
M A N N I N G

Barry Pollard

IN ACTION

www.EBooksWorld.ir

HTTP/2 in Action

www.EBooksWorld.ir

www.EBooksWorld.ir

HTTP/2 in Action
BARRY POLLARD

M A N N I N G
SHELTER ISLAND

www.EBooksWorld.ir

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Kevin Harreld
20 Baldwin Road Technical development editor: Thomas McKearney
PO Box 761 Review editor: Ivan Martinovic
Shelter Island, NY 11964 Project editor: Vincent Nordhaus

Copy editor: Kathy Simpson
Proofreader: Alyson Brener

Technical proofreader: Lokeshwar Vangala
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617295164
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

www.EBooksWorld.ir

 In memory of Ronan Rafferty (1977–2018),
web developer and friend

www.EBooksWorld.ir

www.EBooksWorld.ir

brief contents
PART 1 MOVING TO HTTP/2 ...1

1 ■ Web technologies and HTTP 3

2 ■ The road to HTTP/2 35

3 ■ Upgrading to HTTP/2 69

PART 2 USING HTTP/2..91

4 ■ HTTP/2 protocol basics 93

5 ■ Implementing HTTP/2 push 142

6 ■ Optimizing for HTTP/2 182

PART 3 ADVANCED HTTP/2 ...223

7 ■ Advanced HTTP/2 concepts 225

8 ■ HPACK header compression 249

PART 4 THE FUTURE OF HTTP ...279

9 ■ TCP, QUIC, and HTTP/3 281

10 ■ Where HTTP goes from here 317
vii

www.EBooksWorld.ir

www.EBooksWorld.ir

contents
preface xv
acknowledgments xvii
about this book xx
about the author xxiii
about the cover illustration xxiv

PART 1 MOVING TO HTTP/2 ...1

1 Web technologies and HTTP 3
1.1 How the web works 3

The internet versus the World Wide Web 4 ■ What happens when
you browse the web? 4

1.2 What is HTTP? 9
1.3 The syntax and history of HTTP 15

HTTP/0.9 15 ■ HTTP/1.0 16 ■ HTTP/1.1 22

1.4 Introduction to HTTPS 28
1.5 Tools for viewing, sending, and receiving HTTP

messages 31
Using developer tools in web browsers 31 ■ Sending HTTP
requests 33 ■ Other tools for viewing and sending HTTP
requests 34
ix

www.EBooksWorld.ir

CONTENTSx
2 The road to HTTP/2 35

2.1 HTTP/1.1 and the current World Wide Web 36
HTTP/1.1’s fundamental performance problem 38
Pipelining for HTTP/1.1 40 ■ Waterfall diagrams for web
performance measurement 41

2.2 Workarounds for HTTP/1.1 performance issues 43
Use multiple HTTP connections 44 ■ Make fewer requests 46
HTTP/1 performance optimizations summary 48

2.3 Other issues with HTTP/1.1 48
2.4 Real-world examples 49

Example website 1: amazon.com 49 ■ Example website 2:
imgur.com 54 ■ How much of a problem is this really? 55

2.5 Moving from HTTP/1.1 to HTTP/2 56
SPDY 56 ■ HTTP/2 58

2.6 What HTTP/2 means for web performance 59
Extreme example of the power of HTTP/2 59 ■ Setting
expectations of HTTP/2 performance gains 62 ■ Performance
workarounds for HTTP/1.1 as potential antipatterns 67

3 Upgrading to HTTP/2 69

3.1 HTTP/2 support 69
HTTP/2 support on the browser side 70 ■ HTTP/2 support for
servers 75 ■ Fallback when HTTP/2 isn’t supported 77

3.2 Ways to enable HTTP/2 for your website 78
HTTP/2 on your web server 78 ■ HTTP/2 with a reverse
proxy 80 ■ HTTP/2 through a CDN 84 ■ Implementing
HTTP/2 summary 85

3.3 Troubleshooting HTTP/2 setup 85

PART 2 USING HTTP/2..91

4 HTTP/2 protocol basics 93

4.1 Why HTTP/2 instead of HTTP/1.2? 94
Binary rather than textual 95 ■ Multiplexed rather than
synchronous 96 ■ Stream prioritization and flow control 99
Header compression 100 ■ Server push 101

www.EBooksWorld.ir

CONTENTS xi
4.2 How an HTTP/2 connection is established 101
Using HTTPS negotiation 102 ■ Using the HTTP upgrade
header 109 ■ Using prior knowledge 112 ■ HTTP Alternative
Services 112 ■ The HTTP/2 preface message 113

4.3 HTTP/2 frames 114
Viewing HTTP/2 frames 114 ■ HTTP/2 frame format 121
Examining HTTP/2 message flow by example 122 ■ Other
frames 137

5 Implementing HTTP/2 push 142
5.1 What is HTTP/2 server push? 142
5.2 How to push 146

Using HTTP link headers to push 146 ■ Viewing HTTP/2
pushes 148 ■ Pushing from downstream systems by using link
headers 151 ■ Pushing earlier 155 ■ Pushing in other ways 161

5.3 How HTTP/2 push works in the browser 163
Seeing how the push cache works 163 ■ Refusing pushes with
RST_STREAM 166

5.4 How to push conditionally 167
Tracking pushes on the server side 167 ■ Using HTTP
conditional requests 168 ■ Using cookie-based pushes 168
Using cache digests 169

5.5 What to push 170
What can you push? 170 ■ What should you push? 171
Automating push 172

5.6 Troubleshooting HTTP/2 push 173
5.7 The performance impact of HTTP/2 push 175
5.8 Push versus preload 176
5.9 Other use cases for HTTP/2 push 179

6 Optimizing for HTTP/2 182
6.1 What HTTP/2 means for web developers 183
6.2 Are some HTTP/1.1 optimizations now

antipatterns? 184
HTTP/2 requests still have a cost 184 ■ HTTP/2 isn’t
limitless 187 ■ Compression is more efficient for larger
resources 189 ■ Bandwidth limitations and resource
contention 191 ■ Sharding 192 ■ Inlining 193
Conclusion 193

www.EBooksWorld.ir

CONTENTSxii
6.3 Web performance techniques still relevant
under HTTP/2 194
Minimizing the amount of data transferred 194 ■ Using caching
to prevent resending data 202 ■ Service workers can further reduce
load on the network 206 ■ Don’t send what you don’t need 206
HTTP resource hints 207 ■ Reduce last-mile latency 209
Optimize HTTPS 209 ■ Non-HTTP-related web performance
techniques 212

6.4 Optimizing for both HTTP/1.1 and HTTP/2 212
Measuring HTTP/2 traffic 213 ■ Detecting HTTP/2 support on
the server side 214 ■ Detecting HTTP/2 support on the client
side 217 ■ Connection coalescing 218 ■ How long to optimize
for HTTP/1.1 users 220

PART 3 ADVANCED HTTP/2223

7 Advanced HTTP/2 concepts 225
7.1 Stream states 226
7.2 Flow control 229

Example of flow control 230 ■ Setting flow control on
the server 234

7.3 Stream priorities 234
Stream dependencies 235 ■ Stream weighting 238
Why does prioritization need to be so complicated? 241
Prioritization in web servers and browsers 241

7.4 HTTP/2 conformance testing 245
Server conformance testing 245 ■ Client conformance
testing 247

8 HPACK header compression 249
8.1 Why is header compression needed? 249
8.2 How compression works 251

Lookup tables 252 ■ More-efficient encoding techniques 252
Lookback compression 254

8.3 HTTP body compression 255
8.4 HPACK header compression for HTTP/2 257

HPACK static table 258 ■ HPACK dynamic table 259
HPACK header types 259 ■ Huffman encoding table 265
Huffman encoding script 266 ■ Why Huffman encoding isn’t
always optimal 268

www.EBooksWorld.ir

CONTENTS xiii
8.5 Real-world examples of HPACK compression 268
8.6 HPACK in client and server implementations 275
8.7 The value of HPACK 277

PART 4 THE FUTURE OF HTTP279

9 TCP, QUIC, and HTTP/3 281
9.1 TCP inefficiencies and HTTP 282

Setup delay in creating an HTTP connection 283 ■ Congestion
control inefficiencies in TCP 284 ■ Effect of TCP inefficiencies on
HTTP/2 293 ■ Optimizing TCP 297 ■ The future of TCP and
HTTP 302

9.2 QUIC 303
Performance benefits of QUIC 304 ■ QUIC and the internet
stack 305 ■ What UDP is and why QUIC is built on it 306
Standardizing QUIC 309 ■ Differences between HTTP/2 and
QUIC 311 ■ QUIC tools 313 ■ QUIC implementations 314
Should you use QUIC? 315

10 Where HTTP goes from here 317
10.1 Controversies of HTTP/2 and what it didn’t fix 318

Arguments against SPDY 318 ■ Privacy issues and state in
HTTP 320 ■ HTTP and encryption 324 ■ Transport protocol
issues 327 ■ HTTP/2 is far too complicated 331 ■ HTTP/2 is
a stopgap 332

10.2 HTTP/2 in the real world 333
10.3 Future versions of HTTP/2 and what HTTP/3 or

HTTP/4 may bring 334
Is QUIC HTTP/3? 334 ■ Evolving the HTTP binary protocol
further 335 ■ Evolving HTTP above the transport layer 335
What would require a new HTTP version? 338 ■ How future
versions of HTTP might be introduced 339

10.4 HTTP as a more generic transport protocol 339
Using HTTP semantics and messages to deliver nonweb traffic 339
Using the HTTP/2 binary framing layer 341 ■ Using HTTP to
start another protocol 341

appendix Upgrading common web servers to HTTP/2 346

index 375

www.EBooksWorld.ir

www.EBooksWorld.ir

preface
I became interested in HTTP/2 at an early stage. The emergence of a new technology
that promised almost free performance gains while potentially removing the need for
some of the messy workarounds web developers had to use was definitely intriguing.
The reality was a little more complicated, however, and after spending some time fig-
uring out how to deploy it on my Apache server and then struggling to explain the
impact on performance that I was seeing, I got frustrated with the lack of documenta-
tion. I wrote a couple of blog posts on how to set it up, and those posts proved to be
popular. At the same time, I started getting involved with some of the HTTP/2 proj-
ects on GitHub, as well as lurking around the topic on Stack Overflow and helping out
those who had similar issues to my own. When Manning came calling, looking for
someone to write a book about HTTP/2, I jumped at the chance. I hadn’t been
involved in its genesis, but I felt that I could speak to the many struggling web devel-
opers out there like me who had heard about this technology but lacked the knowl-
edge to get it deployed.

 In the year and a half that it’s taken to write this book, HTTP/2 has become main-
stream and is used by more and more websites. Some of the deployment issues have
gotten easier as software has updated, and I hope that some of the issues described in
this book will soon be problems of the past, but I suspect that for a few more years at
least, HTTP/2 will require some effort to enable it.

 When you’re able to switch it on, HTTP/2 should give you an instant performance
boost with little configuration or understanding required. Nothing comes for free in
this life, however, and subtleties and nuances in the protocol and in deployments of it
xv

www.EBooksWorld.ir

PREFACExvi
mean that deeper understanding will serve website owners well. Web performance
optimization is a flourishing industry, and HTTP/2 is another tool that should lead to
interesting techniques and opportunities both now and in the future.

 An enormous amount of information is available on the web, and for those who
have the time and the willingness to seek it out, filter it, and understand it, it’s
immensely satisfying to read all the varied opinions and even communicate directly
with the protocol designers and implementers. For a topic as big as HTTP/2, however,
the scope and depth of a book gives me the opportunity to explain the technology
fully while touching on related topics and giving you references to follow up on if I
pique your interest in something. I hope I’ve achieved that goal with this book.

www.EBooksWorld.ir

acknowledgments
First and foremost, I’d like to thank my incredibly understanding wife, Aine, who has
spent the past year and a half doing most of the minding of our two young children
(that became “three young children” during the writing of this book!) while I’ve been
locked away furiously tapping on my keyboard. She may be the one person in the
world who is happier than I to see this book finally published! A special shout-out also
needs to go to my in-laws (the Buckleys), who helped Aine entertain our children far
away from my home study so I could concentrate.

 The Manning team was hugely supportive throughout this process. In particular,
I’d like to thank Brian Sawyer, who first got in touch and offered me the chance to
write this book. His help in guiding me through the proposal process ensured that the
book was picked up by the publisher. Kevin Harreld did a great job as the develop-
ment editor, gently pushing me in the right direction while patiently answering my
many questions. Thomas McKearney provided terrific technical oversight as the tech-
nical development editor, giving detailed feedback on all the chapters. The three
rounds of reviews organized by Ivan Martinovic provided invaluable feedback and
guidance on what was working and what needed improvement as the book pro-
gressed. Similarly, the Manning Early Access Program (MEAP) is a fantastic way of get-
ting feedback from real readers, and Matko Hrvatin did great work in organizing that.

 I’d also like to thank the whole Manning marketing team who helped get out the
word of the book from the beginning, but special thanks to Christopher Kaufman,
who put up with my seemingly endless requests for edits of the promotional material.
Getting the book ready for production was a daunting task, so thanks to Vincent
xvii

www.EBooksWorld.ir

ACKNOWLEDGMENTSxviii
Nordhaus for shepherding my precious output through that process. Kathy Simpson
and Alyson Brener made the book immeasurably more readable during copy editing
and proofreading and both had the unenviable task of dealing with my questioning
their (much better!) wording and grammar on too many occasions. Thanks also to
the other proofreaders, graphics, layout, and typesetting teams who took this book
through the final stages. My name may be on the cover, but all these people, among
others, helped craft my meandering thoughts into a professional publication. Any
mistakes that managed to still make it in are undoubtedly my own fault, not theirs.

 I received feedback from many people outside Manning, from the proposal review-
ers to the manuscript reviewers (thanks in particular to those of you who made it
through all three reviews!) to MEAP readers. In particular, I’d like to thank Lucas Par-
due and Robin Marx, who painstakingly reviewed the whole manuscript and provided
valuable HTTP/2 expertise throughout this process. Other reviewers include Alain
Couniot, Anto Aravinth, Art Bergquist, Camal Cakar, Debmalya Jash, Edwin Kwok,
Ethan Rivett, Evan Wallace, Florin-Gabriel Barbuceanu, John Matthews, Jonathan
Thoms, Joshua Horwitz, Justin Coulston, Matt Deimel, Matthew Farwell, Matthew
Halverson, Morteza Kiadi, Ronald Cranston, Ryan Burrows, Sandeep Khurana, Simeon
Leyzerzon, Tyler Kowallis, and Wesley Beary. Thanks to you all.

 On the technology side, I have to give thanks to Sir Tim Berners-Lee for kicking
this whole web thing off all those years ago, and to Mike Belshe and Robert Peon for
inventing SPDY and then formalizing it as HTTP/2 with the help of Martin Thomp-
son, acting as editor. Standardization was possible only thanks to the hard-working vol-
unteers of the Internet Engineering Task Force (IETF) and in particular the HTTP
Working Group, chaired by Mark Nottingham and Patrick McManus. Without all of
them—and without their employers’ permission to spend time on this work—there’d
be no HTTP/2, and, therefore, no need for this book.

 I’m continually amazed by the amount of time and effort the technology commu-
nity puts into volunteer work. From open source projects to community sites such as
Stack Overflow, GitHub, and Twitter to blogs and presentations, many people give so
much of their time for no apparent material reward other than helping others and
stretching their own knowledge. I’m thankful and proud to be part of this commu-
nity. This book wouldn’t have been possible without learning from the teachings of
web performance experts Steve Sounders, Yoav Weiss, Ilya Grigorik, Pat Meehan,
Jake Archibald, Hooman Beheshti and Daniel Stenberg, all of whom are referenced
in this book. Particular thanks to Stefan Eissing, who did tremendous work on the
Apache HTTP/2 implementation that first piqued my interest, and Tatsuhiro Tsujikawa,
who created the underlying nghttp2 library that it uses (along with many other
HTTP/2 implementations). On a similar note, freely available tools such as Web-
Pagetest, The HTTP Archive, W3Techs, Draw.io, TinyPng, nghttp2, curl, Apache,
nginx, and Let’s Encrypt are a big part of why this book is possible. I’d like to extend
extra special thanks to those companies that gave permission to use images of their
tools in this book.

www.EBooksWorld.ir

ACKNOWLEDGMENTS xix
 Finally, I’d like to thank you, the reader, for showing an interest in this book.
Although many people helped produce it in one way or another, they do it only
because of people like you who help keep books alive and make them worthwhile to
publish. I hope that you gain valuable insights and understanding from this book.

www.EBooksWorld.ir

about this book
HTTP/2 in Action was written to explain the protocol in an easy-to-follow, practical
manner, using real-world examples. Protocol specifications can be dry and difficult to
understand, so this book aims to ground the details in easy-to-understand examples
that are relevant to all users of the internet.

Who should read this book?
This book was written for web developers, website administrators, and those who sim-
ply have an interest in understanding how internet technology works. The book aims
to provide complete coverage of HTTP/2 and all the subtleties involved in it.
Although plenty of blog posts on the topic exist, most are at a high level or a detailed
level on a specific topic. This book aims to cover the entire protocol and many of the
complexities involved in it, which should prepare the reader to read and understand
the spec and specific blog posts, should they wish to read even further. HTTP/2 was
created primarily to improve performance, so anyone who’s interested in web perfor-
mance optimization is sure to gain useful understanding and insights. Additionally,
the book contains many references for further reading.

How this book is organized
The book is 10 chapters divided into 4 parts.

 Part 1 explains the background of, need for, and ways of upgrading to HTTP/2:

■ Chapter 1 provides the background needed to understand the book. Even those
with only a basic understanding of the internet should be able to follow along.
xx

www.EBooksWorld.ir

ABOUT THIS BOOK xxi
■ Chapter 2 looks at the problems with HTTP/1.1 and why HTTP/2 was needed.
■ Chapter 3 discusses the upgrade options that enable HTTP/2 for your website

and some of the complications involved with this process. This chapter is sup-
plemented by the appendix, which provides installation instructions for the
popular web servers Apache, nginx, and IIS.

The pace picks up in part 2, as I teach the protocol and what it means for web devel-
opment practices:

■ Chapter 4 describes the basics of the HTTP/2 protocol, how an HTTP/2 con-
nection is established, and the basic format of HTTP/2 frames.

■ Chapter 5 covers HTTP/2 push, which is a brand-new part of the protocol,
allowing website owners to proactively send resources that browsers haven’t yet
asked for.

■ Chapter 6 looks at what HTTP/2 means for web development practices.

Part 3 gets into the advanced parts of the protocol, which web developers and even
web server administrators may not currently have much ability to influence:

■ Chapter 7 covers the remainder of the HTTP/2 specification—including state,
flow control, and priorities—and looks at the differences in HTTP/2 confor-
mance in the implementations.

■ Chapter 8 takes a deep dive into the HPACK protocol, which is used for HTTP
header compression in HTTP/2.

Part 4 looks at the future of HTTP:

■ Chapter 9 looks at TCP, QUIC, and HTTP/3. Technology never sleeps, and now
that HTTP/2 is available, developers are already looking at ways to improve it.
This chapter discusses the inefficiencies that weren’t solved by HTTP/2 and
how they may be improved in its successor: HTTP/3.

■ Chapter 10 looks beyond HTTP/3 at other ways that HTTP can be improved,
including a reflection on the problems that were raised during HTTP/2 stan-
dardization and whether these problems have proved to be issues in the real
world.

After reading this book, readers should have an excellent understanding of HTTP/2
and related technologies, and they should have gained greater understanding of web
performance optimization. They will also be ready for QUIC and HTTP/3 when it
comes out in the future.

About the code
Unlike most technical books, HTTP/2 in Action doesn’t have a huge amount of code,
because the book is about a protocol rather than a programming language. It tries to
teach you high-level concepts that apply to any web server or programming language
used to serve pages on the web. The book has some examples in NodeJS and Perl,
however, as well as web-server configuration snippets.

www.EBooksWorld.ir

ABOUT THIS BOOKxxii
 Source code and configuration snippets are formatted in a fixed-width font
like this to separate them from ordinary text. Sometimes, code is also in bold to
highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

 The source code is available to download from the publisher’s website at https://
www.manning.com/books/http2-in-action or from GitHub at https://github.com/
bazzadp/http2-in-action.

liveBook discussion forum
Purchase of HTTP/2 in Action includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum go
to https://livebook.manning.com/#!/book/http2-in-action/discussion. You can also
learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Online resources
Need additional help?

■ The HTTP/2 home page is at https://http2.github.io/. The page includes links
to the HTTP/2 and HPACK specifications, HTTP/2 implementations, and
FAQs.

■ The HTTP Working Group home page is at https://httpwg.org/. Most of the
group’s work is publicly available at the GitHub page https://github.com/
httpwg/ and the group’s mailing lists (https://lists.w3.org/Archives/Public/
ietf-http-wg/).

■ Stack Overflow also has an HTTP/2 tag (https://stackoverflow.com/questions/
tagged/http2), and the author often answers questions there.

www.EBooksWorld.ir

about the author
BARRY POLLARD is a professional software developer who has
nearly two decades of industry experience developing and sup-
porting software and infrastructure. He has a keen interest in
web technologies, performance tuning, security, and the prac-
tical use of technology. You can find him blogging at https://
www.tunetheweb.com or as @tunetheweb on Twitter.
xxiii

www.EBooksWorld.ir

about the cover illustration
The figure on the cover of HTTP/2 in Action is captioned “Habit of a Russian Market
Woman in 1768.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses
of Different Nations, Ancient and Modern (four volumes), London, published between 1757
and 1772. The title page states that these are hand-colored copperplate engravings,
heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to
King George III.” He was an English cartographer who was the leading map supplier of
his day. He engraved and printed maps for government and other official bodies and
produced a wide range of commercial maps and atlases, especially of North America.
His work as a map maker sparked an interest in local dress customs of the lands he sur-
veyed and mapped, which are brilliantly displayed in this collection. Fascination with
faraway lands and travel for pleasure were relatively new phenomena in the late eigh-
teenth century, and collections such as this one were popular, introducing both the
tourist as well as the armchair traveler to the inhabitants of other countries. The diver-
sity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individual-
ity of the world’s nations some 200 years ago. Dress codes have changed since then, and
the diversity by region and country, so rich at the time, has faded away. It’s now often
hard to tell the inhabitants of one continent from another. Perhaps, trying to view it
optimistically, we’ve traded a cultural and visual diversity for a more varied personal
life—or a more varied and interesting intellectual and technical life. At a time when it’s
difficult to tell one computer book from another, Manning celebrates the inventiveness
and initiative of the computer business with book covers based on the rich diversity of
regional life of two centuries ago, brought back to life by Jefferys’ pictures.
xxiv

www.EBooksWorld.ir

Part 1

Moving to HTTP/2

To understand why HTTP/2 is creating such a buzz in the web performance
industry, you first need to look at why it’s needed and what problems it looks to
solve. Therefore, the first part of this book introduces HTTP/1 to those readers
who aren’t familiar with exactly what it is or how it works; then it explains why a
version 2 was needed. I talk at a high level about how HTTP/2 works, but leave
the low-level details until later in the book. Instead, I close this part by talking
about the various methods you can use to deploy HTTP/2 to your site.

www.EBooksWorld.ir

www.EBooksWorld.ir

Web technologies
and HTTP
This chapter gives you background on how the web works today and explains some
key concepts necessary for the rest of this book to make sense; then it introduces
HTTP and the history of the previous versions. I expect many of the readers of this
book to be at least somewhat familiar with a lot of what is discussed in this first
chapter, but I encourage you not to skip it; use this chapter as an opportunity to
refresh yourself on the basics.

1.1 How the web works
The internet has become an integral part of everyday life. Shopping, banking, com-
munication, and entertainment all depend on the internet, and with the growth of
the Internet of Things (IoT), more and more devices are being put online, where
they can be accessed remotely. This access is made possible by several technologies,
including Hypertext Transfer Protocol (HTTP), which is a key method of requesting

This chapter covers
 How a web page is loaded by the browser

 What HTTP is and how it evolved up to HTTP/1.1

 The basics of HTTPS

 Basic HTTP tools
3

www.EBooksWorld.ir

4 CHAPTER 1 Web technologies and HTTP
access to remote web applications and resources. Although most people understand
how to use a web browser to surf the internet, few truly understand how this technol-
ogy works, why HTTP is a core part of the web, or why the next version (HTTP/2) is
causing such excitement in the web community.

1.1.1 The internet versus the World Wide Web

For many people, the internet and the World Wide Web are synonymous, but it’s
important to differentiate between the two terms.

 The internet is a collection of public computers linked through the shared use of the
Internet Protocol (IP) to route messages. It’s made up of many services, including the
World Wide Web, email, file sharing, and internet telephony. The World Wide Web (or
the web), therefore, is but one part of the internet, though it’s the most visible part, and
as people often look at email through web-mail front ends (such as Gmail, Hotmail,
and Yahoo!), some of them use the web interchangeably with the internet.

 HTTP is how web browsers request web pages. It was one of the three main technol-
ogies defined by Tim Berners-Lee when he invented the web, along with unique identi-
fiers for resources (which is where Uniform Resource Locators, or URLs, came from)
and Hypertext Markup Language (HTML). Other parts of the internet have their own
protocols and standards to define how they work and how their underlying messages are
routed through the internet (such as email with SMTP, IMAP, and POP). When examin-
ing HTTP, you’re dealing primarily with the World Wide Web. This line is getting more
blurred, however, as services built on top of HTTP, even without a traditional web front
end, mean that defining the web itself is trickier and trickier! These services (known by
acronyms such as REST or SOAP) can be used by web pages and non-web pages (such as
mobile apps) alike. The IoT simply represents devices that expose services that other
devices (computers, mobile apps, and even other IoT devices) can interact with, often
through HTTP calls. As a result, you can use HTTP to send a message to a lamp to turn
it on or off from a mobile phone app, for example.

 Although the internet is made up of myriad services, a lot of them are being used
proportionally less and less while use of the web continues to grow. Those of us who
recall the internet in the earliest days recall acronyms such as BBS and IRC that are
practically gone today, replaced by web forums, social media websites, and chat
applications.

 All this means that although the term World Wide Web was often incorrectly used
interchangeably with the internet, the continued rise of the web—or at least of HTTP,
which was created for it—may mean that soon, that understanding may not be as far
from the truth as it once was.

1.1.2 What happens when you browse the web?

For now, I return to the primary and first use of HTTP: to request web pages. When
you open a website in your favorite browser, whether that browser is on a desktop or
laptop computer, a tablet, a mobile phone, or any of the myriad other devices that

www.EBooksWorld.ir

5How the web works
allow internet access, an awful lot is going on. To get the most out of this book, you
need to understand exactly how browsing the web works.

 Suppose that you fire up a browser and go to www.google.com. Within a few sec-
onds, the following will have happened, as illustrated in figure 1.1:

1 The browser requests the real address of www.google.com from a Domain Name
System (DNS) server, which translates the human-friendly name www.google.com
to a machine-friendly IP address.

If you think of an IP address as a telephone number, DNS is the telephone
book. This IP address is either an older-format IPv4 address (such as 216.58.192.4,
which is nearly human-usable) or a new-format IPv6 address (such as
2607:f8b0:4005:801:0:0:0:2004, which is definitely getting into “machines-only”

Web serverBrowser - Web server network requestsBrowser

DNS server

1. DNS

2. Open TCP connection

3. Request web page

6. Request other resources (CSS, JavaScript, images)

4. Return home page or redirect

5. Process
returned
request

7. Render
web page

8. Request other resources (CSS, JavaScript, images)

9. Onload
event

10. Request other resources (CSS, JavaScript, images)

Figure 1.1 Typical interaction when browsing to a web page

www.EBooksWorld.ir

6 CHAPTER 1 Web technologies and HTTP
territory). Much as telephone area codes are occasionally redesignated when a
city starts to run out of phone numbers, IPv6 is needed to deal with the explo-
sion of devices connecting to the internet now and in the future.

Be aware that due to the global nature of the internet, larger companies often
have several servers around the globe. When you ask your DNS for the IP address,
it often provides the IP address of the nearest server to make your internet
browsing faster. Someone based in America will get a different IP address for
www.google.com than someone based in Europe, for example, so don’t worry if
you get different values of IP addresses for www.google.com than those I’ve
given here.

2 The web browser asks your computer to open a Transmission Control Protocol
(TCP) connection1 over IP to this address on the standard web port (port 80)2

or over the standard secure web port (port 443).
IP is used to direct traffic through the internet (hence, the name Internet

Protocol!), but TCP adds stability and retransmissions to make the connection
reliable (“Hello, did you get that?” “No, could you repeat that last bit, please?”).

Whatever happened to IPv5?
If Internet Protocol version 4 (IPv4) was replaced with version 6 (IPv6), what hap-
pened to version 5? And why have you never heard of IPv1 through IPv3?

The first 4 bits of an IP packet give the version, in theory limiting it to 15 versions.
Before the much-used IPv4, there were four experimental versions starting at 0 and
going up to 3. None of these versions was formally standardized until version 4, how-
ever.a After that, version 5 was designated for Internet Stream Protocol, which was
intended for real-time audio and video streaming, similar to what Voice over IP (VoIP)
became later. That version never took off, however, not least because it suffered
the same address limitations of version 4, and when version 6 came along, work on
it was stopped, leaving version 6 as the successor to IPv4. Apparently, it was initially
called version 7 under the incorrect assumption that version 6 was already assigned.b

Versions 7, 8, and 9 have also been assigned but are similarly not used anymore. If
there ever is a successor to IPv6, it will likely be IPv10 or later, which no doubt will
lead to questions similar to the ones that open this sidebar!

a See https://tools.ietf.org/html/rfc760. This protocol was later updated and replaced
(https://tools.ietf.org/ html/rfc791).

b See https://archive.is/QqU73#selection-417.1-417.15.

1 Google has started experimenting with QUIC, so if you’re connecting from Chrome to a Google site, you may
use that. I discuss QUIC in chapter 9.

2 Some websites, including Google, use a technology called HSTS to automatically use a Secure HTTP connec-
tion (HTTPS), which runs on port 443, so even if you try to connect over HTTP, the connection automatically
upgrades to HTTPS before the request is sent.

www.EBooksWorld.ir

7How the web works
As these two technologies are often used together, they’re usually abbreviated
as TCP/IP, and, together, they form the backbone of much of the internet.

A server can be used for several services (such as email, FTP, HTTP, and
HTTPS [HTTP Secure] web servers), and the port allows different services to
sit together under one IP address, much as a business may have a telephone
extension for each employee.

3 When the browser has a connection to the web server, it can start asking for the
website. This step is where HTTP comes in, and I examine how it works in the
next section. For now, be aware that the web browser uses HTTP to ask the Goo-
gle server for the Google home page.

NOTE At this point, your browser will have automatically corrected the short-
hand web address (www.google.com) to the more syntactically correct URL
address of http://www.google.com. The actual full URL includes the port and
would be http://www.google.com:80, but if standard ports are being used (80
for HTTP and 443 for HTTPS), the browser hides the port. If nonstandard
ports are being used, the port is shown. Some systems, particularly in develop-
ment environments, use port 8080 for HTTP or 8443 for HTTPS, for example.

If HTTPS is being used (I go into HTTPS in a lot more detail in section 1.4),
extra steps are required to set up the encryption that secures the connection.

4 The Google server responds with whatever URL you asked for. Typically, what
gets sent back from the initial page is the text that makes up the web page in
HTML format. HTML is a standardized, structured, text-based format that
makes up the text content of a page. It’s usually divided into various sections
defined by HTML tags and references other bits of information needed to
make the media-rich web pages you’re used to seeing (Cascading Style Sheets
[CSS], JavaScript code, images, fonts, and so on).

Instead of an HTML page, however, the response may be an instruction to go
to a different location. Google, for example, runs only on HTTPS, so if you go to
http://www.google.com, the response is a special HTTP instruction (usually, a 301
or 302 response code) that redirects to a new location at https://www.google.com.
This response starts some or all of the preceding steps again, depending on
whether the redirect address is a different server/port combination, a differ-
ent port in the same location (such as a redirect to HTTPS), or even a different
page on the same server and port.

Similarly, if something goes wrong, you get back an HTTP response code,
the best-known of which is the 404 Not Found response code.

5 The web browser processes the returned request. Assuming that the returned
response is HTML, the browser starts to parse the HTML code and builds in
memory the Document Object Model (DOM), which is an internal representa-
tion of the page. During this processing, the browser likely sees other resources
that it needs to display the page properly (such as CSS, JavaScript, and images).

www.EBooksWorld.ir

8 CHAPTER 1 Web technologies and HTTP
6 The web browser requests any additional resources it needs. Google keeps its
web page fairly lean; at this writing, only 16 other resources are needed. Each of
these resources is requested in a similar manner, following steps 1–6, and yes,
that includes this step, because those resources may in turn request other
resources. The average website isn’t as lean as Google and needs 75 resources,3

often from many domains, so steps 1–6 must be repeated for all of them. This
situation is one of the key things that makes web browsing slow and one of the
key reasons for HTTP/2, the main purpose of which is to make requesting
these additional resources more efficient, as you’ll see in future chapters.

7 When the browser has enough of the critical resources, it starts to render the
page onscreen. Choosing when to start rendering the page is a challenging task
and not as simple as it sounds. If the web browser waits until all resources are
downloaded, it would take a long time to show web pages, and the web would
be an even slower, more frustrating place. But if the web browser starts to ren-
der the page too soon, you end up with the page jumping around as more con-
tent downloads, which is irritating if you’re in the middle of reading an article
when the page jumps down. A firm understanding of the technologies that
make up the web—especially HTTP and HTML/CSS/JavaScript—can help web-
site owners reduce these annoying jumps while pages are being loaded, but far
too many sites don’t optimize their pages effectively to prevent these jumps.

8 After the initial display of the page, the web browser continues, in the back-
ground, to download other resources that the page needs and update the page
as it processes them. These resources include noncritical items such as images
and advertising tracking scripts. As a result, you often see a web page displayed
initially without images (especially on slower connections), with images being
filled in as more of them are downloaded.

9 When the page is fully loaded, the browser stops the loading icon (a spinning
icon on or near the address bar for most browsers) and fires the OnLoad
JavaScript event, which JavaScript code may use as a sign that the page is ready
to perform certain actions.

10 At this point, the page is fully loaded, but the browser hasn’t stopped sending out
requests. We’re long past the days when a web page was a page of static informa-
tion. Many web pages are now feature-rich applications that continually commu-
nicate with various servers on the internet to send or load additional content.
This content may be user-initiated actions, such as when you type requests in the
search bar on Google’s home page and instantly see search suggestions without
having to click the Search button, or it may be application-driven actions, such as
your Facebook or Twitter feed’s automatically updating without your having to
click a refresh button. These actions often happen in the background and are

3 https://httparchive.org/reports/page-weight#reqTotal

www.EBooksWorld.ir

9What is HTTP?
invisible to you, especially advertising and analytics scripts that track your actions
on the site to report analytics to website owners and/or advertising networks.

As you can see, a lot happens when you type a URL, and it often happens in the blink
of an eye. Each of these steps could form the basis for a whole book, with variations in
certain circumstances. This book, however, concentrates on (and delves a little deeper
into) steps 3–8 (loading the website over HTTP). Some later chapters (particularly
chapter 9) also touch on step 2 (the underlying network connection that HTTP uses).

1.2 What is HTTP?
The preceding section is deliberately light on the details of how HTTP works so you
can get an idea of how HTTP fits into the wider internet. In this section, I briefly
describe how HTTP works and is used.

 As I mentioned earlier, HTTP stands for Hypertext Transfer Protocol. As the name sug-
gests, HTTP was initially intended to transfer hypertext documents (documents that
contain links to other documents), and the first version didn’t support anything but
these documents. Quickly, developers realized that the protocol could be used to trans-
fer other file types (such as images), so now the Hypertext part of the HTTP acronym is
no longer too relevant, but given how widely used HTTP is, it’s too late to rename it.

 HTTP depends on a reliable network connection, usually provided by TCP/IP,
which is itself built on some type of physical connection (Ethernet, Wi-FI, and so on).
Because communication protocols are separated into layers, each layer can concen-
trate on what it does well. HTTP doesn’t concern itself with the lower-level details of
how that network connection is established. Although HTTP applications should be
mindful of how to handle network failures or disconnects, the protocol itself makes
no allowances for these tasks.

 The Open Systems Interconnection (OSI) model is a conceptual model often used
to describe this layered approach. The model consists of seven layers, though these lay-
ers don’t map exactly to all networks and in particular to internet traffic. TCP spans at
least two (and possibly three) layers, depending on how you define the layers. Figure 1.2
shows roughly how this model maps to web traffic and where HTTP fits into this model.

 There’s some argument about the exact definition of each layer. In complex sys-
tems like the internet, not everything can be classified and separated as easily as devel-
opers would like. In fact, the Internet Engineering Task Force (IETF) warns against
getting too hung up on layering.4 But it can be helpful to understand at a high level
where HTTP fits in this model and how it depends on lower-level protocols to work.
Many web applications are built on top of HTTP, so the Application layer, for exam-
ple, refers more to networking layers than to JavaScript applications.

 HTTP is, at heart, a request-and-response protocol. The web browser makes a
request, using HTTP syntax, to the web server, which responds with a message con-
taining the requested resource. The key to the success of HTTP is its simplicity. As

4 https://tools.ietf.org/html/rfc3439#section-3

www.EBooksWorld.ir

10 CHAPTER 1 Web technologies and HTTP
you’ll see in later chapters, however, this simplicity can be a cause of concern for
HTTP/2, which sacrifices some of that simplicity for efficiency.

 The basic syntax of an HTTP request, after you open a connection, is as follows:

GET /page.html↵
The ↵ symbol represents a carriage return/newline (Enter or Return key). In its basic
form, HTTP is as simple as that! You provide one of the few HTTP methods (GET, in
this case) followed by the resource you want (/page.html). Remember that at this
point, you’ve already connected to the appropriate server, using a technology such as
TCP/IP, so you’re simply requesting the resource you want from that server and don’t
need to be concerned with how that connection happens or is managed.

 The first version of HTTP (0.9) allowed only this simple syntax and had only the
GET method. In this case, you might ask why you needed to state GET for an HTTP/0.9

Session layer

(Secure Sockets Layer - SSL / Transport Layer Security - TLS)

Network layer

(Internet Protocol - IP)

Data Link layer

(such as Ethernet)

Physical layer

(such as Cable/Wi-Fi/mobile)

Transport & Session layer

(Transmission Control Protocol - TCP)

Application layer

(Hypertext Transport Protocol - HTTP)

Presentation layer

(File format, such as ASCII, UTF-8, JPG, PNG...and so on)

7

6

5

4

3

2

1

Figure 1.2 The transport layers of internet traffic

www.EBooksWorld.ir

11What is HTTP?
request, because it’s superfluous, but future versions of HTTP introduced other
methods, so kudos to the inventors of HTTP for having the foresight to see that more
methods would come. In the next section, I discuss the various versions of HTTP, but
this syntax is still recognizable as the format of an HTTP GET request.

 Consider a real-life example. Because the web server needs only a TCP/IP con-
nection to receive HTTP requests, you can emulate the browser by using a program
such as Telnet. Telnet is a simple program that opens a TCP/IP connection to a
server and allows you to type text commands and view text responses. This program
is exactly what you need for HTTP, though I cover much better tools for viewing
HTTP near the end of the chapter. Unfortunately, some technologies are becoming
less prevalent, and Telnet is one of them; many operating systems no longer include
a Telnet client by default. It may be necessary for you to install a Telnet client to try
some simple HTTP commands, or you can use an equivalent like the nc command.
This command is short for netcat and is installed in most Linux-like environments,
including macOS, and for the simple examples I show here, it’s almost identical
to Telnet.

 For Windows, I recommend using the PuTTY software5 over the default client
bundled with Windows (which usually isn’t installed anyway and must be added
manually), as the default client often has display issues, such as not displaying what
you’re typing or overwriting what’s already on the terminal. When you install and
launch PuTTY, you see the configuration window, where you can enter the host
(www.google.com), port (80), and connection type (Telnet). Make sure that you click
the Never option for closing the window on exit; otherwise, you won’t see the results.
All these settings are shown in figure 1.3. Note also that if you have trouble entering
any of the following commands and receive a message about a badly formatted
request, you may want to change Connection > Telnet > Telnet Negotiation Mode to
Passive.

 If you’re using an Apple Macintosh or a Linux machine, you may be able to issue
the Telnet command directly from a shell prompt if Telnet is already installed:

$ telnet www.google.com 80

Or, as I mentioned earlier, use the nc command in the same way:

$ nc www.google.com 80

When you have a Telnet session and make the connection, you see a blank screen, or,
depending on your Telnet application, some instructions like the following:

Trying 216.58.193.68...
Connected to www.google.com.
Escape character is '^]'.

5 https://www.putty.org/

www.EBooksWorld.ir

12 CHAPTER 1 Web technologies and HTTP
Whether or not this message is displayed, you should be able to type your HTTP com-
mands, so type GET / and then press the Return key, which tells the Google server that
you’re looking for the default page (/) and (because you haven’t specified an HTTP
version) that you want to use the default HTTP/0.9. Note that some Telnet clients
don’t echo back what you’re typing by default (especially the default Telnet client
bundled with Windows, as I mentioned earlier), so it can be difficult to see exactly
what you’re typing. But you should still send the commands.

The Google server will respond, most likely using HTTP/1.0, despite the fact that you
sent a default HTTP/0.9 request (no server uses HTTP/0.9 anymore). The response
is an HTTP response code of 200 (to state that the command was a success) or 302 (to

Using Telnet behind company proxies
If your computer doesn’t have direct internet access, you won’t be able to connect to
Google directly by using Telnet. This scenario is often the case in corporate environ-
ments that use a proxy to restrict direct access. (I cover proxies in chapter 3.) In
this case, you may be able to use one of your internal web servers (such as your
intranet site) as an example rather than Google. In section 1.5.3, I discuss other
tools that can work with a proxy, but for now, you can read along without following
the instructions.

Set “Host Name” to
www.google.com.

Set “Port” to 80.

Set “Connection
type” to Telnet.

Set “Close window
on exit” to Never.

Figure 1.3 PuTTY details for connecting to Google

www.EBooksWorld.ir

13What is HTTP?
state that the server wants you to redirect to another page), followed by a closing of
the connection. I go into more detail on this process in the next section, so don’t get
too concerned about these details now.

 Following is one such response from a command-line prompt on a Linux server
with the response line in bold. Note that the HTML content returned isn’t shown in
full for the sake of brevity:

$ telnet www.google.com 80
Trying 172.217.3.196...
Connected to www.google.com.
Escape character is '^]'.
GET /
HTTP/1.0 200 OK
Date: Sun, 10 Sep 2017 16:20:09 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
P3P: CP="This is not a P3P policy! See

https://www.google.com/support/accounts/answer/151657?hl=en for more info."
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Set-Cookie:

NID=111=QIMb1TZHhHGXEPjUXqbHChZGCcVLFQOvmqjNcUIejUXqbHChZKtrF4Hf4x4DVjTb01R
8DWShPlu6_aQ-AnPXgONzEoGOpapm_VOTW0Y8TWVpNap_1234567890-p2g; expires=Mon,
12-Mar-2018 16:20:09 GMT; path=/; domain=.google.com; HttpOnly

Accept-Ranges: none
Vary: Accept-Encoding

<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage"
lang="en"><head><meta content="Search the world's information, including
webpages, images, videos and more. Google has many special features to help
you find exactly what you're looking for." name="description

…etc.

</script></div></body></html>Connection closed by foreign host.

If you’re based outside the United States, you may see a redirect to a local Google
server instead. If you’re based in Ireland, for example, Google sends a 302 response
and advises the browser to go to Google Ireland (http://www.google.ie) instead, as
shown here:

GET /
HTTP/1.0 302 Found
Location: http://www.google.ie/?gws_rd=cr&dcr=0&ei=BWe1WYrf123456qpIbwDg
Cache-Control: private
Content-Type: text/html; charset=UTF-8
P3P: CP="This is not a P3P policy! See

https://www.google.com/support/accounts/answer/151657?hl=en for more info."
Date: Sun, 10 Sep 2017 16:23:33 GMT
Server: gws
Content-Length: 268

www.EBooksWorld.ir

14 CHAPTER 1 Web technologies and HTTP
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Set-Cookie: NID=111=ff1KAwIMjt3X4MEg_KzqR_9eAG78CWNGEFlDG0XIf7dLZsQeLerX-

P8uSnXYCWNGEFlDG0dsM-8V8X8ny4nbu2w96GRTZtzXWOHvWS123456dhd0LpD_123456789;
expires=Mon, 12-Mar-2018 16:23:33 GMT; path=/; domain=.google.com; HttpOnly

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">

<TITLE>302 Moved</TITLE></HEAD><BODY>
 <H1>302 Moved</H1>
 The document has moved
 <A

HREF="http://www.google.ie/?gws_rd=cr&dcr=0&ei=BWe1WYrfIojUgAbqpIbw
Dg">here.

</BODY></HTML> Connection closed by foreign host.

As shown at the end of each example, the connection is closed; to send another HTTP
command, you need to reopen the connection. To avoid this step, you can use
HTTP/1.1 (which keeps the connection open by default, as I discuss later) by enter-
ing HTTP/1.1 after the requested resource:

GET / HTTP/1.1↵↵
Note that if you’re using HTTP/1.0 or HTTP/1.1, you must press Return twice to tell
the web server that you’re finished sending the HTTP request. In the next section, I
discuss why this double return/blank line is required for HTTP/1.0 and HTTP/1.1
connections.

 After the server responds, you can reissue the GET command to get the page again.
In reality, web browsers usually use this open connection to get other resources rather
than the same resource again, but the concept is the same.

 Technically, to abide by the HTTP/1.1 specification, HTTP/1.1 requests also
require you to specify the host header, for reasons that I (again) discuss later. For
these simple examples, however, don’t worry about this requirement too much,
because Google doesn’t seem to insist on it (although if you’re using websites other
than www.google.com, you may see unexpected results).

 As you can see, the basic HTTP syntax is simple. It’s a text-based request-and-
response format, although this format changes under HTTP/2 when it moves to a
binary format.

 If you’re requesting nontext data such as an image, a program like Telnet won’t be
sufficient. Gobbledygook will appear in the terminal session as Telnet tries and fails to
convert the binary image format to meaningful text, as in this example:

$ telnet www.google.com 80
Trying 172.217.3.164...
Connected to www.google.com.
Escape character is '^]'.
GET /images/branding/googlelogo/2x/googlelogo_color_120x44dp.png
▒.k▒

www.EBooksWorld.ir

15The syntax and history of HTTP
I▒▒¥&▒▒]▒S▒▒y▒Ȣ▒▒▒▒▒▒▒.κ?F▒{I▒▒iH▒g▒?Sk▒▒"▒▒▒ϝ>#U▒p▒I▒7E^T▒▒~n▒EG▒I▒^▒▒
+.`x▒\w ▒▒CR㤌▒▒▒U3V▒▒O>6b▒y8▒S▒▒cHj^.▒▒▒F▒▒4=xw

(▒F▒Bc▒]Zu▒ ▒~Hj▒i▒▒▒R▒▒G▒mH▒.|▒▒▒<▒▒▒xH궉▒
▒▒;▒'▒fH▒5▒ԉ▒▒▒|▒%WH▒7's/ӱ▒wʌ▒

▒b▒@▒4▒▒▒{:$▒.▒(O▒▒▒ÿ▒ Ў▒=▒!i▒▒▒▒\▒D٢M▒▒9
▒

.▒$I▒$I▒$I▒$I▒▒▒~▒T▒LC▒
▒IEND▒B`▒Connection closed by foreign host.

I no longer use Telnet, because much better tools are available for viewing the details
of an HTTP request, but this exercise is useful for explaining the format of an HTTP
message and showing how simple the initial versions of the protocol were.

 As I mention earlier, the key to the success of HTTP is its simplicity, which makes it
relatively easy to implement at a service level. Therefore, almost any computer with
network abilities, from complex servers to light bulbs in the IoT world, can implement
HTTP and immediately provide useful commands across a network. Implementing a
fully HTTP-compliant web server is a much more arduous task. Similarly, web brows-
ers are hugely complex and have myriad other protocols to contend with after a web
page has been fetched over HTTP (including HTML, CSS, and JavaScript used to dis-
play the page it has fetched). But creating a simple service that listens for an HTTP
GET request and responds with data isn’t difficult. The simplicity of HTTP has also led
to the boom in the microservices architectural style, in which an application is broken
into many independent web services, often based on lighter application servers such
as Node.js (Node).

1.3 The syntax and history of HTTP
HTTP was started by Tim Berners-Lee and his team at the CERN research organiza-
tion in 1989. It was intended to be a way of implementing a web of interconnecting
computers to provide access to research and link them so they could easily reference
one another in real time; a click of a link would open an associated document. The
idea for such a system had been around for a long time, and the term hypertext was
coined in the 1960s. With the growth of the internet during the 1980s, it was possible
to implement this idea. During 1989 and 1990, Berners-Lee published a proposal6 to
build such a system; he went on to build the first web server based on HTTP and the
first web browser to request HTML documents and display them.

1.3.1 HTTP/0.9

The first published specification for HTTP was version 0.9, issued in 1991. The specifi-
cation7 is small at fewer than 700 words. It specifies that a connection is made over
TCP/IP (or a similar connection-oriented service) to a server and optional port (80 to
be used if no port is specified). A single line of ASCII text should be sent, consisting

6 https://www.w3.org/History/1989/proposal.html
7 https://www.w3.org/Protocols/HTTP/AsImplemented.html

www.EBooksWorld.ir

16 CHAPTER 1 Web technologies and HTTP
of GET, the document address (with no spaces), and a carriage return and line feed
(the carriage return being optional). The server is to respond with a message in
HTML format, which it defines as “a byte stream of ASCII characters.” It also states,
“The message is terminated by the closing of the connection by the server,” which is
why the connection was closed after each request in previous examples. On handling
errors, the specification states: “Error responses are supplied in human-readable text
in HTML syntax. There is no way to distinguish an error response from a satisfactory
response except for the content of the text.” It ends with this text: “Requests are
idempotent. The server need not store any information about the request after dis-
connection.” This specification gives us the stateless part of HTTP, which is both a
blessing (in its simplicity) and a curse (due to the way that technologies such as
HTTP cookies had to be tacked on to allow state tracking, which is necessary for
complex applications).

 Following is the only possible command in HTTP/0.9:

GET /section/page.html↵
The requested resource (/section/page.html) can change, of course, but the rest of
the syntax is fixed.

 There was no concept of HTTP header fields (herein known as HTTP headers) or
any other media, such as images. It’s amazing to think that from this simple request/
response protocol, intended to provide easy access to information in a research insti-
tute, quickly spawned the media-rich World Wide Web that is so ingrained in the
world today. Even from an early stage, Berners-Lee called his invention the World-
WideWeb (without the spaces that we use today), again showing his foresight of the
scope of the project and plans for it to be a global system.

1.3.2 HTTP/1.0

The WorldWideWeb was an almost-instant success. According to NetCraft,8 by Septem-
ber 1995 there were 19,705 hostnames on the web. A month later, this figure jumped
to 31,568 and has grown at a furious rate ever since. At this writing, we’re approaching
2 billion websites. By 1995, the limitations of the simple HTTP/0.9 protocol were
apparent, and most web servers had already implemented extensions that went way
beyond the 0.9 specification. The HTTP Working Group (HTTP WG), headed by
Dave Raggett, started working on HTTP/1.0 in an attempt to document the “common
usage of the protocol.” The document was published in May 1996 as RFC 1945.9 An
RFC (Request for Comments) document is published by the IETF; it can be accepted
as a formal standard or be left as an informal documentation.10 The HTTP/1.0 RFC is
the latter and is not a formal specification. It describes itself as a “memo” at the top,

8 https://news.netcraft.com/archives/category/web-server-survey/
9 https://tools.ietf.org/html/rfc1945
10 An excellent post on reading and understanding RFCs is at https://www.mnot.net/blog/2018/07/31/read_rfc.

www.EBooksWorld.ir

17The syntax and history of HTTP
stating, “This memo provides information for the internet community. This memo
does not specify an internet standard of any kind.”

 Regardless of the formal status of the RFC, HTTP/1.0 added some key features,
including

 More request methods: HEAD and POST were added to the previously defined
GET.

 Addition of an optional HTTP version number for all messages. HTTP/0.9 was
assumed by default to aid in backward compatibility.

 HTTP headers, which could be sent with both the request and the response to
provide more information about the resource being requested and the response
being sent.

 A three-digit response code indicating (for example) whether the response was
successful. This code also enabled redirect requests, conditional requests, and
error status (404 – Not Found being one of the best known).

These much-needed enhancements of the protocol happened organically through
use, and HTTP/1.0 was intended to document what was already happening with many
web servers in the real world, rather than define new options. These additional
options opened a wealth of new opportunities to the web, including the ability to add
media to web pages for the first time by using response HTTP headers to define the
content type of the data in the body.

HTTP/1.0 METHODS

The GET method stayed much the same as under HTTP/0.9, though the addition of
headers allowed a conditional GET (an instruction to GET only if this resource has
changed since the last time the client got it; otherwise, tell the client that the resource
hasn’t changed and to carry on using that old copy). Also, as I mentioned earlier,
users could GET more than hypertext documents and use HTTP to download images,
videos, or any sort of media.

 The HEAD method allowed a client to get all the meta information (such as the
HTTP headers) for a resource without downloading the resource itself. This method
is useful for many reasons. A web crawler like Google, for example, can check whether
a resource has been modified and download it only if it has, thus saving resources for
both it and the web server.

 The POST method was more interesting, allowing the client to send data to a web
server. Rather than put a new HTML file directly on the server by using standard file-
transfer methods, users could POST the file by using HTTP, provided that the web
server was set up to receive the data and do something with it. POST isn’t limited to
whole files; it can be used for much smaller parts of data. Forms on websites typically
use POST, with the contents of the form being sent as field/value pairs in the body of
the HTTP request. The POST method, therefore, allowed content to be sent from the
client to the server as part of an HTTP request, representing the first time that an
HTTP request could have a body, like HTTP responses.

www.EBooksWorld.ir

18 CHAPTER 1 Web technologies and HTTP
 In fact, GET allows data to be sent in query parameters that are specified at the end
of a URL, after the ? character. https://www.google.com/?q=search+string, for exam-
ple, tells Google that you’re searching for the term search string. Query parameters
were in the earliest Uniform Resource Identifier (URI) specification,11 but they were
intended to provide additional parameters to clarify the URI rather than to serve as a
way of uploading data to a web server. URLs are also limited in terms of length and
content (binary data can’t be sent here, for example), and some confidential data
(passwords, credit card data, and so on) shouldn’t be stored in a URL, as it is easily vis-
ible on the screen and in browser history, or may be included if the URL is shared.
POST, therefore, is often a better way of sending data, and data isn’t as visible (though
care should still be taken with this data when sent over plain HTTP rather than secure
HTTPS, as I discuss later). Another difference is that a GET request is idempotent
whereas a POST request is not, meaning that multiple GET requests to the same URL
should always return the same result, whereas multiple POST requests to the same URL
requests may not. If you refresh a standard page on a website, for example, it should
show the same thing. If you refresh a confirmation page from an e-commerce website,
your browser may ask whether you’re sure that you want to resubmit the data, which
may result in your making an additional purchase (though e-commerce sites should
write their applications to ensure that this situation doesn’t happen!).

HTTP REQUEST HEADERS

Whereas HTTP/0.9 had a single line to GET a resource, HTTP/1.0 introduced HTTP
headers. These headers allowed a request to provide the server additional informa-
tion, which it could use to decide how to process the request. HTTP headers are pro-
vided on separate lines after the original request line. An HTTP GET request changed
from this

GET /page.html↵
to this

GET /page.html HTTP/1.0↵
Header1: Value1↵
Header2: Value2↵↵
or (without headers) to

GET /page.html HTTP/1.0↵↵
That is, an optional version section was added to the initial line (default was HTTP/0.9
if not specified), and an optional HTTP header section was followed by two carriage
return/newline characters (henceforth called return characters for brevity) at the end

11 https://tools.ietf.org/html/rfc1630

www.EBooksWorld.ir

19The syntax and history of HTTP
instead of one. The second newline was necessary to send a blank line, which was used
to indicate that the (optional) request header section was complete.

 HTTP headers are specified with a header name, a colon, and then the header
content. The header name (though not the content) is case-insensitive, per the speci-
fication. Headers can span multiple lines when you start each new line with a space or
tab, but this practice isn’t recommended; few clients or servers use this format and
may fail to process them correctly. Multiple headers of the same type may be sent;
they’re semantically identical to sending comma-separated versions. As a result

GET /page.html HTTP/1.0↵
Header1: Value1↵
Header1: Value2↵
should be treated the same way as

GET /page.html HTTP/1.0↵
Header1: Value1, Value2↵
Although HTTP/1.0 defined some standard headers, this example also demonstrates
that HTTP/1.0 allows custom headers (Header1, in this example) to be provided with-
out requiring an updated version of the protocol. The protocol was designed to be
extensible. The specification, however, explicitly states that “these fields cannot be
assumed to be recognizable by the recipient” and may be ignored, whereas the stan-
dard headers should be processed by an HTTP/1.0-compliant server.

 A typical HTTP/1.0 GET request is

GET /page.html HTTP/1.0↵
Accept: text/html,application/xhtml+xml,image/jxr/,*/*↵
Accept-Encoding: gzip, deflate, br↵
Accept-Language: en-GB,en-US;q=0.8,en;q=0.6↵
Connection: keep-alive↵
Host: www.example.com↵
User-Agent: MyAwesomeWebBrowser 1.1↵↵
This example tells the server what formats you can accept the response in (HTML,
XHTML, XML, and so on), that you can accept various encodings (such as gzip,
deflate, and brotli, which are compression algorithms used to compress data sent over
HTTP), and what languages you prefer (GB English, followed by US English, followed
by any other form of English), and what browser you’re using (MyAwesomeWebBrowser
1.1). It also tells the server to keep the connection open (a topic that I return to
later). The whole request is completed with the two return characters. From here on,
I exclude the return characters for readability reasons. You can assume the last line in
the request is followed by two return characters.

HTTP RESPONSE CODES

A typical response from an HTTP/1.0 server is

HTTP/1.0 200 OK
Date: Sun, 25 Jun 2017 13:30:24 GMT

www.EBooksWorld.ir

20 CHAPTER 1 Web technologies and HTTP
Content-Type: text/html
Server: Apache

<!doctype html>
<html>
<head>
…etc.

The rest of the HTML provided follows. As you see, the first line of the response is the
HTTP version of the response message (HTTP/1.0), a three-digit HTTP status code
(200), and a text description of that status code (OK). Status codes and descriptions
were new concepts under HTTP/1.0; under HTTP/0.9, there was no such concept as
a response code; errors could be given only in the returned HTML itself. Table 1.1
shows the HTTP response codes defined in the HTTP/1.0 specification.

Table 1.1 HTTP/1.0 response codes

Category Value Description Details

1xx
(informational)

N/A N/A HTTP/1.0 doesn’t define any 1xx status codes, but
does define the category.

2xx
(successful)

200 OK This code is the standard response code for a suc-
cessful request.

201 Created This code should be returned for a POST request.

202 Accepted The request is being processed but hasn’t completed
processing yet.

204 No content The request has been accepted and processed, but
there’s no BODY response to send back.

3xx
(redirection)

300 Multiple choices This code isn’t used directly. It explains that the 3xx
category implies that the resource is available at one
(or more) locations, and the exact response provides
more details on where it is.

301 Moved permanently The Location HTTP response header should provide
the new URL of the resource.

302 Moved temporarily The Location HTTP response header should provide
the new URL of the resource.

304 Not modified This code is used for conditional responses in which
the BODY doesn’t need to be sent again.

4xx
(client error)

400 Bad request The request couldn’t be understood and should be
changed before resending.

401 Unauthorized This code usually means that you’re not authenticated.

403 Forbidden This code usually means that you’re authenticated,
but your credentials don’t have access.

404 Not found This code is probably the best-known HTTP status
code, as it often appears on error pages.

www.EBooksWorld.ir

21The syntax and history of HTTP
Astute readers may notice some missing codes (203, 303, 402) from earlier drafts of the
HTTP/1.0 RFC. Some additional codes were excluded from the final published RFC.
Some of these codes returned in HTTP/1.1, though often with different descriptions
and meanings. The Internet Assigned Numbers Authority (IANA) maintains the full list
of HTTP status codes across all versions of HTTP, but the status codes in table 1.1, first
defined in HTTP/1.0,12 represent most typically used status codes.

 It may also be apparent that some of the responses could overlap. You may wonder,
for example, whether an unrecognized request is a 400 (bad request) or a 501 (not
implemented). The response codes are designed to be broad categories, and it’s up to
each application to use the status code that fits best. The specification also stated that
response codes were extensible, so new codes could be added as needed without
changing the protocol. This is another reason why the response codes are catego-
rized. A new response code (such as 504) may not be understood by an existing
HTTP/1.0 client, but it would know that the request failed for some reason on the
server side and could handle it the way it handles other 5xx response codes.

HTTP RESPONSE HEADERS

After the first return line are zero or more HTTP/1 header response lines. Request
headers and response headers follow the same format. They’re followed by two return
characters and then the body content, as shown in bold:

GET /
HTTP/1.0 302 Found
Location: http://www.google.ie/?gws_rd=cr&dcr=0&ei=BWe1WYrf123456qpIbwDg
Cache-Control: private
Content-Type: text/html; charset=UTF-8
Date: Sun, 10 Sep 2017 16:23:33 GMT
Server: gws
Content-Length: 268
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN

5xx
(server error)

500 Internal server error The request couldn’t be completed due to a server-
side error.

501 Not implemented The server doesn’t recognize the request (such as an
HTTP method that hasn’t yet been implemented).

502 Bad gateway The server is acting as a gateway or proxy and
received an error from the downstream server.

503 Service unavailable The server is unable to fulfill the request, perhaps
because the server is overloaded or down for
maintenance.

12 https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

Table 1.1 HTTP/1.0 response codes (continued)

Category Value Description Details

www.EBooksWorld.ir

22 CHAPTER 1 Web technologies and HTTP
<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8
">
 <TITLE>302 Moved</TITLE></HEAD><BODY>
 <H1>302 Moved</H1>
 The document has moved
<A HREF="http://www.google.ie/?gws_rd=cr&dcr=0&ei=BWe1WYrfIojUgAbqpI
bwDg">here.</BODY></HTML> Connection closed by foreign host.

With the publication of HTTP/1.0, the HTTP syntax was greatly expanded to make it
capable of creating dynamic, feature-rich applications beyond the simple document
repository fetching that the initial published version HTTP/0.9 allowed. HTTP was also
getting more complicated, expanding from the approximately 700-word HTTP/0.9
specification to the nearly 20,000-word HTTP/1.0 RFC. Even as this specification was
published, however, the HTTP Working Group saw it as a stopgap to document cur-
rent use and was already working on HTTP/1.1. As I mentioned earlier, HTTP/1.0
was published mostly to bring some standards and documentation to HTTP as it was
being used in the wild, rather than to define any new syntax for clients and servers
to implement. In addition to the new response codes, other methods (such as PUT,
DELETE, LINK, and UNLINK) and additional HTTP headers in use at the time were listed
in the appendices of the RFC, some of which would be standardized in HTTP/1.1.
The success of HTTP was such that the working group struggled to keep up with the
implementations only five short years after it was launched to the world.

1.3.3 HTTP/1.1

As you’ve seen, HTTP was launched as version 0.9 as a basic way of fetching text-based
documents. This version was expanded beyond text to a more fully fledged protocol
1.0, which was further standardized and refined in 1.1. As the versioning suggests,
HTTP/1.1 was more a tweak of HTTP/1.0 that didn’t contain radical changes to the
protocol. Moving from 0.9 to 1.0 was a much bigger change, with the addition of
HTTP headers. HTTP/1.1 made some further improvements to allow optimal use
of the HTTP protocol (such as persistent connections, mandatory server headers, bet-
ter caching options, and chunked encoding). Perhaps more important, it provided a
formal standard on which to base the future of the World Wide Web. Although the
basics of HTTP are simple enough to understand, there are many intricacies that
could be implemented in slightly different ways, and the lack of a formal standard
makes it difficult to scale.

 The first HTTP/1.1 specification was published in January 199713 (only nine
months after the HTTP/1.0 specification was published). It was replaced by an update
specification in June 199914 and then enhanced for a third time in June 2014.15 Each
version made the previous ones obsolete. The HTTP specification now spanned 305

13 https://tools.ietf.org/html/rfc2068
14 https://tools.ietf.org/html/rfc2616
15 https://tools.ietf.org/html/rfc7230 and https://tools.ietf.org/html/rfc7235

www.EBooksWorld.ir

23The syntax and history of HTTP
pages and nearly 100,000 words, which shows how much this simple protocol grew and
how important it was to clarify the intricacies of how HTTP should be used. In fact, at
this writing the specification is being updated again,16 and this update is expected to be
published early in 2019. Fundamentally, HTTP/1.1 isn’t too different from HTTP/1.0,
but the explosion of the web in the first two decades of its existence gave rise to addi-
tional features and required documentation showing exactly how to use it.

 Describing HTTP/1.1 would take a book in itself, but I attempt here to discuss the
main points, to provide background and context for some of the HTTP/2 discussions
later in this book. Many of the additional features of HTTP/1.1 were introduced
through HTTP headers, which themselves were introduced in HTTP/1.0, meaning
that the fundamental structure of HTTP didn’t change between the two versions,
although making the host header mandatory and adding persistent connections were
two notable changes in the syntax from HTTP/1.0.

MANDATORY HOST HEADER

The URL provided with HTTP request lines (such as a GET command) isn’t an abso-
lute URL (such as http://www.example.com/section/page.html) but a relative URL
(such as /section/page.html). When HTTP was created, it was assumed that a web
server would host only one website (though possibly many sections and pages on that
site). Therefore, the host part of the URL was obvious, because a user had to be con-
nected to that web server before making HTTP requests. Nowadays, many web servers
host several sites on the same server (a situation known as virtual hosting), so it’s
important to tell the server which site you want as well as which relative URL you want on
that site. This feature could have been implemented by changing the URL in the
HTTP requests to the full, absolute URL, but it was thought this change would have
broken many existing web servers and clients. Instead, the feature was implemented
by adding a Host header in the request:

GET / HTTP/1.1
Host: www.google.com

This header was optional in HTTP/1.0, but HTTP/1.1 made it mandatory. The fol-
lowing request is technically badly formed, as it specifies HTTP/1.1 but doesn’t pro-
vide a Host header:

GET / HTTP/1.1

According to the HTTP/1.1 specification,17 this request should be rejected by the
server (with a 400 response code), though most web servers are more forgiving than
they should be and have a default host that is returned for such requests.

 Making the Host header mandatory was an important step in HTTP/1.1, allowing
servers to make more use of virtual hosting and therefore allowing the enormous

16 https://github.com/httpwg/http-core
17 https://tools.ietf.org/html/rfc7230#section-5.4

www.EBooksWorld.ir

24 CHAPTER 1 Web technologies and HTTP
growth of the web without the complexity of adding individual web servers for each
site. Additionally, the relatively low limit of IPv4 IP addresses would have been reached
much sooner without this change. On the other hand, if that limit had not been
implemented, perhaps it would have helped forced the move to IPv6 much earlier;
instead, it’s in the process of being rolled out at this writing despite having been
around for more than 20 years!

 Specifying a mandatory Host header field instead of changing the relative URL to an
absolute URL involved some contention.18 HTTP proxies, introduced with HTTP/1.1,
allowed connection to an HTTP server via an intermediary HTTP server. The syntax
for proxies was already set to require full absolute URLs for all requests, but actual
web servers (also called origin servers) were mandated to use the Hosts header. As I
mentioned earlier, this change was necessary to avoid breaking existing servers, but
making it mandatory left no doubt that HTTP/1.1 clients and servers must use
virtual-hosting-style requests to be fully compliant HTTP/1.1 implementations. It
was thought that in some future version of HTTP, this situation would be dealt with
better. The HTTP/1.1 specification states, “To allow for transition to the absolute-
form for all requests in some future version of HTTP, a server MUST accept the
absolute-form in requests, even though HTTP/1.1 clients will only send them in
requests to proxies.” Nevertheless, as you’ll see later, HTTP/2 didn’t resolve this prob-
lem cleanly, instead replacing the Host header with the :authority pseudoheader
field (see chapter 4).

PERSISTENT CONNECTIONS (AKA KEEP-ALIVES)
Another important change introduced in HTTP and supported by many HTTP/1.0
servers, even though it wasn’t included in the HTTP/1.0 specification, was the intro-
duction of persistent connections. Initially, HTTP was a single request-and-response
protocol. A client opens the connection, requests a resource, gets the response, and
the connection is closed. As the web became more media-rich, this closing of the
connection proved to be wasteful. Displaying a single page required several HTTP
resources, so closing the connection only to reopen it caused unnecessary delays.
This problem was resolved with a new Connection HTTP header that could be sent
with an HTTP/1.0 request. By specifying the value Keep-Alive in this header, the
client is asking the server to keep the connection open to allow the sending of addi-
tional requests:

GET /page.html HTTP/1.0
Connection: Keep-Alive

The server would respond as usual, but if it supported persistent connections, it
included a Connection: Keep-Alive header in the response:

18 See https://lists.w3.org/Archives/Public/ietf-http-wg-old/1999SepDec/0014.html for some discussions on
this subject.

www.EBooksWorld.ir

25The syntax and history of HTTP
HTTP/1.0 200 OK
Date: Sun, 25 Jun 2017 13:30:24 GMT
Connection: Keep-Alive
Content-Type: text/html
Content-Length: 12345
Server: Apache

<!doctype html>
<html>
<head>
…etc.

