table expression, only unlike a
view, it supports input parameters. So you could think of such a function as a parameterized
view.

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 245

The reason that it’s called an inline function is because SQL Server inlines, or expands, the
inner query definition, and constructs an internal query directly against the underlying tables.
The inlining process includes replacing the inner query’s references to the input parameters
with the passed constants (what’s known as parameter embedding).

As an example, run the following code to create an inline function called GetPage:

CREATE OR ALTER FUNCTION dbo.GetPage(@pagenum AS BIGINT, @pagesize AS BIGINT)
 RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN
 WITH C AS
 (
 SELECT ROW_NUMBER() OVER(ORDER BY orderdate, orderid) AS rownum,
 orderid, orderdate, custid, empid
 FROM Sales.Orders
)
 SELECT rownum, orderid, orderdate, custid, empid
 FROM C
 WHERE rownum BETWEEN (@pagenum - 1) * @pagesize + 1 AND @pagenum * @pagesize;
GO

Notice that the function’s header defines the input parameters and says that it returns a
table result (RETURN TABLE). There’s no body to the function (no BEGIN-END block), rather
just a RETURN clause with a query.

This function implements a paging solution where you pass a page number and page size,
and the function returns orders from the desired page. The code defines a CTE called C based
on a query that computes row numbers for orders, based on orderdate and orderid order-
ing. The outer query then filters only the rows from C with the row numbers that fall in the
requested page. The starting row number is based on the expression (@pagenum - 1) * @
pagesize + 1, and the ending row number is based on the expression pagenum * @pagesize.
For example, with a page number 3, and a page size of 12, the first row number is 25, and the
last row number is 36.

Run the following query to test the function, asking for page 3 with a page size of 12:

SELECT rownum, orderid, orderdate, custid, empid
FROM dbo.GetPage(3, 12) AS T;

This query generates the following output:

rownum orderid orderdate custid empid
------- -------- ---------- ------- ------
25 10272 2014-08-02 65 6
26 10273 2014-08-05 63 3
27 10274 2014-08-06 85 6
28 10275 2014-08-07 49 1
29 10276 2014-08-08 80 8
30 10277 2014-08-09 52 2
31 10278 2014-08-12 5 8
32 10279 2014-08-13 44 8
33 10280 2014-08-14 5 2

www.EBooksWorld.ir

	246	 Chapter 3	 Program databases by using Transact-SQL

34 10281 2014-08-14 69 4
35 10282 2014-08-15 69 4
36 10283 2014-08-16 46 3

Recall from Chapter 1 that T-SQL supports a built-in feature for ad-hoc paging in the form
of a filter called OFFSET-FETCH. With this filter, you can simplify the solution for the task at
hand by using the following function definition instead:

CREATE OR ALTER FUNCTION dbo.GetPage(@pagenum AS BIGINT, @pagesize AS BIGINT)
 RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN
 SELECT ROW_NUMBER() OVER(ORDER BY orderdate, orderid) AS rownum,
 orderid, orderdate, custid, empid
 FROM Sales.Orders
 ORDER BY orderdate, orderid
 OFFSET (@pagenum - 1) * @pagesize ROWS FETCH NEXT @pagesize ROWS ONLY;
GO

With this solution you don’t need to use a CTE that defines row numbers and then an
outer query that handles the filter, you can handle both tasks in one query. Run the following
code to test the altered function:

SELECT rownum, orderid, orderdate, custid, empid
FROM dbo.GetPage(3, 12) AS T;

You get the same result as before.

As a more complex example for an inline table-valued user-defined function, suppose that
you need to implement a function called GetSubtree that accepts a manager ID as input (call
it @mgr), and an optional parameter to limit the number of levels (call it @maxlevels); the
function should return the set of all subordinates of the input manager, applying the level
limit if one was specified. The function should return a NULL as the manager ID of the input
manager.

Run the following code to implement the GetSubtree function as an inline table-valued
one:

DROP FUNCTION IF EXISTS dbo.GetSubtree;
GO
CREATE FUNCTION dbo.GetSubtree(@mgr AS INT, @maxlevels AS INT = NULL)
 RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN
 WITH EmpsCTE AS
 (
 SELECT empid, CAST(NULL AS INT) AS mgrid, empname, salary, 0 as lvl,
 CAST(‘.’ AS VARCHAR(900)) AS sortpath
 FROM dbo.Employees
 WHERE empid = @mgr

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 247

 UNION ALL

 SELECT S.empid, S.mgrid, S.empname, S.salary, M.lvl + 1 AS lvl,
 CAST(M.sortpath + CAST(S.empid AS VARCHAR(10)) + ‘.’ AS VARCHAR(900)) AS sortpath
 FROM EmpsCTE AS M
 INNER JOIN dbo.Employees AS S
 ON S.mgrid = M.empid
 AND (M.lvl < @maxlevels OR @maxlevels IS NULL)
)
 SELECT empid, mgrid, empname, salary, lvl, sortpath
 FROM EmpsCTE;

The function uses a recursive CTE to handle the task. The anchor member returns the row
for the input manager, along with the constant manager ID NULL, the level 0, and a sort path
that is made of a separator plus the current employee ID plus another separator.

The recursive member joins the managers from the previous round (identified with the
recursive reference to the CTE name) with the Employees table to return direct subordinates,
provided the level (depth) did not exceed the specified maximum number of levels, if one was
specified. The subordinate’s level is computed as the corresponding manager’s level plus 1,
and the subordinate’s sort path is computed by concatenating the manager’s path with the
current employee ID plus a separator.

Note that corresponding columns in the anchor and the recursive queries must have
identical types, including length and precision. Since the manager ID of the input manager is
supposed to be set to the constant NULL, and the manager IDs of the subordinates are to be
integer typed values, you need to explicitly convert the NULL constant to INT in the anchor
query. Similarly, since the column sortpath in both the anchor and recursive queries have
to have the same type and length, the code explicitly converts the values in both queries to
VARCHAR(900).

The following example demonstrates using the function to return the subtree of manager
3, without limiting the number of levels:

SELECT empid, REPLICATE(‘ | ‘, lvl) + empname AS emp,
 mgrid, salary, lvl, sortpath
FROM dbo.GetSubtree(3, NULL) AS T
ORDER BY sortpath;

This code generates the following output:

empid empname mgrid salary lvl sortpath
------ ----------------- ------ -------- ---- -----------
3 Ina NULL 7500.00 0 .
7 | Aaron 3 5000.00 1 .7.
11 | | Gabriel 7 3000.00 2 .7.11.
9 | | Rita 7 3000.00 2 .7.9.
12 | | | Emilia 9 2000.00 3 .7.9.12.
13 | | | Michael 9 2000.00 3 .7.9.13.
14 | | | Didi 9 1500.00 3 .7.9.14.

www.EBooksWorld.ir

	248	 Chapter 3	 Program databases by using Transact-SQL

Ordering the result by the sortpath column guarantees that the presentation order of
the result reflects topological sort order, meaning that a manager always shows up before his
or her subordinates. Using the REPLICATE function the code replicates a string lvl times to
achieve a visual indentation effect that reflects the level of the current node with respect to
the root of the subtree. It’s pretty!

MORE INFO  ROW-LEVEL SECURITY

You can also use inline table-valued user-defined functions as a filter predicate for a
security policy as part of a solution for row-level security. You can find the details at
https://msdn.microsoft.com/en-us/library/dn765131.aspx.

Multistatement table-valued user-defined functions
A multistatement table-valued user-defined function is a table function, so from the user’s
perspective, it’s used as a source table in a query much like an inline table-valued function
is used. However, instead of being based on a single query, the multistatement function
declares a returned table variable in its header, and then its body is responsible for filling the
returned table variable with rows. Whenever you query the function, behind the scenes SQL
Server creates the table variable that is defined in the function’s header, runs the flow in the
function’s body to fill it with rows, and then as soon as the function executes the RETURN
command, SQL Server hands the table variable to the calling query.

As an example, run the following code to create an alternative implementation of the Get-
Subtree function, this time as a multistatement table-valued function:

DROP FUNCTION IF EXISTS dbo.GetSubtree;
-- cannot use CREATE OR ALTER to change the function type
GO
CREATE FUNCTION dbo.GetSubtree (@mgrid AS INT, @maxlevels AS INT = NULL)
RETURNS @Tree TABLE
(
 empid INT NOT NULL PRIMARY KEY,
 mgrid INT NULL,
 empname VARCHAR(25) NOT NULL,
 salary MONEY NOT NULL,
 lvl INT NOT NULL,
 sortpath VARCHAR(892) NOT NULL ,
 INDEX idx_lvl_empid_sortpath NONCLUSTERED(lvl, empid, sortpath)
)
WITH SCHEMABINDING
AS
BEGIN
 DECLARE @lvl AS INT = 0;

 -- insert subtree root node into @Tree
 INSERT INTO @Tree(empid, mgrid, empname, salary, lvl, sortpath)
 SELECT empid, NULL AS mgrid, empname, salary, @lvl AS lvl, ‘.’ AS sortpath
 FROM dbo.Employees
 WHERE empid = @mgrid;

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/dn765131.aspx

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 249

 WHILE @@ROWCOUNT > 0 AND (@lvl < @maxlevels OR @maxlevels IS NULL)
 BEGIN
 SET @lvl += 1;

 -- insert children of nodes from prev level into @Tree
 INSERT INTO @Tree(empid, mgrid, empname, salary, lvl, sortpath)
 SELECT S.empid, S.mgrid, S.empname, S.salary, @lvl AS lvl,
 M.sortpath + CAST(S.empid AS VARCHAR(10)) + ‘.’ AS sortpath
 FROM dbo.Employees AS S
 INNER JOIN @Tree AS M
 ON S.mgrid = M.empid AND M.lvl = @lvl - 1;
 END;

 RETURN;
END;
GO

The header of the function defines a table variable called @Tree as the returned value.
Then the code in the body of the function (observe the BEGIN-END block) starts by declar-
ing a level counter called @lvl and initializes it with 0. The code continues to insert the row
for the input manager into the table variable along with the just initialized level and initial
sort path. The code then defines a loop that keeps iterating as long as the number of rows
affected by the previous insert is nonzero, and we haven’t yet reached the maximum number
of levels if one was specified. In each round, the loop increments the level counter and inserts
the next level of subordinates into the table variable. Finally, the code executes the RETURN
command, causing the function to exit and hand the table variable to the calling query.

Use the following code to test the function:

SELECT empid, REPLICATE(‘ | ‘, lvl) + empname AS emp,
 mgrid, salary, lvl, sortpath
FROM dbo.GetSubtree(3, NULL) AS T
ORDER BY sortpath;

This code generates the following output:

empid empname mgrid salary lvl sortpath
------ ----------------- ------ -------- ---- -----------
3 Ina NULL 7500.00 0 .
7 | Aaron 3 5000.00 1 .7.
11 | | Gabriel 7 3000.00 2 .7.11.
9 | | Rita 7 3000.00 2 .7.9.
12 | | | Emilia 9 2000.00 3 .7.9.12.
13 | | | Michael 9 2000.00 3 .7.9.13.
14 | | | Didi 9 1500.00 3 .7.9.14.

If you’re wondering why bother implementing a task as a multistatement function in-
stead of an inline one, there could be a number of reasons. The recursive query in the inline
function uses a spool (worktable) to store the intermediate results, but you have no control
over the indexing on that spool. With the multistatement function, you control the definition
of the table variable, including indexing. Furthermore, the inline function is only allowed to
return a query, whereas the multistatement function can have complete flow with procedural

www.EBooksWorld.ir

	250	 Chapter 3	 Program databases by using Transact-SQL

logic. It just so happens that the task in our specific example can be handled with both kinds
of functions, so you can try them both, and compare their performance to see which one
works better for you. But some tasks cannot be handled with a single query, rather require a
multi-step procedural solution.

When you’re done, run the following code for cleanup:

DROP TABLE IF EXISTS dbo.T1;

DROP VIEW IF EXISTS dbo.VRAND;

DROP FUNCTION IF EXISTS dbo.MySYSDATETIME, dbo.MyRAND, dbo.ENDOFYEAR,
 dbo.SubtreeTotalSalaries, dbo.GetPage, dbo.GetSubtree;

DROP TABLE IF EXISTS dbo.Employees;

Stored procedures
Stored procedures are routines that support flow with multiple steps. They support many T-
SQL elements that user-defined functions don’t, like modifying data in the database and even
applying data definition changes to database objects (DDL), using temporary tables, dynamic
SQL, error handling, and more. These are clear advantages compared to user-defined func-
tions; however, unlike with functions, stored procedures cannot be embedded in queries.

Stored procedures support input and output parameters and can also return result sets
of queries. SQL Server caches the execution plans of the stored procedure’s queries, and
typically reuses them in subsequent executions of the procedure to save the time, CPU and
memory resources that are associated with optimizing the queries.

Stored procedures provide many benefits compared to implementing the business logic
in the application. They encapsulate the logic to allow reusability and hiding of complexity.
It’s much easier to apply changes to a stored procedure with a simple ALTER PROC command
compared to deploying changes in the application. Also, with stored procedures you tend to
have less network traffic because when you call a stored procedure from the application, all
that is passed through the network is just the procedure name and its parameters. The flow
runs in the database engine, and then only the final result is sent to the application. When
you implement the logic in the application, you usually get more roundtrips between the ap-
plication and the database, and consequently more network traffic.

Stored procedures also simplify handling security in the database. Often you don’t want
to grant users with permissions to directly query and modify data in tables, rather you want
them to be able to achieve such tasks only indirectly through stored procedures. To achieve
this, grant the users with EXECUTE permissions on the stored procedure while not granting
them direct access to underlying objects.

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 251

EXAM TIP

The exam expects you to know what the conditions are in which each type of object is ap-
propriate and supported. Make sure you understand the conditions when it’s appropriate
to use views, user-defined functions of the various types, and stored procedures.

The upcoming sections cover working with stored procedures, using dynamic SQL within
procedures, using output parameters and modifying data, and also using cursors within
stored procedures. Later in the chapter, Skill 3.2 covers error handling within stored proce-
dures.

Working with stored procedures
A stored procedure is a reusable routine that supports input and output parameters, and
even returning result sets of queries. This section starts with a simple example for using input
parameters and returning a result set of a query. I demonstrate using output parameters in a
later section.

Suppose that you are given a task to create a stored procedure that handles what’s called
dynamic search conditions to query and filter data from the Sales.Orders table. The procedure
should have four optional input parameters for filtering the orders by order ID, order date,
customer ID, and employee ID. The executing user determines which combination of col-
umns to filter by. The way you make the input parameters optional is by defining them with a
default NULL. If the user doesn’t specify a value for an input parameter, it is set to the default
NULL, telling you that you’re not supposed to apply a filter to the corresponding column.

Run the following code to create the GetOrders stored procedure, which handles the task
at hand:

CREATE OR ALTER PROC dbo.GetOrders
 @orderid AS INT = NULL,
 @orderdate AS DATE = NULL,
 @custid AS INT = NULL,
 @empid AS INT = NULL
AS

SET XACT_ABORT, NOCOUNT ON;

SELECT orderid, orderdate, shippeddate, custid, empid, shipperid
FROM Sales.Orders
WHERE (orderid = @orderid OR @orderid IS NULL)
 AND (orderdate = @orderdate OR @orderdate IS NULL)
 AND (custid = @custid OR @custid IS NULL)
 AND (empid = @empid OR @empid IS NULL);
GO

www.EBooksWorld.ir

	252	 Chapter 3	 Program databases by using Transact-SQL

Observe the header of the stored procedure with the definition of the input parameters
and the syntax for defining default values. Some people like to place the parameter defini-
tions within parentheses, as in:

CREATE OR ALTER PROC dbo.GetOrders
(
 @orderid AS INT = NULL,
 @orderdate AS DATE = NULL,
 @custid AS INT = NULL,
 @empid AS INT = NULL
)
AS...

As for the body of the stored procedure, notice that there’s no mandatory BEGIN-END
block like in multistatement user-defined functions, but you can use one if that’s your styling
preference, as in:

BEGIN

 SET XACT_ABORT, NOCOUNT ON;

 SELECT orderid, orderdate, shippeddate, custid, empid, shipperid
 FROM Sales.Orders
 WHERE (orderid = @orderid OR @orderid IS NULL)
 AND (orderdate = @orderdate OR @orderdate IS NULL)
 AND (custid = @custid OR @custid IS NULL)
 AND (empid = @empid OR @empid IS NULL);

END;

The stored procedure’s code starts by setting the options XACT_ABORT and NOCOUNT
to ON. The XACT_ABORT option determines the effect of run-time errors raised by T-SQL
statements. When this option is OFF (the default in most cases), some errors cause an open
transaction to roll back and the execution of the code to be aborted, whereas other errors
leave the transaction open. To get a more reliable and consistent behavior, I consider it a
best practice to set this option to ON, and this way all errors cause an open transaction to be
rolled back and the execution of the code to be aborted. The NOCOUNT option suppresses
messages indicating how many rows were affected by data manipulation statements. When
it’s OFF (the default), those messages can degrade query performance due to the network
traffic that they generate, plus this causes trouble for client applications that perceive those as
query results.

The code then invokes a query against the Sales.Orders table that filters the data based
on the specified parameters. For each parameter the query’s WHERE clause has the following
disjunction of predicates (predicates separated by an OR operator):

column = @parameter OR @parameter IS NULL

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 253

When the user doesn’t specify an input value, the parameter is set to the default NULL.
In such a case the predicate @parameter IS NULL is true, and therefore the disjunction of
predicates is true, so no filtering is applied. When the user does specify an input value, the
predicate @parameter IS NULL is false, and it is left to the predicate column = @parameter to
determine whether to keep the row or discard it.

Run the following code to test the procedure, asking to filter orders placed on November
11, 2015 by customer 85:

EXEC dbo.GetOrders @orderdate = ‘20151111’, @custid = 85;

This code generates the following output:

orderid orderdate shippeddate custid empid shipperid
----------- ---------- ----------- ----------- ----------- -----------
10737 2015-11-11 2015-11-18 85 2 2

Note that you can also execute the procedure, passing input values without specifying the
target parameter names, but then you need to know the positions of the parameters in the
procedure’s header. Here’s the equivalent to the above procedure execution passing inputs by
position:

EXEC dbo.GetOrders DEFAULT, ‘20151111’, 85, DEFAULT;

Using named parameters is considered a best practice because you need to specify only
the applicable parameters, and you don’t need to know in what order they are defined in the
procedure’s header. The code is also much clearer.

Execute the procedure again, asking to filter the order with order ID 42:

EXEC dbo.GetOrders @orderid = 42;

Such an order doesn’t exist and therefore the procedure returns an empty set:

orderid orderdate shippeddate custid empid shipperid
----------- ---------- ----------- ----------- ----------- -----------

Stored procedures and dynamic SQL
The previous section demonstrated using a stored procedure to handle a dynamic search
conditions task to query and filter data from the Sales.Orders table using a static query. This
section describes an alternative solution that uses dynamic SQL, which is a technique that
involves building a batch of code as a character string, usually in a variable, and then telling
SQL Server to execute the code that resides in that variable.

Using a static query in our case is not ideal in terms of query performance. The reason for
this has to do with the fact that SQL Server caches the execution plan for the query for reuse
in subsequent executions of the stored procedure. The cached plan has to incorporate all
filter predicates and not just the ones that are related to the parameters that are applicable
in the execution that gets optimized. Otherwise, SQL Server would not be able to reuse the
plan in subsequent executions that specify a different set of applicable parameters. This tends

www.EBooksWorld.ir

	254	 Chapter 3	 Program databases by using Transact-SQL

to result in a generalized plan that cannot really be optimal for all possible combinations of
parameters.

One way to get efficient plans is to add the query option RECOMPILE, as in:

<query> OPTION(RECOMPILE);

With this option, in every execution of the stored procedure SQL Server optimizes the
query from scratch, after applying parameter embedding (replacing the parameters with
constants) and normalizing the query to remove the redundant parts. For instance, if you
execute the procedure, providing an input value only to the @orderid parameter (say, 10248),
effectively the query that gets optimized is:

 SELECT orderid, orderdate, shippeddate, custid, empid, shipperid
 FROM Sales.Orders
 WHERE orderid = 10248;

As you can realize, the likelihood to get efficient plans with this solution is quite high. But
this comes at the cost of recompiling the query in every execution of the stored procedure. If
you want to both get optimal plans and optimal cached query plan reuse behavior, you need
to use a different solution. One of the ways to achieve this is to dynamically build the query
string with only the relevant parameterized predicates, and execute the code that you built
with the sp_executesql procedure. Here’s the solution code that implements this approach:

CREATE OR ALTER PROC dbo.GetOrders
 @orderid AS INT = NULL,
 @orderdate AS DATE = NULL,
 @custid AS INT = NULL,
 @empid AS INT = NULL
AS

SET XACT_ABORT, NOCOUNT ON;

DECLARE @sql AS NVARCHAR(MAX) = N’SELECT orderid, orderdate, shippeddate, custid, empid,
shipperid
FROM Sales.Orders
WHERE 1 = 1’
 + CASE WHEN @orderid IS NOT NULL THEN N’ AND orderid = @orderid ‘ ELSE N’’ END
 + CASE WHEN @orderdate IS NOT NULL THEN N’ AND orderdate = @orderdate’ ELSE N’’ END
 + CASE WHEN @custid IS NOT NULL THEN N’ AND custid = @custid ‘ ELSE N’’ END
 + CASE WHEN @empid IS NOT NULL THEN N’ AND empid = @empid ‘ ELSE N’’ END
 + N’;’

EXEC sys.sp_executesql
 @stmt = @sql,
 @params = N’@orderid AS INT, @orderdate AS DATE, @custid AS INT, @empid AS INT’,
 @orderid = @orderid,
 @orderdate = @orderdate,
 @custid = @custid,
 @empid = @empid;
GO

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 255

The code declares a variable called @sql to store the dynamic query string. It constructs it
with the fixed SELECT and FROM parts first. It starts the WHERE clause with the predicate 1 =
1, which is always true, to avoid needing to deal differently with the first applicable element
that needs to be concatenated versus the nonfirst ones. Then, using a CASE expression, for
each applicable parameter (one that is not NULL), the code concatenates a parameterized
predicate to the filter, otherwise an empty string.

The code then executes the dynamically built query by using the sp_executesql procedure.
The first part of the procedure is the @stmt parameter, where you provide the string with the
code that you want to execute (@sql variable in our case). The second part is the @params
parameter, where you declare all of the dynamic batch parameters. In our case, we declare a
corresponding dynamic batch parameter for each of the stored procedure’s parameters. It’s
quite all right if you wish to use the same names for the dynamic batch parameters and the
stored procedure’s parameters as is done in our example. The last part is a series of assign-
ments of the stored procedure’s parameters to the corresponding dynamic batch parameters.

Use the following code to test the stored procedure:

EXEC dbo.GetOrders @orderdate = ‘20151111’, @custid = 85;

You get the following output:

orderid orderdate shippeddate custid empid shipperid
----------- ---------- ----------- ----------- ----------- -----------
10737 2015-11-11 2015-11-18 85 2 2

Each unique query string (same combination of parameters) that is used gets optimized
separately, and SQL Server is able to reuse a previously cached plan when the query string
matches.

There’s a certain caveat related to security when using dynamic SQL. Earlier I mentioned
that SQL Server supports a security model where you grant users EXECUTE permissions on a
stored procedure without granting them direct permissions against the underlying objects.
This way users are able to perform the task only through the stored procedure and not di-
rectly. This capability is known as ownership chaining. However, ownership chaining is limited
only to SELECT, INSERT, UPDATE, and DELETE statements using static SQL, and only when
the owner of the calling and the called objects is the same. Because in our case the code is
executed using dynamic SQL, ownership chaining doesn’t apply and the executing user needs
direct SELECT permissions against the Sales.Orders table. Before I provide a workaround, I
demonstrate the fact that when using dynamic SQL, only EXECUTE permission on the stored
procedure isn’t sufficient.