This response tells the client that it can send another request on the same connection
as soon as the response is completed, so the server doesn’t have to close the connec-
tion to the client only to reopen it. It can be more complicated to know when the
response is complete when you use persistent connections; the connection closing is a
pretty good sign that the server has finished sending for a nonpersistent connection!
Instead, the Content-Length HTTP header must be used to define the length of the
response body, and when the entire body has been received, the client is free to send
another request.

 An HTTP connection can be closed at any point by either the client or the server.
Closing may occur accidentally (perhaps due to network connectivity errors) or delib-
erately (if, for example, a connection isn’t used for a while and a server decides to
close the connection to regain some resources for other connections). Therefore,
even with persistent connections, both clients and servers should monitor the connec-
tions and be able to handle unexpectedly closed connections. The situation becomes
more complicated with certain requests. If you’re checking out on an e-commerce
website, for example, you may not want to resend the request without checking
whether the server processed the initial request.

 HTTP/1.1 not only added this persistent-connection process to the documented
standard, but also went one step further and changed it to the default. Any HTTP/1.1
connection could be assumed to be using persistent connections even without the
presence of the Connection: Keep-Alive header in the response. If the server did
want to close the connection, for whatever reason, it had to explicitly include a
Connection: close HTTP header in the response:

HTTP/1.1 200 OK
Date: Sun, 25 Jun 2017 13:30:24 GMT
Connection: close
Content-Type: text/html; charset=UTF-8
Server: Apache

<!doctype html>
<html>
<head>
…etc.
Connection closed by foreign host.

www.EBooksWorld.ir

26 CHAPTER 1 Web technologies and HTTP
I touched on this topic in the Telnet examples earlier in this chapter. Now you can use
Telnet again to send the following:

 An HTTP/1.0 request without a Connection: Keep-Alive header. You should
see that the connection is automatically closed by the server after the response
is sent.

 The same HTTP/1.0 request, but with a Connection: Keep-Alive header. You
should see that the connection is kept open.

 An HTTP.1.1 request, with or without a Connection: Keep-Alive header. You
should see that the connection is kept open by default.

It’s not unusual to see HTTP/1.1 clients include this Connection: Keep-Alive header
for HTTP/1.1 requests, despite the fact that it’s the default and should be assumed.
Similarly, servers sometimes include the header in HTTP/1.1 responses despite this
being unnecessary.

 On a similar topic, HTTP/1.1 added the concept of pipelining, so it should be pos-
sible to send several requests over the same persistent connection and get the
responses back in order. If a web browser is processing an HTML document, for exam-
ple, and sees that it needs a CSS file and a JavaScript file, it should be able to send the
requests for these files together and get the responses back in order rather than wait-
ing for the first response before sending the second request. Here’s an example:

GET /style.css HTTP/1.1
Host: www.example.com

GET /script.js HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Date: Sun, 25 Jun 2017 13:30:24 GMT
Content-Type: text/css; charset=UTF-8
Content-Length: 1234
Server: Apache

.style {
…etc.

HTTP/1.1 200 OK
Date: Sun, 25 Jun 2017 13:30:25 GMT
Content-Type: application/x-javascript; charset=UTF-8
Content-Length: 5678
Server: Apache

Function(
…etc.

For several reasons (which I go into in chapter 2), pipelining never took off, and sup-
port for it in both clients (browsers) and servers is poor. So, although persistent con-
nections allow the TCP connection to be reused for multiple requests, which was a

www.EBooksWorld.ir

27The syntax and history of HTTP
good performance improvement, HTTP/1.1 is still fundamentally a request-and-
response protocol for most implementations. While that one request is being han-
dled, the HTTP connection is blocked from being used for other requests.

OTHER NEW FEATURES

HTTP/1.1 introduced many other features, including

 New methods in addition to the GET, POST, and HEAD methods defined in
HTTP/1.0. These methods are PUT, OPTIONS, and the less-used CONNECT, TRACE,
and DELETE.

 Better caching methods. These methods allowed the server to instruct the cli-
ent to store the resource (such as a CSS file) in the browser’s cache so it could
be reused later if required. The Cache-Control HTTP header introduced in
HTTP/1.1 had more options than the Expires header from HTTP/1.0.

 HTTP cookies to allow HTTP to move from being a stateless protocol.
 The introduction of character sets (as shown in some examples in this chapter)

and language in HTTP responses.
 Proxy support.
 Authentication.
 New status codes.
 Trailing headers (discussed in chapter 4, section 4.3.3).

HTTP has continually added new HTTP headers to further expand capabilities, many
for performance or security reasons. The HTTP/1.1 specification doesn’t claim to be
the definitive end for HTTP/1.1 and actively encourages new headers, even dedicat-
ing a section19 on how headers should be defined and documented. As I mention ear-
lier, some of these headers are added for security reasons and are used to allow the
website to tell the web browser to turn on certain optional security protections, so they
require no implementation on the server side (other than the ability to send the
header). At one time, there was a convention to include an X- in these headers to
show that they weren’t formally standardized (X-Content-Type, X-Frame-Options,
X-XSS-Protection), but this convention has been deprecated,20 and new experimen-
tal headers are difficult to differentiate from headers in the HTTP/1.1 specification.
Often, these headers are standardized in their own RFCs (Content-Security-Policy,21

Strict-Transport-Security,22 and so on).

19 https://tools.ietf.org/html/rfc7231#section-8.3.1
20 https://tools.ietf.org/html/rfc6648
21 https://tools.ietf.org/html/rfc7762
22 https://tools.ietf.org/html/rfc6797

www.EBooksWorld.ir

28 CHAPTER 1 Web technologies and HTTP
1.4 Introduction to HTTPS
HTTP was originally a plain-text protocol. HTTP messages are sent across the internet
unencrypted and therefore are readable by any party that sees the message as it’s
routed to its destination. The internet, as the name suggests, is a network of comput-
ers, not a point-to-point system. The internet provides no control of how messages are
routed, and you, as an internet user, have no idea how many other parties will see your
messages as they’re sent across the internet from your internet service provider (ISP)
to telecom companies and other parties. Because HTTP is plain-text, messages can be
intercepted, read, and even altered en route.

 HTTPS is the secure version of HTTP that encrypts messages in transit by using
the Transport Layer Security (TLS) protocol, though it’s often known by its previous
incarnation as Secure Sockets Layer (SSL), as discussed in the sidebar below.

 HTTPS adds three important concepts to HTTP messages:

 Encryption—Messages can’t be read by third parties while in transit.
 Integrity—The message hasn’t been altered in transit, as the entire encrypted

message is digitally signed, and that signature is cryptographically verified
before decryption.

 Authentication—The server is the one you intended to talk to.

SSL, TLS, HTTPS, and HTTP
HTTPS uses SSL or TLS to provide encryption. SSL (Secure Sockets Layer) was
invented by Netscape. SSLv1 was never released outside Netscape, so the first pro-
duction version was SSLv2, released in 1995. SSLv3, released in 1996, addressed
some insecurities.

As SSL was owned by Netscape, it wasn’t a formal internet standard, though it was
subsequently published by the IETF as a historic document.a SSL was standardized
as TLS (Transport Layer Security). TLSv1.0b was similar to SSLv3, though not com-
patible. TLSv1.1c and TLSv1.2d followed in 2006 and 2008, respectively, and were
more secure. TLSv1.3 was approved as a standard in 2018;e it’s more secure and
performant,f though it will take time to become widespread.

Despite the availability of these newer, more secure, standardized versions, SSLv3
was considered to be good enough by many people, so it was the de facto standard
for a long time, even though many clients supported TLSv1.0 as well. In 2014, how-
ever, major vulnerabilities were discovered in SSLv3,g which must no longer be usedh

and is no longer supported by browsers. This situation started a major move toward
TLS. After similar vulnerabilities were found in TLSv1.0, security guidelines insisted
that TLSv1.1 or later be used.i

The net effect of all this history is that people use these acronyms in different ways.
Many people still refer to encryption as SSL because it was the standard for so long;
others use SSL/TLS or TLS. Some people try to avoid the debate by referring to it as
HTTPS, even though this term isn’t strictly correct.

www.EBooksWorld.ir

29Introduction to HTTPS
HTTPS works by using public key encryption, which allows servers to provide public
keys in the form of digital certificates when users first connect. Your browser encrypts
messages by using this public key, which only the server can decrypt, as only it has the
corresponding private key. This system allows you to communicate securely with a
website without having to know a shared secret key in advance, which is crucial for a
system like the internet, where new websites and users come and go every second of
every day.

 The digital certificates are issued, and digitally signed, by various certificate
authorities (CAs) trusted by the browser, which is why it’s possible to authenticate that
the public key is for the server you’re connecting to. One big problem with HTTPS is
that it indicates only that you’re connecting to that server—not that the server is trust-
worthy. Fake phishing sites can be set up easily with HTTPS for a different but similar
domain (exmplebank.com instead of examplebank.com). HTTPS sites are usually
shown with a green padlock in web browsers, which many users take to mean safe, but
it merely means securely encrypted.

 Some CAs do some extra vetting on websites when they issue certificates and pro-
vide an Extended Validation certificate (known as an EV certificate), which encrypts
the HTTP traffic the same way as a normal certificate but also displays the company
name in most web browsers, as shown in figure 1.4.

 Many people dispute the benefits of EV certificates,23 mostly because the vast
majority of users don’t notice the company name and don’t act any differently on sites
that use EV or standard Domain Validated (DV) certificates. A middle ground of
Organizational Validated (OV) certificates do some of the checks but don’t give extra
notification in browsers, making them largely pointless at a technical level (though
CAs may include extra support commitments as part of purchasing them).

In general in this book, I refer to encryption as HTTPS (rather than SSL or SSL/TLS)
unless I’m specifically talking about specific parts of the TLS protocol. On a similar
note, I refer to the core semantics of HTTP as HTTP, whether it’s used over an unen-
crypted HTTP connection or an encrypted HTTPS connection.

a https://tools.ietf.org/html/rfc6101
b https://tools.ietf.org/html/rfc2246
c https://tools.ietf.org/html/rfc4346
d https://tools.ietf.org/html/rfc5246
e https://tools.ietf.org/html/rfc8446
f https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/
g https://www.us-cert.gov/ncas/alerts/TA14-290A
h https://tools.ietf.org/html/rfc7568
i https://www.pcisecuritystandards.org/documents/Migrating-from-SSL-Early-TLS-Info-Supp-

v1_1.pdf

23 https://www.tunetheweb.com/blog/what-does-the-green-padlock-really-mean/

www.EBooksWorld.ir

30 CHAPTER 1 Web technologies and HTTP
The Google Chrome team is researching and experimenting with these security
indicators at the time of this writing,24 trying to remove what it sees as unnecessary
information, including the scheme (http and https), any www prefix, and possibly
even the padlock itself (instead assuming that HTTPS is the norm and that HTTP
should be explicitly marked as not secure). The team is also considering whether to
remove EV.25

 HTTPS is built around HTTP and is almost seamless to the HTTP protocol itself.
It’s hosted on a different port by default (port 443 as opposed to port 80 for standard
HTTP), and it has a different URL scheme (https:// as opposed to http://), but it
doesn’t fundamentally alter the way HTTP is used in terms of syntax or message for-
mat except for the encryption and decryption itself.

 When the client connects to an HTTPS server, it goes through a negotiation stage
(or TLS handshake). In this process, the server provides the public key, client and
server agree on the encryption methods to use, and then client and server negotiate a
shared encryption key to use in the future. (Public key cryptography is slow, so public
encryption keys are used only to negotiate a shared secret, which is used to encrypt
future messages with better performance). I discuss the TLS handshake in detail in
chapter 4 (section 4.2.1).

 After the HTTPS session is set up, standard HTTP messages are exchanged. The
client and server encrypt these messages before sending and decrypt upon receipt,
but to the average web developer or server manager, there’s no difference between
HTTPS and HTTP after it’s configured. Everything happens transparently unless
you’re looking at the raw messages sent across the network. HTTPS wraps up standard
HTTP requests and responses rather than replacing them with another protocol.

 HTTPS is a huge topic that’s well beyond the scope of this book. I touch on it again
briefly in future chapters, as HTTP/2 does bring in some changes. But for now, it’s
important only to know that HTTPS exists and that it works at a lower level than
HTTP (between TCP and HTTP). Unless you’re looking at the encrypted messages
themselves, you won’t see any real difference between HTTP and HTTPS.

24 https://blog.chromium.org/2018/05/evolving-chromes-security-indicators.html
25 https://groups.google.com/forum/#!topic/mozilla.dev.security.policy/szD2KBHfwl8%5B1-25%5D

HTTP HTTPS DV and OV certificates HTTPS EV certificates

Chrome

Firefox

Opera

IE 11

EDGE

Figure 1.4 HTTPS web browser indicators

www.EBooksWorld.ir

31Tools for viewing, sending, and receiving HTTP messages
 For web servers using HTTPS, you need a client that can understand HTTPS and
do the encryption and decryption, so you can no longer use Telnet to send example
HTTP requests to those servers. The OpenSSL program provides an s_client com-
mand that you can use to send HTTP commands to an HTTPS server, similar to the
way Telnet is used:

openssl s_client -crlf -connect www.google.com:443 -quiet
GET / HTTP/1.1
Host: www.google.com

HTTP/1.1 200 OK
…etc.

We’re reaching the end of the usefulness of command-line tools to examine HTTP
requests, however. In the next section, I take a brief look at browser tools, which pro-
vide a much better way to see HTTP requests and responses.

1.5 Tools for viewing, sending, and receiving HTTP
messages
Although it was helpful to use tools like Telnet to understand the basics of HTTP,
command-line tools like the ones discussed here have limitations, not least of which is
dealing with the enormous size of most web pages. Several tools allow you to see and
send HTTP requests in a better way than Telnet. Many of these tools can be used from
the main tool you use to interact with the web: your web browser.

1.5.1 Using developer tools in web browsers

All web browsers come with so-called developer tools, which allow you to see many details
behind websites, including HTTP requests and responses.

 You launch developer tools by pressing a keyboard shortcut (F12 on Windows for
most browsers, or Option+Command+I on Apple computers) or by right-clicking a bit
of HTML and choosing Inspect from the contextual menu. Developer tools have vari-
ous tabs showing the technical details behind the page, but the one you’re most inter-
ested in for the purposes of this discussion is the Network tab. If you open the
developer tools and then load the page, the Network tab shows all the HTTP requests,
and clicking on one of them produces more details, including the request and response
headers. Figure 1.5 shows the Chrome developer tools that you get when loading
https://www.google.com.

 The URL is entered at the top in the address bar (1) as usual. Note the padlock,
and https:// scheme, showing that Google is using HTTPS successfully (though, as
mentioned, Chrome may be changing this). The web page is returned below the
address bar, again as usual. If you loaded this page with developer tools open, how-
ever, you see a new section with various tabs. Clicking the Network tab (2) shows the
HTTP requests (3), including information such as the HTTP method (GET), the
response status (200), the protocol (http/1.1), and the scheme (https). You can
change the columns shown by right-clicking the column headings. The Protocol,

www.EBooksWorld.ir

32 CHAPTER 1 Web technologies and HTTP
Scheme, and Domain columns aren’t shown by default, for example, and for some
sites (such as Twitter), you see h2 in this column for HTTP/2 or perhaps even
http/2+quic (Google) for an even newer protocol that I discuss in chapter 9.

 Figure 1.6 shows what happens when you click the first request (1). The right sec-
tion is replaced by a tabbed view where you can see the response headers (2) and the
request headers (3). I’ve discussed many but not all of these headers in this chapter.

 HTTPS is handled by the browser, so developer tools show only the HTTP request
messages before they’re encrypted and the response messages after they’ve been

1. Encrypted URL

2. Network tab

3. HTTP requests

Figure 1.5 Developer tools Network tab in Chrome

1. First request

2. HTTP response

3. HTTP request

Figure 1.6 Viewing HTTP headers in developer tools in Chrome

www.EBooksWorld.ir

33Tools for viewing, sending, and receiving HTTP messages
decrypted. For the most part, HTTPS can be ignored after it’s set up, provided that
you have the right tools to handle encryption and decryption for you. Additionally,
most browsers’ developer tools show media correctly, so images display properly, and
code (HTML, CSS, and JavaScript) can often be formatted for easier reading.

 I return to developer tools throughout the book. You should familiarize yourself
with your browser’s developer tools for your site, or for popular sites you use, if you’re
not familiar with them.

1.5.2 Sending HTTP requests

Although web browsers’ developer tools are the best way to see raw HTTP requests and
responses, they’re surprisingly poor at allowing you to send raw HTTP requests. Other
than the address bar, which can be used only to send simple GET requests, and what-
ever functionality a website has built (to POST via HTML forms, for example), the tools
rarely offer you the ability to send any other raw HTTP messages.

 The Advanced REST client application26 gives you a way of sending raw HTTP mes-
sages and seeing the responses. Send a GET request (1) for the URL https://www.google
.com (2) and click Send (3) to get the response (4), as shown in figure 1.7. Note that
the application handles HTTPS for you.

26 https://install.advancedrestclient.com (Note: this must be opened in Chrome.)

1. Select
HTTP method

2. Enter URL

3. Click
Send button

4. HTTP
response

Figure 1.7 Advanced REST client application

www.EBooksWorld.ir

34 CHAPTER 1 Web technologies and HTTP
Using this application is no different from using the browser, but the Advanced REST
Client also allows you to send other types of HTTP requests (such as POST and PUT)
and to set the header or body data to send. Advanced REST Client started life as a
Chrome browser extension27 but has since been moved to a separate application. Sim-
ilar browser extension tools act like Advanced REST Client, including Postman
(Chrome), Rested,28 RESTClient29 (Firefox), and RESTMan30 (Opera), all of which
have comparable functionality.

1.5.3 Other tools for viewing and sending HTTP requests

You can use many other tools to send or view HTTP requests outside the browser.
Some of these work from the command line (such as curl,31 wget,32 and httpie33), and
some work with desktop clients (such as SOAP-UI34).

 If you’re looking to view the traffic at a lower level, you may want to consider
Chrome’s net-internals page or network sniffer programs such as Fiddler35 and Wire-
shark.36 I look at some of these tools in later chapters when I look at the details of
HTTP/2, but for now the tools mentioned in this section should suffice.

Summary
 HTTP is one of the core technologies of the web.
 Browsers make multiple HTTP requests to load a web page.
 The HTTP protocol started as a simple text-based protocol.
 HTTP has grown more complex, but the basic text-based format hasn’t changed

in the past 20 years.
 HTTPS encrypts standard HTTP messages.
 Various tools are available for viewing and sending HTTP messages.

27 https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
28 https://addons.mozilla.org/en-US/firefox/addon/rested/
29 https://addons.mozilla.org/en-US/firefox/addon/restclient/
30 https://addons.opera.com/en/extensions/details/restman/
31 https://curl.haxx.se/
32 https://www.gnu.org/software/wget/
33 https://httpie.org/
34 https://www.soapui.org/
35 https://www.telerik.com/fiddler
36 https://www.wireshark.org/

www.EBooksWorld.ir

The road to HTTP/2
Why do we need HTTP/2? The web works fine under HTTP/1, doesn’t it? What is
HTTP/2 anyway? In this chapter, I answer these questions with real-world examples
and show why HTTP/2 is not only necessary, but also well overdue.

 HTTP/1.1 is what most of the internet is built upon and has been functioning
reasonably well for a 20-year-old technology. During that time, however, web use
has exploded, and we’ve moved from simple static websites to fully interactive
pages that cover online banking, shopping, booking holidays, watching media,
socializing, and nearly every other aspect of our lives.

This chapter covers
 Examining the performance problems in

HTTP/1.1

 Understanding the workarounds for HTTP/1.1
performance issues

 Investigating real-world examples of HTTP/1
problems

 SPDY and how it improved HTTP/1

 How SPDY was standardized into HTTP/2

 How web performance changes under HTTP/2
35

www.EBooksWorld.ir

36 CHAPTER 2 The road to HTTP/2
 Internet availability and speed are increasing with technologies such as broadband
and fiber for offices and homes, which means that speeds are many times better than
the old dial-up speeds that users had to deal with when the internet was launched.
Even mobile has seen technologies such as 3G and 4G bring broadband-level speeds
on the move at reasonable, consumer-level prices.

 Although the increase in download speeds has been impressive, the need for faster
speeds has outpaced this increase. Broadband speeds will probably continue to increase
for some time, but other limitations can’t be fixed as easily. As you shall see, latency is
a key factor in browsing the web, and latency is fundamentally limited by the speed of
light—a universal constant that physics says can’t increase.

2.1 HTTP/1.1 and the current World Wide Web
In chapter 1, you learned that HTTP was a request-and-response protocol originally
designed for requesting a single item of plain-text content and that ended the connec-
tion upon completion. HTTP/1.0 introduced other media types, such as allowing
images on a web page, and HTTP/1.1 ensured that the connection wasn’t closed by
default (on the assumption that the web page would need more requests).

 These improvements were good, but the internet has changed considerably since
the last revision of HTTP (HTTP/1.1 in 1997, though the formal spec was clarified a
few times and is being clarified again at the time of this writing, as mentioned in chap-
ter 1). The HTTP Archive’s trends site at https://httparchive.org/reports/state-of-
the-web allows you to see the growth of websites in the past eight years, as shown in
figure 2.1. Ignore the slight dip around May 2017, which was due to measurement
issues at HTTP Archive.1

 As you can see, the average website requests 80 to 90 resources and downloads
nearly 1.8 MB of data—the amount of data transported across the network, includ-
ing text resources compressed with gzip or similar applications. Uncompressed web-
sites are now more than 3 MB, which causes other issues for constrained devices
such as mobile.

 There is a wide variation in that average, though. Looking at the Alexa Top 10 web-
sites2 in the United States, for example, you see the results shown in table 2.1.

 The table shows that some websites (such as Wikipedia and Google) are hugely
optimized and require few resources, but others load hundreds of resources and
many megabytes of data. Therefore, looking at the average website or even the value
of these average stats has been questioned before.3 Regardless, it’s clear that the trend
is for an increasing amount of data across an increasing number of resources. The
growth of websites is driven primarily by becoming more media-rich, with images and

1 https://github.com/HTTPArchive/legacy.httparchive.org/issues/98#issuecomment-301641938
2 https://www.alexa.com/topsites/countries/US
3 https://speedcurve.com/blog/web-performance-page-bloat/

www.EBooksWorld.ir

37HTTP/1.1 and the current World Wide Web
 4

Table 2.1 The top 10 websites in the United States ordered by popularity

Popularity Site Number of requests Size

1 https://www.google.com 17 0.4 MB

2 https://www.youtube.com 75 1.6 MB

3 https://www.facebook.com 172 2.2 MB

4 https://www.reddit.com 102 1.0 MB

5 https://www.amazon.com 136 4.46 MB

6 https://www.yahoo.com 240 3.8 MB

7 https://www.wikipedia.org 7 0.06 MB

8 https://www.twitter.com 117 4.2 MB

9 https://www.ebay.com 160 1.5 MB

10 https://www.netflix.com 44 1.1 MB

4 https://httparchive.org/reports/state-of-the-web

0

10

20

30

40

50

60

70

80

90

0

200

400

600

800

1000

1200

1400

1600

1800

2000

15
-N

ov
-1

0

15
-F

eb
-1

1

15
-M

ay
-1

1

15
-A

ug
-1

1

15
-N

ov
-1

1

15
-F

eb
-1

2

15
-M

ay
-1

2

15
-A

ug
-1

2

15
-N

ov
-1

2

15
-F

eb
-1

3

15
-M

ay
-1

3

15
-A

ug
-1

3

15
-N

ov
-1

3

15
-F

eb
-1

4

15
-M

ay
-1

4

15
-A

ug
-1

4

15
-N

ov
-1

4

15
-F

eb
-1

5

15
-M

ay
-1

5

15
-A

ug
-1

5

15
-N

ov
-1

5

15
-F

eb
-1

6

15
-M

ay
-1

6

15
-A

ug
-1

6

15
-N

ov
-1

6

15
-F

eb
-1

7

15
-M

ay
-1

7

15
-A

ug
-1

7

15
-N

ov
-1

7

15
-F

eb
-1

8

15
-M

ay
-1

8

Average website size and number of requests

Average transport size (KB - left axis) Number of requests (right axis)

Figure 2.1 Average size of websites 2010–20184

www.EBooksWorld.ir

38 CHAPTER 2 The road to HTTP/2
videos being the norm on most websites. Additionally, websites are becoming more
complex, with multiple frameworks and dependencies needed to display their content
correctly.

 Web pages started out as static pages, but as the web became more interactive, web
pages started to be generated dynamically on the server side, such as Common Gate-
way Interface (CGI) or Java Servlet/Java Server Pages (JSPs). The next stage moved
from full pages generated server-side to basic HTML pages supplemented by AJAX
(Asynchronous JavaScript and XML) calls made from client-side JavaScript. These
AJAX calls make extra requests to the web server to allow the contents of the web page
to change without necessitating a full page reload or requiring the base image to be
generated dynamically server-side. The simplest way to understand this is to look at
the change in web search. In the early days of the web, before the advent of search
engines, directories of websites and pages were the primary ways of finding informa-
tion on the web, and they were static and updated only occasionally. Then the first
search engines arrived, allowing users to submit a search form and get the results back
from the server (dynamic pages generated server-side). Nowadays, most search sites
make suggestions in a drop-down menu as you type before you even click Search. Goo-
gle went one step further by showing results as users typed (though it reversed that
function in the summer of 2017, as more searches moved to mobile, where this func-
tionality made less sense).

 All sorts of web pages other than search engines also make heavy use of AJAX
requests, from social media sites that load new posts to news websites that update their
home pages as news comes in. All these extra media and AJAX requests allow websites
to be more interesting web applications. The HTTP protocol wasn’t designed with this
huge increase in resources in mind, however, and the protocol has some fundamental
performance problems in its simple design.

2.1.1 HTTP/1.1’s fundamental performance problem

Imagine a simple web page with some text and two images. Suppose that a request
takes 50 milliseconds (ms) to travel across the internet to the web server and that
the website is static, so the web server picks the file up from the file server and sends
it back—say, in 10 ms. Similarly, the web browser takes 10 ms to process the image
and send the next request. These figures are hypotheticals; if you have a content
management system (CMS) that creates pages on the fly (WordPress runs PHP to
process a page, for example), the 10 ms server time may not be accurate, depending
on what processing is happening on the server and/or database. Additionally,
images can be large and take longer to send than an HTML page. We’ll look at real
examples later in this chapter, but for this simple example, the flow under HTTP
would look like figure 2.2.

 The boxes represent processing at the client or server end, and the arrows repre-
sent network traffic. What’s immediately apparent in this hypothetical example is how
much time is spent sending messages back and forth. Of the 360 ms needed to draw

www.EBooksWorld.ir

39HTTP/1.1 and the current World Wide Web
the complete page, only 60 ms was spent processing the requests at the client or
browser side. A total 300 ms, or more than 80% of the time, was spent waiting for mes-
sages to travel across the internet. During this time, neither the web browser nor the
web server does much in this example; this time is wasted and is a major problem with
the HTTP protocol. At the 120 ms mark, after the browser has asked for image 1, it
knows that it needs image 2, but waits for the connection to be free before sending the
request for it, which doesn’t happen until the 240 ms mark. This process is inefficient,
but there are ways around it, as you’ll see later. Most browsers open multiple connec-
tions, for example. The point is that the basic HTTP protocol is quite inefficient.

Time (ms)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

Client Server

Receive request for web page

Send HTML page

Receive HTML page

Request image 1

Receive request for image 1

Send image 1

Receive image 1

Request image 2

Receive request for image 2

Send image 2

Finish drawing page

Receive image 2

Request web page

Figure 2.2 Request–response flow over HTTP for a basic example website

www.EBooksWorld.ir

40 CHAPTER 2 The road to HTTP/2
 Most websites aren’t made up of only two images, and the performance issues in
figure 2.2 increase with the number of assets that need to be downloaded—particu-
larly for smaller assets with a small amount of processing on either side relative to the
network request and response time.

 One of the biggest problems of the modern internet is latency rather than band-
width. Latency measures how long it takes to send a single message to the server, whereas
bandwidth measures how much a user can download in those messages. Newer technolo-
gies increase bandwidth all the time (which helps address the increase in the size of
websites), but latency isn’t improving (which prevents the number of requests from
increasing). Latency is restricted by physics (the speed of light). Data being transmitted
through fiber-optic cables is traveling pretty close to the speed of light already; there’s
only a little to be gained here, no matter how much the technology improves.

 Mike Belshe of Google did some experiments5 that show we’re reaching the point
of diminishing returns for increasing bandwidth. We may now be able to stream high-
definition television, but our web surfing hasn’t gotten faster at the same rate, and
websites often take several seconds to load even on a fast internet connection. The
internet can’t continue to increase at the rate it has without a solution for the funda-
mental performance issues of HTTP/1.1: too much time is wasted in sending and
receiving even small HTTP messages.

2.1.2 Pipelining for HTTP/1.1

As stated in chapter 1, HTTP/1.1 tried to introduce pipelining, which allows concur-
rent requests to be sent before responses are received so that requests can be sent in
parallel. The initial HTML still needs to be requested separately, but when the
browser sees that it needs two images, it can request them one after the other. As
shown in figure 2.3, pipelining shaves off 100 ms, or a third of the time in this simple,
hypothetical example.

 Pipelining should have brought huge improvements to HTTP performance, but
for many reasons, it was difficult to implement, easy to break, and not well supported
by web browsers or web servers.6 As a result, it’s rarely used. None of the main web
browsers uses pipelining, for example.7

 Even if pipelining were better supported, it still requires responses to be returned
in the order in which they were requested. If Image 2 is available, but Image 1 has to
be fetched from another server, the Image 2 response waits, even though it should be
possible to send this file immediately. This problem is known as head-of-line (HOL)
blocking and is common in other networking protocols as well as HTTP. I discuss the
TCP HOL blocking issue in chapter 9.

5 https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDox-
MzcyOWI1N2I4YzI3NzE2

6 https://tools.ietf.org/html/draft-nottingham-http-pipeline-01#section-3
7 https://en.wikipedia.org/wiki/HTTP_pipelining#Implementation_in_web_browsers

www.EBooksWorld.ir

41HTTP/1.1 and the current World Wide Web
2.1.3 Waterfall diagrams for web performance measurement

The flows of requests and responses shown in figures 2.2 and 2.3 are often shown as
waterfall diagrams, with assets on the left and increasing time on the right. These dia-
grams are easier to read than the flow diagrams used in figures 2.2 and 2.3 for large
numbers of resources. Figure 2.4 shows a waterfall diagram for our hypothetical exam-
ple site, and figure 2.5 shows the same site when pipelining is used.

In both examples, the first vertical line represents when the initial page can be drawn
(known as first paint time or start render), and the second vertical line shows when the
page is finished. Browsers often try to draw the page before the images have been

Time (ms)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

Client Server

Request web page

Receive request for web page

Send HTML page

Receive HTML page

Request image 1

Receive request for image 1

Receive request for image 2

Receive image 1

Receive image 2

Finish drawing page

Request image 2

Send image 1

Send image 2

Figure 2.3 HTTP with pipelining for a basic example website

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

11
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

HTML

Image 1

Image 2

Figure 2.4 Waterfall diagram of example website

www.EBooksWorld.ir

42 CHAPTER 2 The road to HTTP/2
downloaded, and the images are filled in later, so images often sit between these two
times. These examples are simple, but they can get complex, as I show you in some
real-life examples later in this chapter.

 Various tools, including WebPagetest8 and web-browser developer tools (intro-
duced briefly at the end of chapter 1), generate waterfall diagrams, which are import-
ant to understand when reviewing web performance. Most of these tools break the
total time for each asset into components such as Domain Name Service (DNS)
lookup and TCP connection time, as shown in figure 2.6.

8 https://www.webpagetest.org

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

11
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

HTML

Image 1

Image 2

Figure 2.5 Waterfall diagram of example website with pipelining

Figure 2.6 Waterfall diagram from webpagetest.org

www.EBooksWorld.ir

43Workarounds for HTTP/1.1 performance issues
This diagram provides a lot more information than simple waterfall diagrams do. It
breaks each request into several parts, including

 The DNS lookup
 The network connection time
 The HTTPS (or SSL) negotiation time
 The resource requested (and also splits the resource load into two pieces, with

the lighter color for the request and the darker color for the response download)
 Various vertical lines for the various stages in loading the page
 Other graphs that show CPU use, network bandwidth, and what the browser’s

main thread is working on

All this information is useful for analyzing the performance of a website. I make heavy
use of waterfall diagrams throughout this book to explain the concepts.

2.2 Workarounds for HTTP/1.1 performance issues
As stated earlier, HTTP/1.1 isn’t an efficient protocol because it blocks on a send and
waits for a response. It is, in effect, synchronous; you can’t move on to another HTTP
request until the current request is finished. If the network or the server is slow, HTTP
performs worse. As HTTP is intended primarily to request resources from a server
that’s often far from the client, network slowness is a fact of life for HTTP. For the ini-
tial use case of HTTP (a single HTML document), this slowness wasn’t much of a
problem. But as web pages grew more and more complex, with more and more
resources required to render them properly, slowness became a problem.

 Solutions for slow websites led to a whole web performance optimization industry, with
many books and tutorials on how to improve web performance being published.
Although overcoming the problems of HTTP/1.1 wasn’t the only performance opti-
mization, it was a large part of this industry. Over time, various tips, tricks, and hacks
have been created to overcome the performance limitations of HTTP/1.1, which fall
into the following two categories:

 Use multiple HTTP connections.
 Make fewer but potentially larger HTTP requests.

Other performance techniques, which have less to do with the HTTP protocol,
involve ensuring that the user is requesting the resources in the optimal manner
(such as requesting critical CSS first), reducing the amount downloaded (compres-
sion and responsive images), and reducing the work on the browser (more efficient
CSS or JavaScript). These techniques are mostly beyond the scope of this book,
though I return to some of them in chapter 6. The Manning book Web Performance in
Action, by Jeremy Wagner,9 is an excellent resource for learning more about these
techniques.

9 https://www.manning.com/books/web-performance-in-action

www.EBooksWorld.ir

44 CHAPTER 2 The road to HTTP/2
2.2.1 Use multiple HTTP connections

One of the easiest ways to get around the blocking issue of HTTP/1.1 is to open more
connections, allowing parallelization to have multiple HTTP requests on the go. Addi-
tionally, unlike with pipelining, no HOL blocking occurs, as each HTTP connection
works independently of the others. Most browsers open six connections per domain
for this reason.

 To increase this limit of six further, many websites serve static assets such as images,
CSS, and JavaScript from subdomains (such as static.example.com), allowing web
browsers to open a further six connections for each new domain. This technique is
known as domain sharding (not to be confused with database sharding by those read-
ers who come from a nonweb background, though the performance reasons are
similar). Domain sharding can also be handy for reasons other than increasing par-
allelization, such as reducing HTTP headers such as cookies (see section 2.3). Often,
these shared domains are hosted on the same server. Sharing the same resources but
using different domain names fools the browser into thinking that the server is sepa-
rate. Figure 2.7 shows that stackoverflow.com uses multiple domains: loading JQuery
from a Google domain, scripts and stylesheets from cdn.static.net, and images
from i.stack.imgur.com.

Although using multiple HTTP connections sounds like a simple fix to improve per-
formance, it isn’t without downsides. There are additional overheads for both the cli-
ent and server when multiple HTTP connections are used: starting a TCP connection
takes time, and maintaining the connection requires extra memory and processing.

Figure 2.7 Multiple domains for stackoverflow.com

www.EBooksWorld.ir

45Workarounds for HTTP/1.1 performance issues
 The main issue with multiple HTTP connections, however, is significant inefficien-
cies with the underlying TCP protocol. TCP is a guaranteed protocol that sends pack-
ets with a unique sequence number and rerequests any packets that got lost on the
way by checking for missing sequence numbers. TCP requires a three-way handshake
to set up, as shown in figure 2.8.

I’ll explain these steps in detail:

1 The client sends a synchronization (SYN) message that tells the server the
sequence number it should expect all future TCP packets from this request to
be based on.

2 The server acknowledges the sequence numbers from the client and sends its
own synchronization request, telling the client what sequence numbers it will use
for its messages. Both messages are combined into a single SYN-ACK message.

3 Finally, the client acknowledges the server sequence numbers with an ACK
message.

This process adds 3 network trips (or 1.5 round trips) before you send a single HTTP
request!

 In addition, TCP starts cautiously, with a small number of packets sent before
acknowledgement. The congestion window (CWND) gradually increases over time as
the connection is shown to be able to handle larger sizes without losing packets. The
size of the TCP congestion window is controlled by the TCP slow-start algorithm. As
TCP is a guaranteed protocol that doesn’t want to overload the network, TCP packets
in the CWND must be acknowledged before more packets can be sent, using incre-
ments of the sequence numbers set up in the three-way handshake. Therefore, with a
small CWND, it may take several TCP acknowledgements to send the full HTTP
request messages. HTTP responses, which are often much larger than HTTP requests,
also suffer from the same congestion window constraints. As the TCP connection is
used more, it increases the CWND and gets more efficient, but it always starts artificially

Client

SYN

Server

SYN-ACK

ACK

Figure 2.8 TCP three-way handshake

www.EBooksWorld.ir

46 CHAPTER 2 The road to HTTP/2
throttled, even on the fastest, highest-bandwidth networks. I return to TCP in chapter
9, but for now, even this quick introduction should show that multiple TCP connec-
tions have a cost.

 Finally, even without any issues with TCP setup and slow start, using multiple inde-
pendent connections can result in bandwidth issues. If all the bandwidth is used, for
example, the result can be TCP timeouts and retransmissions on other connections.
There’s no concept of prioritization between the traffic on those independent con-
nections to use the available bandwidth in the most efficient manner.

 When the TCP connection has been made, secure websites require the setup of
HTTPS. This setup can be minimized on subsequent connections by reusing many of
the parameters used in the main connection rather than starting from scratch, but the
process still takes further network trips, and, therefore, time. I won’t discuss the
HTTPS handshake in detail now, but we’ll examine it in more detail in chapter 4.

 Therefore, it’s inefficient, at a TCP and HTTPS level, to open multiple connec-
tions, even if doing so is a good optimization at an HTTP level. The solution for the
latency problems of HTTP/1.1 requires multiple extra requests and responses; there-
fore, the solution is prone to the very latency problems it’s supposed to resolve!

 Additionally, by the time these additional TCP connections have reached optimal
TCP efficiency, it’s likely that the bulk of the web page will have loaded and the addi-
tional connections are no longer required. Even browsing to subsequent pages may
not require many resources if the common elements are cached. Patrick McManus of
Mozilla states that in Mozilla’s monitoring for HTTP/1, “74 percent of our active con-
nections carry just a single transaction.” I present some real-life examples later in
this chapter.

 Multiple TCP connections, therefore, aren’t a great solution to the problems of
HTTP/1, though they can improve performance when no better solution is available.
Incidentally, this explains why browsers limit the number of connections to six per
domain. Although it’s possible to increase this number (as some browsers allow you
to), there are diminishing returns, given the overhead required for each connection.

2.2.2 Make fewer requests

The other common optimization technique is to make fewer requests, which
involves reducing unnecessary requests (such as by caching assets in the browser)
or requesting the same amount of data over fewer HTTP requests. The former
method involves using HTTP caching headers, discussed briefly in chapter 1 and
revisited in more detail in chapter 6. The latter method involves bundling assets
into combined files.

 For images, this bundling technique is known as spriting. If you have a lot of social
media icons on your website, for example, you could use one file for each icon. But
this method would lead to a lot of inefficient HTTP queuing, as the images will be
small, so a relatively large proportion of the time needed to fetch them will be spent
on the overheads of downloading them. Instead, you can bundle them into one large

www.EBooksWorld.ir

47Workarounds for HTTP/1.1 performance issues
image file and then use CSS to pull out sections of the image to effectively re-create
the individual images. Figure 2.9 shows one such sprite image used by TinyPNG,
which has common icons in one file.

 For CSS and JavaScript, many websites concatenate multiple files so that fewer files
are produced, though with the same amount of code in the combined files. This con-
catenation is often done while minimizing the CSS or JavaScript to remove
whitespace, comments, and other unnecessary elements. Both of these methods pro-
duce performance benefits but require effort to set up.

 Other techniques involve inlining the resources into other files. Critical CSS is
often included directly in the HTML with <style> tags, for example. Or images can be
included in CSS as inline Scalable Vector Graphic (SVG) instructions or base 64-encoded
binary files, which saves additional HTTP requests.

 The main downside to this solution is the complexity it introduces. Creating image
sprites takes effort; it’s easier to serve images as separate files. Not all websites use a
build step in which optimizations such as concatenating CSS files can be automated. If
you use a Content Management System (CMS) for your website, it may not automatically
concatenate JavaScript, or sprite images.

 Another downside is the waste in these files. Some pages may be downloading
large sprite image files and using only one or two of those images. It’s complicated to
track how much of your sprite file is still used and when to trim it. You also have to
rewrite all your CSS to load the images correctly from the right locations in the new
sprite file. Similarly, JavaScript can become bloated and much larger than it needs to
be if you concatenate too much and download a huge file even when you need only to

Figure 2.9 Sprite image for TinyPNG

www.EBooksWorld.ir

48 CHAPTER 2 The road to HTTP/2
use a small amount of it. This technique is inefficient in terms of both the network
layer (particularly at the beginning, due to TCP slow start) and processing (as the web
browser needs to process data it won’t use).

 The final issue is caching. If you cache your sprite image for a long time (so that
site visitors don’t download it too often) but then need to add an image, you have to
make the browsers download the whole file again, even though the visitor may not
need this image. You can use various techniques such as adding a version number to
the filename or using a query parameter,10 but these techniques are still wasteful. Sim-
ilarly, on the CSS or JavaScript side, a single code change requires the whole concate-
nated file to be redownloaded.

2.2.3 HTTP/1 performance optimizations summary

Ultimately, HTTP/1 performance optimizations are hacks to get around a fundamental
flaw in the HTTP protocol. It would be much better to fix this flaw at the protocol level
to save everyone time and effort here, and that’s exactly what HTTP/2 aims to do.

2.3 Other issues with HTTP/1.1
HTTP/1.1 is a simple text-based protocol. This simplicity introduces problems.
Although the bodies of HTTP messages can contain binary data (such as images in
whatever format the client and server can agree on), the requests and the headers
themselves must still be in text. Text format is great for humans but isn’t optimal for
machines. Processing HTTP text messages can be complex and error-prone, which
introduces security issues. Several attacks on HTTP have been based on injecting new-
line characters into HTTP headers, for example.11

 The other issue with HTTP being a text format is that HTTP messages are larger
than they need to be, due to not encoding data efficiently (such as representing the
Date header as a number versus full human-readable text) and repeating headers.
Again, for the initial use case of the web with single requests, this situation wasn’t
much of a problem, but the increasing number of requests makes this situation quite
inefficient. The use of HTTP headers has grown, which leads to a lot of repetition.
Cookies, for example, are sent with every HTTP request to the domain, even if only
the main page request requires cookies. Usually, static resources such as images, CSS,
and JavaScript don’t need cookies. Domain sharding, as described earlier in this chap-
ter, was brought in to allow extra connections, but it was also used to create so-called
cookieless domains that wouldn’t need cookies sent to them for performance and
security reasons. HTTP responses are also growing, and with security HTTP headers
such as Content-Security-Policy producing extremely large HTTP headers, the
deficiencies of the text-based protocol are becoming more apparent. With many web-
sites being made up of 100 resources or more, large HTTP headers can add tens or
hundreds of kilobytes of data transferred.

10 https://css-tricks.com/strategies-for-cache-busting-css/
11 https://www.owasp.org/index.php/Testing_for_HTTP_Splitting/Smuggling_(OTG-INPVAL-016)

www.EBooksWorld.ir

49Real-world examples
 Performance limitations are only one aspect of HTTP/1.1 that could be improved.
Other issues include the security and privacy issues of a plain-text protocol (addressed
pretty successfully by wrapping HTTPS around it) and the lack of state (addressed less
successfully by the addition of cookies). In chapter 10, I explore these issues more. To
many, however, the performance issues are problems that aren’t easy to address with-
out implementing workarounds that introduce their own issues.

2.4 Real-world examples
I’ve shown that HTTP/1.1 is inefficient for multiple requests, but how bad is that situ-
ation? Is it noticeable? Let’s look at a couple of real-world examples.

2.4.1 Example website 1: amazon.com

I’ve talked theoretically up until now, but now I look at real-world examples. If you
take www.amazon.com and run it through www.webpagetest.org, you get the waterfall
diagram shown in figure 2.10. This figure demonstrates many of the problems with
HTTP/1.1:

 The first request is for the home page, which I’ve repeated in a larger format in
figure 2.11.

It requires time to do a DNS lookup, time to connect, and time to do the
SSL/TLS HTTPS negotiation before a single request is sent. The time is small
(slightly more than 0.1 second in figure 2.11), but it adds up. Not much can be
done about that for this first request. This result is part and parcel of the way
the web works, as discussed in chapter 1, and although improvements to
HTTPS ciphers and protocols might reduce the SSL time, the first request is

Real-world websites and HTTP/2
When I originally wrote this chapter, both of the example websites I used didn’t
support HTTP/2. Both sites have since enabled it, but the lessons shown here are
still relevant as examples of complex websites that suffer under HTTP/1.1, and
many of the details discussed here are likely similar to those of other websites.
HTTP/2 is gaining in popularity, and any site chosen as an example may be
upgraded at some point. I prefer to use real, well-known sites to demonstrate the
issues that HTTP/2 looks to solve rather than using artificial example websites
created purely to prove a point, so I’ve kept the two example websites despite the
fact that they’re now on HTTP/2. The sites are less important than the concepts
they show.

To repeat these tests at webpagetest.org, you can disable HTTP/2 by specifying
--disable-http2 (Advanced Settings > Chrome > Command-Line Options). There
are similar options if you’re using Firefox as your browser.a These are also helpful
ways to test your own HTTP/2 performance changes after you go live with HTTP/2.

a https://www.webpagetest.org/forums/showthread.php?tid=14162

www.EBooksWorld.ir

50 CHAPTER 2 The road to HTTP/2
going to be subject to these delays. The best you can do is ensure that your serv-
ers are responsive, and, ideally, close to the users to keep round-trip times as
low as possible. In chapter 3, I discuss content delivery networks (CDNs), which
can help with this problem.

After this initial setup, a slight pause occurs. I can’t explain this pause, which
could be due to slightly inaccurate timings or an issue in the Chrome browser. I
didn’t see the same gap when repeating the test with Firefox. Then the first
HTTP request is made (light color), and the HTML is downloaded (slightly
darker color), parsed, and processed by the web browser.

 The HTML makes references to several CSS files, which are also downloaded, as
shown in figure 2.12.

Figure 2.10 Part of the results for www.amazon.com

Figure 2.11 The first request for the home page

www.EBooksWorld.ir

51Real-world examples
 These CSS files are hosted on another domain (images-na.ssl-images-
amazon.com), which has been sharded from the main domain for performance
reasons, as discussed earlier. As this domain is separate, you need to start over
from the beginning for the second request and do another DNS lookup, another
network connection, and another HTTPS negotiation before using this domain
to download the CSS. Although the setup time for request 1 is somewhat
unavoidable, this second setup time is wasted; the domain name sharding is
done to work around HTTP/1.1 performance issues. Note also that this CSS file
appears early in the processing of the HTML page in request 1, causing request
2 to start slightly before the 0.4-second mark despite the fact that the HTML
page doesn’t finish downloading until slightly after 0.5 of a second. The browser
didn’t wait for the full HTML page to be downloaded and processed; instead, it
requested the extra HTTP connection as soon as it saw the domain referenced
(even if the resource itself doesn’t start to be downloaded until after the HTML
has been fully received in this example due to the connection setup delays).

 The third request is for another CSS file on the same sharded domain. As
HTTP/1.1 allows only a single request in flight at the same time, the browser
creates another connection. You don’t need the DNS lookup this time (because
you know the IP address for that domain from request 2), but you do need the
costly TCP/IP connection setup and HTTPS negotiating time before you can
request this CSS. Again, the only reason for this extra connection is to work
around HTTP/1.1 performance issues.

 Next the browser requests three more CSS files, which are loaded over the two
connections already established. Not shown in the diagram is why the browser
didn’t request these other CSS files immediately, which would have necessitated
creating even more connections and the costs associated with them. I looked at
the Amazon source code, and there’s a <script> tag before these CSS files
request that blocks the later requests until the script is processed, which explains
why requests 4, 5, and 6 aren’t requested at the same time as requests 2 and 3.
This point is an important one that I return to later: although HTTP/1.1 ineffi-
ciencies are a problem for the web and could be solved by improvements to

Figure 2.12 The five requests for the CSS files

www.EBooksWorld.ir

52 CHAPTER 2 The road to HTTP/2
HTTP (like those in HTTP/2), they’re far from being the only reasons for slow
performance on the web.

 After the CSS has been dealt with in requests 2 to 6, the browser decides that
the images are next, so it starts downloading them, as shown in figure 2.13.

 The first .png file is in request 7, which is a sprite file of multiple images (not
shown in figure 2.13), and another performance tweak that Amazon imple-
mented. Next, some .jpg files are downloaded from request 8 onward.

 When two of these image requests are in flight, the browser needs to make
more costly connections to allow other files to load in parallel in requests 9, 10,
11, and 15 and then again for new domains in requests 14, 17, 18, and 19.

 In some cases (requests 9, 10, and 11), the browser guessed that more connec-
tions are likely to be needed and set up the connections in advance, which is
why the connect and SSL parts happen earlier and why it can request the
images at the same time as requests 7 and 8.

 Amazon added a performance optimization to do a DNS prefetch12 for m.media-
amazon.com well before it needs it, though oddly not for fls-na.amazon.com.
This is why the DNS lookup for request 17 happens at the 0.6 second mark, well
before it’s needed. I return to this topic in chapter 6.

The loading continues past these requests, but even looking at only these first few
requests identifies problems with HTTP/1.1, so I won’t belabor the point by continu-
ing through the whole site load.

 Many connections are needed to prevent any queuing, and often, the time taken
to make this connection doubles the time needed to download the asset. Web Page
Test has a handy connection view13 (shown in figure 2.14 for this same example).

12 https://css-tricks.com/prefetching-preloading-prebrowsing/
13 https://www.webpagetest.org/result/170820_NR_53c5bf9ca1e67301a933947d80a32a53/1/details/

#connectionView_fv_1

Figure 2.13 Image downloads

www.EBooksWorld.ir

53Real-world examples
You can see that loading amazon.com requires 20 connections for the main site,
ignoring the advertising resources, which add another 28 connections (not shown in
figure 2.14). Although the first six images-na.ssl-images-amazon.com connections
are fairly well used (connections 3–8), the other four connections for this domain
(connections 9–12) are less well used; like many other connections (such as 15, 16, 17,
18, 19, and 20), they’re used to load only one or two resources, making the time
needed to create that connection wasteful.

 The reason why these four extra connections are opened for images-na.ssl-
images-amazon.com (and why Chrome appears to break its limit of six connections
per domain) is interesting and took a bit of investigation. Requests can be sent with
credentials (which usually means cookies), but requests can also be sent without them
and handled by Chrome over separate connections. For security reasons, due to how
cross-origin requests are handled in the browser,14 Amazon uses setAttribute
("crossorigin","anonymous") in some of these requests for JavaScript files, without
credentials, which means that the existing connections aren’t used. Instead, more
connections are created. The same isn’t necessary for direct JavaScript requests with
the <script> tag in HTML. The workaround also isn’t needed for resources hosted
on the main domain being loaded, which again shows that sharding can be inefficient
at an HTTP level.

 The Amazon example shows that even when a site is well optimized with the
workarounds necessary to boost performance under HTTP/1.1, there is a still a per-
formance penalty to using these performance workarounds. These performance
workarounds are also complicated to set up. Not every site wants to manage multiple

14 https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Figure 2.14 Connection view of loading amazon.com

www.EBooksWorld.ir

54 CHAPTER 2 The road to HTTP/2
domains or sprite images or merge all their JavaScript (or CSS) into one file, and not
every site has the resources of Amazon to create these optimizations or is even aware
of them. Smaller sites are often much less optimized and therefore suffer the limita-
tions of HTTP/1 even more.

2.4.2 Example website 2: imgur.com

What happens if you don’t make these optimizations? As an example, look at
imgur.com. Because it’s an image sharing site, imgur.com loads a huge number of
images on the home page, but doesn’t sprite them into single files. A subsection of the
WebPagetest waterfall diagram is shown in figure 2.15.

I skipped the first part of the page load (before request 31), which repeats a lot of the
amazon.com example. What you see here is that the maximum six connections are
used to load requests 31–36; the rest are queued. As each of those six requests fin-
ishes, another six can be fired off, followed by another six, which leads to the telltale
waterfall shape that gives these charts their name. Note that the six resources are
unrelated and could finish at different times (as they do farther down the waterfall

Figure 2.15 Waterfall view of imgur.com

www.EBooksWorld.ir

55Real-world examples
chart), but if they’re similar size resources, it’s not unusual for them to finish at
around the same time. This fact gives the illusion that the resources are related, but
on the HTTP level, they’re not (though they share network bandwidth and go to the
same server).

 The waterfall diagram for Chrome, shown in figure 2.16, makes the problem
more apparent, as it also measures the delay from when the resource could have
been requested. As you can see, for later requests, a long delay occurs before the
image is requested (highlighted by the rectangle), followed by a relatively short
download time.

2.4.3 How much of a problem is this really?

Although this chapter identifies inefficiencies in HTTP, workarounds are available.
These workarounds, however, take time, money, and understanding to implement
and to maintain going forward, and they add their own performance problems. Devel-
opers aren’t cheap, and having them spend time working around an inefficient proto-
col is necessary but costly (not to mention the many sites that don’t realize the impact
of poor performance on their traffic). Multiple studies show that slower websites lead
to abandonment and to loss of visitors and sales.15, 16

 You must also consider how serious this problem is in relation to other perfor-
mance problems. There are any number of reasons why a website is slow, from the
quality of the internet connection to the size of the website to the ridiculous amounts
of JavaScript that some websites use, to the proliferation of poorly performing ads and
tracking networks. Although being able to download resources quickly and efficiently
is certainly one part of the problem, many websites would still be slow. Clearly, many
websites are worried about this aspect of performance, which is why they implement
the HTTP/1.1 workarounds, but many other sites don’t because of the complexity
and understanding that these workarounds require.

 The other problem is the limitations of these workarounds. These workarounds
generate their own inefficiencies, but as websites continue to grow in both size and

15 https://developers.google.com/web/fundamentals/performance/why-performance-matters/
16 https://developer.akamai.com/blog/2016/09/14/mobile-load-time-user-abandonment

Queuing time

Figure 2.16 Chrome developer tools waterfall view of imgur.com

www.EBooksWorld.ir

56 CHAPTER 2 The road to HTTP/2
complexity, at some point even the workarounds will no longer work. Although
browsers open six connections per domain and could increase this number, the over-
head of doing so versus the gains is reaching the point of diminishing returns, which
is why browsers limited the number of connections to six in the first place, even
though site owners have tried to work around this limit with domain sharding.

 Ultimately, each website is different, and each website owner or web developer
needs to spend time analyzing the site’s own resource bottlenecks, using tools such as
waterfall diagrams, to see whether the site is being badly affected by HTTP/1.1 perfor-
mance problems.

2.5 Moving from HTTP/1.1 to HTTP/2
HTTP hadn’t really changed since 1999, when HTTP/1.1 came on the scene. The
specification was clarified in the new Request for Comments (RFCs) published in 2014,
but this specification was more a documentation exercise than any real change in the
protocol. Work had started on an updated version (HTTP-NG), which would have
been a complete redesign of how HTTP worked, but it was abandoned in 1999. The
general feeling is that the change was overly complex, with no path to introduce it in
the real world.

2.5.1 SPDY

In 2009, Mike Belshe and Robert Peon at Google announced that they were working
on a new protocol called SPDY (pronounced “speedy” and not an acronym). They
had been experimenting on this protocol in laboratory conditions and saw excellent
results, with up to 64% improvement in page load times. The experiments were run
on copies of the top 25 websites, not hypothetical websites that may not represent the
real world.

 SPDY was built on top of HTTP, but doesn’t fundamentally change the protocol, in
much the same way that HTTPS wrapped around HTTP without changing its underly-
ing use. The HTTP methods (GET, POST, and so on) and the concept of HTTP headers
still exist in SDPY. SPDY worked at a lower level, and to web developers, server owners,
and (crucially) users, the use of SPDY was almost transparent. Any HTTP request was
simply converted to a SPDY request, sent to the server, and then converted back. This
request looked like any other HTTP request to higher-level applications (such as
JavaScript applications on the client side and those configuring web servers). Addi-
tionally, SPDY was implemented only over secure HTTP (HTTPS), which allowed the
structure and format of the message to be hidden from all the internet plumbing that
passes messages between client and server. All existing networks, routers, switches,
and other infrastructure, therefore, could handle SPDY messages without any changes
and without even knowing that they were handling SPDY messages rather than
HTTP/1 messages. SPDY was essentially backward-compatible and could be intro-
duced with minimal changes and risk, which is undoubtedly a big reason why it suc-
ceeded and HTTP-NG failed.

www.EBooksWorld.ir

57Moving from HTTP/1.1 to HTTP/2
 Whereas HTTP-NG tried to address multiple issues with HTTP/1, the main aim of
SPDY was to tackle the performance limitations of HTTP/1.1. It introduced a few
important concepts to deal with the limitations of HTTP/1.1:

 Multiplexed streams—Requests and responses used a single TCP connection and
were broken into interleaved packets grouped into separate streams.

 Request prioritization—To avoid introducing new performance problems by send-
ing all requests at the same time, the concept of prioritization of the requests
was introduced.

 HTTP header compression—HTTP bodies had long been compressed, but now
headers could be compressed too.

It wasn’t possible to introduce these features with the text-based request-and-response
protocol that HTTP was up until then, so SPDY became a binary protocol. This
change allowed the single connection to handle small messages, which together
formed the larger HTTP messages, much the way that TCP itself breaks larger HTTP
messages into many smaller TCP packets that are transparent to most HTTP imple-
mentations. SPDY implemented the concepts of TCP at the HTTP layer so that multi-
ple HTTP messages could be in flight at the same time.

 Additional advanced features such as server push allowed the server to tag on extra
resources. If you requested the home page, server push could provide the CSS file
needed to display it, in response to that request. This process saves the need to suffer
the performance delay of the round trip asking for that CSS file and the complication
and effort of inlining critical CSS.

 Google was in the unique position of being in control of both a major browser
(Chrome) and some of the most popular websites (such as www.google.com), so it
could do much larger real-life experiments with the new protocol by implementing it
at both ends of the connection. SPDY was released to Chrome in September 2010, and
by January 2011, all Google services were SPDY-enabled17—an incredibly quick rollout
by any measure.

 SPDY was an almost-instant success, with other browsers and servers quickly adding
support. Firefox and Opera added support in 2012. On the server side, Jetty added
support, followed by others, including Apache and nginx. The vast majority of web-
sites that supported SPDY were on the latter two web servers. Websites that introduced
SPDY (including Twitter, Facebook, and WordPress) saw the same performance gains
as Google, with little downside apart from initial setup. SPDY reached up to 9.1% of
all websites, according to w3techs.com,18 though browsers have started removing sup-
port for it now that HTTP/2 is here. Since early 2018, use of SPDY has plummeted, as
shown in figure 2.17.

17 https://groups.google.com/d/msg/spdy-dev/TCOW7Lw2scQ/T2kM5aPDydwJ
18 https://w3techs.com/technologies/details/ce-spdy/all/all

www.EBooksWorld.ir

58 CHAPTER 2 The road to HTTP/2
2.5.2 HTTP/2

SPDY proved that HTTP/1.1 could be improved, not in a theoretical manner, but with
examples of it working on major sites in the real world. In 2012, the HTTP Working
Group of the Internet Engineering Task Force (IETF) noted the success of SPDY and
asked for proposals for the next version of HTTP.19 SPDY was the natural basis for this
next version, as it had been proved in the wild, though the working group explicitly
avoided saying so, preferring to be open to any proposals (though some people dis-
pute this position, as covered in chapter 10).

 After a short period, during which other proposals were considered, SPDY formed
the basis of HTTP/2 in the first draft, published in November 2012.20 This draft was
modified slightly over the next two years to improve it (particularly its use of streams
and compression). I go into the technical details of the protocol in chapters 4, 5, 7,
and 8, so I’m covering this topic lightly here.

 By the end of 2014, the HTTP/2 specification was submitted as a proposed stan-
dard for the internet, and in May 2015, it was formally approved as RFC 7450.21 Sup-
port followed quickly, especially because the specification was heavily based on
SPDY, which many browsers and servers had already implemented. Firefox supported

19 https://lists.w3.org/Archives/Public/ietf-http-wg/2012JanMar/0098.html
20 https://tools.ietf.org/html/draft-ietf-httpbis-http2-00
21 https://tools.ietf.org/html/rfc7540

0
1 Sep’17 1 Oct 1 Nov 1 Dec 1 Feb 1 Mar

Usage of SPDY for websites, 2 Sep 2018, W3Techs.com

1 Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sep1 Jan’18

1

2

3

4

5

6

7

8

9

10

Figure 2.17 SPDY support on websites has dropped since the launch of HTTP/2.

www.EBooksWorld.ir

59What HTTP/2 means for web performance
HTTP/2 from February 2015, and Chrome and Opera from March 2015. Internet
Explorer 11, Edge, and Safari followed later in the year.

 Web servers quickly added support, with many implementing the various versions
as they went through standardization. LiteSpeed22 and H2O23 were some of the first
web servers with support. By the end of 2015, the main three web servers used by the
vast majority of internet users (Apache, IIS, and nginx) had implementations, though
they were initially marked as experimental and not switched on by default.

 As of September 2018, HTTP/2 is available on 30.1% of all websites, according to
w3tech.com.24 This reach is in large part due to content delivery networks and larger
sites enabling HTTP/2, but it’s still impressive for a three-year-old technology. As you
will see in chapter 3, enabling HTTP/2 on the server side currently requires a fair bit
of effort; otherwise, use might be even higher.

 The takeaway point is that HTTP/2 is here and is available. It has been proved in
real life and has been shown to improve performance significantly precisely because it
addresses the problems with HTTP/1.1 raised in this chapter.

2.6 What HTTP/2 means for web performance
You’ve seen the inherent performance problems with HTTP/1 and now have the solu-
tion with HTTP/2, but are all web performance problems solved with HTTP/2, and
how much faster should owners expect their websites to be if they upgrade to
HTTP/2?

2.6.1 Extreme example of the power of HTTP/2

Many examples show the performance improvements of HTTP/2. I have one on my
site at https://www.tunetheweb.com/performance-test-360/. This page is available
over HTTP 1.1, HTTP 1.1 over HTTPS, and HTTP/2 over HTTPS. As discussed in
chapter 3, browsers support HTTP/2 only over HTTPS; hence, there’s no HTTP/2
without the HTTPS test. This test is based on a similar test at https://www.httpvshttps
.com/ that excludes the HTTPS-without-HTTP/2 test and loads a web page with 360
images over the three technologies, using a bit of JavaScript to time the loads. The
result is shown in figure 2.18.

 This test shows that the HTTP version took 10.471 seconds to load the page and all
the images. The HTTPS version took about the same time at 10.533 seconds, showing
that HTTPS doesn’t cause the performance penalty it once did and the difference is
barely noticeable from plain-text HTTP. In fact, rerunning this test several times often
showed HTTPS being marginally faster than HTTP, which makes no sense (because
HTTPS involves extra processing), but this extra processing is within the margin of
error for this test site.

22 https://blog.litespeedtech.com/2015/04/17/lsws-5-0-is-out-support-for-http2-esi-litemage-cache/
23 https://h2o.examp1e.net/
24 https://w3techs.com/technologies/details/ce-http2/all/all

www.EBooksWorld.ir

60 CHAPTER 2 The road to HTTP/2
The real surprise is HTTP/2, which loaded the site in 1.731 seconds—83% faster than
the other two technologies! Looking at the waterfall diagrams shows the reason. Com-
pare the HTTPS and HTTP/2 diagrams in figures 2.19 and 2.20.

 Under HTTPS, you see the familiar delay of setting up multiple connections and
then loading the images in batches of six. Under HTTP/2, however, the images are
requested together, so there’s no delay. For brevity’s sake, I’ve shown only the first 21
requests rather than all 360 requests, but this figure illustrates the massive perfor-
mance benefits of HTTP/2 for loading this kind of site. Note also in figure 2.19 that
after the maximum number of connections for the page are used, the browser
chooses to load Google Analytics in request 10. That request is for a different domain

Figure 2.18 HTTP versus HTTPS versus HTTP/2 performance test

Figure 2.19 Waterfall of HTTPS test. Ignore the highlighting of line 18 due to the 302 response.

www.EBooksWorld.ir

61What HTTP/2 means for web performance
that hasn’t reached its maximum connection limit. Figure 2.20 shows a much higher
simultaneous-request limit, so many more of the images are requested at the begin-
ning, and the Google Analytics request isn’t shown in the first 21 requests but farther
down this waterfall chart.

 Astute readers may have noticed that the images take longer to download under
HTTP/2: around 490 ms compared with around 115 ms under HTTP/1.1 (ignoring
the first six, which took longer when you include connection setup time). Assets can
appear to take longer to download under HTTP/2 because of the different way of
measuring them. Waterfall diagrams typically measure from when the request is sent
to when the response is received and may not measure queuing time. Taking request
16 as an example, under HTTP/1, this resource is requested at about the 1.2-second
mark and is received 118 ms later, at approximately 1.318 ms. The browser, however,
knew it needed the image after it processed the HTML and made the first request at
0.75 second, which is exactly when the HTTP/2 example requested it (not by coinci-
dence!). Therefore, the 0.45-second delay isn’t accurately reflected in HTTP/1 water-
fall diagrams, and arguably, the clock should start at the 0.75-second mark. As noted
in section 2.4.2, Chrome’s waterfall diagram includes waiting time; so, it shows the
true overall download time, which is longer than HTTP/2.

 Requests can take longer under HTTP/2, however, due to bandwidth, client, or
server limitations. The need to use multiple connections under HTTP/1 creates a nat-
ural queuing mechanism of six requests at the same time. HTTP/2 uses a single con-
nection with streams, in theory removing that restriction, though implementations
are free to add their own limitations. Apache, which I use to host this page, has a limit
of 100 concurrent requests per connection by default, for example. Sending many

Figure 2.20 Waterfall diagram of HTTP/2 test

www.EBooksWorld.ir

62 CHAPTER 2 The road to HTTP/2
requests at the same time leads to the requests sharing the available resources and tak-
ing longer to download. The images take progressively longer in figure 2.20 (from 282
ms in request line 4 to 301 ms in request line 25). Figure 2.21 shows the same results
at lines 88–120. You can see that the image requests take up to 720 ms (six times as
long as under HTTP/1). Also, when the 100-request limit is reached, a pause occurs
until the first requests are downloaded; then the remaining resources are requested.
This effect is identical to the waterfall effect due to HTTP/1 connection limitations
but happens less and later due to the much-increased limits. Note also that during this
pause, Google Analytics is requested as request 104. A similar thing happened during
the pause in HTTP/1.1 in figure 2.19, but it happened much earlier, at request 10.

The important point that’s easy to miss when you’re looking at waterfall diagrams
under HTTP/2 is that they intrinsically measure different things. Instead, you should
look at the overall time, and here, HTTP/2 clearly wins in the overall page load time.

2.6.2 Setting expectations of HTTP/2 performance gains

The example in section 2.6.1 shows the enormous gains that HTTP/2 can give a
website; 83% performance improvements are vey impressive. This example isn’t
realistic, however, and most websites struggle to see anything near this result. This
example illustrates the conditions under which HTTP/2 performs best (another rea-
son why I prefer to use real, well-known websites in the examples in this book). Some

Figure 2.21 Delays and waterfalls under HTTP/2

www.EBooksWorld.ir

63What HTTP/2 means for web performance
websites may not see any performance improvement by switching to HTTP/2 if they
have other performance problems, which means that the HTTP/1 deficiencies aren’t
much of a problem.

 There are two reasons why HTTP/2 may make little difference to some existing
websites. The first reason is that the websites may be so tuned, using the workarounds
discussed in section 2.2, that they see little slowness due to the problems inherent in
HTTP/1. But even well-tuned sites still suffer some performance drawbacks from
these techniques, not to mention the significant effort needed to use and maintain
these performance techniques. In theory, HTTP/2 allows every website to be even bet-
ter than a domain-sharded, concatenated website making great use of sprites and
inline CSS, JavaScript, and images with zero effort as long as the server supports
HTTP/2!

 The other reason why HTTP/2 may not improve sites is if other performance
problems far eclipse the issues due to HTTP/1. Many websites have massive print-
quality images, which take a long time to download. Other websites load far too much
JavaScript, which takes time to download (HTTP/2 may be able to help) and process
(HTTP/2 won’t help). Websites that are slow even after loading or that suffer from
jank (when the browser struggles to keep up with the user’s scrolling around the web-
site) aren’t improved by HTTP/2, which looks only at the networking side of perfor-
mance. Other, mostly edge cases also make HTTP/2 slower in certain instances of
high packet loss, which I discuss in chapter 9.

 Having said all that, I strongly believe that HTTP/2 will lead to more-performant
websites and reduce the need to use some of the complicated workarounds that web-
site owners have had to use up until now. At the same time, HTTP/2 advocates must
set expectations as to what HTTP/2 can solve and what it can’t; otherwise, people will
only be disappointed when they move their sites to HTTP/2 and don’t immediately
see a huge performance increase. At this writing, we’re probably at the peak of
inflated expectations (for those who are familiar with the Gartner hype cycle),25 and
the expectation that a new technology will solve all problems is common before reality
sets in. Sites need to understand their own performance problems, and HTTP/1
bottlenecks are only one part of those performance problems. In my experience, how-
ever, typical websites will see good improvement from moving to HTTP/2, and it will
be extremely rare (though not impossible) for HTTP/2 to be slower than HTTP/1.
One example would be a bandwidth-bound website (such as a site with many print-
quality images), which may be slower under HTTP/2 if the natural ordering,
enforced by the limited number of connections in HTTP/1.1, resulted in critical
resources being downloaded faster. One graphic-design company published an inter-
esting example,26 but even this example can be made faster under HTTP/2 with the
right tuning, as discussed in chapter 7.

25 https://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
26 https://99designs.ie/tech-blog/blog/2016/07/14/real-world-http-2-400gb-of-images-per-day/

www.EBooksWorld.ir

64 CHAPTER 2 The road to HTTP/2
 To return to real-world examples, I took a copy of Amazon’s website, altered all ref-
erences to make them local references, loaded the copy over HTTP/1 and HTTP/2
(both over HTTPS), and measured the different load times with the typical results
shown in table 2.2.

This table introduces a few terms that are common in web performance circles:

 Load time is the time it takes for the page to send the onload event—typically,
after all CSS and blocking JavaScript are loaded.

 First byte is how long it takes to get the first response from the website. Usually,
this response is the first real response, ignoring any redirects.

 Start render is when the page starts painting. This metric is a key performance
metric, as users are likely to give up on a website if it doesn’t give a visual update
that it’s loading the website.

 Visually complete is when the page stops changing, often long after load time, if
asynchronous JavaScript is still changing the page after the initial onload time.

 Speed index is a WebPagetest calculation that indicates the average time for each
part of the web page to be loaded, in milliseconds.27

Most of these metrics show good improvement with HTTP/2. First-byte time has wors-
ened slightly, but repeating the tests showed the opposite to be true for some tests, so
this result looks to be within the margin of error.

 I admit, however, that these improvements are somewhat artificial because I
haven’t implemented the site exactly as Amazon did. I used only one domain (so no
domain sharding occurred) and saved each asset as a static file rather than the
dynamically generated content, as Amazon would do, which might be subject to
other delays. Nonetheless, these limitations occurred in both the HTTP/1 and
HTTP/2 versions of the test, so within these limitations, you can see clear improve-
ments with HTTP/2.

 Comparing the waterfall diagrams between the two loads in figures 2.22 and 2.23
shows the expected improvements under HTTP/2: no additional connections and
less of a stepped waterfall load at the beginning, when many resources are needed.

Table 2.2 Improvements HTTP/2 might give Amazon

Protocol Load time First byte Start render Visually complete Speed index

HTTP/1 2.616 0.409s 1.492s 2.900s 1692

HTTP/2 2.337 0.421s 1.275s 2.600s 1317

Difference 11% -3% 15% 10% 22%

27 https://sites.google.com/a/web pagetest.org/docs/using-web pagetest/metrics/speed-index

www.EBooksWorld.ir

65What HTTP/2 means for web performance
Figure 2.22 Loading a copy of Amazon’s home page over HTTP/1

www.EBooksWorld.ir

66 CHAPTER 2 The road to HTTP/2
Figure 2.23 Loading a copy of amazon.com’s home page over HTTP/2

www.EBooksWorld.ir

67What HTTP/2 means for web performance
No code has been changed on the website between the two request types; this result is
simply the improvement due to HTTP/2. There’s still a waterfall aspect to the loading
of the site under HTTP/2 due to the dependent nature of web technologies: web
pages load CSS, which loads images, for example. But less time is wasted setting up
connections and queues, so the waterfall effect due to HTTP constraints is gone.
The numbers may seem to be small, but a 22% improvement is a huge gain, espe-
cially considering that this improvement didn’t require any changes beyond the web
server itself.

 Sites that are truly optimized for HTTP/2 and that use some of the new features
available within HTTP/2 (which I cover later in this book) should see much bigger
improvements. At the moment, we have 20 years of experience in optimizing sites
under HTTP/1 but almost no experience optimizing for HTTP/2.

 I’m using Amazon as an example of a well-known website that (when I wrote this
chapter) hadn’t yet moved to HTTP/2 and was highly (though not perfectly!) opti-
mized for HTTP/1. To be clear, I’m not saying that Amazon is badly coded or not per-
formant; I’m showing the performance improvements that HTTP/2 can potentially
give a website immediately, and, perhaps more importantly, the effort that can be
saved by not having to do the HTTP/1.1 workarounds to get great performance.

 Since I originally wrote this chapter, Amazon has moved to HTTP/2, which has
shown some similar results. The point, however, is to see Amazon as an example of a
real-world, complicated website that has already implemented some HTTP/1 perfor-
mance optimizations but still can improve dramatically with HTTP/2.

2.6.3 Performance workarounds for HTTP/1.1 as potential antipatterns

Because HTTP/2 fixed the performance problems in HTTP/1.1, in theory, there
should be no need to deploy the performance workarounds discussed in this chapter
anymore. In fact, many people believe that these workarounds are becoming antipat-
terns in the HTTP/2 world, because they could prevent you from getting the full ben-
efits of HTTP/2. The benefits of a single TCP connection to load a website, for
example, are negated if the website owner uses domain sharding and therefore forces
several connections (though I discuss connection coalescing, which is designed to
address this problem, in chapter 6). HTTP/2 makes it much simpler to create a per-
formant website by default.

 The reality is never that simple, though, and as I state in subsequent chapters (par-
ticularly chapter 6), it may be too soon to drop these techniques completely until
HTTP/2 gets more bedded in. On the client side, some users will still be using
HTTP/1.1 despite strong browser support. They may be using older browsers or con-
necting via a proxy that doesn’t yet support HTTP/2 (including antivirus scanners
and corporate proxies).

 Additionally, on both the client and server sides, implementations are still changing
while people learn how best to use this new protocol. For 20 years after HTTP/1.1 was
launched, a thriving web performance optimization industry grew, teaching developers

www.EBooksWorld.ir

68 CHAPTER 2 The road to HTTP/2
how best to optimize their websites for the HTTP protocol. Although I hope that
HTTP/2 won’t require as much web optimization as HTTP/1.1 did, and it should give
most of the same performance benefits those optimizations give under HTTP/1.1
without any effort, developers are still getting used to this new protocol, and undoubt-
edly, some best practices and techniques will require learning.

 By now, you’re presumably eager to get HTTP/2 up and running. In chapter 3, I
show you how to do this. I return to performance optimization later to show how you
can measure improvements and best use HTTP/2 to your advantage. This chapter has
given you a taste of what HTTP/2 can bring to the web, and I hope that it makes you
eager to understand how you can deploy it on your website.

Summary
 HTTP/1.1 has some fundamental performance problems, particularly with fetch-

ing multiple resources.
 Workarounds exist for these performance problems (multiple connections,

sharding, spriting, and so on), but they have their own downsides.
 Performance issues are easy to see in waterfall diagrams that can be generated

by tools such as WebPagetest.
 SDPY was designed to address these performance issues.
 HTTP/2 is the standardized version of SPDY.
 Not all performance problems can be solved by HTTP/2.

www.EBooksWorld.ir

Upgrading to HTTP/2
In the first two chapters, I introduced HTTP and showed where it fits on the web
today; then I explained why HTTP/2 was a necessary upgrade that should be faster
than HTTP/1 for most sites. Now it’s time to get HTTP/2 working on your site so
that you can see how much it will benefit you.

3.1 HTTP/2 support
HTTP/2 was formally approved as an internet standard in May 2015, so it’s still a
relatively recent technology. As with all new technologies, implementers must
decide when is the right time to embrace. Implement too soon, and the technology
will be considered to be bleeding-edge and risky to implement, as the technology
is likely to change considerably and may even be dropped if it turns out to be

This chapter covers
 HTTP/2 support in browsers and servers

 Different options to enable HTTP/2 for your
website

 Reverse proxies and CDNs and how they affect
HTTP/2

 Troubleshooting why HTTP/2 isn’t being used
69

www.EBooksWorld.ir

70 CHAPTER 3 Upgrading to HTTP/2
unsuccessful. Additionally, the ability to use the technology will be hampered by other
parties that don’t support it, meaning that there’s potentially little to gain from being
one of the first movers. On the flip side, the first movers prove the technology and
pave the way for it to go mainstream.

 Luckily, for the most part HTTP/2 doesn’t fit into the usual technology cycle,
because it was proved in real life in its earlier, nonstandardized incarnation as SPDY
(as discussed in chapter 2). At this writing, more than 30% of websites already use
HTTP/2, according to w3tech.com.1 This figure will likely have increased further by
the time you read this book. HTTP/2 is already proven and is already in use on many
sites. Whether you can use a new web technology on your site comes down to three
considerations:

 Do web browsers support the technology?
 Does your infrastructure support it?
 Is a robust fallback available if the technology isn’t supported?

On the whole, HTTP/2 fares well in all categories. It has good support in nearly all
browser and server software, and a seamless fallback to HTTP/1.1 is available if
HTTP/2 isn’t supported. A few subtleties and nuances make this seemingly strong
support less clear, however.

3.1.1 HTTP/2 support on the browser side

HTTP/2 support on the browser side is strong. Nearly every modern browser supports
it, as shown by the caniuse.com page for HTTP/22 (figure 3.1).

 Android was the last major platform to add support in its native browser for the
Western world, but the UC browser (which is popular in China, India, Indonesia, and
other Asian countries) still doesn’t support HTTP/2 at this writing. The Opera Mini
browser renders the page server side, so the page is served from Opera’s servers and
can mostly be ignored for this discussion.

 Switching to Usage Relative view, as shown in figure 3.2, changes the size of each
box relative to the percentage of users of that version. This figure illustrates the strong
use of the UC browser (version 11.8 at this writing), which is the main holdout on
HTTP/2 at this time.

 Support isn’t universal in browsers yet, but is strong, at 83.21% of global browser
use at this writing, so it will only improve in time. Additionally, if you’re primarily serv-
ing users in one country, caniuse.com allows you to see statistics per country to give
you even more accurate statistics on your user base (which may not use the UC
browser much). These statistics have a few important subtleties, however.

1 https://w3techs.com/technologies/details/ce-http2/all/all
2 https://caniuse.com/#feat=http2

www.EBooksWorld.ir

71HTTP/2 support
Figure 3.1 caniuse.com page for HTTP/2

Figure 3.2 caniuse.com Usage Relative page for HTTP/2

www.EBooksWorld.ir

72 CHAPTER 3 Upgrading to HTTP/2
HTTP/2 AND HTTPS FOR BROWSERS

The little 2 by each browser that supports HTTP/2 in the preceding figures is
explained at the bottom as “Only supports HTTP2 over TLS (https),” so websites that
don’t use HTTPS can’t benefit from HTTP/2. A similar restriction was in place for
SPDY, and this restriction was discussed at length when HTTP/2 was standardized,
with many parties pushing for HTTPS to be mandated as part of the specification. In
the end, this requirement was left out of the formal specification of HTTP/2, but all
browser vendors have stated that they’ll support only HTTP/2 over HTTPS, making it
the de facto standard. Demanding HTTPS will undoubtedly upset owners of HTTP-
only sites, but there are two good reasons for this demand.

 The first reason is purely practical. Using HTTP/2 only through HTTPS means
that it’s less likely there will be compatibility issues. Many HTTP-aware pieces of infra-
structure on the internet wouldn’t know how to handle HTTP/2 messages until
they’re upgraded. By wrapping the messages in HTTPS, you hide the HTTP messages
themselves and therefore prevent compatibility issues. (An HTTPS message can be
read only by the receiver, although I discuss the special case of intercepting proxies in
the next section.)

 The second reason is more ideological in nature. Many browser vendors (and oth-
ers, including me) strongly believe in moving away from unencrypted HTTP and fur-
ther believe that all websites should move to HTTPS. Therefore, newer features are
often restricted to HTTPS as a form of encouraging that move.

 HTTPS adds security, privacy, and integrity to communications with websites.
These features are no longer important only for e-commerce sites, where payment
details need to be protected, but should be important for all sites.3 Search terms and
the pages you’re looking at contain personal data that could be sensitive. A sign-up
form asking for your email address to register interest is collecting private informa-
tion, so it should be secured. Although intercepting and altering data may sound
unlikely for a blog, for example, data providers such as mobile operators and airplane
Wi-Fi operators regularly inject advertisements if users are browsing the internet
through them and HTTPS isn’t used on the site to prevent this situation. More mali-
cious parties can inject more dangerous content, such as crypto-currency mining
JavaScript code or malware.

 It will be harder for website owners to avoid HTTPS, and HTTP/2 requiring it is
another reason to move to it.

 Even if you have HTTPS on your site, you may still run into problems. HTTP/2
requires strong HTTPS. The little 4 by some of the browsers (Chrome, Firefox, and
Opera) means “Only supports HTTP2 if servers support protocol negotiation via
ALPN.” I discuss this topic in section 3.1.2, but for now, be aware that Application Layer
Protocol Negotiation (ALPN) is supported only by newer HTTPS servers and that cer-
tain browsers won’t use HTTP/2 if ALPN isn’t available. Additionally, many browsers

3 https://tools.ietf.org/html/rfc7258

www.EBooksWorld.ir

73HTTP/2 support
require certain newer, more secure cipher suites before they use HTTP/2.4 Again, I
discuss this topic in section 3.1.2.

INTERCEPTING PROXIES

To be able to use HTTP/2, both the browser and the server must support HTTP/2. If
users use a proxy that effectively breaks the HTTP connection in two, however, that
might prevent the use of HTTP/2 if the proxy doesn’t support HTTP/2.

 In many corporate environments, it’s common to use a proxy and restrict direct
internet access. This allows scanning for threats, and prevents access to certain sites
(such as personal email accounts). Similarly, for the home user, many antivirus prod-
ucts create a proxy through which web traffic flows for scanning purposes.

 For HTTPS traffic (as required by HTTP/2 for all web browsers, for example),
this situation is a problem, as these proxies can’t read this encrypted traffic. There-
fore, when you use a proxy that needs to read HTTPS traffic, your browser is config-
ured to create one HTTPS connection to the proxy, and the proxy creates a separate
HTTPS connection to the real website. So your web browser is making an HTTPS
connection only to the proxy and sends a fake HTTPS certificate to the browser, pre-
tending to be the real site. Normally, this condition would be a big warning sign in
browsers, as part of the point of HTTPS is to validate the authenticity of the HTTPS
certificate issuer. Installing these proxies, however, involves setting up the proxy soft-
ware as a recognized certificate issuer on that computer, so the web browser will
accept these fake certificates.

 Splitting the traffic into two parts allows the proxy to read the traffic, but, unfortu-
nately, your browser is no longer connecting directly to the website, so your ability to
use HTTP/2 depends on whether the proxy supports HTTP/2. If the proxy doesn’t
support HTTP/2, it effectively downgrades your connection to HTTP/1.1. In addition
to not benefiting from HTTP/2, you may be confused about why the downgrade is
happening when both browser and server seem to support HTTP/2 (see section 3.3).

 Many people in the security industry think that intercepting proxies cause more
problems than they solve, because browser makers generally are strong and proactive
about ensuring good HTTPS connections, and breaking this connection in two means
that the browser can no longer verify the final connection. Regardless, proxies are being
used and need to be considered in trying to understand HTTP/2 support. Studies have
shown anywhere from 4% to 9% of internet traffic is being intercepted this way, with
58% of that traffic being intercepted by antivirus software and 35% being intercepted by
corporate proxies.5 The easiest way to see whether the computer you’re using is using an
intercepting proxy is to view the HTTPS certificate and see whether it was issued by a
real certificate authority (there are many, so this may not be obvious) or a local piece of
software. Figure 3.3 shows the difference in Internet Explorer when the Avast virus scan-
ner is creating the certificates.

4 https://tools.ietf.org/html/rfc7540#appendix-A
5 https://jhalderm.com/pub/papers/interception-ndss17.pdf

www.EBooksWorld.ir

74 CHAPTER 3 Upgrading to HTTP/2
On the positive side, intercepting proxies usually are used in home or corporate envi-
ronments where the connection is typically fast anyway and HTTP/2 is less beneficial.
It’s much rarer to intercept mobile traffic this way, and low-latency networks (such as
mobile) are some of the primary beneficiaries of improvements in HTTP/2.

SUMMARY OF BROWSER SUPPORT OF HTTP/2
As this section has shown, browser support for HTTP/2 is generally strong, and the
advent of evergreen browsers that automatically update (see the sidebar below) has
meant that the rollout of HTTP/2 happened pretty seamlessly on the browser side.
There are several reasons why HTTP/2 may not be used, however, including the need
for strong HTTPS setup on the server side and the use of intercepting proxies.

 The requirement for HTTPS, and especially the strict nature of the type of
HTTPS, is an added complication in enabling HTTP/2 and does cause confusion.
This complication mostly requires the server to be set up correctly, however, as I dis-
cuss in section 3.1.2. The web is moving toward HTTPS, and the penalties for unen-
crypted HTTP sites will continue to grow, with more visible warnings and fewer
features available. At this writing, more than 75% of internet traffic is served over
HTTPS.6 Although that figure is undoubtedly skewed by high use of several large sites,
the reality is that if you run a website that doesn’t use HTTPS, you should be making
plans to move to it as soon as possible.

6 https://letsencrypt.org/stats/

Evergreen browsers
Browsers such as Chrome and Firefox update silently in the background without
prompting the user and are known as evergreen browsers. As a result, users of these
browsers are likely to be running the latest versions of these browsers, which have
HTTP/2 support.

This situation was not always common. Web development history is full of frustrated
developers having to detect browser versions and implement hacks if some users
were still using Internet Explorer 5 or the like.

Certificate issuer

Figure 3.3 Viewing the HTTPS certificate for a direct connection with Google and one that’s being
intercepted by an antivirus product

www.EBooksWorld.ir

75HTTP/2 support
3.1.2 HTTP/2 support for servers

Server support of HTTP/2 has lagged behind browser support, but now nearly all
servers have added support. The HTTP/2 GitHub site has a page tracking HTTP/2
implementations on both the client and the server side,7 which allows a quick check of
which servers support HTTP/2. According to Netcraft,8 the four most popular web
servers, which account for more than 80% of active internet sites, use Apache, nginx,
Google, or Microsoft IIS, all of which support HTTP/2.

 The problem on the server side lies not in whether the latest version of server soft-
ware supports HTTP/2, but in whether that support is in the version that websites are
running. Most implementations don’t update automatically or as easily as browsers do,
so servers are often running older versions from before HTTP/2 support was added.
Often, the version is tied to the operating system (Microsoft IIS support was added
only in IIS 10.0 and Windows Server 2016, for example) or to that operating system’s
package manager (such as yum for Red Hat/CentOS/Fedora, which hasn’t installed a
version of Apache or nginx with HTTP/2 support at this writing).

 Although it’s often possible to upgrade the version of your server software, the pro-
cess may be complicated. On Linux-based systems, upgrading may involve downloading
source code and compiling it, which requires some level of skill and understanding, as
well as an ongoing commitment to keep the software up-to-date or at least to apply
security patches. The benefit of letting the operating system or package manager han-
dle this process is that staying on top of security issues becomes a simple matter of run-
ning updates periodically (or even automatically). By stepping outside that process,

The picture isn’t quite as rosy as it seems, however. Although Chrome, Firefox, and
Opera on the desktop do a pretty good job of staying evergreen, the other browsers
and platforms don’t autoupgrade as seamlessly. Safari upgrades are often linked to
the underlying operating system, in particular on mobile devices, and although the rate
of uptake of the latest version of iOS is always fast, major upgrades are released only
annually, and features such as HTTP/2 usually are part of major upgrades. Android
moved to the evergreen Webview Chromium from Android 5 (Lollipop), but often still
requires users to choose to install upgrades via the Play Store. Edge is another appar-
ent evergreen browser that doesn’t live up to its name, due to being tied to operating-
system upgrades,a though Microsoft has recently committed to improving thisb.

Finally, some people switch off automatic upgrades. Corporate environments like
control of when updates roll out, so many of them switch off automatic updates and
then don’t make as much time as they should to roll out the upgrades manually.

a https://www.scirra.com/blog/173/just-how-evergreen-is-microsoft-edge
b https://blogs.windows.com/windowsexperience/2018/12/06/microsoft-edge-making-the-

web-better-through-more-open-source-collaboration/

7 https://github.com/http2/http2-spec/wiki/Implementations
8 https://news.netcraft.com/archives/category/web-server-survey/

www.EBooksWorld.ir

76 CHAPTER 3 Upgrading to HTTP/2
you take on more work or introduce more risk, or both. Depending on your operating
system, it may be possible to use a third-party repository (repo) that provides HTTP/2
versions of the software, but then you’re trusting that third party rather than the offi-
cial repos.

HTTPS LIBRARIES AND SUPPORT

One of the biggest issues on the server side, particularly on the Linux side, is the strict
HTTPS requirements that I mentioned earlier in this chapter. Most web servers delegate
the SSL/TLS intricacies needed for HTTPS to a separate library—usually OpenSSL,
although variants exist, including LibreSSL and BoringSSL. This cryptographic library
is often part of the operating system, and although upgrading the web server can be
tricky, upgrading the SSL/TLS libraries is often even more difficult, because it poten-
tially affects all other software on the server.

 In section 3.1.1, you saw that Chrome and Opera support HTTP/2 only over the
ALPN extension to SSL/TLS rather than the older NPN (Next Protocol Negotiation)
extension. ALPN, like NPN before it, allows the web server to state which application
protocols the server supports as part of the HTTPS negotiation; I look at this topic in
more detail in chapter 4. The problem is that ALPN support is included only in recent
versions of OpenSSL (1.0.2 and later) and isn’t available as part of standard builds on
many platforms. RedHat and CentOS added support for OpenSSL 1.0.2 only in
August and September 2017, respectively, but the packaged versions of web-server
software such as Apache are often compiled against the older 1.0.1 version, which
doesn’t support ALPN, so doesn’t allow HTTP/2 for Chrome and Opera. Similarly,
Ubuntu added OpenSSL support in version 16, not in the widely used version 14, and
Debian didn’t add OpenSSL with ALPN support until version 9 (Stretch). Even if
there is a modern OpenSSL and the web server is compiled against it, the HTTP/2
code may not be included by default, as summarized in table 3.1.

Table 3.1 ALPN support in various Linux operating systems

Operating system
and version

ALPN in default
OpenSSL

ALPN in default
Apache/nginx

HTTP/2 in default
Apache/nginx

RHEL/CentOS < 7.4 N (1.0.1) N N

RHEL/CentOS 7.4 & 7.5 Y (1.0.2) N/Y N/Y

Ubuntu 14.04 LTS N (1.0.1) N N

Ubuntu 16.04 LTS Y (1.0.2) Y N/Y

Ubuntu 18.04 LTS Y (1.1.0) Y Y

Debian 7 (“Wheezy”) N (1.0.1) N N

Debian 8 (“Jessie”) N (1.0.1) N N

Debian 9 (“Stretch”) Y (1.1.0) Y Y

www.EBooksWorld.ir

77HTTP/2 support
As you can see in table 3.1, of the common Linux distributions, only Ubuntu 18.04
and Debian 9 give you HTTP/2 out of the box for Apache (though it needs to be
turned on during web-server configuration). For RHEL/CentOS, Apache needs to be
installed from source or from another nondefault repo if you want to use HTTP/2.

 For nginx, HTTP/2 can be installed via the nginx repo,9 so HTTP/2 is usually con-
figured for nginx as long as you’re using the latest version, but it still depends on the
underlying OpenSSL version.

SUMMARY OF SERVER SUPPORT

Although server-side support of HTTP/2 is theoretically as good as browser-side sup-
port, the reality is that for some time, most people will be running older versions of
server software that don’t support HTTP/2. These versions need to be upgraded to
support HTTP/2, and the upgrades may be simple or complicated. This situation will
change as newer versions of operating systems become the norm, but it’s a challenge
to HTTP/2 adoption. The good news is that upgrading should be in the control of
website owners, who can take on the hassle of upgrading their software to HTTP/2 on
the server side, and when they do, they can assume that most client-side software will
support it. If support on the server side were strong and support on the client side
were relatively weak, website owners could do little but wait until their users upgraded.
Should you not want to or be able to upgrade your web-server software, other imple-
mentations are possible, as I discuss in section 3.2.

3.1.3 Fallback when HTTP/2 isn’t supported

The other good news is that when HTTP/2 isn’t supported, websites still work, as they
fall back to using HTTP/1.1. HTTP/1.1 is a long way from being disabled (if it ever
is). In theory, there are no real downsides to enabling HTTP/2 if you can, in terms of
supportability.

 The situation becomes interesting, however, when you want to start taking
advantage of HTTP/2 features and changing your website, which may disadvantage
HTTP/1.1 users. The site will still work, but it may be slower if you don’t shard, com-
bine, and inline assets. How much of an issue this situation is for you depends on the
amount of HTTP/1.1 traffic you have. I return to this topic in chapter 6.

 More difficult to measure are implementation issues on the client or server side.
HTTP/2 is still relatively young, and despite being actively used in real life, it’s still in
the early stages of adoption. Undoubtedly, bugs will be found in implementations that
may affect the loading of your website over HTTP/2. In my experience so far, these
bugs usually result in HTTP/2’s not being as fast as you expect rather than causing
any real harm. But you should test any major upgrade (such as HTTP/2) thoroughly
before switching it on for your production website.

9 http://nginx.org/en/download.html

www.EBooksWorld.ir

78 CHAPTER 3 Upgrading to HTTP/2
3.2 Ways to enable HTTP/2 for your website
The most obvious way to move to HTTP/2 is to enable HTTP/2 on your web server,
but this process may require an upgrade. Enabling HTTP/2 on your web server isn’t
the only way to enable it, however, and you may want to consider other options. These
options involve adding an infrastructure in front of your web server: another piece of
software or a service such as a content delivery network (CDN) to handle the HTTP/2
part of the connection. Which method is right for you depends on several factors,
including whether your web server supports HTTP/2, how difficult it is to turn on
HTTP/2 support, and whether you want to complicate your environment by imple-
menting some of the other options.

 After you enable HTTP/2, you may notice that your traffic is still using HTTP/1.1,
so in section 3.3, I discuss troubleshooting. Skip to that section if you’ve already imple-
mented HTTP/2 but are struggling to get HTTP/2 working in your environment.

3.2.1 HTTP/2 on your web server

Enabling HTTP/2 on your web server allows HTTP/2-aware clients to use this new
protocol. Figure 3.4 shows this simple setup.

The main issue with this option is that it may not be readily available to you. As dis-
cussed in section 3.1.2, you may have to upgrade your web server to a new version,
which may require upgrading the operating system of the server on which your web
server runs. Or perhaps your web server software doesn’t support HTTP/2 even in the
latest version. Table 3.2 shows the versions of some common web and application serv-
ers in which HTTP/2 support was added.

Table 3.2 When HTTP/2 support was added to popular web servers

Web server Version HTTP/2 added

Apache HTTPD 2.4.17 (though marked as experimental until 2.4.26)

IIS 10.0

Jetty 9.3

Netty 4.1

HTTP/2

Web browser The internet Web server

Figure 3.4 HTTP/2 on your web server

www.EBooksWorld.ir

79Ways to enable HTTP/2 for your website
Linux software typically is installed through package managers (such as yum and apt-
get) with a set of official software repos, which allows ease of installation and patch-
ing. Many of these environments prioritize stability over new features, and with
HTTP/2 being relatively new (at least in server release terms), the default versions of
the web servers often don’t include HTTP/2 support. If your operating system doesn’t
provide a straightforward way of enabling HTTP/2 on your preferred web server
(many do not), and you want to enable new features such as HTTP/2 on your server,
you’re left with little choice but to install applications from alternative locations. This
decision isn’t without risk, and you should understand the consequences before ven-
turing down this path (see the sidebar below).

nginx 1.9.5

Node.JS 8.4.0 (though not enabled by default until 9.0 and still marked as experimental
until 10.10)

Tomcat 8.5

Risks of installing applications from alternative locations
Installing from an alternative location means downloading a prepackaged version of
your web server directly from another site, adding a repository from which the pack-
age manager can download the package, or installing from source code.

Downloading a prebuilt package from a third party means that you’re trusting this pro-
vider of your software for a key part of your infrastructure and one that runs as root
(as web servers usually do). Additionally, many of these packages statically compile
against a version of OpenSSL, so if a vulnerability is discovered in OpenSSL, you
need to update your web server to include any fix. Many companies aren’t comfort-
able with either of these restrictions. If you’re comfortable with using a third party’s
prebuilt package, CodeIta is a site that provides a repo with prebuilt packages of
Apache and nginx and gives good instructions on how to install them.

Another alternative is to run your web server in a container such as Docker. Images
of containers with complied versions of common web servers are available. You have
the same issue of putting your trust in the provider of that container, but you run the
application in its own container, which may have restricted access to the rest of the
server. As container software is a topic in itself, I don’t discuss it further in this book.

Those who prefer not to trust a third party can install the software from the original
source code. The source code should be downloaded from a reputable source (ide-
ally, the original vendor) and verified after download, either by checking the download
against a signature or by calculating and checking a hash of the download.

Even if you’re installing from the vendor’s official site, you’re managing this software
outside the package manager tools, so you won’t benefit from security patches that

Table 3.2 When HTTP/2 support was added to popular web servers (continued)

Web server Version HTTP/2 added

www.EBooksWorld.ir

80 CHAPTER 3 Upgrading to HTTP/2
The appendix provides instructions on installing and upgrading some common web
servers and platforms to enable HTTP/2 support. Depending on your operating sys-
tem and web server users, this process can be quite complicated. As time goes by, this
process will become easier as the default installations are upgraded to versions that
have HTTP/2 support; then enabling HTTP/2 support should involve a simple con-
figuration change, or the protocol may be enabled by default. For the next few years,
however, many people will struggle to enable HTTP/2 support in their web-server
software.

 Other options are available, however, as you’ll see in the next two sections. In cer-
tain setups, with a load balancer in front of your web server, for example, enabling
HTTP/2 on your web server may not provide HTTP/2 to your users if the load bal-
ancer itself doesn’t support HTTP/2.

 If you’re looking to set up a simple web server to experiment with HTTP/2 and
perhaps to follow some of the examples in this book, I recommend that you choose
the web server you’re most comfortable with. If you have no particular preference,
Apache is the most fully featured of the popular web servers due to its availability on
many platforms and also to its support of HTTP/2 push and HTTP/2 proxy (both of
which I cover later in this book).

3.2.2 HTTP/2 with a reverse proxy

Another option for implementing HTTP/2 is putting a reverse proxy server in front
of your main web server that does speak HTTP/2; then it can translate requests in
HTTP/1.1 and proxy them to your existing web server, as shown in figure 3.5.

 Reverse proxies, as the name suggests, do the opposite of standard intercepting
proxies. A standard proxy shields the network from the outside world and provides a

Risks of installing applications from alternative locations (continued)
the package manager makes easy to install; you need to take on the responsibility
of upgrading manually yourself. RHEL 7 and CentOS 7, for example, supply Apache
2.4.6 in the standard repo. This version is not the original Apache 2.4.6, however;
it’s continually patched by Red Hat to include all the relevant security updates since
that version. By running a version outside a package manager, you won’t get these
security patches and need to upgrade the software yourself to get any security fixes;
otherwise, you risk running insecure software that’s vulnerable to attack.

Yet another option is to use an alternative semiofficial repo. Many operating system
vendors provide an alternative software collection repo (such as Red Hat Software
Collections), or the vendor may supply an official repo (as nginx does). The advan-
tages are ease of installation and continued ease of patching.

Ultimately, you need to decide which method you’re most comfortable with when it
comes to installing third-party software on your servers.

a https://codeit.guru/en_US/

www.EBooksWorld.ir

81Ways to enable HTTP/2 for your website
path for outbound traffic that needs to talk to the internet. A reverse proxy handles
incoming traffic from the internet, allowing access to servers that aren’t directly avail-
able to the outside world. Reverse proxies are already common and are used primarily
for one of two reasons:

 To act as a load balancer
 To offload functionality such as HTTPS or HTTP/2

A load balancer sits in front of at least two web servers and sends traffic to either web
server, depending how it’s configured (live-live or live-standby). Live-live load balanc-
ers use an algorithm to decide how to split the traffic (based on the source IP address
or by round robin, for example). This setup is shown in figure 3.6.

If you already have this setup, it may be possible to enable HTTP/2 on the load bal-
ancer and not have to enable it on your web servers at all. In fact, as I’ve already men-
tioned, enabling HTTP/2 on the web server may have no effect if all traffic speaks to
the load balancer as the first point of contact. Some of the load-balancer products (such

HTTP/2

Web browser The internet Web serverReverse proxy

HTTP/1

Figure 3.5 Implementing HTTP/2 with a reverse proxy

HTTP/2

Web browser The internet

Web server 1

Load balancing

reverse proxy

Web server 2

Web servers

Figure 3.6 Load-balancing reverse proxy

www.EBooksWorld.ir

82 CHAPTER 3 Upgrading to HTTP/2
as F5, Citrix Netscaler, and HAProxy) already support HTTP/2, and those that don’t
are expected to add support soon.

Even without using a reverse proxy for a load balancer, it’s quite common (and, in my
opinion, recommended) to have a web server such as Apache or nginx in front of
backend application servers such as Tomcat or Node.js and for the web server to proxy
pass some (or all) of the requests to the backend server, as shown in figure 3.7.

 This technique has several advantages, the main one being that you offload func-
tionality and load to the web server, such as serving static assets (images, CSS files,
JavaScript libraries, and so on) from the web server, offloading HTTPS, and—yes—
offloading HTTP/2. By lightening the load for the application server, you allow it to
concentrate on what it does best: serving dynamic assets that take a bit of processing
and possibly database lookups to decide what to return.

 This option also has security benefits, as the first point of contact is the web server,
which may be able to prevent bad requests from reaching the more delicate application

Do you need to speak HTTP/2 all the way through?
When you implement HTTP/2 on the reverse proxy, the HTTP/2 connection is termi-
nated at the reverse proxy, and from then on, a separate connection (possibly using
HTTP/1.1) is used. This process is similar to terminating HTTPS at a reverse proxy
and then talking HTTP to the rest of your infrastructure, which is a common use case
to ease the configuration of HTTPS (certificates need to be set up and managed only
at the entry point) and because of the resources HTTPS required in the past (though
these requirements are negligible nowadays with the increase in compute power).

So do you need to speak HTTP/2 all the way through, and what do you lose by making
backend connections over HTTP/1.1?

The primary benefit of HTTP/2 is the speed improvements over high-latency, low-
bandwidth connections, such as end users to your edge server (reverse proxy in this
case). Traffic from your reverse proxy to the rest of your web infrastructure will likely
have to travel short distances (often to the same data center, if not the same
machine) over low-latency, high-bandwidth network links, so the performance prob-
lems of HTTP/1.1 are often less of an issue.

The use of a single connection for HTTP/2 traffic is also less of a benefit from reverse
proxies to real servers because they’re not limited to the six connections that brows-
ers set. There’s even some concern that using a single connection may cause per-
formance issues, depending on how this connection is implemented on the reverse
proxy and the destination server. nginx has stated that it will not implement HTTP/2
for proxy pass connections partly for this reason.a

Therefore, as with HTTPS, there’s potentially no need to talk HTTP/2 all the way through
your infrastructure for basic HTTP/2 support. Even HTTP/2-only features such as
HTTP/2 push can still be implemented over this setup, as I discuss in chapter 5.

a http://mailman.nginx.org/pipermail/nginx/2015-December/049445.html

www.EBooksWorld.ir

83Ways to enable HTTP/2 for your website
server and definitely any backend database. Therefore, if you’re using an application
server on which it’s difficult to enable HTTP/2, it may be possible (and even recom-
mended) to get HTTP/2 support by placing another web server that supports HTTP/2
in front of it.

 A reverse proxy can also be an effective way of testing HTTP/2 and its effect on
your website. Simply host a reverse proxy close to your server under a different server
name (http2.example.com or test.example.com) and proxy requests back to the main
web server, using HTTP/1.1 over the fast local connection, as shown in figure 3.8.

HTTP/2

Web browser The internet Application server

(for example,
Tomcat)

HTTP/1.1

Database server

(for example,
Oracle)

Static files

(Images, CSS,

JavaScript)

Code for dynamic content

(JSP, Servlets,

JavaScript)

Web server

(for example,
Apache)

Figure 3.7 Web server in front of application server/database server

HTTP/1.1

Web browser The internet Web server

(https://www.example.com)

Web browser

HTTP/2

The internet

HTTP/1.1

Temporary reverse proxy

(https://http2.example.com)

Figure 3.8 Adding a temporary reverse proxy to test HTTP/2

www.EBooksWorld.ir

84 CHAPTER 3 Upgrading to HTTP/2
You may not need a separate proxy server if your web server already supports HTTP/2
but you haven’t switched it on yet. By setting up a virtual host with HTTP/2 enabled
and a separate hostname, you can have both HTTP/1.1 and HTTP/2 sites running;
therefore, you can test HTTP/2 before enabling it on the main virtual host that your
visitors are using.

3.2.3 HTTP/2 through a CDN

A CDN is a series of servers spread around the world that act as a local point of con-
tact for your website. Visitors to your website connect to the nearest CDN server by
having different DNS entries globally. Requests are routed back to your web server
(called the origin server), and a copy may be cached in the CDN to allow for quicker
serving the next time an identical request comes in. Most CDNs already support
HTTP/2, so you can switch on HTTP/2 by using a CDN and leaving your origin
server on HTTP/1.1. This method is similar to the reverse proxy method except
that CDNs have many reverse proxies and manage this infrastructure for you. This
setup is shown in figure 3.9.

Despite adding extra infrastructure to your setup, using a CDN may be considerably
faster than connecting directly, because the local server can handle some of the con-
nection setup requests for the client (such as the initial TCP connection and HTTPS
negotiation). The benefit of having these client setup requests handled by a server
closer to the users outweighs the negatives of having an additional server hop involved
in the requests. Also, responses can be cached at each CDN server so that additional
requests are served directly by the local server and not by the origin server, saving time
for the user and load and bandwidth for the origin server.

Origin server

CDN server

HTTP/1.1

CDN server

CDN server

CDN server

HTTP/1.1

HTTP/1.1

HTTP/1.1

HTTP/2

HTTP/2

HTTP/2

HTTP/2HTTP/2

HTTP/2

HTTP/2

Figure 3.9 Enabling HTTP/2 through a CDN

www.EBooksWorld.ir

85Troubleshooting HTTP/2 setup
 CDNs are supercharged reverse proxies. CDNs were used primarily for perfor-
mance reasons before HTTP/2 came along, but now they also offer an easy upgrade
option for HTTP/2.

 A CDN can handle the HTTPS requirements necessary for HTTP/2. But if HTTPS
isn’t implemented at the origin server, web traffic will be encrypted only for some of
its journey across the internet. Although many of the reasons to use HTTPS are to mit-
igate risks at the client side (connecting to an unknown Wi-Fi network, for example,
involves risks that only HTTPS can mitigate), it’s still preferred to use HTTPS for the
full end-to-end connection. Many people say that it’s disingenuous to offload HTTPS
at a CDN while talking HTTP for the rest of the journey through the internet, because
your website visitors won’t know that their passwords are potentially traveling across
the website unsecured. But if it isn’t easy to get the strict HTTPS setup required for
HTTP/2 on your server (such as ALPN support), at least you can let the CDN handle
this process and revert to an older HTTPS configuration over HTTP/1.1 for the con-
nection to the origin server.

 CDNs offer many benefits, and ease of HTTP/2 support is yet another reason to
consider using them. CDNs were quick to implement HTTP/2, and some even offer a
free tier that provides an easy route to HTTP/2 for smaller sites. The CDN will be able
to unencrypt the traffic, however, so you must be comfortable with such a third party
having access to your traffic.

3.2.4 Implementing HTTP/2 summary

You have several ways to enable HTTP/2 for your website, depending on what infra-
structure you use to serve your web traffic. Unfortunately, the most obvious method of
implementing HTTP/2 on your web server is currently difficult and can require a lot
of manual effort for older versions. This situation will improve as the technology
becomes more common and as server software gets upgraded, but for the moment,
the process is far more painful than it should be.

 Other options exist for adding HTTP/2 support, and website owners looking to
implement HTTP/2 should be aware of them. Reverse proxies can be owned and
managed on site or as a service, such as by using a CDN. These methods can be simple
ways to implement HTTP/2 until server-side support becomes widespread in common
server distributions.

 At this point, you should be able to choose the best upgrade option to HTTP/2 for
your website and start experimenting to see what difference it makes on your website.
The rest of this book will make more sense if you have an HTTP/2-enabled server to
try the examples on, though some items can be shown with public websites.

3.3 Troubleshooting HTTP/2 setup
The easiest way to see whether HTTP/2 is being used is to look at the developer tools
in your browser. Even though HTTP/2 is seemingly enabled on the web server, many
people struggle to get HTTP/2 working due to some of the many subtleties mentioned

www.EBooksWorld.ir

86 CHAPTER 3 Upgrading to HTTP/2
throughout this chapter. Following are some of the common reasons I’ve seen since
getting involved with HTTP/2:

 HTTP/2 isn’t supported on your web server. Obviously, your server needs to support
HTTP/2. As discussed in this chapter, most of the default installations on serv-
ers currently don’t support HTTP/2. Check what version of your server soft-
ware you’re running and when HTTP/2 support was added. Please note that
installing the latest updates (such as with yum update or apt-get) alone won’t
necessarily update your web server to a version that supports HTTP/2.

 HTTP/2 isn’t enabled on your web server. Even if your web server supports HTTP/2, it
may not be enabled. Some servers (such as IIS) enable HTTP/2 support by
default. On other servers (such as Apache), HTTP support depends on the con-
figuration or build you use. ApacheHaus Windows builds enable HTTP/2 by
default, for example, but installing from source doesn’t enable it by default.
Additionally, since version 2.4.27, Apache no longer supports HTTP/2 when
using the prefork mpm.10

Also, some compile options (such as --enable-http2 for Apache and --with-
http_v2_module for nginx) are needed to allow HTTP/2 to be switched on, but
don’t switch it on by default. If HTTP/2 isn’t working, check the documenta-
tion for your web server to see how to turn it on.

 HTTPS isn’t enabled on your web server. As discussed in section 3.1.1, web browsers
support HTTP/2 only over HTTPS, so if your site is HTTP-only and not
HTTPS, you won’t be able to use HTTP/2 from browsers until you switch your
site to HTTPS.

 ALPN support isn’t enabled on your web server. ALPN is an extension to the TLS
protocol used to create the HTTPS session, which allows the server to advertise
that it supports HTTP/2. Some web browsers (Safari, Edge, and Internet
Explorer at this writing) allow you to use HTTP/2 over the older NPN as well as
the newer ALPN method. Other browsers (such as Chrome, Firefox, and Opera)
use only the newer ALPN method.

The easiest way to test ALPN support is to use an online tool such as SSL-
Labs11 (which runs a comprehensive test for HTTPS setup but takes a few min-
utes to run) or KeyCDN HTTP/2 Test12 (which is quicker, as it tests only for
HTTP/2 and ALPN support). If your web server isn’t publicly accessible, you
can’t use a web tool to test for this support and must use a command-line tool
such as OpenSSL’s s_client (assuming that your version of OpenSSL supports
ALPN):

openssl s_client -alpn h2 -connect www.example.com:443 -status

10 https://github.com/icing/mod_h2/releases/tag/v1.10.7
11 https://www.ssllabs.com/ssltest/
12 https://tools.keycdn.com/http2-test

www.EBooksWorld.ir

87Troubleshooting HTTP/2 setup
Alternatively, download the testssl tool,13 which performs most of the same tests
as SSLLabs. But it requires a version of OpenSSL that supports ALPN to fully
test for HTTP/2 support.

Similar to the web browsers, some web servers (such as Apache) use only
ALPN; others (such as nginx) use ALPN or NPN. Whether your server sup-
ports ALPN depends on the version of the TLS library you’re using. Table 3.3
shows ALPN support in common libraries. If you’re unsure what TLS library
you’re using, it’s likely that you’re on OpenSSL for Linux, LibreSSL for macOS,
or SChannel for Windows.

Even if your TLS library supports ALPN, your server software may not have
been built with that version of the TLS library. RHEL/CentOS 7.4 added
OpenSSL 1.0.2, for example, but the versions of Apache and nginx installed by
default are still built with OpenSSL 1.0.1, so they don’t have ALPN support.

Apache normally adds a line to the error log on restart, detailing the
OpenSSL version it’s running with:

[mpm_worker:notice] [pid 19678:tid 140217081968512] AH00292:
Apache/2.4.27 (Unix) OpenSSL/1.0.2k-fips configured -- resuming normal
operations

Alternatively, you can run ldd against the mod_ssl module and see what version
it links against:

$ ldd /usr/local/apache2/modules/mod_ssl.so | grep libssl
 libssl.so.10 => /lib64/libssl.so.10 (0x00007f185b829000)
$ ls -la /lib64/libssl.so.10
lrwxrwxrwx. 1 root root 16 Oct 15 16:07 /lib64/libssl.so.10 ->
libssl.so.1.0.2k

For nginx, you can use the -V option to show the build:

$ nginx -V
nginx version: nginx/1.13.6
built by gcc 4.8.5 20150623 (Red Hat 4.8.5-16) (GCC)

13 https://testssl.sh/

Table 3.3 ALPN support in common TLS libraries

TLS library Version that added ALPN support

OpenSSL 1.0.2

LibreSSL 2.5.0

SChannel (used by Microsoft applications) 8.1 / 2012 R2

GnuTLS 3.2.0

www.EBooksWorld.ir

88 CHAPTER 3 Upgrading to HTTP/2
built with OpenSSL 1.0.2k-fips 26 Jan 2017
TLS SNI support enabled
configure arguments: --with-http_ssl_module --with-http_v2_module

For other servers, refer to your support documentation.

 Strong HTTPS ciphers aren’t enabled on your web server. The HTTP/2 specification
lists several ciphers that a client must not use for an HTTP/2 connection.14

Some browsers (such as Chrome) don’t use HTTP/2 with these ciphers, so your
server must be set up with better ciphers if you want to use HTTP/2 (which at
this writing means using ECDHE GCM or POLY ciphers). Most default installa-
tions include stronger ciphers that usually are used in preference to weaker
ciphers, but if you ported old cipher configurations from a previous installa-
tion, these ciphers may not be enabled.

To check out your HTTPS cipher setup, use the SSLLabs online testing tool.
This tool can be complicated to understand initially but gives you complete
information on your HTTPS setup, including whether HTTP/2 is supported
for common clients.

The Mozilla SSL Configuration Generator15 is also a useful tool for providing
the HTTPS config necessary for common web browsers. Most sites should use
the Modern settings, though you may need to use the Intermediate settings if
you need to support older clients.

 An intercepting proxy is being used and downgrading you to HTTP/1.1. If you’re
using a proxy (in a corporate environment, for example) or antivirus software,
these elements may be downgrading your connection to HTTP/1.1 as they
intercept the HTTPS connection. I discuss this topic in section 3.1.1. Look at
the HTTPS certificate for the website to see whether it was issued by a real cer-
tificate authority.

If your website is public-facing, you can use online tools such as SSLLabs or
KeyCDN HTTP/2 Test16 to see whether your website supports HTTP/2. If so, the
problem may be a local issue for you, possibly caused by an intercepting proxy.

For virus software, it’s usually possible to turn off HTTPS interception or to
whitelist certain websites.

 An upgrade header was incorrectly forwarded. A backend server (such as Apache)
may use an Upgrade: h2 header to suggest switching to HTTP/2. If that header
is blindly forwarded by a reverse proxy, even though it doesn’t understand
HTTP/2, this header can cause problems. The browser tries to upgrade to
HTTP/2 (as the header suggests that it should) and fails because the reverse
proxy doesn’t understand HTTP/2. The reverse proxy shouldn’t forward the

14 https://httpwg.org/specs/rfc7540.html#BadCipherSuites
15 https://mozilla.github.io/server-side-tls/ssl-config-generator/
16 https://tools.keycdn.com/http2-test

www.EBooksWorld.ir

89Summary
Upgrade header in such a case. I discuss this topic further in chapter 4. Safari han-
dles this situation particularly badly, often with a nsposixerrordomain:100 error.

 HTTPS headers are invalid. Chrome returns an ERR_SPDY_PROTOCOL_ERROR mes-
sage for invalid HTTP headers (such as spaces in the header name or double
colons),17 even though it’s more forgiving of identical errors in HTTP/1.1.
Safari can return a nsposixerrordomain:100 error for the same reason.

 Cached items report the original download protocol. If you upgrade your server to
HTTP/2 and try to test it, you may still be using the cached resources if you don’t
clear the cache first. The cached items show the HTTP version that was originally
used to download the request (which may be HTTP/1.1 if they were downloaded
before the upgrade). Similarly, if the server sends a 304 Not Modified response,
the browser uses the cached resource and displays whatever protocol was used
to download it.

Summary
 HTTP/2 support on the client side is strong, with nearly all major browsers sup-

porting it.
 HTTP/2 support on the server side is available in newer versions, but, often,

these versions aren’t easy to install without a full server upgrade and/or manual
installation.

 Various options to enable HTTP/2 are available, including using third-party
infrastructure such as CDNs to provide this support.

 There are several reasons why HTTP/2 may not be used even after it has been
enabled.

17 https://www.michalspacek.com/chrome-err_spdy_protocol_error-and-an-invalid-http-header

www.EBooksWorld.ir

www.EBooksWorld.ir

Part 2

Using HTTP/2

In the first part of the book, I covered the need and motivation for a new ver-
sion of HTTP, introduced HTTP/2, and described the ways to set up HTTP/2
for your website. For many people, this information is sufficient, and most sites
should start seeing the benefits of upgrading to HTTP/2 even without making
any other changes. HTTP/2 was designed to be easy to migrate to and to give
most sites immediate benefits without requiring any changes.

 To truly benefit from all that HTTP/2 has to offer, however, it’s useful to have
a deeper understanding of the protocol and how it works. This part of the book
describes the core aspects of this protocol. Chapters 4 and 5 cover the technical
details of the protocol that allow website owners and developers to make the
most of HTTP/2. Chapter 6 takes a break from the protocol itself to discuss what
it means for web performance and what practices developers should change to
optimize for this new HTTP/2 world.

www.EBooksWorld.ir

www.EBooksWorld.ir

HTTP/2 protocol basics
This chapter covers the basics of HTTP/2 (frames, streams, and multiplexing). I
discuss more advanced parts of the protocol (in particular, stream prioritization
and flow control) in chapters 7 and 8. The HTTP/2 specification1 is the ultimate
reference point for the protocol and can be referred to after or in conjunction with
this chapter, but the added detail and examples in this chapter will (I hope) make
learning the protocol easier.

This chapter covers
 The basics of HTTP/2: what it is and how it

differs from HTTP/1.1

 How client and server agree to use HTTP/2
instead of HTTP/1.1

 HTTP/2 frames and how to debug them

1 https://tools.ietf.org/html/rfc7540
93

www.EBooksWorld.ir

94 CHAPTER 4 HTTP/2 protocol basics
4.1 Why HTTP/2 instead of HTTP/1.2?
I touched on the differences between HTTP/1 and HTTP/2 in chapter 2. HTTP/2
was created specifically to address performance problems in HTTP/1, and the new
version of the protocol differs by adding the following concepts:

 Binary rather than textual protocol
 Multiplexed rather than synchronous
 Flow control
 Stream prioritization
 Header compression
 Server push

These concepts (described in more detail in this chapter) are fundamental, breaking
changes to the protocol in that they aren’t backward-compatible; although an
HTTP/1.0 web server could understand HTTP/1.1 messages and ignore the extra
functionality that the later version introduced, this isn’t true for HTTP/2 messages,
which have a different structure and format. For this reason, HTTP/2 was viewed as
being a major version upgrade.

 Most of these differences deal with how HTTP/2 is sent on the wire between client
and server. At a higher level than most web developers will deal with (the HTTP
semantics),2 HTTP/2 acts a lot like HTTP/1. It has the same methods (GET, POST, PUT,
and so on); it uses the same URLs, the same response status codes (200, 404, 301,
302), and the same HTTP headers (mostly). HTTP/2 is a more efficient way to make
those same HTTP requests.

 In many ways, HTTP/2 is like HTTPS in that it effectively wraps standard HTTP
messages in a special format before sending and unwraps them after receiving. There-
fore, although the client (web browser) and server (web server) need to know the
exact details to send messages back and forth, higher-level applications don’t need to
treat these versions too differently, because the underlying concepts of HTTP that
they use are similar. Unlike HTTPS, however, HTTP/2 should lead to different ways of
developing websites. In the same way that a strong understanding of HTTP/1 led to
the web optimizations discussed in chapter 2, a strong understanding of HTTP/2
leads to different optimizations that can make web developers better and help make
websites faster. Therefore, it’s important to understand these core differences.

2 https://tools.ietf.org/html/draft-ietf-httpbis-semantics

HTTP/2.0 or HTTP/2?
HTTP/2 was originally called HTTP/2.0, but the HTTP Working Group decided to drop
the minor version number (.0) and use HTTP/2 instead. HTTP/2 defines the major
parts of this new version of HTTP as I mentioned earlier (binary, multiplexed, and so

www.EBooksWorld.ir

95Why HTTP/2 instead of HTTP/1.2?
4.1.1 Binary rather than textual

One of the main differences between HTTP/1 and HTTP/2 is that HTTP/2 is a
binary, packet-based protocol, whereas HTTP/1 is entirely text-based. Text-based
protocols are easy for humans to understand but more difficult for computers to
parse. This situation was acceptable for the simple request-and-response protocol
that HTTP started out as, but is increasingly limiting the use of the protocol for the
modern internet.

 With the text-based protocol, requests need to be sent and responses received in
full before another request can be processed. On the whole, HTTP worked this way
for the past 20 years, though small enhancements were made. HTTP/1.0 intro-
duced binary HTTP bodies, for example, where images and other media could be
sent in response, and HTTP/1.1 introduced pipelining (see chapter 2) and chun-
ked encoding. Chunked encoding allowed part of the message body to be sent first,
with the rest to follow as it became available. The HTTP body is split into chunks,
and the client receiving the chunked response (or the server receiving the chunked
request) could start processing the message before it was fully received. This tech-
nique is often used when the length of data that’s generated dynamically isn’t
known in advance. Both chunked encoding and pipelining have head-of-line (HOL)
blocking issues whereby the message at the top of the queue prevents subsequent
responses from being sent, not to mention the fact that pipelining was not well sup-
ported in the real world.

 HTTP/2 moves to a full binary protocol, in which HTTP messages are split and
sent in clearly defined frames. All HTTP/2 messages effectively use chunked encoding

on), and any future implementation or change (such as HTTP/2.1) will be expected
to be compatible. The same thing happened with HTTP/1 (a term that never caught
on but that I use throughout this book to mean HTTP/1.0 and HTTP/1.1), which was
a text-based protocol with headers followed by bodies.

Additionally, unlike in HTTP/1 messages, the version number isn’t explicitly stated in
the request. There’s no GET /index.html HTTP/1.1-style request in HTTP/2, for
example. Many implementations use the minor version in log files, however. In
Apache log files, for example, the version number is shown as HTTP/2.0, and the
files even dummy up an HTTP/1-style request:

78.1.23.123 - - [14/Jan/2018:15:04:45 +0000] 2 "GET / HTTP/2.0" 200 1797
"-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36"

Therefore, you see HTTP/1-type messages in the logs despite my earlier statement
to the contrary. This request, however, isn’t a real request and is mocked up by the
web server for ease of parsing log messages rather than something sent directly by
the protocol. In fact, HTTP/2.0 is referenced in only one place in the specification:
the preface message (discussed in section 4.2.5).

www.EBooksWorld.ir

96 CHAPTER 4 HTTP/2 protocol basics
as standard, and this doesn’t need to be set explicitly. In fact, the HTTP/2 specifica-
tion states

The chunked transfer encoding defined in Section 4.1 of RFC7230 MUST NOT be used
in HTTP/2.

These frames are similar to the TCP packets that underlie most HTTP connections.
When all the frames are received, the full HTTP message can be reconstructed.
Despite being like TCP in many ways, HTTP/2 is still usually layered on top of TCP
rather than replacing it (though Google is experimenting with replacing TCP with
QUIC and having a lighter implementation of HTTP/2 over it, as I discuss in chapter
9). An underlying protocol such as TCP is used to guarantee that the messages arrive,
and in order, without needing to add such handling to the HTTP/2 protocol.

 The binary representation of HTTP/2 is for the sending and receiving of mes-
sages, but the messages themselves are similar to older HTTP/1 messages. The binary
framing usually is handled by the lower-level client or libraries (web browser or web
server). As mentioned earlier, higher-level applications such as JavaScript applications
need not care how the messages are sent, and can, for the most part, treat an HTTP/2
connection exactly like an HTTP/1.1 connection. It can be helpful, however, to
understand and even view HTTP/2 frames to debug unexpected errors—particularly
relevant during this early stage of adoption, when you may need to debug implemen-
tation issues in certain (I hope rare!) scenarios.

4.1.2 Multiplexed rather than synchronous

HTTP/1 was a synchronous, single request-and-response protocol. The client sent an
HTTP/1 message, and the server got an HTTP/1 response back. Chapter 2 discusses
why this protocol was inefficient, especially given the modern World Wide Web, where
a website is often made up of hundreds of resources. The main workarounds in
HTTP/1 were to open multiple connections or to send fewer large requests instead of
many small requests, but both workarounds introduce their own problems and ineffi-
ciencies. Figure 4.1 shows how three TCP connections can be used to send and receive
three HTTP/1 requests in parallel. Note that request 1 for the initial page isn’t shown,
because only after this initial request do multiple resources need to be requested in
parallel in requests 2–4.

 HTTP/2 allows multiple requests to be in progress at the same time, on a single
connection, using different streams for each HTTP request or response. This concept
of multiple independent requests happening at the same time was made possible by
moving to the binary framing layer, where each frame has a stream identifier. The
receiving party can reconstruct the full message when all frames for that stream have
been received.

 Frames are the key to allowing multiple messages to be sent at the same time. Each
frame is labeled to indicate which message it belongs to (the stream), which allows
two, three, or a hundred messages to be sent or received at the same time on the same

www.EBooksWorld.ir

97Why HTTP/2 instead of HTTP/1.2?
multiplexed connection, as opposed to the six parallel HTTP/1 connections that
most browsers allow. Figure 4.2 shows the same three requests as in figure 4.1, but the
requests are sent one after the other on the same connection (similar to HTTP/1.1
pipelining), and the responses are sent back intermingled (which isn’t possible in
HTTP/1.1 pipelining).

 This example shows that requests aren’t sent at exactly the same time, as, ulti-
mately, each frame needs to be sent after another on the same HTTP/TCP connec-
tion. This is also true of HTTP/1.1, because even though requests appear to be

Server

(web server)

Client

(web browser)

Request 2

GET /styles.css

Request 3

GET /script.js

Request 4

GET /image.jpg

Request 2

GET /styles.css

Request 3

GET /script.js

Request 4

GET /image.jpg
Response

Request
TCP connection 3

Response

TCP connection 2
Request

Response

Request
TCP connection 1

HTTP/1.1

Figure 4.1 Multiple HTTP/1 requests in parallel require multiple TCP connections.

Client

(web browser)

Server

(web server)

Request 2

GET

/styles.css

Request 3

GET

/script.js

Request 4

GET

/image.jpg

Request 2

GET

/styles.css

Request 3

GET

/script.js

Request 4

GET

/image.jpg

Requests

Responses

Stream 5
/style.css
headers

Stream 7
/script.js
headers

Stream 5
/style.css

body

Stream 7
/script.js

body

Stream 9
/img.jpg
headers

Stream 9
/img.jpg

body

H
T

T
P

/2
 fra

m
in

g
 la

y
e
r

H
T

T
P

/2
 fra

m
in

g
 la

y
e
r

HTTP/2

Single TCP connection

Stream 5
GET

/style.css
headers

Stream 7
GET

/script.js
headers

Stream 9
GET

/img.jpg
headers

Figure 4.2 Requesting three resources across a multiplexed HTTP/2 connection

www.EBooksWorld.ir

98 CHAPTER 4 HTTP/2 protocol basics
parallel on multiple connections, there is (at least usually!) only one network connec-
tion, so each request would be queued to be sent at a network level. The main point
is that the HTTP/2 connection isn’t blocked after sending a request until the response
is received, as it is in HTTP/1.1 (as discussed in chapter 2).

 Similarly, responses can be sent back intermingled (streams 5 and 7 in figure 4.2),
or sequentially (stream 9 in figure 4.2). The order in which the server sends back
responses is entirely up to the server, though the client can indicate priorities. If mul-
tiple responses can be sent, the server can prioritize the important resources (such as
CSS and JavaScript) over less important resources (such as images). I cover this topic
in chapter 7.

 Each request is given a new, incremental stream ID (5, 7, and 9 in figure 4.2), and
responses are sent back on the same stream ID, so streams are bidirectional, as HTTP
connections were. Streams are closed when the response is finished. An HTTP/2
stream isn’t directly analogous to an HTTP/1.1 connection, because streams are dis-
carded and not reused, whereas HTTP/1.1 keeps the connection open and it can be
reused to send another request.

 To prevent a clash of stream IDs, client-initiated requests are given odd stream IDs
(which is why I used stream IDs 5, 7, and 9 in the preceding figures, assuming that
streams 1 and 3 were already used on this connection), and server-initiated requests
are given even stream IDs. Note that the server can’t technically initiate a stream at
this writing except in specific use cases, which are still ultimately in response to a cli-
ent stream, as I discuss in chapter 5. Responses to requests are marked with the same
stream ID, as mentioned earlier. Stream ID 0 (not shown in the figures) is a control
stream used by both client and server to manage the connection.

 Understanding figure 4.2 is the key to understanding HTTP/2. If you get that con-
cept and see why it differs from HTTP/1, you’ve gone a long way toward understand-
ing HTTP/2. Intricacies and subtleties exist, but this figure demonstrates two
fundamentals of HTTP/2:

 HTTP/2 uses multiple binary frames to send HTTP requests and responses
across a single TCP connection, using a multiplexed stream.

 HTTP/2 is mostly different at the message-sending level, and at even a slightly
higher level, the core concepts of HTTP remain the same. Requests have a
method (such as GET), a resource you want to get (such as /styles.css), headers,
body, status codes (such as 200, 404), caching, cookies, and so on, which stay
the same.

The first point means that HTTP/2 could have been depicted as in figure 4.3, in
which each stream acts like a separate connection in the HTTP/1 world. But figure 4.3
is perhaps open to misinterpretation by those who are familiar with HTTP/1, as
HTTP/2 streams aren’t reused (as connections are in HTTP/1) and HTTP/2 streams
aren’t completely independent—for good reason, as you’ll see in chapter 7.

 This second point is why HTTP/2 has been able to make so much headway
already. As long as the web browser and the web server know HTTP/2 and can handle

www.EBooksWorld.ir

99Why HTTP/2 instead of HTTP/1.2?
the low-level details, the users (end users and web developers) don’t need to know
about HTTP/2 or treat it differently from the way they treat any other website.
HTTP/2 doesn’t even need a new scheme (the https:// bit at the beginning of URLs),
as I discuss in section 4.2. In fact, most people have been using HTTP/2 for some time
without knowing it. Google, Twitter, and Facebook all use HTTP/2, so if you’ve used
these sites, you likely have already used HTTP/2 even if you weren’t aware of it.

 But much as having a good understanding of HTTP/1 has enabled web developers
to create better, more performant websites, those of you who take time to understand
how HTTP/2 works will be much better placed to allow your websites to benefit from
the protocol.

4.1.3 Stream prioritization and flow control

Before HTTP/2, HTTP was a single request-and-response protocol, so there was no
need for prioritization within the protocol. The client (typically, the web browser)
decided the priority outside of HTTP by deciding what order to send the messages in,
using the limited number of HTTP/1 connections (typically, six). This prioritization
usually required requesting critical resources (HTML, render blocking CSS, and criti-
cal JavaScript) first and requesting non-blocking items (such as images and asynchro-
nous JavaScript) later. Requests were queued, awaiting a free HTTP/1 connection,
and the queuing, managed by the browser, decided the priority.

 HTTP/2 now has a much higher limit on the number of requests in flight at any
time (typically, 100 active streams by default in many implementations), so many
requests no longer need to be queued by the browser and can be sent immediately.
This fact could lead to bandwidth being wasted on lower-priority resources (such as

Client

(web browser)

Server

(web server)

Request 2

GET /styles.css

Request 3

GET /script.js

Request 4

GET /image.jpg

Request 2

GET /styles.css

Request 3

GET /script.js

Request 4

GET /image.jpg

H
T

T
P

/2
 fra

m
in

g
 la

y
e

r

H
T

T
P

/2
 fra

m
in

g
 la

y
e

r

HTTP/2

Single TCP connection

Stream 9

Stream 7

Stream 5

Figure 4.3 HTTP/2 streams are similar to HTTP/1 connections.

www.EBooksWorld.ir

100 CHAPTER 4 HTTP/2 protocol basics
images) and therefore cause the page to appear to load slower over HTTP/2. Stream
prioritization is needed so that the most critical resources can be sent with higher pri-
ority. Stream prioritization is implemented by the server sending more frames for
higher-priority requests than for lower-priority requests when a queue of frames is
waiting to be sent. Stream prioritization also allows greater control than under
HTTP/1, in which the separate connections are independent. In HTTP/1, other than
not using a connection, it wasn’t possible to prioritize certain connections. If you have
five critical resources and a sixth noncritical one, under HTTP/1, all the resources
can be sent with the same priority on the six separate connections, or the first five can
be sent while the sixth is held back. Under HTTP/2, all six requests can be sent with
the appropriate priority, and this priority is used to decide how much resource to allo-
cate to sending each response.

 Flow control is another necessary consequence of using multiple streams over the
same connection. If the receiver is unable to process the incoming messages as fast as
the sender is sending, a backlog exists, which must be buffered and eventually leads to
packets being dropped and needing to be resent. TCP allows the connection to be
throttled back in such a scenario at a connection level, but HTTP/2 requires it to hap-
pen at a stream level. Take the example of a web page with a live video on it. If the
video is paused by the user, it may be prudent to pause the download for that HTTP/2
stream only, but to allow any other resources used by the website to continue to down-
load at full capacity through other streams.

 In chapter 7, I return to stream prioritization and flow control and provide more
details on how they work. These processes usually are controlled by the browser and
server, so users and web developers have little control of them at this writing, which is
why I discuss them later in the book.

4.1.4 Header compression

HTTP headers are used to send additional information about requests and responses
from client to server, and vice versa. There’s a lot of repetition in these headers, as
they’re often sent identically for every resource. Consider the following headers,
which are sent with every request and often repeat values sent previously:

 Cookie—Cookies are sent with every request to that domain (except for uncre-
dentialed requests that Amazon uses [see chapter 2], but these are somewhat
specialized and not the norm). Cookie headers can get particularly large and
often are needed only for the HTML document resources, but get sent for
every request.

 User-Agent—This header typically states the web browser being used. It never
changes during the session, but it is still sent with every request.

 Host—This header is used to fully qualify the request URL and is always the
same for each request to the same host.

 Accept—This header defines the format of the response it expects (acceptable
image formats that the browser knows how to display, and so on). Because the

www.EBooksWorld.ir

101How an HTTP/2 connection is established
formats that a browser supports typically don’t change without a browser
upgrade, this header changes per request type (image, document, font, and so
on), but is the same for each instance of these types.

 Accept-Encoding—This header defines the compression formats (typically,
gzip, deflate, and increasingly br for browsers that accept the newer brotli
compression). Similar to the Accept header, this header doesn’t change through-
out the session.

These response headers can be duplicated and are wasteful. Some specialized response
headers (such as Content Security Policy headers) can be large and similarly repeti-
tious—especially bad for smaller requests, in which the HTTP headers will be propor-
tionally larger parts of the download.

 HTTP/1 allows compressing HTTP bodies (hence, the Accept-Encoding header
mentioned earlier), but not compressing HTTP headers. HTTP/2 brings in the con-
cept of header compression, but as I discuss in chapter 8, it uses a technique other
than body compression to allow cross-request compression and prevent some security
issues with the algorithms used for HTTP body compression.

4.1.5 Server push

Another important difference between HTTP/1 and HTTP/2 is that HTTP/2 adds
the concept of server push, which allows the server to respond to a request with more
than one response. Under HTTP/1, when the home page is returned, the browser
must read it and then request the other resources (such as CSS and JavaScript)
before it starts rendering the page. With HTTP/2 server push, those resources can
be sent with the initial response and should be available when the browser looks to
use them.

 HTTP/2 server push is a new concept in HTTP, but if care isn’t taken, it can easily
cause wasted bandwidth, when resources that a browser doesn’t need are pushed any-
way, particularly if the resources being pushed were sent with a previous request and
are already available in the browser cache. Deciding when and how to push is key to
making the most of this feature. For that reason, HTTP/2 server push gets a chapter
of its own (chapter 5) in this book.