Run the following code to create a login called login1, and an associated user in the data-
base called user1:

CREATE LOGIN login1 WITH PASSWORD = ‘J345#$)thb’;
GO
CREATE USER user1 FOR LOGIN login1;
GO

www.EBooksWorld.ir

	256	 Chapter 3	 Program databases by using Transact-SQL

Next, run the following code to grant EXECUTE permission on the stored procedure to
user1:

GRANT EXEC ON dbo.GetOrders TO user1;

Use the following code to display the current execution context:

SELECT SUSER_NAME() AS [login], USER_NAME() AS [user];

You should get output similar to the following, with your login name, of course:

login user
------------------------------- -----
MicrosoftAccount\<your acount> dbo

Run the following code to set the execution context to login1:

EXECUTE AS LOGIN = ‘login1’;

Run the following code to display the current execution context again:

SELECT SUSER_NAME() AS [login], USER_NAME() AS [user];

You get the following output indicating that your context indeed changed to login1 as the
login, and user1 as the database user:

login user
------- ------
login1 user1

Run the following code in attempt to execute the stored procedure:

EXEC dbo.GetOrders @orderdate = ‘20151111’, @custid = 85;

You get the following permission error:

Msg 229, Level 14, State 5, Line 882
The SELECT permission was denied on the object ‘Orders’, database ‘TSQLV4’, schema
‘Sales’.

Run the following code to revert back to original execution context:

REVERT;

As a workaround, you can define the stored procedure with an EXECUTE AS clause, to
impersonate the security context of the procedure’s execution to that of the specified entity.
For example, using the option EXECUTE AS OWNER impersonates the security context to
that of the stored procedure’s owner. Alternatively, you can provide a specific user name that
has the right permissions. Run the following code to recreate the stored procedure using the
EXECUTE AS OWNER option:

CREATE OR ALTER PROC dbo.GetOrders
 @orderid AS INT = NULL,
 @orderdate AS DATE = NULL,
 @custid AS INT = NULL,
 @empid AS INT = NULL

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 257

WITH EXECUTE AS OWNER
AS

SET XACT_ABORT, NOCOUNT ON;

DECLARE @sql AS NVARCHAR(MAX) = N’SELECT orderid, orderdate, shippeddate, custid, empid,
shipperid
FROM Sales.Orders
WHERE 1 = 1’
 + CASE WHEN @orderid IS NOT NULL THEN N’ AND orderid = @orderid ‘ ELSE N’’ END
 + CASE WHEN @orderdate IS NOT NULL THEN N’ AND orderdate = @orderdate’ ELSE N’’ END
 + CASE WHEN @custid IS NOT NULL THEN N’ AND custid = @custid ‘ ELSE N’’ END
 + CASE WHEN @empid IS NOT NULL THEN N’ AND empid = @empid ‘ ELSE N’’ END
 + N’;’

EXEC sys.sp_executesql
 @stmt = @sql,
 @params = N’@orderid AS INT, @orderdate AS DATE, @custid AS INT, @empid AS INT’,
 @orderid = @orderid,
 @orderdate = @orderdate,
 @custid = @custid,
 @empid = @empid;
GO

Run the following code to set the execution context to login1:

EXECUTE AS LOGIN = ‘login1’;

Try to execute the stored procedure again:

EXEC dbo.GetOrders @orderdate = ‘20151111’, @custid = 85;

This time the stored procedure runs successfully.

Run the following code to revert back to original execution context:

REVERT;

MORE INFO DYNAMIC SQL AND SECURITY IN STORED PROCEDURES 

The aforementioned method to impersonate the security context of the procedure’s ex-
ecution is quite simple and straightforward, but not always ideal in terms of auditing and
monitoring capabilities. There are more complex, yet more recommended alternatives, in
which you sign the stored procedure with a certificate. You associate the certificate with a
user that cannot login, and grant that user with the appropriate permissions. For more in-
formation on the topic see Erland Sommarskog’s text “The Curse and Blessings of Dynamic
SQL” at http://www.sommarskog.se/dynamic_sql.html and “Giving Permissions through
Stored Procedures” at http://www.sommarskog.se/grantperm.html.

www.EBooksWorld.ir

http://www.sommarskog.se/dynamic_sql.html
http://www.sommarskog.se/grantperm.html

	258	 Chapter 3	 Program databases by using Transact-SQL

Using output parameters and modifying data
If you need to return scalar values back from a stored procedure, you can do this by using
output parameters. Also, unlike with user-defined functions, you can modify data in the data-
base from stored procedures. This section demonstrates both capabilities.

To define a parameter as an output one add the keyword OUTPUT or OUT in its definition.
Also, when executing the procedure, you need to provide a local variable to accept the re-
turned value, and indicate the keyword OUTPUT or OUT again in that assignment, otherwise
the parameter is actually treated as an input one.

As an example, suppose that you need to develop a solution for generating integer keys
with a guarantee for no gaps between the values. For instance, perhaps you need such a solu-
tion to generate invoice numbers and you need an assurance that they are to be consecutive.
You cannot use the identity property or the sequence object because these solutions do not
guarantee that you won’t have gaps between the keys. If you create an identity or sequence
value in a transaction that ends up failing, that value is gone.

You decide to handle the task by creating a table called MySequences where you main-
tain your own custom sequences. For each such sequence you store a row with the sequence
name and the last used value. Whenever you need a new key, you update the relevant row
to increase the current value, query it, and use it in the target table. When you update a row,
your session obtains an exclusive lock on the row and keeps the lock until the end of the
transaction. This means that on one hand no one else can obtain a new value until your trans-
action is over; on the other hand, if the transaction fails, the current sequence value is undone
to the original one. This way you have a guarantee for no gaps.

Use the following code to create the table dbo.MySequences:

DROP TABLE IF EXISTS dbo.MySequences;
GO
CREATE TABLE dbo.MySequences
(
 seqname VARCHAR(128) NOT NULL
 CONSTRAINT PK_MySequences PRIMARY KEY,
 val INT NOT NULL
 CONSTRAINT DFT_MySequences_val DEFAULT(0)
);

Run the following code to add a row representing a sequence for generating invoice num-
bers:

INSERT INTO dbo.MySequences(seqname, val) VALUES(‘SEQINVOICES’, 0);

You name the custom sequence SEQINVOICES and initialize it with 0 so that the first value
that it generates is 1.

Use the following code to create a stored procedure called GetSequenceValue to handle a
request for a new value for a given sequence name:

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 259

CREATE OR ALTER PROC dbo.GetSequenceValue
 @seqname AS VARCHAR(128),
 @val AS INT OUTPUT
AS

SET XACT_ABORT, NOCOUNT ON;

UPDATE dbo.MySequences
 SET @val = val += 1
WHERE seqname = @seqname;

IF @@ROWCOUNT = 0
 THROW 51001, ‘Specified sequence was not found.’, 1;
GO

Observe that the header of the stored procedure defines an input parameter called @seq-
name to accept the input sequence name, and an output parameter called @val to return the
newly generated sequence value. The procedure uses an UPDATE statement with a variable
(covered in Chapter 1) to increment the requested sequence value by 1, and assigns the new
value to the output parameter. If the requested custom sequence doesn’t exist, the UPDATE
statement has affected zero rows, in which case the stored procedure throws an error using
the THROW command.

Use the following code to request a new invoice number:

DECLARE @newinvoicenumber AS INT;
EXEC dbo.GetSequenceValue @seqname = ‘SEQINVOICES’, @val = @newinvoicenumber OUTPUT;
SELECT @newinvoicenumber AS newinvoicenumber;

The code uses a local variable to absorb the returned value from the output parameter.
Notice that you specify the OUTPUT keyword again in the execution; otherwise the parameter
is treated as an input one.

This code generates the following output:

newinvoicenumber

1

Run the code a couple of more times, and see how the sequence value keeps advancing.

Try running the code with a sequence name that doesn’t exist:

DECLARE @newinvoicenumber AS INT;
EXEC dbo.GetSequenceValue @seqname = ‘NOSUCHSEQUENCE’, @val = @newinvoicenumber OUTPUT;
SELECT @newinvoicenumber AS newinvoicenumber;

This time the procedure throws an error:

Msg 51001, Level 16, State 1, Procedure dbo.GetSequenceValue, Line 15 [Batch Start Line
978]
Specified sequence was not found.

Later in the chapter, Skill 3.2 covers error handling.

www.EBooksWorld.ir

	260	 Chapter 3	 Program databases by using Transact-SQL

Using cursors
Another example where the encapsulation provided by stored procedures is beneficial is
when using cursors. A cursor allows you to iterate through rows of some query result one at a
time. Solutions that use cursors tend to be lengthy because you need explicit code to define
the cursor, open it, iterate through its rows, and apply some logic per row, close, and deal-
locate it. With a stored procedure, you can hide all that complexity. Furthermore, if at a later
point you manage to find a better solution, perhaps one that doesn’t use a cursor, you can
simply alter the stored procedure’s implementation. This is transparent to the users of the
stored procedure.

The following example demonstrates the use of a stored procedure with a cursor. It in-
volves a task called depleting quantities. You’re given a table called Transactions, which you
create and populate by running the following code:

DROP TABLE IF EXISTS dbo.Transactions;
GO
CREATE TABLE dbo.Transactions
(
 txid INT NOT NULL CONSTRAINT PK_Transactions PRIMARY KEY,
 qty INT NOT NULL,
 depletionqty INT NULL
);
GO

TRUNCATE TABLE dbo.Transactions;
INSERT INTO dbo.Transactions(txid, qty)
 VALUES(1,2),(2,5),(3,4),(4,1),(5,10),(6,3),(7,1),(8,2),(9,1),(10,2),(11,1),(12,9);

Your task is to create a stored procedure called ComputeDepletionQuantities that process-
es the transactions that are stored in the Transactions table. The procedure should process
the transactions in order based on the txid column. Each transaction adds a certain quan-
tity (qty column) of some item to a container. The container has a limited capacity, which is
provided as an input parameter called @maxallowedqty to the stored procedure. As soon as
the cumulative quantity in the container exceeds the maximum allowed, the container needs
to be depleted, and your code should write the depletion quantity to the depeletionqty
column of the current transaction. At the end of the stored procedure’s execution, rows in the
Transactions table representing transactions where the container was depleted should have
the depletion quantity stored in the depleteqty column, and all remaining rows should have
a NULL in that column. Furthermore, the stored procedure should return a result set showing
the transactions in order, along with the depletion quantity (depleteqty column) where ap-
plicable, and the current cumulative quantity in the container (totalqty column).

After you’re done developing the stored procedure, use the following code to test it:

EXEC dbo.ComputeDepletionQuantities @maxallowedqty = 5;

The stored procedure should return the following output for the given sample data in the
Transactions table and the specified maximum container capacity of 5.

www.EBooksWorld.ir

	 Skill 3.1: Create database programmability objects by using Transact-SQL 	 Chapter 3	 261

txid qty depletionqty totalqty
----------- ----------- ------------ -----------
1 2 NULL 2
2 5 7 0
3 4 NULL 4
4 1 NULL 5
5 10 15 0
6 3 NULL 3
7 1 NULL 4
8 2 6 0
9 1 NULL 1
10 2 NULL 3
11 1 NULL 4
12 9 13 0

The following code demonstrates one way to implement the stored procedure using a
cursor:

CREATE OR ALTER PROC dbo.ComputeDepletionQuantities
 @maxallowedqty AS INT
AS

SET XACT_ABORT, NOCOUNT ON;

UPDATE dbo.Transactions
 SET depletionqty = NULL
WHERE depletionqty IS NOT NULL;

DECLARE @qty AS INT, @sumqty AS INT = 0;

DECLARE C CURSOR FOR
 SELECT qty
 FROM dbo.Transactions
 ORDER BY txid;

OPEN C;

FETCH NEXT FROM C INTO @qty;

WHILE @@FETCH_STATUS = 0
BEGIN
 SET @sumqty += @qty;

 IF @sumqty > @maxallowedqty
 BEGIN
 UPDATE dbo.Transactions
 SET depletionqty = @sumqty
 WHERE CURRENT OF C;

 SET @sumqty = 0;
 END;

 FETCH NEXT FROM C INTO @qty;
END;

www.EBooksWorld.ir

	262	 Chapter 3	 Program databases by using Transact-SQL

CLOSE C;

DEALLOCATE C;

SELECT txid, qty, depletionqty,
 SUM(qty - ISNULL(depletionqty, 0))
 OVER(ORDER BY txid ROWS UNBOUNDED PRECEDING) AS totalqty
FROM dbo.Transactions
ORDER BY txid;
GO

The code starts by updating the Transactions table, setting the depletionqty column to
NULL where it currently isn’t NULL.

Next, the code declares local variables called @qty and @sumqty to hold the current
transaction’s quantity and current cumulative quantity (initialized with 0), respectively.

The code then declares a cursor based on a query that returns the transaction quantities in
order, opens it, and fetches the first transaction’s quantity into the @qty variable.

Next, the code executes a loop that iterates per transaction while the last fetch was suc-
cessful (@@FETCH_STATUS function returns 0, meaning we haven’t reached the end of the
cursor yet). In each iteration of the loop, the code increases the current cumulative quantity
(@sumqty variable) by the current transaction’s quantity (@qty variable). If the new cumula-
tive quantity exceeds the maximum allowed in the container, the code applies two steps. One,
it uses the syntax UPDATE <table> WHERE CURRENT OF <cursor> to update the depletion
quantity of the Transactions table’s row that the cursor is currently positioned on to the new
cumulative quantity. Two, it resets the current cumulative quantity to 0. Before finishing the
current iteration of the loop, the code fetches the next transaction’s quantity into the @qty
variable.

After the loop is done with all of its iterations, the code closes and deallocates the cursor.

At this point the Transactions table is updated with the correct depletion quantities in the
applicable transactions. The code finally issues a query that in addition to returning the cur-
rent data from the Transactions table, also computes the current total quantity in the con-
tainer (totalqty column) after each transaction. The query uses the following expression based
on a window function to compute the totalqty result column:

SUM(qty - ISNULL(depletionqty, 0))
 OVER(ORDER BY txid ROWS UNBOUNDED PRECEDING) AS totalqty

The computation is a running total of all transaction quantities minus the depletion quan-
tities (or zero if NULL) based on txid ordering, from the beginning of the activity and up to
the current transaction.

Run the following code to test the stored procedure with a maximum allowed capacity of
5:

EXEC dbo.ComputeDepletionQuantities @maxallowedqty = 5;

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 263

Verify that you get the correct result, which was provided earlier. Of course, feel free to
test the procedure with different input values.

FURTHER READING  TRIGGERS 

A trigger, in a way, is a special kind of stored procedure. You associate a trigger with an
event, such as an insert against a table, and the trigger’s code runs automatically whenever
such an event takes place. You can use triggers for purposes such as auditing, enforcing
complex integrity rules that cannot be enforced with constraints, and more. Triggers are
outside the scope of this book because they are not part of the exam’s skill set. If you’re
interested in information about triggers, see the online documentation at https://msdn.
microsoft.com/en-us/library/ms189799.aspx.

When you’re done, run the following code for cleanup:

DROP USER IF EXISTS user1;
GO
DROP LOGIN login1;
GO
DROP PROC IF EXISTS dbo.GetOrders, dbo.GetSequenceValue, dbo.ComputeDepletionQuantities;
DROP TABLE IF EXISTS dbo.MySequences, dbo.Transactions;

Skill 3.2: Implement error handling and transactions

Transactions and error handling are two mechanisms in SQL Server that enable you to work
with a consistent database and define the course of action to take in case of errors. The two
are strongly intertwined. When errors happen in transactions, the default handling of SQL
Server is not always the desired one; with your own error handling, you have some degree of
control over the outcome. This skill starts with coverage of transactions. It then describes the
error handling constructs that T-SQL supports. It then explains how to handle errors that hap-
pen in transactions.

This section covers how to:
■■ Determine results of Data Definition Language (DDL) statements based on

transaction control statements

■■ Implement TRY…CATCH error handling with Transact-SQL

■■ Generate error messages with THROW and RAISERROR

■■ Implement transaction control in conjunction with error handling in stored
procedures

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms189799.aspx
https://www.msdn.microsoft.com/en-us/library/ms189799.aspx

	264	 Chapter 3	 Program databases by using Transact-SQL

FURTHER READING  ERROR HANDLING 

Much of what I learned about error handling I learned from fellow Data Platform MVP Er-
land Sommarskog. Erland spent a lifetime creating and maintaining detailed texts covering
various important topics related to SQL Server. His texts are considered the go to resource
for the subject matter, and are worth their weight in gold. I cannot give you better advice
in terms of learning about error handling in SQL Server than suggesting that besides going
over the material in this book, you read his articles on the topic. You can find Erland’s texts
in his website at http://www.sommarskog.se. He wrote a multi-part series on error han-
dling. Make sure that at minimum you read Part One – Jumpstart Error Handling at http://
www.sommarskog.se/error_handling/Part1.html and Part Two – Commands and Mecha-
nisms at http://www.sommarskog.se/error_handling/Part2.html.

Understanding transactions
A transaction is a unit of work with one or more activities that manipulate data, and possibly
its structure (yes, unlike in some other database platforms, in SQL Server most DDL is trans-
actional!). A transaction has, or at least should have, four main properties known collectively
as the ACID properties. A stands for atomicity, C for consistency, I for isolation, and D for
durability.

Theoretically, a transaction should be atomic; namely either complete in its entirety or not
take place at all. In practice, this is not always the default behavior in SQL Server, and in order
to achieve true atomicity, you need to add your own error handling code.

A transaction should be consistent; namely, it should transition the database from one con-
sistent state to another in terms of adhering to the data model, constraints, and triggers.

A transaction should be isolated; this means that intermediate inconsistent states of the
data are supposed to be visible only to the transaction that made the changes, but not to
other transactions. You can set what’s called an isolation level either at the session level with a
SET TRANSACTION ISOLATION LEVEL option, or at the query level with a table hint to control
the degree of isolation that you get.

MORE INFO ON ISOLATION LEVELS 

You can find more information on isolation levels at https://technet.microsoft.com/en-us/
library/ms189122(v=sql.105).aspx.

Finally, a transaction should be durable; this means that when you commit the transaction
and get an acknowledge from the database that the transaction committed successfully, you
can rest assured that the transaction’s changes are durable. This means that the changes can
survive a crash of the SQL Server process, such as a result of a power failure event.

This section explains how to define transactions, nesting of transactions, and working with
savepoints.

www.EBooksWorld.ir

http://www.sommarskog.se
http://www.sommarskog.se/error_handling/Part1.html
http://www.sommarskog.se/error_handling/Part1.html
http://www.sommarskog.se/error_handling/Part2.html
https://www.technet.microsoft.com/en-us/library/ms189122(v=sql.105).aspx
https://www.technet.microsoft.com/en-us/library/ms189122(v=sql.105).aspx

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 265

Defining transactions
SQL Server allows you to either explicitly define the transaction’s boundaries yourself or to
let it define those implicitly for you. To explicitly mark the beginning of a transaction, use the
BEGIN TRANSACTION statement (or BEGIN TRAN for brevity). To end the transaction and
commit its work, use the COMMIT TRANSACTION statement (supported alternatives: COM-
MIT TRAN, COMMIT WORK and just COMMIT). To end a transaction and roll back its work,
undoing all of its changes, use the ROLLBACK TRANSACTION statement (supported alterna-
tives: ROLLBACK TRAN, ROLLBACK WORK and just ROLLBACK).

You can query a function called @@TRANCOUNT to know whether you’re currently in an
open transaction or not. If you’re in an open transaction the function returns a value greater
than zero, otherwise, it returns zero. I provide more details about this function later under the
topic Nesting of transactions.

As an example, the following code uses an explicit user transaction to add a new order to
the TSQLV4 sample database:

USE TSQLV4;
SET XACT_ABORT, NOCOUNT ON;

-- start a new transaction
BEGIN TRAN;

-- declare a variable
DECLARE @neworderid AS INT;

-- insert a new order into the Sales.Orders table
INSERT INTO Sales.Orders
 (custid, empid, orderdate, requireddate, shippeddate,
 shipperid, freight, shipname, shipaddress, shipcity,
 shippostalcode, shipcountry)
 VALUES
 (1, 1, ‘20170212’, ‘20170301’, ‘20170216’,
 1, 10.00, N’Shipper 1’, N’Address AAA’, N’City AAA’,
 N’11111’, N’Country AAA’);

-- save the new order id in the variable @neworderid
SET @neworderid = SCOPE_IDENTITY();

PRINT ‘Added new order header with order ID ‘ + CAST(@neworderid AS VARCHAR(10))
 + ‘. @@TRANCOUNT is ‘ + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

-- insert order lines for new order into Sales.OrderDetails
INSERT INTO Sales.OrderDetails(orderid, productid, unitprice, qty, discount)
 VALUES(@neworderid, 1, 10.00, 1, 0.000),
 (@neworderid, 2, 10.00, 1, 0.000),
 (@neworderid, 3, 10.00, 1, 0.000);

PRINT ‘Added order lines to new order. @@TRANCOUNT is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

-- commit the transaction
COMMIT TRAN;

www.EBooksWorld.ir

	266	 Chapter 3	 Program databases by using Transact-SQL

The examples in this section use ad-hoc batches for simplicity, but in a later section you
will encapsulate the code in a stored procedure. The code starts by setting the XACT_ABORT
and NOCOUNT options to ON. As a reminder, when the XACT_ABORT setting is off (the
default), not all run-time errors cause the transaction to roll back, and execution of the code
to abort. By setting this option to on, you provide a more consistent and expected behavior
from transactions whereby all errors cause the transaction to roll back and execution of the
code to abort. By setting the NOCOUNT option to ON you request to suppress messages
reporting how many rows were affected by DML statements.

The code uses a single transaction to add both an order header to the Sales.Orders table,
and corresponding order lines to the Sales.OrderDetails table. After inserting the order head-
er row to Orders, the code saves the order ID that was just generated by the identity property
to a variable, and then uses the variable when adding the order line rows to OrderDetails.

This code prints the state of the transaction after each of the INSERT statements, generat-
ing the following output:

Added new order header with order ID 11078. @@TRANCOUNT is 1.
Added order lines to new order. @@TRANCOUNT is 1.

In case you already ran code that added orders previously, the new order ID that SQL
Server creates for your new order may be different than in the earlier example. Remember
that you can always run the code that creates the sample database TSQLV4 to start with a
clean copy.