4.2 How an HTTP/2 connection is established
Given that HTTP/2 is so different from HTTP/1 at a connection level, both the client
web browser and the server need to be able to talk and understand HTTP/2 to be able
to use it. As two independent parties are involved, there needs to be a process in
which each party can say that it’s willing and able to use HTTP/2.

 The move to HTTPS was the last similar change, which was made possible with a
new URL scheme (https://) and was served over a different default port (443 for
HTTPS as opposed to 80 for HTTP). This change allowed a clear separation of the
protocols, and, therefore, a clear indication of which protocol to use to communicate.

www.EBooksWorld.ir

102 CHAPTER 4 HTTP/2 protocol basics
There are several downsides to moving to a new scheme, port, or both, however,
including

 Until adoption is near universal, the default needs to remain the existing
http:// (or https:// if it ever becomes the default, as many people hope). There-
fore, adding a new scheme, as HTTPS did, would require a redirect to use
HTTP/2, which would introduce slowness—the very thing that HTTP/2 was
supposed to solve!

 Sites have to change links to the new scheme. Although internal links could be
fixed with relative links on the website itself (/images/image.png rather than
https://example.com/images/image.png, for example), external links would
need to include the full URL, including the scheme. The adoption of HTTPS
has often been complicated, in part, by the need for sites to change every URL
to the new scheme.

 Compatibility issues occur with existing network infrastructure (such as fire-
walls blocking any new nonstandard ports).

For these reasons and to make any transition to HTTP/2 more seamless, HTTP/2
(and SPDY, on which it’s based) decided not to use a new scheme, but looked at alter-
native methods to establish the HTTP/2 connection. The HTTP/2 specification3 pro-
vides three ways to create the HTTP/2 connection (though a fourth way has since
been added, as described in section 4.2.4):

 Use HTTPS negotiation.
 Use the HTTP Upgrade header.
 Use prior knowledge.

In theory, HTTP/2 is available over unencrypted HTTP, in which it is known as h2c,
and over encrypted HTTPS, in which it is known as h2. In practice, all web browsers
support HTTP/2 only over HTTPS (h2), so option 1 is used to negotiate HTTP/2 by
web browsers. Server-to-server HTTP/2 communication can be over unencrypted
HTTP (h2c) or HTTPS (h2), so it can use all these methods, depending on which
scheme is used.

4.2.1 Using HTTPS negotiation

HTTPS connections go through a protocol-negotiation stage to set up the connection,
as they need to agree on the SSL/TLS protocol, cipher, and various other settings to use
before the connection is established and HTTP messages are exchanged. This stage is
flexible, allowing new HTTPS protocols and ciphers to be introduced and used only
when both client and server agree to use them. HTTP/2 support can be part of that
HTTPS handshake, saving any upgrade redirection that would need to have been done
at connection establishment and before the first HTTP message was sent.

3 https://tools.ietf.org/html/rfc7540#section-3

www.EBooksWorld.ir

103How an HTTP/2 connection is established
HTTPS HANDSHAKE

Using HTTPS means using SSL/TLS to encrypt a standard HTTP connection,
whether HTTP/1 or HTTP/2. See the “SSL, TLS, HTTPS, and HTTP” sidebar in
chapter 1 for the differences between these acronyms and the naming conventions
used in this book.

 Public-private key encryption is known as asymmetric encryption because it uses dif-
ferent keys to encrypt and unencrypt messages. This type of encryption is needed to
allow secure communication to a server you’ve never connected to before, but it’s
slow, so it’s used to agree on a symmetric encryption key to be used for encrypting the
rest of the connection. This agreement happens during the TLS handshake, which
occurs at the beginning of the connection. Under TLSv1.2, which is the main version
in use now, it uses the handshake shown in figure 4.4 to set up the encrypted connec-
tion. This handshake changes slightly in the newly standardized TLSv1.3, as discussed
in chapter 9.

The handshake involves four sets of messages:

 The client sends a ClientHello message detailing its cryptographic capabilities.
This message is sent unencrypted because the encryption method hasn’t been
agreed on yet.

Client Server

1. ClientHello

7. ClientCertificate

8. ClientKeyExchange

9. CertificateVerify

10. ChangeCipherSpec

11. Finished

12. ChangeCipherSpec

13. Finished

Unencrypted

Encrypted by

Public/Private Key

Encryption

Encrypted

by Agreed

Secret Key

2. ServerHello

3. ServerCertificate

4. ServerKeyExchange

5. CertificateRequest

6. ServerHelloDone

Figure 4.4 HTTPS handshake

www.EBooksWorld.ir

104 CHAPTER 4 HTTP/2 protocol basics
 The server sends a similar ServerHello message back, choosing the HTTPS
protocol (such as TLSv1.2) based on what it knows the client supports. It also
sends the cipher it will use for this connection (such as ECDHE-RSA-AES128-
GCM-SHA256), again by choosing one based on those advertised in the Client-
Hello message and on what it supports itself. Then it provides the server HTTPS
certificate (ServerCertificate). The secret key details depend on the cipher
selected (ServerKeyExchange) and whether a client HTTPS certificate is needed
(CertificateRequest, not needed for most websites). Finally, the server says
that it’s done (ServerHelloDone).

 The client verifies the server certificate and sends a client certificate if requested
(ClientCertificate, not needed for most sites). Then it sends its secret key
details (ClientKeyExchange). These details are sent encrypted by the public
key in the server certificate so that only the server can decrypt the message with
the private key. If client certificates are being used, a CertificateVerify mes-
sage is sent, signed with the private key, to prove ownership of the client certifi-
cate. The client uses the ServerKeyExchange and ClientKeyExchange details to
define an encrypted symmetric key and sends a ChangeCipherSpec message to
inform the client that encryption is beginning; then it sends an encrypted
Finished message.

 The server also switches to an encrypted connection (ChangeCipherSpec) and
sends an encrypted Finished message.

In addition to being used to agree on the symmetric encryption key to be used, public-
private key cryptography is used to confirm identity, as there’s little point in using
strong encryption if you’re securely talking to the wrong party! Identity is confirmed
as messages are signed by the server’s hidden private key, which can be unlocked with
the public key in the certificate. Each SSL/TLS certificate is also cryptographically
signed by a recognized certificate authority that the computer trusts. If client certifi-
cates are being used, a similar process works in reverse. With regard to identity, all that
can be confirmed is that the server domain it is part of signed the SSL/TLS certificate.
If the server domain is wrong (www.amaz0n.com rather than www.amazon.com),
you’re securely talking to the wrong server and may be talking to a party different
from the one you thought you were talking to. As I mentioned when I introduced
HTTPS in chapter 1, this situation causes much confusion. A green padlock doesn’t
mean that a site is legitimate or safe—only that communication to it is securely
encrypted.

 After all these steps, the HTTPS session is set up, and all future communications
are secured with the agreed key(s). This setup adds at least two round trips before you
can send a single request. HTTPS was traditionally viewed as slow, but although
advances in computers make encryption and decryption of messages not really notice-
able, the initial connection delay is noticeable, as shown in the waterfall figures in
chapter 2. When this initial HTTPS setup is done, future HTTP messages on the same
connection don’t need to go through this negotiation. Similarly, future connections

www.EBooksWorld.ir

105How an HTTP/2 connection is established
(whether they’re extra connections in parallel or reconnections at a later time) can
skip some of these steps if they reuse the key that was used the last time, in a process
known as TLS session resumption.

 You can do little about this initial slowness except try to limit creating new connec-
tions (as HTTP/2 does). Most people agree that the benefits of HTTPS outweigh the
performance costs of the initial connection. TLSv1.3,4 finalized at the time of this writ-
ing, introduces extra efficiencies to drop this negotiation to one round trip (or even
zero round trips when picking up from a previous negotiation), but it will take some
time to be adopted and still leaves one round trip in many cases.

APPLICATION-LAYER PROTOCOL NEGOTIATION
ALPN5 added an additional extension to the ClientHello message, where clients
could advertise application protocol support (“Hey, I support h2 and http/1. If you
want to, use either of them.”), and also to the ServerHello message, where servers
could confirm which application protocol to use after HTTPS negotiation (“OK, let’s
use h2”). I demonstrate this process in figure 4.5.

4 https://tools.ietf.org/html/draft-ietf-tls-tls13
5 https://tools.ietf.org/html/rfc7301

12. ChangeCipherSpec

13. Finished

11. Finished

7. ClientCertificate

8. ClientKeyExchange

9. CertificateVerify

10. ChangeCipherSpec

2. ServerHello

with ALPN choice

3. ServerCertificate

4. ServerKeyExchange

5. CertificateRequest

6. ServerHelloDone

1. ClientHello

with ALPN options

Client Server

Unencrypted

Encrypted by

Public/Private Key

Encryption

Encrypted

by Agreed

Secret Key

Additions to the
TLS handshake

for ALPN

Figure 4.5 HTTPS handshake with ALPN

www.EBooksWorld.ir

106 CHAPTER 4 HTTP/2 protocol basics
ALPN is simple and can be used to agree whether or not to use HTTP/2 for the exist-
ing HTTPS negotiation messages without adding any further round trips, redirects, or
other upgrade delays. The only problem with ALPN lies in its being relatively new,
with support not being universal, particularly on the server side, where older versions
of TLS libraries are common (see chapter 3). If ALPN isn’t supported, the server usu-
ally assumes that the client doesn’t support HTTP/2 and uses HTTP/1.1.

 ALPN can be used for other protocols besides HTTP/2, but at this writing it’s used
only for HTTP/2 and the SPDY protocol on which it’s based, although other ALPN
applications have been registered, including the original three versions of HTTP:
HTTP/0.9, HTTP/1.0, and HTTP/1.1.6 In fact, ALPN was finalized in July 2014,
before HTTP/2 came along, and the RFC for ALPN7 defines the extension only for
HTTP/1.1 and SPDY. The HTTP/2 ALPN extension (h2) was registered later, as part
of finalizing the HTTP/2 specification.8

NEXT PROTOCOL NEGOTIATION

NPN, the predecessor to ALPN, worked in a similar manner. Despite being used by a
lot of browsers and web servers, it was never formalized as an internet standard
(though a draft specification was worked on).9 ALPN, which was formalized, is based
heavily on NPN, which is like HTTP/2 being the formalized version of SPDY.

 The main difference is that with NPN, the client decides the protocol being used,
whereas with ALPN, the server decides (the way the rest of the TLS parameters are
decided). With NPN, the ClientHello message declares that the client is happy to use
NPN, the ServerHello message includes all the NPN protocols supported by the
server, and after encryption is enabled, the client picks the NPN protocol (such as h2)
and sends another message with this choice. Figure 4.6 illustrates this process, with
the three extra pieces highlighted in steps 1, 2, and 11.

 NPN is a three-step process, whereas ALPN is a two-step process, though both pro-
cesses reuse existing HTTPS steps and don’t add round trips (though NPN does add
one message to confirm the protocol to use). Additionally, with NPN, the chosen
application protocol is encrypted (step 11 in figure 4.6), whereas in ALPN, it’s sent in
the unencrypted ServerHello message. Because the protocols supported by the
server are sent unencrypted in the ServerHello message in NPN, and because some
network solutions may want to know the application that’s going to be used, the TLS
Working Group decided to change this process in ALPN so that the server choses the
application protocol (as it does for the other HTTPS parameters).

 NPN has been deprecated in favor of ALPN, and as discussed in chapter 3, many
web browsers have stopped supporting NPN for HTTP/2 connections; some web serv-
ers (such as Apache) never supported it in the first place. Other implementations are

6 https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids
7 https://tools.ietf.org/html/rfc7301
8 https://tools.ietf.org/html/rfc7540#section-11.1
9 https://tools.ietf.org/html/draft-agl-tls-nextprotoneg-04

www.EBooksWorld.ir

107How an HTTP/2 connection is established
expected to deprecate use of it over time. The HTTP/2 specification states that ALPN
should be used10 and makes no mention of NPN, so technically, implementations that
still use NPN aren’t following the specification.

 Deprecation of NPN causes problems for servers that don’t yet support ALPN.
NPN was older and was therefore supported by more servers (or at least the TLS
libraries that they use). Although newer versions support ALPN, older versions, which
are common even at this writing (such as OpenSSL 1.0.1), support only the older
NPN extension. This situation is one reason why HTTP/2 may not be used even when
a server is configured for it (see chapter 3).

EXAMPLE OF AN HTTPS HANDSHAKE WITH ALPN
You can use a few tools to see the HTTPS handshake, but curl11 is one of the easiest,
and is available to many environments, though it may be a version without ALPN sup-
port. For those of you who use Git Bash, for example, it includes a version with ALPN
support. The following output shows what happens when you connect to Facebook
with HTTP/2 by using curl, with the ALPN- and HTTP/2-specific parts in bold:

10 https://tools.ietf.org/html/rfc7540#section-3.3
11 https://curl.haxx.se/

1. ClientHello

7. ClientCertificate

8. ClientKeyExchange

9. CertificateVerify

10. ChangeCipherSpec

11. NPN Choice

12. Finished

2. ServerHello

3. ServerCertificate

4. ServerKeyExchange

5. CertificateRequest

6. ServerHelloDone

13. ChangeCipherSpec

14. Finished

with NPN choices

Client Server

with NPN flag

Unencrypted

Encrypted by

Public/Private Key

Encryption

Encrypted

by Agreed

Secret Key

Additions to the
TLS handshake

for NPN

Figure 4.6 HTTPS handshake with NPN

www.EBooksWorld.ir

108 CHAPTER 4 HTTP/2 protocol basics
$ curl -vso /dev/null --http2 https://www.facebook.com
* Rebuilt URL to: https://www.facebook.com/
* Trying 31.13.76.68...
* TCP_NODELAY set
* Connected to www.facebook.com (31.13.76.68) port 443 (#0)
* ALPN, offering h2
* ALPN, offering http/1.1
* successfully set certificate verify locations:
* CAfile: /etc/pki/tls/certs/ca-bundle.crt
 CApath: none
} [5 bytes data]
* TLSv1.2 (OUT), TLS handshake, Client hello (1):
} [214 bytes data]
* TLSv1.2 (IN), TLS handshake, Server hello (2):
{ [102 bytes data]
* TLSv1.2 (IN), TLS handshake, Certificate (11):
{ [3242 bytes data]
* TLSv1.2 (IN), TLS handshake, Server key exchange (12):
{ [148 bytes data]
* TLSv1.2 (IN), TLS handshake, Server finished (14):
{ [4 bytes data]
* TLSv1.2 (OUT), TLS handshake, Client key exchange (16):
} [70 bytes data]
* TLSv1.2 (OUT), TLS change cipher, Client hello (1):
} [1 bytes data]
* TLSv1.2 (OUT), TLS handshake, Finished (20):
} [16 bytes data]
* TLSv1.2 (IN), TLS handshake, Finished (20):
{ [16 bytes data]
* SSL connection using TLSv1.2 / ECDHE-ECDSA-AES128-GCM-SHA256
* ALPN, server accepted to use h2
* Server certificate:
* subject: C=US; ST=California; L=Menlo Park; O=Facebook, Inc.;

CN=*.facebook.com
* start date: Dec 9 00:00:00 2016 GMT
* expire date: Jan 25 12:00:00 2018 GMT
* subjectAltName: host "www.facebook.com" matched cert's "*.facebook.com"
* issuer: C=US; O=DigiCert Inc; OU=www.digicert.com; CN=DigiCert SHA2 High

Assurance Server CA
* SSL certificate verify ok.
* Using HTTP2, server supports multi-use
* Connection state changed (HTTP/2 confirmed)

Here, you can see that the client states that it will use ALPN to state support of HTTP/2
(h2) and also HTTP/1.1 (http/1.1). Then it goes through the various handshake steps
(not all the details are shown, but enough to give you a taste of what’s going on), and,
finally, a connection is established with the TLSv1.2, ECDHE-ECDSA-AES128-GCM-SHA256
cipher suite, and h2 ALPN setting. Next the server certificate is displayed, and curl
switches to HTTP/2. Using curl is a good way to test for ALPN support on a server (pro-
vided that your version of curl supports ALPN, of course). If you’re curious, you can test
NPN by using the --no-alpn flag, but this test doesn’t show as much information and

www.EBooksWorld.ir

109How an HTTP/2 connection is established
excludes all the ALPN lines shown in the preceding example without substituting any
NPN equivalents, though the last two lines are identical:

$ curl -vso /dev/null --http2 https://www.facebook.com --no-alpn
...
* SSL certificate verify ok.
* Using HTTP2, server supports multi-use
* Connection state changed (HTTP/2 confirmed)

4.2.2 Using the HTTP upgrade header

A client can request to upgrade an existing HTTP/1.1 HTTP connection to HTTP/2
by sending an Upgrade HTTP header. This header should be used only for unen-
crypted HTTP connections (h2c). Encrypted HTTPS HTTP/2 connections (h2)
shouldn’t use this method to negotiate HTTP/2 and must use ALPN as part of HTTPS
negotiation. As I’ve stated several times, web browsers support HTTP/2 only over
encrypted connections, so they won’t use this method. Those of you who are working
with outside browsers (on APIs, for example) may be interested to learn more details
on how this process works.

 When a client sends an Upgrade header is entirely up to the client. The header
could be sent with every request, with the initial request only, or only if the server has
advertised HTTP/2 support via the Upgrade header in an HTTP response. The follow-
ing examples describe how the Upgrade header works.

EXAMPLE 1: AN UNSUCCESSFUL UPGRADE REQUEST

An HTTP/1.1 request is made with an Upgrade header, as this client supports
HTTP/2 and therefore prefers to use it:

GET / HTTP/1.1
Host: www.example.com
Upgrade: h2c
HTTP2-Settings: <will be discussed later>

Such a request must include an HTTP-Settings header, which is a base-64 encoding of
the HTTP/2 settings message, which I discuss later.

 A server that doesn’t understand HTTP/2 can respond as normal with an HTTP/1.1
message, as though the Upgrade header hadn’t been sent:

HTTP/1.1 200 OK
Date: Sun, 25 Jun 2017 13:30:24 GMT
Connection: Keep-Alive
Content-Type: text/html
Server: Apache

<!doctype html>
<html>
<head>
…etc.

www.EBooksWorld.ir

110 CHAPTER 4 HTTP/2 protocol basics
EXAMPLE 2: A SUCCESSFUL UPGRADE REQUEST

Instead of ignoring the upgrade request and sending back an HTTP/1.1 200 response,
a server that understands HTTP/2 can respond with an HTTP/1.1 101 response, say-
ing that it will switch the protocol:

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: h2c

Then the server immediately switches to HTTP/2, sending a SETTINGS frame (see sec-
tion 4.3.3) and then sending the response to the original message in HTTP/2 format.

EXAMPLE 3: A SERVER-SUGGESTED UPGRADE

An HTTP/1.1 request is made, but the client assumes that the server doesn’t support
HTTP/2, so it doesn’t send an Upgrade header:

GET / HTTP/1.1
Host: www.example.com

A server that understands HTTP/2 can respond with a 200 response code but tell the
client that it also supports HTTP/2 by advertising support in the Upgrade HTTP
header in the response. In this case, it’s an upgrade suggestion as opposed to an upgrade
request, as all upgrade requests must be initiated from the client. Following is an example
in which the server advertises h2 (HTTP/2 over HTTPS) and h2c (HTTP/2 over
HTTP) support:

HTTP/1.1 200 OK
Date: Sun, 25 Jun 2017 13:30:24 GMT
Connection: Keep-Alive
Content-Type: text/html
Server: Apache
Upgrade: h2c, h2

<!doctype html>
<html>
<head>
…etc.

The client can use this information to initiate the upgrade by sending the Upgrade
header in the next request, as in the preceding two examples:

GET /styles.css HTTP/1.1
Host: www.example.com
Upgrade: h2c
HTTP2-Settings: <will be discussed later>

The server responds with a 101 response and upgrades the connections as described
earlier. Note that the Upgrade header and negotiation method can’t be used for h2
connections—only for h2c connections. Here, the server has advertised both h2 and

www.EBooksWorld.ir

111How an HTTP/2 connection is established
h2c connections, but if the client wants to use h2, it should switch to HTTPS and use
ALPN to negotiate this connection.

ISSUES WITH SENDING AN UPGRADE HEADER

Because all web browsers at this writing support HTTP/2 only over HTTPS, the
upgrade option will likely never be used by browsers, which can cause problems.

 Consider this scenario. You have a web browser that supports HTTP/2 on one side
of the connection, and on the other side, you have a web server that supports only
HTTP/1.1 (such as an older Apache version) in front of an application server (such
as Tomcat) that supports HTTP/2. In this case, the web server is acting as a reverse
proxy and is likely sending all requests between the client (web browser) and the ulti-
mate server (Tomcat application server), both of which talk HTTP/2. The application
server may try to be helpful and send the Upgrade header to suggest moving to the
better HTTP/2 protocol. The web server may blindly forward this header. The client
will see this upgrade suggestion and decide that upgrading would be a good idea. But
the web server, which the client connects to, doesn’t support HTTP/2.

 In a similar scenario, the web server is already talking HTTP/2 to the web browser,
but proxying requests using HTTP/1.1 to the backend application server. The appli-
cation server may send the upgrade suggestion, and if this suggestion is forwarded to
the browser, it may get confused, as the suggestion is to upgrade an HTTP/2 connec-
tion to h2, which it’s already using.

 These problems aren’t theoretical; they’ve caused real issues while HTTP/2 has
been rolled out. Safari used to return errors when it saw an h2 upgrade header on an
HTTP/2 connection (see chapter 3).

 At this writing, the nginx team has been asked to stop passing on the Upgrade
header blindly12 when it’s sitting in front of an Apache server that advertises HTTP/2
support via this header, for example. Removing this header can be achieved with some
configuration (proxy_hide_header Upgrade), but few people know to add it until
they run into problems. Additionally, some clients or servers may not implement the
Upgrade header properly. While experimenting with HTTP/2, I noticed a problem
with NodeJS disconnecting after Apache started advertising the Upgrade header.13

This problem has been fixed but is still present in older versions of NodeJS that are
still in use.

 Although these problems may well be fixed by the time this book is published,
similar issues will undoubtedly arise. All in all, I prefer that server implementations
not advertise the upgrade option (at least, by default). In my opinion, this option
won’t be used much and will cause more problems than it solves. For most imple-
mentations (and all browsers), HTTPS negotiation is more likely to be used. The
prior-assumption method may be used for backend servers if HTTPS isn’t supported
or necessary. Apache is one of the main offenders and has been requested to stop

12 https://trac.nginx.org/nginx/ticket/915
13 https://github.com/nodejs/node/issues/4334

www.EBooksWorld.ir

112 CHAPTER 4 HTTP/2 protocol basics
including the Upgrade header by default,14 but in the meantime, you can use the fol-
lowing mod_headers Apache configuration to turn off sending of this header, which I
recommend doing if you’re running Apache with HTTP/2 support (though this solu-
tion could cause problems with other protocols that need to use the Upgrade header,
such as WebSockets, so it can’t be used in those scenarios):

Header unset Upgrade

4.2.3 Using prior knowledge

The third and final way that the HTTP/2 specification states that a client can use
HTTP/2 is if it already knows that a server understands HTTP/2. In that case, it can
start talking HTTP/2 right away, avoiding any upgrade request.

 How the client has prior knowledge that the server is able to understand HTTP/2
could be through different methods. If you’re running a reverse proxy to offload HTTPS,
you may want to talk HTTP/2 over HTTP (h2c) to your backend servers because you
know they speak HTTP/2. Alternatively, prior knowledge can be assumed based on
alternative support advertised by the Alt-Svc Header (HTTP/1.1) or the ALTSVC
frame (see section 4.2.4).

 This option is the riskiest one because it makes certain assumptions that the server
can speak HTTP/2. Clients using prior knowledge must take care to handle any rejec-
tion messages appropriately in case the prior knowledge turns out to be incorrect.
The server response to the HTTP/2 preface message, which I discuss later in this
chapter, is of huge importance in this way of choosing to use HTTP/2. This method
should be used only when you’re in control of both the client and server.

4.2.4 HTTP Alternative Services

A fourth way, not included in the original HTTP/2 specification, is to use HTTP Alter-
native Services,15 added as a separate standard after HTTP/2 was released. This stan-
dard allows the server to inform the client using HTTP/1.1 (via an Alt-Svc HTTP
header) that the requested resource is available in another location (such as another
server or port) using a different protocol. This protocol could be used to start
HTTP/2 with prior knowledge.

 Alternative Services aren’t only for HTTP/1 and can be communicated over an
existing HTTP/2 connection (via a new ALTSVC frame, covered later in the chapter),
in case the client wants to switch to a different connection (one located close to the
client, for example, or one that’s less busy). This standard is fairly new and not in
widespread use. It still incurs starting on one connection and then switching, which is
slower than starting HTTP/2 through ALPN or prior knowledge. It introduces some
interesting possibilities that are beyond the scope of this book, but at least one con-
tent delivery network seems to be intent on taking full advantage of it.16

14 https://bz.apache.org/bugzilla/show_bug.cgi?id=59311
15 https://tools.ietf.org/html/rfc7838
16 https://blog.cloudflare.com/cloudflare-onion-service/

www.EBooksWorld.ir

113How an HTTP/2 connection is established
4.2.5 The HTTP/2 preface message

The first message that must be sent on an HTTP/2 connection (no matter which
method is used to establish HTTP/2 support) is the HTTP/2 connection preface, or
“magic” string. This message is sent by the client as the first message on the HTTP/2
connection. This message is a sequence of 24 octets and looks like this in hex notation:

0x505249202a20485454502f322e300d0a0d0a534d0d0a0d0a

This sequence translates to the following message in ASCII:

PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n

This message may seem to be an odd one to send, but not coincidentally, it’s almost an
HTTP/1-style message:

PRI * HTTP/2.0↵↵
SM↵↵
That is, the HTTP method is PRI (instead of GET or POST), the resource is *, and the
HTTP version number is HTTP/2.0. Next is a double return (so no request headers),
followed by a request body of SM.

 The intention of this nonsensical, HTTP/1-like message is for when a client tries to
speak HTTP/2 to a server that doesn’t understand HTTP/2. Such a server tries to
parse this message as it would any other HTTP message and fails because it doesn’t
recognize the nonsense method (PRI) or the HTTP version (HTTP/2.0), and it should
reject the message. Note this preface message is the only part of the official specifica-
tion that still refers to HTTP/2.0 with the minor version number; it’s HTTP/2 every-
where else, as discussed in the “HTTP/2.0 or HTTP/2?” sidebar in section 4.1. The
server, which knows that the client speaks HTTP/2 based on the incoming message,
doesn’t send this magic message; it must send a SETTINGS frame as its first message
(which can be empty).

Why PRI and SM?
The original HTTP/2 preface in the early drafts of the HTTP/2 specifications used FOO
and BARa or BAb, which are well-known placeholder names in programming. But in ver-
sion 4 of the draft spec, this placeholder changed to PRI SM,c with no comment in
the specification as to why.

This change apparently was made in response to the Edward Snowden revelationsd

that came out during this time about the PRISM program used to gather internet traf-
fic from various companies. The revelations upset proponents of the free internet
(some of whom also help decide on the standards of the internet) and who thought
that it would be humorous to start every HTTP/2 connection with a little reminder.

www.EBooksWorld.ir

114 CHAPTER 4 HTTP/2 protocol basics
4.3 HTTP/2 frames
When you’ve set up the HTTP/2 connection, you can start sending HTTP/2 mes-
sages. As you’ve seen, HTTP/2 messages are made up of frames of data that are sent
on streams on a single multiplexed connection. Frames are a low-level concept that
many web developers don’t need to know about, but it’s always worthwhile to under-
stand the building blocks of a technology. Many of the errors at the end of chapter 3
are easier to debug by looking at HTTP/2 at frame level, so looking at the frame level
has practical as well as theoretical uses. I explain the main parts of HTTP/2 by using a
real-world example.

 In this section, I look at and explain the frame types, which can seem a little daunt-
ing and confusing at first and is a lot to take in. I encourage readers not to fixate too
much on first reading but to understand the overall concept of HTTP/2 frames and
have a high-level understanding of each frame type. The sections on the individual
frames and settings for each frame can serve as references later, as can the HTTP/2
specification itself, but you don’t need to memorize them to understand the remain-
der of this book or HTTP/2 in the real world.

4.3.1 Viewing HTTP/2 frames

A few tools are available for viewing HTTP/2 frames, including Chrome’s net-export
page, nghttp, and Wireshark. Your web server may also be able to increase logging to
show the individual frames, but with potentially lots of users, that technique can
quickly get messy, so the preceding tools are easier to use unless you’re trying to
debug a potential issue on your web server.

CHROME NET-EXPORT

The easiest way to view HTTP/2 frames without installing additional software is to
use Chrome’s net-export page. This used to be available in the net-internals page,
but from Chrome 71 this moved to net-externals for a number of reason17, and

Why PRI and SM? (continued)
The contents of this message weren’t important; the message was intended to be a
nonsense message that shouldn’t be recognized as valid HTTP. Other suggestions
included STA RT, but ultimately, PRI SM made it into the final spec in a change com-
mit labeled “Exercising editorial discretion regarding magic.”e

a https://tools.ietf.org/html/draft-ietf-httpbis-http2-02#section-3.2
b https://tools.ietf.org/html/draft-ietf-httpbis-http2-03#section-3.2
c https://tools.ietf.org/html/draft-ietf-httpbis-http2-04#section-3.5
d https://blog.jgc.org/2015/11/the-secret-message-hidden-in-every.html
e https://github.com/http2/http2-spec/commit/ac468f3fab9f7092a430eedfd69ee1fb2e23c944

17 https://docs.google.com/document/d/1Ll7T5cguj5m2DqkUTad5DWRCqtbQ3L1q9FRvTN5-Y28/

www.EBooksWorld.ir

115HTTP/2 frames
requires a bit more effort to view. Open a Chrome browser, and type the following in
the URL bar:

chrome://net-export/

Click “Start Logging to Disk” and choose a file location for the log file. In another tab,
open an HTTP/2 site (such as https://www.facebook.com) and after it has loaded, click
on “Stop Logging”. At this point you can use the NetLog viewer (https://netlog-viewer
.appspot.com) to open and examine the log file created (note: this tool only views the
file locally and does not upload it to a server). Click on the HTTP/2 option on the left,
and then the site (such as www.facebook.com), and you should see the underlying
HTTP/2 messages as shown in figure 4.7.

Chrome adds a lot of its own detail to this screen and often splits frames across multi-
ple lines. The following output is from one SETTINGS frame:

t= 1646 [st= 1] HTTP2_SESSION_RECV_SETTINGS
t= 1647 [st= 2] HTTP2_SESSION_RECV_SETTING
 --> id = "1 (SETTINGS_HEADER_TABLE_SIZE)"
 --> value = 4096

Figure 4.7 Viewing HTTP/2 frames in Chrome

www.EBooksWorld.ir

116 CHAPTER 4 HTTP/2 protocol basics
t= 1647 [st= 2] HTTP2_SESSION_RECV_SETTING
 --> id = "5 (SETTINGS_MAX_FRAME_SIZE)"
 --> value = 16384
t= 1647 [st= 2] HTTP2_SESSION_RECV_SETTING
 --> id = "6 (SETTINGS_MAX_HEADER_LIST_SIZE)"
 --> value = 131072
t= 1647 [st= 2] HTTP2_SESSION_RECV_SETTING
 --> id = "3 (SETTINGS_MAX_CONCURRENT_STREAMS)"
 --> value = 100
t= 1647 [st= 2] HTTP2_SESSION_RECV_SETTING
 --> id = "4 (SETTINGS_INITIAL_WINDOW_SIZE)"
 --> value = 65536

It can be a bit more difficult to read the individual frames when you use this Chrome
screen than when you use the other two tools, but the screen contains most of the same
information. On the other hand, it’s handy to have this level of detail in the browser
without having to install other tools, and you can use various tools to format the output
better.18 At this writing, I’m not aware of other browsers that show this level of detail,
although Opera, which has the same code base as Chrome, has similar functionality.

USING NGHTTP

nghttp is a command-line tool developed on top of the nghttp2 C library, used by many
web servers and clients to handle the underlying HTTP/2 complexities. If you have the
nghttp2 library installed for your server (Apache requires nghttp2 libraries, for exam-
ple), you may have this tool installed. You can use it to view the HTTP/2 messages in a
similar manner to the Chrome net-export tool, though I find the output clearer:

$ nghttp -v https://www.facebook.com
[0.042] Connected
The negotiated protocol: h2
[0.109] recv SETTINGS frame <length=30, flags=0x00, stream_id=0>
 (niv=5)
 [SETTINGS_HEADER_TABLE_SIZE(0x01):4096]
 [SETTINGS_MAX_FRAME_SIZE(0x05):16384]
 [SETTINGS_MAX_HEADER_LIST_SIZE(0x06):131072]
 [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]
 [SETTINGS_INITIAL_WINDOW_SIZE(0x04):65536]
[0.109] recv WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
 (window_size_increment=10420225)
[0.109] send SETTINGS frame <length=12, flags=0x00, stream_id=0>
 (niv=2)
 [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]
 [SETTINGS_INITIAL_WINDOW_SIZE(0x04):65535]
…etc.

USING WIRESHARK

Wireshark19 allows you to sniff all the traffic being sent and received by your com-
puter. This tool can be handy for some hardcore low-level debugging, as you get to see
the raw messages sent and received. Unfortunately, it’s also rather complicated to use!

18 https://github.com/rmurphey/chrome-http2-log-parser
19 https://www.wireshark.org/

www.EBooksWorld.ir

117HTTP/2 frames
 One of the complications is the fact that Wireshark isn’t the client; it sniffs traffic
sent from your browser to the server. All browsers use HTTP/2 over HTTPS, though, so
unless you know the SSL/TLS keys being used to encrypt and decrypt these messages,
you won’t be able to read the traffic, which is the very point of HTTPS. Chrome and
Firefox developers thought of this use case, and those browsers allow you to save your
HTTPS keys to a separate file so you can use tools like Wireshark to debug. Obviously,
you should turn this tool off when you’re using it for debugging. All you do is tell
Chrome or Firefox the file to save the keys in, by setting the SSLKEYLOGFILE environ-
ment file or by passing the following code in the command line to start Chrome:

"C:\Program Files (x86)\Google\Chrome\Application\chrome.exe" --ssl-key-log-
file=%USERPROFILE%\sslkey.log

NOTE Make sure to use the correct hyphens. Many applications, such as those
in Microsoft Office, like to automatically change short hyphens (-) to en dashes
(–) or em dashes (—), which are three separate characters and which the com-
mand line doesn’t recognize as passing arguments. The results are an empty file
with the SSL keys never being added to it and much confusion and frustration.

For macOS, set the SSLKEYLOGFILE environment variable:

$ export SSLKEYLOGFILE=~/sslkey.log
$ /Applications/Google\ Chrome.app/Contents/MacOS/Google\ Chrome

or provide it directly as a command-line argument:

$ /Applications/Google\ Chrome.app/Contents/MacOS/Google\ Chrome--ssl-key-
log-file=/Users/barry/sslkey.log

Next, launch Wireshark and set the same file location by choosing Edit > Preferences >
Protocols > SSL and setting the (Pre)-Master-Secret log filename, as shown in figure 4.8.

Select SSL in the
Protocols List

Add a (Pre)-Master-Secret
log filename

Figure 4.8 Setting a Wireshark HTTPS secret key file

www.EBooksWorld.ir

118 CHAPTER 4 HTTP/2 protocol basics
At this point, you should be able to read all the HTTPS data used by Chrome, so if you
visit https://www.facebook.com and filter in Wireshark on http2, you should be able to
see the messages, including the preface message discussed in section 4.1.5 (available
in Wireshark), as shown in figure 4.9.

A lot is going on in figure 4.9, so if you’re not used to Wireshark, it can be intimidat-
ing. The following list describes the various sections labeled 1–5:

1 The filter view allows you to type various filter options. Here, I filtered for http2
messages. If you have many HTTP/2 connections open, you may want to use a
more specific filter, including the IP address of the server you’re connected to.
The following filter shows only HTTP/2 messages sent to and from IP address
31.13.90.2 (the Facebook server I was connected to in this example; get it from
your browser’s developer tools):

http2 && (ip.dst==31.13.90.2 || ip.src==31.13.90.2)

2 Next is a list of messages that match your filter. If you click these messages, you
get more details.

3 This section shows the full detail of the message. If Wireshark recognizes the
protocol (and I’ve yet to find one that it doesn’t!), it displays each protocol that
the message applies to in an easy-to-read format.

1

2

3

4

5

Figure 4.9 The “magic” HTTP/2 preface message in Wireshark

www.EBooksWorld.ir

119HTTP/2 frames
This example, reading from the top down, starts with Wireshark’s own base
format, which it calls a frame (not to be confused with HTTP/2 frames). The
base frames are sent as Ethernet messages, which are wrapped up into IPv4
messages, sent over TCP, sent over SSL/TLS, and finally, you see the HTTP/2
messages. Wireshark allows you to view the messages for any of these levels. In
the screenshot, I expanded the HTTP/2 section and then further expanded
the “magic” HTTP/2 preface message, but you could similarly expand the
other levels if you’re more interested in looking at messages at an Ethernet, IP,
TCP, or SSL/TLS level.

4 The section near the bottom shows the raw data, usually displayed in hex and
ASCII format.

5 The tabs at the bottom of the raw data allow you to decide how raw to display
the data. You’ll almost certainly be interested only in decompressed header for-
mat (or decrypted SSL for the magic message, which doesn’t have any com-
pressed headers), not the raw frame format.

You can even use Wireshark to look at the HTTPS negotiation messages (including
ALPN extension requests in the ClientHello message and responses in the Server-
Hello messages). In figure 4.10, the arrows indicate that the client prefers h2 first and
http/1.1 next.

ALPN
protocols
supported

by the
browser

Figure 4.10 ALPN extensions as part of ClientHello message in Wireshark

www.EBooksWorld.ir

120 CHAPTER 4 HTTP/2 protocol basics
WHICH TOOL TO USE

Use whichever tool you feel most comfortable with or an alternative tool if you prefer.
Wireshark gives the most detail, so if you want to get to know message structures and
formats well, it has no equal. But this level of detail can be too much in many cases.
Also, setting it up is complicated. Unless you’re familiar with Wireshark, it may be bet-
ter to use one of the other two tools.

 For the remainder of this chapter, I use nghttp in examples, because it’s the easiest
tool to capture and format for the purposes of this book. The messages should be sim-
ilar no matter what tool you use, though there may be differences in the order in
which they display data or in some settings.

 These tools can be useful for low-level debugging or looking at the detail of the
protocol, but most people won’t need to use them day to day. Certainly, most develop-
ers will get enough out of the standard developer tools in browsers that they don’t
need to delve into the lower level net-export or Wireshark’s level of detail. All three
are great tools to have in your back pocket, however, because they help you cement
your understanding of the protocol.

Having problems getting Wireshark to decrypt traffic?
Unfortunately, using Wireshark to decrypt HTTPS traffic can be a little flaky, to say the
least, so you may have to try several times to get it right.

One of the reasons is that this process works only for a new HTTPS session with a
full TLS handshake. The problem is that if you connect to the same site again, the
site may reuse some of the old encryption settings, and only a partial handshake may
be completed—not enough for Wireshark to decrypt the traffic. To see whether HTTPS
session resumption is being used in Wireshark, filter for ssl, rather than http2. Look
at the first ClientHello message to see whether the Session ID or SessionTicket
TLS is nonzero. If so, you’re rejoining an old session, and Wireshark won’t be able
to decrypt the messages (unless it was running after the original session was
established).

Worse, none of the browsers offers a reliable way to remove the SSL/TLS session
keys/session tickets and enforce a full handshake. Some requests have been
made to add this functionality to Chromea and Firefox,b but they’ve been open for
some time.

I’ve found Wireshark generally harder to get working in macOS. The latest version of
Firefox no longer seems to be logging the SSL key information all the time, for example.

The best advice I can offer is to ensure you’re running the latest version of Wireshark.
Taking a break and returning when the session is expired also seems to help, though
is not satisfying. Alternatively, you could try an alternative browser, which shouldn’t
have a previous session stored.

a https://bugs.chromium.org/p/chromium/issues/detail?id=90454
b https://bugzilla.mozilla.org/show_bug.cgi?id=285440

www.EBooksWorld.ir

121HTTP/2 frames
4.3.2 HTTP/2 frame format

Before you start looking at some example frames, it may help to understand what
makes up an HTTP/2 frame. Each HTTP/2 frame is made up of a fixed-length
header (detailed in table 4.1), followed by the payload.

The fact that the frames are so explicitly defined is what makes HTTP/2 a binary pro-
tocol. HTTP/2 frames are different from variable-length HTTP/1 text messages,
which had to be parsed by scanning for line breaks and spaces—an inefficient and
error-prone process. The much stricter, well-defined format of HTTP/2 frames allows
for easier parsing and smaller messages, as particular codes can be used (such as 0x01
for a HEADERS frame type rather than the full wording).

Table 4.1 HTTP/2 frame header format

Field Length Description

Length 24 bits Length of the frame, not including all the header fields detailed
in this table with a maximum size of 224 – 1 octets; limited by
SETTINGS_MAX_FRAME_SIZE, which defaults to the smaller
size of 214 octets

Type 8 bits Currently, 14 frame types have been defined:a

 DATA (0x0)

 HEADERS (0x1)

 PRIORITY (0x2)

 RST_STREAM (0x3)

 SETTINGS (0x4)

 PUSH_PROMISE (0x5)

 PING (0x6)

 GOAWAY (0x7)

 WINDOW_UPDATE (0x8)

 CONTINUATION (0x9)

 ALTSVC (0xa), added through RFC 7838b

 (0xb), not used at present but used in the pastc

 ORIGIN (0xc), added through RFC 8336d

 CACHE_DIGEST, proposede

a https://www.iana.org/assignments/http2-parameters/http2-parameters.xhtml
b https://tools.ietf.org/html/rfc7838
c https://github.com/httpwg/http-extensions/pull/323
d https://tools.ietf.org/html/rfc8336
e https://datatracker.ietf.org/doc/draft-ietf-httpbis-cache-digest/?include_text=1

Flags 8 bits Frame-specific flags

Reserved Bit 1 bit Not currently used and must be set to 0

Stream
Identifier

31 bits An unsigned 31-byte integer identifying the frame

www.EBooksWorld.ir

122 CHAPTER 4 HTTP/2 protocol basics
The Length field is (I hope) self-explanatory. The following sections will look at each
message Type in detail. The Flags field is frame-specific and described with each
frame type. The Reserved Bit field current isn’t used. The Stream Identifier field
should also be self-explanatory. Apparently, one reason to limit this field to 31 bits was
for Java interoperability, because it has no 32-bit unsigned integer.20

 The meaning of the flags and the makeup of the payload depend on the frame
type. HTTP/2 has been written to be extensible. The original HTTP/2 specification21

defined only frame types 0–9, but three more have been added and more will
undoubtedly be added in the future.

4.3.3 Examining HTTP/2 message flow by example

The easiest way to understand frames is to view real-world use of them. Use nghttp, for
example, to connect to www.facebook.com (one of the many sites that support HTTP/2).
The output follows:

$ nghttp -va https://www.facebook.com | more
[0.043] Connected
The negotiated protocol: h2
[0.107] recv SETTINGS frame <length=30, flags=0x00, stream_id=0>
 (niv=5)
 [SETTINGS_HEADER_TABLE_SIZE(0x01):4096]
 [SETTINGS_MAX_FRAME_SIZE(0x05):16384]
 [SETTINGS_MAX_HEADER_LIST_SIZE(0x06):131072]
 [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]
 [SETTINGS_INITIAL_WINDOW_SIZE(0x04):65536]
[0.107] recv WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
 (window_size_increment=10420225)
[0.107] send SETTINGS frame <length=12, flags=0x00, stream_id=0>
 (niv=2)
 [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]
 [SETTINGS_INITIAL_WINDOW_SIZE(0x04):65535]
[0.107] send SETTINGS frame <length=0, flags=0x01, stream_id=0>
 ; ACK
 (niv=0)
[0.107] send PRIORITY frame <length=5, flags=0x00, stream_id=3>
 (dep_stream_id=0, weight=201, exclusive=0)
[0.107] send PRIORITY frame <length=5, flags=0x00, stream_id=5>
 (dep_stream_id=0, weight=101, exclusive=0)

Octets versus bytes
The HTTP/2 specification, like many protocol definitions, uses octet rather than the
ambiguous byte. An octet is exactly 8 bits, whereas a byte is mostly understood to
be 8 bits, depending on the system architecture in use.

20 https://stackoverflow.com/questions/39309442/why-is-the-stream-identifier-31-bit-in-http-2-and-why-is-it-
preceded-with-a-rese

21 https://tools.ietf.org/html/rfc7540

www.EBooksWorld.ir

123HTTP/2 frames
[0.107] send PRIORITY frame <length=5, flags=0x00, stream_id=7>
 (dep_stream_id=0, weight=1, exclusive=0)
[0.107] send PRIORITY frame <length=5, flags=0x00, stream_id=9>
 (dep_stream_id=7, weight=1, exclusive=0)
[0.107] send PRIORITY frame <length=5, flags=0x00, stream_id=11>
 (dep_stream_id=3, weight=1, exclusive=0)
[0.107] send HEADERS frame <length=43, flags=0x25, stream_id=13>
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=11, weight=16, exclusive=0)
 ; Open new stream
 :method: GET
 :path: /
 :scheme: https
 :authority: www.facebook.com
 accept: */*
 accept-encoding: gzip, deflate
 user-agent: nghttp2/1.28.0
[0.138] recv SETTINGS frame <length=0, flags=0x01, stream_id=0>
 ; ACK
 (niv=0)
[0.138] recv WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=13>
 (window_size_increment=10420224)
[0.257] recv (stream_id=13) :status: 200
[0.257] recv (stream_id=13) x-xss-protection: 0
[0.257] recv (stream_id=13) pragma: no-cache
[0.257] recv (stream_id=13) cache-control: private, no-cache, no-store,
must-revalidate
[0.257] recv (stream_id=13) x-frame-options: DENY
[0.257] recv (stream_id=13) strict-transport-security: max-age=15552000;
preload
[0.257] recv (stream_id=13) x-content-type-options: nosniff
[0.257] recv (stream_id=13) expires: Sat, 01 Jan 2000 00:00:00 GMT
[0.257] recv (stream_id=13) set-cookie: fr=0m7urZrTka6WQuSGa..BaQ42y.61.A
AA.0.0.BaQ42y.AWXRqgzE; expires=Tue, 27-Mar-2018 12:10:26 GMT; Max-Age=7776
000; path=/; domain=.facebook.com; secu
re; httponly
[0.257] recv (stream_id=13) set-cookie: sb=so1DWrDge9fIkTZ7e-i5S2To; expi
res=Fri, 27-Dec-2019 12:10:26 GMT; Max-Age=63072000; path=/; domain=.facebo
ok.com; secure; httponly
[0.257] recv (stream_id=13) vary: Accept-Encoding
[0.257] recv (stream_id=13) content-encoding: gzip
[0.257] recv (stream_id=13) content-type: text/html; charset=UTF-8
[0.257] recv (stream_id=13) x-fb-debug: yrE7eqv05dkxF8R1+i4VlIZmUNInVI+AP
DyG7HCW6t7NCEtGkIIRqJadLwj87Hmhk6z/N3O212zTPFXkT2GnSw==
[0.257] recv (stream_id=13) date: Wed, 27 Dec 2017 12:10:26 GMT
[0.257] recv HEADERS frame <length=517, flags=0x04, stream_id=13>
 ; END_HEADERS
 (padlen=0)
 ; First response header
<!DOCTYPE html>
<html lang="en" id="facebook" class="no_js">
<head><meta charset="utf-8" />
…etc.
[0.243] recv DATA frame <length=1122, flags=0x00, stream_id=13>
…

www.EBooksWorld.ir

124 CHAPTER 4 HTTP/2 protocol basics
[0.243] recv DATA frame <length=2589, flags=0x00, stream_id=13>
…
[0.264] recv DATA frame <length=13707, flags=0x00, stream_id=13>
…
[0.267] send WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
 (window_size_increment=33706)
[0.267] send WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=13>
 (window_size_increment=33706)
…
[416.688] recv DATA frame <length=8920, flags=0x01, stream_id=13>
 ; END_STREAM
[417.226] send GOAWAY frame <length=8, flags=0x00, stream_id=0>
 (last_stream_id=0, error_code=NO_ERROR(0x00), opaque_data(0)=[])

I show some of the DATA frames but cut most of them, replacing them with …etc. text.
You can also pass the -n flag to hide the data and show only the frame headers:

$ nghttp -nv https://www.facebook.com | more

Even with the data truncated, this code looks complicated, so I’ll walk you through it
bit by bit.

 First, you connect and negotiate the HTTP/2 over HTTPS (h2). nghttp doesn’t
output the HTTPS setup or the HTTP/2 preface/magic message, so you receive a
SETTINGS frame first:

$ nghttp -v https://www.facebook.com | more
[0.043] Connected
The negotiated protocol: h2
[0.107] recv SETTINGS frame <length=30, flags=0x00, stream_id=0>
 (niv=5)
 [SETTINGS_HEADER_TABLE_SIZE(0x01):4096]
 [SETTINGS_MAX_FRAME_SIZE(0x05):16384]
 [SETTINGS_MAX_HEADER_LIST_SIZE(0x06):131072]
 [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]
 [SETTINGS_INITIAL_WINDOW_SIZE(0x04):65536]

SETTINGS FRAME

The SETTINGS frame (0x4) is the first frame that must be sent by the server and also by
the client (after the HTTP/2 preface/magic message). The frame consists of either
an empty payload or several field/value pairs, as shown in table 4.2.

 The SETTINGS frame defines only one flag that can be set in the common frame
header: ACK (0x1). Set the flag to 0 if the settings are being advertised by this side of
the HTTP/2 connection; set it to 1 for an acknowledgment of settings already sent by
the other side of the HTTP/2 connection. If it’s an acknowledgment (the flag is set
to 1), no other settings should be set in the payload.

www.EBooksWorld.ir

125HTTP/2 frames
With this knowledge in mind, look again at the first message:

 [0.107] recv SETTINGS frame <length=30, flags=0x00, stream_id=0>
 (niv=5)
 [SETTINGS_HEADER_TABLE_SIZE(0x01):4096]
 [SETTINGS_MAX_FRAME_SIZE(0x05):16384]
 [SETTINGS_MAX_HEADER_LIST_SIZE(0x06):131072]
 [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]
 [SETTINGS_INITIAL_WINDOW_SIZE(0x04):65536]

The received SETTINGS frame has a payload 30 octets long, with no flags set (so not an
acknowledgement frame), and uses the stream ID 0. Stream ID 0 is reserved for con-
trol messages (SETTINGS and WINDOW_UPDATE frames), so it’s correct for the server to
use stream 0 to send this SETTINGS frame.

Table 4.2 HEADERS frame format

Field Length Description

Identifier 16 bits Six settings are defined in the specification, and two more have been
added recently (with more likely to be added in the future). Proposed
settings aren’t formally standardized:

 SETTINGS_HEADER_TABLE_SIZE (0x1)

 SETTINGS_ENABLE_PUSH (0x2)

 SETTINGS_MAX_CONCURRENT_STREAMS (0x3)

 SETTINGS_INITIAL_WINDOW_SIZE (0x4)

 SETTINGS_MAX_FRAME_SIZE (0x5)

 SETTINGS_MAX_HEADER_LIST_SIZE (0x6)

 SETTINGS_ACCEPT_CACHE_DIGEST (0x7)a

 SETTINGS_ENABLE_CONNECT_PROTOCOL (0x8)b

Note: the SETTINGS_ACCEPT_CACHE_DIGEST is a proposed setting,
not formally standardized yet and subject to change.

Value 32 bits This field is the value of the setting. Note that if a setting isn’t defined,
the default values are used. Proposed settings aren’t formally standard-
ized yet:

 4096 octets
 1
 No limit
 65,535 octets
 16,384 octets
 No limit
 0 – No
 0 – No

Note: the SETTINGS_ACCEPT_CACHE_DIGEST is a proposed setting,
not formally standardized yet and subject to change, including its
default value.

a https://tools.ietf.org/html/draft-ietf-httpbis-cache-digest
b https://tools.ietf.org/html/rfc8441

www.EBooksWorld.ir

126 CHAPTER 4 HTTP/2 protocol basics
 Next you get the settings themselves, of which there are 5 (niv=5) in this example,
each of which is 16 bits (identifier) + 32 bits (value). This example is 48 bits or 6 octets
in total, which makes up the 30-octet length given in the header (5 headers x 6 octets
= 30 octets). So far, so good. Now look at the individual settings sent:

1 Facebook is using a SETTINGS_HEADER_TABLE_SIZE of 4,096 octets. This setting
is used for HPACK HTTP header compression, which I discuss in chapter 8, so
ignore it for now.

2 Facebook also uses a SETTINGS_MAX_FRAME_SIZE of 16,384 octets, so your client
(nghttp) must not send any larger payloads on this connection.

3 Next Facebook sets the SETTINGS_MAX_HEADER_LIST_SIZE to 131,072 octets, so
you’re not allowed to send any uncompressed headers larger than that.

4 Facebook sets the SETTINGS_MAX_CONCURRENT_STREAMS to 100 streams. Chapter
2 shows an example in which an attempt was made to load more than 100
images from a server with a 100-stream limit. In that case, requests were
queued, waiting for a free stream, similar to the way that requests queue in
HTTP/1, but with a lower connection limit than the six connections most
browsers use. HTTP/2 dramatically increases the number of parallel requests
that can be performed, but the number is often limited by the server (typically,
to 100 or 128 streams) rather than left unlimited (the default).

5 Finally Facebook sets the SETTINGS_INITIAL_WINDOW_SIZE to 65,536 octets.
This setting is used for flow control, which I cover in chapter 7.

A few things in this seemingly simple frame are worth noting. For a start, the settings
can be in any order, such as SETTINGS_MAX_CONCURRENT_STREAMS, which is defined in
the specification as setting 3 (0x03) but is given after SETTINGS_MAX_HEADER_LIST_
SIZE, which is setting 6 (0x06). Also, many of the settings are using the default initial
values, so the server could have sent this reduced SETTINGS frame for the same effect
with only three settings:

 [0.107] recv SETTINGS frame <length=18, flags=0x00, stream_id=0>
 (niv=3)
 [SETTINGS_MAX_HEADER_LIST_SIZE(0x06):131072]
 [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]
 [SETTINGS_INITIAL_WINDOW_SIZE(0x04):65536]

There’s no harm, however, in being more explicit about the values you want to use.
 This example shows that Facebook is using a SETTINGS_INITIAL_WINDOW_SIZE 1

octet larger than the default (65,535 octets), which seems to be odd, as it’s hardly
worth changing the default for.

 Finally, note that the Facebook server isn’t setting SETTINGS_ENABLE_PUSH. This
setting is intended for the server to push to the client, so it’s for the client to use. It
doesn’t make sense for the server to set this setting, although I guess it could be used
to advertise whether push support is possible on this server (if the spec authors
decided to use it for this purpose). It’s more important for the client SETTINGS frame

www.EBooksWorld.ir

127HTTP/2 frames
to turn this setting off if the client doesn’t support HTTP/2 push or doesn’t want it
enabled.

 Moving back to the example, I’ll skip the WINDOW_UPDATE frame for a moment and
look at the next three SETTINGS frames instead:

[0.107] recv SETTINGS frame <length=30, flags=0x00, stream_id=0>
 (niv=5)
 [SETTINGS_HEADER_TABLE_SIZE(0x01):4096]
 [SETTINGS_MAX_FRAME_SIZE(0x05):16384]
 [SETTINGS_MAX_HEADER_LIST_SIZE(0x06):131072]
 [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]
 [SETTINGS_INITIAL_WINDOW_SIZE(0x04):65536]
[0.107] send SETTINGS frame <length=12, flags=0x00, stream_id=0>
 (niv=2)
 [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]
 [SETTINGS_INITIAL_WINDOW_SIZE(0x04):65535]
[0.107] send SETTINGS frame <length=0, flags=0x01, stream_id=0>
 ; ACK
 (niv=0)
 …
[0.138] recv SETTINGS frame <length=0, flags=0x01, stream_id=0>
 ; ACK
 (niv=0)

nghttp receives the initial server SETTINGS frame (already discussed), followed by the
client’s sending a SETTINGS frame with a couple of settings. Next the client acknowl-
edges the server’s SETTINGS frame. The acknowledgment SETTINGS frame is a simple
one, with the ACK (0x01) flag set, 0 length, and therefore 0 settings (niv=0). A bit far-
ther down is the server’s acknowledgement of the client’s SETTINGS frame in an iden-
tical simple format.

 This example shows that a period exists during which one side has sent a SETTINGS
frame but hasn’t received any acknowledgment. During this time, these nondefault
settings can’t be used. But because all HTTP/2 implementations must be able to pro-
cess the default values, and because the SETTINGS frame must be sent first, this situa-
tion shouldn’t cause problems.

WINDOW_UPDATE FRAME

The server also sent a WINDOW_UPDATE frame:

[0.107] recv WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
 (window_size_increment=10420225)

The WINDOW_UPDATE frame (0x8) is used for flow control, such as to limit the amount
of data that can be sent to avoid overwhelming the receiver. Under HTTP/1, only one
request can be in flight at a time. If the client started getting overwhelmed with data,
it stopped processing TCP packets; then TCP flow control (similar to HTTP/2 flow
control) kicked in and slowed the sending of data until the receiver was ready to han-
dle more. In HTTP/2, there are multiple streams on the same connection, so you

www.EBooksWorld.ir

128 CHAPTER 4 HTTP/2 protocol basics
can’t depend on TCP flow control and must implement your own per-stream slow-
down method.

 The initial window size of data that can be sent is set in the SETTINGS frame, and
the WINDOW_UPDATE frame is used to increment this amount. The WINDOW_UPDATE frame
is, therefore, a simple frame without any flags and with one value (and a reserved bit),
as shown in table 4.3.

The WINDOW_UPDATE frame defines no flags and applies to the stream given, or, if set
for stream 0, applies to the entire HTTP/2 connection. Senders, therefore, must track
at both stream level and total level.

 HTTP/2 flow control applies only to DATA frames. All other frame types (or at
least those defined so far) can continue to send even when the flow-control window
has been used up. This feature prevents important control messages (such as the
WINDOW_UPDATE message itself) from being blocked by large DATA frames. Also, the
DATA frame should be the only frame of any size.

 I examine the HTTP/2 flow-control mechanism in chapter 7.

PRIORITY FRAME

The next frames are several PRIORITY frames (0x2):

[0.107] send PRIORITY frame <length=5, flags=0x00, stream_id=3>
 (dep_stream_id=0, weight=201, exclusive=0)
[0.107] send PRIORITY frame <length=5, flags=0x00, stream_id=5>
 (dep_stream_id=0, weight=101, exclusive=0)
[0.107] send PRIORITY frame <length=5, flags=0x00, stream_id=7>
 (dep_stream_id=0, weight=1, exclusive=0)
[0.107] send PRIORITY frame <length=5, flags=0x00, stream_id=9>
 (dep_stream_id=7, weight=1, exclusive=0)
[0.107] send PRIORITY frame <length=5, flags=0x00, stream_id=11>
 (dep_stream_id=3, weight=1, exclusive=0)

This code creates several streams with various priorities for nghttp to use. In fact,
nghttp doesn’t use streams 3–11 directly; it hangs other streams from the ones it sets
up at the beginning, using dep_stream_id. This use of the precreated priority streams
allows requests to be prioritized appropriately without the need to explicitly set up the
priorities for each subsequent new stream. Not all HTTP/2 clients predefine streams,
and nghttp based its implementation on the Firefox model,22 so don’t be concerned if
you’re using another tool and don’t see these PRIORITY frames.

Table 4.3 WINDOW_UPDATE frame format

Field Length Description

Reserved Bit 1 bit Not used

Window Size Increment 31 bits The number of octets that can be sent before the
next WINDOW_UPDATE frame must be received

22 https://nghttp2.org/documentation/nghttp.1.html#dependency-based-priority

www.EBooksWorld.ir

129HTTP/2 frames
 Stream priorities under HTTP/2 can get complicated, so I hold off looking at
them until chapter 7. For now, be aware that some requests (such as the initial HTML,
critical CSS, and critical JavaScript) can be prioritized over less important requests
(such as images or noncritical asynchronous JavaScript). The frame format is shown
in table 4.4, but this format won’t make a lot of sense to you until you get to chapter 7.

The PRIORITY frame (0x2) is fixed-length and doesn’t define any flags.

HEADERS FRAME

Finally, after all this setup, you get to the meat of the protocol and can make an
HTTP/2 request. An HTTP/2 request is sent in a HEADERS frame (0x1):

[0.107] send HEADERS frame <length=43, flags=0x25, stream_id=13>
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=11, weight=16, exclusive=0)
 ; Open new stream
 :method: GET
 :path: /
 :scheme: https
 :authority: www.facebook.com
 accept: */*
 accept-encoding: gzip, deflate
 user-agent: nghttp2/1.28.0

If you ignore the first few lines of the HTTP/2 frame header, the rest should look
somewhat similar to HTTP/1 requests. As you may recall from chapter 1, an HTTP/1
request is made up of a combination of the first line and the mandatory host header
(along with any other HTTP headers):

GET / HTTP/1.1↵
Host: www.facebook.com↵
In HTTP/2, instead of having a specific request frame type or a different first line in
the HEADERS frame, everything is sent as a header, and new pseudoheaders (which start
with a colon) have been created to define the various parts of the HTTP request line:

 :method: GET
 :path: /
 :scheme: https
 :authority: www.facebook.com

Table 4.4 PRIORITY frame format

Field Length Description

E (Exclusive) 1 bit Indicates whether the stream is exclusive (set only if the
Priority flag is set for this frame)

Stream Dependency 31 bits An indicator of which stream this header depends on (set
only if the Priority flag is set for this frame)

Weight 8 bits The weighting of this stream (set only if the Priority flag
is set for this frame)

www.EBooksWorld.ir

130 CHAPTER 4 HTTP/2 protocol basics
Note that the :authority pseudoheader has replaced the HTTP/1.1 Host header.
The HTTP/2 pseudoheaders are strictly defined,23 and unlike standard HTTP head-
ers, they can’t be added to without changing HTTP/2, so you can’t create a new
pseudoheader like this:

:barry: value

You must stick to normal HTTP headers, without the initial colon, for any app-specific
headers:

barry: value

You can create pseudoheaders with new specifications, however, which has already
happened once at the time of this writing: the :protocol pseudoheader was added in
the Bootstrapping WebSockets with HTTP/2 RFC.24 The use of new pseudoheaders will
likely require a new SETTINGS parameter to indicate support by client and server.

 These pseudoheaders can also be shown in client tools like Chrome’s developer
tools (figure 4.11), so they also indicate an HTTP/2 request (though other browsers,
such as Firefox, don’t show pseudoheaders at this writing).

Also note that HTTP/2 enforces lowercase HTTP header names. HTTP/1 was offi-
cially case-insensitive for header names, though some implementations didn’t strictly
honor this specification. HTTP header values can contain different cases, but the
header names themselves can’t. HTTP/2 also is stricter about badly formatted HTTP

23 https://tools.ietf.org/html/rfc7540#section-8.1.2
24 https://tools.ietf.org/html/rfc8441#section-3

HTTP/2 pseudoheaders
in Chrome developer

tools Network tab

Figure 4.11 HTTP/2 pseudoheaders in Chrome developer tools

www.EBooksWorld.ir

131HTTP/2 frames
headers. Leading spaces, double colons, and newlines can cause problems in HTTP/2,
even though most HTTP/1 implementations would process them. This example is
one strong use case for examining HTTP/2 messages at frame level, as you’re doing
here. These errors are usually highlighted at this low level, whereas clients return
more cryptic error messages (such as ERR_SPDY_PROTOCOL_ERROR in Chrome) to the
user when they find invalid HTTP headers, preventing your site from working. The
HEADERS frame format is shown in table 4.5.

I discuss the E, Stream Dependency, and Weight fields in chapter 7. The Pad Length
and Padding fields are added for security reasons to optionally allow the true length of
the message to be hidden. The Header Block Fragment field is where all the headers
(including pseudoheaders) are sent. This field isn’t clear-text, as the nghttp output
may suggest. I look into the HPACK header compression format in chapter 8, so don’t
worry about it now, especially because tools such as nghttp automatically decompress
HTTP headers for you.

 The HEADERS frame defines four flags that can be set in the common frame header:

 END_STREAM (0x1) is set if no other frames follow this HEADERS frame (such as a
DATA frame for a POST request). Somewhat counterintuitively, CONTINUATION
frames (discussed later in this chapter) are exempt from this restriction; they’re
considered to be continuations of the HEADERS frame rather than additional
frames and are controlled by the END_HEADERS flag.

 END_HEADERS (0x4) indicates that all the HTTP headers are contained in this
frame and aren’t followed by a CONTINUATION frame with additional headers.

Table 4.5 HEADERS frame format

Field Length Description

Pad Length 8 bits (optional) An optional field indicating the length of
the Padding field (set only if the
Padded flag is set for this frame)

E (Exclusive) 1 bit Indicates whether the stream is exclu-
sive (set only if the Priority flag is
set for this frame)

Stream Dependency 31 bits Indicates the stream on which this
header depends (set only if the
Priority flag is set for this frame)

Weight 8 bits The weighting of this stream (set only
if the Priority flag is set for this
frame)

Header Block Fragment Length of the frame minus
the other fields in this table

The request headers (including
pseudoheaders)

Padding Indicated by the Pad
Length field (optional)

Set to 0 for each padded byte (set only
if the Padded flag is set for this frame)

www.EBooksWorld.ir

132 CHAPTER 4 HTTP/2 protocol basics
 PADDED (0x8) is set when padding is used. This flag means that the first 8 bits of
the DATA frame indicate how much padding has been added to the end of the
HEADERS frame.

 PRIORITY (0x20) indicates that the E, Stream Dependency, and Weight fields are
set in this frame.

If an HTTP header is larger than a single frame, a CONTINUATION frame is used (immedi-
ately after the HEADERS frame it’s continuing), rather than an additional HEADERS frame.
This process may seem to be overly complex compared with HTTP bodies, which use as
many DATA frames as required. But the other fields discussed in table 4.5 can be used
only once, and setting them differently in subsequent HEADERS frames for the same
request would cause issues. The requirement to have CONTINUATION frames immediately
follow HEADERS frames rather than allow interleaving also limits the multiplexed nature
of HTTP/2, and alternatives were considered.25 The reality is that CONTINUATION frames
are rarely used and that most requests will fit in a single HEADERS frame.

 Looking at the output with this knowledge, you can understand the first part of the
message a little better now:

[0.107] send HEADERS frame <length=43, flags=0x25, stream_id=13>
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=11, weight=16, exclusive=0)
 ; Open new stream
 :method: GET
 :path: /
 :scheme: https
 :authority: www.facebook.com
 accept: */*
 accept-encoding: gzip, deflate
 user-agent: nghttp2/1.28.0

Each new request is given a unique stream ID incremented from the last-used stream
ID (11 in this case, from the last of the PRIORITY frames that nghttp created, so this
frame is created with stream ID 13, as even headers are reserved for the server). Vari-
ous flags are set that combine to make the hexadecimal value 0x25 and that nghttp2
helpfully displays on the line below. The END_STREAM (0x1) and END_HEADERS (0x4)
flags are set to indicate that this frame contains the complete request and that there’s
no DATA frame (as there might be for a POST request). The PRIORITY flag (0x20) is set
to indicate that prioritization is used in this frame. Adding these hexadecimal values
together (0x1 + 0x4 + 0x20), you get the 0x25 shown in the frame header. This stream
is dependent on stream ID 11, so it’s given the appropriate priority and a weighting of
16 within that priority. Again, don’t worry too much about this topic now; I explain
prioritization in chapter 7. nghttp notes that this stream is new (Open new stream) and
then lists the various HTTP pseudoheaders and HTTP request headers.

25 https://github.com/http2/http2-spec/wiki/ContinuationProposals

www.EBooksWorld.ir

133HTTP/2 frames
 HTTP responses are also sent with a HEADERS frame on the same stream, as you see
in this example:

[0.257] recv (stream_id=13) :status: 200
[0.257] recv (stream_id=13) x-xss-protection: 0
[0.257] recv (stream_id=13) pragma: no-cache
[0.257] recv (stream_id=13) cache-control: private, no-cache, no-store,
must-revalidate
[0.257] recv (stream_id=13) x-frame-options: DENY
[0.257] recv (stream_id=13) strict-transport-security: max-age=15552000;
preload
[0.257] recv (stream_id=13) x-content-type-options: nosniff
[0.257] recv (stream_id=13) expires: Sat, 01 Jan 2000 00:00:00 GMT
[0.257] recv (stream_id=13) set-cookie: fr=0m7urZrTka6WQuSGa..BaQ4Ay.61.A
AA.0.0.BaQ42y.12345678; expires=Tue, 27-Mar-2018 12:10:26 GMT; Max-Age=7776
000; path=/; domain=.facebook.com; secu
re; httponly
[0.257] recv (stream_id=13) set-cookie: sb=so11234567890TZ7e-i5S2To; expi
res=Fri, 27-Dec-2019 12:10:26 GMT; Max-Age=63072000; path=/; domain=.facebo
ok.com; secure; httponly
[0.257] recv (stream_id=13) vary: Accept-Encoding
[0.257] recv (stream_id=13) content-encoding: gzip
[0.257] recv (stream_id=13) content-type: text/html; charset=UTF-8
[0.257] recv (stream_id=13) x-fb-debug: yrE7eqv05dkxF8R1+1234567890nVI+AP
DyG7HCW6t7NCEtGkIIRqJadLwj87Hmhk6z/N3O212zTPFXkT2GnSw==
[0.257] recv (stream_id=13) date: Wed, 27 Dec 2017 12:10:26 GMT
[0.257] recv HEADERS frame <length=517, flags=0x04, stream_id=13>
 ; END_HEADERS
 (padlen=0)
 ; First response header

Here, you first see the status pseudoheader (: status: 200), which, unlike in
HTTP/1.1, gives only the three-digit HTTP code (200), not the text representation of
that status code (such as 200 OK). This pseudo-header is followed by various HTTP
headers, though again, this isn’t how they’re sent on the wire, as you’ll see when we
look at HPACK in chapter 8. Then nghttp lists the HEADERS frame details. Confusingly
(at least to me), nghttp gives frame details after the frame payload rather than before
it, as I would have preferred.26 These details include the END_HEADERS flag (0x04), sig-
naling that the entire HTTP response header fits into this single frame.