Remember that because you set the XACT_ABORT setting to ON, if there had been a
run-time error after any of the INSERT statements, the transaction would have rolled back in
its entirety and execution of the code would have been aborted. In our case, the transaction
completed successfully. If you now query the Orders and OrderDetails tables, you find the
data for the new order, including both the order header and its corresponding order lines.
Run the following code to achieve this (use the order ID that you got in case it’s different than
the one in this example):

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders
WHERE orderid = 11078;

SELECT orderid, productid, qty
FROM Sales.OrderDetails
WHERE orderid = 11078;

This code generates the following output:

orderid orderdate custid empid
----------- ---------- ----------- -----------
11078 2017-02-12 1 1

orderid productid qty
----------- ----------- ------
11078 1 1
11078 2 1
11078 3 1

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 267

Next, run the following code to try adding an order with an invalid order line where the
discount is greater that 1:

SET XACT_ABORT, NOCOUNT ON;

BEGIN TRAN;

DECLARE @neworderid AS INT;

INSERT INTO Sales.Orders
 (custid, empid, orderdate, requireddate, shippeddate,
 shipperid, freight, shipname, shipaddress, shipcity,
 shippostalcode, shipcountry)
 VALUES
 (2, 2, ‘20170212’, ‘20170301’, ‘20170216’,
 2, 20.00, N’Shipper 2’, N’Address BBB’, N’City BBB’,
 N’22222’, N’Country BBB’);

SET @neworderid = SCOPE_IDENTITY();

PRINT ‘Added new order header with order ID ‘ + CAST(@neworderid AS VARCHAR(10))
 + ‘. @@TRANCOUNT is ‘ + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

INSERT INTO Sales.OrderDetails(orderid, productid, unitprice, qty, discount)
 VALUES(@neworderid, 1, 20.00, 2, 2.000), -- CHECK violation since discount > 1
 (@neworderid, 2, 20.00, 2, 0.000),
 (@neworderid, 3, 20.00, 2, 0.000);

PRINT ‘Added order lines to new order. @@TRANCOUNT is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

COMMIT TRAN;

The first INSERT statement, which adds the order header row, completes successfully.
However, the second INSERT statement, which attempts to add the order lines, fails due to a
CHECK constraint violation because one of the order lines has a discount value that is greater
than 1. The table has a CHECK constraint that limits the discount to the range 0 through 1.
You can see the constraints that are defined on the table by running the following code:

EXEC sys.sp_helpconstraint ‘Sales.OrderDetails’;

Because the XACT_ABORT setting is turned on, the error causes the transaction to roll
back and execution of the code to abort. The execution of the code generates the following
output:

Added new order header with order ID 11079. @@TRANCOUNT is 1.
Msg 547, Level 16, State 0, Line 86
The INSERT statement conflicted with the CHECK constraint “CHK_discount”. The conflict
occurred in database “TSQLV4”, table “Sales.OrderDetails”, column ‘discount’.

Query both tables looking for the rows that are related to the new order:

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders

www.EBooksWorld.ir

	268	 Chapter 3	 Program databases by using Transact-SQL

WHERE orderid = 11079;

SELECT orderid, productid, qty
FROM Sales.OrderDetails
WHERE orderid = 11079;

You get empty sets back from both queries:

orderid orderdate custid empid
----------- ---------- ----------- -----------

orderid productid qty
----------- ----------- ------

If you don’t explicitly define the transaction boundaries, SQL Server uses an autocommit
mode where each individual statement is considered a separate transaction, as if it’s preceded
by a BEGIN TRAN statement and followed by a COMMIT TRAN statement. Note that with
most statements, the individual statement must be atomic, meaning that the single statement
either completes in its entirety or not take place at all. For instance, suppose that you issue a
DELETE statement that deletes 100 rows from a table under autocommit mode. If the state-
ment fails before completion, say after 17 rows were deleted, SQL Server undoes the change.
Either all 100 rows get deleted, or none at all.

EXAM TIP

The types of statements that are considered transactional statements include DML state-
ments (such as SELECT against a table, INSERT, UPDATE, DELETE, TRUNCATE, MERGE), many
DDL statements such as creating, altering and dropping tables, DCL statements like GRANT
and REVOKE, and others. Assigning values to variables as well as modifying data in table
variables are not transactional operations, so if you applied such activities in a transaction
that ended up rolling back, those activities are not undone.

In our example of adding an order, it’s not a good idea to use the autocommit mode be-
cause under this mode the statements that add the order header and order lines are treated
as two separate transactions. If the first succeeds and the second fails, you end up with the
order header added without related order lines. The following code demonstrates this:

SET XACT_ABORT, NOCOUNT ON;

DECLARE @neworderid AS INT;

INSERT INTO Sales.Orders
 (custid, empid, orderdate, requireddate, shippeddate,
 shipperid, freight, shipname, shipaddress, shipcity,
 shippostalcode, shipcountry)
 VALUES
 (3, 3, ‘20170212’, ‘20170301’, ‘20170216’,
 3, 30.00, N’Shipper 3’, N’Address CCC’, N’City CCC’,
 N’33333’, N’Country CCC’);

SET @neworderid = SCOPE_IDENTITY();

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 269

PRINT ‘Added new order header with order ID ‘ + CAST(@neworderid AS VARCHAR(10))
 + ‘. @@TRANCOUNT is ‘ + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

INSERT INTO Sales.OrderDetails(orderid, productid, unitprice, qty, discount)
 VALUES(@neworderid, 1, 30.00, 3, 2.000), -- CHECK violation since discount > 1
 (@neworderid, 2, 30.00, 3, 0.000),
 (@neworderid, 3, 30.00, 3, 0.000);

PRINT ‘Added order lines to new order. @@TRANCOUNT is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

This code generates the following output:

Added new order header with order ID 11080. @@TRANCOUNT is 0.
Msg 547, Level 16, State 0, Line 126
The INSERT statement conflicted with the CHECK constraint “CHK_discount”. The conflict
occurred in database “TSQLV4”, table “Sales.OrderDetails”, column ‘discount’.

Notice that this time you were not in an open transaction after adding the order header
row. Query the tables to see if any rows related to the new order survived:

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders
WHERE orderid = 11080;

SELECT orderid, productid, qty
FROM Sales.OrderDetails
WHERE orderid = 11080;

This code generates the following output:

orderid orderdate custid empid
----------- ---------- ----------- -----------
11080 2017-02-12 3 3

orderid productid qty
----------- ----------- ------

Observe that the order header row exists, but there are no corresponding order lines.
That’s obviously an undesirable outcome, which is why it’s important to perform both activi-
ties in a single transaction and not in two separate ones.

The SQL standard defines an implicit transactions mode, which is supposed to be the
default mode for working with transactions. Under this mode, when you issue a transactional
statement, if a transaction is not open at that point, the system is supposed to open an im-
plicit transaction for you. However, unlike under the default autocommit mode in SQL Server,
under the standard implicit transactions mode you are responsible for explicitly closing the
transaction by either committing it or rolling it back. You enable the standard implicit trans-
actions mode by setting the session option IMPLICIT_TRANSACTIONS to ON, like so (make
sure you run this code for the next demo to work):

SET IMPLICIT_TRANSACTIONS ON;

www.EBooksWorld.ir

	270	 Chapter 3	 Program databases by using Transact-SQL

Assuming you enabled this option, run the following code to add another order to the
system:

SET XACT_ABORT, NOCOUNT ON;

DECLARE @neworderid AS INT;

-- following statement triggers the opening of a transaction but doesn’t close it
INSERT INTO Sales.Orders
 (custid, empid, orderdate, requireddate, shippeddate,
 shipperid, freight, shipname, shipaddress, shipcity,
 shippostalcode, shipcountry)
 VALUES
 (4, 4, ‘20170212’, ‘20170301’, ‘20170216’,
 1, 40.00, N’Shipper 1’, N’Address AAA’, N’City AAA’,
 N’11111’, N’Country AAA’);

SET @neworderid = SCOPE_IDENTITY();

PRINT ‘Added new order header with order ID ‘ + CAST(@neworderid AS VARCHAR(10))
 + ‘. @@TRANCOUNT is ‘ + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

INSERT INTO Sales.OrderDetails(orderid, productid, unitprice, qty, discount)
 VALUES(@neworderid, 1, 40.00, 4, 0.000),
 (@neworderid, 2, 40.00, 4, 0.000),
 (@neworderid, 3, 40.00, 4, 0.000);

PRINT ‘Added order lines to new order. @@TRANCOUNT is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

-- must explicitly commit the transaction
COMMIT TRAN;

Notice that this time there’s no explicit BEGIN TRAN statement because you’re relying on
the implicit transactions mode, but there is an explicit COMMIT TRAN statement. This code
generates the following output:

Added new order header with order ID 11081. @@TRANCOUNT is 1.
Added order lines to new order. @@TRANCOUNT is 1.

This time both the addition of the order header and the addition of the order lines ran in
a single implicit transaction. If there had been a failure in any of the statements, the entire
transaction would have rolled back. In our case, the transaction completed successfully. Query
the tables to see the data that was added:

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders
WHERE orderid = 11081;

SELECT orderid, productid, qty
FROM Sales.OrderDetails
WHERE orderid = 11081;

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 271

This code generates the following output:

orderid orderdate custid empid
----------- ---------- ----------- -----------
11081 2017-02-12 4 4

orderid productid qty
----------- ----------- ------
11081 1 4
11081 2 4
11081 3 4

Run the following code to turn the implicit transactions mode back off:

SET IMPLICIT_TRANSACTIONS OFF;

Having implicit transactions turned on is usually a bad idea. It increases the likelihood
that transactions stay open for long periods, or worse, just stay open until someone realizes
that that’s the case and manually intervenes. Long open transactions can cause performance
problems in the system, including blocking and others. Also, your code has to be written dif-
ferently to work with implicit transactions.

Remember that both DML and DDL are transactional in SQL Server. However, assignment
of values to variables as well as changes to table variables are not transactional, other than
each individual statement having to complete in its entirety or not take place at all. Run the
following code to see that DDL is transactional:

DROP TABLE IF EXISTS dbo.T1;

BEGIN TRAN;

CREATE TABLE dbo.T1(col1 INT);
INSERT INTO dbo.T1(col1) VALUES(1),(2),(3);
PRINT ‘In transaction’;
SELECT col1 FROM dbo.T1;

ROLLBACK TRAN;

PRINT ‘After transaction’;
SELECT col1 FROM dbo.T1;

This code generates the following output under Results to Text (Ctrl + T):

In transaction
col1

1
2
3

After transaction
Msg 208, Level 16, State 1, Line 206
Invalid object name ‘dbo.T1’.

www.EBooksWorld.ir

	272	 Chapter 3	 Program databases by using Transact-SQL

As you can see, the table creation and population were both undone when the transaction
was rolled back. As a result, the attempt to query the table after the ROLLBACK TRAN state-
ment was submitted generates an error because the table doesn’t exist at that point.

Run the following code to see that changes to a table variable are not undone when a
transaction is rolled back:

BEGIN TRAN;

DECLARE @T1 AS TABLE(col1 INT);
INSERT INTO @T1(col1) VALUES(1),(2),(3);
PRINT ‘In transaction’;
SELECT col1 FROM @T1;

ROLLBACK TRAN;

PRINT ‘After transaction’;
SELECT col1 FROM @T1;

This code generates the following output, again, under Results to Text:

In transaction
col1

1
2
3

After transaction
col1

1
2
3

As you can see, the table variable itself, as well as the data that you inserted into it, are still
present after the transaction was rolled back. As mentioned, you would get the same behav-
ior when assigning values to regular variables in a transaction.

Nesting of transactions
SQL Server doesn’t support a true concept of nested transactions where you can have an in-
ner transaction that is completely independent of an outer one. Rather, in SQL Server you’re
either in a transaction or not. When you issue a BEGIN TRAN statement, SQL Server increases
the value of @@TRANCOUNT in order to know when it needs to truly open a transaction—
when @@TRANCOUNT changes from zero to a greater-than-zero value. Issuing a BEGIN
TRAN statement when @@TRANCOUNT is already greater than zero has no real effect other
than increasing the @@TRANCOUNT value. When you issue a COMMIT TRAN statement SQL
Server decreases the @@TRANCOUNT value by 1. SQL Server truly commits the transaction
only if you issue a COMMIT TRAN statement when @@TRANCOUNT is 1 prior to committing.
However, if you issue a ROLLBACK TRAN statement in an open transaction, never mind the
current value of @@TRANCOUNT, SQL Server rolls back the entire transaction.

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 273

Run the following code to test the behavior of nested BEGIN TRAN statement:

SET NOCOUNT ON;
DROP TABLE IF EXISTS dbo.T1;
GO
CREATE TABLE dbo.T1(col1 INT);

PRINT ‘@@TRANCOUNT before first BEGIN TRAN is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

BEGIN TRAN;

PRINT ‘@@TRANCOUNT after first BEGIN TRAN is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

BEGIN TRAN;

PRINT ‘@@TRANCOUNT after second BEGIN TRAN is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

BEGIN TRAN;

PRINT ‘@@TRANCOUNT after third BEGIN TRAN is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

INSERT INTO dbo.T1 VALUES(1),(2),(3);

COMMIT TRAN; -- this doesn’t really commit

PRINT ‘@@TRANCOUNT after first COMMIT TRAN is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

ROLLBACK TRAN; -- this does roll the transaction back

PRINT ‘@@TRANCOUNT after ROLLBACK TRAN is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

SELECT col1 FROM dbo.T1;

This code generates the following output:

@@TRANCOUNT before first BEGIN TRAN is 0.
@@TRANCOUNT after first BEGIN TRAN is 1.
@@TRANCOUNT after second BEGIN TRAN is 2.
@@TRANCOUNT after third BEGIN TRAN is 3.
@@TRANCOUNT after first COMMIT TRAN is 2.
@@TRANCOUNT after ROLLBACK TRAN is 0.
col1

Observe that every BEGIN TRAN statement increased the @@TRANCOUNT value by 1, but
as soon as the ROLLBACK TRAN statement was issued, @@TRANCOUNT dropped to 0. Also,
observe that the INSERT statement that added three rows to the table T1 was rolled back
even though you issued a COMMIT TRAN statement after it, because that statement did not
really commit the transaction.

www.EBooksWorld.ir

	274	 Chapter 3	 Program databases by using Transact-SQL

EXAM TIP

The point in supporting nested BEGIN TRAN-COMMIT TRAN statements is to allow you
to issue those statements within a stored procedure without needing to check first if a
transaction is already open. If your procedure actually opens the transaction, its COMMIT
TRAN statement is supposed to also actually commit it as well. However, if a transaction
was opened by an outer module or batch, it’s not supposed to be the inner procedure’s
choice to actually commit it, rather the outer module’s choice. Just make sure to remember
that if you issue a ROLLBACK TRAN statement at any point, even if you do so from an inner
module that was not the one that actually opened the transaction, this causes the entire
transaction to truly roll back and all of its changes to be undone. The following example
demonstrates this.

Normally, you would encapsulate the logic of the previously demonstrated task of adding
an order within a stored procedure. You can pass the order header info to the stored proce-
dure as scalar input parameters. However, because the order lines info should be passed as a
set, you would probably want to work with a table valued parameter, or a TVP in short. Before
using a TVP you need to prepare a table type, which is a table definition that you store as an
object in the database and later use as a type for table variables and TVPs. Run the following
code to create the type dbo.OrderLines for this purpose:

DROP TYPE IF EXISTS dbo.OrderLines;
GO
CREATE TYPE dbo.OrderLines AS TABLE
(
 productid INT NOT NULL PRIMARY KEY,
 unitprice MONEY NOT NULL CHECK (unitprice >= 0),
 qty SMALLINT NOT NULL CHECK (qty > 0),
 discount NUMERIC(4, 3) NOT NULL CHECK (discount BETWEEN 0 AND 1)
);

Run the following code to create the stored procedure dbo.AddOrder:

CREATE OR ALTER PROC dbo.AddOrder
 @custid AS INT,
 @empid AS INT,
 @orderdate AS DATE,
 @requireddate AS DATE,
 @shippeddate AS DATE,
 @shipperid AS INT,
 @freight AS MONEY,
 @shipname AS NVARCHAR(40),
 @shipaddress AS NVARCHAR(60),
 @shipcity AS NVARCHAR(15),
 @shipregion AS NVARCHAR(15),
 @shippostalcode AS NVARCHAR(10),
 @shipcountry AS NVARCHAR(15),
 @OrderLines AS dbo.OrderLines READONLY,
 @neworderid AS INT OUT
AS

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 275

SET XACT_ABORT, NOCOUNT ON;

BEGIN TRAN;

-- add order header
INSERT INTO Sales.Orders
 (custid, empid, orderdate, requireddate, shippeddate,
 shipperid, freight, shipname, shipaddress, shipcity,
 shippostalcode, shipcountry)
 VALUES
 (@custid, @empid, @orderdate, @requireddate, @shippeddate,
 @shipperid, @freight, @shipname, @shipaddress, @shipcity,
 @shippostalcode, @shipcountry);

SET @neworderid = SCOPE_IDENTITY();

-- add order lines
INSERT INTO Sales.OrderDetails(orderid, productid, unitprice, qty, discount)
 SELECT @neworderid, productid, unitprice, qty, discount
 FROM @OrderLines;

COMMIT TRAN;

The first 13 parameters contain the order header’s attributes. The 14th parameter is a TVP
named @OrderLines and is of the OrderLines table type. Notice that it has to be marked as
READONLY, meaning that you cannot apply changes to its contents. In our case, it is sufficient
as a read-only parameter. The 15th parameter is an output parameter through which you
return the newly generated order ID to the caller.

The procedure starts by setting XACT_ABORT and NOCOUNT to ON as suggested earlier.
You want to make sure that if any errors occur, you never leave the transaction open. The
code then performs the addition of the order header and order lines in an explicit transac-
tion. What’s currently missing is error handling code, but I take care of this in the section Error
handling with TRY-CATCH.

To execute the stored procedure from T-SQL, you first need to declare a table variable of
the OrderLines table type and populate it with rows. You then assign the table variable to
the TVP when you call the stored procedure. You also prepare a variable to collect the newly
generated order ID from the output parameter. Here’s an example for executing the stored
procedure:

DECLARE @MyOrderLines AS dbo.OrderLines, @myneworderid AS INT;

INSERT INTO @MyOrderLines(productid, unitprice, qty, discount)
 VALUES(1, 50.00, 5, 0.000),
 (2, 50.00, 5, 0.000),
 (3, 50.00, 5, 0.000);

EXEC dbo.AddOrder
 @custid = 5,
 @empid = 5,
 @orderdate = ‘20170212’,
 @requireddate = ‘20170301’,

www.EBooksWorld.ir

	276	 Chapter 3	 Program databases by using Transact-SQL

 @shippeddate = ‘20170216’,
 @shipperid = 2,
 @freight = 50.00,
 @shipname = N’Shipper 2’,
 @shipaddress = N’Address BBB’,
 @shipcity = N’City BBB’,
 @shipregion = N’Region BBB’,
 @shippostalcode = N’22222’,
 @shipcountry = N’Country BBB’,
 @OrderLines = @MyOrderLines,
 @neworderid = @myneworderid OUT;

PRINT ‘Added new order with order ID ‘
 + CAST(@myneworderid AS VARCHAR(10)) + ‘.’;

This code generates the following output:

Added new order with order ID 11082.

Run the following code to query the data for the new order:

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders
WHERE orderid = 11082;

SELECT orderid, productid, qty
FROM Sales.OrderDetails
WHERE orderid = 11082;

This code generates the following output:

orderid orderdate custid empid
----------- ---------- ----------- -----------
11082 2017-02-12 5 5

orderid productid qty
----------- ----------- ------
11082 1 5
11082 2 5
11082 3 5

Next, run the following code to execute the stored procedure from an explicit transaction,
and then roll the transaction back:

BEGIN TRAN;

DECLARE @MyOrderLines AS dbo.OrderLines, @myneworderid AS INT;

INSERT INTO @MyOrderLines(productid, unitprice, qty, discount)
 VALUES(1, 60.00, 6, 0.000),
 (2, 60.00, 6, 0.000),
 (3, 60.00, 6, 0.000);

EXEC dbo.AddOrder
 @custid = 6,
 @empid = 6,

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 277

 @orderdate = ‘20170212’,
 @requireddate = ‘20170301’,
 @shippeddate = ‘20170216’,
 @shipperid = 3,
 @freight = 60.00,
 @shipname = N’Shipper 3’,
 @shipaddress = N’Address CCC’,
 @shipcity = N’City CCC’,
 @shipregion = N’Region CCC’,
 @shippostalcode = N’33333’,
 @shipcountry = N’Country CCC’,
 @OrderLines = @MyOrderLines,
 @neworderid = @myneworderid OUT;

PRINT ‘Added new order with order ID ‘
 + CAST(@myneworderid AS VARCHAR(10)) + ‘.’;

ROLLBACK TRAN;

This code generates the following output:

Added new order with order ID 11083.

The COMMIT TRAN statement within the stored procedure doesn’t truly commit the trans-
action because it doesn’t reduce @@TRANCOUNT to zero. Because the outer batch issues a
ROLLBACK TRAN statement, the work that added the header and lines of order 11083 was
undone. Query the tables to look for the data of the new order:

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders
WHERE orderid = 11083;

SELECT orderid, productid, qty
FROM Sales.OrderDetails
WHERE orderid = 11083;

This code generates the following output:

orderid orderdate custid empid
----------- ---------- ----------- -----------

orderid productid qty
----------- ----------- ------

Note that if you insist on actually committing the transaction in your stored procedure
irrespective of whether you started it or not, you can use a loop that keeps committing until
@@TRANCOUNT drops to zero, like so:

WHILE @@TRANCOUNT > 0
 COMMIT TRAN;

This isn’t considered a very good practice because someone who started a transaction and
then called your procedure also expects to be able to control whether to commit it or roll it
back. Also, if there’s a mismatch between the @@TRANCOUNT values when the procedure

www.EBooksWorld.ir

	278	 Chapter 3	 Program databases by using Transact-SQL

starts and when it finishes, SQL Server generates error 266 indicating the mismatch. Though
this error doesn’t terminate an open transaction and doesn’t abort the execution of the code
even if XACT_ABORT is set to ON.

To demonstrate this I use a stored procedure called dbo.Proc1 that uses an explicit trans-
action to create a table called dbo.DoIExist, with a loop that keeps committing until @@
TRANCOUNT drops to zero. Run the following code to create the stored procedure:

CREATE OR ALTER PROC dbo.Proc1
AS

SET XACT_ABORT, NOCOUNT ON;

BEGIN TRAN;

PRINT ‘In transaction in proc. @@TRANCOUNT is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

CREATE TABLE dbo.DoIExist(col1 int);

WHILE @@TRANCOUNT > 0
 COMMIT TRAN;

PRINT ‘Still in proc. @@TRANCOUNT is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;
GO

Use the following code to test the procedure without first opening a transaction in the
outer batch:

DROP TABLE IF EXISTS dbo.DoIExist;

EXEC dbo.Proc1;

IF OBJECT_ID(‘dbo.DoIExist’) IS NOT NULL
 PRINT ‘DoIExist exists.’
ELSE
 PRINT ‘DoIExist does not exist.’;

PRINT ‘Still in batch. @@TRANCOUNT is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

This code generates the following output, as expected:

In transaction in proc. @@TRANCOUNT is 1.
Still in proc. @@TRANCOUNT is 0.
DoIExist exists.
Still in batch. @@TRANCOUNT is 0.

Now execute the stored procedure from an outer transaction that you wish to roll back:

DROP TABLE IF EXISTS dbo.DoIExist;

BEGIN TRAN;

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 279

EXEC dbo.Proc1;

PRINT ‘Still in batch. @@TRANCOUNT is ‘
 + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

IF @@TRANCOUNT > 0
 ROLLBACK TRAN;

IF OBJECT_ID(‘dbo.DoIExist’) IS NOT NULL
 PRINT ‘DoIExist exists.’
ELSE
 PRINT ‘DoIExist does not exist.’;

This code generates the following output:

In transaction in proc. @@TRANCOUNT is 2.
Still in proc. @@TRANCOUNT is 0.
Msg 266, Level 16, State 2, Procedure dbo.Proc1, Line 0 [Batch Start Line 436]
Transaction count after EXECUTE indicates a mismatching number of BEGIN and COMMIT
statements. Previous count = 1, current count = 0.
Still in batch. @@TRANCOUNT is 0.
DoIExist exists.

The stored procedure actually committed the transaction even though it wasn’t the one
that opened it. You get an error indicating the mismatch in the @@TRANCOUNT values when
entering and leaving the procedure, but this error doesn’t stop the execution of the code and
doesn’t cause the transaction to roll back. The table creation gets committed and the outer
batch’s ROLLBACK TRAN statement doesn’t get the chance to execute.

Working with named transactions, savepoints, and markers
T-SQL supports indicating a name as part of the ROLLBACK TRAN[SACTION] statement, as in:

ROLLBACK TRAN SomeName;

The name has to have a binary match either with an outermost transaction name that you
assigned earlier with the statement BEGIN TRAN[SACTION] <name>, or a savepoint name
that you assigned earlier with the statement SAVE TRAN[SACTION] <name>.

The idea behind rolling back to a transaction name is to verify that you’re explicitly rolling
back the outermost transaction. If that’s not the case, you get an error. As an example, run the
following code:

SET XACT_ABORT OFF;
BEGIN TRAN OutermostTran;
BEGIN TRAN InnerTran1;
BEGIN TRAN InnerTran2;
ROLLBACK TRAN OutermostTran;
PRINT ‘@@TRANCOUNT is ‘ + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

Because there’s a match between the names in the ROLLBACK TRAN statement and the
outermost BEGIN TRAN statement, the outermost transaction is rolled back successfully. This
code generates the following output:

www.EBooksWorld.ir

	280	 Chapter 3	 Program databases by using Transact-SQL

@@TRANCOUNT is 0.

As another example, run the following code, this time specifying an inner transaction
name in the ROLLBACK TRAN statement:

SET XACT_ABORT OFF;
BEGIN TRAN OutermostTran;
BEGIN TRAN InnerTran1;
BEGIN TRAN InnerTran2;
ROLLBACK TRAN InnerTran1;
PRINT ‘@@TRANCOUNT is ‘ + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;
GO
ROLLBACK TRAN;

The attempt to roll the transaction back fails, the transaction remains open, and the code
continues execution. This code generates the following output:

Msg 6401, Level 16, State 1, Line 472
Cannot roll back InnerTran1. No transaction or savepoint of that name was found.
@@TRANCOUNT is 3.

Keep in mind, though, that the above examples are executed with XACT_ABORT set to OFF,
as is the case by default. If you follow best practices and set this option to ON, in the second
example the error—not the ROLLBACK TRAN statement itself—causes the open transaction
to roll back and the execution of the code to abort.

If you issue a ROLLBACK TRAN statement without a name, it behaves as usual irrespective
of whether you named transactions or not; namely, it rolls the entire transaction back.

You can also specify a transaction name in the COMMIT TRAN[SACTION] statement, as in
COMMIT TRAN SomeName, but with this command the name is simply ignored.

Naming transactions is a very uncommonly used practice. This book covers it mainly for
the small chance that it would appear in the exam.

T-SQL also supports a concept called savepoints. A savepoint is a marker within an open
transaction that you can later roll back to, undoing only the changes that took place since the
savepoint, and not the rest of the changes that took place in the transaction. When you roll
back to a save point, the transaction remains open and the code continues execution. You
mark a savepoint with the statement SAVE TRAN[ACTION] <savepoint name>, and roll back
to a savepoint using the statement ROLLBACK TRAN[SACTION] <savepoint name>. You must
be in an open transaction to mark a savepoint; otherwise you get an error. You are allowed to
mark multiple savepoints within the same transaction. You can gradually roll back to different
savepoints, but in such a case you have to keep going backwards; otherwise you get an error.
For example, if you marked save points S1, S2, S3 in this order, you can later first roll back to
S3 and afterwards to S1, but not the other way around.

The following example demonstrates using savepoints:

SET XACT_ABORT, NOCOUNT ON;
DROP TABLE IF EXISTS dbo.T1;
GO
CREATE TABLE dbo.T1(col1 VARCHAR(10));

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 281

GO

BEGIN TRAN;

SAVE TRAN S1;
INSERT INTO dbo.T1(col1) VALUES(‘S1’);

SAVE TRAN S2;
INSERT INTO dbo.T1(col1) VALUES(‘S2’);

SAVE TRAN S3;
INSERT INTO dbo.T1(col1) VALUES(‘S3’);

ROLLBACK TRAN S3;

ROLLBACK TRAN S2;

SAVE TRAN S4;
INSERT INTO dbo.T1(col1) VALUES(‘S4’);

COMMIT TRAN;

SELECT col1 FROM dbo.T1;
GO
DROP TABLE IF EXISTS dbo.T1;

This code generates the following output:

col1

S1
S4

When the code issued the statement ROLLBACK TRAN S3, the changes that took place
between S3 and that statement were undone (the insertion of the value ‘S3’ to the table).
When the code then issued the statement ROLLBACK TRAN S2, the changes that took place
between S2 and S3 were undone (the insertion of the value ‘S2’ to the table). So, both the in-
sertion of the value ‘S1’, which happened before S2, and the insertion of the value ‘S4’, which
happened after the last rollback to a savepoint took place, persisted.

The BEGIN TRAN[SACTION] statement also supports an option called WITH MARK
<marker name>, as in BEGIN TRAN MyTran WITH MARK ‘My Mark’. This option defines a
marker name in the transaction log. Later on, if you apply a restore from a log backup, you
can specify the option STOPATMARK <marker name> to recover the changes only until the
indicated marked transaction, inclusive, or STOPBEFOREMARK <marker name> to exclude the
marked transaction.

www.EBooksWorld.ir

	282	 Chapter 3	 Program databases by using Transact-SQL

Error handling with TRY-CATCH
Robust programming solutions always include code to handle errors. You want to make sure
that you control the outcome of both anticipated and unanticipated errors to the degree that
you can. This is true with any kind of programming, and of course also specifically with T-SQL.
In case of an error, you do not want to leave a database in an inconsistent state. Also, you do
not want an error to result in an unterminated transaction because this causes concurrency
and other problems in the system.

This section describes the error handling tools that T-SQL supports. It covers the main
T-SQL error handling construct—TRY-CATCH, error functions, generating error messages with
THROW and RAISERROR, and handling errors in transactions.

The TRY-CATCH construct
T-SQL uses a classic TRY-CATCH construct to handle errors, similar to what most programming
languages use for error handling. You place your usual code within the TRY block, and you
place any error handling code within the CATCH block. If there’s no error in the TRY block, the
CATCH block is skipped. If there is an error in the TRY block, control is passed to the first line
of code within the CATCH block.

As the first example for using the TRY-CATCH construct I demonstrate code that adds a
couple of rows to a table called T1. Run the following code to create the table T1:

SET NOCOUNT ON;
USE TSQLV4;

DROP TABLE IF EXISTS dbo.T1;
GO
CREATE TABLE dbo.T1
(
 keycol INT NOT NULL
 CONSTRAINT PK_T1 PRIMARY KEY,
 col1 INT NOT NULL
 CONSTRAINT CHK_T1_col1_gtzero CHECK(col1 > 0),
 col2 VARCHAR(10) NOT NULL
);

The following example demonstrates execution of code with no errors:

BEGIN TRY

 INSERT INTO dbo.T1(keycol, col1, col2)
 VALUES(1, 10, ‘AAA’);
 INSERT INTO dbo.T1(keycol, col1, col2)
 VALUES(2, 20, ‘BBB’);

 PRINT ‘Got to end of TRY block.’;

END TRY
BEGIN CATCH

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 283

 PRINT ‘Error occurred. Entering CATCH block. Error message: ‘ + ERROR_MESSAGE();

END CATCH;
GO

SELECT keycol, col1, col2
FROM dbo.T1;

-- cleanup
TRUNCATE TABLE dbo.T1;

The code in the TRY block runs successfully and therefore the CATCH block is skipped. This
code generates the following output:

Got to the end of the TRY block.
keycol col1 col2
----------- ----------- ----------
1 10 AAA
2 20 BBB

The following example demonstrates execution of code with an error:

BEGIN TRY

 INSERT INTO dbo.T1(keycol, col1, col2)
 VALUES(1, 10, ‘AAA’);
 INSERT INTO dbo.T1(keycol, col1, col2)
 VALUES(2, -20, ‘BBB’);

 PRINT ‘Got to the end of the TRY block.’;

END TRY
BEGIN CATCH

 PRINT ‘Error occurred. Entering CATCH block. Error message: ‘ + ERROR_MESSAGE();

END CATCH;
GO

SELECT keycol, col1, col2
FROM dbo.T1;

-- cleanup
TRUNCATE TABLE dbo.T1;

The first INSERT statement runs successfully and the row makes it to the table. The second
INSERT statement fails due to a CHECK constraint violation when it tries to add a row with
a col1 value that is not greater than zero. The second row doesn’t make it to the table. The
PRINT command at the end of the TRY block doesn’t get to execute. Control of the code
passes to the CATCH block, which in this example simply prints a message indicating that an
error occurred along with the error message. This code generates the following output:

www.EBooksWorld.ir

	284	 Chapter 3	 Program databases by using Transact-SQL

Error occurred. Entering CATCH block. Error message: The INSERT statement conflicted
with the CHECK constraint “CHK_T1_col1_gtzero”. The conflict occurred in database
“TSQLV4”, table “dbo.T1”, column ‘col1’.
keycol col1 col2
----------- ----------- ----------
1 10 AAA

This is hardly an example for robust error handling because this code leaves the database
in an inconsistent state with only one of the two rows making it into the target table. Nor-
mally you would place the work in a transaction and make sure that when an error happens
you roll the transaction back, but I get to this later. For now, I just wanted to demonstrate the
flow of the code with the TRY-CATCH construct when it runs successfully and when there is an
error.

If an error happens within a stored procedure and is handled by a TRY-CATCH construct,
as far as the caller of the stored procedure is concerned, there was no error. If an error hap-
pens in a stored procedure, but not in a TRY block, the error bubbles up in the call stack
until it finds a TRY block, and if one is found, it activates the corresponding CATCH block. For
example, say Proc1 calls Proc2 from within a TRY block, and Proc2 runs code without using a
TRY-CATCH construct. An error in Proc2 results in the CATCH block of Proc1 being activated.
If no TRY-CATCH construct is found along the way, the caller who initiated the code ends up
getting the error.

EXAM TIP

For cases where code within the CATCH bock can potentially fail, you are allowed to nest a
TRY-CATCH construct within the CATCH block, and this way handle such errors. If an error
happens in a CATCH block, but not in a nested TRY-CATCH construct, the error behaves as
if it didn’t happen in a TRY block; namely, it bubbles up.

To demonstrate nesting of TRY-CATCH constructs I use a procedure called AddRowToT1
and a table called ErrorLog where the procedure is supposed to log errors.

Run the following code to create the table ErrorLog:

DROP TABLE IF EXISTS dbo.ErrorLog;
GO
CREATE TABLE dbo.ErrorLog
(
 id INT NOT NULL IDENTITY
 CONSTRAINT PK_ErrorLog PRIMARY KEY,
 dt DATETIME2 NOT NULL DEFAULT(SYSDATETIME()),
 loginname NVARCHAR(128) NOT NULL DEFAULT(SUSER_SNAME()),
 errormessage NVARCHAR(4000) NOT NULL
);

The table definition uses default constraints to record the time of the error and the execut-
ing login.

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 285

Run the following code to create the stored procedure AddRowToT1:

CREATE OR ALTER PROC dbo.AddRowToT1
 @keycol INT,
 @col1 INT,
 @col2 VARCHAR(10)
AS

SET NOCOUNT ON;

BEGIN TRY

 INSERT INTO dbo.T1(keycol, col1, col2)
 VALUES(@keycol, @col1, @col2);

 PRINT ‘Got to the end of the outer TRY block.’;

END TRY
BEGIN CATCH

 PRINT ‘Error occurred in outer TRY block. Entering outer CATCH block.’;

 BEGIN TRY

 INSERT INTO dbo.ErrorLog(errormessage) VALUES(ERROR_MESSAGE());

 PRINT ‘Got to the end of the inner TRY block.’;

 END TRY
 BEGIN CATCH

 PRINT ‘Error occurred in inner TRY block. Entering inner CATCH block. Error message:
‘ + ERROR_MESSAGE();

 END CATCH;

END CATCH;
GO

As you can see, the stored procedure uses an outer TRY block to add a row to T1 with
the values received as input parameters. If all goes well, the outer TRY block prints a mes-
sage indicating that it got to the end. Note that the PRINT statements are used here only for
illustration purposes to show which parts of the code got executed; normally, you would not
include those in production code. In case of an error, the outer CATCH block is activated. The
code in the outer CATCH block prints that it got there, and then activates an inner TRY-CATCH
construct. The inner TRY block tries to write the error information into the table ErrorLog. If all
goes well, the code indicates that it got to the end of the inner TRY block. If there’s an error in
the inner TRY block, the inner CATCH block is activated. The inner CATCH block prints a mes-
sage indicating the code got there and the error message.

www.EBooksWorld.ir

	286	 Chapter 3	 Program databases by using Transact-SQL

Use the following code to test the procedure for the first time:

EXEC dbo.AddRowToT1
 @keycol = 1,
 @col1 = 10,
 @col2 = ‘AAA’;
GO

SELECT keycol, col1, col2 FROM dbo.T1;
SELECT id, dt, loginname, errormessage FROM dbo.ErrorLog;

-- cleanup
TRUNCATE TABLE dbo.T1;
TRUNCATE TABLE dbo.ErrorLog;

The code runs successfully with no errors. The code generates the following output:

Got to the end of the outer TRY block.
keycol col1 col2
----------- ----------- ----------
1 10 AAA

id dt loginname errormessage
---- --- ---------- -------------

As you can see, the outer TRY block executed to completion. The code added a new row
into the table T1. The outer CATCH block was skipped, and no row was added to the table
ErrorLog.

Run the following code in attempt to add a row with an invalid col1 value:

EXEC dbo.AddRowToT1
 @keycol = 1,
 @col1 = -10,
 @col2 = ‘BBB’;
GO

SELECT keycol, col1, col2 FROM dbo.T1;
SELECT id, dt, loginname, errormessage FROM dbo.ErrorLog;

-- cleanup
TRUNCATE TABLE dbo.T1;
TRUNCATE TABLE dbo.ErrorLog;

This time there’s an error when the outer TRY block attempts to add the row into T1,
therefore the outer CATCH block is activated. The outer CATCH block uses an inner TRY-
CATCH construct to add a row with the error information into the table ErrorLog. The inner
TRY block succeeds in this task and therefore the inner CATCH block is skipped. This code
generates the following output (formatted for clarity):

Error occurred in outer TRY block. Entering outer CATCH block.
Got to the end of the inner TRY block.
keycol col1 col2
----------- ----------- ----------

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 287

id dt loginname
----------- --------------------------- -------------
1 2017-01-24 09:44:24.1014963 <your_login>

errormessage
--

The INSERT statement conflicted with the CHECK constraint “CHK_T1_col1_gtzero”. The
conflict occurred in database “TSQLV4”, table “dbo.T1”, column ‘col1’.

The new row didn’t make it into T1. A row with the error info was written into ErrorLog.

To test an example for an error in the inner CATCH block, open two new connections (I
refer to them as connection 1 and connection 2). Run the following code in connection 1 to
obtain an exclusive table lock on the table ErrorLog within a transaction that the code leaves
open:

BEGIN TRAN;

SELECT TOP (0) * FROM dbo.ErrorLog WITH (TABLOCKX);

Next, run the following code to first set the session’s lock expiration time out to zero (no
wait), and then to attempt to add an invalid row:

SET LOCK_TIMEOUT 0;

EXEC dbo.AddRowToT1
 @keycol = 1,
 @col1 = -10,
 @col2 = ‘BBB’;

The outer TRY block fails when trying to add the invalid row, activating the outer CATCH
block. The outer CATCH block activates the inner TRY-CATCH construct. The inner TRY block
fails when trying to add a row to the table ErrorLog because it cannot obtain a lock. Because
you set the lock expiration time out to zero, the inner CATCH block is immediately activated,
printing the inner error information. This code generates the following output:

Error occurred in outer TRY block. Entering outer CATCH block.
Error occurred in inner TRY block. Entering inner CATCH block. Error message: Lock
request time out period exceeded.

Run the following code in connection 1 to commit the open transaction and release the
lock on ErrorLog:

COMMIT TRAN;

Run the following code in connection 2 to query the tables, clean them up, and to set the
lock expiration time out back to infinity:

SELECT keycol, col1, col2 FROM dbo.T1;
SELECT id, dt, loginname, errormessage FROM dbo.ErrorLog;

-- cleanup
TRUNCATE TABLE dbo.T1;

www.EBooksWorld.ir

	288	 Chapter 3	 Program databases by using Transact-SQL

TRUNCATE TABLE dbo.ErrorLog;
SET LOCK_TIMEOUT -1;

This code generates the following output showing that both tables are empty:

keycol col1 col2
----------- ----------- ----------

id dt loginname errormessage
---- --- ---------- -------------

Close connection 2 and return to connection 1 before continuing.

An important limitation of TRY-CATCH that you want to make sure that you’re aware of,
and that you plan for, is that it cannot catch compilation errors, such as referring to objects
and columns that don’t exist, in the same scope. However, you can catch such errors in an
outer scope.

As an example, consider the following stored procedure called InnerProc:

CREATE OR ALTER PROC dbo.InnerProc
AS

BEGIN TRY
 SELECT nosuchcolumn FROM dbo.NoSuchTable;
END TRY
BEGIN CATCH
 PRINT ‘In CATCH block of InnerProc.’;
END CATCH;
GO

The procedure tries to query a table that doesn’t exist.

Run the following code to execute InnerProc:

EXEC dbo.InnerProc;

Because the error is a compilation error, it isn’t caught by the inner CATCH block. This
execution generates the following error:

Msg 208, Level 16, State 1, Procedure dbo.InnerProc, Line 5 [Batch Start Line 703]
Invalid object name ‘dbo.NoSuchTable’.

Use the following code to create a stored procedure called OuterProc that invokes Inner-
Proc within a TRY block:

CREATE OR ALTER PROC dbo.OuterProc
AS

BEGIN TRY
 EXEC dbo.InnerProc;
END TRY
BEGIN CATCH
 PRINT ‘In CATCH block of OuterProc.’;
END CATCH;
GO

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 289

Use the following code to test OuterProc:

EXEC dbo.OuterProc;

This time the CATCH block of OuterProc is activated, and the execution generates the fol-
lowing output:

In CATCH block of OuterProc.

Error functions
T-SQL supports six error functions that provide information about the error, and that you can
query in the CATCH block. Following are the functions and their descriptions:

■■ ERROR_NUMBER() provides the error number.

■■ ERROR_MESSAGE() provides the error message.

■■ ERROR_SEVERITY() provides the error severity. You can catch errors with severity 11
to 19. Errors with severity 20 and up are so severe that when they happen, SQL Server
terminates your connection. Any error handling code that you may have doesn’t really
have a chance to run. Messages with severity 0 to 9 are considered informational and
are always passed to the client; they’re not accessible to SQL Server. Messages with
severity 10 are also informational; for compatibility reasons, SQL Server converts those
to severity 0 internally. For more information about error severities, see the topic “Da-
tabase Engine Error Severities” at https://msdn.microsoft.com/en-us/library/ms164086.
aspx.

■■ ERROR_STATE() provides the error state. The error state is an integer in the range 1 to
255. It can be used for different custom purposes such as indicating where the error
originated in cases where the error can happen in different places in the SQL Server
engine’s code.

■■ ERROR_LINE() provides the line number where the error happened.

■■ ERROR_PROCEDURE() provides the name of the stored procedure where the error hap-
pened. If the error did not happen in a stored procedure, this function returns a NULL.

There are a number of important things you want to keep in mind when using these func-
tions:

■■ If you invoke these functions not within a CATCH block, they all return NULLs.

■■ If you nest TRY-CATCH constructs, whether directly or indirectly when you call one
procedure from another, these functions return error information about the innermost
error.

■■ Some failures generate a chain of errors. These functions only return information
about the last error in the chain.

Conveniently, you are allowed to invoke these functions from a stored procedure for reus-
ability. Still, the ERROR_PROCEDURE function returns the name of the stored procedure where
the error happened and not the name of the procedure where you invoked the function, if

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms164086.aspx
https://www.msdn.microsoft.com/en-us/library/ms164086.aspx

	290	 Chapter 3	 Program databases by using Transact-SQL

different. To demonstrate this, first run the following code to create the stored procedure
PrintErrorInfo, which simply prints the values of the error functions:

CREATE OR ALTER PROC dbo.PrintErrorInfo
AS

PRINT ‘Error Number : ‘ + CAST(ERROR_NUMBER() AS VARCHAR(10));
PRINT ‘Error Message : ‘ + ERROR_MESSAGE();
PRINT ‘Error Severity: ‘ + CAST(ERROR_SEVERITY() AS VARCHAR(10));
PRINT ‘Error State : ‘ + CAST(ERROR_STATE() AS VARCHAR(10));
PRINT ‘Error Line : ‘ + CAST(ERROR_LINE() AS VARCHAR(10));
PRINT ‘Error Proc : ‘ + COALESCE(ERROR_PROCEDURE(), ‘Not within proc’);
GO

Next, run the following code to alter the AddRowToT1 procedure to run the PrintErrorInfo
procedure in the CATCH block when an error happens in the attempt to insert the row into T1
in the TRY block:

CREATE OR ALTER PROC dbo.AddRowToT1 -- proc name
 @keycol INT,
 @col1 INT,
 @col2 VARCHAR(10)
AS

SET NOCOUNT ON;

BEGIN TRY

 INSERT INTO dbo.T1(keycol, col1, col2) -- line 11
 VALUES(@keycol, @col1, @col2);

END TRY
BEGIN CATCH

 EXEC dbo.PrintErrorInfo;

END CATCH;
GO

Run the following code to execute the AddRowToT1 procedure with an invalid value for col1:

EXEC dbo.AddRowToT1
 @keycol = 1,
 @col1 = -10,
 @col2 = ‘AAA’;

This code generates the following output:

Error Number : 547
Error Message : The INSERT statement conflicted with the CHECK constraint “CHK_T1_col1_
gtzero”. The conflict occurred in database “TSQLV4”, table “dbo.T1”, column ‘col1’.
Error Severity: 16
Error State : 0
Error Line : 11
Error Proc : dbo.AddRowToT1

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 291

Notice that the stored procedure name where the error actually happened was captured
correctly. Also notice that the line number reported is the line number where the error hap-
pened within the stored procedure.

The THROW and RAISERROR commands
The THROW and RAISERROR (yes there’s only one E in there) commands allow you to raise an
error. Both allow you to raise a user defined error, but only THROW allows you to re-throw an
original error that was caught by a TRY-CATCH construct.

THE THROW COMMAND
The THROW command has two supported syntaxes. One is without parameters, with which
you use the command in a CATCH block to re-throw the error that originally activated that
CATCH block. The re-thrown error behaves like the original one, with the same error num-
ber, severity, and state. Also, if the failure normally generates a chain of error messages, the
re-thrown error does too. Irrespective of whether the original error is a batch-aborting one or
not, the THROW command aborts the batch and bubbles up, unless you call it from a nested
TRY-CATCH construct, in which case it activates the inner CATCH block.

The following procedure demonstrates using THROW without parameters:

CREATE OR ALTER PROC dbo.Divide
 @dividend AS INT,
 @divisor AS INT
AS

SET NOCOUNT ON;

BEGIN TRY

 SELECT @dividend / @divisor AS quotient, @dividend % @divisor AS remainder;

END TRY
BEGIN CATCH

 PRINT ‘Error occurred when trying to compute the division ‘
 + CAST(@dividend AS VARCHAR(11)) + ‘ / ‘ + CAST(@divisor AS VARCHAR(11)) + ‘.’;

 THROW;

 PRINT ‘This doesn’’nt execute.’;

END CATCH;
GO

The procedure Divide uses a TRY block to invoke a query that computes the quotient
and remainder of integer division applied to the two input parameters. If all goes well, the
query returns the result of the calculations. In case of an error, the CATCH block is activated.
The CATCH block first prints a message indicating that an error occurred with the attempted
calculation, and then re-throws the original error assuming that you want it to bubble up to

www.EBooksWorld.ir

	292	 Chapter 3	 Program databases by using Transact-SQL

the caller. To show that the THROW command aborts the batch, the CATCH block has a PRINT
statement after the THROW command, but this statement never gets to execute.