26 https://github.com/nghttp2/nghttp2/issues/1163

Trailing headers
HTTP/1.1 introduced the concept of trailing headers, which can be sent after the
body. These headers allow for metadata that can’t be calculated up front. For stream-
ing data, for example, a checksum or digital signature of the content could be calcu-
lated and included as a trailing HTTP header.

www.EBooksWorld.ir

134 CHAPTER 4 HTTP/2 protocol basics
DATA FRAME

After the HEADERS frame is the DATA frame (0x0), which is used to send message bod-
ies. In HTTP/1, the body of the message is sent in the response after the HTTP
headers, after a double line break (signaling the end of the HTTP headers). In
HTTP/2, data is a separate message type. You can send headers followed by some of
the body, part of a different stream, more of the body, and so on. By separating
HTTP/2 responses into one or more frames, you can have multiplexed streams over
the same connection.

 HTTP/2 DATA frames are simple, containing whatever data is needed: UTF-8
encoded, gzipped, HTML code, bytes that make up a JPEG picture, or whatever. The
main frame header includes the length, so length isn’t required in the DATA frame for-
mat itself. Like the HEADERS frame, the DATA frame allows the use of padding to
obscure the size of the message for security reasons, so a Pad Length field can be used
at the beginning to state the length. The DATA frame format, therefore, is simple, as
shown in table 4.6.

The DATA frame defines two flags that can be set in the common frame header:

 END_STREAM (0x1) is set if this frame is the last in the stream.
 PADDED (0x8) is set when padding is used. It means that the first 8 bits of the

DATA frame is used to indicate how much padding has been added to the end of
the frame.

In the example, I stripped out most of the content for space reasons, but the …etc.
lines normally would be filled with the appropriate data:

Trailing headers (continued)
In reality, trailing headers are poorly supported and rarely used. But HTTP/2 decided
to continue supporting them, so a HEADERS frame (or a HEADERS frame followed by
one or more CONTINUATION frames) appears before and optionally after all the DATA
frames for that stream.

Table 4.6 DATA frame format

Field Length Description

Pad Length 8 bits (optional) An optional field indicating the length of the Padding
field (include only if the PADDED flag is set)

Data Length of the frame minus
any Padding fields

The data

Padding Indicated by the Pad
Length field (optional)

Set to 0 for each padded byte (include only if the
PADDED flag is set)

www.EBooksWorld.ir

135HTTP/2 frames
<!DOCTYPE html>
<html lang="en" id="facebook" class="no_js">
<head><meta charset="utf-8" />
…etc.
[0.243] recv DATA frame <length=1122, flags=0x00, stream_id=13>
…etc.
[0.243] recv DATA frame <length=2589, flags=0x00, stream_id=13>
…etc.
[0.264] recv DATA frame <length=13707, flags=0x00, stream_id=13>
…etc.
[0.267] send WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
 (window_size_increment=33706)
[0.267] send WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=13>
 (window_size_increment=33706)
…etc.
[416.688] recv DATA frame <length=8920, flags=0x00, stream_id=13>

Here, you see HTML code being sent in various DATA frames (nghttp helpfully un-gzips
the data for you), and as the client processes these frames, it sends back WINDOW_UPDATE
frames, allowing the server to keep sending more data. It’s interesting that Facebook
chooses to send relatively small DATA frames initially (1,122 octets, 2,589 octets, and so
on), despite the fact that the client is willing to handle much larger frames (up to
65,535 octets). I’m not sure whether this choice is intentional (to get as much of the
data to the client as quickly as possible), due to an initially small TCP congestion win-
dow, or for some other reason.

 As HTTP/2 DATA frames can by default be split into parts, there’s no need for
chunked encoding (discussed in section 4.1.1). The HTTP/2 spec even goes as far as
to say “The chunked transfer encoding . . . MUST NOT be used in HTTP/2.”

GOAWAY FRAME

The GOAWAY frame (0x7) is the next message:

[417.226] send GOAWAY frame <length=8, flags=0x00, stream_id=0>
 (last_stream_id=0, error_code=NO_ERROR(0x00), opaque_data(0)=[])

This somewhat-rude-sounding frame type is used to shut down the connection, either
because there are no more messages to send or because a serious error occurred. The
GOAWAY frame format is shown in table 4.7.

Table 4.7 GOAWAY frame format

Field Length Description

Reserved Bit 1 bit Not used

Last-Stream-ID 31 bits The last incoming stream ID processed, to allow
the client to know whether a recently initiated
stream was missed

www.EBooksWorld.ir

136 CHAPTER 4 HTTP/2 protocol basics
The GOAWAY frame doesn’t define any flags.
 Looking at the final message in the previous nghttp output, you see an example of

a GOAWAY frame:

[417.226] send GOAWAY frame <length=8, flags=0x00, stream_id=0>
 (last_stream_id=0, error_code=NO_ERROR(0x00), opaque_data(0)=[])

The nghttp client sent the GOAWAY frame rather than receiving it from the server. In
this example, nghttp got the homepage HTML and didn’t request all the dependent
resources (CSS, JavaScript, and so on) that a normal browser would request. When
the response is processed and the client isn’t waiting on any more data, it sends this
frame to shut down the HTTP/2 connection. Web browsers will likely leave the con-
nection open in case a subsequent request is made, but nghttp was finished after get-
ting this one response, so decided to close the connection before quitting. A browser
may do the same thing to any open connections when you quit it.

 The frame was sent with the minimum 8-octet length (1 bit + 31 bits + 32 bits); no
flags were set; and the frame was sent on stream 0. The last stream ID received from
the server was 0, so there were no server-initiated streams. There were no error codes
(NO_ERROR [0x00]) and no additional debug data. In summary, this example is a stan-
dard way to close the connection cleanly when it’s no longer needed.

Error Code 32 bits The error code, in case the GOAWAY frame was
sent due to an error:

 NO_ERROR (0x0)

 PROTOCOL_ERROR (0x1)

 INTERNAL_ERROR (0x2)

 FLOW_CONTROL_ERROR (0x3)

 SETTINGS_TIMEOUT (0x4)

 STREAM_CLOSED (0x5)

 FRAME_SIZE_ERROR (0x6)

 REFUSED_STREAM (0x7)

 CANCEL (0x8)

 COMPRESSION_ERROR (0x9)

 CONNECT_ERROR (0xa)

 ENHANCE_YOUR_CALM (0xb)

 INADEQUATE_SECURITY (0xc)

 HTTP_1_1_REQUIRED (0xd)

Additional Debug
Data

Remainder of the frame
length (optional)

Undefined, implementation-specific format

Table 4.7 GOAWAY frame format (continued)

Field Length Description

www.EBooksWorld.ir

137HTTP/2 frames
4.3.4 Other frames

The nghttp Facebook example covered many of the HTTP/2 frame types, but a few
more types weren’t used in this simple flow. Also, HTTP/2 has been written to allow
expansion of frame types. Three new frame types have been added—ALTSVC, ORIGIN,
and CACHE_DIGEST—and are discussed at the end of this section. At this writing, only
the first two have been formally standardized, but the last one and perhaps more will
be standardized by the time this book is published. Each new HTTP/2 frame type,
HTTP/2 setting, and HTTP/2 error code must be registered with the Internet
Assigned Numbers Authority (IANA).27

CONTINUATION FRAME

The CONTINUATION frame (0x9) is used for large HTTP headers and immediately fol-
lows a HEADERS frame or a PUSH_PROMISE frame. Because the entire HTTP header is
needed before a request can be processed, and to keep the HPACK dictionary in
check (see chapter 8), the CONTINUATION frame must immediately follow the HEADERS
frame that it’s continuing. As I mentioned when discussing the HEADERS frame, this
requirement limits the multiplexed nature of HTTP/2, and there has been much
argument about whether the CONTINUATION frame is needed or whether larger HEAD-
ERS frames should be allowed. For now, the frame stays, though it isn’t expected to be
used much.

 The CONTINUATION frame is simpler than the HEADER or PUSH_PROMISE frame that it
continues. It contains extra header data. The frame format is shown in table 4.8.

The CONTINUATION frame defines only one flag, which can be set in the common
frame header. END_HEADERS (0x4), when set, indicates that all the HTTP headers are
finished in this frame and aren’t followed by another CONTINUATION frame with
additional headers.

 The CONTINUATION frame doesn’t use the END_STREAM flag to indicate that there’s
no body, as this frame is driven off the original HEADERS frame.

PING FRAME

The PING frame (0x6) is used to measure a round trip from the sender and can also be
used to keep an otherwise-unused connection alive. When it receives this frame, the
receiver should immediately respond with a similar PING frame. Both PING frames
should be sent only on the control stream (stream ID 0). The PING frame format is
shown in table 4.9.

27 https://www.iana.org/assignments/http2-parameters/http2-parameters.xhtml

Table 4.8 CONTINUATION frame format

Field Length Description

Header Block Fragment Length of the frame minus this field The data

www.EBooksWorld.ir

138 CHAPTER 4 HTTP/2 protocol basics
The PING frame defines one flag that can be set in the common frame header. ACK
(0x1) should not be set in the initial PING frame, but it should be set on the returning
PING frame.

PUSH_PROMISE FRAME

The PUSH_PROMISE frame (0x5) is used by the server to tell the client that the server is
going to push an asset that the client didn’t explicitly ask for. The PUSH_PROMISE frame
needs to provide the client information about the asset that’s about to be pushed, so it
includes all the HTTP headers that normally would be included in a HEADERS frame
request (and similarly can be followed by a CONTINUATION frame for push requests
with headers larger than can fit in a single frame). The PUSH_PROMISE frame format is
shown in table 4.10.

The PUSH_PROMISE frame defines two flags that can be set in the common frame header:

 END_HEADERS (0x4) indicates that all the HTTP headers are contained in this
frame and aren’t followed by a CONTINUATION frame with additional headers.

 PADDED (0x8) is set when padding is used. It means that the first 8 bits of the
DATA frame are used to indicate how much padding has been added to the end
of the PUSH_PROMISE frame.

I discuss HTTP/2 server push in chapter 5.

RST_STREAM FRAME

The final frame defined in the original HTTP/2 specification is the RST_STREAM frame
(0x3), which is used to immediately cancel (or reset) a stream. This cancelation could

Table 4.9 PING frame format

Field Length Description

Opaque Data 64 bits (8 octets) Data to be sent in the returning PING request

Table 4.10 PUSH_PROMISE frame format

Field Length Description

Pad Length 8 bits (optional) An optional field indicating the
length of the Padding field

Reserved Bit 1 bit Not used

Promised Stream ID 31 bits Indicates the stream on which
this push promise will be sent

Header Block Fragment Length of the frame minus the
other fields in this table

The HTTP headers of the pushed
resource

Padding Indicated by Pad Length field
(optional)

Set to 0 for each padded byte

www.EBooksWorld.ir

139HTTP/2 frames
be due to an error or because the request is no longer required. Perhaps the client has
navigated away, canceled the loading, or doesn’t need a server-pushed resource.

 HTTP/1.1 doesn’t offer this functionality. If you start to download a large resource
on a page, unless you kill the connection, you’re stuck downloading the resource even
if you navigate away from the page. You have no way to cancel a request in flight. This
feature is yet another way in which HTTP/2 improves on HTTP/1.1. The RST_STREAM
frame format is shown in table 4.11.

The RST_STREAM frame doesn’t define any flags.
 The spec gives little guidance on what these error codes mean, and even when it

does, it’s sometimes less than clear. It states the following, for example, to show that
one of two error codes can be used to cancel pushed responses:

If the client determines, for any reason, that it does not wish to receive the pushed response
from the server or if the server takes too long to begin sending the promised response, the
client can send a RST_STREAM frame, using either the CANCEL or REFUSED_STREAM
code and referencing the pushed stream’s identifier.

Ultimately, it’s up to implementers to decide which error codes to use and when.
Implementations may not always agree.

ALTSVC FRAME

The ALTSVC frame (0xa) was the first frame to be added to HTTP/2 since the HTTP/2
specification was approved. It’s detailed in a separate specification28 and allows a server

Table 4.11 RST_STREAM frame format

Field Length Description

Error Code 32 bits The error code, to explain why the stream is being terminated:

 NO_ERROR (0x0)

 PROTOCOL_ERROR (0x1)

 INTERNAL_ERROR (0x2)

 FLOW_CONTROL_ERROR (0x3)

 SETTINGS_TIMEOUT (0x4)

 STREAM_CLOSED (0x5)

 FRAME_SIZE_ERROR (0x6)

 REFUSED_STREAM (0x7)

 CANCEL (0x8)

 COMPRESSION_ERROR (0x9)

 CONNECT_ERROR (0xa)

 ENHANCE_YOUR_CALM (0xb)

 INADEQUATE_SECURITY (0xc)

 HTTP_1_1_REQUIRED (0xd)

28 https://tools.ietf.org/html/rfc7838

www.EBooksWorld.ir

140 CHAPTER 4 HTTP/2 protocol basics
to advertise alternative services that are available to fetch this resource, as discussed in
section 4.2.4. This frame may be used to upgrade (such as to an h2c connection from
h2) or to direct traffic to another version. See table 4.12.

The ALTSVC frame doesn’t define any flags.

ORIGIN FRAME

The ORIGIN frame (0xc) is a new frame, standardized in March 2018,29 that allows the
server to indicate which origins (such as domain name) this server will respond to.
This frame is useful for a client to decide whether to coalesce connections to this
HTTP/2 connection. The ORIGIN frame format is shown in table 4.13.

Multiple Origin-Len/Origin pairs can be included up to the length of the frame.
The ORIGIN frame doesn’t define any flags.

 I return to the ORIGIN frame when discussing connection coalescing in chapter 6.

CACHE_DIGEST FRAME

The CACHE_DIGEST frame (0xd) is a new frame proposal.30 This frame allows the client
to indicate which assets it has cached. It indicates that the server shouldn’t push any of
these resources, for example, because the client already has them. The CACHE_DIGEST
frame format at this writing (and subject to change) is shown in table 4.14.

Table 4.12 ALTSVC frame format

Field Length Description

Origin-Len 16 bits The length of the Origin field

Origin Indicated by Origin-Len field
(optional)

The alternative URL

Alt-Svc-Field-Value Length of the frame minus the other
fields in this table

The alternative service type

29 https://tools.ietf.org/html/rfc8336

Table 4.13 ORIGIN frame format

Field Length Description

Origin-Len 16 bits The length of the Origin field

Origin Indicated by Origin-Len field (optional) The alternative URL

30 https://tools.ietf.org/html/draft-ietf-httpbis-cache-digest

www.EBooksWorld.ir

141Summary
The CACHE_DIGEST frame defines the following flags:

 RESET (0x1) allows the client to tell the server to reset any currently held
CACHE_DIGEST information.

 COMPLETE (0x2) indicates that the included cache digests are the complete rep-
resentation of the cache rather than a subset of the cache.

I return to the CACHE_DIGEST frame when discussing HTTP/2 server push in chapter 5.

Summary
 HTTP/2 is a binary protocol with a specific, detailed format and structure for

its messages.
 For this reason, the client and server must agree to use HTTP/2 before sending

any HTTP messages.
 For web browsers, this agreement is made mostly in the HTTPS connection

negotiation, using a new extension called ALPN.
 In HTTP/2, requests and responses are sent and received in HTTP/2 frames.
 An HTTP/2 GET request, for example, usually is sent as a HEADERS frame, and

the response usually is received as a HEADERS frame followed by DATA frames.
 Most web developers and web server administrators don’t need to concern

themselves with HTTP/2 frames, though tools are available for viewing them.
 Several HTTP/2 frames exist, and new frames can be added.

Table 4.14 CACHE_DIGEST frame format

Field Length Description

Origin-Len 16 bits The length of the Origin field

Origin Indicated by Origin-Len field (optional) The origin this digest refers to

Digest-Value Length of the frame minus the other fields
in this table (optional)

The Cache-Digest (discussed in
chapter 5)

www.EBooksWorld.ir

Implementing
HTTP/2 push
5.1 What is HTTP/2 server push?
HTTP/2 server push (hereafter known as HTTP/2 push) allows servers to send back
extra resources that weren’t requested by the client. Before the introduction of
HTTP/2, HTTP was a simple request-and-response protocol; a browser requested a
resource, and the server responded with that resource. If the page needed extra
resources to be displayed (such as CSS, JavaScript, fonts, images, and so on), the
browser had to download the initial page, see that extra resources were referenced,
and then request them. For images, making these extra requests may not have been
too problematic; images don’t often hold up initial paint time, and the page would

This chapter covers
 What is HTTP/2 push?

 The various ways to request an HTTP/2 push

 How HTTP/2 push works from the server and
client sides

 What to push and what not to push

 Troubleshooting HTTP/2 push

 Some of the risks of HTTP/2 push
142

www.EBooksWorld.ir

143What is HTTP/2 server push?
start rendering with an empty space where the image should be. Some resources, how-
ever, are critical to page rendering (such as CSS and JavaScript), and the browser
won’t even attempt to render the page until these resources are downloaded. This
process adds at least one extra round trip, so it slows web browsing. HTTP/2 multi-
plexing allows all the resources to be requested in parallel on the same connection, so
it’s better than HTTP/1, as there should be less queuing. But without HTTP/2 push,
the browser would have to make those extra requests after downloading the initial
page. Therefore, most web-page requests take at least two round trips in the best-case
scenario, and maybe twice as long to display as you’d like them to take. Figure 5.1
shows a CSS file and a JavaScript file being downloaded at the same time in the second
set of requests.

Figure 5.2 shows that it takes approximately two round-trip requests to do the initial
paint. Note that the styles.css and script.js resources arrive at slightly different times
rather than at the same time due to networking or processing constraints; they’re not
run in parallel.

This round-trip delay led to performance optimizations such as inlining style sheets
directly onto the HTML page with <style> tags and doing something similar in Java-
Script with <script> tags. By inlining the critical resources, browsers could start the
first render as soon as the original page was downloaded and parsed rather than wait
for additional critical resources.

 Inlining resources has several down sides, though. For CSS, only the critical styling
(the styling needed for the initial paint) is typically included; the full stylesheet is
loaded later to minimize the amount of code inlined and avoid making the page too

Web browser Web server

1. GET /index.html

2. /index.html

3. GET /styles.css

GET /script.js

4. /styles.css

/script.js

Figure 5.1 Critical resources require an extra request round trip.

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

11
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

index.html

styles.css

script.js

Figure 5.2 Critical resource round-trip lag as a waterfall diagram

www.EBooksWorld.ir

144 CHAPTER 5 Implementing HTTP/2 push
big. It’s complicated to pull out the critical styles needed from the CSS resources and
embed them in the HTML file, though tools do exist to help with this task. Besides
being complicated, this process is wasteful; the critical CSS is duplicated on every page
of the website rather than being stored in one CSS file that can be cached and reused
on other pages. Worse, critical CSS that’s inlined usually is still included in the main CSS
file that’s loaded later; it’s not only duplicated across pages, but also duplicated within
each page! Other disadvantages include the requirement to use JavaScript to load
any noncritical CSS files, because using only the standard <link rel="stylesheet"
type="text/css" href="…"> would cause the rendering to be paused until the files
are loaded, as there’s no async attribute for CSS link tags. Additionally, if you want to
change any of this critical CSS (such as with a site redesign), you need to change every
page rather than update one common CSS file. All in all, inlining gives good perfor-
mance benefits for the first visit, but it’s a bit of a hack. It would be better to solve this
problem in some other way, which is what HTTP/2 push aims to do.

 HTTP/2 push breaks the “one request = one response” paradigm that HTTP has
always worked under. It allows the server to respond to one request with many
responses. “Can I get this page, please?” can be answered “Certainly, and here are
some extra resources you’ll want to load that page.” Figure 5.3 shows only one round
trip to get the page and the critical resources needed to start rendering that page.

This process can also be depicted as a waterfall diagram, as shown in figure 5.4. Again,
the three resources don’t arrive back at the same time, as shown by the short gaps
between them, but the time required is slightly more than one round trip rather than
two round trips.

Web browser Web server

1. GET /index.html

2. /index.html

/styles.css

/script.js

Figure 5.3 Using HTTP/2 push can remove the round-trip delay for critical
resources.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

index.html

styles.css

script.js

Figure 5.4 Waterfall diagram of using HTTP/2 push to receive all
requests in the same round trip

www.EBooksWorld.ir

145What is HTTP/2 server push?
The time saving can also be illustrated by request-and-response diagrams of the type I
introduced in chapter 2. Figure 5.5 shows the significant time saved by sending back
all critical resources with the initial page.

HTTP/2 push can improve load times if it’s used correctly, but it can also hinder
load times if you overpush resources that the client won’t use or already has in its
cache. You’ll waste bandwidth that you could better use downloading a resource that
you do need. HTTP/2 push should be used with caution and some thought, as I dis-
cuss in this chapter.

Client Server

Request web page

Receive HTML page

Request CSS

Request JS

Receive CSS

Receive JS

Finish drawing page

Receive web page request

Send HTML page

Receive CSS request

Receive JS request

Send CSS

Send JS

Client Server

Time

(ms)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

Request web page

Receive HTML page

Receive CSS

Receive JS

Finish drawing page

Receive web page request

Send HTML page

Send CSS

Send JS

Time

(ms)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

Figure 5.5 Request flow for a basic web page without HTTP/2 push (left) and with HTTP/2
push (right)

www.EBooksWorld.ir

146 CHAPTER 5 Implementing HTTP/2 push
5.2 How to push
How to push depends on your web server, because not every server supports HTTP/2
push at this writing. Some web servers can push with HTTP link headers or with con-
figuration. Others (such as IIS) require writing code, so they can push only from
dynamically generated pages rather than static HTML files. Consult your web-server
documentation to see whether your server supports HTTP/2 push and how to use it.
For the remainder of this chapter, I mostly use Apache, nginx, and NodeJS in exam-
ples. The concepts apply to most HTTP/2 web servers even if the implementation
details vary slightly. If your web server doesn’t support HTTP/2 push, you can still
wrap a content delivery network around your server (see chapter 3) and use that
CDN to provide push capability.

5.2.1 Using HTTP link headers to push

Many web servers (such as Apache, nginx, and H2O) and some CDNs (such as Cloud-
flare and Fastly) use HTTP link headers to notify the web server to push. If the web
server sees these HTTP headers, it pushes the resources referenced in the header. In
Apache, you can use config like this to add such a link header:

Header add Link "</assets/css/common.css>;as=style;rel=preload"

If you’re using nginx, the syntax is similar:

add_header Link "</assets/css/common.css>;as=style;rel=preload"

Push link headers are often wrapped in conditional statements to apply the push only
for certain paths or file types. In Apache, for example, to push the CSS stylesheet with
index.html files rather than all resources, use syntax like the following:

<FilesMatch "index.html">
 Header add Link "</assets/css/common.css>;as=style;rel=preload"
</FilesMatch>

Is HTTP/2 push a replacement for WebSockets or SSE?
One crucial point to note is that pushed resources are still sent only in response to
an initial request. It’s impossible to push resources with HTTP/2 based purely on the
server deciding that the client may want or need a resource. Technologies such as
WebSockets and server-sent events (SSE) do allow a two-way flow, but HTTP/2 isn’t
truly bidirectional; everything is still initiated from a client-side request. Pushed
resources are extra responses made in response to an initial request. When that ini-
tial request is finished, the stream is closed, and no other resources can be pushed
unless another client request is made. Therefore, HTTP/2 push isn’t a replacement
for WebSockets or SSE as it’s currently specified, though perhaps it could be if it
were expanded further (see section 5.9).

www.EBooksWorld.ir

147How to push
Other web servers have similar ways of adding HTTP headers, though not all web serv-
ers use the HTTP link header method to push resources. For those that do, when the
request is sent back to the client, the web server reads these headers, requests that
resource, and sends it as well. The rel=preload attribute needs to be set to indicate to
the web server that this resource is to be pushed, but the as=style part (which indi-
cates the type of resource) may be optional. This as attribute can be used to decide on
prioritization, for example, though other web servers may not require it: Apache uses
the Content type rather than the as attribute for prioritization.

Preload HTTP headers and HTTP/2 push
The preload link header predates HTTP/2 and was originally meant to be a client hint
(discussed in chapter 6). This header would allow browsers to fetch these resources
immediately, without waiting to download, read, and parse the whole page before
deciding whether an asset needs to be downloaded. Preload headers allow the web-
site owner to say, “This resource will definitely be needed, so I suggest that you
request it as soon as you can if you don’t already have it in your cache.”

The preload link header has been repurposed by many HTTP/2 implementations to
implement server push to take this hint one step further and send the resource pro-
actively. If you want to use the original preload purpose but not push the resource,
you usually can use the nopush attribute:

Header add Link "</assets/css/common.css>;as=style;rel=preload;nopush"

Currently, you have no standard way to do the reverse (saying that the link header
should be pushed but not treated as a preload header), though the H2O web server
(and the CDN Fastly, which uses this web servera) has added the x-http2-push-
only attribute to handle this case:

link: </assets/jquery.js>;as=script;rel=preload;x-http2-push-only

Preload can also be set in the HTML itself in the HEAD tag, with code like this:

<link rel="preload" href="/assets/css/common.css" as="style">

Only the HTTP header version usually works for HTTP/2 push, however. The HTML ver-
sion is ignored for HTTP/2 push purposes because it would be more complicated and
time-consuming for servers to parse HTML to extract these headers than it is to read
the HTTP headers. Web browsers need to parse the HTML anyway, so they accept
either method for preload hints.

For client hints, the as attribute must be specified, but for HTTP/2 push, this may
not be the case. To avoid confusion, I recommend always setting this attribute. The
complete set of as attributes is listed on the w3.org websiteb and includes script,
style, font, image, and fetch. Note that some of these attributes (particularly
fonts) require the crossorigin attribute as well.c

www.EBooksWorld.ir

148 CHAPTER 5 Implementing HTTP/2 push
While testing in Apache, you should turn off PushDiary, which attempts to prevent push-
ing the same resource twice on the same connection (more on this in section 5.4.4):

H2PushDiarySize 0

An explicit refresh request in the browser (F5) causes Apache to ignore PushDiary,
but it’s easier to turn PushDiary off while testing; otherwise, you may see inconsistent
results. Other servers may have similar push tracking that needs to be turned off. You
can also push multiple headers by using two link headers:

Header add Link "</assets/css/commoncss>;rel=preload;as=style"
Header add Link "</assets/js/common.js>;rel=preload;as=script"

or by combining the headers into one comma-separated header:

Header add Link "</assets/css/common.css>;rel=preload;as=style,
</assets/js/common.js>;rel=preload;as=script"

In chapter 1, I stated that these two methods are syntactically identical in the HTTP
protocol, so either can be used.

5.2.2 Viewing HTTP/2 pushes

Pushed resources are indicated in the Initiator column of Chrome developer tools, as
shown in figure 5.6.

 Here you can see that the second resource (common.css) was pushed by the server.
You also see that the resource starts downloading right away, with no green Waiting
(TTFB) in the waterfall diagram for this request, as you see for the subsequent requests.

Preload HTTP headers and HTTP/2 push (continued)
Some people find the reuse of preload headers for HTTP/2 push to be confusing.
They say that it wasn’t a good idea to reuse existing functionality for a new purposed

and suggest changing this feature. Despite this concern, use seems to be growing.
One added benefit of using the preload header for both client hints and server push
is that client/server combinations that don’t support HTTP/2 push can still use the
header to preload the resource with high priority, so you may still get some perfor-
mance gain. I return to preload directives in section 5.8 to discuss the differing use
cases for them and HTTP/2 push. I wanted to give a little information here for those
readers who recognize the overlap with client hints.

a https://www.fastly.com/blog/optimizing-http2-server-push-fastly
b https://www.w3.org/TR/preload/#as-attribute
c https://drafts.csswg.org/css-fonts/#font-fetching-requirements
d https://github.com/w3c/preload/issues/99

www.EBooksWorld.ir

149How to push
Figure 5.7 shows the same page load without push (where the common.css request has
moved from the second to the third requested resource and wasn’t pushed).

The waterfall diagrams generated by webpagetest.org don’t indicate pushed resources
in any distinct way. But clicking the resource shows SERVER PUSHED in the details sec-
tion, as shown in figure 5.8.

You can also use nghttp to make the web request so that you can see the frames dis-
cussed in chapter 4. Use the following command (changing the URL appropriately):

$ nghttp -anv https://www.tunetheweb.com/performance/

Pushed resource
as shown in

Initiator column

No wait time
in Waterfall

Figure 5.6 HTTP/2 pushed resource on the Network tab of Chrome’s developer tools

Resource is no
longer pushed

Large wait time
in Waterfall

Figure 5.7 Same page load as in figure 5.6 without HTTP/2 push

SERVER
PUSHED
Indicator

Figure 5.8 A pushed resource in WebPagetest

www.EBooksWorld.ir

150 CHAPTER 5 Implementing HTTP/2 push
This command requests the resource and any assets that the page needs (-a flag),
doesn’t show the data downloaded onscreen (-n flag), and turns on verbose output to
show the HTTP/2 frames (-v flag).

 After connecting and getting the connection set up with the SETTINGS and PRIORITY
frames, nghttp2 makes the request for the page by using the HEADERS frame:

 [0.013] send HEADERS frame <length=53, flags=0x25, stream_id=13>
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=11, weight=16, exclusive=0)
 ; Open new stream
 :method: GET
 :path: /performance/
 :scheme: https
 :authority: www.tunetheweb.com
 accept: */*
 accept-encoding: gzip, deflate
 user-agent: nghttp2/1.28.0

Before you receive the page back, you see that it receives a PUSH_PROMISE frame for
the pushed resource, as follows. Remember that nghttp shows the frame contents of
received frames first and the frame details next:

[0.017] recv (stream_id=13) :scheme: https
[0.017] recv (stream_id=13) :authority: www.tunetheweb.com
[0.017] recv (stream_id=13) :path: /assets/css/common.css
[0.017] recv (stream_id=13) :method: GET
[0.017] recv (stream_id=13) accept: */*
[0.017] recv (stream_id=13) accept-encoding: gzip, deflate
[0.017] recv (stream_id=13) user-agent: nghttp2/1.28.0
[0.017] recv (stream_id=13) host: www.tunetheweb.com
[0.017] recv PUSH_PROMISE frame <length=73, flags=0x04, stream_id=13>
 ; END_HEADERS
 (padlen=0, promised_stream_id=2)

The PUSH_PROMISE frame is similar to the HEADERS frame sent by the browser to get
the original resource, but it has two important differences:

 The frame is sent by the server to the browser rather than the other way around.
It’s a heads-up from the server, telling the client, “I’m about to send you this
resource as though you requested it like this.”

 It includes promised_stream_id, which is the stream ID for the pushed
resource, as shown on the last line, stating that the pushed resource will be sent
on stream ID 2. Server-initiated streams (which at the moment are used only for
push streams) are even-numbered.

After this, the server returns the originally requested resource on the request stream
(13) by using a HEADERS frame followed by DATA frames. Then it sends the pushed
resource on the promised stream (2), again using a HEADERS frame followed by DATA
frames:

www.EBooksWorld.ir

151How to push
[0.017] recv (stream_id=13) :status: 200
[0.017] recv (stream_id=13) date: Sun, 04 Feb 2018 12:28:07 GMT
[0.017] recv (stream_id=13) server: Apache
[0.017] recv (stream_id=13) last-modified: Thu, 18 Jan 2018 21:52:14 GMT
[0.017] recv (stream_id=13) accept-ranges: bytes
[0.017] recv (stream_id=13) cache-control: max-age=10800, public
[0.017] recv (stream_id=13) expires: Sun, 04 Feb 2018 15:28:07 GMT
[0.017] recv (stream_id=13) vary: Accept-Encoding,User-Agent
[0.017] recv (stream_id=13) content-encoding: gzip
[0.017] recv (stream_id=13) link: </assets/css/common.css>;rel=preload
[0.017] recv (stream_id=13) content-length: 6755
[0.017] recv (stream_id=13) content-type: text/html; charset=utf-8
[0.017] recv (stream_id=13) push-policy: default
[0.017] recv HEADERS frame <length=2035, flags=0x04, stream_id=13>
 ; END_HEADERS
 (padlen=0)
 ; First response header
[0.017] recv DATA frame <length=1291, flags=0x00, stream_id=13>
[0.017] recv DATA frame <length=1291, flags=0x00, stream_id=13>
[0.018] recv DATA frame <length=1291, flags=0x00, stream_id=13>
[0.018] recv DATA frame <length=1291, flags=0x00, stream_id=13>
[0.018] recv DATA frame <length=1291, flags=0x00, stream_id=13>
[0.018] recv DATA frame <length=300, flags=0x01, stream_id=13>
 ; END_STREAM
[0.018] recv (stream_id=2) :status: 200
[0.018] recv (stream_id=2) date: Sun, 04 Feb 2018 12:28:07 GMT
[0.018] recv (stream_id=2) server: Apache
[0.018] recv (stream_id=2) last-modified: Sun, 07 Jan 2018 14:57:44 GMT
[0.018] recv (stream_id=2) accept-ranges: bytes
[0.018] recv (stream_id=2) cache-control: max-age=10800, public
[0.018] recv (stream_id=2) expires: Sun, 04 Feb 2018 15:28:07 GMT
[0.018] recv (stream_id=2) vary: Accept-Encoding,User-Agent
[0.018] recv (stream_id=2) content-encoding: gzip
[0.018] recv (stream_id=2) content-length: 5723
[0.018] recv (stream_id=2) content-type: text/css; charset=utf-8
[0.018] recv HEADERS frame <length=63, flags=0x04, stream_id=2>
 ; END_HEADERS
 (padlen=0)
 ; First push response header
[0.018] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[0.018] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[0.018] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[0.018] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[0.018] recv DATA frame <length=559, flags=0x01, stream_id=2>
 ; END_STREAM

5.2.3 Pushing from downstream systems by using link headers

If you’re using HTTP link headers to indicate resources to be pushed, these headers
don’t need to be set in the web-server configuration. As discussed in chapter 3, it’s
common to have a web server such as Apache in front of downstream application code
(perhaps an application server such as Tomcat, NodeJS, or some PHP handler) for per-
formance and security reasons. If these application servers are proxied through a web
server that supports HTTP/2 push by using HTTP link headers (as Apache and nginx

www.EBooksWorld.ir

152 CHAPTER 5 Implementing HTTP/2 push
do), as long as you have the ability to set HTTP response headers, the application
server can ask the web server to push resources, as shown in figure 5.9.

 Using link HTTP headers allows the application to tell the web server what to
push, so all logic can be in one place without having changing web-server configura-
tion and application code each time. This process works even if those backend con-
nections are HTTP/1 connections. You don’t need HTTP/2 on the backend server
even if you want to push from there—which, given the complications that this process
may involve (discussed in chapter 3), is a real blessing! Figure 5.10 shows how this flow
looks in a request-and-response diagram.

 To see an example of this flow, create a simple node service by using HTTP/1.1, as
shown in listing the following listing.

Application serverWeb server

1. GET /index.html 2. GET /index.html

5. /index.html

+ /styles.css

+ /script.js

3. /index.html

Link: </styles.css>;rel=preload

Link: </script.js>;rel=preload

4. GET /styles.css

GET /script.js

Web browser

Figure 5.9 HTTP/2 pushing link headers from downstream application servers

Time

(ms)
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170

Client Server

Request web page

Receive web page request

Receive HTML page

Receive CSS

Finish drawing page
Receive JS

Receive web page request

Send HTML

Send CSS
Send JS

Send HTML

Backend application server

Figure 5.10 Using link headers to push resources from a backend application server

www.EBooksWorld.ir

153How to push
var http = require('http')
const port = 3000

const requestHandler = (request, response) => {
 console.log(request.url)
 response.setHeader('Link','</assets/css/common.css>;rel=preload');
 response.writeHead(200, {"Content-Type": "text/html"});
 response.write('<!DOCTYPE html>\n')
 response.write('<html>\n')
 response.write('<head>\n')
 response.write('<link rel="stylesheet" type="text/css"
href="/assets/css/common.css">\n')
 response.write('</head>\n')
 response.write('<body>\n')
 response.write('<h1>Test</h1>\n')
 response.write('</body>\n')
 response.write('</html>\n')
 response.end();
}

var server = http.createServer(requestHandler)
server.listen(port)
console.log('Server is listening on ' + port)

Put this code in a file called app.js and then run it with the following command:

node app.js

You should see a line like this:

Server is listening on 3000

This code listens on port 3000 and returns a simple hardcoded web page that refer-
ences a stylesheet in the HEAD tag and includes that stylesheet as a link header. You can
use curl to check this result in another window:

$ curl -v http://localhost:3000
* Rebuilt URL to: http://localhost:3000/
* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 3000 (#0)
> GET / HTTP/1.1
> Host: localhost:3000
> User-Agent: curl/7.56.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Link: </assets/css/common.css>;rel=preload;as=style
< Content-Type: text/html
< Date: Sun, 04 Feb 2018 15:46:12 GMT
< Connection: keep-alive

Listing 5.1 HTTP/1.1 node service with HTTP link header

www.EBooksWorld.ir

154 CHAPTER 5 Implementing HTTP/2 push
< Transfer-Encoding: chunked
<
<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" type="text/css" media="all"

href="/assets/css/common.css">
</head>
<body>
<h1>Test</h1>
</body>
</html>
* Connection #0 to host localhost left intact

To allow this node server to be called via Apache, add the following line to the Apache
configuration. You’ll need to have mod_proxy and mod_proxy_http enabled in Apache:

ProxyPass /testnodeservice/ http://localhost:3000/

Then the code calls this service through Apache, listening over HTTPS on port 443.
This code allows you to call this service over HTTP/2 in a browser even though the
Node application isn’t set up for HTTP/2 or HTTPS; Apache takes care of that pro-
cess for you. You see that Apache has pushed the stylesheet, as shown in figure 5.11.

In this example, the pushed resource (common.css) is served by Apache. The linked
resource can be served by Apache itself, by the downstream application (NodeJS, in
this case), or by another downstream system. As long as Apache is able to make a
request for the resource, it can push any such resource.

 A web server can’t push a resource for another domain. If you load a page from
example.com, which loads images from google.com, for example, you can’t push
that image; only google.com can push it. See section 5.5.1 for more discussion of
this topic.

 The preceding example, in which the stylesheet is always pushed, is simple, but you
can create more complex examples in any downstream server language that you’re
proxying through a web server (or a CDN) that uses HTTP link headers. The application

Figure 5.11 Resources referenced in a link header can allow pushes from downstream systems.

www.EBooksWorld.ir

155How to push
can make decisions about what to push and when, based on what it knows about the
request or that user session, but still offload the actual pushing to the web server.

5.2.4 Pushing earlier

Setting HTTP link headers in your web-server configuration isn’t the only way to
push resources. How to do this depends on your web server, because the process is
implementation-specific. Apache, for example, uses the H2PushResource directive:

H2PushResource add /assets/css/common.css

nginx offers similar syntax:

http2_push /assets/css/common.css;

The advantage of direct pushing, over the HTTP link headers method, is that the
server doesn’t have to wait for the resource to be returned to inspect the linked head-
ers and then push the resource. Instead, the dependent resources can be pushed
while the original request is processed by the server. This may not matter much for
simple, static resources that a web server serves itself straight from disk and therefore
generates quickly, but it can have a considerable impact on resources that are slower
to generate.1 Figure 5.12 shows a request-and-response diagram similar to figure 5.5
earlier in this chapter, but this time, the web page takes 100 ms to generate, perhaps
because it requires a database lookup or some other dynamic processing.

 This figure shows a large gap in which nothing is being sent or received across the
HTTP/2 connection, which is wasteful and reminiscent of some of the head-of-line
blocking issues that HTTP/2 tries to solve. The CSS and JavaScript may be quicker to
generate, as they could be static and fetched by the web server from local disk (or
even cached in the web server). That time could be used to push some resources so
that the dependent resource is already there by the time the page itself arrives, as
shown in figure 5.13.

Unused push resources don’t appear in Chrome developer tools
Pushed resources are shown only on the Network tab of Chrome developer tools if
they’re used by the page. For preload hints, the preloader counts as a use, so all
resources pushed with the HTTP link header method appear (provided that the as
attribute is included). If you use another method to push, however, and the page
doesn’t use this resource, the resources will be pushed in the background but won’t
show up in Chrome developer tools.

If you’re having trouble seeing your push resource in Chrome developer tools, check
whether the web page actually needs the pushed resource. If the page doesn’t need
the push resource, it’s wasteful to push it.

1 https://icing.github.io/mod_h2/earlier.html

www.EBooksWorld.ir

156 CHAPTER 5 Implementing HTTP/2 push
To demonstrate, change the simple NodeJS service to simulate a delay, as shown in the
following listing. Note that the async/await code requires NodeJS 7.10 or later.

Time
(ms)

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

Client Web server

Request web page

Receive web page request

Receive HTML page
Receive CSS

Finish drawing page

Receive web page request

Send HTML

Send CSS
Send JS

Send HTML

Backend application server

Processing time

Receive JS

Figure 5.12 Loading a web page with backend processing time

Time
(ms)

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

Client Web server

Request web page

Receive web page request

Receive HTML page

Receive CSS

Finish drawing page

Receive JS

Receive web page request

Send HTML

Send CSS
Send JS

Send HTML

Backend application server

Processing time

Figure 5.13 Using early push to make the most of otherwise-wasted time

www.EBooksWorld.ir

157How to push
var http = require('http')
const port = 3000

async function requestHandler (request, response) {

 console.log(request.url)

 //Start getting the response ready
 response.setHeader('Link','</assets/css/common.css>;rel=preload ')

 //Pause here for 10 seconds to simulate a slow resource
 await sleep(10000)

 //And now return the resource
 response.writeHead(200, {"Content-Type": "text/html"})
 response.write('<!DOCTYPE html>\n')
 response.write('<html>\n')
 response.write('<head>\n')
 response.write('<link rel="stylesheet" type="text/css"
media="all" href="/assets/css/common.css">\n')
 response.write('</head>\n')
 response.write('<body>\n')
 response.write('<h1>Test</h1>\n')
 response.write('</body>\n')
 response.write('</html>\n')
 response.end();
}

function sleep(ms){
 return new Promise(resolve=>{
 setTimeout(resolve,ms)
 })
}

var server = http.createServer(requestHandler)
server.listen(port)
console.log('Server is listening on ' + port)

If you repeat the nghttp call with this code and pipe it into grep to show only the
recv frame lines, you see a 10-second delay after setting up the connection until the
PUSH_PROMISE frame is sent (corresponding to the 10-second sleep in the preceding
code):

$ nghttp -anv https://www.tunetheweb.com/testnodeservice/ | grep "recv.*frame"
[0.209] recv SETTINGS frame <length=6, flags=0x00, stream_id=0>
[0.209] recv WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
[0.213] recv SETTINGS frame <length=0, flags=0x01, stream_id=0>
[10.225] recv PUSH_PROMISE frame <length=73, flags=0x04, stream_id=13>
[10.225] recv HEADERS frame <length=647, flags=0x04, stream_id=13>
[10.225] recv DATA frame <length=139, flags=0x01, stream_id=13>
[10.226] recv HEADERS frame <length=108, flags=0x04, stream_id=2>
[10.226] recv DATA frame <length=1291, flags=0x00, stream_id=2>

Listing 5.2 Node service with HTTP link header and 10 ms delay

www.EBooksWorld.ir

158 CHAPTER 5 Implementing HTTP/2 push
[10.226] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[10.226] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[10.226] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[10.226] recv DATA frame <length=559, flags=0x01, stream_id=2>

If you change the Apache config to push by H2PushResource instead of waiting for the
link headers, the push happens immediately, before the 10-second delay, because
the pushed resources are no longer being held up by the main resource:

$ nghttp -anv https://www.tunetheweb.com/testnodeservice/ | grep "recv.*frame"
[0.248] recv SETTINGS frame <length=6, flags=0x00, stream_id=0>
[0.248] recv WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
[0.253] recv SETTINGS frame <length=0, flags=0x01, stream_id=0>
[0.253] recv PUSH_PROMISE frame <length=73, flags=0x04, stream_id=13>
[0.253] recv HEADERS frame <length=675, flags=0x04, stream_id=2>
[0.253] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[0.253] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[0.253] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[0.253] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[0.253] recv DATA frame <length=559, flags=0x01, stream_id=2>
[10.262] recv HEADERS frame <length=60, flags=0x04, stream_id=13>
[10.262] recv DATA frame <length=139, flags=0x01, stream_id=13>

This improvement is useful. Although most resources ideally don’t have a 10-second
delay (exaggerated for effect here), the earlier you can push, the more efficiently you
can use the available bandwidth without having to contend with the main request
when it’s ready to be sent later.

 The downside of using the web server’s early push commands, such as H2Push-
Resource, is that you’re no longer able to have the application initiate these pushes,
and the application may well be in the best position to decide whether to push. To
address this situation, a new HTTP status code—103 Early Hints2—allows earlier
indication of a resource’s requirements through preload HTTP link headers. Like all sta-
tus codes in the 100 range, it’s informational and can be ignored, but it allows an early
response with only the headers to be sent (including the link headers needed for
HTTP/2 push), followed by a standard 200 response code. In the HTTP/1.1 world,
this code looks like responses following each other:

HTTP/1.1 103 Early Hints
Link: </assets/css/common.css>;rel=preload;as=style

HTTP/1.1 200 OK
Content-Type: text/html
Link: </assets/css/common.css>;rel=preload;as=style

<!DOCTYPE html>
<html>
...etc.

2 https://tools.ietf.org/html/rfc8297

www.EBooksWorld.ir

159How to push
Figure 5.14 shows the request-and-response diagram.
 Here, the backend server has sent an early 103 response, saying that the CSS and

JavaScript are needed by the page. The web server uses HTTP/2 push to push those
two static resources while it’s waiting for the page itself to be generated. Later, when
the page is generated and forwarded, the client can use these pushed resources imme-
diately. You can render the page as soon as the web page arrives, but without splitting
the logic between the backend server and the web server (and also without using the
inlining hack).

 This process may be slower than having the web server configured to know which
resources to push. In figure 5.14, the push could start at the 60 ms mark, if configured
in the web server instead of via the link header, though it doesn’t start until 80 ms, but
the advantage of having the backend server control the push makes that short delay
worthwhile in many scenarios.

 Under nghttp, such a scenario would look like this:

$ nghttp -anv https://www.tunetheweb.com/testnodeservice/ | grep
"recv.*frame"

[0.307] recv SETTINGS frame <length=6, flags=0x00, stream_id=0>
[0.307] recv WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
[0.307] recv SETTINGS frame <length=0, flags=0x01, stream_id=0>
[0.308] recv HEADERS frame <length=60, flags=0x04, stream_id=13>
[0.308] recv PUSH_PROMISE frame <length=73, flags=0x04, stream_id=13>
[0.309] recv HEADERS frame <length=675, flags=0x04, stream_id=2>
[0.309] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[0.310] recv DATA frame <length=1291, flags=0x00, stream_id=2>

Time
(ms)

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

Client Web server

Request web page

Receive web page request

Receive HTML page

Receive CSS

Finish drawing page

Receive JS

Receive web page request

Send HTML

Send CSS
Send JS

Send HTML

Backend application server

Processing time

Send 103 Early Hints

Figure 5.14 Using status 103 Early Hints to tell the web server to push resources earlier

www.EBooksWorld.ir

160 CHAPTER 5 Implementing HTTP/2 push
[0.310] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[0.310] recv DATA frame <length=1291, flags=0x00, stream_id=2>
[0.310] recv DATA frame <length=559, flags=0x01, stream_id=2>
[10.317] recv HEADERS frame <length=60, flags=0x04, stream_id=13>
[10.317] recv DATA frame <length=1291, flags=0x01, stream_id=13>
[10.317] recv DATA frame <length=1291, flags=0x00, stream_id=13>
[10.318] recv DATA frame <length=1291, flags=0x00, stream_id=13>
[10.318] recv DATA frame <length=1291, flags=0x00, stream_id=13>
[10.318] recv DATA frame <length=1291, flags=0x00, stream_id=13>
[10.318] recv DATA frame <length=300, flags=0x01, stream_id=13>

After the initial setup, you see the following:

 The 103 response is received first as a HEADERS frame on stream 13 at the 0.308-
second mark.

 A PUSH_PROMISE frame (also on stream 13) warns the client that a push is coming.
 The resource is pushed in a HEADERS frame and several DATA frames, all sent on

stream 2 at the 0.309- and 0.310-second marks.
 When the real response has been processed after that artificial 10-second delay,

it’s sent back as a HEADERS frame, followed by one or more DATA frames at
10.317 seconds.

At this writing, support for 103 Early Hints (which is new) is limited. Node, for exam-
ple, doesn’t support it natively,3 though you can add this support by using a third-party
library4 or writing raw HTTP to the stream, which is what that third-party library does.
Apache supports processing 103 responses and will process any link headers in them
to push resources, but it deliberately doesn’t forward 103 responses to the browser,
because some browsers don’t support those responses and get confused. Forwarding
can be enabled with the H2EarlyHints5 directive.

 Support is limited also because it involves sending multiple responses to one
request. Although this behavior is valid HTTP for responses in the 100 range, it’s
unusual compared with other HTTP responses because it’s an extra response in addi-
tion to the final response. Not every HTTP implementation handles this extra response
well and may incorrectly expect only one response back to an HTTP request. The other
status codes in the 100 range (such as 100 Continue, 101 Switching Protocols, and 102
Processing) are used only for specific scenarios, such as switching to WebSockets.
Many tools and libraries allow you to set different status codes, even ones that weren’t
known when those tools were created, but few can process two requests properly for
manually set response codes as required by 103 response codes. When support inevita-
bly comes along, this response code will prove to be useful, and I expect its use to
grow quickly.

3 The status code has been added but not the option to use it: https://github.com/nodejs/node/pull/16644.
4 https://www.npmjs.com/package/early-hints
5 https://httpd.apache.org/docs/2.4/mod/mod_http2.html#h2earlyhints

www.EBooksWorld.ir

161How to push
5.2.5 Pushing in other ways

Web servers aren’t the only ways to enable push; some backend application servers
also allow developers to push programmatically. The following listing shows how to
create a simple NodeJS server with push. This listing requires the http2 module,
which requires NodeJS v9 or later.

'use strict'

const fs = require('fs')
const http2 = require('http2')

const PORT=8443

//Create a HTTP/2 server with HTTPS certificate and key
const server = http2.createSecureServer({
 cert: fs.readFileSync('server.crt'),
 key: fs.readFileSync('server.key')
 })

//Handle any incoming streams
server.on('stream', (stream, headers) => {

 //Check if the incoming stream supports push at the connection level
 if (stream.session.remoteSettings.enablePush) {

 //If it supports push, push the CSS file
 console.log('Push enabled. Pushing CSS file')

 //Open the File for reading
 const cssFile = fs.openSync('/www/htdocs/assets/css/common.css', 'r')

 //Get some stats on the file for the HTTP response headers
 const cssStat = fs.fstatSync(cssFile)
 const cssRespHeaders = {
 'content-length': cssStat.size,
 'last-modified': cssStat.mtime.toUTCString(),
 'content-type': 'text/css'
 }

 //Send a Push Promise stream for the file
 stream.pushStream({ ':path': '/assets/css/common.css' },
 (err, pushStream, headers) => {
 //Push the file in the newly created pushStream
 pushStream.respondWithFD(cssFile, cssRespHeaders)
 })
 } else {
 //If push is disabled, log that
 console.log('Push disabled.')
 }

Listing 5.3 Node service with server push

www.EBooksWorld.ir

162 CHAPTER 5 Implementing HTTP/2 push
 //Respond to the original request
 stream.respond({
 'content-type': 'text/html',
 ':status': 200
 })
 stream.write('<DOCTYPE html><html><head>')
 stream.write('<link rel="stylesheet" type="text/css" media="all"
ref="/assets/css/common.css">')
 stream.write('</head><body><h1>Test</h1></body></html>')
})

//Start the server listening for requests on the given port
server.listen(PORT)
console.log(`Server listening on ${PORT}`)

})

This code allows NodeJS to push assets to your browser. This simple example supports
HTTP/2 only over HTTPS. For a real server, you probably should enable HTTP/1.1
and nonencrypted HTTP access as well (which shows why using a web server in front
of an application server such as Node is usually easier). Other programming lan-
guages (such as ASP.NET and Java) have similar ways of pushing resources.

Pushing all the way through?
As I mentioned earlier, it’s common to have a load balancer or web server as the entry
point to the system (often called the edge server) and then proxy requests to a back-
end application server or service. In fact, I recommend this setup, because web serv-
ers typically are more performant and secure than dynamic application servers. When
it comes to HTTP/2 push, you may think that it’s preferable to speak HTTP/2 all the
way through your infrastructure so that you can, for example, push resources from
the application infrastructure through your web server to the browser. This process,
however, often leads to additional complications when an intermediary is involved.
What if the application server and the edge server support push, but the client
doesn’t, or vice versa? How do you handle tracking of pushed resources across three
(or more) players?

The HTTP/2 specification statesa

An intermediary can receive pushes from the server and choose not to forward
them on to the client. In other words, how to make use of the pushed information
is up to that intermediary. Equally, the intermediary might choose to make addi-
tional pushes to the client, without any action taken by the server.

The reality is that it’s much easier to let the edge server handle push and to use HTTP
link headers (with or without 103 Early Hints) to do that. Sometimes, the application
server is telling the web server to push a resource that it must then fetch from the
application server, which may seem to be a bit of a roundabout process, but it’s sim-
pler and allows application servers to push resources that they don’t control (such
as static files and media that are stored at the web server layer).

www.EBooksWorld.ir

163How HTTP/2 push works in the browser
5.3 How HTTP/2 push works in the browser
Regardless of how you push a resource at the server side, the browser handles this pro-
cess differently from what you might expect. Instead of being pushed straight to a web
page, a resource is pushed to a cache. The web page is processed as it is normally.
When the page sees the resource that it needs, it checks the cache, finds it there, and
loads it from the cache rather than requesting it from the server.

 The details are browser-specific and not detailed in the HTTP/2 specification, but
most browsers seem to have implemented HTTP/2 push with a special HTTP/2 push
cache, which is different from the normal HTTP cache that most web developers are
familiar with. The best documentation at this writing is a blog post by Jake Archibald6

(of the Google Chrome team) about experimenting with HTTP/2 push to see how
each browser treated it. This post details how HTTP/2 should work in theory and how
it works in practice, often in unexpected ways. Bugs have been raised because of his
work, some fixed at this writing and some not yet fixed.

 HTTP/2 push is a new concept, and some work must be done to iron out all the
implementation issues on the browser side (and likely on the server side too). I’ll do
my best to highlight some of the major bugs, but new ones are likely to be introduced.

5.3.1 Seeing how the push cache works

Pushed resources are held in a separate bit of memory (the HTTP/2 push cache) wait-
ing for the browser to request them, at which point they’re loaded into the page; if the
caching headers are set, they’re also saved in the browser’s HTTP cache as usual for
later reuse. One notable exception is that Chromium-based browsers (Chrome and
Opera) don’t cache resources for untrusted certificates (such as self-signed certificates,
which use a red padlock). The cache still isn’t used even if the certificate error is clicked

At this writing, I’m not aware of any web servers that allow HTTP/2 push all the way
through. The Apache HTTP/2 proxy module (mod_proxy_http2) is one of the few
implementations of backend HTTP/2 connections that exist at this writing; it explic-
itly turns off push for backend connections, using the SETTINGS frame to prevent
complications.b

Looking back to the HTTP/2 infrastructure setup options discussed in chapter 3, the
lack of backend HTTP/2 support on web and proxy servers is yet another reason why
supporting HTTP/2 all through the infrastructure may not be necessary or even ben-
eficial—at least until HTTP/2 support is ubiquitous and there’s no reason not to sup-
port it.

a https://httpwg.org/specs/rfc7540.html#PushResources
b https://github.com/icing/mod_h2/issues/154

6 https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/

www.EBooksWorld.ir

164 CHAPTER 5 Implementing HTTP/2 push
through.7 To use HTTP/2 push, you must have a full green padlock by using a real cer-
tificate or accepting your self-signed certificate in the browser’s trust store; otherwise,
pushed resources will be ignored.8

 The push cache isn’t the first place where the browser looks for a resource.
Although the process is browser-specific, experiments show that if a resource is avail-
able in the usual HTTP cache, the browser won’t use the pushed resource. Even if the
pushed resource is newer than the cached resource, the browser still prefers to use
its older cached content as long as it considers the cached resource to be usable
(based on the cache-control headers). Service workers are also checked before the push
cache for websites that use them. You can easily waste resources pushing a resource
that won’t be used. Figure 5.15 shows what happens when a resource is loaded and
which caches are checked for each resource needed by the page in the Chrome
browser.

7 https://bugs.chromium.org/p/chromium/issues/detail?id=103875#c8
8 https://bugs.chromium.org/p/chromium/issues/detail?id=824988

Web browser Web server

1. GET /index.html

2. /index.html

3. /styles.css

Per Connection Cache

Key to cache types

Per Domain CachePer Page Cache

Per Browser Cache

Image Cache

Service Worker Cache

HTTP Cache

HTTP/2 Push Cache

Preload Cache

4.

Figure 5.15 Browser interaction with HTTP/2 push

www.EBooksWorld.ir

165How HTTP/2 push works in the browser
When a page is requested (1) and returned (2), any pushed resources are put in the
HTTP/2 push cache (3), and the caches are checked in order before a request is
made to the web server (4). Following is a brief explanation of each cache:

 The image cache is a short-lived, in-memory cache for that page that prevents the
browser from fetching an image twice if it’s referenced twice on the page, for
example. When the user browses away from the page, the cache is destroyed.

 The preload cache is another short-lived, in-memory cache used to hold pre-
loaded resources (see chapter 6). Again, this cache is page-specific. Don’t pre-
load something for another page, because it won’t be used.

 Service workers are fairly new background applications that run independently of
a web page and act as go-betweens for the web page and the website. They allow
a website to act more like a native application even if you lose your network con-
nection, for example. They have their own caches linked to the domain.

 The HTTP cache is the main cache that most developers know about and is a
disk-based persistent cache shared across the browser, with a limited size to be
used for all the domains.

 The HTTP/2 push cache is a short-lived, in-memory cache that is bound to the
connection and is checked last.

When the server pushes styles.css, it’s pushed into the HTTP/2 push cache. When the
web browser decides that it needs styles.css, it doesn’t know (or care) that the server
has pushed that resource, and it checks all the caches in order before making the net-
work request to the origin. If a valid styles.css exists in the main HTTP cache, the
browser picks it up from that cache, even if a newer copy is in the HTTP/2 push cache.
Using the chrome://net-export tool discussed in section 4.3.1, you see a summary of
unclaimed push resources for all current active pages, as shown in figure 5.16.

The fact that the HTTP/2 push cache is bound to the connection also means if the
connection isn’t used, the pushed resource isn’t used. This process is different from
the HTTP cache that most developers are used to working with and leads to some

Unclaimed push
resources for a
domain (those
pushed but not
used by the
page) will show
in this column.

Figure 5.16 Unclaimed push resource tracking in Chrome

www.EBooksWorld.ir

166 CHAPTER 5 Implementing HTTP/2 push
interesting considerations. For a start, if the connection is lost, so are the push cache
and any pushed resources that haven’t been used (so you’ve wasted resources in push-
ing them). If another connection is used, pushed resources may not be used. With
HTTP/2, there should be a single connection, so you may not think that this situation
is much of a problem, but the case may differ among browsers, which may decide to
implement features differently. Earlier, I touched on noncredentialed requests, which
most browsers handle with a separate connection. The Web Hypertext Application
Technology Working Group (WHATWG), however, is discussing making a change to
allow the same connection to be used for both credentialed and noncredentialed
requests.9 One consequence is that you can’t push cross-origin fonts (those loaded
from another domain, including a sharded domain), because they must be uncreden-
tialed requests. Also, separate tabs or browser processes may start separate connec-
tions depending on the browser: Chrome and Firefox share connections across tabs;
Edge doesn’t; Safari seems to open multiple connections even within the same tab.10

As the HTTP/2 push cache is at connection level rather than page level, it’s possible
to push assets for a future page navigation, but the short-lived nature of this cache,
coupled with the fact that the connection may be dropped, makes this idea a bad one.

 Finally, when the asset is “claimed” from the connection’s push cache, it’s removed
and can’t be loaded from the push cache again, although, if the HTTP cache-control
headers are set, it can be used from the browser’s HTTP cache. The push cache also
differs from the HTTP cache in that uncacheable resources (those set with no-cache
and no-store HTTP cache-control headers) can be pushed and read from the push
cache. It’s not a cache in the traditional sense, but a holding area for requests. Yoav
Weiss, a web performance architect, calls it the “unclaimed push streams container,”11

but admits that this term is less catchy than push cache.

5.3.2 Refusing pushes with RST_STREAM

A client can refuse a pushed resource by sending an RST_STREAM frame on the push
stream with a CANCEL or REFUSED_STREAM code. This frame could be used because the
browser already has the item being pushed or for some other reason (such as the
user’s browsing away from a page while it’s still loading, so the browser no longer
needs the item).

 This process may sound like a good way of preventing overpushing resources that
the browser doesn’t need. The problem is that it takes time to send this RST_STREAM
frame back to the server, and in the meantime, the server continues to send HEADERS
and DATA frames, which the browser will throw away. An RST_STREAM frame is a control
signal and isn’t as aggressive as dropping the connection, which can’t be done in
HTTP/2 without interrupting the other streams on that connection. The entire

9 https://github.com/whatwg/fetch/issues/341
10 https://bugs.webkit.org/show_bug.cgi?id=172639
11 https://blog.yoav.ws/tale-of-four-caches/

www.EBooksWorld.ir

167How to push conditionally
resource may have been sent before the RST_STREAM frame is received and actioned
by the server to stop sending the resource.

 An RST_STREAM frame is useful only if the browser realizes that it doesn’t need the
resource being pushed. If a browser already has a resource in its HTTP cache, there’s
an obvious scenario to use an RST_STREAM frame to stop the push. But what if a huge
image is pushed but never referenced on the page? A page may have been updated to
not use that image anymore, but the push instruction may not have been updated.
The browser won’t know that the image isn’t needed and will happily receive the
entire resource, but never use it. Depending on browser tools, you may not even know
that you’re sending this image needlessly, as it may not appear on the network tab of
developer tools.

 All in all, the RST_STREAM frame is a useful way to stop a stream, and especially a
pushed resource stream, but you shouldn’t depend on it as a way of controlling incor-
rectly pushed resources. Overpushing resources is a waste of resources, but even if
your server can handle it, remember that bandwidth isn’t free. Mobile connections in
particular usually cap bandwidth, so you’re costing your visitors more if you send
unnecessary resources, not to mention that the wasted bandwidth is bandwidth that
could be better used to send resources that the page does need.

5.4 How to push conditionally
One big risk of using HTTP/2 push is pushing resources needlessly. Some risks are
due to the implementation issues discussed earlier in this chapter (if the connection
isn’t reused, for example), but mostly, the problem is pushing resources that the
browser already has.

 If you decide that it’s a good idea to push your stylesheet, for example, you may
improve the page load time for the first request. But if you continue to push the
stylesheet with every page request as the visitor browses around your site, you’re need-
lessly pushing a resource that the user already has (assuming that you’re using good
cache-control headers to ensure that the resource is cached).

 As the RST_STREAM frame is inefficient in stopping pushed assets without wasting
resources, what other methods can you use to ensure that you don’t push a resource
that the client won’t use?

5.4.1 Tracking pushes on the server side

A server could keep track of what assets it has pushed on a certain client connection.
The technique would be up to the server, but could be based on the connection or
perhaps a session ID. Each time you push a resource, for example, the server flags that
this connection/session shouldn’t push that resource again even if asked to. This pro-
cess is what Apache uses and why you have to turn off the H2PushDiarySize setting
while testing. This feature could be implemented in the web application rather than
in the web server software to give the web developer more control.

www.EBooksWorld.ir

168 CHAPTER 5 Implementing HTTP/2 push
 The downside is that the server is making an educated guess about whether it should
push. If the browser cache has been cleared, for example, the resource won’t be avail-
able, but the server still won’t push. Also, busy servers may have resource constraints on
tracking pushed resources, and load-balanced servers may not have the complete pic-
ture about what has been pushed if the same server doesn’t always serve a client.

 Ultimately, the process is complicated, and this crude attempt to add state to the
stateless HTTP protocol probably isn’t the best method. HTTP/2 adds the concept of
state to other parts of the protocol (HPACK header compression and the stream states,
as discussed in chapters 7 and 8), so perhaps this problem could—and should—be
resolved at protocol level for a better implementation. I discuss one such proposal
(cache digests) in section 5.4.4, but first, I look at other methods that can be used now.

5.4.2 Using HTTP conditional requests

If a client sends an if-modified-since or etag HTTP header, this page is already on
the browser’s cache but has expired. If you normally push a CSS asset, you could
choose not to push it when you see such headers in the request, as the stylesheet is
likely to be cached, too (perhaps even longer than the page that references it, as is
often the case). This process is simpler than tracking this server side but has many of
the same downsides, such as the fact that the server is making an educated guess
about what’s on the client side and the scenario of navigating to another page that
uses a stylesheet that’s already cached.

5.4.3 Using cookie-based pushes

The next option is to record the fact that the asset has been pushed on the client side.
Cookies could be natural vehicles for this purpose, and LocalStorage or Session-
Storage could also be used.

 The idea is that when you push a resource, you set a cookie that’s valid for that ses-
sion (short-cached resources) or for the same time as the pushed resource (long-
cached resources). As each page request comes in, you check for the presence of the
cookie. If the cookie isn’t present, the resource likely isn’t in the browser cache, so
push it and set the cookie. If the cookie is present, don’t push the resource. This func-
tionality can be implemented in any client application or even in server config. Here’s
an example in Apache:

#Check if there's a cookie saying the css has already been loaded
#If so, set an environment variable for use later
SetEnvIf Cookie "cssloaded=1" cssIsloaded

#If no cookie, and it's an html file, then push the css file
#and set a session-level cookie so next time it won't be pushed:
<FilesMatch "index.html">
 Header add Link "</assets/css/common.css>;as=style;rel=preload"

env=!cssIsloaded
 Header add Set-Cookie "cssloaded=1; Path=/; Secure; HttpOnly"

env=!cssIsloaded
</FilesMatch>

www.EBooksWorld.ir

169How to push conditionally
Similar logic could be implemented in any server-side language.
 This method is a further improvement on the preceding two strategies. Nothing

needs to be tracked server-side, so the logic is less complicated, and you’re tracking a
bit more based on the browser status. Cookies aren’t the same as the HTTP cache,
however. Although you can set the expiration time the same, cookies can be reset
independently (turned off in the browser or running in incognito mode, for exam-
ple), although the same could be said of any server-side tracking methodology.

 At this writing, cookies are probably the best ways of tracking whether an asset has
been pushed and is likely to be in the cache, but they still have issues.

5.4.4 Using cache digests

Cache digests are a proposal12 to allow a browser to inform the server what’s in its cache.
When the connection is made, the browser sends a new CACHE_DIGEST frame, which
lists all the resources currently held in the HTTP cache for that domain (or other
domains over which this connection is authoritative; see chapter 6). The server gets
the contents of the cache as the URL along with the etag header value to get some
sort of versioning of the URL. This method is much better than using the previous
roundabout methods of guessing the contents of the cache, because the browser has
definitively told the server what’s in its cache. The server can remember the contents
of the client’s cache for the connection and even update it as it sends more resources.
The CACHE_DIGEST frame should be sent once near the beginning of the connection
(preferably after the first request is made).

 The contents of the cache can be large, so rather than sending full URLs and
etags, the proposal is for the client to encode them in a cuckoo filter–based digest.
I’m not going into detail on cuckoo filters,13 but suffice it to say that these filters are
efficient ways of sending cache contents, with a low risk of clashes (such as incorrectly
implying that a resource is in the cache when it’s not, or vice versa).