Use the following code to first test the procedure with valid inputs:

EXEC dbo.Divide @dividend = 11, @divisor = 2;

The procedure executes successfully, generating the following output:

quotient remainder
----------- -----------
5 1

Execute the procedure again, but this time with zero as the divisor:

EXEC dbo.Divide @dividend = 11, @divisor = 0;

This code generates the following output:

quotient remainder
----------- -----------

Error occurred when trying to compute the division 11 / 0.
Msg 8134, Level 16, State 1, Procedure dbo.Divide, Line 8 [Batch Start Line 799]
Divide by zero error encountered.

A divide by zero error happened. The CATCH block was activated. The CATCH block print-
ed a message saying “Error occurred when trying to compute the division 11 / 0.” The CATCH
block then re-threw the error, at which point SQL Server aborted the batch and passed the
error to the caller. Then next line of code in the CATCH block after the THROW command
didn’t get to execute.

You should be aware of potential parsing ambiguity with code that has an unterminated
statement preceding the THROW command. As an example, run the following code to alter
the definition of the procedure Divide, and execute it with zero as the divisor:

CREATE OR ALTER PROC dbo.Divide
 @dividend AS INT,
 @divisor AS INT
AS

SET NOCOUNT ON;

BEGIN TRY

 SELECT @dividend / @divisor AS quotient, @dividend % @divisor AS remainder;

END TRY
BEGIN CATCH

 SELECT ‘What comes next is an alias’

 THROW;

END CATCH;
GO

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 293

EXEC dbo.Divide @dividend = 11, @divisor = 0;
GO

This code generates the following output:

quotient remainder
----------- -----------

THROW

What comes next is an alias

Notice that SQL Server didn’t re-throw the error because the parser assumed that the code
uses THROW as a column alias for the expression in the preceding unterminated query, as if
the intended query was:

SELECT ‘What comes next is an alias’ THROW;

As another example for ambiguity, run the following code to alter the procedure definition
again, and execute it:

CREATE OR ALTER PROC dbo.Divide
 @dividend AS INT,
 @divisor AS INT
AS

SET NOCOUNT ON;

BEGIN TRY

 SELECT @dividend / @divisor AS quotient, @dividend % @divisor AS remainder;

END TRY
BEGIN CATCH

 IF @@TRANCOUNT > 0 ROLLBACK TRAN

 THROW;

END CATCH;
GO

EXEC dbo.Divide @dividend = 11, @divisor = 0;

Here your goal in the CATCH block is to roll back an active transaction if one was opened
by calling code before you re-throw the error. However, because the preceding ROLLBACK
TRAN statement isn’t terminated, the parser thinks that THROW is a transaction or savepoint
name, rather than being a command of its own, as if the statement was ROLLBACK TRAN
THROW. In the above execution, there’s no transaction open, so the ROLLBACK TRAN THROW
statement doesn’t get to execute, and the problem silently goes unnoticed. The error is not
re-thrown. This code generates the following output:

quotient remainder
----------- -----------

www.EBooksWorld.ir

	294	 Chapter 3	 Program databases by using Transact-SQL

Next, execute the code from within a user transaction:

BEGIN TRAN;

EXEC dbo.Divide @dividend = 11, @divisor = 0;

PRINT ‘@@TRANCOUNT is ‘ + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

This time the CATCH block tries to execute the command ROLLBACK TRAN THROW, but
because it cannot find a transaction or savepoint name called THROW, it generates an error
indicating as much, and does not re-throw the original divide by zero error. Worse, it leaves
the transaction open! This code generates the following output:

quotient remainder
----------- -----------

Msg 6401, Level 16, State 1, Procedure dbo.Divide, Line 15 [Batch Start Line 58]
Cannot roll back THROW. No transaction or savepoint of that name was found.
@@TRANCOUNT is 1.

Run the following code to roll back the currently open transaction:

ROLLBACK TRAN;

Clearly, this ambiguity can get you into quite a lot of trouble. The official documentation
for THROW states that a statement preceding the command must be terminated. If indeed
you terminate the preceding statement, there is no ambiguity. If you have a coding policy
to terminate all statements, you avoid ambiguity anyway. The reality though is that most
people simply don’t follow the best practice to terminate all statements, so most T-SQL code
out there isn’t properly terminated. To be on the safe side, some people developed a practice
to always precede the THROW command with a terminator, as if the command was actually
;THROW. This way you don’t need to worry about whether the preceding statement is, or
might be, terminated.

A very similar ambiguity exists with the WITH clause which can be used to define a CTE as
well as for other purposes like specifying a table hint in a query. Therefore, the documenta-
tion indicates that you must terminate a statement preceding a WITH clause that defines a
CTE. Similar to the unofficial practice to prefix THROW with a terminator, some people also
regularly prefix a WITH clause that defines a CTE with a terminator, as in ;WITH.

The second syntax for the THROW command is with parameters. You use this syntax to
throw a user-defined error. You can use it both inside and outside a CATCH block. The general
form of THROW with parameters is:

THROW errornumber, message, state;

All three parameters can be either constants or variables.

Here’s an example for using THROW with constant parameters:

THROW 50000, ‘This is a user-defined error.’, 1;

This code generates the following output:

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 295

Msg 50000, Level 16, State 1, Line 865
This is a user-defined error.

The first parameter is a user specified integer error number that must be greater than or
equal to 50000. The error number does not need to be recorded anywhere previously.

The second parameter is a user specified error message. The THROW command does not
support parameter markers in the message directly. If you want to embed the percent sign
(%) as part of the message, you need to escape it by indicating two percent signs (%%). If
you want to embed input values as part of the message, you need to construct the message
ahead in a variable by applying string concatenation, or by using the FORMATMESSAGE func-
tion, which supports using parameter markers. I demonstrate this shortly.

The third parameter is a user specified integer state in the range 1 to 255. You usually use
this value to provide custom information like which place in the code the error originated
from.

The THROW command does not support specifying a severity. It always generates an error
with severity 16.

Here’s an example of using a variable for the error message parameter:

DECLARE @msg AS NVARCHAR(2048) =
 ‘This is a user-define error that occurred on ‘ + CONVERT(CHAR(10), SYSDATETIME(),
121) + ‘.’;

THROW 50000, @msg, 1;

This code generates the following output, with the date reflecting your execution date, of
course:

Msg 50000, Level 16, State 1, Line 872
This is a user-define error that occurred on 2017-02-12.

As an alternative to constructing the message with string concatenation techniques, you
can use the FORMATMESSAGE function, which allows you to embed in the message text pa-
rameter markers like the ones used by the printf function in C, like so:

DECLARE @msg AS NVARCHAR(2048) =
 FORMATMESSAGE(‘This is a user-define error that occurred on %s.’,
 CONVERT(CHAR(10), SYSDATETIME(), 121));

THROW 50000, @msg, 1;

Commonly used markers are %s for a string and %d for an integer.

In the example above the first parameter to FORMATMESSAGE is the message text with the
parameter markers, followed by values for the parameter markers. You can use an alternative
syntax where the first parameter is an ID of a message stored in the sys.messages table. You
can store user defined messages in sys.messages using the sp_addmessage stored proce-
dure. See the official documentation for details at https://msdn.microsoft.com/en-us/library/
ms186788.aspx.

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms186788.aspx
https://www.msdn.microsoft.com/en-us/library/ms186788.aspx

	296	 Chapter 3	 Program databases by using Transact-SQL

If you execute the THROW command with parameters outside a TRY-CATCH construct, it
always aborts the batch. If you execute it in a TRY block, it causes the corresponding CATCH
block to be activated.

The following example demonstrates the batch-abort behavior:

THROW 50000, ‘This is a user-defined error.’, 1;
PRINT ‘This code in the same batch doesn’’t execute.’;
GO
PRINT ‘This code in a different batch does execute.’;

This code generates the following output:

Msg 50000, Level 16, State 1, Line 884
This is a user-defined error.
This code in a different batch does execute.

Notice that the PRINT statement that appears right after the THROW command in the
same batch doesn’t get to execute, but the subsequent PRINT statement in a separate batch
does.

When XACT_ABORT is off and you execute THROW while in an open transaction, the
transaction remains open and committable.

When XACT_ABORT is on and you execute THROW while in an open transaction, if you’re
not using TRY-CATCH, SQL Server aborts the transaction, and if you are using TRY-CATCH,
SQL Server dooms the transaction. I explain what doomed transactions are in the next sec-
tion.

The following code demonstrates calling THROW when XACT_ABORT is set to off:

SET XACT_ABORT OFF;

BEGIN TRAN;

THROW 50000, ‘Hello from THROW.’, 1;
PRINT ‘This doesn’’t execute.’;
GO

PRINT ‘New batch... @@TRANCOUNT is ‘ + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;
IF @@TRANCOUNT > 0
 ROLLBACK TRAN;

This code generates the following output:

Msg 50000, Level 16, State 1, Line 894
Hello from THROW.
New batch... @@TRANCOUNT is 1.

Notice that the execution of the THROW command terminated the batch but not the
transaction.

Run the code again, this time setting XACT_ABORT to on:

SET XACT_ABORT ON;

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 297

BEGIN TRAN;

THROW 50000, ‘Hello from THROW.’, 1;
PRINT ‘This doesn’’t execute.’;
GO

PRINT ‘New batch... @@TRANCOUNT is ‘ + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;
IF @@TRANCOUNT > 0
 ROLLBACK TRAN;

This code generates the following output:

Msg 50000, Level 16, State 1, Line 908
Hello from THROW.
New batch... @@TRANCOUNT is 0.

This time the execution of THROW caused both the batch and the transaction to abort.

The THROW command doesn’t support an option to request to log the error in the SQL
Server error log or the Windows application log.

THE RAISERROR COMMAND
The RAISERROR command is the predecessor to the THROW command. Some still find it use-
ful even when writing new code because it supports certain options that THROW doesn’t.

The RAISERROR command has the following syntax:

RAISERROR ({ message | messageid }, severity, state [, arguments for parameter markers
]) [WITH options];

The parameters can be either constants or variables.

Here’s an example for using the RAISERROR command:

RAISERROR(‘This is a user-define error with a string parameter %s and an integer
parameter %d.’, 16, 1, ‘ABC’, 123);

This code generates the following output:

Msg 50000, Level 16, State 1, Line 926
This is a user-define error with a string parameter ABC and an integer parameter 123.

The first parameter can be a message text, with optional parameter markers using C-like
printf syntax (details can be found at https://msdn.microsoft.com/en-us/library/ms178592.
aspx), such as in the above example. In such a case, the error number is always 50000. The
parameters positioned fourth and on are the values that the command uses to replace the
parameter markers. In our example, ABC replaces %s and 123 replaces %d. If you want to
include the percent sign (%) in the message text, you need to escape it by specifying two
percent signs (%%). Alternatively, the first parameter can be an ID of a user-defined message
with a number greater than 50000 that you created earlier with the sp_addmessage stored
procedure, and that was stored in the sys.messages table. You can also emulate system errors
for error numbers that are greater than or equal to 13000.

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms178592.aspx
https://www.msdn.microsoft.com/en-us/library/ms178592.aspx

	298	 Chapter 3	 Program databases by using Transact-SQL

The second parameter is the error severity. The outcome of raising an error with a certain
severity is similar to the outcome of a system generated error with the same severity. Namely,
messages with severities 0 to 10 are considered informational, and are always sent to the cli-
ent, with severity 10 getting internally converted to 0 for compatibility reasons. With severi-
ties 0 and 10, the message prints without a header. With severities 1 to 9, the message prints
with a header.

The following example demonstrates raising an error with severity 0:

RAISERROR(‘This is a message with severity 0.’, 0, 1);

This code generates the following output:

This is a message with severity 0.

The following example demonstrates raising an error with severity 1 to 9:

RAISERROR(‘This is a message with severity 1 to 9.’, 1, 1);

This code generates the following output:

This is a message with severity 1 to 9.
Msg 50000, Level 1, State 1

Errors with a severity level lower than 11 are not catchable. Errors with severities 11 to 19
are catchable. Errors with severities 20 to 25 terminate the connection. To raise an error with
severity 19 and up you have to add the option WITH LOG, which logs the error in the SQL
Server error log as well as the Windows application log. To use the WITH LOG option you
must be a member of the sysadmin role or have the ALTER TRACE permission.

The third parameter is an integer state value in the range 1 to 255, similar to the state
value you specify with the THROW command.

There are additional options that you can specify as part of the WITH clause of the
RAISERROR command. The two most commonly used ones are LOG and NOWAIT. I already
explained what the LOG option does and the required permissions to use it. The NOWAIT
option causes SQL Server to send the message immediately to the client without waiting for
its internal buffer to first fill up. Developers often use this option when running long scripts to
report the progress of the code in intermediate milestones. The following example demon-
strates using the NOWAIT option:

RAISERROR(‘First message.’, 0, 1) WITH NOWAIT;
WAITFOR DELAY ‘00:00:05’;
RAISERROR(‘Second message.’, 0, 1) WITH NOWAIT;

Both messages are sent immediately to the client when the corresponding RAISERROR
command executes. The first immediately prints when the code starts executing and the sec-
ond after five seconds. Run the following code, which does not use the NOWAIT option:

RAISERROR(‘First message.’, 0, 1);
WAITFOR DELAY ‘00:00:05’;
RAISERROR(‘Second message.’, 0, 1);

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 299

This time both messages get printed only after five seconds when the code completes
executing.

The following example demonstrates raising an error with severity 20 using the WITH LOG
option:

RAISERROR(‘This is a message with severity 20.’, 20, 1) WITH LOG;

The message gets logged. Also, because the specified severity is 20, SQL Server terminates
the connection, generating the following output:

Msg 50000, Level 20, State 1, Line 945
This is a message with severity 20.
Msg 596, Level 21, State 1, Line 944
Cannot continue the execution because the session is in the kill state.
Msg 0, Level 20, State 0, Line 944
A severe error occurred on the current command. The results, if any, should be
discarded.

At this point you are disconnected; however, next time you execute a batch of T-SQL code,
SSMS 2016 will restore the connection.

The THROW command does not support options similar to LOG and NOWAIT, giving
RAISERROR an advantage when you need those.

Note that other than errors with severity 20 and up, which terminate the connection, if you
raise an error with a severity that is lower than 20 this doesn’t terminate the batch, nor does
this terminate or doom the transaction, irrespective of the state of the XACT_ABORT option.
This is one of the drawbacks of the RAISERROR command. The following code demonstrates
this:

SET XACT_ABORT ON;

BEGIN TRAN;

RAISERROR(‘This is a user-defined error.’, 16, 1);
PRINT ‘This code in the same batch executes. @@TRANCOUNT is ‘ + CAST(@@TRANCOUNT AS
VARCHAR(10)) + ‘.’;

IF @@TRANCOUNT > 0
 ROLLBACK TRAN;

This code generates the following output:

Msg 50000, Level 16, State 1, Line 953
This is a user-defined error.
This code in the same batch executes. @@TRANCOUNT is 1.

As you can see, the batch continued executing after raising the error and the transaction
remained open despite the fact that XACT_ABORT was on.

Since RAISERROR is a reserved keyword, unlike THROW, with the former a preceding state-
ment doesn’t have to be terminated, though it is still a good practice to do so.

www.EBooksWorld.ir

	300	 Chapter 3	 Program databases by using Transact-SQL

EXAM TIP

If your exam includes questions involving RAISERROR and THROW, chances are that you
are expected to know how to pick between the two based on the differences between
them. For your convenience, Table 3-1 provides a comparison summary between the two
tools. Make sure you understand and memorize all items in the table.

Table 3-1 has a comparison between THROW and RAISERROR.

TABLE 3-1  Comparison between THROW and RAISERROR

Proprty THROW RAISERROR

Can re-throw original system error Yes No

Activates CATCH block Yes Yes, for 10 < severity < 20

Always aborts batch when not
using TRY-CATCH

Yes No

Aborts/dooms transaction if
XACT_ABORT is off

No No

Aborts/dooms transaction if
XACT_ABORT is on

Yes No

If error number is passed, it must
be defined in sys.messages

No Yes

Supports printf parameter mark-
ers directly

No Yes

Supports indicating severity No Yes

Supports WITH LOG to log error
to error log and application log

No Yes

Supports WITH NOWAIT to send
messages immediately to the cli-
ent

No Yes

Preceding statement needs to be
terminated

Yes No

The next section covers handling errors that happen in transactions.

Error handling with transactions
When errors happen in transactions, there are additional considerations and complexities that
you need to be aware of beyond what the previous sections already covered. Your course of
action in case of an error could depend on the state of the transaction after the error. This
section covers error handling with transactions.

As mentioned earlier, there are quite a lot of possible outcomes of errors in T-SQL. Some
errors abort the batch and some don’t. Some errors abort the transaction and some don’t.
Some errors even terminate the connection. You can achieve better consistency and some
degree of control over the outcome of errors by turning the XACT_ABORT option to on, and
by using the TRY-CATCH construct. This results in more robust solutions.

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 301

The following example demonstrates a divide by zero error, which normally doesn’t abort
the batch and doesn’t terminate the transaction:

SET XACT_ABORT OFF;

BEGIN TRAN;

DECLARE @i AS INT = 10/0;
PRINT ‘Batch wasn’’t aborted.’;
GO

PRINT ‘@@TRANCOUNT is ‘ + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

IF @@TRANCOUNT > 0
 ROLLBACK TRAN;

This code generates the following output:

Msg 8134, Level 16, State 1, Line 967
Divide by zero error encountered.
Batch wasn’t aborted.
@@TRANCOUNT is 1.

The following example demonstrates a conversion error, which aborts both the batch and
the transaction:

BEGIN TRAN;

DECLARE @i AS INT = CAST(‘1,759’ AS INT);
PRINT ‘Batch wasn’’t aborted.’;
GO

PRINT ‘@@TRANCOUNT is ‘ + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

IF @@TRANCOUNT > 0
 ROLLBACK TRAN;

This code generates the following output:

Msg 245, Level 16, State 1, Line 980
Conversion failed when converting the varchar value ‘1,759’ to data type int.
@@TRANCOUNT is 0.

As you can see, it’s not like a conversion error is considered more severe than a divide by
zero error, at least as far as the formal severity level is concerned. But the two errors have
very different outcomes. If you set the XACT_ABORT option to on, you get a more consistent
behavior in the sense that most errors that normally don’t terminate the transaction and/or
batch, with this option turned on terminate the batch and rollback the transaction.

To demonstrate this, run the example with the divide by zero error again, after turning on
the XACT_ABORT option:

SET XACT_ABORT ON;

BEGIN TRAN;

www.EBooksWorld.ir

	302	 Chapter 3	 Program databases by using Transact-SQL

DECLARE @i AS INT = 10/0;
PRINT ‘Batch wasn’’t aborted.’;
GO

PRINT ‘@@TRANCOUNT is ‘ + CAST(@@TRANCOUNT AS VARCHAR(10)) + ‘.’;

IF @@TRANCOUNT > 0
 ROLLBACK TRAN;

This code generates the following output:

Msg 8134, Level 16, State 1, Line 995
Divide by zero error encountered.
@@TRANCOUNT is 0.

This time the error caused both the batch and the transaction to abort.

As you’ve seen, when you’re not using TRY-CATCH, the transaction state after an error
can be either open or not, and you can check the state using the @@TRANCOUNT. If it is
open, you can determine whether you want to commit it or roll it back. The problem with
cases where the transaction is aborted is that any changes done by the transaction are lost.
What if as part of your error handling logic you wish to investigate data that was created
by the transaction before you eventually roll it back. To this end, errors that normally cause
the transaction to abort when you’re not using TRY-CATCH, cause the transaction to enter a
special doomed state (also known as failed, and uncommittable state). Under this state, you’re
not allowed to change data other than in table variables, but you are allowed to read data.
You’re not allowed to commit a doomed transaction, rather you have to eventually roll it
back. You’re not allowed to roll the transaction back to a savepoint, rather it has to be a full
transaction rollback.

So when using TRY-CATCH, there could be three possible outcomes of an error in terms
of the state of the transaction. The transaction could be open and committable, open and
uncommittable (doomed), and no open transaction. If you want your error handling code to
react differently depending on the transaction state, it’s not enough to check the @@TRAN-
COUNT value because it only tells you whether a transaction is open or not; it doesn’t tell you
whether it’s open and committable or doomed. T-SQL supports an alternative function called
XACT_STATE that does make the distinction between the three states. It returns 0 when no
transaction is open (equivalent to @@TRANCOUNT being 0), 1 when the transaction is open
and committable, and -1 (minus one) when the transaction is doomed.

The following example demonstrates the outcome of a nondooming error when using
TRY-CATCH:

SET XACT_ABORT OFF;

BEGIN TRY

 BEGIN TRAN;

 DECLARE @i AS INT = 10/0;
 -- normally there would be work here that warrants a transaction

www.EBooksWorld.ir

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 303

 COMMIT TRAN;

END TRY
BEGIN CATCH

 PRINT
 CASE XACT_STATE()
 WHEN 0 THEN ‘No open transaction.’
 WHEN 1 THEN ‘Transaction is open and committable.’
 WHEN -1 THEN ‘Transaction is doomed.’
 END;

 IF @@TRANCOUNT > 0
 ROLLBACK TRAN;

END CATCH;

This code generates the following output:

Transaction is open and committable.

The following example demonstrates the outcome of a dooming error when using TRY-
CATCH:

SET XACT_ABORT OFF;

BEGIN TRY

 BEGIN TRAN;

 DECLARE @i AS INT = CAST(‘1,759’ AS INT);
 -- normally there would be work here that warrants a transaction

 COMMIT TRAN;

END TRY
BEGIN CATCH

 PRINT
 CASE XACT_STATE()
 WHEN 0 THEN ‘No open transaction.’
 WHEN 1 THEN ‘Transaction is open and committable.’
 WHEN -1 THEN ‘Transaction is doomed.’
 END;

 IF @@TRANCOUNT > 0
 ROLLBACK TRAN;

END CATCH;

This code generates the following output:

Transaction is doomed.

www.EBooksWorld.ir

	304	 Chapter 3	 Program databases by using Transact-SQL

If you turn on the XACT_ABORT option, as recommended, most errors are treated as
dooming errors. For instance, the example before the last with the divide by zero error results
in a doomed transaction with XACT_ABORT turned on.

Remember, though, that in case an error with severity 20 and up happens, the connection
is terminated, so any error handling code that you have doesn’t have a chance to run.

MORE INFO ON CLASSIFICATION OF ERRORS AND THEIR OUTCOMES

Erland Sommarskog has a nice summary of the different classification of errors and their
possible outcomes at http://www.sommarskog.se/error_handling/Part2.html#classification.

If you do not wish to deal differently with open and committable and doomed transac-
tions, rather react the same in both cases, to check whether you’re in an open transaction you
could either check that @@TRANCOUNT is greater than zero or that XACT_STATE is different
than zero. Just make sure that whatever you do, you don’t leave a transaction open other
than in very special, controlled, circumstances.

For example, suppose that you wanted to add error handling code to the AddOrder pro-
cedure, which you created in an earlier section. In the CATCH block you simply want to make
sure that in case there’s an open transaction you roll it back, and re-throw the error to the
caller. Use the following code to achieve this:

CREATE OR ALTER PROC dbo.AddOrder
 @custid AS INT,
 @empid AS INT,
 @orderdate AS DATE,
 @requireddate AS DATE,
 @shippeddate AS DATE,
 @shipperid AS INT,
 @freight AS MONEY,
 @shipname AS NVARCHAR(40),
 @shipaddress AS NVARCHAR(60),
 @shipcity AS NVARCHAR(15),
 @shipregion AS NVARCHAR(15),
 @shippostalcode AS NVARCHAR(10),
 @shipcountry AS NVARCHAR(15),
 @OrderLines AS dbo.OrderLines READONLY,
 @neworderid AS INT OUT
AS

SET XACT_ABORT, NOCOUNT ON;

BEGIN TRY

BEGIN TRAN;

 -- add order header
 INSERT INTO Sales.Orders
 (custid, empid, orderdate, requireddate, shippeddate,
 shipperid, freight, shipname, shipaddress, shipcity,
 shippostalcode, shipcountry)

www.EBooksWorld.ir

http://www.sommarskog.se/error_handling/Part2.html#classification

	 Skill 3.2: Implement error handling and transactions 	 Chapter 3	 305

 VALUES
 (@custid, @empid, @orderdate, @requireddate, @shippeddate,
 @shipperid, @freight, @shipname, @shipaddress, @shipcity,
 @shippostalcode, @shipcountry);

 SET @neworderid = SCOPE_IDENTITY();

 -- add order lines
 INSERT INTO Sales.OrderDetails(orderid, productid, unitprice, qty, discount)
 SELECT @neworderid, productid, unitprice, qty, discount
 FROM @OrderLines;

 COMMIT TRAN;

END TRY
BEGIN CATCH

 IF @@TRANCOUNT > 0
 ROLLBACK TRAN;

 THROW;

END CATCH;
GO

Note that because you turned on the XACT_ABORT option, even if you didn’t explicitly roll
the transaction back in the CATCH block, the THROW command would. However, it’s a good
practice to keep this check in place in case someone changes the procedure in the future and
removes the code that sets XACT_ABORT to on.

If you need to write any error information to a log table, make sure that you do so after
the ROLLBACK TRAN statement and before the THROW command. If you try to do so before
rolling the transaction back, you get an error saying that writes are not allowed under a
doomed transaction. Furthermore, even if it was allowed, the ROLLBACK TRAN statement
would have rolled back any such changes. Also, if you need to log data that was created by
the transaction, make sure you first write it to a table variable before issuing the ROLLBACK
TRAN statement, and then copy it from the table variable to the log table after rolling the
transaction back. Remember that writes to a table variable are not undone when a transac-
tion rolls back. Your catch block would look like this:

BEGIN CATCH
 ... declare a table variable and write what’s needed into it ...
 IF @@TRANCOUNT > 0
 ROLLBACK TRAN;
 ... write what’s needed to a log table, including copying data from the table variable
...
 THROW;
END CATCH;

When you’re done, run the following code for cleanup:

DELETE FROM Sales.OrderDetails WHERE orderid > 11077;
DELETE FROM Sales.Orders WHERE orderid > 11077;

www.EBooksWorld.ir

	306	 Chapter 3	 Program databases by using Transact-SQL

DBCC CHECKIDENT(‘Sales.Orders’, RESEED, 11077);
DROP PROC IF EXISTS dbo.AddRowToT1, dbo.OuterProc, dbo.InnerProc,
 dbo.PrintErrorInfo, dbo.Divide, dbo.AddOrder, dbo.Proc1;
DROP TABLE IF EXISTS dbo.T1, dbo.ErrorLog;

Before continuing to the next section, remember my earlier recommendation to make sure
that you read at least the first two parts in Erland Sommarskog’s coverage of error handling,
which you can find in his website at http://sommarskog.se/error_handling/Part1.html.

Skill 3.3: Implement data types and NULLs

This skill covers data types, data type conversions, and handling NULLs using the ISNULL and
COALESCE functions. If some of these topics seem familiar, that’s because I found it impor-
tant to already cover them at least to some extent earlier in the book. For instance, I already
covered some aspects of data type conversions, including implicit ones, as well as handling of
NULLs, and the COALESCE and ISNULL functions in Chapter 1. Consider the coverage here as
an opportunity to review these important topics again and have another chance to practice
them.

This section covers how to:
■■ Evaluate results of data type conversions

■■ Determine proper data types for given data elements or table columns

■■ Identify locations of implicit data type conversions in queries

■■ Determine the correct results of joins and functions in the presence
of NULL values

■■ Identify proper usage of ISNULL and COALESCE functions

Working with data types
When defining columns in tables, parameters in procedures and functions, and variables in
T-SQL batches, you need to choose a data type for those. The data type constrains the data
that is supported, in addition to encapsulating behavior that operates on the data, exposing it
through operators and other means. Because data types are such a fundamental component
of your data—everything is built on top—your choices of data types have dramatic implica-
tions for your application at many different layers. Therefore, this is an area that should not
be taken lightly, but instead treated with a lot of care and attention.

The upcoming sections provide recommendations for choosing the appropriate data type
for different database elements, choosing a data type for keys, and data type conversions.

www.EBooksWorld.ir

http://www.sommarskog.se/error_handling/Part1.html

	 Skill 3.3: Implement data types and NULLs 	 Chapter 3	 307

Choosing the appropriate data type
Choosing the appropriate data types for your attributes is probably one of the most impor-
tant decisions that you make regarding your data. SQL Server supports many data types from
different categories: exact numeric (INT, NUMERIC), character strings (CHAR, VARCHAR),
Unicode character strings (NCHAR, NVARCHAR), approximate numeric (FLOAT, REAL), binary
strings (BINARY, VARBINARY), date and time (DATE, TIME, DATETIME2, SMALLDATETIME, DA-
TETIME, DATETIMEOFFSET), and others. There are many options, so it might seem like a dif-
ficult task, but as long as you follow certain principles, you can be smart about your choices,
which results in a robust, consistent, and efficient database.

One of the great strengths of the relational model is the importance it gives to enforce-
ment of data integrity as part of the model itself, at multiple levels. One important aspect in
choosing the appropriate type for your data is to remember that a type is a constraint. This
means that it has a certain domain of supported values and does not allow values out-
side that domain. For example, the DATE type allows only valid dates. An attempt to enter
something that isn’t a date, like ‘abc’ or ‘20170230’, is rejected. If you have an attribute that
is supposed to represent a date, such as birthdate, and you use a type such as INT or CHAR,
you don’t benefit from built-in validating of dates. An INT type won’t prevent a value such as
99999999 and a CHAR type won’t prevent a value such as ‘20170230’.

Much like a type is a constraint, NOT NULL is a constraint as well. If an attribute isn’t sup-
posed to allow NULLs, it’s important to enforce a NOT NULL constraint as part of its defini-
tion. Otherwise, NULLs find their way into your attribute.

Also, you want to make sure that you do not confuse the formatting of a value with its
type. Sometimes, people use character strings to store dates because they think of storing a
date in a certain format. The formatting of a value is supposed to be the responsibility of the
application when data is presented. The type is a property of the value stored in the data-
base, and the internal storage format shouldn’t be your concern. This aspect has to do with
the physical data independence principle in the relational model.

A data type encapsulates behavior. By using an inappropriate type, you miss all the behav-
ior that is encapsulated in the type in the form of operators and functions that support it. As
a simple example, for types representing numbers, the plus (+) operator represents addition,
but for character strings, the same operator represents concatenation. If you chose an inap-
propriate type for your value, you sometimes have to convert the type (explicitly or implicitly),
and sometimes juggle the value quite a bit, in order to treat it as what it is supposed to be.

Another important principle in choosing the appropriate type for your data is size. Often
one of the major aspects affecting query performance is the amount of I/O involved. A query
that reads less simply tends to run faster. The bigger the type that you use, the more storage
it uses. Tables with many millions of rows, if not billions, are commonplace nowadays. When
you start multiplying the size of a type by the number of rows in the table, the numbers can
quickly become significant. As an example, suppose you have an attribute representing test
scores, which are integers in the range 0 to 100. Using an INT data type for this purpose is
overkill. It would use 4 bytes per value, whereas a TINYINT would use only 1 byte, and is

www.EBooksWorld.ir

	308	 Chapter 3	 Program databases by using Transact-SQL

therefore the more appropriate type in this case. Similarly, for data that is supposed to rep-
resent dates, many people have a tendency to use the legacy DATETIME type, which uses 8
bytes of storage.

If the value is supposed to represent a date without a time, you should use DATE, which
uses only 3 bytes of storage. Moreover, if the value is supposed to represent both date and
time, you should consider DATETIME2. It requires storage between 6 to 8 bytes (depending
on precision), and as an added value, provides a wider range of dates and improved, control-
lable precision. In short, you should use the smallest type that serves your needs. Though of
course, this applies not in the short run, but in the long run. For example, using an INT type
for a key in a table that at one point or another grows to a degree of billions of rows is a bad
idea. You should be using BIGINT. But using INT for an attribute representing test scores or
DATETIME for dates are both bad choices even when thinking about the long run.

Be very careful with the imprecise types FLOAT and REAL. The first two sentences in the
documentation describing these types should give you a good sense of their nature: “Ap-
proximate-number data types for use with floating point numeric data. Floating point data is
approximate; therefore, not all values in the data type range can be represented exactly.” The
benefit in these types is that they can represent very large and very small numbers beyond
what any other numeric type that SQL Server supports can represent. So, for example, if you
need to represent very large or very small numbers for scientific purposes and don’t need
complete accuracy, you may find these types useful. They’re also quite economic (4 bytes for
REAL and 8 bytes for FLOAT). But do not use them for things that are supposed to be precise.

I had a customer case who initially tried to use FLOAT to represent barcode numbers of
products, and was then surprised by not getting the right product when scanning the prod-
ucts’ barcodes.

To demonstrate the trickiness of these types, consider the following query, which converts
a FLOAT value to NUMERIC:

DECLARE @f AS FLOAT = 29545428.022495;
SELECT CAST(@f AS NUMERIC(28, 14)) AS numericvalue;

Can you guess what the output of this code is? Here’s what I got on my system:

numericvalue

29545428.02249500155449

As mentioned, some values cannot be represented precisely.

In short, make sure you use exact numeric types when you need to represent values
precisely, and reserve the use of the approximate numeric types only to cases where you’re
certain that it’s acceptable for the application.

Another important aspect in choosing a type has to do with choosing fixed types (CHAR,
NCHAR, BINARY) vs. dynamic ones (VARCHAR, NVARCHAR, VARBINARY). Fixed types use the
storage for the indicated size; for example, CHAR(30) uses storage for 30 characters, whether
you actually specify 30 characters or less. This means that updates don’t require the row to

www.EBooksWorld.ir

	 Skill 3.3: Implement data types and NULLs 	 Chapter 3	 309

physically expand, and therefore no data shifting is required. So for attributes that get up-
dated frequently, where the update performance is a priority, you should consider fixed types.
Note that when compression is used—specifically row compression—SQL Server stores fixed
types like variable ones, but with less overhead.

Variable types use the storage for what you enter, plus a couple of bytes for offset infor-
mation (or 4 bits with row compression). So for widely varying sizes of strings, if you use vari-
able types you can save a lot of storage. As already mentioned, the less storage used, the less
there is for a query to read, and the faster the query can perform. So variable length types
are usually preferable in such cases when read performance is a priority.

With character strings, there’s also the question of using regular character types (CHAR,
VARCHAR) vs. Unicode types (NCHAR, NVARCHAR). The former use 1 byte of storage per
character and support only one language (based on collation properties) besides English.
The latter use 2 bytes of storage per character (unless compressed) and support multiple
languages. If a surrogate pair is needed, a character requires 4 bytes of storage. So if data is
in multiple languages and you need to represent only one language besides English in your
data, you can benefit from using regular character types, with lower storage requirements.
When data is international, or your application natively works with Unicode data, you should
use Unicode data types so you don’t lose information. The greater storage requirements of
Unicode data are mitigated with Unicode compression.

When using types that can have a length associated with them, such as CHAR and VAR-
CHAR, T-SQL supports omitting the length and then uses a default length. However, in differ-
ent contexts, the defaults can be different. It is considered a best practice to always be explicit
about the length, as in CHAR(1) or VARCHAR(30).

Choosing a data type for keys
When defining a key based on an existing attribute that already serves some purpose beyond
being a key, there’s usually no question about which data type to use because you’ve already
made that choice previously. But when you need to create a new attribute solely for the
purpose of being used as a key, you need to determine an appropriate data type, as well as
a mechanism to generate the key values. The reality is that you hear many different opinions
as to what is the best solution. Different systems and different workloads could end up with
different optimal solutions. What’s more, in some systems, write performance might be the
priority, whereas in others, the read performance is. One solution can make the inserts faster
but the reads slower, and another solution might work the other way around. At the end of
the day, to make smart choices, it’s important to learn the theory, learn about others’ experi-
ences, but eventually make sure that you run benchmarks in the target system.

The typical options people use to generate keys are:

■■ The identity column property A property that automatically generates keys in an at-
tribute of a numeric type with a scale of 0; namely, any integer type (TINYINT, SMALL-
INT, INT, BIGINT) or NUMERIC/DECIMAL with a scale of 0.

■■ The sequence object An independent object in the database from which you can
obtain new sequence values. Like identity, it supports any numeric type with a scale

www.EBooksWorld.ir

	310	 Chapter 3	 Program databases by using Transact-SQL

of 0. Unlike identity, it’s not tied to a particular column; instead, as mentioned, it is an
independent object in the database. You can also request a new value from a sequence
object before using it.

■■ Nonsequential GUIDs You can generate nonsequential global unique identifiers to
be stored in an attribute of a UNIQUEIDENTIFIER type, which uses 16 bytes of storage.
You can use the T-SQL function NEWID to generate a new GUID, possibly invoking it
with a default expression attached to the column. You can also generate one from any-
where—for example, the client—by using an application programming interface (API)
that generates a new GUID. The main advantage of GUIDs is that they are guaranteed
to be unique across space and time. Their disadvantages are that they use a lot of stor-
age and are quite awkward to work with.

■■ Sequential GUIDs You can generate sequential GUIDs within the machine by using
the T-SQL function NEWSEQUENTIALID. This function is only allowed in a default con-
straint that is associated with a column.

■■ Custom solutions If you do not want to use the built-in tools that SQL Server provides
to generate keys, you need to develop your own custom solution. The data type for
the key then depends on your solution. An example would be storing the last used
value in a table, and every time you need a new value, incrementing the existing value
in the table with an UPDATE statement and using the new value when you insert a row
into the target table.

One thing to consider regarding your choice of a key generator and the data type involved
is the size of the data type. The bigger the type, the more storage is required, and hence the
slower the reads are. A solution using an INT data type requires 4 bytes per value, BIGINT
requires 8 bytes, UNIQUEIDENTIFIER requires 16 bytes, and so on. The storage requirements
for your key can have a cascading effect if your clustered index is defined on the same key
columns (the default for a primary key constraint). The clustered index key columns are used
by all nonclustered indexes internally as the means to locate rows in the table. So if you de-
fine a clustered index on a column x, and nonclustered indexes—one on column a, one on b,
and one on c—your nonclustered indexes are internally created on columns (a, x), (b, x), and
(c, x), respectively. In other words, the effect is multiplied.

Regarding the use of sequential keys (as with identity, sequence, and NEWSEQUENTIALID)
vs. nonsequential ones (as with NEWID or a custom randomized key generator), there are
several aspects to consider.

Starting with sequential keys, all rows go into the right end of the index. When a page is
full, SQL Server allocates a new page and fills it. This results in less fragmentation in the index,
which is beneficial for read performance. Also, insertions can be faster when a single session is
loading the data, and the data resides on a single drive or a small number of drives. However,
with high-end storage subsystems, the situation can be different. When loading data from
multiple sessions, such as in typical OLTP workloads like order entry systems, you end up with
a performance problem known as the rightmost page latch contention. Latches are objects
used to synchronize access to database pages. In this scenario, you have a bottleneck when

www.EBooksWorld.ir

	 Skill 3.3: Implement data types and NULLs 	 Chapter 3	 311

multiple threads try to obtain a latch against the rightmost index page and end up being
queued since only one thread at a time can obtain the latch. This bottleneck prevents use
of the full throughput of the storage subsystem and in systems with a high volume of small
insert transactions often results in serious performance problems. As an interesting aside,
the rightmost page latch contention problem exists when using the traditional disk-based
architecture for data. The problem is completely eliminated when using the In-Memory OLTP
feature because it uses an architecture with no locking or latching.

Consider nonsequential keys, such as random ones generated with NEWID or with a
custom solution. When trying to force a row into an already full page, SQL Server performs a
classic page split—it allocates a new page and moves half the rows from the original page to
the new one. A page split has a cost, plus it results in index fragmentation. Index fragmenta-
tion can have a negative impact on the performance of reads. However, when using a high-
end storage subsystem and loading data from multiple sessions, the random order can result
in much better performance than sequential despite the splits. That’s because there’s no hot
spot at the right end of the index, and you use the storage subsystem’s available throughput
better. Page splits and index fragmentation can be mitigated by periodic index rebuilds as
part of the usual maintenance activities.

If for aforementioned reasons you decide to rely on keys generated in random order, you
still need to decide between GUIDs and a custom random key generator solution. As already
mentioned, GUIDs are stored in a UNIQUEIDENTIFIER type that is 16 bytes in size; that’s large.
But one of the main benefits of GUIDs is the fact that they can be generated anywhere and
not conflict across time and space. You can generate GUIDs not just in SQL Server using the
NEWID function, but anywhere, using APIs. Otherwise, you could come up with a custom
solution that generates smaller keys that are generated in a random-like order as far as the
insertions are concerned. The solution can even be a mix of a built-in tool and some tweaking
on top. For example, you can find a creative solution by Wolfgang ‘Rick’ Kutschera at http://
dangerousdba.blogspot.com/2011/10/day-sequences-saved-world.html. Rick uses the SQL
Server sequence object, but flips the bits of the values so that the insertion is distributed across
the index leaf.

To conclude this section about keys and types for keys, remember that there are multiple
options. Smaller is generally better, but then there’s the question of the hardware that you use,
and where your performance priorities are. Also remember that although it is very important to
make educated guesses, it is also important to benchmark solutions in the target environment.

Data type conversions
This section covers both explicit and implicit data type conversions and is mainly provided as
a review of previously discussed topics.

You want to make sure that when indicating a literal of a type, you use the correct form. For
example, literals of regular character strings are delimited with single quotation marks, as in
‘abc’, whereas literals of Unicode character strings are delimited with a capital N, and then single
quotation marks, as in N’abc’. When an expression involves elements with different types, SQL

www.EBooksWorld.ir

http://www.dangerousdba.blogspot.com/2011/10/day-sequences-saved-world.html
http://www.dangerousdba.blogspot.com/2011/10/day-sequences-saved-world.html

	312	 Chapter 3	 Program databases by using Transact-SQL

Server needs to apply implicit conversion when possible, and this may result in performance
penalties. Note that in some cases the interpretation of a literal may not be what you think intu-
itively. In order to force a literal to be of a certain type, you may need to apply explicit conver-
sion with functions like CAST, CONVERT, PARSE, or TRY_CAST, TRY_CONVERT, and TRY_PARSE.
As an example, the literal 1 is considered an INT by SQL Server in any context. If you need the
literal 1 to be considered, for example, a BIT, you need to convert the literal’s type explicitly, as
in CAST(1 AS BIT). Similarly, the literal 4000000000 is considered NUMERIC and not BIGINT. If
you need the literal to be the latter, use CAST(4000000000 AS BIGINT). The difference between
the functions without the TRY and their counterparts with the TRY is that those without the TRY
fail if the value isn’t convertible, whereas those with the TRY return a NULL in such a case. For
example, the following code fails.

SELECT CAST(‘abc’ AS INT);

It generates the following output:

Msg 245, Level 16, State 1, Line 28
Conversion failed when converting the varchar value ‘abc’ to data type int.

Conversely, the following code returns a NULL.

SELECT TRY_CAST(‘abc’ AS INT);

As for the difference between CAST, CONVERT, and PARSE, with CAST, you indicate the
expression and the target type; with CONVERT, there’s a third argument representing the
style for the conversion, which is supported for some conversions, like between character
strings and date and time values. For example, CONVERT(DATE, ‘1/2/2017’, 101) converts the
literal character string to DATE using style 101 representing the United States standard. With
PARSE, you can indicate the culture by using any culture supported by the Microsoft .NET
Framework. For example, PARSE(‘1/2/2017’ AS DATE USING ‘en-US’) parses the input literal as
a DATE by using a United States English culture.

EXAM TIP

As mentioned in Chapter 1, the PARSE function is significantly slower than the CONVERT
and CAST functions. So, in real life, I recommend staying away from it unless at some point
Microsoft fixes the performance issue. However, when taking the exam make sure that you
understand carefully what the questions are about. If presented with a conversion task
and asked which solutions are correct (as opposed to efficient), by all means, you should
consider using PARSE if presented with the option.

When using expressions that involve operands of different types, SQL Server usually con-
verts the one that has the lower data type precedence to the one with the higher. Consider
the expression 1 + ‘1’ as an example. One operand is INT and the other is VARCHAR. If you
look in Books Online under “Data Type Precedence (Transact-SQL),” at https://msdn.microsoft.
com/en-us/library/ms190309.aspx, you find that INT precedes VARCHAR; hence, SQL Server

www.EBooksWorld.ir

https://www.msdn.microsoft.com/en-us/library/ms190309.aspx
https://www.msdn.microsoft.com/en-us/library/ms190309.aspx

	 Skill 3.3: Implement data types and NULLs 	 Chapter 3	 313

implicitly converts the VARCHAR value ‘1’ to the INT value 1, and the result of the expression
is therefore 2 and not the string ‘11’. Of course, you can always take control by using explicit
conversion.

If all operands of the expression are of the same type, that’s also going to be the type of
the result, and you might not want it to be the case. For example, the result of the expression
5 / 2 in T-SQL is the INT value 2 and not the NUMERIC value 2.5, because both operands are
integers, and therefore the result is an integer. If you were dealing with two integer columns,
like col1 / col2, and wanted the division to be NUMERIC, you would need to convert the col-
umns explicitly, as in CAST(col1 AS NUMERIC(12, 2)) / CAST(col2 AS NUMERIC(12, 2)).

Curiously, T-SQL handles conversions from NUMERIC to INT differently than between NU-
MERIC with a higher scale to a lower one. With the former, T-SQL truncates the value, with the
latter, it rounds it. The following example demonstrates this:

SELECT
 CAST(10.999 AS NUMERIC(12, 0)) AS numeric_to_numeric,
 CAST(10.999 AS INT) AS numeric_to_int;

This code generates the following output:

numeric_to_numeric numeric_to_int
--------------------------------------- --------------
11 10

When converting a character string to a date and time type or a date and time type with a
higher precision to one with a lower precision, you get rounding—not truncation. The follow-
ing example demonstrates this:

DECLARE
 @s AS CHAR(21) = ‘20170212 23:59:59.999’,
 @dt2 AS DATETIME2 = ‘20170212 23:59:59.999999’;

SELECT
 CAST(@s AS DATETIME) AS char_to_datetime,
 CAST(@dt2 AS DATETIME) AS char_to_datetime;

This code generates the following output:

char_to_datetime char_to_datetime
----------------------- -----------------------
2017-02-13 00:00:00.000 2017-02-13 00:00:00.000

The above conversion behavior applies whether the conversion is explicit or implicit.

When defining attributes that represent the same thing across different tables—especially
ones that are later used as join columns (like the primary key in one table and the foreign key
in another)—it’s very important to be consistent with the types. Otherwise, when comparing
one attribute with another, SQL Server has to apply implicit conversion of one attribute’s type
to the other, and this could have negative performance implications, like preventing efficient
use of indexes.

www.EBooksWorld.ir

	314	 Chapter 3	 Program databases by using Transact-SQL

Handling NULLs
Chapter 1 already covered in detail the trickiness and complexity of dealing with NULLs in
different T-SQL elements and provided recommendations for proper handling of NULLs.
This section gives you an opportunity to practice what you know by going over a number of
examples. The two main areas that this section demonstrates are using the ISNULL and CO-
ALESCE functions, and handling NULLs when combining data from different tables.