 At this writing, cache digests aren’t an approved standard and aren’t generated by
any browser. Interestingly, some servers (such as Apache, http2server, and H2O) have
added support for the current draft standard (which came out of the H2O implemen-
tation). Because browsers currently aren’t sending a CACHE_DIGEST frame to initialize
any server-side cache, these implementations are used only to track requests pushed
by the server. These servers keep track of resources that they’ve sent, so they shouldn’t
push resources twice (even if instructed to). This feature is useful but would be much
more useful if the state could also be initialized with the browser cache state, which
requires the CACHE_DIGEST frame. As I mentioned at the start of this section, you
turned this Apache feature off earlier with the following config while you were testing
HTTP/2 push:

H2PushDiarySize 0

12 https://tools.ietf.org/html/draft-ietf-httpbis-cache-digest
13 https://www.cs.cmu.edu/~dga/papers/cuckoo-conext2014.pdf

www.EBooksWorld.ir

170 CHAPTER 5 Implementing HTTP/2 push
This line sets the maximum push diary size to 0, saying that you don’t have a push
diary, and therefore allow resources to be pushed even if they’re already sent. Without
setting this size to 0, if you test a page multiple times, you see that resources are some-
times pushed and sometimes not, which can be confusing when you’re testing
HTTP/2 push. When you finish testing, remove this config and use the default
H2PushDiarySize (256 entries per connection) or set it appropriately. Other servers
may have a similar implementation to Apache, so check your server documentation.

 It’s possible to use an implementation of cache digests on the browser side now if
you’re using service workers in your web application, because service workers allow
you to intercept and change your HTTP requests. Some implementations exist for this
purpose.14 As the CACHE_DIGEST frame isn’t approved or implemented in any browsers
or servers, it can’t be used; instead, these implementations usually send the cache
digest in an HTTP header or cookie. Your server may use this cookie or HTTP header
to initialize the cache digest. Your web application needs to send this header manually
(using service workers), and then use it to initialize the server side. Although testing
this feature may be interesting, it would be better if this was standardized and sent by
the browser. However, in January 2019, the HTTP Working Group stated they will not
continue work on standardizing cache digests at this time.15

 The last point of concern about cache digests is security. The browser cache may
contain sensitive information such as what URLs were visited previously, or may allow
fingerprinting of users without the use of cookies and the like. The server is likely to
have access to some of this data anyway (the requests must be made to the server at
some point), but security is still a concern. The current draft suggests that browsers
not send cache digests in privacy mode or when cookies aren’t used or cleared. The
security and privacy concerns are another reason the cache digest standardization has
been stopped at this time.

5.5 What to push
By now, you should have a good understanding of HTTP/2 push and how it works on
both the server and client sides. But you need to give careful thought to what assets
you push.

5.5.1 What can you push?

The specification dictates some ground rules for HTTP/2 push:16

 Clients can disable push by setting the SETTINGS_ENABLE_PUSH option to 0 in
the SETTINGS frame. Thereafter, servers must not use PUSH_PROMISE frames.

 Pushed requests must be cacheable methods (GET, HEAD, and some POST requests).
 Pushed requests must be safe (usually GET or HEAD).

14 https://www.npmjs.com/package/cache-digest-immutable
15 https://lists.w3.org/Archives/Public/ietf-http-wg/2019JanMar/0033.html
16 https://httpwg.org/specs/rfc7540.html#PushResources

www.EBooksWorld.ir

171What to push
 Pushed requests must not include a request body (though they usually include
a response body).

 Pushed requests must be sent only to domains over which the server is author-
itative.

 A client can’t push; only the server can push.
 Resources can be pushed only in response to a current request. It’s not possible

for a server to initiate a push if no request is in process.

In reality, because of these rules, only GET requests are pushed. The preceding rules are
about what you can push, but a lot more thought is needed about what you should push.

 The authoritative restriction limits you to pushing only resources that the web
server serves (directly or indirectly). If the website uses Bootstrap loaded from get-
bootstrap.com (or if it uses jQuery hosted on jquery.com or a similar site), that can’t
be pushed by your server. If you want to proxy those requests through your server, you
can, but you’d need to update all references to expect the request from your server,
and at that point, why not host the page locally and remove the complication of proxy-
ing it?

 An interesting proposal called Signed HTTP Exchanges17 (formally called Web
Packaging) would allow you to serve signed resources from your domain as though
they came directly from the original domain, allowing you to effectively push other
domain’s resources. The proposal is still being defined, however, and isn’t available in
any browsers or servers as of this writing, but it’s certainly something to watch for.

5.5.2 What should you push?

A key question that website owners who want to use HTTP/2 push must answer is what
assets to push—and, perhaps more important, what not to push. HTTP/2 push is
intended to be a performance optimization, but it can become a performance drag if
you push too much and waste vital bandwidth pushing assets that the client won’t use,
instead of using the available resources to download assets that the page will use.

 Ideally, you should push only critical assets that the page needs. Pushing resources
that won’t be used is a waste of resources. Resources that won’t be used include assets
that aren’t used (such as unreferenced assets), assets that the client can’t use (such as
image formats that aren’t supported by that client), and assets that may not be used
depending on the client (such as images that are displayed only for certain screen
sizes). I stated earlier that only critical resources should be pushed. Although it may
be tempting to push everything that the page needs, you may be slowing the delivery
of critical resources, depending on how the pushed resources are prioritized in com-
parison with the other client-initiated requests.

17 https://tools.ietf.org/html/draft-yasskin-http-origin-signed-responses

www.EBooksWorld.ir

172 CHAPTER 5 Implementing HTTP/2 push
 Also, you need to consider whether the client already has an asset in one of its
caches (see section 5.3). You should push only if there’s a high likelihood that the
pushed asset isn’t already cached.

 You should use HTTP/2 push to make the most of idle network time. Therefore,
pushing all the assets that the page needs is unlikely to improve performance, because
you’re overriding any loading prioritization that the browser may make. The Chrome
team wrote an in-depth paper on what to push,18 in which one of the main recommen-
dations was pushing the minimum needed “to fill idle network time, and no more.”
Other research19 indicates that similar conservative strategies should be used with
push. For this reason, early pushes and the 103 status code are important improve-
ments over basic push strategies.

 In short, it’s better to underpush than to overpush. The worst that can happen if a
resource isn’t pushed is that it will need to be requested anyway, and the page may not
improve as much as it could under optimum conditions. On the flip side, the worst
that can happen with overpushing is sending needless assets, thereby wasting resources
on the client, network, and server, and making the page load slower. But HTTP/2
push, even with overpushing, shouldn’t break the page. The page won’t be as performant
as it could be and may waste resources (which isn’t without cost), but the page itself
will load—eventually.

5.5.3 Automating push

You also need to devise a strategy on what to push. Does a website owner or developer
have to decide what to push (perhaps per page), and then configure this decision in
the server? Or should the process be more automated? Jetty20 is a Java servlet engine
that chooses the second option and tries to automate pushes.21 It watches requests
and subsequent requests with a Referer header of that request. Then it uses what it
sees to build up suggested push resources for similar future requests from other cli-
ents. This engine certainly removes a lot of the complexity of deciding what to push,
but then you’re dependent on whether you agree with that implementation and
whether it’s a good match for your website. Deciding what to push is complex, and
automating push for every site is equally complex. Jetty’s implementation is an inter-
esting one, and coupled with some form of cache digests to prevent overpushing, it
may be sufficient. Alternatively, website owners may want more direct control, because
they should know their website and visitors better and should be able to come up with
a better idea of what to push.

18 https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0/ also avail-
able at https://goo.gl/89RLGQ

19 https://calendar.perfplanet.com/2016/http2-push-the-details/
20 https://www.eclipse.org/jetty/
21 https://www.eclipse.org/jetty/documentation/current/http2-configuring-push.html

www.EBooksWorld.ir

173Troubleshooting HTTP/2 push
5.6 Troubleshooting HTTP/2 push
HTTP/2 push is easiest to see in the Initiator column of the Network tab of
Chrome Developer tools (or in similar Chromium-based browsers such as Opera).
But what if you don’t see the pushed resource in this column? Here are some com-
mon reasons:

 Are you using HTTP/2? If not, push won’t work. Add the Protocol column to
make sure you’re using HTTP/2. See chapter 3 for troubleshooting tips for
when HTTP/2 isn’t being used, even though you expect it to be.

 Does your server support HTTP/2 push? Some servers and CDNs don’t support
HTTP/2 push at this writing. Unfortunately, the client states whether it sup-
ports push in the SETTINGS frame, not the server, so it’s not possible to see
whether the server supports it by looking at the SETTINGS frame with nghttp or
Chrome’s net-export page.

 Is your server behind other infrastructure? If your server is behind a load balancer or
other infrastructure that terminates the HTTP/2 connection, it may not sup-
port HTTP/2 push, even if your server does. Even if it does support HTTP/2
push, it may not be passing on the pushed resources, which need to be pushed
by this edge infrastructure.

If you have Apache in front of a backend application server (such as Node or
Jetty), Apache won’t allow the backend server to push resources itself, and it
must use the HTTP link header to make Apache push resources.

 Is the asset being pushed by the server? You can use nghttp to examine the actual
frames to investigate whether the PUSH_PROMISE frame and the asset itself are
being sent to see whether the problem is a browser issue.

 Are the assets needed by the page? If the page doesn’t need the assets, the browser
won’t use them, and Chrome won’t even show them on the Network tab. You
can use the chrome net-export tool to see a summary of unclaimed push
resources for all current active pages, as shown in figure 5.16 and discussed in
section 5.3.1.

If you’re pushing by using the HTTP link header with rel=preload and an
as attribute, however, Chrome thinks that the assets are needed by the page (by
virtue of a preload hint) and shows them on the Network tab. This situation can
be both useful and confusing.

One way to debug is to remove the as attribute (such as as=style) from the
link header. Chrome won’t use the assets as a preload hint, but your web server
should still push them (because the as attribute isn’t mandatory for push,
depending on the implementation). If the resources don’t appear on the Net-
work tab but do when it has the as attribute, you know that you’re pushing a
resource that the page doesn’t need.

 Are you using the correct way to push for your server? How you push depends on the
server. A lot of servers use HTTP link headers, but not all of them do, so you

www.EBooksWorld.ir

174 CHAPTER 5 Implementing HTTP/2 push
can’t presume that they’ll use this method to push. Check your server docu-
mentation or online guides for details on how to push on your server.

 Has the server explicitly decided not to push the resource? If you’ve implemented
cache-aware pushing (see section 5.4) or some other method to push only in
certain circumstances, that implementation may explain why the push isn’t hap-
pening. If refreshing the page or restarting the browser (or even the server)
causes assets to appear as being pushed some of the time, check when the push
resource is set to send. For Apache, you can set H2PushDiarySize to 0 to turn
off the push diary feature, which tries to prevent pushing resources that the
server thinks the client already has. This feature can be useful for debugging
when you want the server to push the same resource multiple times.

 Does the pushed asset exist? It’s easy to make a typo when you’re specifying a
resource to push, and if a resource doesn’t exist, it can’t be pushed! Pushing a
resource that doesn’t exist results in a 404 (Not Found) status code in your
web server logs. Similarly, this 404 status code appears in the returned frame if
you’re using nghttp. If you’re using the HTTP link header with rel=preload
and an as attribute, it appears on the Network tab as a 404 or as a canceled22

request.
 Are you pushing on a different connection from the one that the browser expects? As dis-

cussed in section 5.2.1, HTTP/2 push is linked to the connection. If you’re
pushing on one connection, but the browser expects the resource to be sent on
another connection, the browser won’t use the pushed resource. Fonts are the
most obvious problems, because they must be loaded on uncredentialed con-
nections, but several browser issues and quirks can cause a different connection
to be used. The connection view in WebPagetest probably is the best way to see
this situation.

 Are you using a self-signed or otherwise-untrusted certificate? Chrome ignores push
requests for untrusted HTTPS certificates (including self-signed dummy certifi-
cates created for localhost).23 You must add the certificate to your computer’s
trust store to enable the green padlock for push resources to be used. Chrome
also insists that the certificate have a valid Subject Alternative Name (SAN).
Many tutorials on creating self-signed certificates include only the older Subject
field, so even after they’re added to the trust store, these certificates aren’t rec-
ognized; they must be replaced by certificates with both a Subject and a SAN for
push to work.

22 https://bugs.chromium.org/p/chromium/issues/detail?id=811077
23 https://bugs.chromium.org/p/chromium/issues/detail?id=824988

www.EBooksWorld.ir

175The performance impact of HTTP/2 push
5.7 The performance impact of HTTP/2 push
The impact of HTTP/2 push varies from website to website and depends on round-
trip time—the time it takes to serve resources—and on how optimized the website is.
At present, few sites use HTTP/2 push, so meaningful information about its perfor-
mance impact is thin on the ground.

 The key to using HTTP/2 push effectively is to use gaps in bandwidth when the
connection isn’t being used. For pages that take a long time to generate server-side,
the gains can be large. For static pages, the gains are less obvious. Although a poten-
tial one-round-trip savings exists, because of bandwidth and processing limitations,
the pushed resources will likely queue behind the higher-priority main resources any-
way, reducing the gains in the request lag (half a round trip). Figure 5.17 shows this
effect. The two waterfalls look identical for the first four resources, so there are few
gains from using push.

The fifth star.svg resource does benefit from being pushed; it no longer needs to
wait for the stylesheet to be downloaded to discover that it’s necessary. (Later in this
chapter I discuss preload, which provides a similar benefit). In this example, push
doesn’t seem to solve its original use case, removing the need for inlining resources,
but it can still offer dramatic benefits if used right.

 At the 102nd IETF meeting in Montreal in July 2018, Akamai24 and the Chrome
teams25 presented their observations on the effects of HTTP/2 push. Akamai showed
some statistical improvements when it preemptively pushed resources that were
deemed critical. Chrome also showed small improvements, but experimented with

24 https://github.com/httpwg/wg-materials/blob/gh-pages/ietf102/akamai-server-push.pdf
25 https://github.com/httpwg/wg-materials/blob/gh-pages/ietf102/chrome_push.pdf

HTTP/2 with push for resources 2-5

HTTP/2 without push

Resources 2-4
show little

difference with
push enabled.

Resource 5
does benefit
from HTTP/2
push, as it no

longer depends
on the CSS file.

Figure 5.17 HTTP/2 pushed resources don’t arrive at the same time as the requested resource.

www.EBooksWorld.ir

176 CHAPTER 5 Implementing HTTP/2 push
disabling push and measuring the difference. These slightly different methodologies
raise some questions. Are Akamai customers more representative of the Web in gen-
eral, as Chrome looks only at sites that have already enabled push (which are few and
probably operated by HTTP/2 advocates)? Is Akamai deciding the correct assets to
push, and is its decision better or worse than that of sites that decided what to push
themselves, as they would in the Chrome experiment?

 Two big problems were highlighted, particularly by the Chrome team: few sites
were using HTTP/2 push (0.04% of HTTP/2 sessions, according to Chrome), and
the potential of push to make performance worse is a real concern. The Chrome team
even questioned whether anyone would notice if push were switched off. The low use
in itself is telling, and I’ve shown in this chapter that push is complicated, so many
people are questioning its usefulness and suggesting alternatives.

5.8 Push versus preload
HTTP/2 push has a lot of subtle nuances even if it works as it’s supposed to (which
isn’t always the case). There are clear risks in using HTTP/2 push, such as wasting
bandwidth and slowing your website instead of speeding it up. As I mentioned earlier,
the risks aren’t that site owners will break their pages, but that they will waste
resources that are perhaps better used elsewhere. One of the main problems is that
the server isn’t aware of what’s in the browser’s HTTP cache, and perhaps cache
digests may solve that problem, if they become standardized. Until that happens, some
people are asking whether HTTP/2 push is ready for mainstream use or whether we
should be satisfied with preload.

 Preload26 is a way to indicate to the browser that a resource is needed for a page,
rather than waiting for the browser to discover this fact. As mentioned in section 5.1.1,
you can preload by using the HTTP link header (perhaps with the nopush attribute to
prevent pushing):

Link: "</assets/css/common.css>;rel=preload;as=style;nopush"

In HTML

<link rel="preload" href="/assets/css/common.css" as="style">

Regardless of which method is used, the browser should take this line as a sign to fetch
a resource with a high priority. As I mentioned earlier, a big difference with HTTP/2
push is that the as attribute is more important for a preload resource; excluding it can
lead to the preload hint’s being ignored or a resource’s being downloaded twice.

 Preload isn’t as fast as HTTP/2 push in pushing a resource before being asked for
it, but it’s a browser-initiated request, which has several advantages:

26 https://w3c.github.io/preload/

www.EBooksWorld.ir

177Push versus preload
 The browser is aware of what is in its cache(s) and uses that knowledge appro-
priately to decide whether to make the request. Unlike HTTP/2 push, a pre-
load hint won’t cause new downloads of resources that the client already has. If
the browser already has the resource, it ignores the preload hint. Because many
HTTP/2 servers use HTTP link headers to push resources, however, you should
add a nopush attribute if you don’t want to push a resource.

 You have fewer push-cache worries and complications when you use preload
hints, which should be downloaded and pulled into the HTTP cache. If a pre-
loaded resource isn’t used, you’re still wasting time downloading it, but that
rule applies whether you’re using preload or HTTP/2 push.

 You can also use preload to load resources from other domains, whereas you
can use HTTP/2 push only for resources on your own domain.

 Chrome developer tools shows all preloaded requests whether they’re used or
not, but it shows only used pushed requests (although a workaround is sending
a preload HTTP link header for each pushed resource).

These advantages may be sufficient for now, and some people are recommending
sticking with the less-risky preload method for now. Analysis by Hooman Beheshti of
Fastly showed that only 0.02% of sites were using HTTP/2 push in February 201827

(almost three years after HTTP/2 was formally approved), which is similar to the
Chrome team’s analysis, covered in section 5.7. Some people are hesitant to use this
technology—and with good reason, especially if preload resource hints offer most of
the same benefits with considerably fewer risks.

 Using preload with the new 103 HTTP status code brings the performance gap
between preload and HTTP/2 push closer still, as resources that take a while to load can
send a 103 response earlier, with the preload HTTP link headers, and tell the browser to
start requesting them. The resources may already be there by the time they’re needed,
depending on the page and how long it takes to generate. In section 5.2.4 earlier in
this chapter, I discuss how 103 responses coupled with HTTP/2 push allow you to use
the processing time, when the network would otherwise be idle, to proactively push
resources. To save you from going back, I’ll repeat that earlier diagram in figure 5.18.

 The figure shows that the backend application server can use a 103 Early Hints
response to tell the web server to push the resources while processing is happening to
generate the web page requested. In this case, as the 103 response is used only to tell
the web server to push some responses, it can be swallowed by the web server, because
it’s of no real benefit to send it on to the client (and, as discussed earlier, some brows-
ers don’t handle the 103 response well).

 If this push option isn’t something you want to implement, for all the reasons dis-
cussed in this chapter, a less-risky option may be not using HTTP/2 push and instead
sending the 103 response back to the browser (when browser support arrives). Then

27 https://www.youtube.com/watch?v=wR1gF5Lhcq0

www.EBooksWorld.ir

178 CHAPTER 5 Implementing HTTP/2 push
the browser can use the preload HTTP link headers to preload the resources, as
shown in figure 5.19.

Time
(ms)

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

Client Web server

Request web page

Receive web page request

Receive HTML page

Receive CSS

Finish drawing page

Receive JS

Receive web page request

Send HTML

Send CSS
Send JS

Send HTML

Backend application server

Processing time

Send 103 Early Hints

Figure 5.18 Using status 103 Early Hints to tell the web server to push resources earlier

Time
(ms)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

Client Web server

Request web page

Receive web page request

Receive HTML page

Receive 103 Early Hints

Finish drawing page

Receive web page request

Send HTML

Receive 103 Early Hints

Send HTML

Backend application server

Processing time

Send 103 Early Hints

Request CSS
Request JS

Receive JS request
Send CSS
Send JS

Receive CSS
Receive JS

Receive CSS request

Figure 5.19 Using 103 with preload headers instead of HTTP/2 push

www.EBooksWorld.ir

179Other use cases for HTTP/2 push
This process isn’t as fast as pushing, because the browser still needs to request these
resources, but it’s faster than waiting for the browser to realize that the web page
needs these resources. In this example, there’s also some overlap of the requesting of
the additional responses and the sending of the main page, which makes this flow a
bit more complicated, but this flow probably represents real life. The advantage of this
process over push, however, is there are fewer concerns about wasting bandwidth. If
the browser already has the resources, it won’t request them. Depending on the tim-
ing, the preloaded resources may be fully received before the page that needs them,
which would make the process as fast as using HTTP/2 push. Even when it’s not quite
as fast, as in figure 5.19, preload may prove to be a safer middle ground until develop-
ers figure out better ways to use HTTP/2 push safely and without wasting resources.

 At this writing, no browser supports 103 Early Hints processing (though
Chrome28 and Firefox29 are working on it), and not all browsers support preload link
headers.30 Perhaps by the time the 103 Early Hints header is better supported, the
overpushing concern will also have been solved by cache digests or similar techniques;
then developers will have two options.

5.9 Other use cases for HTTP/2 push
At present, HTTP/2 push is for a specific use case: pushing critical resources early to
speed page loading without requiring inlining of resources. From the beginning, how-
ever, some people have been asking whether this use case could be extended.31 The
use cases being discussed include the following:

 Could HTTP/2 push replace WebSockets or SSE if the requirement to use push only in
response to specific requests were relaxed? Those technologies allow two-way commu-
nication between client and server (such as to update a web page when new
information is available on the server). Or is it sufficient to use HTTP/2 in con-
junction with WebSockets or SSE?32 Currently, as mentioned at the beginning
of the chapter, HTTP/2 push isn’t a good replacement, but with some changes
to make communication truly two-way, there’s potential here (though the over-
heads of HTTP may mean this solution isn’t desirable compared with the raw
format of, say, WebSockets). On a related note, the BBC Research and Develop-
ment department looked at using HTTP/2 push as a broadcast method in an
interesting paper.33

 Could HTTP/2 push be used to update browser caches when resources change? At the
moment, caching and cache-busting34 techniques are complicated. But if HTTP/2

28 https://crbug.com/671310
29 https://bugzilla.mozilla.org/show_bug.cgi?id=1407355
30 https://caniuse.com/#feat=link-rel-preload
31 https://www.igvita.com/2013/06/12/innovating-with-http-2.0-server-push/
32 https://www.infoq.com/articles/websocket-and-http2-coexist
33 https://www.bbc.co.uk/rd/publications/whitepaper336
34 https://css-tricks.com/strategies-for-cache-busting-css/

www.EBooksWorld.ir

180 CHAPTER 5 Implementing HTTP/2 push
push allowed you to push resources directly into the HTTP cache (which it cur-
rently doesn’t), new opportunities would be available to handle changes on
websites.

 Could it be used to improve progressive JPEGs? Progressive JPEGs, which start show-
ing a fuzzy image that gets clearer as more of the file downloads, would benefit
from being able to download many images in parallel. This could get more
interesting with HTTP/2 push if you could change the priority after the initial
views are sent.35 That way, the server could send an initial view with high priority
and then back off to send the remainder of the image with low priority. Shimmer-
cat is one web server that uses this technique, which is discussed in chapter 7.

 Could it be used for APIs? At least one API developer has suggested that HTTP/2
push could be used to push additional information but still maintain separation
of resources, which could lead to lots of interesting use cases, perhaps not lim-
ited by browsers’ push caches. The protocol allows for push to be used in reply
to any request. But in many ways, browsers are limiting the use of push by not
allowing pushed resources to be used or even notifying the page unless the
page subsequently requests the resources. A non-browser-based HTTP/2 client
could remove such limitations.

 Would adding a notification lead to other use cases? Adding an HTTP/2 push notifi-
cation event or API to browsers could lead to other interesting use cases. A news
or social media website, for example, could poll its server with a short “Are there
any updates?” request. If updates occur (such as breaking news), any required
resources could be pushed as standard HTTP resources (HTML, JSON-based
data, images, and so on); then an event could be sent to the web app to inform
the client to fetch and display those resources when they arrive. This technique
could allow instant loading of those web pages. The advantages of this tech-
nique over WebSockets or SSE are all the advantages of HTTP (such as caching,
file formats, and simplicity).

In summary, there could be better use cases for HTTP/2 push than improving first
paint time. I think that HTTP/2 push has been underused for its original use case—
for good reasons discussed in this chapter—but it has a lot of potential, perhaps for
some of the ideas mentioned in this chapter and perhaps for other ideas.36 The Inter-
net Engineering Task Force (IETF) has started an informational RFC that tracks
HTTP/2 server push use cases.37

 Alternatively, are we restricting ourselves too much in trying to maintain the old
concept of HTTP being a request-and-response protocol? WebSockets and SSE show a
need and appetite for a two-way protocol delivered over HTTP, and perhaps we

35 https://calendar.perfplanet.com/2016/even-faster-images-using-http2-and-progressive-jpegs/
36 https://groups.google.com/a/chromium.org/forum/#!msg/net-dev/yfkW4mkWIPU/5RckmfktJgAJ;

also available at https://goo.gl/gTJrwC
37 https://tools.ietf.org/html/draft-bishop-httpbis-push-cases

www.EBooksWorld.ir

181Summary
should allow it in the protocol. At least one proposal has been written to this effect,38

and the binary framing layer introduced with HTTP/2 lends itself to these sorts of
implementations. I return to this topic in chapter 10.

 HTTP/2 push is new, and site owners should approach it with caution. It’s an inter-
esting feature, and experimentation will show whether the performance boosts that
HTTP/2 push promises materialize or whether HTTP/2 push makes everything
overly complex for little extra gain.

 I hope that this chapter shows that although HTTP/2 push has great potential, you
may not want to rush into it without careful thought. In fact, you may not want to con-
sider it until more best practices and cache-aware techniques are well defined.

Summary
 HTTP/2 push is a new concept in HTTP/2 that allows multiple responses to be

sent back to a single HTTP request.
 HTTP/2 push was proposed as an alternative to inlining critical resources.
 Many servers and CDNs implement HTTP/2 push by using HTTP link headers.
 The new 103 Early Hints status code can be used to provide link headers earlier.
 HTTP/2 push is implemented in the browser in ways that may not be obvious.
 Overpushing resources is easy and can have a detrimental effect on website

performance.
 The performance benefit of HTTP/2 push may not be great, and the risks are

high.
 It may be better to use preload hints, perhaps with 103 Early Hints, rather

than push.
 HTTP/2 push may have other use cases, though some would require changes

in the protocol.

38 https://tools.ietf.org/html/draft-benfield-http2-p2p

www.EBooksWorld.ir

Optimizing for HTTP/2
You’ve gained a good understanding of HTTP/2: what it aims to solve and how it
works, and some of the new features and opportunities it brings. I still have some
more advanced topics to cover in the third part of this book, but you’ve enough
information to look at what HTTP/2 means for your websites and how you can opti-
mize for it. How should you change your development practices? Can you drop some
performance techniques? What new techniques can you use? What do you do for
those users who can’t use HTTP/2? This chapter aims to answer those questions.

This chapter covers
 What HTTP/2 changes for web developers

 Whether HTTP/1.1 web performance techniques
are antipatterns under HTTP/2

 Other performance techniques and whether
they’re still relevant under HTTP/2

 How to optimize for HTTP/1 and HTTP/2

 Connection coalescing
182

www.EBooksWorld.ir

183What HTTP/2 means for web developers
6.1 What HTTP/2 means for web developers
You’ve seen that HTTP/2 fundamentally changes how HTTP messages are sent to
servers, and should bring performance benefits as a result. But do developers need
to change their development languages and practices? Should you use particular Java-
Script frameworks to take advantages of HTTP/2? On the whole, the answer to these
questions is that no changes are required, though some may be beneficial.

 HTTP/2 is designed to be backward-compatible. If your server supports HTTP/2,
you should be able to switch it on, and, in most cases, see an immediate performance
benefit without changing a single line of code. Some new features (such as HTTP/2
push) require changes to use them, and performance enhancement improvements
are possible with a deeper understanding of HTTP/2 that this chapter aims to pro-
vide, but HTTP/2 shouldn’t require you to make those changes after you switch over.
The changes are, for the most part, optional extras that further improve performance.

 Switching on HTTP/2 may not be as simple as you’d like, however (covered in
chapter 3 and the appendix). You may need to upgrade your infrastructure or even
consider new infrastructure, such as having a reverse proxy or content delivery net-
work in front of your web server. This decision may lead to other decisions and oppor-
tunities that you may be able to capitalize on at the same time as the upgrade or in the
future. These topics are somewhat separate, though. In this chapter, I aim to explain
what HTTP/2 means for web developers, assuming that they have access to it.

How to make HTTP/2 calls from the browser
One of the best things about HTTP/2 is that after you’ve supported it on the server
side, you don’t need to make any changes at the client end; the browser takes care
of this task for you. You don’t need to upgrade your version of JQuery, use a different
AJAX syntax, or switch from Angular to React (or vice versa). From a web developer’s
perspective, every frontend HTTP request and response works exactly as it did
before—except (ideally) faster because no queuing occurs. These libraries and tools
let the browser handle the low-level details of making the network call, so only the
browser needs to know about HTTP/2.

At the moment, frontend developers can’t specify whether HTTP/1.1 or HTTP/2
should be used any more than they can specify whether to use HTTP/1.1 or HTTP/1.0
(or even HTTP/0.9). This situation may change in the future, because being able to
provide the priority of a call in either HTML or AJAX,a, b, c for example, or to register a
callback for an HTTP/2 push,d would be incredibly useful.

a https://bugzilla.mozilla.org/show_bug.cgi?id=559092
b https://bugs.chromium.org/p/chromium/issues/detail?id=41501
c https://github.com/WICG/priority-hints
d https://github.com/whatwg/fetch/issues/65

www.EBooksWorld.ir

184 CHAPTER 6 Optimizing for HTTP/2
6.2 Are some HTTP/1.1 optimizations now antipatterns?
HTTP/2 was designed to address some of the fundamental performance problems
in HTTP/1.1. These performance problems made requesting separate resources
under HTTP/1.1 expensive, which led to various techniques for increasing the num-
ber of HTTP connections or minimizing the number of resources requested. Increasing
the number of HTTP connections required browsers to open multiple connections
and even host resources on multiple domains (sharding). Reducing the number of
requests meant using concatenation to merge multiple CSS and JavaScript files into
one big file or creating image sprites of all the little images used by a website (such as
social media icons or other small icons), which could be extracted again with the
clever use of CSS. Both types of optimizations involved transferring the same data (or
at least similar data) with fewer HTTP requests.

 These workarounds addressed some of the inefficiencies of HTTP/1.1 but intro-
duced new problems, as described in chapter 2. HTTP/2 attempts to fix many of
these issues at a protocol level. Requests are now almost free at a protocol layer due
to the binary framing layer; therefore, are the workarounds no longer needed? In
fact, there has been much talk about these HTTP/1.1 performance techniques
becoming antipatterns under HTTP/2. Well, not so fast; I said almost free and only at
a protocol layer.

6.2.1 HTTP/2 requests still have a cost

When a web page references a resource, many things are going on, some of which
are improved by HTTP/2 and some of which aren’t. Figure 6.1 details some of the
many decisions and processes a browser needs to make when a web page asks to
include a resource.

 At a high level, the browser needs to check whether a valid copy exists in the vari-
ous caches (discussed in chapter 5), and if, not make an HTTP request for it. Making
an HTTP request may involve using an existing connection or starting a new connec-
tion, depending on which domain is used and the type of request. After the resource
has been downloaded, the client needs to look at the caching headers to decide
whether to save the resource to the cache for potential reuse. Even after all these
steps, the browser must process the resource (parse the CSS or JavaScript, process the
JPEG image, and so on).

 A lot is going on even before you get to the actual specifics of HTTP sending and
receiving the requests, never mind what to do with it when you have the resource. All
these processes take time—often, tiny amounts of time. But if you remove the typical
six-connection limit of HTTP/1.1 and have hundreds of resources, you start to see
some new, interesting problems.

 In 2016, as HTTP/2 use was ramping up, the Chrome developers noticed signifi-
cant delays when using HTTP/2 for large numbers of resources.1 Some sites froze for

1 https://bugs.chromium.org/p/chromium/issues/detail?id=655585

www.EBooksWorld.ir

185Are some HTTP/1.1 optimizations now antipatterns?
Is the resource in memory (for example, in

short term image cache or preload cache)?

Are we using ServiceWorkers

and does it have a copy?

Is it in the HTTP Cache?

Is it in the HTTP/2 Push Cache?

Decide what cookies (if any)

to send with the request.

Do we have a connection

available for this?

Are we allowed to open a new connnection

(not at max number of connections for this domain)?

Do we know the IP

address of the server.

Make a TCP connection.

Negotiate HTTPS.

Make HTTP request.

Are we using HTTP/2 and has max

number of streams been reached?

DNS lookup

Check if we need to

cache the response.

Use the resource.

Is it still valid?

Yes

No

No

No

No

No

No

No

Yes

NoYes

Yes

Yes

Yes

Yes

No

Yes

Yes

2. Make HTTP request

1. Check caches

Start End

Figure 6.1 Decisions and processes made when an HTTP resource is needed

www.EBooksWorld.ir

186 CHAPTER 6 Optimizing for HTTP/2
400 to 500 ms when not a single request was sent, for example. This problem had
nothing to do with the HTTP/2 protocol per se. You’ll see in chapter 7 that stream
prioritization should allow these concurrent requests to be prioritized appropriately
at a protocol level. The problem was purely a bottleneck in getting the resources sent.
During this time, the browser was busy completing all the tasks mentioned in the pre-
ceding section. HTTP/2 may allow many resources to be in flight together without the
performance penalty of waiting for a free connection, but that ability moves the bot-
tleneck elsewhere.

 To prevent this delay, the Chrome team had to limit the number of resources
that could be queued even under HTTP/2, back to the six-connections limit of
HTTP/1, until the team could optimized the code. This limitation was enforced
only on nonessential resources, so in theory, HTTP/2 was no worse than HTTP/1.1
and shouldn’t have mattered to websites. But an interesting scenario arose: Java-
Script resources with the async or defer attribute (normally added for performance
reasons to prevent blocking on these resources) were throttled, whereas JavaScript
resources without these attributes were not. Websites that used performance best
practices (such as making JavaScript nonblocking) were being artificially limited
and loading more slowly than websites that didn’t follow these best practices. Web-
sites using async or defer ended up loading exactly like HTTP/1.1 requests, as shown
in figure 6.2.

 Whether this situation mattered that much is up for debate; the JavaScript was
marked with async or defer and therefore wasn’t critical to load. But it surprised
some website owners who saw this HTTP/1-like behavior when they had implemented
HTTP/2.2

 This throttling has been removed from later versions of Chrome but does show
that care is needed when you remove bottlenecks like the six-connections limit in
browsers, because the bottlenecks may be masking other performance issues.

2 https://stackoverflow.com/questions/45384243/google-chrome-does-not-do-multiplexing-with-
http2/45775288#45775288

www.EBooksWorld.ir

187Are some HTTP/1.1 optimizations now antipatterns?
6.2.2 HTTP/2 isn’t limitless

The other point to note is that HTTP/2 hasn’t entirely removed the limit. You saw in
chapter 5 that although SETTINGS_MAX_CONCURRENT_STREAMS defaults to unlimited,
many implementations add limits, as shown in tables 6.1 and 6.2.

HTTP/2 - Async/Defer not used

HTTP/2 - Async/Defer used

Figure 6.2 Nonrender blocking JavaScript being artificially slowed in Chrome

www.EBooksWorld.ir

188 CHAPTER 6 Optimizing for HTTP/2
Some of these settings were taken from documentation and others from experimenta-
tion. For the CDNs, I used Wireshark to intercept requests to the home page or other
page hosted on that CDN and looked at the SETTINGS frame as described in chapter 4
(section 4.3.3). For the browsers, I set up an nghttp server with verbose logging and
examined the SETTINGS frames that the various browsers sent on establishing the
HTTP/2 connection.

Table 6.1 Concurrent stream limits on popular HTTP/2 server-side implementations

Software Type Default concurrent streams

Apache HTTPD (v2.4.35) Web server 100a

nginx (v1.14.0) Web server 128b

H2O (2.3.0) Web server 100c

IIS (v10) Web server 100

Jetty (9.4.12) Web and Java servlet container 128d

Apache Tomcat (9.0) Web and Java servlet container 200e

Node (10.11.0) JavaScript runtime environment 100f

Akamai CDN 100

Amazon CloudFront and S3 CDN 128

Cloudflare CDN 128

MaxCDN CDN 128

a https://httpd.apache.org/docs/2.4/mod/mod_http2.html#h2maxsessionstreams
b http://nginx.org/en/docs/http/ngx_http_v2_module.html#http2_max_concurrent_streams
c https://h2o.examp1e.net/configure/http2_directives.html#http2-max-concurrent-requests-per-connection
d https://www.eclipse.org/jetty/documentation/9.4.x/http2-configuring.html
e https://tomcat.apache.org/tomcat-9.0-doc/config/http2.html
f https://nodejs.org/api/http2.html

Table 6.2 Concurrent stream limits on popular HTTP/2 web browsers

Software Default concurrent streams

Chrome (v69) 1000

Firefox (v62) Not set (uses HTTP/2 default of unlimited)

Safari (v12) 1000

Opera (v56) 1000

Edge (v17) 1024

Internet Explorer 11 1024

www.EBooksWorld.ir

189Are some HTTP/1.1 optimizations now antipatterns?
 What is immediately apparent is that server-side settings are a lot lower than web
browser limits. In fact, Firefox doesn’t set a limit and uses the default unlimited value,
which makes sense, as, ultimately, the browser has control of what requests are sent, so it
can add limits outside the protocol (as Chrome did initially in the preceding section).
Additionally, the browser is likely to be servicing a much smaller number of requests
than a server, which may be responding to multiple users at the same time. Given the
performance issues that Chrome experienced when requesting many resources, how-
ever, it may be better if browser makers limit the default number of connections a bit
further until HTTP/2 gets fully settled in. Sites with more than 200 resources are rare
but may become common when HTTP/2 is fully embedded and if websites stop concat-
enating and spriting resources. If you have a website that needs 500 resources, and you
think that under HTTP/2 you don’t need to concatenate these resources, it’s likely that
only 100 to 128 resources will be fetched initially and the rest will be queued as under
HTTP/1.1. This behavior is exactly as described in chapter 2 (section 2.6.1) when the
100-stream server limit was reached. There are examples in which sites have tried to
remove concatenation and run into these new limits.3

6.2.3 Compression is more efficient for larger resources

All web resources should be compressed before being sent over the network. For
some formats (such as JPEG and PNG for images and WOFF and WOFF2 for fonts),
compression is built into the format, and the web server shouldn’t attempt it on top
of this compression. For primarily text-based formats such as HTML, CSS, and Java-
Script, compression such as gzip (or the newer brotli format4) is used, often on the
fly by the web server.

 The one thing that nearly all these compressed formats have in common is that they
can compress larger files more efficiently than smaller files. How each compression
algorithm works is covered in section 7.3.4, but suffice it to say that most of these algo-
rithms work by finding duplicated series of data and replacing them with references to a
single version of that data. With larger files, more duplicates can be found, and the com-
pression ratio can be larger. The net effect is that it’s always better to compress one large
file of 100 KB than to compress 10 files of 10 KB separately, even though the total
uncompressed data is exactly the same. By no longer bundling assets (as you did under
HTTP/1.1), you may lose some compression benefits and end up sending more data
across the wire under HTTP/2, even if the uncompressed amount is identical.

 Exactly how much of a difference this situation makes depends on your files. To
examine some real-world examples, download some popular jQuery files:

curl -OL https://code.jquery.com/jquery-3.3.1.min.js
curl -OL https://code.jquery.com/mobile/1.4.5/jquery.mobile-1.4.5.min.js
curl -OL https://code.jquery.com/ui/1.12.1/jquery-ui.min.js

3 http://engineering.khanacademy.org/posts/js-packaging-http2.htm#http-2-0-has-service-issues
4 https://tools.ietf.org/html/rfc7932

www.EBooksWorld.ir

190 CHAPTER 6 Optimizing for HTTP/2
Then combine these files by using the Linux cat command:

cat jquery-3.3.1.min.js jquery.mobile-1.4.5.min.js jquery-ui.min.js >
jquery_combined.js

If you list the files, you should see the file sizes total up:

-rw-r--r-- 1 barry p 86927 19 May 19:31 jquery-3.3.1.min.js
-rw-r--r-- 1 barry p 253668 19 May 19:31 jquery-ui.min.js
-rw-r--r-- 1 barry p 200143 19 May 19:31 jquery.mobile-1.4.5.min.js
-rw-r--r-- 1 barry p 540738 19 May 19:31 jquery_combined.js

86,927 + 200,143 + 253,668 = 540,738 KB—the size of the combined file, as expected.
 Then compress all the files by using gzip with the standard settings:

gzip jquery*

Now look at the new file sizes:

-rw-r--r-- 1 barry p 30371 19 May 19:31 jquery-3.3.1.min.js.gz
-rw-r--r-- 1 barry p 68058 19 May 19:31 jquery-ui.min.js.gz
-rw-r--r-- 1 barry p 55649 19 May 19:31 jquery.mobile-1.4.5.min.js.gz
-rw-r--r-- 1 barry p 152652 19 May 19:31 jquery_combined.js.gz

Doing the same addition (30,371 KB + 68,058 KB + 55,649 KB) yields 154,078 KB, but
the combined file compresses to 152,652 KB. It’s only 1% smaller, but there’s a differ-
ence, and with nonminified files (which I discuss in section 6.3.1), the differences may
be larger.

 On the flip side, no longer bundling files may allow developers to be more tar-
geted about what they include on a page. Some developers, for example, may have
included one large concatenated JavaScript file with every page on the site. Some
pages required some parts of this JavaScript, and other pages required other parts, but
because HTTP/1.1 was inefficient with multiple files, it usually was more efficient to
send one large file with every page rather than create custom bundles for each page.
With HTTP/2, multiple downloads are less an issue, so each page can be changed to
include only the JavaScript it requires, which reduces the amount of data to be trans-
ferred for each page.

 Does the reduction in data transferred offset the loss in compression ratios? The
answer depends on your site, how far you take unbundling, and how much unneces-
sary data you were sending before that you don’t need to send now. Some example
case studies5 have shown a small increase in data transferred on the wire even when
removing unnecessary code, though the sheer amount of JavaScript being delivered
in these cases is perhaps a bigger concern. Even with slightly larger resources, the per-
formance improvements due to processing less data on some pages may more than

5 http://engineering.khanacademy.org/posts/js-packaging-http2.htm#bundling-improves-compression

www.EBooksWorld.ir

191Are some HTTP/1.1 optimizations now antipatterns?
offset the performance loss from sending more raw bytes when using unbundling. To
conclude, HTTP/2 may not require as much bundling as HTTP/1.1 did, but consider
any loss in compression ratios before unbundling.

6.2.4 Bandwidth limitations and resource contention

HTTP/1.1 created a natural throttling on the HTTP/1.1 requests that could be in
flight at any time. Web browsers, therefore, worked hard on prioritizing the most
important resources to be sent first. Yes, web developers tried to work around this situ-
ation by concatenating and sharding, but these solutions were limited. Now that the
limits have been dramatically increased (if not removed), you can more easily get into
a situation in which some requests starve others of bandwidth.

 In the example site in chapter 2, downloading 360 images over HTTP/2 resulted in
100 images being downloaded in parallel, as opposed to the six-resource limit under
separate HTTP/1.1 connections. Because the 100 downloads happened at the same
time, each resource took longer to download under HTTP/2, as shown in figure 6.3.

 Overall, the images downloaded much faster over HTTP/2, but it may be prefera-
ble to have some resources completely downloaded first (as happens naturally under
HTTP/1.1), rather than downloading a little of every image (as happens naturally
under HTTP/2, unless an explicit prioritization is used to prevent this behavior).

 99design, a web design website, saw similar issues when it first switched to
HTTP/2.6 All the resources that the web page needed were now able to download in
parallel, including some large, high-quality images (as you might expect from a design
website). But some images at the top of the page loaded slower under HTTP/2, as
offscreen images were downloading at the same time and using the bandwidth. Under
HTTP/1.1, the browser had to prioritize the onscreen images to be downloaded first,
and the six-connection limit ensured that those images weren’t delayed by many
lower-priority offscreen images.

 Both these cases can be improved by prioritizing the requests appropriately. I’ve
touched on prioritization under HTTP/2 briefly so far, but cover it in depth in chap-
ter 7. Prioritization is largely out of the site owner’s hands (which is why I left it for a
later chapter), but it may prove to be a key differentiator for the performance of both
browsers and servers. If a browser can suggest an appropriate priority (such as down-
loading images in the viewport with a higher priority than images farther down the
page), and if the server can respond to those suggestions, prioritization can lead to
more-performant pages. Alternatively, images can be downloaded completely in the
order requested, which is what Chrome does currently (see chapter 7).

 Therefore, this issue was more an early-implementation issue than a problem with
the HTTP/2 protocol itself. Given that developers have 20 years of experience with
HTTP/1, however, it’s highly unlikely to be the last such issue during the move to an
HTTP/2 world.

6 https://99designs.com/tech-blog/blog/2016/07/14/real-world-http-2-400gb-of-images-per-day/

www.EBooksWorld.ir

192 CHAPTER 6 Optimizing for HTTP/2
6.2.5 Sharding

Sharding was used to break the six-connection limit that browsers typically imposed on
domains. By hosting media on subdomains or separate domains, websites could have
more downloads in parallel. In my opinion, the impact of sharding may have been over-
stated except for a large number of resources, in which case concatenation or spriting may
have been a better solution. Studies have shown that many extra connections are often
used for only one or two resources, so the time required to set up those connections

Figure 6.3 Individual resources taking less time to download under HTTP/1.1 (top) than HTTP/2 (bottom)

www.EBooksWorld.ir

193Are some HTTP/1.1 optimizations now antipatterns?
may outweigh any performance gain in using them efficiently. As always, websites should
measure the impact of techniques such as sharding rather than blindly putting them in
place under the assumption that they’ll always improve performance.

 In the HTTP/2 world, sharding doesn’t make as much sense, and the effort to set
up and manage separate infrastructure produces limited gains. Also, some parts of
HTTP/2 (such as HTTP/2 push and HPACK header compression) work better over a
single connection, so sharding would cause worse performance. Therefore, I expect
sharding to be used less as HTTP/2 becomes more prevalent. As you’ll see in section
6.4.4, HTTP/2 has a method to reverse sharding, allowing the best of both worlds. In
some specific scenarios, sharding may still be valuable over lossy connections (see
chapter 9), but in general, it should no longer be needed except in those specific sce-
narios. Even in those cases, it may be better for browsers to decide to open multiple
connections when required rather than leave it up to sites to set sharding for all con-
nections whether they’re lossy or not.

6.2.6 Inlining

Inlining of critical CSS, or scripts, has always been a bit of a hack to me7—a powerful
hack, but a hack nonetheless. Putting CSS code in the head of pages improves the first
page load, but then that code either duplicates the content when the real CSS is
loaded or doesn’t allow caching for subsequent page loads on the same site. Also,
inlining only the critical CSS can be complicated, as can be overriding the default way
CSS stylesheets are loaded to prevent them from render blocking.

 HTTP/2 push was supposed to eliminate the need for inlining, but as chapter 5
showed, this technology has proved complicated to use efficiently, so it hasn’t taken
off as much as expected. I expect inlining to remain a common performance benefit
for a while, for those websites that are willing to use it and want to squeeze every last
ounce out of the first page load.

6.2.7 Conclusion

One of the main aims of HTTP/2 was to counter the problem of costly requests in
HTTP/1.1. HTTP/2 has made considerable improvements, but HTTP requests still
have costs. Often, this problem is due to issues outside the protocol (such as the cost
of multiple requests to browsers), but others are due at least in part to the way that
HTTP/2 works. Too many simultaneous requests, for example, can cause a slowdown
for some metrics (such as first paint) if critical requests are starved of resources.

 You must also consider the fact that HTTP/2 implementations aren’t yet mature;
some suboptimal implementations will undoubtedly improve over time. Bugs may be
found, or the new protocol may be used inefficiently (such as not prioritizing requests
appropriately). I strongly advise you to keep your HTTP/2 software (server and brows-
ers) up-to-date during this early phase.

7 https://www.tunetheweb.com/blog/inlining-css-is-not-for-me/

www.EBooksWorld.ir

194 CHAPTER 6 Optimizing for HTTP/2
 To repeat an earlier point, after 20 years, developers have a deep understanding of
HTTP/1 and mature technology stacks, but HTTP/2 is still in its infancy. The technol-
ogy doesn’t appear to have many show-stopping issues, but there are many instances
of unexpected bottlenecks and inefficiencies where HTTP/2 perhaps isn’t as efficient
as it could be.

 HTTP/2 also dramatically increases the parallel download limits (from the previ-
ous six connections), but doesn’t remove them. My recommendation is that you keep
each domain’s requests to fewer than 100 resources for now. Don’t remove concatena-
tion if doing so will result in hundreds of files, but use the increased limitations to
bundle more appropriately.

 The performance optimizations that became prevalent under HTTP/1.1 are
required less, but it’s premature to remove them while developers are getting used to
this new protocol and what it means. Instead, scale them back to an appropriate level
(using less concatenation rather than no concatenation, for example). Developers
should perhaps group their code into groups of assets that are likely to be used
together rather than concatenating files into one large file, as they may have done in
the past. Reducing the use of HTTP/1.1 techniques rather than eradicating them
seems to be the general consensus that researchers and website owners are reaching.8

When HTTP/2 first came out, there was a lot of talk that many HTTP/1.1 perfor-
mance techniques were now antipatterns, but this isn’t strictly true.

 The key takeaway is to not assume that HTTP/2 is a silver bullet. Most sites will see
improvements, but a minority may suffer. Explaining any expected behavior requires
careful measuring and understanding of the protocol.

6.3 Web performance techniques still relevant
under HTTP/2
HTTP/2 improves some of the inefficiencies of earlier versions of the HTTP proto-
col, as discussed in this chapter, which makes some of the performance techniques
somewhat less relevant under HTTP/2. HTTP protocol optimizations aren’t the only
techniques you can use to improve performance of websites, but by the nature of the
web, which involves client and server interactions often over some distance, a large
part of web performance is optimizing network level use. It’s worthwhile to review
other related performance best practices that affect data transfer and to explain why
they’re still relevant under HTTP/2, as well as to point out any new opportunities
under HTTP/2.

6.3.1 Minimizing the amount of data transferred

No matter what improvements HTTP/2 provides for handling requests and responses,
it’s always better to send less data. HTTP/2 doesn’t magically make internet connec-
tions bigger; it allows them to be more efficient. Websites appear to load faster, but

8 https://uhdspace.uhasselt.be/dspace/bitstream/1942/23909/1/h2bestpractices_RobinMarx_WEBIST2017.pdf

www.EBooksWorld.ir

195Web performance techniques still relevant under HTTP/2
they generally load the same amount of data (perhaps even slightly more if compres-
sion isn’t as efficient, as discussed in section 6.2.3). Therefore, it still pays to reduce
the amount of data you send as much as possible. All the techniques you use to
achieve this reduction are equally relevant under HTTP/2.

USING APPROPRIATE FILE FORMATS AND SIZES

Media-rich web pages may be interesting, but media takes time to download and dis-
play. According to the HTTP Archive, nearly 80% of a web page’s size is due to images
and video9 (see figure 6.4), so it’s still important to send the appropriate media format
and size.

Video and audio are a bit specialized, so we won't cover them here, but we will discuss
images a bit.10 Typically, you use JPEG (aka JPG) format for photographs and PNG for
other graphics. WebP was pushed by Google but doesn’t seem to have caught on, even
though it has been out for several years.11 SVG is growing in use but still has some way
to go. Nearly all websites use JPEG and PNG formats,12 and for good reason; these for-
mats are universally supported and provide a good balance between size and quality.

 JPEG is a lossy format; you’ll lose some of the image quality, but can set the level of
compression versus quality. It’s easy to reduce image quality and produce much smaller
images without any apparent dip in perceptible quality to the naked eye. Images can

9 https://httparchive.org/reports/page-weight
10 https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
11 https://caniuse.com/#feat=webp
12 https://w3techs.com/technologies/overview/image_format/all

Image

Video

JavaScript

Fonts

CSS
HTML Other

Figure 6.4 Average bytes per
page by content type

www.EBooksWorld.ir

196 CHAPTER 6 Optimizing for HTTP/2
also contain a considerable amount of metadata (when the photograph was taken,
what camera took it, what ISO setting was used, and so on). Most of this metadata is
irrelevant to those who browse your web page and should be stripped out, but take
care about images that you don’t own in case the licensing terms restrict alterations.
Various tools and image editing software can change the quality and metadata to
reduce file size, but for ease of use, I recommend tinypng.com,13 which compresses
JPEGs and PNGs quickly and without a fuss. It’s also available at tinyjpg.com; both sites
use the same tool and can handle both formats. Figure 6.5 shows how most images can
be dramatically reduced in size.

In addition to looking at the quality level, you should look at size. Sending a 5120 ×
2880-pixel image to display it at 100-pixel width wastes both the download time and
the browser’s processing time. Large print-quality, print-size images should never be
placed on web pages. If you need these types of images to be available, add them as
separate download links.

 Sending appropriately sized images also often means using different images for
mobile and desktop sites, and possibly also for the various screen sizes in between.
Although visitors who are lucky enough to be visiting your site on a large screen may
appreciate high-quality images, those who are using mobile devices will likely curse
your slow website if the same images are sent to them. Figure 6.6 shows that desktop
and mobile site sizes are converging, perhaps because more sites are moving to a

13 https://tinypng.com/

Figure 6.5 Dragging and dropping files in tinypng can dramatically reduce file size.

www.EBooksWorld.ir

197Web performance techniques still relevant under HTTP/2
responsive design, with a single website for both, but fail to use techniques on that sin-
gle website to deliver different image sizes to the two different platforms.

 In summary, HTTP/2 doesn’t change the file formats that can be sent and doesn’t
change the data that’s transferred to or used at the client end. Continue to use the most
appropriate file format and optimize your media before putting it on your website.

COMPRESSING TEXT DATA

Although media compression is often handled by the image format, the fundamental
technologies of the web—HTML, CSS, and JavaScript—are text-based and you should
look to reduce the size of these resources as much as possible too. Under HTTP/1.1,
you compressed HTTP bodies by using gzip or similar tools to reduce the amount of
data sent, and you should continue to do so under HTTP/2. HTTP/2 doesn’t change
what data is sent on the whole, only how it’s sent. Compressing text response bodies,
therefore, is still as relevant under HTTP/2 as it was under HTTP/1.1. Text com-
presses incredibly well, and you can easily achieve compression up to 90%. Table 6.3
shows the compression ratios of common JavaScript and CSS libraries.14

Table 6.3 Compression ratios of common libraries using gzip

Library Size Compressed size Compression ratio

jquery-1.11.0.js 276 KB 82 KB 70%

angular-1.2.15.js 729 KB 182 KB 75%

bootstrap-3.1.1.css 118 KB 18 KB 85%

foundation-5.css 186 KB 22 KB 88%

14 https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/optimize-
encoding-and-transfer?hl=en#text-compression-with-gzip

Average site size (KB)

Desktop Mobile

2000

1800

1600

1400

1200

1000

800

600

400

200

0

16-May-11 16-May-12 16-May-13 16-May-14 16-May-15 16-May-16 16-May-17

Figure 6.6 Site sizes of mobile and desktop are converging.

www.EBooksWorld.ir

198 CHAPTER 6 Optimizing for HTTP/2
The only downsides to compressing data before it’s sent are the time and compute
power required to compress on the server side and decompress on the browser side,
but this power is almost negligible on modern hardware. The network benefits of
sending fewer bytes are almost always far higher than the time and compute cost of
compression.

 Gzip remains the most popular compression technology,15 though compression
algorithms such as Brotli16 are becoming more prevalent. Brotli offers better compres-
sion (depending on the settings17), and, therefore, even bigger savings. These tools
should be used in addition to gzip for browsers that don’t support brotli yet.18 HTTP/2
handles different content encodings in the same way as HTTP/1.1, so changing to
HTTP/2 makes no difference as to whether to compress your response bodies (please
do!) or what format to use. The only slight relevance is that some newer formats such as
brotli require HTTPS, and potentially later versions of your web server. If you migrated
to HTTPS and HTTP/2 at the same time or had to upgrade your web-server software for
HTTP/2, you may now have the option to use these new formats, though perhaps it’s
best to get through your HTTP/2 migration before adding these formats to the mix.

 The best thing about compression is that except for a little setup on the server, it’s
seamless. When they’re set up, web servers compress resources on the fly, web brows-
ers decompress resources automatically, and most website owners can forget about
compression after it’s enabled. Some web servers allow you to serve precompressed
content to reduce load on the web server. This technique requires some extra effort
each time you want to add new content (to precompress it before you upload it), but
that effort doesn’t change under HTTP/2.

 Regardless of what version of HTTP you use, you should continue to compress
your HTTP bodies. The content encoding will be communicated to the browser in the
content-encoding HTTP header as it was under HTTP/1.1.

15 https://w3techs.com/technologies/details/ce-compression/all/all
16 https://opensource.googleblog.com/2015/09/introducing-brotli-new-compression.html
17 https://blogs.akamai.com/2016/02/understanding-brotlis-potential.html
18 https://caniuse.com/#feat=brotli

Compressing HTTP headers
While I’m on the subject of compression, one thing that does change under HTTP/2,
and that I haven’t discussed in much detail yet, is header compression. HTTP/1
allowed compression only of request-and-response bodies, whereas HTTP/2 also
compresses HTTP headers by using a format known as HPACK. This format is another
way that HTTP/2 reduces the performance overhead of multiple requests. Without
HPACK, sending the same content over two requests would lead to sending twice the
header data that needs to be sent. This improvement is especially important as the
use of HTTP headers continues to grow, because for many small requests, headers
can make up a proportionally large part of both request and response.

www.EBooksWorld.ir

199Web performance techniques still relevant under HTTP/2
MINIFYING CODE

Another data-reduction method is minifying code, whether that code is HTML, CSS, or
JavaScript. This method involves stripping out whitespace and comments, and often
rewriting code to reduce the sizes of local variable names and remove unnecessary
delimiters. Like compression, this method doesn’t change under HTTP/2, so if you
minimized before, you probably should continue to do so after moving to HTTP/2.

 But HTTP/2 potentially allows code to be deployed without much (or at least with-
out as much) concatenation, so a build step may no longer be required. You may want
to use this opportunity to bring your deployed code more in line with your source
code now that there no longer needs to be such a difference. In such a case, you may
no longer want to minify. Not minifying may add a slight performance cost, but in my
opinion, minification on top of compression adds only a little extra cost, because com-
pression already strips out repeated strings (such as whitespace) reasonably well. On
the negative side, it’s more difficult to read minimized code if you’re trying to debug
problems in production. Unfortunately not all bugs are easily reproducible in devel-
opment environments! You can add source maps that allow you to “unminimize” your
production code somewhat, but that process can be complicated.19

 Consider a real-world example of code to see the space benefits of minification:
the popular Bootstrap v4.0.0 library. This library provides both minified and original
versions of its CSS and JavaScript code, so compare these versions, starting with the
Bootstrap CSS. In Chrome, open developer tools, make sure that the Size column
appears, and load the Bootstrap CSS file from https://stackpath.bootstrapcdn.com/
bootstrap/4.1.3/css/bootstrap.min.css, as shown in figure 6.7.

 If the Size column doesn’t show both numbers, click the Use Large Request Rows
button. In this example, the Size column shows both the compressed size (21.0 KB)
and the uncompressed value (138 KB). Technically these numbers aren’t comparable,
however: the top value is the transferred size, so it includes the HTTP headers
(request and response), whereas the bottom value is only the raw body size returned. I
measured the headers separately, and they’re about 0.5 KB uncompressed. So ignore
these differences, because they have a negligible effect. It’s also possible to download
and gzip the files separately (as in section 6.2.3) to get a more accurate value, but that
technique introduces questions about what gzip settings the command line and the
web server are using.

Because header compression is handled by the underlying browser and there’s little
for website owners and developers to do, I don’t cover this topic further right now,
but I explain how this process works in chapter 8.

19 https://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

www.EBooksWorld.ir

200 CHAPTER 6 Optimizing for HTTP/2
Repeating this process for the unminified version and then putting them together
produces the values in table 6.4.

As you can see, the unminified version shrinks to 13% of the size, whereas the mini-
fied version is 12% of the size. Minifying and gzipping are better, but you’re talking
about a difference of only 1%, or 1.8 KB. Yes, every byte counts, and for a provider like
Bootstrap, it makes sense to provide a minified version of the library. But for your own
code, the saving often isn’t huge.

 The saving depends on the individual code. Although there doesn’t appear to be a
huge benefit for the Bootstrap CSS file, you see a larger benefit when you look at the
Bootstrap JavaScript file (table 6.5).

Here, you see a bigger compression gain (17% gzipped only, 12% gzipped and mini-
fied), which leads to a bigger saving of 5%, or 6.7 KB. Most people comment their
JavaScript code more than they do their CSS code, and JavaScript often uses more

Table 6.4 Effect of gzip and minification on Bootstrap CSS (v4.1.3)

Compression type Bootstrap.css Bootstrap.min.css

Original file 170 KB 138 KB (81% of original size)

gzip 22.8 KB (13% of original size) 21.0 KB (12% of original size)

Table 6.5 Effect of gzip and minification on Bootstrap JavaScript (v4.1.3)

Compression type Bootstrap.js Bootstrap.min.js

Original file 121 KB 49.8 KB (41% of original size)

gzip 20.9 KB (17% of original size) 14.2 KB (12% of original size)

“Use Large Requests”
button

Transfer size and
uncompressed
resource size

Figure 6.7 Viewing the compressed and uncompressed size of a request

www.EBooksWorld.ir

201Web performance techniques still relevant under HTTP/2
whitespace than CSS does and includes more variable names, so this result isn’t
unexpected. In fact, you can see that minifying alone, without gzipping, reduces the
JavaScript file to 41% of the size, whereas the CSS is still 81% of the original size.
Incidentally, both minified-only file sizes are much larger than the gzipped-only ver-
sion, which backs up my point that gzip (or similar compression) is the main opti-
mization to use; minification gives you a little extra improvement if you want to use
it too.

 For larger sites and website owners who have the necessary expertise, however,
minification is likely to be worth the effort. Table 6.6 expands on table 6.5, showing
compression sizes for some common web development libraries. You see a noticeable
difference in the minified version of some of these libraries, jQuery and Angular in
particular.

The other reason to minimize code is obfuscation. Trying to use obfuscation to hide
any logic is of limited use, however, as unminifying code is trivial. Nevertheless, strip-
ping out comments may prevent any embarrassing thoughts of internal developers
leaking out into the real world (such as “Must get around to fixing this awful code at
some point”). Finally, minimized code can in theory perform marginally better, as
there’s less for the browser to parse, though the first step of any parse effectively mini-
mizes the code, so there may not be large benefits.

 To sum up, HTTP/2 should have no direct effect on your decision to minify
your code. But if moving to HTTP/2 changes your development practices (such as
concatenating less), you may want to revisit the benefits of minification to see
whether they still apply. Minification is more complex than having the web server
compress files, and the improvements of minification on top of compression are
considerably less.

Table 6.6 Compression ratios of common libraries

Library Size Compressed size Compression ratio

jquery-3.3.1.js 265 KB 78.9 KB 30%

jquery-3.3.1.min.js 84.9 KB 30.0 KB 35%

angular-1.7.2.js 960 KB 297 KB 31%

angular-1.7.2.min.js 168 KB 56.6 KB 34%

bootstrap-4.1.3.css 121 KB 20.9 KB 17%

bootstrap-4.1.3.min.css 49.8 KB 14.2 KB 29%

foundation-6.4.3.css 158 KB 18.8 KB 12%

foundation-6.4.3.min.css 118 KB 14.7 KB 12%

www.EBooksWorld.ir

202 CHAPTER 6 Optimizing for HTTP/2
6.3.2 Using caching to prevent resending data

An often-repeated quote about web performance (though no one seems to remember
who said it first20) is: “The fastest HTTP request is the one not made.” HTTP/2 seeks
to improve the performance of an HTTP request, but it will never be faster than not
making the request at all by caching as much as possible. If visitors need that resource
again, they can pick it up from the HTTP cache, which is always quicker than making
the full network request, no matter whether the protocol is HTTP/1, HTTP/2, or
some future version.

 Caching as much as possible was an excellent performance tip for HTTP/1, and it
remains one in HTTP/2. The same cache-control and expires HTTP headers exist
in HTTP/2 and should still be used—though some people argue, not unreasonably,
that the expires header is no longer needed, because all common clients understand
HTTP/1.1, and HTTP/1.0 is rarely used in real life, especially by applications that
need to be aware of caching.21

 Caching can be complicated. How you maximize caching without causing stale
content to be shown after you update it is a tricky topic that requires a good bit of
thought and cache-busting techniques.22 Caching common assets (stylesheets, Java-
Script, logos, and so on) can be one of the biggest differences between a snappy,
responsive website and one that’s slow and painful to use. Because caching is such an
important topic, it’s worth understanding HTTP caching and the 304 (Not Modified)
response code, which I mentioned briefly in chapter 1.

 When an HTTP response is received, it can include a cache-control HTTP
header (or the older expires HTTP header), which indicates how long the resource
should be considered valid for. Consider a real-world example. If you load Wikipedia
from a fresh browser, you should see the header in figure 6.8.

20 The most likely candidate, Steve Souders, denies that it was him, despite the quote’s often being attributed to
him: https://www.stevesouders.com/blog/2012/03/22/cache-them-if-you-can/.

21 https://www.fastly.com/blog/headers-we-dont-want
22 https://css-tricks.com/strategies-for-cache-busting-css/

Uncheck
“Disable cache”

cache-control header

Figure 6.8 Wikipedia cache-control header

www.EBooksWorld.ir

203Web performance techniques still relevant under HTTP/2
This figure shows that the Wikipedia home page can be cached for 3,600 seconds
(max-age=3600), or 1 hour, after which it must be revalidated before use (must-
revalidate). The figure also specifies that other intermediary caches, such as prox-
ies, can cache the page for 86,400 seconds, or 1 day (s-maxage=86400). But these
intermediaries often use other techniques to keep up-to-date (a topic that’s beyond
the scope of this book), so you can ignore that setting.

 Make sure that the Disable Cache check box shown in the figure isn’t checked.
Then browse back and then forward a page, and you should see something similar to
figure 6.9.

As expected, the website has been loaded from the disk cache, as shown in the Size col-
umn. If you see this (from memory cache) rather than (from disk cache), it’s likely that
you came from another Wikipedia page rather than from a different site, so these
resources are in the more recent memory cache, but the principle is the same. The old
cached response is shown in figure 6.9, including the 200 status code (slightly dimmed
to show that it’s a cached response, which may be difficult to see in the figure).

 To make things more interesting, wait an hour for the cache to expire and then try
the experiment again. To save that time, reload the page (which has the same effect).
You should see something similar to figure 6.10.

 Here, you see a 304 response code instead of the usual 200. Incidentally, if you
reloaded the same window, you also see that Chrome used the in-memory image
cache for the images rather than the usual disk-based HTTP cache, per the discussion
of figure 6.9. That 304 response appears because the browser made a conditional GET
request, as shown in figure 6.11.

 The browser found the home page in the cache, saw that it was out-of-date, and
sent a request for the page—but it said “Send me the page if it’s newer than the one I
already got based on the last modified date (if-modified-since) or the eTag value
(if-none-match) that you sent with the page last time.” The eTag value allows more

Figure 6.9 Wikipedia loaded from the disk cache

www.EBooksWorld.ir

204 CHAPTER 6 Optimizing for HTTP/2
than the date to be used to indicate freshness. This value is implementation-specific,
but could be a hash of the contents, for example. If both values are given (as in fig-
ure 6.11), the eTag value given in the if-none-match header takes precedence. The
server checks, sees the page hasn’t changed, and sends a 304 response to say that the
copy the web browser has is still good. A 304 response has no HTTP body, so it’s
quicker to download than the full resource.

 304 responses are still slow; they require a network call all the way to the server
and back. Network trips are cheaper (but not free!) under HTTP/2. Under
HTTP/1, however, because an HTTP request was relatively expensive, sending a 304
response was almost as costly as sending the full 200 response, so 304 responses may
not have been used as much as they could have been. Many websites don’t cache
their HTML pages at all, for example. Each time you go to the home page, the
browser downloads the page again and then uses the cache only for the resources it

Figure 6.10 Wikipedia reloading from a stale cache

Figure 6.11 Conditional GET request

www.EBooksWorld.ir

205Web performance techniques still relevant under HTTP/2
needs. Not caching the web page can make browsing the website feel slower. If
you’re on a home page, and you click another page and then want to go back to the
home page, the reload should be instantaneous, but there’s often a small delay
while the browser reloads the home page. Adding a cache control directive to the
web page, even a short-lived one, can make the site feel more responsive (it loads
from cache immediately during that cache time) and also can save bandwidth (by
using 304 responses even after cache expiry).

 It’s important to realize that 304 responses still carry a cost, however, so I’m not
suggesting that you use them as replacements for caching—but perhaps as replace-
ments for some resources that you haven’t cached until now. When I took the screen-
shots for the preceding figures, I struggled to find a website that cached the web page
itself, as Wikipedia does. Some news and social media websites depend on the page to
be up-to-date, but there are other, better ways to load content into the page than to
serve pregenerated HTML that shouldn’t be cached, such as with JavaScript AJAX
requests. I argue that websites should cache the pages for a short period, at least when
using HTTP/2, because a 304 response costs considerably less than a 200 response.