The ISNULL and COALESCE functions
The ISNULL and COALESCE functions are both commonly used functions that return the first
value that is not NULL among their inputs. There are quite a few differences between them
that you should be aware of before you decide which of the two is more appropriate for you
to use.

The first important difference between ISNULL and COLAESCE is that the former sup-
ports only two input parameters, whereas the latter supports more than two. Here’s a simple
example demonstrating their use:

SET NOCOUNT ON;
USE TSQLV4;

DECLARE
 @x AS INT = NULL,
 @y AS INT = 1759,
 @z AS INT = 42;

SELECT COALESCE(@x, @y, @z);
SELECT ISNULL(@x, @y);

Both expressions return the value 1759 because in both cases it’s the first value that is not
NULL.

The ISNULL function is a proprietary T-SQL feature whereas the COALESCE function is
defined by the ISO/ANSI SQL standard. So if there is a policy in your organization to use stan-
dard code whenever possible, you should prefer COALESCE in such a case.

The previous section in this skill discussed data type conversions, including implicit con-
versions. There’s a curious difference between ISNULL and COALESCE in terms of how the
data type of the returned value is determined and how implicit conversion is handled. With
ISNULL, the data type of the result is determined like so:

1.	 If the first input has a data type (as opposed to being an untyped NULL literal), the
result type is the type of the first input.

2.	 If the first input is an untyped NULL literal, and the second input has a data type, the
result type is the type of the second input.

3.	 If both inputs are untyped NULL literals, the result data type is INT.

With COALESCE, the type is determined like so.

www.EBooksWorld.ir

	 Skill 3.3: Implement data types and NULLs 	 Chapter 3	 315

1.	 If at least one of the inputs has a type, the result type is the type with the highest pre-
cedence among the inputs.

2.	 If all inputs are untyped NULL literals, you get an error.

Consider the following example:

DECLARE
 @x AS VARCHAR(3) = NULL,
 @y AS VARCHAR(10) = ‘1234567890’;

SELECT ISNULL(@x, @y) AS ISNULLxy, COALESCE(@x, @y) AS COALESCExy;

Before you actually run it, can you guess what each of the functions return?

This code generates the following output:

ISNULLxy COALESCExy
-------- ----------
123 1234567890

Notice that with ISNULL the first input determines the type, which is VARCHAR(3), and
since the first input is NULL and the second input isn’t, the function returns the second input
value after implicitly converting it to the first input’s type. Consequently, the string gets
truncated after the first three characters. With COALESCE, the type of the result is the type
with the highest precedence among the inputs, meaning VARCHAR(10) in our example, so the
returned value doesn’t get truncated.

Consider another example:

SELECT ISNULL(‘1a2b’, 1234) AS ISNULLstrnum;
GO
SELECT COALESCE(‘1a2b’, 1234) AS COALESCEstrnum;
GO

Again, before actually running this code, can you guess the outcome of both function
calls?

With the ISNULL function, the type of the result is based on the first input, so you get the
first input value with its original type as the result: ‘1a2b’. With the COALESCE function, the
type with the highest precedence among the inputs is INT, therefore the function tries to im-
plicitly convert the first input value to INT before returning it and fails since the value doesn’t
covert. This code generates the following output:

ISNULLstrnum

1a2b

COALESCEstrnum

Msg 245, Level 16, State 1, Line 85
Conversion failed when converting the varchar value ‘1a2b’ to data type int.

www.EBooksWorld.ir

	316	 Chapter 3	 Program databases by using Transact-SQL

Another difference between the two functions has to do with the nullability of the result
column when using them in a SELECT INTO statement. With ISNULL, if any of the input ex-
pressions is nonnullable, the result column is defined as NOT NULL. If both inputs are nullable,
the result is a column defined as allowing NULLs. With COALESCE, only if all inputs are non-
nullable, the result column is defined as NOT NULL, otherwise, it is defined as allowing NULLs.

The following code demonstrates the difference between the two functions in terms of the
nullability of the result:

DROP TABLE IF EXISTS dbo.TestNULLs;
GO
SELECT empid,
 ISNULL(region, country) AS ISNULLregioncountry,
 COALESCE(region, country) AS COALESCEregioncountry
INTO dbo.TestNULLs
FROM HR.Employees;

SELECT
 COLUMNPROPERTY(OBJECT_ID(‘dbo.TestNULLs’), ‘ISNULLregioncountry’,
 ‘AllowsNull’) AS ISNULLregioncountry,
 COLUMNPROPERTY(OBJECT_ID(‘dbo.TestNULLs’), ‘COALESCEregioncountry’,
 ‘AllowsNull’) AS COALESCEregioncountry;

DROP TABLE IF EXISTS dbo.TestNULLs;

The region column in the HR.Employees table allows NULLs and the country column
doesn’t. With ISNULL, because at least one input is defined as not allowing NULLs, the result
column is defined as NOT NULL. With COALESCE, because at least one input allows NULLs,
the result column allows NULLs as well. Here’s the output of this code indicating the nullabil-
ity of the two result columns:

ISNULLregioncountry COALESCEregioncountry
------------------- ---------------------
0 1

Another important difference between the two functions has to do with performance
when using subqueries. That is, when comparing an expression such as ISNULL((<subquery>),
0) with COALESCE((<subquery>), 0). The ISNULL function evaluates the subquery only once.
If its result is not NULL, it returns its result. If it is NULL, it evaluates the second input and
returns its result. With COALESCE, according to the SQL standard, the expression is translated
to:

CASE WHEN (<subquery>) IS NOT NULL THEN (<subquery>) ELSE 0 END

If the result of the execution of the subquery in the WHEN clause isn’t NULL, SQL Server
executes it a second time in the THEN clause. In other words, in such a case it executes it
twice. Only if the result of the execution in the WHEN clause is NULL, SQL Server doesn’t ex-
ecute the subquery again, rather returns the ELSE expression. So when using subqueries, the
ISNULL function has a performance advantage.

www.EBooksWorld.ir

	 Skill 3.3: Implement data types and NULLs 	 Chapter 3	 317

EXAM TIP

If your exam includes questions involving ISNULL and COALESCE, chances are that you are
expected to know how to pick between the two based on the differences between them.
For your convenience, Table 3-2 provides a comparison summary between the two func-
tions. Make sure you understand and memorize all items in the table.

TABLE 3-2  Comparison between ISNULL and COALESCE

aspect isnull coalesce

Number of supported parameters 2 > 2

Standard No Yes

Data type of result 1. If first input has a type, that’s
the type of the result.
2. Otherwise, if second input has a
type, that’s the type of the result.
3. If both inputs are untyped NULL
literals, the result type is INT.

1. If at least one input has a type,
the result type is the type with the
highest precedence.
2. If all inputs are untyped NULL
literals, you get an error.

nullability of result If any input is nonnullable, result
is defined as NOT NULL, otherwise
as NULL.

If all inputs are nonnullable, result
is defined as NOT NULL, otherwise
as NULL.

Might execute subquery more
than once

No Yes

Handling NULLs when combining data from multiple tables
When you need to combine data from multiple tables you use tools like joins, subqueries, and
set operators. You always want to check if NULLs are possible in the tables you’re combining,
especially when it concerns the columns that you’re comparing between the sides. If NULLs
are possible in the data, you want to make sure that you have the right logic in place in your
code to get the behavior that you consider as correct. This section demonstrates NULL han-
dling when combining data from multiple tables with all three tools.

The examples in this section query tables called TableA and TableB. Run the following code
to create these tables and populate them with sample data:

DROP TABLE IF EXISTS dbo.TableA, dbo.TableB;
GO
CREATE TABLE dbo.TableA
(
 key1 CHAR(1) NOT NULL,
 key2 CHAR(1) NULL,
 A_val VARCHAR(10) NOT NULL,
 CONSTRAINT UNQ_TableA_key1_key2 UNIQUE CLUSTERED (key1, key2)
);

INSERT INTO dbo.TableA(key1, key2, A_val)
 VALUES(‘w’, ‘w’, ‘A w w’),
 (‘x’, ‘y’, ‘A x y’),
 (‘x’, NULL, ‘A x NULL’);

www.EBooksWorld.ir

	318	 Chapter 3	 Program databases by using Transact-SQL

CREATE TABLE dbo.TableB
(
 key1 CHAR(1) NOT NULL,
 key2 CHAR(1) NULL,
 B_val VARCHAR(10) NOT NULL,
 CONSTRAINT UNQ_TableB_key1_key2 UNIQUE CLUSTERED (key1, key2)
);

INSERT INTO dbo.TableB(key1, key2, B_val)
 VALUES(‘x’, ‘y’, ‘B x y’),
 (‘x’, NULL, ‘B x NULL’),
 (‘z’, ‘z’, ‘B z z’);

Joins and subqueries behave similarly in terms of NULLs when you compare key columns
between the two sides of the operation in the join predicate or the subquery’s WHERE clause.
When comparing two columns using an equality operator (=), if either side is NULL, the out-
come of the comparison is the logical value unknown. As part of a join predicate, the case is
considered a nonmatch, and as part of a filter, the result row is discarded. If you want to get a
match/keep the row when both sides are NULL, you need to add explicit special handling.

I’ll demonstrate this behavior first with joins and then with subqueries. The following
example joins TableA and TableB and compares both key1 (nonnullable) and key2 (nullable)
from both sides:

SELECT A.A_val, B.B_val
FROM dbo.TableA AS A
 INNER JOIN dbo.TableB AS B
 ON A.key1 = B.key1
 AND A.key2 = B.key2;

Only rows with proper key values that match are returned. That is, only rows where both
keys are not NULL and equal are considered matches and therefore are returned. This code
generates the following output:

A_val B_val
---------- ----------
A x y B x y

Notice that even though both sides have a row where key1 is x and key2 is NULL, such a
case is not considered a match, and therefore a result row is not returned for it. If you want
such a case to be considered a match, you need to add special handling of the NULLs. One
way to achieve this is to add a predicate that checks for the option that both sides are NULL,
like so:

SELECT A.A_val, B.B_val
FROM dbo.TableA AS A
 INNER JOIN dbo.TableB AS B
 ON A.key1 = B.key1
 AND (A.key2 = B.key2 OR A.key2 IS NULL AND B.key2 IS NULL);

This special handling is only required for the nullable columns; therefore, you only need it
for key2, but not for key1. This code generates the following output:

www.EBooksWorld.ir

	 Skill 3.3: Implement data types and NULLs 	 Chapter 3	 319

A_val B_val
---------- ----------
A x NULL B x NULL
A x y B x y

This form is considered order-preserving by the optimizer, meaning that it enables ef-
ficient use of indexing.

Another common solution is to use the ISNULL or COALESCE functions to replace a NULL
with a value that cannot normally appear in the data in both sides. This way, when both sides
are NULL, you get a match. Here’s how you use this technique in our example:

SELECT A.A_val, B.B_val
FROM dbo.TableA AS A
 INNER JOIN dbo.TableB AS B
 ON A.key1 = B.key1
 AND COALESCE(A.key2, ‘<N/A>’) = COALESCE(B.key2, ‘<N/A>’);

This code generates the following output:

A_val B_val
---------- ----------
A x NULL B x NULL
A x y B x y

Unfortunately, this form is not considered order-preserving by the optimizer, and there-
fore might result in a less optimal plan compared to the previous solution. But as mentioned
several times in this guide, during the exam make sure you understand carefully what the
exact requirements of the questions are. When only asked about the correctness of a solution
and not its efficiency, use of such techniques is fair game. When considering which solution to
use in production code, you want to stay away from such techniques.

As mentioned, subqueries behave very similar to joins in terms of NULL handling. Consider
the following example:

SELECT A.A_val
FROM dbo.TableA AS A
WHERE EXISTS
 (SELECT * FROM dbo.TableB AS B
 WHERE A.key1 = B.key1
 AND A.key2 = B.key2);

Like with the first example with the join, without any special NULL handling, only rows
from TableA with proper key values (ones that are not NULL) that match all compared
columns in TableB are filtered. The row in Table A where key1 is x and key2 is NULL is not
returned, despite the fact that Table B also has a row where key1 is x and key2 is NULL. This
code generates the following output:

A_val

A x y

www.EBooksWorld.ir

	320	 Chapter 3	 Program databases by using Transact-SQL

If you are supposed to return such rows, just like with joins, you need to add special ex-
plicit NULL treatment. Here’s an example demonstrating the order-preserving technique with
the extra predicate:

SELECT A.A_val
FROM dbo.TableA AS A
WHERE EXISTS
 (SELECT * FROM dbo.TableB AS B
 WHERE A.key1 = B.key1
 AND (A.key2 = B.key2 OR A.key2 IS NULL AND B.key2 IS NULL));

This code generates the following output:

A_val

A x NULL
A x y

And here’s an example demonstrating the technique that is not order-preserving, and
therefore typically less efficient, with the COALESCE function:

SELECT A.A_val
FROM dbo.TableA AS A
WHERE EXISTS
 (SELECT * FROM dbo.TableB AS B
 WHERE A.key1 = B.key1
 AND COALESCE(A.key2, ‘<N/A>’) = COALESCE(B.key2, ‘<N/A>’));

This code generates the following output:

A_val

A x NULL
A x y

Using a set operator, like INTERSECT, the comparison between the two inputs uses a
concept of distinctness instead of equality. With distinctness, when you compare two NULLs
you get true and not unknown as the result. That is, it is true that one NULL isn’t distinct from
another NULL.

Here’s an example combining the rows with key1 and key2 from the two tables using the
INTERSECT operator:

SELECT key1, key2 FROM dbo.TableA
INTERSECT
SELECT key1, key2 FROM dbo.TableB;

This code generates the following output:

key1 key2
---- ----
x NULL
x y

www.EBooksWorld.ir

	 Chapter summary	 Chapter 3	 321

As you can see, there’s no need here for special handling of NULLs if you want to get a
true when comparing two NULLs. That’s the behavior of set operators by design. The one
drawback that set operators have compared to the alternative tools is that with set operators
you’re limited to returning only the columns that you’re comparing.

In Chapter 1 I described a technique that brings together all three tools to combine data
between tables in a manner that is order-preserving, allows returning elements from both
sides and that uses distinctness-based semantics. Here’s the technique applied to our ex-
ample:

SELECT A.A_val, B.B_val
FROM dbo.TableA AS A
 INNER JOIN dbo.TableB AS B
 ON EXISTS(SELECT A.key1, A.key2
 INTERSECT
 SELECT B.key1, B.key2);

This code generates the following output:

A_val B_val
---------- ----------
A x NULL B x NULL
A x y B x y

This beautiful technique is considered pretty advanced and is not very well known, and
hence it’s not very likely that it will show up in the exam. However, if you do understand it
well, you should have a pretty good grasp of the fundamental querying tools that it’s based
on. And what could be a nicer way to end the book than with this example?

When you’re done, run the following code for cleanup:

DROP TABLE IF EXISTS dbo.TableA, dbo.TableB;

Chapter summary

■■ Views are reusable table expressions that don’t support parameters. Inline table valued
functions (TVFs) are like views, but with parameter support. You should think of inline
TVFs as parameterized views.

■■ Scalar user-defined functions (UDFs) accept parameters and return a single value. You
cannot change data from UDFs or have any side effects on the database. T-SQL does
not support error handling in UDFs.

■■ Multistatement table-valued UDFs define a table variable that they return in their
header. The responsibility of the UDF’s body is to fill the returned table variable with
data. When you query such a UDF, SQL Server internally creates the table variable, runs
the function’s flow to fill it with data, and hands it to the calling query. The benefit
of UDFs is that unlike with stored procedures you can interact with them as part of a
query.

www.EBooksWorld.ir

	322	 Chapter 3	 Program databases by using Transact-SQL

■■ Stored procedures are reusable routines that allow you to encapsulate logic. Unlike
UDFs, stored procedures can modify data in the database, use dynamic SQL, and sup-
port error handling. They help you hide the complexity of your tasks. They also help
you better control permissions by granting EXECUTE permissions to the user on the
procedure without granting permissions to perform the underlying activities directly.
Unlike UDFs, stored procedures cannot appear in a query.

■■ SQL Server supports doing work as transactions with full ACID properties (atomicity,
consistency, isolation and durability).

■■ T-SQL supports a TRY-CATCH construct for error handling purposes. Using this con-
struct appropriately, combined with making sure that you don’t leave a transaction
open in case of errors, allows you to provide consistent error handling solutions.

■■ By turning the XACT_ABORT option to on you get a more consistent outcome in terms
of an open transaction when an error happens. When not using TRY-CATCH, an open
transaction is rolled back and the batch is aborted. When using TRY-CATCH, the trans-
action is doomed and control passes to the CATCH block.

■■ The ISNULL and COALESCE functions return the first value that is not NULL among
their inputs.

■■ When combining data from multiple tables you use tools like joins, subqueries and set
operators. If NULLs are possible in the key columns that you’re matching, you need to
think about the desired outcome of the comparison. If you wish to get a match when
comparing two NULLs, with joins and subqueries you need to add special handling,
whereas with set operators you don’t.

Thought experiment 

In this thought experiment, demonstrate your skills and knowledge of the topics covered in
this chapter. You can find the answer to this thought experiment in the next section.

You are a member of a database development team of a large retail company. There
seems to be some confusion among the developers in terms of which tools to use for which
tasks, resulting in inconsistent choices. Your team has a meeting where different members
raise questions with regards to the recommended tools and practices to use. You are asked
about your opinion concerning the following questions:

1.	 Some of the developers argue against implementing logic in database routines like
stored procedures. Do you have any arguments in favor of using those?

2.	 Some of the developers argue that there’s no need for error handling in T-SQL, rather
all error handling should be done in the application. Can you provide any arguments
in favor of handling errors in T-SQL, and any recommendations for consistent error
handling?

www.EBooksWorld.ir

	 Thought experiment answer	 Chapter 3	 323

3.	 There’s some inconsistency in the choice of data types for columns that represent the
same thing in different tables. Making a change in the type of a column involves some
refactoring, and in some cases downtime. What are the benefits and arguments in
favor of creating a plan for more consistent use of data types for attributes that repre-
sent the same thing?

4.	 Currently there’s a lot of inconsistency in using ISNULL and COALESCE. If the dev team
had to pick one of the two to be consistent, which of the two should it be? Also, are
there special cases where an exception should be made?

5.	 When joining data with keys that support NULLs, developers regularly use the ISNULL
function in both sides of the join to replace a NULL with an alternative value, and this
way get a match when both sides are NULL. However, users complain about bad per-
formance for those queries. Can you suggest an alternative solution?

Thought experiment answer

This section contains the solution to the thought experiment.

1.	 Stored procedures allow you to encapsulate logic in a reusable database routine. Com-
pared to implementing logic in the application, it’s much easier to deploy a change in
a stored procedure. You simply alter the procedure with the new code, and from that
moment everyone starts using the new version. Stored procedures also tend to result
in less network traffic since the application passes through the network only the proce-
dure name and its arguments; the flow runs in the database, and the stored procedure
returns only the final result through the network. Stored procedures also make it easy
to handle security because you grant the user only EXECUTE permissions on the stored
procedure, without needing to grant the user direct permissions for the underlying
activities.

2.	 The two don’t have to be mutually exclusive. For highly robust solutions you want to
handle errors in both the application and the T-SQL code. You always want to check
the inputs in the application and avoid submitting any unnecessary activity to the
database. Once the request is submitted to the database, when an error happens,
T-SQL doesn’t behave very consistently by default in terms of the transaction and
batch state. Using the TRY-CATCH construct, plus turning on the XACT_ABORT option,
you can achieve a more consistent behavior. When an error happens, the transaction
is doomed and control passes to the CATCH block. After doing what you need to do
in the CACTH block, you typically want to roll back the transaction, if still open, and
rethrow the error to the caller. You can then do what you need to do in the application
with the error.

www.EBooksWorld.ir

	324	 Chapter 3	 Program databases by using Transact-SQL

3.	 Columns that represent the same thing in different tables are often used as join
columns, such as in a foreign key-primary key relationship. Such columns are typically
used as join columns. Inconsistency in the data types between the sides of the join
causes SQL Server to implicitly convert the type of one of the sides to the other. With
implicit conversion, the data loses its original ordering property, preventing SQL Server
from being able to rely on index ordering to support the join. Therefore, it’s important
to use consistent types, and if currently inconsistent, to create a plan for altering the
types so that eventually they are consistent.

4.	 The ISNULL function is proprietary whereas COALESCE is standard. Furthermore, IS-
NULL supports only two inputs whereas COALESCE supports more than two. For these
reasons, if you had to choose only one for consistency, COALESCE should be preferred.
The one exception is when you do have only two inputs, and the first is a subquery,
the ISNULL function executes the subquery only once whereas the COALESCE function
might execute it twice (when the result is not NULL). So, if performance is a concern, in
this exceptional case it’s recommended to use ISNULL.

5.	 Once you apply manipulation to a column like with the ISNULL and COALESCE func-
tions, the data loses its original ordering property—at least as far as the optimizer is
concerned. This means that you prevent the optimizer from being able to rely on the
ordering of supporting indexes. So instead of COALESCE(T1.key1, <somevalue>) =
COALESCE(T2.key1, <somevalue>), you should prefer T1.key1 = T2.key1 OR (T1.key1 IS
NULL AND T2.key1 IS NULL).

www.EBooksWorld.ir

325

ANY predicate 131–132
application-time period tables 177
APPLY operator 105, 137–141, 167, 201

CROSS APPLY 138–140
OUTER APPLY 140–141
vs. joins 137

arithmetic operators 83–84, 85–86
arrays 207, 211
AS clause 8–9
AS OF clause 188
AS OF @dt 187
asterisk (*) 18
atomic transactions 264
atomic values 198, 200
at sign (@) 21
AT TIME ZONE function 71–72, 72, 191
attribute-centric presentation 193
attributes 8, 18

aliasing 19
renaming 19
view 229–230
XML 193

autocommit mode 268
AUTO option 195
AVG function 84–85, 86
Azure SQL Database 2

B
BEGIN TRANSACTION statement

265, 270, 272–274, 281
BIGINT value 84

C
CASE expressions 76–79
case-sensitive Unicode text 193

Symbols
@@IDENTITY function 82
@maxallowedqty parameter 260
@parameter IS NULL 253
@params parameter 255
@qty variable 262
@@ROWCOUNT function 80
@sql variable 255
@stmt parameter 255
@sumqty variable 262
@@TRANCOUNT function 265, 272, 277–278,

279, 302, 304

A
add (+) operator 83
aggregate functions 84–86, 153–155

window 168–172
aggregation element 160
aliases

column 19
table 18

aliasing 18–20, 48
columns 145
external 145
inline 223
internal 145

all-at-once concept 106–107
ALL predicate 131
ALL subclause 191
ALTER PROC command 250
ALTER TABLE statement 122–124
ALTER VIEW command 229
American National Standards Institute (ANSI) 3
AND operator 24
Anti Semi Join optimization 137

Index

www.EBooksWorld.ir

326

﻿

CAST function 3, 68, 90–91, 98, 234, 236–237, 312
CATCH block 282, 283, 284.

See also TRY-CATCH construct
character data

filtering 25–26
character functions 72–76

CONCAT function 72–73
DATALENGTH function 75
FORMAT function 75
LEN function 74
LOWER function 75
LTRIM function 75
REPLACE function 75
REPLICATE function 75
RTRIM function 75
STRING_SPLIT function 75–76
STUFF function 75
SUBSTRING function 74
UPPER function 75

CHARINDEX function 74
CHECK constraint 190, 232
CHECK OPTION option 232
CHOOSE function 79
CLR. See Common Language Runtime (CLR)
Clustered Index Seek operator 61
CLUSTERED keyword 59
COALESCE function 60, 73, 78–79, 162, 306,

314–317, 319–320
colon (:) 207
column aliases 19
columns 10

adding 121
altering 122–124
dropping 122, 229–230
NULLable 89–90
sorting by ordinal positions 30–31

comma (,) 207
COMMIT TRANSACTION statement

265, 270, 272–274, 277
common language runtime (CLR) 237
Common Language Runtime (CLR) 155
common table expression (CTE) 4
common table expressions (CTEs) 146–148, 224–227
complex data types 207
composite joins 58–65
COMPRESS function 80–81
compression functions 80–81
concatenation 72–73

CONCAT function 72–73
CONTAINED IN(@start, @end) subclause 189–190
context info 81
CONTEXT_INFO function 81–82
conversion errors 301
CONVERT function 3, 27, 68–69, 91, 98, 312
correlated subqueries 132–133
COUNT_BIG function 233–235
COUNT function 85
COUNT(*) function 151, 153–154, 164
CREATE OR ALTER command 221
CREATE OR ALTER VIEW command 223, 229
CREATE SEQUENCE command 82
CROSS APPLY operator 138–140
CROSS JOIN keywords 48
cross joins 46–48
CTEs. See common table expressions (CTEs)
CUBE clause 157, 160
curly brackets ({}) 207
CURRENT_TIMESTAMP function 69
cursors 7, 16, 33, 260–263

D
data

combining from multiple tables 317–321
formatting values 307
JSON 205–216
pivoting 160–164
querying. See queries
sorting 28–33
temporal 176–192
unpivoting 164–167
XML 192–205

database programming 221–324
error handling and transactions 263–307
NULL handling 314–321
programmability objects 221–263

data element 160
data filtering

character data 25–26
date data 26–28
groups 152–153
OFFSET-FETCH filter 36–39
time data 26–28
TOP filter 33–36, 39
with predicates 21–28

data integrity 307

CAST function

www.EBooksWorld.ir

327

error severity

DATALENGTH function 75
data manipulation language (DML) 93

nested 119–120
data modification 93–124

deleting data
based on join 110
DELETE statement 107–109
TRUNCATE TABLE statement 109–110

inserting data 93–100
INSERT EXEC statement 97–98
INSERT SELECT statement 96
INSERT VALUES statement 94–95
SELECT INTO statement 98–100

merging data 110–115
nested DML 119–120
OUTPUT clause 115–120
stored procedures 258–259
structural changes 121–124

adding column 121
altering column 122–124
dropping column 122

through views 230–232
UPDATE statement 100–107

all-at-once concept 106–107
nonderterministic 103–105
with join 102–103
with variable 105–106

data programming
data types 306–313

data types 306–313
choosing appropriate 307–309
choosing, for keys 309–311
conversions 311–313
fixed vs. dynamic 308–309
working with 306–313

DATEADD function 70
date data

filtering 26–28
DATEDIFF function 70
DATEFORMAT 27
date functions 69–72
DATENAME function 70
DATEPART function 70
DATETIME2 function 69
DATETIME data type 27–28
DATETIMEOFFSET function 69, 71
daylight savings 71–72
DECOMPRESS function 80
DEFAULT keyword 95
default window frame 176

degenerate intervals 184
DELETE statement 107–109

based on join 110
with OUTPUT clause 117
with TOP option 108

DELETE WHERE CURRENT OF syntax 109
delimiters 225
delimiting identifiers 21
DENSE_RANK function 173, 225
depleting quantities 260
derived tables 143–146

nesting 145
DESC 36
deterministic functions 241, 243
disjunction 252
DISTINCT clause 6–7, 15, 31–32, 40, 84, 153–154

to remove duplicates 20
distinctness-based semantics 321
divide by zero error 292–293, 301, 301–302
divide (/) operator 83
Document Object Model (DOM) 196–197
dooming errors 303
dot-separated aliases 208–209
duplicates 5, 6

removing 15, 20
dynamic search conditions 251
dynamic SQL

stored procedures and 253–257

E
element-centric presentation 193
elements, XML 193
ELSE clause 77
ENCRYPTION attribute 230
EOMONTH function 70
error functions 289–291
error handling 263–307

error functions 289–291
RAISERROR command 291, 297–300
THROW command 291–297, 300
with transactions 300–306
with TRY-CATCH 282–300

ERROR_LINE function 289
ERROR_MESSAGE function 289
ERROR_NUMBER function 289
ERROR_PROCEDURE function 289, 289–290
error severity 298

www.EBooksWorld.ir

328

 ERROR_SEVERITY function

ERROR_SEVERITY function 289
ERROR_STATE function 289
ESCAPE keyword 26
EXCEPT operator 44–45, 114
EXECUTE AS clause 256–257
EXECUTE permissions 255, 256
execution plans 43
exist() method 200, 201
EXISTS predicate 90, 114, 133
external aliasing 145

F
FETCH clause 37–39
fields 10
filter predicates

search arguments 86–90
FIRST keyword 37
FIRST_VALUE function 175–176
FLOAT data type 308
FLWOR expressions 199–200
foreign keys 4, 45, 48–49

indexing columns 50
FOR JSON AUTO clause 207–208
FOR JSON clause 206, 210–212
FOR JSON PATH clause 208
FORMAT function 69, 75
FOR SYSTEM_TIME clause 177, 185–189
FOR XML clause 192, 194–195, 202–203
FROM clause 17–18

evaluation of 12–13
function determinism 67, 90–92, 173
functions 67–92

aggregate 84–86, 153–155
arithmetic operators 83–84, 85–86
CASE expressions 76–79
character 72–76
compression 80
date and time 69–72
deterministic 241, 243
error 289–291
GUID 82
identity 82
input and output parameters of 241
nondeterministic 241, 243
scalar-valued 67
search arguments 86–90
system 79–82

table-valued 67
type conversion 68–69
user-defined 237–250
window 144, 167–176, 228
window offset 174–176
window ranking 172–174

G
GETDATE function 69
GETUTCDATE function 69
globally unique identifiers (GUIDs) 82

nonsequential 310
sequential 310

GO batch separator 223
graphical execution plans 43
GROUP BY clause 151–152, 154

grouping rows based on 13–14
grouped queries 15, 151–160

multiple grouping sets 156–160
single grouping set 151–155

grouping element 160
GROUPING function 158–159
GROUPING_ID function 159
grouping sets algebra 160
GROUPING SETS clause 156–157, 160
groups

filtering, by HAVING clause 14

H
HAVING clause 152–153

filtering groups by 14
HIDDEN property 178

I
identifiers

delimiting 21
identity column property 309
identity functions 82
IDENTITY_INSERT option 96, 97
implicit conversions 25
implicit transactions mode 269, 271
IN clause 161, 164
INCLUDE_NULL_VALUES clause 210
indexed views 233–237

www.EBooksWorld.ir

329

multi-join queries

indexes 170
XML 205

indexing
foreign key columns 50

inline aliasing 223
inline table-valued functions 148–150
inline table-valued user-defined functions 244–248
inner joins 48–52
IN predicate 131
input parameters 81, 241, 251–252
INSERT EXEC statement 97–98
inserting data 93–100
INSERT SELECT statement 96
INSERT statement 80, 231, 267, 273

with OUTPUT clause 116–117
INSERT VALUES statement 94–95, 95–96
internal aliasing 145
International Organization for Standards (ISO) 3
INTERSECT operator 43–44, 320–321
INT type 313
ISJSON function 216
IS NOT NULL operator 23
ISNULL function 60–62, 73, 78–79, 98, 162, 306,

314–317, 319
IS NULL operator 23, 24, 89
isolation levels 264
iterations 6

J
JOIN keyword 52
joins 45–67

APPLY operator vs. 137
composite 58–65
cross 46–48
DELETE statement with 110
derived tables 145–146
inner 48–52
multi-join queries 65–67
NULLs in 58–65
outer 52–57
set operators and 64
subqueries vs. 134–137
UPDATE statement with 102–103

JSON
data types 207, 208, 216
special characters 207
specification 206
syntax 207

JSON data 205–216
converting to tabular format 212–216
members 207
producing output from queries 207–212

JSON_MODIFY function 215–216
JSON_QUERY function 215
JSON_VALUE function 215

K
keyed-in order 11
keys

choosing data type for 309–311
nonsequential 311
sequential 310

key-value pairs 81

L
LAG function 174–175
LAST_VALUE function 175–176
latches 310–311
LEAD 174–175
LEFT function 74, 88
LEFT OUTER JOIN keywords 52–54
LEN function 74
LIKE predicate 25–26
literals 25
logical query processing 1, 10–17, 48, 170

phases 11
LOWER function 75
LTRIM function 75

M
markers 279–281
markup, XML 193
mathematics 2, 5
members, JSON 207
MERGE algorithm 61–65
MERGE statement 4, 110–115

with OUTPUT clause 118–119
metadata 194
Microsoft Visual Basic 3
Microsoft Visual C# 3
modify() method 200, 201
modulo (%) operator 83, 85
multi-join queries 65–67

www.EBooksWorld.ir

330

multiple grouping sets

multiple grouping sets 156–160
multiply (*) operator 83
multiset theory 6–7
multistatement table-valued user-defined functions

248–250
multi-valued subqueries 130–131

N
named parameters 253
named transactions 279–281
namespaces 193–194
negation

of true and false 23
nested DML 119–120
Nested Loops algorithm 136–137
nested transactions 272–279
NEWID function 82, 91, 241, 242
NEXT keyword 37
NEXT VALUE FOR function 82
niladic 81
NOCOUNT option 252, 266, 275
nodes() method 200, 201
NOEXPAND hint 235
nondeterministic functions 90–92, 241, 243
nondeterministic UPDATE 103–105
nondooming errors 302–303
nonsequential GUIDs 310
nonsequential keys 311
NOT NULL 307
NOT operator 24
NOT unknown 23
NOWAIT option 298
NTILE function 174
NULLIF function 78–79
NULLs 9, 10, 22–23, 24, 152, 162, 231, 232

as placeholders 156–157, 158
COALESCE function 314–317, 319–320
combining data from multiple tables and 317–321
comparing 40, 44
filtering 89
handling 314–321
in join columns 58–65
input parameters and 251
ISNULL function 314–317, 319
sorting data and 32–33
UNPIVOT operator 166
with aggregate functions 84

number sign (#) 21
NUMERIC type 313
NVARCHAR 22, 76

O
OBJECT_DEFINITION function 224, 230
OFFSET-FETCH filter 16, 36–39, 85, 246
ON clause 50, 50–51

in composite joins 58, 60
in multi-join queries 66–67
in outer joins 54–55

on cols element 160
online transaction processing (OLTP) 110
on rows element 160
OPENJSON function 212–216
OPENXML function 196–198, 201
operands 312–313
operator precedence 24
optimization

of subqueries vs. joins 134–137
predicate pushdown 48

ORDER BY clause 7–8, 12, 29–33, 35–36, 58, 170
presentation ordering 16
set operators and 40
table expressions and 142
views 223
window functions and 144
with OFFSET-FETCH 37–39
with window functions 172
with XML queries 196

ordinal positions
sorting columns by 30–31

OR operator 24, 252
OUTER APPLY operator 140–141
outer joins 52–57
OUT keyword 258
OUTPUT clause 115–120

with DELETE 117
with INSERT statement 116–117
with MERGE statement 118–119
with UPDATE 117–118

OUTPUT keyword 258, 259
output parameters 241, 258–259
OVER clause 167, 168
ownership chaining 255

www.EBooksWorld.ir

331

rowpattern

P
parameter embedding 245, 254
parameters 81, 241, 251–252, 253

input 241, 251–252
named 253
output 241, 258–259

parentheses 24
PARSE function 68, 312
PATH option 196
PATINDEX function 74
PERCENT keyword 34
physical data independence 307
pivoting data 160–164
PIVOT operator 160–164, 225
plus (+) operator 72–73
POC index 170
precedence rules 24
predicate logic 4–5
predicate pushdown 48
predicates 9

ALL 131
ANY 131–132
combining 23–25
disjunction of 252
EXISTS 133
filtering data with 21–28

search arguments 86–90
IN 131
LIKE 25–26
seek 63
SOME 131–132
three-valued-logic and 21–23

presentation order 16
primary keys 45, 48–49
primitive data types 207
PRINT statement 184, 296
programmability objects 221–263

stored procedures 250–263
user-defined functions 237–250
views 222–237

prolog 198
pseudo functions 24

Q
QName 198
queries 6

APPLY operator 137–141
group and pivot data using 150–176
grouped 15, 151–160
JSON data 205–216
keyed-in order 11
logical query processing 10–17
multi-join 65–67
on mutiple tables 45–67
pivot 160–164
search arguments 86–90
SELECT 1–45
static 253–254
subqueries 130–137, 316
temporal data 176–192
using table expressions 141–150
using wildcards 26
windowed 85
XML data 192–205

query() method 200, 201

R
RAISERROR command 291, 297–300
RAND function 91, 242
RANGE option 171
RANK function 173
RAW option 194–195
REAL data type 308
RECOMPILE option 254
records 10
relational database management systems (RDBMSs) 2
relational model 4–9, 307
relational operators 40
REPLACE function 75
REPLICATE function 75
RETURN clause 150, 239, 245
RIGHT function 74
RIGHT OUTER JOIN keywords 55–56
ROLLBACK TRANSACTION statement 265, 272, 277,

280–281, 305
ROLLUP clause 157–158, 160
ROOT clause 210
root node 193
ROWCOUNT_BIG function 80
row-level security 248
ROW_NUMBER function 144, 145, 172–173
rowpattern 196

www.EBooksWorld.ir

332

rows

rows 10
filtering, based on WHERE clause 13
grouping 151–152
grouping, based on GROUP BY clause 13–14
INSERT statement and 118
order of 7–8

ROWS option 171
RTRIM function 75

S
savepoints 279–281
scalar aggregate 151
scalar subqueries 130–132
scalar user-defined functions 239–244
scalar-valued functions 67
SCHEMABINDING attribute 223, 229, 230, 233, 235,

243–244
SCOPE_IDENTITY function 82
search arguments (SARG) 86–90
secondary XML indexes 205
security

in stored procedures 257
row-level 248

seek predicates 63
SELECT clause 18–20, 170

processing 15–16
window functions and 144

SELECT INTO statement 98–100, 316
SELECT queries 1–45

data filtering
OFFSET-FETCH filter 36–39
with TOP 33–36

delimiting identifiers 21
filtering data with predicates 21–28
FOR JSON clause 206
FOR XML clause 192, 194–195
FROM clause 17–18
ORDER BY clause 196
requirements for 20
SELECT clause 18–20
set operators 39–45
sorting data 28–33

self-contained subqueries 130–132
semicolon 3–4
SEQUEL 11
sequence object 309–310
sequential GUIDs 310
sequential keys 310

session context 81–82
SESSION_CONTEXT function 81–82
SET CONTEXT_INFO command 81
set operators 64, 114

combining sets with 39–45
EXCEPT operator 44–45
guidelines for using 40
INTERSECT operator 43–44
UNION and UNION ALL 40–43

set theory 4–5, 28, 40
short-circuiting 24
shredding JSON 212–216
shredding XML 196–198
SOME predicate 131–132
sorting data 28–33
sp_executesql procedure 255
spreading element 160
SQL Server 2–3, 24
SQL Server Management Studio (SSMS)

43, 179, 206–207
SQL (Structured Query Language) 3, 11

relational theory and 5
square brackets 21
square brackets [] 225
standardization 3–4
statement termination 3–4
static queries 253–254
statistical window function 176
stored procedures 250–263

benefits of 250
cursors 260–263
dynamic SQL and 253–257
error handling in 284–286, 289–291
execution of 275–276
modifying data 258–259
security in 257
using output parameters 258–259
working with 251–253

strings
alteration 75
formatting 75
length 74–75
splitting 75–76
substrings 74

STRING_SPLIT function 75, 75–76
STUFF function 75
subqueries 130–137, 316

correlated 132–133
multi-valued 130–131

www.EBooksWorld.ir

333

TRY_CONVERT function

optimization of, vs. joins 134–137
scalar 130–132
self-contained 130–132

SUBSTRING function 74
substrings 74
subtract (-) operator 83
SUM function 84
SWITCHOFFSET function 71
SYSDATETIME function 69, 91, 241–242
SYSDATETIMEOFFSET function 69
system functions 79–82
system-versioned temporal tables 177–192

creating 177–180
modifying data in 181–185
querying data 185–192

SYSTEM_VERSIONING option 177
SYSUTCDATETIME function 69

T
table expressions

common 146–148
derived tables 143–146
inline table-valued functions 148–150
overview of 142
querying data using 141–150
views 222–237
vs. temporary tables 142–143

tables 4
aliasing 18, 48
application-time period 177
columns 10

adding 121
altering 122–124
dropping 122
NULLable 89–90
sorting by ordinal position 30–31

combining data from multiple 317–321
converting JSON to 212–216
converting XML to 196–198
merging data 110–115
querying multiple using joins 45–67

composite joins 58–65
cross joins 46–48
inner joins 48–52
outer joins 52–57

system-versioned temporal 177–192
creating 177–180
modifying data in 181–185
querying data 185–192

temporary 142
table-valued functions 67
table-valued user-defined functions

inline 244–248
multistatement 248–250

tags, XML 193
temporal data 176–192

system-versioned temporal tables 177–192
creating 177–180
modifying data in 181–185
querying data 185–192

temporary tables 142
terminology 10
three-valued-logic 21–23
THROW command 259, 291–297, 300
time data

filtering 26–28
time functions 69–72
time zones 71–72, 191
TODATETIMEOFFSET function 71
TOP filter 16, 33–36, 39
topological sort order 248
transactional statements 268
transactions 263–307

defining 265–272
doomed 302, 303–304
error handling with 300–306
isolation levels 264
named 279–281
nesting 272–279
savepoints 280–281
understanding 264

Transact-SQL (T-SQL) 1–128
as declarative English-like language 10–11
database programming with 221–324
evolution of 2–5
foundations of 2–10
functions 67–92
logical query processing 10–17
SELECT queries 1–45
terminology 10
using in relational way 5–9

triggers 81, 263
TRUNCATE TABLE statement 109
TRY_CAST function 25
TRY-CATCH construct 282–300

error functions 289–291
THROW command 291–297, 300

TRY_CONVERT function 68–69

www.EBooksWorld.ir

334

T-SQL statements

W
WHEN clause 316
WHERE clause 50–51, 52, 106, 152–153, 195, 201, 318

derived tables and 144–145
filtering rows based on 13
in outer joins 54
vs. HAVING clause 14

wildcards
in LIKE patterns 26

window distribution functions 176
windowed queries 85
window frame 169–170
window frame extent 169, 171
window frame unit 169
window functions 144, 167–176, 228

advantages of 168
aggregate 168–172
ORDER BY clause with 172
statistical 176

window offset functions 174–176
window ranking functions 172–174
WITH clause 197, 214, 294, 298
WITHOUT_ARRAY_WRAPPER clause 210

X
XACT_ABORT option 252, 266–267, 275, 278, 296–297,

299–300, 304–305
XML data 192–205

converting to tables 196–198
producing and using in queries 194–198
querying with XQuery 198–200
uses of 205–206

XML data type 200–205, 216
XML documents 193

characters with special values 193
elements 193
metadata 194
ordered 193
well-formed 193

XML fragments 193, 200
XML indexes 205
XML Schema Description (XSD) 194
XMLSCHEMA directive 196
XML schemas 202–203
XML tags 193
XPath expressions 198–199
XQuery 198–200

T-SQL statements
keyed-in order 11
termination of 3–4

tuples 4, 5
two-valued logic 22
type conversion functions 68–69

U
UDFs. See user-defined functions (UDFs)
underscore (_) 21
Unicode character strings 25
Unicode Standard 3.2 21
Unicode text 193
UNION ALL operator 40–43, 147, 157
UNION operator 40–43
UNIQUEIDENTIFER value 82
unpivoting data 164–167
UNPIVOT operator 164–167
UPDATE statement 100–107, 231, 259

all-at-once concept 106–107
nonderterministic 103–105
with joins 102–103
with OUTPUT clause 117–118
with variable 105–106

UPPER function 75
user defined aggregates (UDAs) 155
user-defined functions (UDFs) 237–250

inline table-valued 244–248
multistatement table-valued 248–250
restrictions and limitations on 238
scalar 239–244

USING clause 114
UTC time zone 191

V
value() method 200, 201
VALUES clause 80
VARCHAR 22, 76
variables

UPDATE with 105–106
views 148–149, 222–237

attributes 229–230
filtering 228
indexed 233–237
modifying data through 230–232
working with 222–229

www.EBooksWorld.ir

About the author

ITZIK BEN-GAN is a T-SQL instructor for and co-founder of SolidQ. A
Microsoft Data Platform MVP (Most Valuable Professional) since 1999, Itzik
has delivered numerous training events around the world focused on T-SQL
querying, query tuning, and programming. Itzik has authored many T-SQL
books as well as a monthly column for SQL Server Pro. Itzik’s speaking activi-
ties include SQLPASS, SQLBits, IT/Dev Connections, and various user groups

around the world. Itzik is the author of SolidQ’s Advanced T-SQL Querying, Programming
and Tuning, and T-SQL Fundamentals courses, along with being a primary resource within
the company for its T-SQL-related activities.

www.EBooksWorld.ir

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Organization of this book
	Microsoft certifications
	Acknowledgments
	Free ebooks from Microsoft Press
	Microsoft Virtual Academy
	Quick access to online references
	Errata, updates, & book support
	We want to hear from you
	Stay in touch
	Preparing for the exam

	Chapter 1 Manage data with Transact-SQL
	Skill 1.1: Create Transact-SQL SELECT queries
	Understanding the foundations of T-SQL
	Understanding logical query processing
	Getting started with the SELECT statement
	Filtering data with predicates
	Sorting data
	Filtering data with TOP and OFFSET-FETCH
	Combining sets with set operators

	Skill 1.2: Query multiple tables by using joins
	Cross joins
	Inner joins
	Outer joins
	Queries with composite joins and NULLs in join columns
	Multi-join queries

	Skill 1.3: Implement functions and aggregate data
	Type conversion functions
	Date and time functions
	Character functions
	CASE expressions and related functions
	System functions
	Arithmetic operators and aggregate functions
	Search arguments
	Function determinism

	Skill 1.4: Modify data
	Inserting data
	Updating data
	Deleting data
	Merging data
	Using the OUTPUT option
	Impact of structural changes on data

	Chapter summary
	Thought experiment
	Thought experiment answer

	Chapter 2 Query data with advanced Transact-SQL components
	Skill 2.1: Query data by using subqueries and APPLY
	Subqueries
	The APPLY operator

	Skill 2.2: Query data by using table expressions
	Table expressions, described
	Table expressions or temporary tables?
	Derived tables
	Common table expressions
	Views and inline table-valued functions

	Skill 2.3: Group and pivot data by using queries
	Writing grouped queries
	Pivoting and Unpivoting Data
	Using Window Functions

	Skill 2.4: Query temporal data and non-relational data
	System-versioned temporal tables
	Query and output XML data
	Query and output JSON data

	Chapter summary
	Thought experiment
	Thought experiment answer

	Chapter 3 Program databases by using Transact-SQL
	Skill 3.1: Create database programmability objects by using Transact-SQL
	Views
	User-defined functions
	Stored procedures

	Skill 3.2: Implement error handling and transactions
	Understanding transactions
	Error handling with TRY-CATCH

	Skill 3.3: Implement data types and NULLs
	Working with data types
	Handling NULLs

	Chapter summary
	Thought experiment
	Thought experiment answer

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	About the author