 A lot of advice on HTTP caching suggests using long-lived cache times so that
future visits benefit from the cache, but this technique can be less important than
using caching for browsing the site within that session so the website feels responsive
when users navigate it. Using caching for in-session browsing improvements works
equally well with short-lived cache timings, and shorter-lived caches may make com-
plex cache-busting techniques less necessary. Similarly, using caching on the server
side to prevent the edge server from querying a backend server can lead to dramatic
improvements, even with a short cache time.23

 One of the other downsides of a short cache time is that the resources may be
cleared from the cache because the browser assumes that they’re invalid. The best
option is a “Cache this for a long time but revalidate it after a shorter time” option,
but such an option doesn’t exist. Mark Nottingham, who co-chairs the HTTP Working
Group,24 suggested a Stale-While-Revalidate option25 that allows this scenario, but
no browser has taken up that suggestion yet.

 To conclude, HTTP/2 doesn’t change caching options directly, but the reduced
cost of network requests may lead to a reevaluation of caching strategies. Also, it has
been suggested that HTTP/2 push could be changed to allow caches to be updated
(see chapter 5), but this change currently isn’t possible.

23 https://www.nginx.com/blog/benefits-of-microcaching-nginx/
24 https://httpwg.org/
25 https://www.mnot.net/blog/2014/06/01/chrome_and_stale-while-revalidate

www.EBooksWorld.ir

206 CHAPTER 6 Optimizing for HTTP/2
6.3.3 Service workers can further reduce load on the network

Service workers26 are relatively new features available in all modern browsers except
Internet Explorer 11.27 They provide a way of launching a JavaScript proxy that sits
between the web page and the network, as shown in figure 6.12.

Service workers can see, answer, or change HTTP requests. They can be used to pro-
vide similar experiences to native mobile apps, particularly when offline. Even if the
web page itself is cached, a page reload attempts to connect to the website to check
whether the cached version is still valid, and the reload will fail if no network connec-
tion exists. The same experience usually doesn’t happen in a mobile app, which
doesn’t allow you to refresh offline. When a service worker is used on a website, the
service worker can interrupt the requests, and, when offline, return a previously
cached version of the resource. This method allows the cached site to load even
offline, as mobile apps do.

 Service workers create all sorts of interesting opportunities for optimizing the
HTTP side of web development. You could use short caching periods but not purge
items from the service worker cache even after expiry. This technique would allow you
to use 304 responses more often without the danger of long-term caching. As the use
of service workers doesn’t change under HTTP/2, and as service workers are a topic
for a full book in their own right, I don’t cover service workers any further. But I
expect the use of service workers to increase considerably over the next few years, as
service workers provide powerful options to handle HTTP requests.

6.3.4 Don’t send what you don’t need

Continuing the theme of not making unnecessary HTTP requests, another perfor-
mance improvement is to make sure you send only the data that’s actually needed.
Although this point may seem to be obvious, there are lots of reasons why you might
send data that isn’t actually used.

 The techniques mentioned in section 6.2—concatenating files and using image
sprites—often result in sending more data than may be strictly necessary to reduce the

26 https://developers.google.com/web/fundamentals/primers/service-workers/
27 https://caniuse.com/#feat=serviceworkers

The internet Web server

Web browser

Web page Service worker

Figure 6.12 Service workers

www.EBooksWorld.ir

207Web performance techniques still relevant under HTTP/2
number of HTTP requests. As this reduction in requests is less necessary under
HTTP/2, you may want to revisit those techniques from a data perspective. You may
be comfortable continuing to use them if you’ve integrated them into a build process
for website releases and therefore see no pressing need to remove them, but you
should also consider whether you’re sending more data than necessary as a result of
these techniques.

 There are other ways resources that aren’t needed could be loaded. You may be
including images that are hidden in mobile view but still downloaded, for example.
HTTP/2 makes no changes to prevent you from sending resources that won’t be used.
In fact, it adds a new way to do this (HTTP/2 push) that needs extra care, as discussed
in chapter 5.

 HTTP/2 may make it seem quicker to download resources, but it does nothing to
improve the amount of data downloaded (HTTP header compression aside). Sites
should continue to ensure that only necessary data is downloaded.

6.3.5 HTTP resource hints

I introduced the preload resource hint in chapter 5. This hint is part of a suite of
resource hints28 that can be used to further optimize HTTP use, and these options are
as relevant under HTTP/2 as they were under HTTP/1. Each hint is implemented as
a link HTTP header or as a <link> element in HTML. HTTP resource hints have
been around for a while, but recently gained traction and support. They provide addi-
tional ways to complement HTTP/2.

DNS-Prefetch
You saw this hint being used by Amazon in chapter 2. This piece of code is included in
the HEAD section of the home page:

<link rel='dns-prefetch' href='//m.media-amazon.com'>

As the name implies, this hint causes the DNS lookup to happen well before the con-
nection is needed, saving this time (see line 17 of figure 6.13).

This hint may save only a small bit of time, but it requires only a small bit of code to
implement! Support is strong, with all major browsers supporting it for some time.29

DNS lookups do have a time to live (TTL), so websites shouldn’t look up a domain too
early (such as one that is used only for the next navigation), because the lookup may

28 https://w3c.github.io/resource-hints/
29 https://caniuse.com/#feat=link-rel-dns-prefetch

Figure 6.13 DNS prefetch in use

www.EBooksWorld.ir

208 CHAPTER 6 Optimizing for HTTP/2
need to be repeated if the TTL expires. But a 300-second TTL or higher is common,
and ideally, your pages don’t take more than 5 minutes to load, so it should be safe
to use for resources on the current page. This hint is useful only for late-discovered
resources, however. There’s no point in doing a dns-prefetch before referencing
the resource, as that reference will do the DNS lookup anyway. This technique is
most useful for a connection needed by a dependent resource that isn’t apparent
from parsing the HTML alone. Most websites load content from any other domains,
so there are good gains to be had by using this header.

PRECONNECT

Preconnect takes the concept one step further. Instead of doing only the DNS lookup,
it continues to make the connection, which can save the costly TCP and HTTPS setup
costs associated with making new connections. Browser support is strong,30 with most
modern browsers supporting it. Don’t preconnect too early; the TCP slow-start algo-
rithm will kick in after a period of no use, or, worse, the connection will be dropped
(see chapter 9).

 Like DNS-prefetch, preconnect is useful when critical resources are needed from
other domains.

PREFETCH

Prefetch fetches resources that have a low priority. Unlike preload (discussed next),
which attempts to make the current page load quicker, prefetch is normally used for
future navigations; because it’s fetched with such a low priority, it won’t be used until
the current page finishes loading. The resources that it downloads are stored in the
cache, ready for use later. It’s supported by most modern browsers31 except Safari (at
this writing). I don’t see use of prefetch changing due to HTTP/2.

PRELOAD

Preload tells the browser to load a resource for this page with high priority. It’s the
next local step from preconnect, but unlike prefetch, it’s intended for resources on
this page. Web browsers are pretty good at scanning ahead in HTML and loading all
the necessary resources, but preload allows resources that aren’t directly included on
the page (such as fonts referenced in CSS files) to be fetched ahead of time. Support
took some time, but preload is now supported by many modern browsers.32

 Preload gains some relevance for HTTP/2 push (discussed in chapter 5), but
more because it was hijacked for that purpose than as an intended use case. Given the
complications of HTTP/2 push, the preload resource hint (without HTTP/2 push)
may prove to be an easier option. Many people recommend using preload instead of
HTTP/2 push at present, in which case be sure to use the nopush attribute when using
the link header (there is no need to use this with the HTML version, since web servers
do not use that as an indication to push that resource).

30 https://caniuse.com/#feat=link-rel-preconnect
31 https://caniuse.com/#feat=link-rel-prefetch
32 https://caniuse.com/#feat=link-rel-preload

www.EBooksWorld.ir

209Web performance techniques still relevant under HTTP/2
 Preload may become even more useful when the 103 Early Hints HTTP response
code (discussed in chapter 5) becomes more widespread, as it can contain HTTP pre-
load link headers (even under HTTP/1.1).

PRERENDER

Prerender is the most expensive resource hint. It allows full pages to be downloaded
and prerendered (including any resources the page needs). The idea is that if the
next page navigation can reliably be estimated, that page can be loaded instantly. Sup-
port is limited to Chrome and IE 11 at this writing,33 though Chrome is looking to
deprecate it and may not support it much longer.34 The risks of overusing prerender
are considerable, wasting both bandwidth and processing time for the client. I don’t
see the use of prerender changing due to HTTP/2 and don’t expect it to be a priority
for other browsers to implement.

6.3.6 Reduce last-mile latency

HTTP/2 aims to reduce the impact of latency by ensuring that the single TCP connec-
tion can be used for other HTTP requests while a request is in flight. HTTP/2 hasn’t
solved the latency problem, however, and every effort should still be made to reduce
latency. Web servers are usually connected to the rest of the internet with high-speed,
high-bandwidth, always-on infrastructure, but users browsing the web often connect
over much less reliable connections, including broadband and mobile networks. The
last mile refers to this final hop to the end user and is often where latency particularly
affects the connection.

 The easiest way to solve this problem is to be located as close as possible to the
browser, which for global websites usually involves having a network of local servers
near your user base. This network can be a privately managed network or (increas-
ingly common) a CDN. Most CDNs support HTTP/2.35 Given the complications of
upgrading your web server to support it and higher HTTPS requirements for it, a
CDN in front of your web server is an easy option for moving to HTTP/2 (as men-
tioned in chapter 3) and also improving latency.

6.3.7 Optimize HTTPS

The world is moving to HTTPS. New features such as HTTP/2 require HTTPS for
both technical and ideological reasons, as the people who run the key components
of the internet (browser vendors, the HTTP Working Group, and so on) believe that
the world should be encrypted. Whereas HTTPS was initially used only by certain
websites or on certain web pages within those sites, websites are moving toward
using HTTPS for all pages.

33 https://caniuse.com/#feat=link-rel-prerender
34 https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/0nSxuuv9bBw
35 http://cdncomparison.com/

www.EBooksWorld.ir

210 CHAPTER 6 Optimizing for HTTP/2
 The growth of HTTPS has taken a considerable step up in the past few years, with
the launch of free certificate providers such as Let’s Encrypt36 and push from browser
vendors such as Chrome37 and Mozilla Firefox,38 as shown in figure 6.14.39 HTTP/2
only provides more reason to move to it.

HTTPS adds extra delays to web page loads to establish the HTTPS session. Thereaf-
ter, delays are minimal, as the compute needed to encrypt and decrypt the traffic is
negligible even for mobile devices, but the initial connection time is affected. You
can use preconnect (discussed in section 6.3.5) to try to connect in advance to
reduce the effect for any dependent domains, but this technique doesn’t help the
initial connection.

 It’s important to ensure that your HTTPS setup is optimized to reduce the time
needed to make this HTTPS connection and provide a strong level of security (for
your visitors and to prevent any browser warnings). Optimizing HTTPS setup is
important for all sites that use HTTPS (and, hence, all sites that use HTTP/2),
because it implies that you’re using HTTPS because of the browser requirements.
Following are recommendations to ensure optimal HTTPS use (with HTTP/1 or
HTTP/2):

36 https://letsencrypt.org/
37 https://blog.chromium.org/2018/02/a-secure-web-is-here-to-stay.html
38 https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/
39 https://letsencrypt.org/stats/#percent-pageloads

All users
Germany users
USA users
Japan users

P
e
rc

e
n
t

o
f

P
a
g
e
lo

a
d
s
 o

v
e
r

H
T

T
P

S
 (

1
4
 d

a
y
 m

o
v
in

g
 a

v
e

ra
g

0%
Jan

2014

Jul

2014

Jan

2015

Jul

2015

Jan

2016

Jul

2016

Jan

2017

Jul

2017

Jan

2018

Jul

2018

10%

20%

30%

40%

50%

60%

70%

80%

Figure 6.14 HTTPS growth in past few years, as tracked by Let’s Encrypt (based on Firefox
telemetry statistics)

www.EBooksWorld.ir

211Web performance techniques still relevant under HTTP/2
 Ensure that you load only HTTPS resources to avoid mixed-content warnings. Consider
using upgrade-insecure-requests40 in a content security policy to enforce this
practice, because it has strong browser support.41

 Ensure that your HTTPS certificate is renewed on time. An expired certification pre-
vents access to your site. The renewal process used to be manual, but automatic
solutions are becoming more common, driven by Let’s Encrypt. Let’s Encrypt
allows only 90-day certificates, practically mandating automation, because chang-
ing short-lived certificates manually is more work than automating the process.

 Review your HTTPS setup regularly. HTTPS protocols, ciphers, and configuration
change frequently, with new options being added and older options becoming
less secure as compute power increases. The online SSLLabs Server Test tool42

provides a comprehensive test of HTTPS setup, as well as known HTTPS vulner-
abilities and best practices. An A grade ensures that you have no issues, and
scanning regularly (at least quarterly) to maintain that grade should ensure
that you get no surprises.

 Implement Transport Layer Security (TLS) session resumption.43 The TLS handshake
takes considerable time and effort, so minimizing it is critical. One of the best
ways is to allow TLS session resumption so that the full handshake need not be
undertaken for each new connection. Under HTTP/2, fewer connections
should be used, but there can be performance gains for later or additional con-
nections (such as credentialed and noncredentialed connections). TLS session
resumption introduces some security concerns,44 because the HTTPS connec-
tion can be weaker on a subsequent reconnection (though TLSv1.3 solves most
of these problems), but most websites still want to enable TLS resumption for
the considerable performance gains.

 Don’t go overboard with security. Security is important, but it’s always a balance with
performance. If you allow only the latest TLS protocol and ciphers with the
strongest settings, you create a slow website that many people can’t access. At
this writing, a 2048 RSA key, TLSv1.2, and TLS_ECDHE_RSA_WITH_AES_
128_GCM_SHA256 cipher are sufficient and well supported. This situation will
change as time progresses, but the key is to choose the right level of security.
You can also use the Mozilla Configuration Generator45 to generate the appro-
priate configuration for common web servers and the SSLLabs tool to scan
other sites to see what settings they use and how you compare. I often scan the
ssllabs.com site on itself, assuming that SSLLabs knows best how to configure it.

40 https://www.w3.org/TR/upgrade-insecure-requests/
41 https://caniuse.com/#feat=upgradeinsecurerequests
42 https://www.ssllabs.com/ssltest/
43 https://calendar.perfplanet.com/2014/speeding-up-https-with-session-resumption/
44 https://timtaubert.de/blog/2014/11/the-sad-state-of-server-side-tls-session-resumption-implementations/
45 https://mozilla.github.io/server-side-tls/ssl-config-generator/

www.EBooksWorld.ir

212 CHAPTER 6 Optimizing for HTTP/2
 Consider whether you’re best placed to handle HTTPS setup. HTTPS is complicated.
Outsourcing this function to experts or using cloud providers or a CDN can be
easier than managing it yourself and can ensure that your users see strong
HTTPS setup at all times. When you literally hand over the keys to your HTTPS
setup, however, you need to ensure that you trust the other party; otherwise,
you’re defeating the point of having security!

 Enable TLSv1.3 when it becomes available. This protocol was standardized in August
2018,46 but may not be available to many readers initially. It contains many per-
formance (and security) improvements over previous versions.47

HTTPS is here to stay. Many sites are already on HTTPS, and the previously men-
tioned points apply to them anyway. HTTP/2 requiring HTTPS gives other sites yet
another reason to move to HTTPS. HTTPS takes some managing, however, and it’s up
to website owners to decide how best to do that. The points mentioned here should be
seriously considered by everyone who runs a website nowadays, on HTTP/2 or not.

6.3.8 Non-HTTP-related web performance techniques

In this section, I concentrate on tips and techniques related to transporting resources
over HTTP. Many other web performance improvements are unrelated to how data is
downloaded. Nonperformant JavaScript in particular can easily slow a website to a
crawl. Loading lots of advertising networks and trackers can use resources that your
website may need. And low-spec servers may struggle to cope with the volume of
requests that a website receives. These topics are well beyond the topic of this book,
but it’s incorrect to think that as long as you optimize your use of HTTP by using some
of the tips and techniques here, you’ll never have any performance problems.

 HTTP-related performance techniques are important, and any web performance
resources (books, blogs, or talks) concentrate on them heavily, but they aren’t the
end-all and be-all of web performance. So make sure that you’re not spending too
much time optimizing HTTP usage if you can realize bigger gains in looking at other
areas of the website or web application.

6.4 Optimizing for both HTTP/1.1 and HTTP/2
HTTP/2 should be available to most of your visitors, given the strong browser support
for it.48 Some users, however, don’t use HTTP/2 due to using older browsers or older
devices on which the browser may not be easy to update (such as mobile phones). Or
perhaps proxies (including antivirus software) downgrade connections between
browser and server. If you’re using any of the HTTP/2-specific techniques in this
chapter (such as concatenating less), what happens to those users? The good thing is
that your website should still work for them even if you begin optimizing for HTTP/2.

46 https://tools.ietf.org/html/rfc8446
47 https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/
48 https://caniuse.com/#feat=http2

www.EBooksWorld.ir

213Optimizing for both HTTP/1.1 and HTTP/2
At worst, the site may be slower if you remove HTTP/1 optimizations, but it shouldn’t
break. For the foreseeable future, however, until HTTP/1 use on your website becomes
a lot smaller, you may want to optimize for both HTTP/1 and HTTP/2.

6.4.1 Measuring HTTP/2 traffic

The first thing you should do is measure the amount of traffic that uses each protocol.
At this point, I assume that you’ve already upgraded to HTTP/2 but not yet changed
your site, so you still have your HTTP/1.1 optimizations. If the vast majority of your
traffic is already on HTTP/2, it may make little sense to worry about the HTTP/1 traf-
fic. The website will still work, but it will be a bit slower than ideal.

 The easiest way to measure HTTP/2 traffic is to log it in your web server logs. In
Apache, you can add this data in the LogFormat directive, usually set in the main
httpd.conf file (or apache2.conf on some distributions) by adding a %H to the Log-
Format:

LogFormat "%h %l %u %t %{ms}T %H \"%r\" %>s %b \"%{Referer}i\"
"%{User-Agent}i\" %{SSL_PROTOCOL}x %{SSL_CIPHER}x
%{Content-Encoding}o %{H2_PUSHED}e" combined
CustomLog /usr/local/apache2/log/ssl_access_log combined

The following appears in the access logs:

78.17.12.1234 - - [11/Mar/2018:22:04:47 +0000] 3 HTTP/2.0 "GET / HTTP/2.0"
200 1847 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_3)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186
Safari/537.36" TLSv1.2 ECDHE-RSA-AES128-GCM-SHA256 br

Here, you see that the protocol (HTTP/2.0) is logged before the request (GET /
HTTP/2.0). As Apache prints the request in HTTP/1-style format in the logs, the pro-
tocol can be obtained in the request line (%r), but it’s probably easier to list it sepa-
rately in the log file using %H so that you can parse it more easily.

 nginx allows a similar method of logging the protocol, using the $server_protocol
environment variable:

log_format my_log_format '$remote_addr - $remote_user [$time_local] '
 '$server_protocol "$request" $status $body_bytes_sent '
 '"$http_referer" "$http_user_agent"';
access_log /usr/local/nginx/nginx-access.log my_log_format;

Consult your web server documentation if you’re using another web server.

Importance of your edge server
If you’re using a load balancer in front of several web servers, you may need to mea-
sure the protocol measured at the load balancer, depending on what type of load bal-
ancer you have.

www.EBooksWorld.ir

214 CHAPTER 6 Optimizing for HTTP/2
When you’re logging the protocols used, you can analyze the logs to see the percent-
age of traffic using each protocol. If you’re on a Linux- or UNIX-based system, you
can use a combination of grep, sort, and uniq to do so easily:

$ grep -oh 'HTTP\/[0-9]\.[0-9]*' ssl_access_log | sort | uniq -c
 196 HTTP/1.0
 1182 HTTP/1.1
 5977 HTTP/2.0

Here, you see that you’re still getting a small amount of HTTP/1.0 traffic (which
tends to be bots rather than real traffic). Of the rest, 16% is HTTP/1.1, and 81% is
HTTP/2.

6.4.2 Detecting HTTP/2 support on the server side

Assuming that HTTP/1 visitors are still a sizable proportion of your web traffic, you
may want to detect whether the current connection is over HTTP/1.1 or HTTP/2 and
deliver a different response for each type. HTTP/1 users could have fully concate-
nated resources and even load assets from sharded domains, whereas HTTP/2 users
could get fewer concatenated resources and load everything from the main domain.

 Being able to handle the two protocols differently requires knowing what protocol
the incoming connection is using. As when measuring protocol use, you need to mea-
sure the protocol being used at your edge server (see the above sidebar, “Importance
of your edge server”), which depends on that edge server’s capabilities. It may be
important to send this information downstream.

 Most web servers set various environment variables, which can be used to make deci-
sions and change configuration. CGI and PHP scripts can access the SERVER_PROTOCOL
environment variable, which should be set to HTTP/1.1 or HTTP/2.0 as appropriate.

Importance of your edge server (continued)
An HTTP load balancer (also called a Layer 7 load balancer, following the OSI model
mentioned in chapter 1) terminates the HTTP connection at the load balancer and
sets up another HTTP connection from the load balancer to the actual web server.
Therefore, if you’re measuring this protocol at the web server, the web server logs
show the protocol used for that load balancer–web server connection, but this proto-
col may not be the same as the main client–load balancer connection, which you’re
probably more interested in. In this case, you should measure the protocol use at the
load balancer rather than at the web server.

A TCP load balancer (also known as a Layer 4 load balancer) works at a TCP level and
forwards the payload of the TCP packets (the HTTP messages) to downstream web
servers. Therefore, the HTTP messages are the original messages, and the protocol
can be measured at the web-server level.

The so-called edge server is the entry point for the user of the protocol you’re inter-
ested in (HTTP, in this case), so when you’re trying to measure your traffic, it’s import-
ant to know your infrastructure and the appropriate place to measure.

www.EBooksWorld.ir

215Optimizing for both HTTP/1.1 and HTTP/2
 Some web servers set additional variables. An Apache server, for example, sets up
environment variables49 that can be used as shown in table 6.7.

These environment variables are available to Apache config as well as CGI and PHP
scripts. They can also be used in LogFormat directives, so it’s worth adding a %{H2_
PUSHED}e part to the custom log format, as I did earlier, to track pushed resources in
log files.

 The nginx web server has a $http2 variable50 that’s set to h2 when HTTP/2.0 is
used over HTTPS (as all browser connections will be) or h2c when unencrypted
HTTP/2 connections are used. At this writing, nginx doesn’t provide any more envi-
ronment variables, such as whether push is enabled.

 Many people also use Apache and nginx as a reverse proxy and proxy requests to a
downstream application (such as Node or a Java-based application server such as Tom-
cat). In Apache, you use the ProxyPass directive:

ProxyPass /webapplication/ http://localhost:3000/

In this scenario, because these systems are downstream, they won’t have access to the
Apache environment variables. It’s possible, however, to set extra HTTP headers to
inform the downstream system using the RequestHeader directive:

#Set up a HTTP_VERSION variable as Apache doesn’t have a variable for this
#(SERVER_PROTOCOL and Request_Protocol aren’t full environment variables)
SetEnvIf Request_Protocol "(.*)" HTTP_VERSION=$1

Table 6.7 Apache HTTP/2 environment variables

Variable name Value type Description

HTTP2 Flag HTTP/2 is being used.

H2PUSH Flag HTTP/2 server push is enabled for this connection and also
supported by the client.

H2_PUSH Flag This name is an alternative name for H2PUSH.

H2_PUSHED String This variable is empty or PUSHED for a request being pushed by
the server.

H2_PUSHED_ON Number This variable identifies the HTTP/2 stream number that trig-
gered the push of this request.

H2_STREAM_ID Number This variable is the HTTP/2 stream number of this request.

H2_STREAM_TAG String This variable is the unique stream identifier of the HTTP/2 pro-
cess, consisting of the connection ID and the stream ID sepa-
rated by a hyphen.

49 https://httpd.apache.org/docs/2.4/mod/mod_http2.html#envvars
50 http://nginx.org/en/docs/http/ngx_http_v2_module.html#variables

www.EBooksWorld.ir

216 CHAPTER 6 Optimizing for HTTP/2
#Then use this variable to set a HTTP Header for downstream systems to see
RequestHeader set protocol "%{HTTP_VERSION}e"
#Add some other, pre-defined HTTP2 variables
RequestHeader set http2 %{HTTP2}e
RequestHeader set h2push %{H2PUSH}e
ProxyPass /webapplication/ http://localhost:3000/

The downstream application can read these HTTP headers as it would any other
HTTP headers.

 Similar syntax for nginx is

location /webapplication/ {
 proxy_set_header protocol $server_protocol;
 proxy_set_header http2 $http2;
 proxy_pass http://localhost:3000;
}

Using node as an example, you can return to your simple server from chapter 5 and
add two extra lines to log the HTTP/2 support, as shown in the following listing.

'use strict'

var http = require('http')
const port = 3000

const requestHandler = (request, response) => {
 const { headers } = request;
 console.log('HTTP Version: ' + headers['protocol'])
 console.log('HTTP2 Support: ' + headers['http2'])
 console.log('HTTP2 Push Support: ' + headers['h2push'])
 response.setHeader('Link','</assets/css/common.css>;rel=preload')
 response.writeHead(200, {"Content-Type": "text/html"})
 response.write('<!DOCTYPE html>\n')
 response.write('<html>\n')
 response.write('<head>\n')
 response.write('<link rel="stylesheet" type="text/css"
href="/assets/css/common.css">\n')
 response.write('</head>\n')
 response.write('<body>\n')
 response.write('<h1>Test</h1>\n')
 response.write('</body>\n')
 response.write('</html>\n')
 response.end();
}

var server = http.createServer(requestHandler)
server.listen(port)
console.log('Server is listening on ' + port)

Listing 6.1 Node with HTTP header checks

www.EBooksWorld.ir

217Optimizing for both HTTP/1.1 and HTTP/2
Visiting /webapplication/ from a browser, through a correctly configured Apache
server, prints the following in the node logs:

HTTP Version: HTTP/2.0
HTTP2 Support: on
HTTP2 Push Support:on

HTTP/1 browsers print:

HTTP Version: HTTP/1.1
HTTP2 Support: (null)
HTTP2 Push Support: (null)

nginx prints something slightly different:

HTTP Version: HTTP/2.0
HTTP2 Support: h2
HTTP2 Push Support: undefined

An HTTP/1.1 request via nginx looks like this:

HTTP Version:HTTP/1.1
HTTP2 Support:undefined
HTTP2 Push Support:undefined

An alternative method is to pass details as query parameters rather than HTTP head-
ers. But I find HTTP headers to be cleaner and easier to add for both GET and POST
requests. Regardless, you can see that it’s possible to know what protocol is used and
have your application react differently depending on the protocol.

6.4.3 Detecting HTTP/2 support on the client side

Client-side applications may also want to know whether you’re using HTTP/1 or
HTTP/2. At present, there’s no standard way to get this information, although the
Resource Timing Level 2 API includes a nextHopProtocol51 attribute that provides it.

 Measuring what the client thinks is available is tricky, though, because of interme-
diate proxies. It could be that a web browser is limited to HTTP/1.1, but a proxy con-
nects via HTTP/2 to the server (though in reality, the reverse is likely to be the case,
where browsers support HTTP/2 but are held back to HTTP/1.1 due to a proxy). For
this reason, I think that it’s always better to detect the protocol used on the server side
and then send the results back to the client. You could send the results back in several
ways, including an HTTP header or a JavaScript variable. The only caveat is to con-
sider how caching of the resource that indicates this information may affect future
connections. If you start on an HTTP/2 connection and cache the resource that the
client side uses to indicate the connection, and then the client switches to an HTTP/1
connection, you may be optimizing incorrectly.

51 https://www.w3.org/TR/resource-timing-2/#dom-performanceresourcetiming-nexthopprotocol

www.EBooksWorld.ir

218 CHAPTER 6 Optimizing for HTTP/2
6.4.4 Connection coalescing

The HTTP/2 specification allows the same HTTP/2 connection to be reused for mul-
tiple domains if they’re authoritative for each domain52—that is, if the domain resolves
to the same IP address and the HTTPS certificate covers both domains. The intention
is to maximize the single connection and allow automatic unsharding of domains that
are hosted on the same server (also known as connection coalescing).

 Suppose that your site at www.example.com uses the images.example.com domain
to host images. If both of these domains are hosted on the same server and are simply
separate virtual hosts on that server, under HTTP/2, they can be served by the same
connection if you set the appropriate :authority pseudo-header. This scenario may
happen if you created these sharded domains purely due to HTTP/1 inefficiencies and
don’t use a separate server for them, as shown in figure 6.15.

At a higher level (such as in a browser’s developer tools), the HTTP requests look
exactly the same as they would sharded; only at connection level can the client decide
to coalesce. Websites can continue to have sharded domains that HTTP/1.1 connec-
tions will use automatically, and HTTP/2 connections will coalesce automatically, act-
ing as though they’re unsharded domains and everything is served from the one
connection. This situation sounds ideal, requiring no extra effort to continue to sup-
port the HTTP/1 user, or to optimize for HTTP/2 users. The reality, as always, is a lit-
tle trickier.

52 https://httpwg.org/specs/rfc7540.html#reuse

Web browser Web server

www.example.com

images.example.com

HTTP/1.1

Web browser Web server

www.example.com

images.example.com

HTTP/2

Figure 6.15 Connection coalescing under HTTP/2

www.EBooksWorld.ir

219Optimizing for both HTTP/1.1 and HTTP/2
 For a start, this process works only if you’re hosting these domains on the same
server. If the servers are separate, they need to have separate connections. The other
caveat is that the browser needs to have implemented connection reuse, and not all
browsers have done so.53 The specification says that a connection can be reused, not
that it has to be. Safari and Edge don’t coalesce at this writing, whereas Chrome and
Firefox do.

 Also, this feature can result in problems, depending on how the browser imple-
ments it. With multiple IP address for domains (some of which may be shared with
other domains), a browser may think that it can reuse (or coalesce) a connection
when it can’t. Suppose that you have the IP addresses shown in table 6.8.

In this case, any connection on IP address 1.2.3.4 can serve both www.example.com
and images.example.com requests under HTTP/2 if the client wants to do so, but the
connection on the other IP addresses (1.2.3.5 and 1.2.3.6) can’t. Firefox has imple-
mented aggressive connection coalescing and will attempt to use any connection for
both domains, no matter which of the three IP addresses is used for that actual con-
nection, if it knows about this overlap. This situation results in errors, as the BBC
noticed when it migrated to HTTP/2 initially.54

 The new HTTP status code 421 has been created to allow the server to politely tell
the browser that it used the wrong connection and to take another look at where it
should be sending these requests. Support of this status code is still limited, however,
as the BBC discovered. As an alternative solution, the ORIGIN frame55 allows a server
to inform the client which domains it’s authoritative for rather than have the client
guess. The frame is new at this writing, but a few servers already support it,56, 57 and
others have open requests to track it.58, 59 On the browser side, Firefox60 already sup-
ports the frame, and other browsers are expected to follow now that the frame has

53 https://daniel.haxx.se/blog/2016/08/18/http2-connection-coalescing/

Table 6.8 Connection coalescing example

Domain IP addresses

www.example.com 1.2.3.4
1.2.3.5

images.example.com 1.2.3.4
1.2.3.6

54 https://medium.com/bbc-design-engineering/http-2-is-easy-just-turn-it-on-34baad2d1fb1
55 https://tools.ietf.org/html/rfc8336
56 https://github.com/nghttp2/nghttp2/pull/901
57 https://github.com/h2o/h2o/pull/1199
58 https://github.com/icing/mod_h2/issues/96
59 https://trac.nginx.org/nginx/ticket/1530
60 https://bugzilla.mozilla.org/show_bug.cgi?id=1337791

www.EBooksWorld.ir

220 CHAPTER 6 Optimizing for HTTP/2
been approved as a proposed standard.61 This frame will likely be sent at the begin-
ning of the connection (ideally, as the HTTP/2 SETTINGS frame has been sent), which
should also prevent bad requests from being sent. On a related note, Secondary Cer-
tificate Authentication in HTTP/262 is another proposal that would allow connection
coalescing even when different certificates are used but the IP address is the same.

 In short, connection coalescing is complicated, so I advise against depending on it.
Instead, look at whether sharding is required and whether it’s giving you performance
benefits. If sharding is something that you want to keep, it may be better to host it on
separate servers to prevent coalescing complications.

6.4.5 How long to optimize for HTTP/1.1 users

The final consideration in optimizing for both sets of users is how long to continue to
do it. Optimizing takes extra effort, so consider whether you want to perform that
extra work, and, if so, for how long. Alternatives are available, including not undoing
HTTP/1.1 workarounds for the moment, as they should be no worse under HTTP/2
but are no longer as necessary. Alternatively, if a large proportion of your visitors is
already on HTTP/2, it may be better to optimize for the majority at the expense of the
minority, and let those on HTTP/1.1 connections suffer slower loads than strictly nec-
essary. Each website owner should make this decision based on his or her base and the
expected effects of any changes. Because browser support of HTTP/2 is strong, users
who can’t use HTTP/2 fall into a few categories:

 Those who have older versions of software (and are likely to be missing features
anyway, depending how diligent you are about supporting older versions)

 Those behind corporate proxies (likely on faster connections)
 Those behind antivirus proxies (likely to be desktop users, mostly on broad-

band)
 Those using obscure browsers (which may have other issues with rendering

your site)
 Bots and crawlers (which you may have less interest in keeping happy)

Ultimately, it’s worth looking at which of your visitors are still on HTTP/1 and then
deciding whether the effort of optimizing for both protocols is worthwhile. For large
sites, the answer probably is yes, but for smaller operations, the work may not be
worthwhile. The fact that the site will still work (albeit more slowly) if you no longer
optimize for HTTP/1 makes this option worth considering. In a similar way, graceful
degradation is used in website design to deliver a working but unoptimized site for
browsers that don’t support the features required for the optimal experience.

61 https://tools.ietf.org/html/rfc8336
62 https://tools.ietf.org/html/draft-ietf-httpbis-http2-secondary-certs

www.EBooksWorld.ir

221Summary
Summary
 HTTP/2 was designed to address HTTP/1.1 performance inefficiencies.
 The hope was that HTTP/1.1 performance optimizations, which require effort

and have drawbacks, would no longer be required. This hope has been only
partially realized. Although you should have less need to use these techniques,
it may be premature to remove them.

 Other web performance techniques remain mostly relevant under HTTP/2,
but it may be worthwhile revisiting them for your site when moving to HTTP/2.

 It’s possible to optimize for both HTTP/1.1 connections and HTTP/2.
 Connection coalescing allows a browser to unshard domains automatically, but

the process is complicated.

www.EBooksWorld.ir

www.EBooksWorld.ir

Part 3

Advanced HTTP/2

The first part of this book introduced HTTP/2. The second part looked at
the details of HTTP/2 and how it should be used. Chapter 4 introduced the
basics of HTTP/2 and how it works; chapter 5 was devoted to HTTP/2 push,
which is a new concept to HTTP; and chapter 6 looked at how HTTP/2 should
and shouldn’t change development practices.

 In this part, I delve a little deeper, covering some advanced topics that few
people truly understand. Chapter 7 finishes the parts of the specification that
weren’t covered previously, and chapter 8 looks at the separate HPACK HTTP
header compression specification. These two chapters will help you transform
your solid foundation to expert-level understanding of the HTTP/2 protocol.
You’ll be able to tackle any HTTP/2 problem and perhaps even help contribute
to the evolving protocol going forward!

www.EBooksWorld.ir

www.EBooksWorld.ir

Advanced
HTTP/2 concepts
This chapter covers the remaining parts of the HTTP/2 protocol, roughly in the
order in which they appear in the specification.1 Many of these parts aren’t under
the direct control of web developers and may even be out of the control of server
administrators (unless they’re writing an HTTP/2 server themselves), so these top-
ics are definitely more advanced. Knowledge of them, however, will give you deep
understanding of how the protocol works and help with debugging, if you’re look-
ing to implement your own HTTP/2 server. Additionally, in the future, more con-
trol may be made available to developers or at least web server administrators.
Chapter 8 looks at the HPACK protocol, which is a separate specification from
HTTP/2.

This chapter covers
 HTTP/2 stream states

 Flow control in HTTP/2

 Prioritization in HTTP/2

 HTTP/2 conformance testing

1 https://httpwg.org/specs/rfc7540.html
225

www.EBooksWorld.ir

226 CHAPTER 7 Advanced HTTP/2 concepts
7.1 Stream states
An HTTP/2 stream is created for a single download and then discarded. This is one
reason why HTTP/2 streams aren’t exact analogs for HTTP/1.1 connections, even
though this is probably the easiest way of explaining them when first teaching
HTTP/2. Many diagrams draw parallels between HTTP/2 streams and HTTP/1 con-
nections (like the ones I used in chapter 2 and repeat in figure 7.1), but this conven-
tion isn’t strictly true, because streams aren’t reused.

 After a stream finishes delivering its resource, the stream is closed. When a new
resource is requested, a new stream is started. Streams are a virtual concept and are

Server

(Web server)

Client

(Web browser)

Request 2

GET /styles.css

Request 3

GET /script.js

Request 4

GET /image.jpg

Request 2

GET /styles.css

Request 3

GET /script.js

Request 4

GET /image.jpg
Response

Request
TCP connection 3

Response

TCP connection 2
Request

Response

Request
TCP connection 1

HTTP/1.1

Client

(Web browser)

Server

(Web server)

Request 2

GET /styles.css

Request 3

GET /script.js

Request 4

GET /image.jpg

Request 2

GET /styles.css

Request 3

GET /script.js

Request 4

GET /image.jpg

H
T

T
P

/2
 fra

m
in

g
 la

y
e

r

H
T

T
P

/2
 fra

m
in

g
 la

y
e
r

HTTP/2

Single TCP connection

Stream 9

Stream 7

Stream 5

Figure 7.1 HTTP/1.1 connections and HTTP/2 streams can be represented as similar even
though they’re different.

www.EBooksWorld.ir

227Stream states
nothing more than a number each frame is tagged with, known as the stream identifier.
The cost of closing a stream or opening a new one, therefore, is considerably lower
than the cost of opening an HTTP/1.1 connection (which involves a TCP three-way
handshake and an optional HTTPS protocol negotiation before a request is sent).
In fact, HTTP/2 connections are even more costly than HTTP/1 connections, as
they additionally require the HTTP/2 “magic” preface message and at least one
SETTINGS frame to be sent before a single request can be made. HTTP/2 streams are
much cheaper.

 HTTP/2 streams go through a lifecycle of states. A HEADERS frame sent from a cli-
ent starts an HTTP request (such as a GET request), the request is answered by the
server, and then the stream is closed. This process goes through the following states:

 Idle—When the stream is created or referenced. In reality, most streams don’t
remain in this state long, as it’s rare to reference a stream unless you intend to
use it, so most idle streams are used immediately and then immediately enter
the next phase: open.

 Open—When the stream has been used to send the request HEADERS frame, the
stream is considered to be open and is available for two-way communication.
The stream stays in the state while the client is still sending data. Because most
HTTP/2 requests can be sent in a single HEADERS frame, a stream is likely to
enter the next phase (half-closed) when that frame has been sent.

 Half-closed—When the client has indicated, with the END_STREAM flag, that the
request HEADERS frame contains everything it wants out of this request, the stream
is considered to be half-closed and should be used only for sending the response
back to the client; it shouldn’t be used to send any more data from the client
(except for control frames such as WINDOW_UPDATE).

 Closed—When the server has finished sending and used the END_STREAM flag
on the last frame, the stream is considered to be closed and shouldn’t be used
anymore.

Although this list explains the state transitions for a simple client-initiated HTTP
request, the same can happen in a server-initiated request. At present, only HTTP/2
push responses are server-initiated (though there’s nothing to say that some new
frame in the future won’t be server-initiated). In this case, a stream starts another
stream (the promised stream identifier), and that new promised stream goes through
a similar transition of states:

 Idle—When the promised stream is first created or referenced by the PUSH_
PROMISE frame sent on another stream.

 Reserved—When the pushed stream immediately enters the reserved state until
the server is ready to push the resource. You know that the stream exists (so it’s
at least idle); you know that it’ll be used for a specific resource (so it’s more
than idle, hence the reserved state); but you don’t know the full details of what
that resource is, as in the first example after the HEADERS frame has been

www.EBooksWorld.ir

228 CHAPTER 7 Advanced HTTP/2 concepts
received. Because it’s for a pushed resource, however, the stream should never
be in the open state, as you never expect the client to send data on this stream.
It should be reserved and then go into a half-closed state when the HEADERS
frame is sent (after the PUSH_PROMISE frame is sent on the original stream).
This state, not coincidentally, is the next state.

 Half-closed—When the server starts pushing the response, the promised stream
enters the half-closed state and should be used only to send the data for that
pushed resource.

 Closed—When the server has finished sending and used the END_STREAM flag on
the last DATA frame, the stream is considered to be closed and shouldn’t be used
anymore.

The full HTTP/2 state diagram is shown in figure 7.2, including the two flows indicated
in the preceding list and several other possibilities (such as when the RST_STREAM frame
is used to end a connection prematurely).

send

PUSH_PROMISE frame

recv

PUSH_PROMISE frame

send

HEADERS frame

or

recv

HEADERS frame

recv

HEADERS frame
recv

END_STREAM flag

send

END_STREAM flag

send

RST_STREAM frame

or

recv

RST_STREAM frame

send

RST_STREAM frame

or

recv

RST_STREAM frame

send

HEADERS frame

send

RST_STREAM frame

or

recv

RST_STREAM frame
recv

END_STREAM flag

or

send

RST_STREAM frame

or

recv

RST_STREAM frame

send

END_STREAM flag

or

recv

RST_STREAM frame

or

send

RST_STREAM frame

closed

half

closed

(remote)

open

idle

reserved

(local)

reserved

(remote)

half

closed

(local)

Figure 7.2 HTTP/2 stream state diagram

www.EBooksWorld.ir

229Flow control
In each of these flows, the client and server have a slightly different view of the stream
status, depending on whether it initiated that state or moved to that state based on a
message from the other side. Therefore, some of these states have a local or remote
indicator (depending on whether you’re the initiator of the stream or the recipient,
respectively), and there are send and recv transitions from each state.

 Going back to the first example of a GET request, you know that it goes through the
following states: idle, open, half-closed, and closed. The half-closed state is ambigu-
ous, however: it’s closed to the client (so it can’t send data and can only receive data),
but it’s not half-closed to the server. The client sees the stream as half-closed (local),
and the server sees it as half-closed (remote). A request, therefore, doesn’t flow down
the state diagram in the same way for the client and the server; it flows down either
the left or the right of the diagram at the same time, depending on whether you’re
looking at the client or server view.

 Also, the state diagram shows only state transitions. Some frames don’t result in a
state transition. CONTINUATION frames, for example, are considered to be extensions of
the preceding HEADERS frames, so they’re considered to be part of HEADERS in the dia-
gram. Similarly, other frames (such as PRIORITY, SETTINGS, PING, and WINDOW_UPDATE)
never result in a state transition, so aren’t captured in this diagram.

 To be perfectly honest, the HTTP/2 state diagram isn’t important for most users of
HTTP/2 and is more a concern for implementors of low-level HTTP/2 libraries to
understand what frames can and can’t be sent at each state. The diagram is in the
HTTP/2 specification,2 however, and the various states are referenced a lot in this
spec, so understanding it helps. Any attempts at state transitions that aren’t allowed by
HTTP/2 should result in PROTOCOL_ERROR messages. Again, understanding the state
diagram can help you understand why you get such an error (though this error usu-
ally is due to a bug in the underlying HTTP/2 implementation and beyond what most
web developers can fix themselves).

 The HTTP/2 state diagram can be intimidating at first, and unlike some of the
concepts I’ve covered so far, it isn’t something you can see in a browser’s developer
tools or even by using some of the other tools in this book (such as nghttp and Wire-
shark). It’s more an internal status that HTTP/2 implementations need to maintain
and track. Given that fact, it can be complicated to understand. Going back to the
main use case (requesting an HTTP resource), however, as described before the dia-
gram, usually takes some of the mystery out.

7.2 Flow control
Flow control is an important part of networking protocols. It allows a receiver to stop a
sender from sending it data if it isn’t yet ready to process, perhaps because it’s too busy
to process any more incoming data. Flow control is necessary because different clients
can consume data at different speeds. A high-speed server may be able to send data

2 https://httpwg.org/specs/rfc7540.html#StreamStates

www.EBooksWorld.ir

230 CHAPTER 7 Advanced HTTP/2 concepts
quickly, but if a lower-speed client (such as a mobile phone) isn’t able to keep up, it
starts to buffer data in memory, and when that buffer is filled, it starts to drop packets,
requiring them to be sent again. As a result, resources are wasted on the server side,
the network, and the client side.

 Flow control wasn’t required in HTTP/1.1 because there was only one message in
flight at any time. Therefore, TCP flow control could be used at a connection level. If
the receiver stops consuming TCP packets, it no longer acknowledges those packets,
and the sender stops sending them because its TCP congestion window (CWND)
would be used up (see chapter 2).

 In HTTP/2, you have a multiplexed connection of independent streams, so connection-
level flow control is no longer sufficient. Control needs to be at a connection level and
at a stream level. It may be that you’re happy to receive more data on one stream but
not the other. Chapter 4 provides an example of a website with a video that the user has
paused. In this case, you may not want the video to continue downloading while it’s
paused, but you want to allow other streams on the HTTP/2 connection to continue to
be used.

 Flow control is handled in HTTP/2 in a similar manner to TCP. At the begin-
ning of the connection (using the SETTINGS frame), the flow control window size is
decided (or the default 65,535 octets is used, if the size isn’t specified). Then each
piece of data sent is subtracted from that total, and each bit of data acknowledged
(via the WINDOW_UPDATE frame) is added back. There’s a connection-level flow control
window, which kind of mirrors the TCP flow control window, and one per stream as
well. Senders can send only up to the maximum size of the smallest flow control
window (connection-level or for that stream), and when the flow control window
reaches zero, the sender must stop sending data until it receives acknowledgments,
resulting in a nonzero flow control window. If you implement an HTTP/2 client or
server and forget to implement WINDOW_UPDATE frames, you’ll soon notice that the
other side stops talking to you!

 Flow control is used for DATA frames (though future HTTP/2 frame types may also
fall under flow control). Control frames (and in particular the WINDOW_UPDATE frames
needed to control flow control) can still be sent when a client has stopped acknowl-
edging frames.

7.2.1 Example of flow control

For an example of flow control, I’ll go back to using the nghttp tool. In this section,
we initiate a request to Facebook for the home page and all the required resources
and then pipe this into grep to show only the important parts:

$ nghttp -anv https://www.facebook.com | grep -E "frame
<|SETTINGS|window_size_increment"
[0.110] recv SETTINGS frame <length=30, flags=0x00, stream_id=0>
 [SETTINGS_HEADER_TABLE_SIZE(0x01):4096]
 [SETTINGS_MAX_FRAME_SIZE(0x05):16384]
 [SETTINGS_MAX_HEADER_LIST_SIZE(0x06):131072]

www.EBooksWorld.ir

231Flow control
 [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]
 [SETTINGS_INITIAL_WINDOW_SIZE(0x04):65536]
[0.110] recv WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
 (window_size_increment=10420225)
[0.110] send SETTINGS frame <length=12, flags=0x00, stream_id=0>
 [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]
 [SETTINGS_INITIAL_WINDOW_SIZE(0x04):65535]

Here, you see that the Facebook server has decided to use a flow control window size
of 65,536 octets (the SETTINGS_INITAL_WINDOW_SIZE value in the recv SETTINGS
frame), and nghttp is using 65,535 octets (the SETTINGS_INITAL_WINDOW_SIZE value
in the sender’s SETTINGS frame). Incidentally, 65,535 is also the default size, so nghttp
didn’t need to send it at all. The code also shows that the two sides can have different
flow control window sizes (even though they’re near enough the same here, differing
by only 1 octet).

 In the middle of those two SETTINGS frames, you see your first WINDOW_UPDATE
frame (highlighted in the code):

[0.110] recv WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
 (window_size_increment=10420225)

This frame states that Facebook is prepared to receive up to 10,420,225 octets, and as
the frame was sent on stream 0, this limit is the connection-level limit to be used
across all streams, in addition to their stream-level limit. Stream 0 should never be
used for DATA frames and doesn’t need its own flow control, which is why it can be
used for connection-level flow control. These 10,420,225 allowed octets are on top of
the 65,535 octets for the initial window size, so Facebook could also have set the initial
size to the sum of both (10,485,761), but it’s also permissible to implement this way.

 Next, nghttp acknowledges the server’s settings, followed by a few more frames in
which nghttp sets up for prioritizing (incidentally, one of the few instances in which a
frame can be created in idle state and stay there until used):

[0.110] send SETTINGS frame <length=0, flags=0x01, stream_id=0>
[0.110] send PRIORITY frame <length=5, flags=0x00, stream_id=3>
[0.110] send PRIORITY frame <length=5, flags=0x00, stream_id=5>
[0.110] send PRIORITY frame <length=5, flags=0x00, stream_id=7>
[0.110] send PRIORITY frame <length=5, flags=0x00, stream_id=9>
[0.110] send PRIORITY frame <length=5, flags=0x00, stream_id=11>

I discuss the PRIORITY frames next, so ignore them for now.
 Next, you see that the first request is sent by means of a HEADERS frame on stream 13:

[0.110] send HEADERS frame <length=43, flags=0x25, stream_id=13>

Recall that client-initiated streams must have odd-numbered stream identifiers.
Stream 13 is the next free one because 11 was used by the last PRIORITY frame.

www.EBooksWorld.ir

232 CHAPTER 7 Advanced HTTP/2 concepts
 Then the server acknowledges the SETTINGS frame, and another WINDOW_UPDATE
frame increasing the window size of stream 13 to 10,420,224 octets (oddly, 1 octet
smaller than the connection-level size, but nothing says the sizes have to be the same):

[0.134] recv SETTINGS frame <length=0, flags=0x01, stream_id=0>
[0.134] recv WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=13>
 (window_size_increment=10420224)

Next, nghttp starts to receive the resource’s HEADERS and DATA frames:

[0.348] recv HEADERS frame <length=293, flags=0x04, stream_id=13>
[0.349] recv DATA frame <length=1353, flags=0x00, stream_id=13>
[0.350] recv DATA frame <length=2571, flags=0x00, stream_id=13>
[0.351] recv DATA frame <length=8144, flags=0x00, stream_id=13>
[0.374] recv DATA frame <length=5563, flags=0x00, stream_id=13>
[0.375] recv DATA frame <length=2572, flags=0x00, stream_id=13>
[0.376] recv DATA frame <length=1491, flags=0x00, stream_id=13>
[0.377] recv DATA frame <length=2581, flags=0x00, stream_id=13>
[0.378] recv DATA frame <length=4072, flags=0x00, stream_id=13>
[0.379] recv DATA frame <length=5572, flags=0x00, stream_id=13>

After it has received a few DATA frames, nghttp decides to let the server know that it
has consumed that much data. Adding up the DATA frames only (1353 + 2571 + 8144 +
5563 + 2572 + 1491+ 2581 + 4072 + 5572) gives 33,919, so that’s what nghttp tells the
server that it has consumed at connection level (stream 0) and on stream 13:

[0.379] send WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
 (window_size_increment=33919)
[0.379] send WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=13>
 (window_size_increment=33919)

It’s important to note that only the length of the DATA frame payload (as given by the
length field) is included in the flow control calculation and that the nine-octet frame
header is excluded from the flow control.

 The connection continues in a similar manner until all the resources are delivered,
and the connection is closed by the client sending the ever-so-polite GOAWAY frame:

[0.381] recv DATA frame <length=2563, flags=0x00, stream_id=13>
[0.382] recv DATA frame <length=1491, flags=0x00, stream_id=13>
[0.384] recv DATA frame <length=2581, flags=0x00, stream_id=13>
[0.398] recv DATA frame <length=4072, flags=0x00, stream_id=13>
[0.400] recv DATA frame <length=2332, flags=0x00, stream_id=13>
[0.402] recv DATA frame <length=1491, flags=0x00, stream_id=13>
[0.403] recv DATA frame <length=1500, flags=0x00, stream_id=13>
[0.405] recv DATA frame <length=1500, flags=0x00, stream_id=13>
[0.406] recv DATA frame <length=3644, flags=0x00, stream_id=13>
[0.416] send HEADERS frame <length=250, flags=0x25, stream_id=15>
[0.417] recv DATA frame <length=9635, flags=0x00, stream_id=13>
[0.417] recv DATA frame <length=807, flags=0x00, stream_id=13>
[0.419] send WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
 (window_size_increment=33107)

www.EBooksWorld.ir

233Flow control
[0.419] send WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=13>
 (window_size_increment=33107)
[0.420] recv DATA frame <length=16384, flags=0x00, stream_id=13>
[0.420] recv DATA frame <length=369, flags=0x00, stream_id=13>
[0.424] recv DATA frame <length=16209, flags=0x01, stream_id=13>
[0.444] recv WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=15>
 (window_size_increment=10420224)
[0.546] recv (stream_id=15) x-frame-options: DENY
[0.546] recv HEADERS frame <length=255, flags=0x04, stream_id=15>
[0.546] recv DATA frame <length=1293, flags=0x00, stream_id=15>
[0.546] recv DATA frame <length=2618, flags=0x00, stream_id=15>
[0.547] recv DATA frame <length=3135, flags=0x00, stream_id=15>
[0.547] send WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
 (window_size_increment=34255)
[0.547] recv DATA frame <length=10, flags=0x01, stream_id=15>
[0.547] send GOAWAY frame <length=8, flags=0x00, stream_id=0>

Not seeing WINDOW_UPDATE frames?
If you’re using an example other than Facebook (perhaps your own site), you may be
surprised not to see any WINDOW_UPDATE frames. Maybe the site you’re using is too
small and can download in its entirety before a single WINDOW_UPDATE frame is sent.

Even in the Facebook example, nghttp sent a WINDOW_UPDATE frame after only 9
frames and 33,919 octets—well before the 65,535 limit that we previously stated
that we could handle. If nghttp hadn’t sent this WINDOW_UPDATE frame at this point,
the server would have happily continued to send data for a bit longer.

Exactly when the WINDOW_UPDATE frame is sent (after each DATA frame is consumed?
when you’re close to the limit? periodically?) is up to the client. nghttp decides to
send them when it has consumed more than half of the flow control windowa (32,768
octets in this example). This is why it sent it after the 5572 DATA frame above, as
before that frame, the total was 28,347 octets (below this limit), and after the frame,
the total was 33,919 octets (above this limit).

If we use Twitter as an example, the response sent back to nghttp is smaller than
32 KB (at least for a non-logged-in request), so nghttpd doesn’t need to use any
WINDOW_UPDATE frames, which wouldn’t have made for an interesting example. Read-
ers can experiment on their own sites with nghttp by using the -w and -W flags to use
different initial window sizes.b

a Search for the nghttp2_should_send_window_update function in https://github.com/
nghttp2/nghttp2/blob/master/lib/nghttp2_helper.c

b https://nghttp2.org/documentation/nghttp.1.html#cmdoption-nghttp-w

www.EBooksWorld.ir

234 CHAPTER 7 Advanced HTTP/2 concepts
7.2.2 Setting flow control on the server

Apache allows you to set the flow control window size with the H2WindowSize directive:3

H2WindowSize 65535

Other servers may also allow this directive to be set. NodeJS, for example, allows this
directive to be set with the initialWindowSize setting,4 and the Jetty servlet engine
allows it to be set with the jetty.http2.initialStreamRecvWindow setting.5 Many
other servers (such as nginx and IIS) don’t give you any control of this directive at the
time of this writing. The reality, though, is that you’re unlikely to need to change the
directive from the default setting unless you want detailed control of your server.

7.3 Stream priorities
Next we look at stream priorities. HTTP/2 introduces the concept of prioritization to
allow the client to suggest the relative importance of a request. After a browser down-
loads a page, it requests the resources needed to view this page. Critical, render-blocking
resources (think CSS and any blocking JavaScript) are high-priority, and any images
or async JavaScript can be requested with a much lower priority. Priorities can be used
by the server to decide the order in which it should send frames; more-important
frames can be sent first, so they arrive earlier and aren’t held up due to any flow control
or bandwidth issues.

3 https://httpd.apache.org/docs/2.4/mod/mod_http2.html#h2windowsize
4 https://nodejs.org/api/http2.html#http2_settings_object
5 https://github.com/eclipse/jetty.project/blob/master/jetty-documentation/src/main/asciidoc/

administration/http2/configuring-http2.adoc

Stream priority: hints or instructions?
Stream priorities are sent by the requester (such as the client), but it’s the sender
(such as the server) that ultimately decides what frames to send. Priorities, therefore,
are suggestions or hints, and it’s entirely within the sender’s remit to ignore the pri-
orities and send the data in the order that the sender thinks is most appropriate. The
specification makes this fact clear, saying that “expressing priority is . . . only a sug-
gestion.”a

Are browsers or servers best to decide the priority? Browsers have traditionally taken
this role because they had a limited number of HTTP/1.1 connections and had to
decide how to use them best, but HTTP/2 flips this situation on its head and says that
the server is in charge. That situation may make sense if the website administrator
tunes the web server to the specific site that he or she knows best, but without this
advanced tuning (which most website owners are unlikely to want to undertake), a web
browser is likely to have a much better understanding of priorities than a web server.

I suspect that most web servers use the prioritization hints provided by the clients to
decide priority, so ultimately, the clients (such as web browsers) are likely to keep

www.EBooksWorld.ir

235Stream priorities
HTTP/2 defines two different methods for setting the priority:

 Stream dependency
 Stream weighting

These priorities can be set with requests in a HEADERS frame or can be reprioritized at
any time through a separate PRIORITY frame.

7.3.1 Stream dependencies

A stream can be made dependent on another stream, so it should
be used to send resources only when the dependent stream
doesn’t need to use the connection to send anything. Figure 7.3
shows one such example.

 Everything is dependent by default on stream 0 (not shown in
figure 7.3), which is the control stream and represents no depen-
dency. In this example, main.css is the first dependency on
index.html and should be sent with the highest priority, followed
by main.js and finally image.jpg. Usually, index.html is fetched
first, followed by the dependencies, so there may be no need to
put a dependency on the HTML document file as shown here.
But a large index.html may still be downloading as the other
requests are made, so it isn’t necessarily wrong to make all the
requests dependent on it.

 This dependency hierarchy doesn’t mean that dependent
streams block on their parents. If main.css isn’t immediately
available to the web server and has to be fetched from a backend
server, for example, the server can send main.js in the meantime,
assuming that it’s available. If neither file is available, image.jpg
can be sent while the server waits for those files. The aim of
stream prioritization is to make the most efficient use of the con-
nection rather than act as a blocking mechanism.

 The server may start to send image.jpg while it fetches main.css and main.js, and
when those files are available to send, the server may pause sending image.jpg and

dictating the priority. There may be opportunities to override these settings on the
server side (see section 7.3.4), but mostly, I expect the client prioritization requests
to be followed.

Some web servers may decide not to bother using prioritization at all, as it can be
quite complicated to implement, but I suspect that those that do implement it will
see a performance improvement compared with those that don’t, so pick your web
server (and web browser) wisely!

a https://httpwg.org/specs/rfc7540.html#StreamPriority

index.html

stream: 1

main.css

stream: 3

dependency: 1

main.js

stream: 5

dependency: 3

image.jpg

stream: 7

dependency: 5

Figure 7.3 Example
of an HTTP/2 stream
dependency

www.EBooksWorld.ir

236 CHAPTER 7 Advanced HTTP/2 concepts
send main.css, followed by main.js, before unpausing image.jpg and sending the
remainder of that file. Alternatively, the server could have a simpler model and finish
sending image.jpg when it has started while the others queue as they become ready.
The choice is up to the server.

 Streams can also have multiple dependents, as shown in figure 7.4, because each
stream can specify the stream it’s dependent on.

In this example, both main.css and main.js are dependent on stream 1, and the image
is dependent on main.js stream. If the image file is lower-priority than both these crit-
ical resources, ideally it would be dependent on both the CSS and JS streams, as
shown in figure 7.5, but the concept of multiple dependencies isn’t supported.

If multiple dependencies were supported, the file would be downloaded only when
both main.css and main.js don’t need the connection, but multiple dependencies

index.html

stream: 1

main.css

stream: 3

dependency: 1

main.js

stream: 5

dependency: 1

image.jpg

stream: 7

dependency: 5 Figure 7.4 Multiple streams can be
dependent on the same parent stream.

index.html

stream: 1

main.css

stream: 3

dependency: 1

main.js

stream: 5

dependency: 1

image.jpg

stream: 7

dependency: 3,5 Figure 7.5 Multiple parent dependencies
aren’t supported in HTTP/2.

www.EBooksWorld.ir

237Stream priorities
aren’t supported by the HTTP/2 dependency model (though they can be approxi-
mated with the use of weightings).

 Stream priorities can be complicated to manage as resources available for the
server to send become available. It can be further complicated by adding new
requests or finishing in-flight requests. Often, the server must reevaluate dependen-
cies multiple times during the life of a request for optimum performance. Apache
discovered early in its HTTP/2 implementation that not doing this reprioritization
led to inefficiencies.6

 Streams can also be added as exclusive dependencies. A stream should get exclu-
sive access to its dependency, and any existing dependencies should be made depen-
dent on this new exclusive stream. Figure 7.6 shows adding critical.css to the mix and
making it dependent on stream 0 without (left) and with (right) the exclusive flag set.

As you see, without the exclusive flag, critical.css is at the same dependency level as
main.css and main.js, but when the exclusive flag is set to 1, it takes priority and moves
everything to be dependent on it, which may well be what’s needed in this example,
based on the name (critical.css).

6 http://icing.github.io/mod_h2/nimble.html

index.html

stream: 1

image.jpg

stream: 7

dependency: 5

exclusive: 0

main.js

stream: 5

dependency: 1

exclusive: 0

main.css

stream: 3

dependency: 1

exclusive: 0

critical.css

stream: 9

dependency: 1

exclusive: 0

index.html

stream: 1

critical.css

stream: 9

dependency: 1

exclusive: 1

main.css

stream: 3

dependency: 9

exclusive: 0

main.js

stream: 5

dependency: 9

exclusive: 0

image.jpg

stream: 7

dependency: 5

exclusive: 0

Figure 7.6 Adding a new critical.css dependency with and without the exclusive flag set

www.EBooksWorld.ir

238 CHAPTER 7 Advanced HTTP/2 concepts
7.3.2 Stream weighting

The other concept that helps define stream priorities is weighting, which is used to
prioritize two requests that are dependent on the same parent resource. Stream
weightings allow more complicated scenarios than assuming even weighting for
resources at the same dependency level. The critical.css scenario, for example, could
have been implemented in an (almost) similar manner with the use of weightings, as
shown in figure 7.7.

Here, critical.css (weighting 100) should get 10 times the resource allocations of
main.css (weighting 10) and main.js (weighting 10). Using weightings isn’t the
same as making them dependent, as with the exclusive flag, but it’s close. When
critical.css is delivered, main.css and main.js get 50% of the resources, as they’re
evenly weighted.

 The 5 weighting for image.jpg isn’t used in the scenario. If main.js finishes sending
before main.css (or if main.js can’t be sent yet), image.jpg gets 50% of the resources,
as it gets main.js’s share. Therefore, to prevent that situation and give the CSS and JS
files much higher weightings than images, a better dependency graph might be the
flatter one shown in figure 7.8.

index.html

stream: 1

critical.css

stream: 9

dependency: 1

weighting: 100

main.css

stream: 3

dependency: 1

weighting: 10

main.js

stream: 5

dependency: 1

weighting: 10

image.jpg

stream: 7

dependency: 5

weighting: 5Figure 7.7 Weighting-based stream priorities

index.html

stream: 1

critical.css

stream: 9

dependency: 1

weighting: 100

main.css

stream: 3

dependency: 1

weighting: 10

main.js

stream: 5

dependency: 1

weighting: 10

image.jpg

stream: 7

dependency: 1

weighting: 5

Figure 7.8 Weighting-based dependencies

www.EBooksWorld.ir

239Stream priorities
To make prioritization easier, some clients set up dummy streams with the appropriate
priorities in advance, using the PRIORITY frame, and hang requests off them. The con-
cept of allowing dummy PRIORITY frames was added late in the ratification of
HTTP/27, but provides a lot of flexibility and allows for a lightweight priority model.
It allows dependency trees, for example, as shown in figure 7.9.

These dummy streams are used only for prioritization and never to send requests
directly. You see this situation when nghttp sets up streams 3, 5, 7, 9, and 11 at the
beginning of a connection for priority reasons:

$ nghttp -nva https://www.facebook.com:443
[0.041] Connected
The negotiated protocol: h2
[0.093] recv SETTINGS frame <length=30, flags=0x00, stream_id=0>
 (niv=5)
 [SETTINGS_HEADER_TABLE_SIZE(0x01):4096]
 [SETTINGS_MAX_FRAME_SIZE(0x05):16384]
 [SETTINGS_MAX_HEADER_LIST_SIZE(0x06):131072]
 [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]
 [SETTINGS_INITIAL_WINDOW_SIZE(0x04):65536]
[0.093] recv WINDOW_UPDATE frame <length=4, flags=0x00, stream_id=0>
 (window_size_increment=10420225)
[0.093] send SETTINGS frame <length=12, flags=0x00, stream_id=0>
 (niv=2)
 [SETTINGS_MAX_CONCURRENT_STREAMS(0x03):100]
 [SETTINGS_INITIAL_WINDOW_SIZE(0x04):65535]
[0.093] send SETTINGS frame <length=0, flags=0x01, stream_id=0>
 ; ACK
 (niv=0)
[0.093] send PRIORITY frame <length=5, flags=0x00, stream_id=3>
 (dep_stream_id=0, weight=201, exclusive=0)

7 https://lists.w3.org/Archives/Public/ietf-http-wg/2014OctDec/0467.html

index.html

stream: 7

dependency: 1

weighting: 1

critical.css

stream: 15

dependency: 1

weighting: 1

main.css

stream: 9

dependency: 3

weighting: 1

main.js

stream: 11

dependency: 3

weighting: 1

image.jpg

stream: 13

dependency: 5

weighting: 1

stream: 1

dependency: 0

weighting: 100

stream: 3

dependency: 0

weighting: 10

stream: 5

dependency: 0

weighting: 1

Figure 7.9 Using dummy streams to hang requests from to set dependencies appropriately

www.EBooksWorld.ir

240 CHAPTER 7 Advanced HTTP/2 concepts
[0.093] send PRIORITY frame <length=5, flags=0x00, stream_id=5>
 (dep_stream_id=0, weight=101, exclusive=0)
[0.093] send PRIORITY frame <length=5, flags=0x00, stream_id=7>
 (dep_stream_id=0, weight=1, exclusive=0)
[0.093] send PRIORITY frame <length=5, flags=0x00, stream_id=9>
 (dep_stream_id=7, weight=1, exclusive=0)
[0.093] send PRIORITY frame <length=5, flags=0x00, stream_id=11>
 (dep_stream_id=3, weight=1, exclusive=0)

This code leads to the dependency tree shown in figure 7.10, which has a high-priority
stream 3 (with a dependent stream 11), a low-priority stream 7 (with a dependent
stream 9), and a middling priority stream 5.

Any requests are made dependent on one of these streams:

[0.093] send HEADERS frame <length=43, flags=0x25, stream_id=13>
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=11, weight=16, exclusive=0)
 ; Open new stream
 :method: GET
 :path: /
 :scheme: https
 :authority: www.facebook.com
 accept: */*
 accept-encoding: gzip, deflate
 user-agent: nghttp2/1.31.0

This setup is based on the original Firefox dependency tree. Critical CSS and Java-
Script are made dependent on stream 3, noncritical JavaScript is made dependent on
stream 5, and everything else is made dependent on stream 11. Note that streams 7
and 9 aren’t used at this writing.8 By always being able to hang resources from the
same streams, you can create a reasonably efficient dependency model easily.

8 https://nghttp2.org/documentation/nghttp.1.html#dependency-based-priority

stream: 0

stream: 5

dependency: 1

weighting: 101

stream: 3

dependency: 1

weighting: 201

stream: 11

dependency: 3

weighting: 1

stream: 7

dependency: 1

weighting: 1

stream: 9

dependency: 7

weighting: 1

Figure 7.10 nghttp stream priorities

www.EBooksWorld.ir

241Stream priorities
7.3.3 Why does prioritization need to be so complicated?

Why do you need stream dependencies and weighting? This question was debated a
fair bit when HTTP/2 was standardized, and SPDY, on which HTTP/2 is based, ini-
tially had only weight-based prioritization. The truth is that prioritization is complicated,
and allowing both dependencies and weightings, or a mixture of the two, allows the
greatest flexibility for prioritization. The added capability to create streams purely for
prioritization purposes leads to more implementation options.

 There’s no requirement to support stream prioritization, however, and many
implementations on both the client and server side choose not to, as I discuss in the
next section. As I stated in section 6.2.4, the ability to handle HTTP/2 stream prior-
itization efficiently could become another key differentiator between browser and
server implementations, though the technicalities may be lost on most web users
and developers.

 Real world usage of HTTP/2 prioritization since HTTP/2 was standardized, and the
fact that no implementation has yet found a perfect prioritization scheme, as we will dis-
cuss next, have led to more calls to simplify this.9 Whether this leads to any changes in
HTTP/2 or is considered for future versions (HTTP/3) remains to be seen.

7.3.4 Prioritization in web servers and browsers

HTTP/2 prioritization is a potentially powerful option that allows the single HTTP/2
connection to be used efficiently. This option has the advantage over six separate
HTTP/1.1 connections when there’s no concept of relative prioritization other than
not using one of the connections. Prioritization is complicated, however, and support
is limited at this time. Although many implementations on both the server and client
sides support prioritization, few give the website owner much control.

SETTING PRIORITIES FOR WEB SERVERS

Server support for prioritization is a mixed bag at this writing. Some servers support
it with configuration options, some support it without configuration options, and
some don’t support it. Table 7.1 summarizes prioritization support in popular HTTP/2
web servers.

9 https://lists.w3.org/Archives/Public/ietf-http-wg/2019JanMar/0073.html

Table 7.1 Priority support in popular HTTP/2 web servers

Server (and version) HTTP/2 prioritization support

Apache HTTPD (v2.4.35) Prioritization is supported, but only the Push priority can be explicitly configured.a

IIS (v10.0) Prioritization isn’t supported.b

nginx (v1.14) Prioritization is supported,c but no configuration options are available.d

www.EBooksWorld.ir

242 CHAPTER 7 Advanced HTTP/2 concepts
Most of the other web servers make little reference to HTTP/2 prioritization, suggest-
ing that it’s perhaps not supported and certainly isn’t configurable if it is. Among serv-
ers that do support it, the prevailing thought seems to be to allow the client to specify
the priority in requests rather than to allow server-side prioritization configuration.

 Shimmercat is a fairly new web server that takes an interesting approach, allowing
image requests to be sent with an initial high prioritization and then dialed back to
lower priority. This approach allows the first few bytes to be sent, which allows the
browser to know the size of the image and other metadata needed to lay out the page
as early as possible and dial down the priority for the remainder of the image file.

 Perhaps more web servers will allow this type of innovation or more control. But
for now, most servers use the client-suggested priorities or don’t support them.

SETTING PRIORITIES FOR WEB BROWSERS

Web browser support is also a bit hit-and-miss. Finding documentation on this topic is
tricky, but it’s possible to see stream prioritization and infer what it’s doing. To do so,
you can set up Wireshark as discussed in chapter 4, but this technique allows you to
intercept only browsers that export the HTTPS key settings (such as Chrome, Opera,
and Firefox on the desktop). A better way is to run the nghttpd server in verbose
mode and look at the incoming messages. You can also pipe the output into grep to
filter only the important messages. Windows users without a Linux terminal can do
the equivalent with findstr or select-string if they’re using PowerShell:

nghttpd -v 443 server.key server.crt | grep -E "PRIORITY|path|weight"

Then create a dummy index.html file in the same folder, with a load of references to
various media types, to get a flavor of how each media type is sent by each browser:

<html>
<head>
<title>This is a test</title>
<link rel="stylesheet" type="text/css" media="all" href="head_styles.css">
<script src="head_script.js"></script>
</head>
<body>

Node (v10) Prioritization is supported and can be set explicitly.e

nghttpd (1.34) Prioritization is fully supported.f

a https://httpd.apache.org/docs/2.4/mod/mod_http2.html#h2pushpriority
b https://forums.iis.net/t/1233780.aspx
c https://www.nginx.com/blog/http2-module-nginx/#prioritization
d http://nginx.org/en/docs/http/ngx_http_v2_module.html
e https://nodejs.org/api/http2.html#http2_http2stream_priority_options
f https://nghttp2.org/blog/2014/04/27/how-dependency-based-prioritization-works/

Table 7.1 Priority support in popular HTTP/2 web servers (continued)

Server (and version) HTTP/2 prioritization support

www.EBooksWorld.ir

243Stream priorities
<h1>This is a test</h1>

<script src="body_script.js" /></script>
</body>
</html>

It isn’t important for the referenced stylesheets, JavaScript, or image files to exist for
this simple test. The test is slightly easier if these items don’t exist, in fact, as you see
only 404 HEADERS frame responses rather than HEADERS frame and DATA frame
responses, which only add noise.

 Next, you connect to the server (such as https://localhost) and look at the frames
sent. Firefox (v62) sends the frames similarly to the nghttp client, which is unsurpris-
ing, because nghttp is based on the Firefox implementation:

[id=1] [3.010] recv PRIORITY frame <length=5, flags=0x00, stream_id=3>
 (dep_stream_id=0, weight=201, exclusive=0)
[id=1] [3.010] recv PRIORITY frame <length=5, flags=0x00, stream_id=5>
 (dep_stream_id=0, weight=101, exclusive=0)
[id=1] [3.010] recv PRIORITY frame <length=5, flags=0x00, stream_id=7>
 (dep_stream_id=0, weight=1, exclusive=0)
[id=1] [3.010] recv PRIORITY frame <length=5, flags=0x00, stream_id=9>
 (dep_stream_id=7, weight=1, exclusive=0)
[id=1] [3.010] recv PRIORITY frame <length=5, flags=0x00, stream_id=11>
 (dep_stream_id=3, weight=1, exclusive=0)
[id=1] [3.010] recv PRIORITY frame <length=5, flags=0x00, stream_id=13>
 (dep_stream_id=0, weight=241, exclusive=0)
[id=1] [3.010] recv (stream_id=15) :path: /
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=13, weight=42, exclusive=0)
[id=1] [3.033] recv (stream_id=17) :path: /head_styles.css
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=3, weight=22, exclusive=0)
[id=1] [3.034] recv (stream_id=19) :path: /head_script.js
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=3, weight=22, exclusive=0)
[id=1] [3.035] recv (stream_id=21) :path: /image.jpg
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=11, weight=12, exclusive=0)
[id=1] [3.035] recv (stream_id=23) :path: /body_script.js
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=5, weight=22, exclusive=0)

The output shows that Firefox has added an extra stream 13 with a weight of 241 (a
super-urgent stream?) used for the original request, making it higher-priority than any
CSS request.

 Chrome (v69) uses no up-front PRIORITY frames, like nghttp or Firefox, but it sets
a priority on requests when they’re sent and adds dependencies on previous streams.
It also likes exclusive dependencies, creating a tall dependency graph:

[id=3] [112.082] recv (stream_id=1) :path: /
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=0, weight=256, exclusive=1)

www.EBooksWorld.ir

244 CHAPTER 7 Advanced HTTP/2 concepts
[id=3] [112.101] recv (stream_id=3) :path: /head_styles.css
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=0, weight=256, exclusive=1)
[id=3] [112.101] recv (stream_id=5) :path: /head_script.js
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=3, weight=220, exclusive=1)
[id=3] [112.101] recv (stream_id=7) :path: /image.jpg
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=5, weight=147, exclusive=1)
[id=3] [112.107] recv (stream_id=9) :path: /body_script.js
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=0, weight=183, exclusive=1)

The benefit of such use of the exclusive bit is still in debate.10 The Chromium team’s
main argument seems to be that most requests are unusable until the full resource is
received (HTML and progressive JPEGs being the primary exceptions), so it often
doesn’t make sense to dilute the connection by sending multiple resources at the
same time.

 Opera (v59) does the same thing as Chrome (being another Chromium-based
browser), but Safari (v12.0) seems to do weighting based on prioritization and doesn’t
use stream dependencies (the opposite of Chrome!):

[id=9] [213.347] recv (stream_id=1) :path: /
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=0, weight=255, exclusive=0)
[id=9] [213.705] recv (stream_id=3) :path: /head_styles.css
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=0, weight=24, exclusive=0)
[id=9] [213.705] recv (stream_id=5) :path: /head_script.js
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=0, weight=24, exclusive=0)
[id=9] [213.706] recv (stream_id=7) :path: /image.jpg
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=0, weight=8, exclusive=0)
[id=9] [213.706] recv (stream_id=9) :path: /body_script.js
 ; END_STREAM | END_HEADERS | PRIORITY
 (padlen=0, dep_stream_id=0, weight=24, exclusive=0)

Edge (v41) has the poorest implementation, choosing not to use stream priorities at
this writing, so every resource gets the default priority weighting of 16:

[id=4] [64.393] recv (stream_id=1) :path: /
[id=4] [64.616] recv (stream_id=3) :path: /head_styles.css
[id=4] [64.641] recv (stream_id=5) :path: /head_script.js
[id=4] [64.642] recv (stream_id=7) :path: /image.jpg
[id=4] [64.642] recv (stream_id=9) :path: /body_script.js

As you can see, a large variance exists among the browsers, which leads to different
performance at the same site. Some researchers have performed much more extensive

10 https://bugs.chromium.org/p/chromium/issues/detail?id=651538

www.EBooksWorld.ir

245HTTP/2 conformance testing
testing of the differences among browsers.11 There are likely to be more research
studies and improvements in this area to come. HTTP/2 provides the tools for spe-
cific prioritization, but I’ve yet to find the best ways to use them.

7.4 HTTP/2 conformance testing
Now that you understand all the finer details of HTTP/2, you can compare the vari-
ous implementations on both the client and server sides.

7.4.1 Server conformance testing

H2spec12 is an HTTP/2 conformance tester that sends various messages to an HTTP/2
server and checks whether it follows the specification accurately. Download the ver-
sion for your computer type,13 and point it at an HTTP/2 server:

h2spec -t -S -h localhost -p 443

NOTE if you’re using an untrusted certificate (such as a self-signed certificate
for localhost), you may need to pass in the -k option to ignore certificate errors:

h2spec -t -S -h -k localhost -p 443

This code should run several tests against your server and show you whether each test
passes or fails:

$./h2spec -t -S -h localhost -p 443
Generic tests for HTTP/2 server
 1. Starting HTTP/2
 ✓ 1: Sends a client connection preface

 2. Streams and Multiplexing
 ✓ 1: Sends a PRIORITY frame on idle stream
 ✓ 2: Sends a WINDOW_UPDATE frame on half-closed (remote) stream
 ✓ 3: Sends a PRIORITY frame on half-closed (remote) stream
 ✓ 4: Sends a RST_STREAM frame on half-closed (remote) stream
 ✓ 5: Sends a PRIORITY frame on closed stream

 3. Frame Definitions
 3.1. DATA
 ✓ 1: Sends a DATA frame
 ✓ 2: Sends multiple DATA frames
 ✓ 3: Sends a DATA frame with padding

 3.2. HEADERS
 ✓ 1: Sends a HEADERS frame
 ✓ 2: Sends a HEADERS frame with padding
 ✓ 3: Sends a HEADERS frame with priority
…etc

11 https://speakerdeck.com/summerwind/2-prioritization and https://www.researchgate.net/publication/
324514529_HTTP2_Prioritization_and_its_Impact_on_Web_Performance

12 https://github.com/summerwind/h2spec
13 https://github.com/summerwind/h2spec/releases

www.EBooksWorld.ir

246 CHAPTER 7 Advanced HTTP/2 concepts
I’ve run the tool against some popular web servers, and the results are shown in
table 7.2.

I made similar tests on the home pages of some of common content delivery networks,
under the assumption that the home pages run on the CDN infrastructure, which
admittedly may not be a valid assumption. Table 7.3 shows the results.

Kudos to Apache for achieving the only perfect score. But does it matter that some
implementations don’t match the specification as they should? Arguably not, because
they often fail when trying to process incorrect messages that shouldn’t be sent in the
first place. Many popular servers/CDNs handle HTTP/2 traffic successfully and with-
out problems despite not getting 100% conformance.

 If you look at nginx’s results as one example, you see the following as one of the
tests the server is failing:

 4.2. Frame Size
 ✓ 1: Sends a DATA frame with 2^14 octets in length
 ✗ 2: Sends a large size DATA frame that exceeds the

SETTINGS_MAX_FRAME_SIZE
 -> The endpoint MUST send an error code of FRAME_SIZE_ERROR.

Table 7.2 HTTP/2 specification conformance for popular web servers

Server (and version) Tests passed

Apache (v2.4.33) 146/146 (100%)

nghttpd (v1.13.0) 145/146 (99%)

Apache Traffic Server (v7.1.3) 140/146 (96%)

CaddyServer (v0.10.14) 137/146 (94%)

HAProxy (v1.8.8) 136/146 (93%)

IIS (v10) 119/146 (82%)

AWS ELB 115/146 (79%)

nginx (v1.13.9) 112/146 (77%)

Table 7.3 HTTP/2 specification conformance for popular CDNs

CDN (and site tested) Tests passed

Fastly (www.fastly.com) 137/146 (94%)

Google (www.google.com) 135/146 (92%)

Cloudflare (www.cloudflare.com) 113/146 (77%)

MaxCDN (www.maxcdn.com) 113/146 (77%); note that test 6.3.2 hung

Akamai (www.akamai.com) 107/146 (73%)

www.EBooksWorld.ir

247Summary
 Expected: GOAWAY Frame (Error Code: FRAME_SIZE_ERROR)
 RST_STREAM Frame (Error Code: FRAME_SIZE_ERROR)
 Connection closed
 Actual: WINDOW_UPDATE Frame (length:4, flags:0x00, stream_id:1)

nginx doesn’t handle a large DATA frame as it should, but at the same time, no client
should be sending such a frame. Moving on to the next errors, you see some state errors:

 5. Streams and Multiplexing
 5.1. Stream States
 ✗ 1: idle: Sends a DATA frame
 -> The endpoint MUST treat this as a connection error of type

PROTOCOL_ERROR.
 Expected: GOAWAY Frame (Error Code: PROTOCOL_ERROR)
 Connection closed
 Actual: Timeout
 ✗ 2: idle: Sends a RST_STREAM frame
 -> The endpoint MUST treat this as a connection error of type

PROTOCOL_ERROR.
 Expected: GOAWAY Frame (Error Code: PROTOCOL_ERROR)
 Connection closed

Again, nginx isn’t correctly handling frames sent incorrectly when the stream is in an
idle state, but again, these frames shouldn’t be sent by the client. Most of the other
errors follow suit.

 If you’re writing an HTTP/2 server, the h2 spec tool is useful for checking whether
your server is implementing the specification correctly, but the reality is that many
major web servers get away with less-than-perfect implementations. The web has
always been a forgiving place on the technology side, and (unlike many programming
languages) slight errors are often overlooked. Still, these errors can lead to more
unexpected errors later, so it’s interesting to know how your server behaves. When I
published the preceding statistics on Twitter,14 several server implementations took
note and sought to improve their compliance.

7.4.2 Client conformance testing

A client equivalent of the tool (such as for testing browsers) does exist,15 though built
versions aren’t supplied, so this tool must be compiled from source. I leave this task to
the reader as an exercise.

Summary
 HTTP/2 has several advanced concepts that are rarely discussed, because many

people concentrate on the higher-level concepts.
 Most of the low-level details in this chapter aren’t under the control of server

administrators or website developers.

14 https://twitter.com/tunetheweb/status/988196156697169920
15 https://github.com/summerwind/h2spec/pull/74

www.EBooksWorld.ir

248 CHAPTER 7 Advanced HTTP/2 concepts
 HTTP/2 has stream states and a state diagram that shows valid transitions
between states.

 HTTP/2 allows fine-grained flow control at stream level rather than leaving it
to TCP to manage at connection level (as HTTP/1.1 does).

 HTTP/2 introduces stream priorities, which allow a client to suggest the prior-
ity for the server to use in returning the requests.

 The HTTP/2 stream priority system is based on dependencies and weights,
either of which (or both) can be used.

 Different browsers and servers use stream prioritization differently.
 Many HTTP/2 implementations don’t conform precisely to the specification.

www.EBooksWorld.ir

HPACK header
compression
The next topic is header compression. HTTP/1 has always allowed HTTP bodies to
be compressed, but only since HTTP/2 has it been possible to compress the HTTP
headers too.

8.1 Why is header compression needed?
It’s true that, in general, HTTP headers are relatively small in comparison with
HTTP bodies, but they’re still chatty and repetitive. A typical HTTP/2 GET request
from Chrome looks like this:

:authority: www.example.com
:method: GET
:path: /url

This chapter covers
 Background on data compression

 Why HTTP/2 needed its own compression
technique for HTTP headers

 The HPACK compression format

 Decompressing HPACK encoded headers

 HPACK in client and server implementations
249

www.EBooksWorld.ir

250 CHAPTER 8 HPACK header compression
:scheme: https
accept: text/html,application/xhtml+xml,application/xml;q=0.9,
 image/webp,image/apng,*/*;q=0.8
accept-encoding: gzip, deflate, br
accept-language: en-GB,en-US;q=0.9,en;q=0.8
upgrade-insecure-requests: 1
user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4) AppleWebKit/537
.36 (KHTML, like Gecko) Chrome/66.0.3359.139 Safari/537.36

Only the parts that are highlighted in bold are liable to change for the next request
sent to this server: the method of the request (GET) and the path (/url). Of the 403
characters in this code, only 7 won’t be repeated next time. In fact, even the method
is probably set to GET for the large majority of web page requests, though web ser-
vices might use the other methods. Therefore, only the :path or URL is liable to
change, so 399 characters of every Chrome request are duplicated each time—a
huge amount of waste.

 The problem is exacerbated because some of these headers are long, such as the
accept and user-agent headers shown in the preceding code, and cookie headers
can get even longer. Following is the request header to Twitter (with the cookie values
obfuscated):

:authority: twitter.com
:method: GET
:path: /
:scheme: https
accept: text/html,application/xhtml+xml,application/xml;q=0.9,
image/webp,image/apng,*/*;q=0.8
accept-encoding: gzip, deflate, br
accept-language: en-GB,en-US;q=0.9,en;q=0.8
cookie: _ga=GA1.2.123432087.1234567890; eu_cn=1; dnt=1; kdt=rmnAfbecvko4123
4oRYSzztq7n12345abcdABCD12; remember_checked_on=1; personalization_id="v1_k
0123451/EKaVeysDnuhKg=="; guest_id=v1%3A152383314680123456; ads_prefs="HBES
AAA="; twid="u=3374717733"; auth_token=12791876dfc0e57eae12345897b7940f55ac
7dfd; tfw_exp=1; csrf_same_site_set=1; csrf_same_site=1; lang=en; _twitter_
sess=BAh7CSIKZ12345678zonQWN0aW9uQ29udHJvbGxlcjo6Rmxhc2g6OkZsYXNo%250ASGFza
HsABjoKQHVzZWR7ADoPY3JlYXRlZF9hdGwrCPdpPx12345HaWQiJWY4%250AZGUwOGM3ZjRiYzJ
mYjRiAbCdEfGwNjIyZTk1Ogxjc3JmX2lkIiVkYjg3%2501234kZTVkMDdlMTAxMGI2YTgyZDFhN
TA0MmZiNQ%253D%253D--fd52ba1537f8fb9bf35dbd6080a6cd413edc6cd2; ct0=713653a0
6266b507960945523226bcc4; _gid=GA1.2.1893258168.1525002762; external_refere
r=1234567890w%3D|0|S381234567896Dak8Eqj76tqsc12345Lq4vYdCl5zxIvK6Q123vRkA%3
D%3D; app_shell_visited=1
referer: https://twitter.com/
upgrade-insecure-requests: 1
user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4) AppleWebKit/537
.36 (KHTML, like Gecko) Chrome/66.0.3359.139 Safari/537.36

This code is now 1,278 characters, and again, it’s likely that only the :path pseudo-
header will change with the next request, so 1,277 characters are pretty much wasted
for each request. Responses are no better. Figure 8.1 shows the response for Twitter.

www.EBooksWorld.ir

251How compression works
This response is a frankly ridiculous 5,804 characters, made up mostly of a detailed
(and large) content-security-policy header, a security feature that allows the web-
site to tell the browser what type of content it’s allowed to load on this site.1

 Computer scientists abhor repetition, and all this repetition is one of the reasons
why HTTP header compression was a key part of HTTP/2 and why it was built into its
predecessor (SPDY) from the beginning. Compressing and decompressing data takes
time and processing power, but relatively small amounts of that time compared with
the time required to send network requests, so compressing data before sending it on
a network is almost always worthwhile. Also, HTTPS requires encryption, which is
more computationally expensive than compression. It’s better to compress first and
then encrypt the smaller amount of data.

8.2 How compression works
To understand the rest of this section on HTTP compression, you need a little back-
ground on data compression. This topic is fairly high-level, and I deliberately avoid
the complex mathematics, but this section should give you enough detail to under-
stand how and why HTTP/2 implements header compression the way it does.

 Some compression is lossy compression; some of the detail can be discarded because
it’s not needed. This type of compression is typically used for media: music files,
images, and videos can be compressed heavily without losing the overall meaning of
the data. If you compress too much, you lose detail, so that an image can no longer be
zoomed in, for example. Lossy compression is a careful balance between reducing size
and maintaining quality.

 HTTP headers are important data, even if they’re repeated a lot, so lossy compres-
sion isn’t an option, even though it usually delivers better compression. Lossless com-
pression works by removing repetitive data that’s easily added back later when the data
needs to be uncompressed. You have three ways to do this:

1 https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

Large
content-security-policy

HTTP Header

Figure 8.1 Twitter response header

www.EBooksWorld.ir

252 CHAPTER 8 HPACK header compression
 Lookup tables
 More-efficient encoding techniques
 Lookback compression

I describe each of these methods in the following sections.

8.2.1 Lookup tables

The first method involves taking long, repeated bits of data and replacing them with
references. Uncompressing involves replacing the references with the original text
from the lookup table. This process can be dynamic but works particularly well for
data that’s structured the same way. Look at a simple GET request:

:authority: www.example.com
:method: GET
:path: /url
:scheme: https

This request is 64 characters. If you had a lookup table like this

$1=:authority:
$2=:method:
$3=:path:
$4=:scheme:

you could encode this text like this:

$1 www.example.com
$2 GET
$3 /url
$4 https

This request is 39 characters—a 40% improvement! The lookup table, however, may
need to be included in the compressed version, depending on whether it’s a standard
lookup table known by the format or a dynamic one generated by the specific text. If
the table is included, the overall size may be the same size or larger than the original
text, which would defeat the point. Lookup tables benefit you only if the values are
repeated often.

 In this simple example, the lookups are commonly used HTTP header names, so a
preagreed static lookup table could be used for them and would not need to be sent
each time. This table could be supplemented by a dynamic lookup table for extra val-
ues to use on top of that preagreed list. The domain www.example.com, for example,
is likely to be reused in subsequent requests, so it could be added to a dynamic list for
subsequent referencing.

8.2.2 More-efficient encoding techniques

Several techniques fall into this category, but they all recognize the fact that the data
being compressed could be represented in a smaller size if a more specific way is used
to represent the data.

www.EBooksWorld.ir

253How compression works
 Pixel-based images, for example, can be based on a 1-bit pixel range (black and
white). If you have a picture that has only red and yellow, you could use an 8-bit color
palette and use only two of those colors. Alternatively, you could use a 1-bit palette,
but state at the beginning that 0 is yellow and 1 is red. Similarly, for text you can use
ASCII (7 bits), UTF-8 (8 bits for the ASCII characters, 16 bits for commonly used West-
ern characters, 24 bits for most other common characters, and up to 32 bits for other
characters), or UTF-16 (16 bits for most characters and up to 32 bits for other charac-
ters). If you’re writing in English, UTF-8 makes the most sense, but if you’re writing in
non-Western languages, UTF-16 may make more sense, as UTF-8 often uses 24 bits for
these languages, compared with the 16 bits in UTF-16. Picking the appropriate format
can result in more efficient encoding.

 For even more savings, look at variable-length encoding. Most encoding tech-
niques involve fixed-size encoding. ASCII, for example, uses 7-bit characters, as shown
in table 8.1.

This arrangement is nice and simple but not too efficient, because each letter takes up
the same space regardless of how often it’s used. In English, E is the most common let-
ter, followed by T and A, down to the least common letters (X, J, Q, and Z, respec-
tively). Why should you treat them all as equal, given that they won’t be used equally?

 Rather than using 7 bits for all ASCII characters, it would be more efficient for
English text to use variable-length characters. This technique would use binary values
sized less than 7 bits for commonly used characters and binary values sized larger than
7 bits for less frequently used letters. Unicode (UTF-8 and UTF-16) uses this method
to some extent via distinct blocks of characters (1–4 octets), depending on how com-
monly used the characters are. The main complication is recognizing the boundaries
between characters (because they’re not all 7 bits long anymore in this format).

 Huffman coding takes variable-length encoding to a more extreme level. It works
by assigning a unique code to each value based on the frequency with which it’s used,

Table 8.1 A subset of the ASCII codes

Binary Character

01000001 A

01000010 B

01000011 C

01000100 D

01000101 E

01000110 F

01000111 G

And so on

www.EBooksWorld.ir

254 CHAPTER 8 HPACK header compression
and it ensures that no code is the prefix of another code. How the unique codes are
calculated is beyond the scope of this book, but it might lead to a table like table 8.2
(based on the Huffman codes based on the English-language letter-frequency distri-
bution).

In Huffman encoding, no code is fully represented as the start of another code. The
code 0101 isn’t used to represent a letter, as that code could be confused as being that
letter, the beginning of C, or the beginning of F. By choosing the coding strings care-
fully, it’s possible to reliably decode the data. As long as you start at the beginning of
the text, you can decode it by reading along until you match a letter; then you start
the next letter and continue until the whole text is unencoded.

 Using these codes as examples, if you wanted to encode the word face, you could
use regular ASCII (4 x 7 bits = 28 bits) or Huffman coding (5 + 4 + 5 + 3 = 17 bits).
Huffman encoding is smaller even in this simple example. With a longer piece of text,
the gains would be considerable.

 Huffman code compression is an extension of the lookup tables. Like the more
regular lookup tables discussed earlier in this chapter, Huffman tables can be defined
in advance based on the known structure to which the data is likely to be similar (such
as English-language text); they can be generated dynamically based on the data being
encrypted; or they can be a combination of both.

8.2.3 Lookback compression

Lookback compression involves referencing repeated text in terms of the current
placing. This type of compression is demonstrated particularly well in HTML text:

<html>
<body>
<h1>This is a title</h1>
<p>This is some text</p>
</body>
</html>

Table 8.2 A subset of the ASCII codes with Huffman coding

Binary Huffman coding Character

01000001 1111 A

01000010 101000 B

01000011 01010 C

01000100 11011 D

01000101 100 E

01000110 01011 F

01000111 00001 G

www.EBooksWorld.ir

255HTTP body compression
This text could be compressed as follows:

<html>
<body>
<h1>This is a title</(-20,3)
<p>(-24,6)some text</(-19,2)
</(-58,4)
</(-73,4)

Each repeated bit of text is replaced by a reference stating how far back the decom-
pressor can find the repeated text and how much of it to take. The reference (-20,3)
says to go back 20 characters and take the next three characters, which is what should
replace this reference. As you can see, this process works well for HTML text, in which
closing tags repeat opening tags (although as there are few tags in this example, a
lookup table might be better for HTML). You can also use this type of compression
for HTTP headers, such as the accept header:

accept: text/html,application/xhtml+xml,application/xml;q=0.9,
 image/webp,image/apng,*/*;q=0.8

As you can see, html is repeated twice in this header—as are application, xml, and
image—so it could be encoded with lookback functions. A computer doesn’t care
about looking back for whole words only; I’m only doing this to make the explanation
clearer. ml is used in html and xml, for example, so maybe it’s better to use it.

8.3 HTTP body compression
HTTP body compression generally is used for text data. Media is typically precom-
pressed depending on the particular format and is often excluded from compression.
JPEG, for example, is a specific compression format for images that shouldn’t then be
further compressed by the web server; the image won’t compress more (and may even
end up being larger) and therefore wastes processing. Text works well for all of the
preceding compression techniques. The techniques used by web servers and browsers
(deflate, gzip, and brotli) are fairly similar; they’re variants on the Deflate-based algo-
rithm and use a combination of techniques to achieve good compression rates. When
making a request, the browser informs the server what compression algorithms it sup-
ports by using the accept-encoding HTTP header:

accept-encoding: gzip, deflate, br

The server picks one of these algorithms and compresses the header, and in the
response, it informs the browser which algorithm it used to compress the resource:

content-encoding: gzip

This technology allows new compression algorithms to be introduced (such as brotli),
and these algorithms will be used only when both client and server support them.

www.EBooksWorld.ir

256 CHAPTER 8 HPACK header compression
 Deflate-based compression has one major flaw: it has proved to be insecure. The
problem is that you can use the length to guess the contents, particularly if you can
influence some of those contents. Although HTTP bodies can contain some sensitive
data (such as if your name or account number is displayed on the page), most security
concerns are about HTTP headers, as they contain cookies and other tokens used to
supply authentication. Suppose that you have the following request:

:authority: www.example.com
:method: GET
:path: /secretpage
:scheme: https
cookie: token=secret

If you could get hold of that token value (secret), you’d be able to impersonate this
user. You can’t do that, of course, because the message is encrypted—and ideally, the
cookie is marked as HttpOnly,2 so it can’t be seen by any JavaScript, even if you could
inject it into the page.

 If you could get access to the page, however, you could send out the following
requests with slightly different URLs and measure the length of the message sent:

https://www.example.com/secretpage?testtoken=a
https://www.example.com/secretpage?testtoken=b
https://www.example.com/secretpage?testtoken=c
…etc.

Because Deflate-based compression techniques work by recognizing and replacing
repeat patterns, you may notice eventually that one test (testtoken=s) is shorter
than the other tests because it repeats the first part of the real cookie (token=secret).
Now you know the first letter of the token! You can repeat this process until you get
the full token:

https://www.example.com/secretpage?testtoken=sa
https://www.example.com/secretpage?testtoken=sb
https://www.example.com/secretpage?testtoken=sc
https://www.example.com/secretpage?testtoken=sd
https://www.example.com/secretpage?testtoken=se – this is shorter!
https://www.example.com/secretpage?testtoken=sea
https://www.example.com/secretpage?testtoken=seb
https://www.example.com/secretpage?testtoken=sec – this is shorter!
https://www.example.com/secretpage?testtoken=seca
https://www.example.com/secretpage?testtoken=secb
https://www.example.com/secretpage?testtoken=secc
…etc.

2 https://www.owasp.org/index.php/HttpOnly

www.EBooksWorld.ir

257HPACK header compression for HTTP/2
This process may sound long, but it’s easy to script and is a real practical attack known
as CRIME (Compression Ratio Info-leak Made Easy).3 This attack was demonstrated
against SPDY, which used gzip for HTTP header compression.

8.4 HPACK header compression for HTTP/2
Due to the insecurities demonstrated with CRIME, HTTP/2 needed to use a different
compression method that wasn’t susceptible to such attacks. The HTTP Working Group
created a new specification called HPACK (not an acronym) that was based on lookup
tables and Huffman encoding but (crucially) not lookback-based compression.

 HPACK4 is a separate specification from HTTP/2. At one point, there were dis-
cussions about merging the two specifications, but in the end, the working group
decided to keep them separate. The HTTP/2 specification is light on details about
HPACK, deferring most details to the separate HPACK specification,5 but it does
state that header compression is part of HTTP/2 and that it’s stateful (more on why
in section 8.4.2).

 One interesting fact about HPACK is that unlike many HTTP specifications, it’s not
flexible or designed to be extended. In fact, the HPACK specification explicitly says:6

The HPACK format is intentionally simple and inflexible. Both characteristics reduce the
risk of interoperability or security issues due to implementation error. No extensibility
mechanisms are defined; changes to the format are only possible by defining a complete
replacement.

Although I’m not sure that I agree with calling HPACK simple, I agree that it’s unusu-
ally rigid for an internet specification, which (as the quote explains) was done for
security reasons. Eventually, a new version of HPACK will undoubtedly be introduced
(possibly QPACK as part of QUIC; see chapter 9). How this version will be imple-
mented will need to be defined (likely a new setting on connection establishment),
but for now, HPACK is fairly rigidly defined.

3 https://blog.qualys.com/ssllabs/2012/09/14/crime-information-leakage-attack-against-ssltls
4 https://httpwg.org/specs/rfc7541.html
5 https://httpwg.org/specs/rfc7540.html#HeaderBlock
6 https://httpwg.org/specs/rfc7541.html#rfc.section.1

www.EBooksWorld.ir

258 CHAPTER 8 HPACK header compression
8.4.1 HPACK static table

HPACK has a static table of 61 common HTTP header names (and in some cases val-
ues), part of which is shown in table 8.3. For the full table, see the HPACK specification.7

This table is used for both requests and responses, and allows an HTTP message to
efficiently compress commonly used names, as well as some commonly used name
and value pairs. As a result, the header

:method: GET

Table 8.3 Part of the HPACK static table

Index Header name Header value

1 :authority

2 :method GET

3 :method POST

4 :path /

5 :path /index.html

6 :scheme http

7 :scheme https

8 :status 200

9 :status 204

10 :status 206

11 :status 304

12 :status 400

13 :status 404

14 :status 500

15 accept-charset

16 accept-encoding gzip, deflate

17 accept-language

18 accept-ranges

19 Accept

… … …

60 Via

61 www-authenticate

7 https://httpwg.org/specs/rfc7541.html#static.table.definition

www.EBooksWorld.ir

259HPACK header compression for HTTP/2
can be compressed as a reference to index 2.
 As another example, the header

:method: DELETE

doesn’t exist in the table but can be compressed with a reference to index 2 for the
header name and the encoded value of DELETE. That is, even the name/value pair
table entries (such as :method: GET) can be used to provide the name part only (such
as :method). The reverse isn’t true, however; there’s no facility to look up a value asso-
ciated with another header. A header1: GET header for example, couldn’t use the GET
value from index 2.

 It would be equally correct to encode this :method: DELETE header to index 3 and
the encoded value of DELETE instead of index 2. Both methods refer to the :method
header name, so both are valid. I return to this topic in section 8.6.

8.4.2 HPACK dynamic table

In addition to the static table, HPACK has a connection-level dynamic table starting at
position 62 (after the static table) up to the maximum table size defined by the
SETTINGS_HEADER_TABLE_SIZE value in the SETTINGS frame. The default is 4,096
octets if not explicitly defined. When the maximum table size is reached, the oldest
entry is evicted. To make this process easier, each entry is incremented when the table
is written to. If a request contains the two custom headers

Header1: Value1
Header2: Value2

Header1 would be given table entry 62 initially. When Header2 was seen, Header1
would be moved to table entry 63, and Header2 would be added as table entry 62. That
is, the table entry position for a header isn’t static; it increments continually as new
headers are added to the table in both this request and future requests. For this rea-
son, HEADER and CONTINUATION frames must be received in order to maintain the
integrity of the dynamic table. TCP guarantees this order, so in HTTP/2 the dynamic
table is unique to each TCP connection.

 This process is complicated and best illustrated with a real example, which I pro-
vide in section 8.5. First, you need to understand a bit more about how these headers
are referenced in static and dynamic tables.

8.4.3 HPACK header types

Headers can be set to add to the dynamic table or not. There are four types of HPACK
headers, described in the following sections.

Literal header field representation
Literal header field representation (which starts with 1) is a straight lookup from the table
(either static or dynamic), so it’s used when both the header name and value already

www.EBooksWorld.ir

260 CHAPTER 8 HPACK header compression
exist in the table. This header consists of a table index value padded out to 7 bits min-
imum. Figure 8.2 shows the format.

Figure 8.2 Literal header field representation format

For larger numbers that need 7 bits or more, some additional logic exists.8 I don’t
cover that logic here, but suffice it to say that it involves filling all these 7 bits with 1
and using additional octet(s) to specify the larger index value.

 To encode :method: GET, for example, use index 2 (binary 10, or 000 0010 when
padded out with leading zeros). When you add the leading 1 for literal header field
compression, you end up with 1000 0010, or 82 in hexadecimal, as you can see if you
use Wireshark to look at traffic (figure 8.3). Section 8.5 explains how to view these
frames in Wireshark, so take these screenshots as examples.

LITERAL HEADER FIELD WITH INCREMENTAL INDEXING

The literal header field with incremental indexing type (which starts with 01) is used when
the header value isn’t available in the table but should be added to the dynamic table
for use later.

 This type contains the header name (which may be an index reference to the
header name already in the table or an actual header name not already in the table)
and the header value.

0 1 2 3 4 5 6 7

1 Index (7+)

8 https://httpwg.org/specs/rfc7541.html#integer.representation

Header in
plain-text format

Highlighted header
in HPACK format

Figure 8.3 HPACK compression of :method: GET header

www.EBooksWorld.ir

261HPACK header compression for HTTP/2
 If an indexed header name is used (the header name already exists in the table),
the bits following 01 (padded to a minimum 6 bits) define the index value, followed
by the header value itself, as shown in figure 8.4.

Figure 8.4 Literal header field with incremental indexing format 1

The header value string can be Huffman-encoded or not (depending on whether this
process would make it shorter), and the 1-bit H value is set to 1 if Huffman encoding
is used or 0 if it’s the ASCII value. Ideally, the shortest encoding should be used, so
some headers may be Huffman-encoded and others may be straight ASCII text.

 Figure 8.5 shows a real-world example. The :authority: header is index 1, so it
should be encoded as 01000001, or 41 in hexadecimal, followed by the Huffman-
encoded value (which I discuss in section 8.4.4).

Otherwise, for a new header name that isn’t in the lookup table, the 6 bits after the
initial 01 are set to 0, and then the header name and value are given as length/value
pairs, as shown in figure 8.6.

Figure 8.6 Literal header field with incremental indexing format 2

0 1 2 3 4 5 6 7

0 1 Index (6+)

H Value Length (7+)

Value String (Length octets)

0 1 2 3 4 5 6 7

0 1 0

H Name length (7+)

Name string (length octets)

H Value length (7+)

Value string (length octets)

:authority:
pseudoheader

:authority:
pseudoheader

in HPACK format

Figure 8.5 HPACK encoding of :authority: pseudoheader with new value

www.EBooksWorld.ir

262 CHAPTER 8 HPACK header compression
The first 8 bits, therefore, are 01000000 or 40. Figure 8.7 shows a real-world example
that starts with 40.

LITERAL HEADER FIELD WITHOUT INDEXING

The literal header field without indexing type (which starts with 0000) is used for items
that are likely to change in each request, which would make adding to the dynamic
table wasteful (such as the path). This header type contains the header name (which
may be an index reference to the field name in the table or an actual field name), but
the header name and value aren’t saved as entries in the dynamic table. The two for-
mats (depending whether the header name is referenced with a table index or given
in full) are shown in figures 8.8 and 8.9.

Figure 8.8 Literal header field without indexing format 1

Figure 8.9 Literal header field without indexing format 2

0 1 2 3 4 5 6 7

0 0 0 0 Index (4+)

H Value length (7+)

Value string (length octets)

0 1 2 3 4 5 6 7

0 0 0 0 0

H Name length (7+)

Name string (length octets)

H Value length (7+)

Value string (length octets)

New Header
plain-text format

Literal header with
incremental indexing

with new header

Figure 8.7 A new HPACK header to be indexed

www.EBooksWorld.ir

263HPACK header compression for HTTP/2
Figure 8.10 shows an example. As the encoded header starts with 00 in hex (or
0000 0000 in binary), you know that this header is the second type and isn’t referenc-
ing the header name (:path) from the table.

 The :path name is Huffman-encoded into 84 b9 58 d3 3f, and the header value
(/security/hsts-pixel.gif) is Huffman-encoded into 91 61 05…etc., as I discuss
in section 8.4.4, giving the total compressed header as 00 84 b9 58 d3 3f 91 61 05
and so on.

 This coding seems to be a little odd and wasteful, because the :path header
already exists in the table (at positions 4 and 5). The header could have been encoded
with format 1 and would have been 5 octets shorter:

 Format 1 (index 5): 05 91 61 05 and so on
 Format 2 (no index): 00 84 b9 58 d3 3f 91 61 05 and so on

If you try the same thing with Firefox, it uses index 5, but Chrome seems to prefer to
send the header name for unknown reasons. This example shows you that clients may
not encode in the way you always expect!

LITERAL HEADER FIELD NEVER INDEXED

The literal header field never indexed type (which starts with 0001) is similar to the pre-
ceding value except that the value must not be added to a dynamic table in any subse-
quent reencodings (such as when a server is acting as a proxy between two HTTP/2
implementations). This header type is used for sensitive information (such as user-
name, password, or both) that you don’t like to see implemented in a shared HTTP
header index. The header is an instruction on how to handle reencodings as well as
the existing encoding if the header is transmitted on.

Header in
plain-text format

Literal header
without indexing

Figure 8.10 HPACK without indexing header example

www.EBooksWorld.ir

264 CHAPTER 8 HPACK header compression
If the sender chooses to use this type, the settings are similar to those of the preceding
“without indexing” formats (figures 8.11 and 8.12), depending on whether the header
is referenced with an index to the current table or given in full.

Figure 8.11 Literal header field without indexing format 1

Figure 8.12 Literal header field without indexing format 2

Should cookies be stored in an HPACK table?
Cookies are sensitive data and seem to be exactly what this last type was designed
for. The downside is the reduced compression for cookies on subsequent requests.
Cookies can be large and repeated, so ideally, they should be compressed.

Unlike with partial lookback compression, with HPACK the whole cookie needs to be
guessed before the effect can be seen (perhaps the request size is smaller). Some
implementations (such as Firefox and nghttp)a use only the Never Index type with
small cookies (less than 20 bytes), the theory being that larger cookies are harder to
guess, making the compression gains worthwhile. For larger cookies, these imple-
mentations index the value so that it can be referenced with subsequent requests.
Chrome seems to use the Index type regardless of the length of the cookie, so it
doesn’t appear to use this Never Index compression type.

a https://github.com/nghttp2/nghttp2/blob/master/lib/nghttp2_hd.c

0 1 2 3 4 5 6 7

0 0 0 1 Index (4+)

H Value length (7+)

Value string (length octets)

0 1 2 3 4 5 6 7

0 0 0 1 0

H Name length (7+)

Name string (length octets)

H Value length (7+)

Value string (length octets)

www.EBooksWorld.ir

265HPACK header compression for HTTP/2
8.4.4 Huffman encoding table

Huffman encoding depends on defining a table of codes to use for each character in
the text. For HPACK, this table is defined in the specification, so both client and server
know the values to use to encode and decode header names and values. Table 8.4 shows
part of the HPACK Huffman codes. For the full table, see the HPACK specification.9

To return to a previous example, look at the header

:method: DELETE

Table 8.4 Part of the HPACK Huffman encoding values

Symbol ASCII code Huffman code (binary) Length (bits)

' ' (32) |010100 [6]

'!' (33) |11111110|00 [10]

'"' (34) |11111110|01 [10]

'#' (35) |11111111|1010 [12]

'$' (36) |11111111|11001 [13]

… … … …

'0' (48) |00000 [5]

'1' (49) |00001 [5]

… … … …

'A' (65) |100001 [6]

'B' (66) |1011101 [7]

'C' (67) |1011110 [7]

'D' (68) |1011111 [7]

'E' (69) |1100000 [7]

… … … …

'L' (76) |1100111 [7]

… … … …

'T' (84) |1101111 [7]

… … … …

9 https://httpwg.org/specs/rfc7541.html#huffman.code

www.EBooksWorld.ir

266 CHAPTER 8 HPACK header compression
This header can be compressed with a reference to index 2 and the encoded value
DELETE:

When grouped up to octets, the header would be 1011 1111 1000 0011 0011 1110 0000
1101 1111 1000 00, with the last octet padded out with ones to 0011. This header trans-
lates to bf 83 3e 0d f8 3f in hex, which needs to be preceded by the Huffman flag and
the length. The length is 6 octets in this case, which is 110 in binary or 000 0110 when
padded out to 7 bits. Adding the Huffman encoding bit as 1 at the beginning of the
length octet (1000 0110 or 86), you end up with the fully encoded header as 86 bf 83
3e 0d f8 3f.

8.4.5 Huffman encoding script

HPACK Huffman encoding and decoding can easily be automated. The following list-
ing shows one such implementation in Perl. Note that only part of the Huffman table
is shown for space reasons. The full listing is available at the book’s GitHub page.10

#!/usr/bin/perl

use strict;
use warnings;

#Read in the string to convert from the command line.
my ($input_string) = @ARGV;

if (not defined $input_string) {
 die "Need input string\n";
}

#Set up and populate a hash variable with all the Huffman lookup values.
#Note that only printable values are used in this simple example.
my %hpack_huffman_table;

$hpack_huffman_table{' '} = '010100';
$hpack_huffman_table{'!'} = '1111111000';
$hpack_huffman_table{'\"'} = '1111111001';
$hpack_huffman_table{'#'} = '111111111010';
…etc.
$hpack_huffman_table{'}'} = '11111111111101';
$hpack_huffman_table{'~'} = '1111111111101';

Letter D E L E T E

Huffman code 1011111 1100000 1100111 1100000 1101111 1100000

Listing 8.1 A simple HPACK Huffman encoder

10 https://github.com/bazzadp/http2-in-action

www.EBooksWorld.ir

267HPACK header compression for HTTP/2
#Set up a binary string variable
my $binary_string="";

#Split the input string by character
my @input_array = split(//, $input_string);

#For each inoput character, look up the string in the Huffman hash table
#And add it to the binary_string variable.
foreach (@input_array) {
 $binary_string = $binary_string . $hpack_huffman_table{$_};
}

#Pad out the binary string to ensure that it’s divisble by 8
while (length($binary_string) % 8 != 0) {
 $binary_string = $binary_string . "1";
};

#Calculate the length by dividing by 8.
my $string_length = length($binary_string)/8;

#This simple implementation doesn’t handle large strings
#(left as an exercise for the reader).
if ($string_length > 127) {
 die "Error string length > 127 which isn’t handled by this

program\n";
}

#Set the most significant bit (128) to indicate that Huffman encoding is used
#and include the length
#(again, this simple version naively assumes 7 bits for the length).
printf("Huffman Encoding Flag + Length: %x\n",128+$string_length);

#Iterate though each 4-bit value and convert to hexidecimal
printf("Huffman Encoding Value : ");
for(my $count=0;$count<length($binary_string);$count = $count + 4) {
 printf("%x",oct("0b" . substr($binary_string,$count,4)));
}
printf ("\n");

This code encodes strings into hexadecimal HPACK Huffman-encoded strings. Fol-
lowing is an example:

$./hpack_huffman_encoding.pl DELETE
Huffman Encoding Flag + Length: 86
Huffman Encoding Value : bf833e0df83f

You could use a similar script to decode HPACK Huffman-encoded strings. This script
could be enhanced to take in a list of headers and handle a dynamic table state. I leave
both of these tasks as exercises for you to complete in your language of choice.

 Although Huffman encoding is complicated for people to handle, it’s easy to
implement in code and efficient for computers to encode and decode. As a result, it’s
unlikely that you’ll want to encode or decode manually, as I’ve done in this chapter.

www.EBooksWorld.ir

268 CHAPTER 8 HPACK header compression
8.4.6 Why Huffman encoding isn’t always optimal

For some values, Huffman encoding may lead to larger values than if plain ASCII had
been used. If you decide to encode delete by using ASCII, for example, you can jump
straight to hex (because each ASCII code is 1 octet long):

You can see that the ASCII coding version is also of length 6, and with the Huffman
encoding flag set to 0, you precede the header with 06 and get 06 44 45 4C 45 54 45 as
the fully encoded header.

 In this case, there’s no difference between using Huffman encoding and not using
it—both are 7 octets long. Even though all the Huffman codes used in this particular
example are 7 bits (compared with 8-bit ASCII codes), padding is needed to round up
to complete octets, so the codes ended up being the same size. For some other head-
ers, ASCII encoding may be smaller, as would be the case if some infrequent charac-
ters from the Huffman table (longer than 8 bits) were used in the header. For this
reason, the HPACK specification allows Huffman encoding to be used or not as the
client sees fit, and the encoding can change with each header. Whichever encoding
can express the value in the fewest octets should be used.

 In general, however, Huffman encoding is often more efficient than ASCII. This
efficiency is due in part to the fact that ASCII requires only 7 bits, but the full 8-bit
octet is used, so 1 bit is wasted for every ASCII encoded value. Huffman encoding
allows the use of variable-length encodings, so in theory, bits aren’t wasted. In this
variable-length encoding, however, less frequently used characters use more than 8 bits,
so those values may be more efficiently encoded in ASCII. These values should by defi-
nition be rare (assuming that the HPACK Huffman encoding table reflects real-life
use). Finally, looking up from the static or dynamic tables is always going to be more
efficient than encoding in either Huffman or ASCII format.

8.5 Real-world examples of HPACK compression
I presented a lot of theory in the preceding sections. In this section, I show you some
real examples to help you understand all this theory. Most HTTP/2-aware tools take
care of HPACK for you and don’t expose all the extra hard work it has to do for you
on this front, so head back to Wireshark to see the raw data being sent on the wire
(and the decoded version of that data). I cover Wireshark in chapter 4, so refer to that
chapter to get it working.

 Assuming that you have HTTP/2 traffic sniffing working, start looking at the
HTTP/2 headers. Figure 8.13 shows one example of a request to Facebook with the
first HEADERS frame (the second line in the window) selected.

Letter D E L E T E

ASCII hex code 44 45 4C 45 54 45

www.EBooksWorld.ir

269Real-world examples of HPACK compression
At the bottom of the figure, you see that the Wireshark frame (a generic term for
the packet and not to be confused with an HTTP/2 frame) is 361 bytes. When that
frame is decrypted, it becomes 273 bytes, and when it’s decompressed, it becomes
498 bytes. Header compression even for this first frame is great, with a 45% saving
(273/498 = 55%), though some of that saving is used up again when the data is
encrypted.

 When you strip out the HTTP/2 frame details (such as the header type, the flags,
the weight, and so on), you get the encoded header in hexadecimal format:

82 41 8c f1 e3 and so on

Figure 8.13 HTTP/2 header frame in Wireshark

www.EBooksWorld.ir

270 CHAPTER 8 HPACK header compression
Decode this header with your newfound knowledge. Because you’re dealing with
variable-length Huffman encoding, looking at a header as octets isn’t useful, so con-
vert it to binary:

82418cf1e3… = 1000 0010 0100 0001 1000 1100 1111 0001 1110 0011…

At this point, you can start to read the header. You know that there are four types of
headers:

 Literal header field representation (starts with 1)
 Literal header field with incremental indexing (starts with 01)
 Literal header field without indexing (starts with 0000)
 Literal header field never indexed (starts with 0001)

This header block starts with 1, so it’s the first type. The next 7 bits give the table
index, which is 2, which equates to :method: GET—your first uncompressed header!
This header was stored in 1 octet (82) as opposed to the 12 octets needed to encode
each of those 12 characters in ASCII—a huge saving. So the first 8 bits are decoded:

1000 0010 0100 0001 1000 1100 1111 0001 1110 0011…

The next part starts with 01, so you know that it’s a literal header field with incremen-
tal indexing. Because it’s not followed by 6 zeros, you know that the index name is ref-
erenced by those 6 bytes. Figure 8.14 repeats the incremental format with the binary
values filled in.

Figure 8.14 Literal header field with incremental indexing format 1

Now decode the first octets of the next header (0100 0001).
 After you strip off 01, the index number is 00 0001 or 1, which is the :authority

header in the table. The first 16 bits are decoded:

1000 0010 0100 0001 1000 1100 1111 0001 1110 0011 1100…

Now you need to find the value for that :authority header. The first character of the
next octet is 1, so you know that the upcoming value is a Huffman-encoded value and
that the length is the remainder of that octet, or 000 1100 = 8 + 4 = 12 octets:

1000 1100 Huffman encoded-string with length of 12.

Bits Actual values

0 1 2 3 4 5 6 7

0 1 Index (6+) 0100 0001

H Value length (7+) 1000 1100

Value string (length octets) 1111 0001…and so on

www.EBooksWorld.ir

271Real-world examples of HPACK compression
The first 24 bits are decoded:

1000 0010 0100 0001 1000 1100 1111 0001 1110 0011 1100…

When you look at the next 12 octets, you see the following:

1111 0001 1110 0011 1100 0010 1111 0010 1000 1100 1000 0101
1000 1100 1110 0111 1110 1010 1011 1001 0000 1111 0100 1111

Each bit is read until a unique Huffman value is found. I’ll do the Huffman table look-
ups to save you time (easy to program but much more difficult to do manually):

 1111000 is uniquely identified as w.
 1111000 is uniquely identified as w.
 1111000 is uniquely identified as w.
 010111 is uniquely identified as ..

and so on

 00100 is uniquely identified as c.
 00111 is uniquely identified as o.
 101001 is uniquely identified as m.
 111 is padding to fill out the last octet.

The full value is www.facebook.com, and when it’s coupled with the header name
(:authority), you get the full header:

:authority: www.facebook.com

This header is added to the dynamic table with index 62. The static index ends at 61
indexed values, so 62 is the next free value.

 Continuing through the rest of the HEADERS frame in a similar way, you end up
with the dynamic table shown in table 8.5.

Table 8.5 Dynamic header after first HEADERS frame is received

Index Header Value

62 accept-language en-GB,en-US;q=0.9,en;q=0.8

63 accept-encoding gzip, deflate, br

64 Accept text/html,application/xhtml+xml,
application/xml;q=0.9,image/webp,
image/apng,*/*;q=0.8

65 user-agent Mozilla/5.0 (Macintosh; Intel Mac OS X
10_14_0) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/69.0.3497.100 Safari/537.36

www.EBooksWorld.ir

272 CHAPTER 8 HPACK header compression
As you can see, the :authority: index header has been pushed all the way down to
index 69. The ordering of the headers, therefore, is important and may not match the
headers shown in developer tools: Chrome orders the headers alphabetically in devel-
oper tools but doesn’t send them alphabetically, for example. Note also that not all
headers were added. The :scheme: https and :path: / pseudoheaders, for example,
were already in the static table (at index 7 and 4, respectively), so they weren’t added
to the dynamic table.

 The first request likely involves filling up the dynamic table, as these values won’t
be in the table, so you won’t get optimum compression. Subsequent requests can use
these values and get much better compression, as shown in figure 8.15.

 I’ll skip the next received HEADERS frame and instead go to the next sent HEADERS
frame. You can see the direction in which each request is traveling based on the
source and destination IP addresses. Sent and received headers are handled sepa-
rately but in an identical fashion. Here, I concentrate on the client sending side;
everything applies equally on the server sending side, but with a separately managed
dynamic header table.

 For the second sent request, you start with 82, which is the same as before, and you
know that it’s uncompressed/unencoded to :method: GET, so I won’t repeat myself
here. The second header is more interesting. 41 is the :authority header, identical to
the previous request, which is followed by the Huffman-encoded authority (face-
book.com). What’s interesting is that this domain is different from the first request
(facebook.com as opposed to www.facebook.com), so the previously stored dynamic
value can’t be reused, and instead the value must be sent. This example also shows
connection coalescing in action, because a separate HTTP/2 connection wasn’t
needed for this request even though the domain is different. See chapter 6 for more
information on connection coalescing.

66 upgrade-insecure-requests 1

67 cache-control no-cache

68 Pragma no-cache

69 :authority www.facebook.com

Table 8.5 Dynamic header after first HEADERS frame is received (continued)

Index Header Value

www.EBooksWorld.ir

273Real-world examples of HPACK compression
The next few headers are interesting, and I demonstrate them with the user-agent
header, as shown in figure 8.16.

 As you can see, the first request requires the full long user-agent header,11 using
94 octets to send it. In the second request, the user-agent header hasn’t changed,
so it can be sent in two octets (c2) for a massive saving! This saving is even bigger
compared with the 131 octets that would be needed for a plain-text HTTP/1.1
ASCII header.

11 Check out https://webaim.org/blog/user-agent-string-history/ if you’re curious about why this header is so
long.

Figure 8.15 Reusing HTTP/2 indexed headers is an efficient way to allow large headers to be sent.

www.EBooksWorld.ir

274 CHAPTER 8 HPACK header compression
To see how c2 translates to the user-agent header, first you need to realize that a new
header (:authority: facebook.com) was added and that it would have been stored in
the dynamic table, shifting everything up as shown in table 8.6.

Then you can unpack the user-agent header:

c5 = 1100 0010

Table 8.6 Dynamic header after first HEADERS frame is received

Index Header Value

62 :authority facebook.com

63 accept-language en-GB,en-US;q=0.9,en;q=0.8

64 accept-encoding gzip, deflate, br

65 Accept text/html,application/xhtml+xml,
application/xml;q=0.9,image/webp,
image/apng,*/*;q=0.8

66 user-agent Mozilla/5.0 (Macintosh; Intel Mac OS X
10_14_0) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/69.0.3497.100 Safari/537.36

67 upgrade-insecure-requests 1

68 cache-control no-cache

69 Pragma no-cache

70 :authority www.facebook.com

user-agent header

in first request

user-agent header

in second request

Figure 8.16 User agent header in first and second requests

www.EBooksWorld.ir

275HPACK in client and server implementations
The first 1 is a literal lookup of the header name and value, and the 100 0010 trans-
lates to 66, which (as you see in table 8.6) is the previously stored user-agent header.

 This makes sense only if both the sender and receiver keep their dynamic HPACK
table in sync, however, which you can do only if you preserve the ordering of the
HEADERS frames—which, thanks to TCP’s guaranteed delivery, is the case. This process
may seem to be complex, especially if you’re doing it manually, but it can be auto-
mated easily by computer. Using tools such as Wireshark is much less painful and
error-prone, but now you know how to decode manually, should manual decoding
be required.

 The gains from this easily automated complexity are impressive. In figure 8.15, you
may have noticed that the decrypted SSL size was 109 bytes, compared with 273 bytes
from the first request in figure 8.13. Even for this simple site, by loading three
resources over this connection (the rest are loaded from a sharded domain) without
any large cookies or complex headers, you achieve savings of 68% of the bytes you’d
send in HEADERS frames, as shown in table 8.7.

As the first request is the least compressed, average gains increase the more the con-
nection is used.

8.6 HPACK in client and server implementations
Before I close this chapter, consider a few more important points. First, there are sev-
eral duplicated headers in the static and dynamic tables, some of which are shown in
table 8.8.

Table 8.7 HPACK header savings

Request Decrypted SSL Decompressed header Saving

1 273 498 45%

2 109 477 77%

3 99 547 82%

Total 481 1522 68%

Table 8.8 Examples of duplicate headers in HPACK static and dynamic tables

Index Header name Header value

1 :authority

2 :method GET

3 :method POST

4 :path /

5 :path /index.html

www.EBooksWorld.ir

276 CHAPTER 8 HPACK header compression
I mentioned earlier in this chapter that a :method of DELETE could be referenced
with index 2 or 3, followed by the value DELETE, as both index 2 and 3 refer to the
:method header. Similarly, the :path has two entries in the table for common :path
values, and after the first request is received in the example, so does accept. The
HPACK specification doesn’t give any guidance as to which index should be used in
cases like this one. Senders can decide to use the first instance, the last instance, or
one in the middle (if one exists), or they can choose not to refer to a previously
defined header name index number and add another one (as Chrome did with the
:path header name).

 As another example of how browsers can handle encoding differently, Chrome and
Firefox use slightly different methods for multiple headers within the same request.12 If
you send two cookie headers, for example, after the first header is encoded, you have
two references to the cookie header name in the table: the original reference in the
static table and another reference in the dynamic table for the value you encoded. To
encode the second cookie header, Chrome uses the static table reference at index 32,
and Firefox uses the cookie header it added to the dynamic table (at an index posi-
tion greater than 62).

 To be clear, all these methods are valid. As long as the reference ultimately resolves
to the correct header name, the sender is free to use whichever index lookup it likes.
All the examples I’ve given so far are for duplicate header names, with different val-
ues. But the specification explicitly states that entire name/value pairs can be dupli-
cated exactly if the client so desires. The client can send the same header and value
that are already in the table, with instructions to index them instead of referencing
them from previously indexed values:13

The dynamic table can contain duplicate entries (entries with the same name and same
value). Therefore, duplicate entries MUST NOT be treated as an error by a decoder.

This process would lead to less compression for that header the first time the dupli-
cate header was used, but technically, it’s allowed.

… … …

19 accept

… … …

64 accept text/html,application/xhtml+xml,application/xml;
q=0.9,image/webp, image/apng,*/*;q=0.8

12 https://stackoverflow.com/questions/49437846/weird-http-2-hpack-encoding-in-firefox
13 https://httpwg.org/specs/rfc7541.html#dynamic.table

Table 8.8 Examples of duplicate headers in HPACK static and dynamic tables (continued)

Index Header name Header value

www.EBooksWorld.ir

277Summary
 Finally, it’s not required that the dynamic table be used by the sender. The nginx
web server uses only the static table, for example,14 presumably because it’s easier to
implement and manage. A patch is available that implements full HPACK encoding.15

This patch improves compression by 40% to 95%, according to the authors of the
patch, but it isn’t included in the base nginx code at this writing.16

8.7 The value of HPACK
HPACK can be complicated and intimidating at first sight (the RFC for it is nearly the
size of the whole HTTP/2 specification itself), but I’ve squeezed it into a single chap-
ter. I hope that this chapter has taken some of the mystery out of HPACK and will
make the RFC itself less intimidating to tackle, should you need to. Most HTTP/2
users and web developers can ignore the intricate details and accept that HTTP/2
headers are compressed in an efficient manner, leading to considerable space savings,
especially on the request side, where headers are the majority of the data. Cloudflare,
one of the largest CDNs, saw a 53% reduction in request data when HPACK was
enabled17. On the response side, although HTTP headers can be large, they’re typi-
cally dwarfed by the HTTP bodies, so savings seem to be less significant. (Cloudflare
saw only 1.4% savings on average.) But most consumer network connections have lim-
ited upload bandwidth compared with download, and requesting resources is the first
stage, so the request side is arguably where the gains are more important anyway.

Summary
 There are different methods of compressing data.
 HTTP headers contain sensitive data such as cookies, so they can’t use the same

compression technique as HTTP bodies, because they can leak data through
various attacks.

 HPACK is a compression format specifically written for HTTP header compres-
sion in HTTP/2.

 HPACK format has a specific binary format that uses a predefined static table of
common header names (and in some cases values) and a dynamic table created
during the session.

 Values that aren’t table references can be transmitted in ASCII or Huffman-
encoded format.

 Huffman-encoded format typically results in smaller values.
 There are multiple ways to send HTTP headers in HPACK, and browsers may

encode HTTP headers differently.

14 https://trac.nginx.org/nginx/changeset/12cadc4669a7/nginx and
15 https://github.com/cloudflare/sslconfig/blob/master/patches/nginx_1.13.1_http2_hpack.patch
16 https://twitter.com/igrigorik/status/1029827634815856640
17 https://blog.cloudflare.com/hpack-the-silent-killer-feature-of-http-2/

www.EBooksWorld.ir

www.EBooksWorld.ir

Part 4

The future of HTTP

By now, you should have in-depth knowledge of the HTTP/2 protocol and
be in a position to fully understand the specification. In this final part, I look at
the future of HTTP. HTTP/2 is here and now, being used by an increasing num-
ber of websites, but those who help define internet protocols aren’t sitting on
their laurels. In some ways, HTTP/2 is old news, and people are already looking
at the next advancement of the protocol.

 Chapter 9 looks at QUIC. QUIC is a new protocol that aims to continue the
work started with HTTP/2 and address problems lower in the TCP layer. It’s due
for standardization imminently (and may already be standardized by the time
this book is published), but I suspect that it may take a bit longer to be in wide-
spread use. QUIC uses many of the concepts of HTTP/2, so readers who have
made it this far should be in a strong position to start learning this protocol and
perhaps help with its adoption.

 Back up the protocol layer, in chapter 10, I also look at HTTP and where
(and how) it might evolve. HTTP has been robust and extensible, and HTTP/2
continues this concept, so there are numerous options for taking the protocol
further.

www.EBooksWorld.ir

www.EBooksWorld.ir

TCP, QUIC,
and HTTP/3
HTTP/2’s aim was to improve the inefficiencies inherent in the HTTP protocol,
mainly by allowing a single, multiplexed connection. Under HTTP/1.1, the connec-
tion was vastly underused, because it could be used for only one resource at a time.
If there were any delays in answering a request (such as because the server was busy
generating that resource), the connection was blocked and not being used. HTTP/2
allows the connection to be used for multiple resources, so other resources can still
use the connection in this scenario.

 In addition to preventing wasted connections, HTTP/2 provides improved per-
formance, because HTTP connections are inefficient in themselves. There’s a cost
to creating an HTTP connection; otherwise, there’d be no real benefit in multi-
plexing. The costs aren’t due to HTTP itself, but to the two underlying technolo-
gies used to create this connection: TCP and TLS used to provide HTTPS.

This chapter covers
 TCP inefficiencies

 TCP optimizations

 An introduction to QUIC

 Differences between QUIC and HTTP/2
281

www.EBooksWorld.ir

282 CHAPTER 9 TCP, QUIC, and HTTP/3
 In this chapter, I investigate these inefficiencies and show that although HTTP/2 is
better at handling most of these inefficiencies, in certain scenarios, HTTP/2 can be
slower than HTTP/1.1 because of these inefficiencies. Then I discuss QUIC, which
makes several improvements.

9.1 TCP inefficiencies and HTTP
HTTP depends on a network connection that guarantees that data is delivered reli-
ably and in order. Until recently, that guaranteed connection was achieved by using
TCP (Transmission Control Protocol). TCP allows a connection between two end-
points (typically, browser and web server) and takes care of passing the messages,
ensuring that they arrive, dealing with any retransmissions if the messages don’t arrive,
and ensuring that the messages are ordered correctly before being passed to any
application layer (HTTP). HTTP doesn’t need to implement any of these complica-
tions; instead, it assumes that these criteria have been met. The protocol was built on
that assumption.

 TCP enforces this guaranteed integrity by assigning a sequence number to each
TCP packet and then rearranging the packets on arrival (if they’re received out of
order) or rerequesting any missing sequence number packets (if a packet is detected
to be missing). TCP works on a CWND basis (which also formed the basis of how
HTTP/2 flow control works; see chapter 7), whereby the maximum amount of data
that can be sent is decided on (the CWND size), and sent messages decrease this win-
dow and acknowledged packets increase it again. The window starts small but grows
over time, as the capacity of the network proves to be able to handle the increased
load. The window can also shrink if it appears that the client can’t keep up. This pro-
cess works reasonably well, and TCP/IP has been the backbone of the internet
because of it. The fundamental way that TCP works, however, also leads to five main
problems with the protocol, at least where HTTP is concerned:

 There’s a setup delay. Sequence numbers that are to be used by sender and
receiver must be agreed on at the start of the connection.

 The TCP slow start algorithm restricts the performance of TCP, as it’s cautious
about how much data it sends to avoid retransmissions as much as possible.

 Underuse of the connection causes TCP to throttle back. TCP scales the CWND
back down if the connection isn’t fully used, as it can’t be sure that the network
parameters haven’t changed since the last optimal CWND was established.

 Lost packets cause TCP to throttle back. TCP assumes that all packet loss is due
to congestion, which may not always be the case.

 Packets may be queued. Packets received out of order may be held back to
ensure that order is guaranteed.

These problems haven’t changed under HTTP/2, and some of them are reasons why
using a single TCP connection is better under HTTP/2. The last two issues, however,
can cause HTTP/2 to be slower than HTTP/1.1 under certain lossy conditions.

www.EBooksWorld.ir

283TCP inefficiencies and HTTP
9.1.1 Setup delay in creating an HTTP connection

I discussed the TCP three-way handshake in chapter 2. That handshake, coupled with
HTTPS setup that’s increasingly required by HTTP (and by all browsers for HTTP/2
connections), result in a significant delay before the first HTTP message is sent, as
shown in figure 9.1.

Depending on the size of the HTTPS handshake messages, it takes at least three
round trips to set up a connection to a server (1.5 for TCP, 2 for HTTPS, with an over-
lap of 0.5) before you can send your first request. This diagram doesn’t include any
DNS lookup, which is likely to add another delay.

 These connection setup steps cause noticeable delays in real life, especially under
HTTP/1.1, but also under HTTP/2. Figure 9.2 shows the waterfall diagram for Ama-
zon from chapter 2, with all the connection delays highlighted.

 Under HTTP/2, it’s considerably better to use a single connection, but an initial
delay still occurs for each connection. Also, any separate domains that can’t be coalesced

Client

TCP: SYN

Server

TCP: SYN-ACK

TCP: ACK

HTTPS: ClientHello

HTTPS: ServerHello

HTTPS: ClientKeyExchange

and ChangeCipherSpec

HTTPS: ChangeCipherSpec

HTTP: first request

T
C

P
ro

u
n

d
 t

ri
p

s

H
T

T
P

S
 r

o
u

n
d

 t
ri

p
s

Figure 9.1 TCP and HTTPS
setup traffic required for an
HTTPS connection

www.EBooksWorld.ir

284 CHAPTER 9 TCP, QUIC, and HTTP/3
(see chapter 6) are subject to these delays. Amazon has upgraded to HTTP/2 since
figure 9.2, but I still see connection delays for the initial connection and for any subse-
quent connection that can’t use the same HTTP/2 connection (because it doesn’t
resolve to the same server or because it’s authenticated versus unauthenticated), as
shown in figure 9.3.

 HTTP/2 massively reduces the number of connections and therefore dramatically
reduces the 15 or so connection delays shown in figure 9.3, but it would be better to
resolve these three remaining delays, too.

9.1.2 Congestion control inefficiencies in TCP

Even after the connection is made, TCP inefficiencies can cause other performance
problems, primarily due to the guaranteed nature of TCP: all TCP packets are guaran-
teed to arrive in order. This seemingly simple statement requires several consider-
ations to be built into the protocol, in particular congestion control.

 Congestion control aims to prevent network collapse, when the network spends more
time retransmitting dropped packets than sending new packets. This concept was
close to becoming reality in the mid-1980s, when the internet started to take off.1

1 https://tools.ietf.org/html/rfc2914#section-3.1

Figure 9.2 Connection setup delays for Amazon under HTTP/1.1

www.EBooksWorld.ir

285TCP inefficiencies and HTTP
To prevent these problems, TCP was enhanced in the late 1980s with various congestion
control features that continue to be tweaked and changed to this day. These congestion
control algorithms and concepts introduced stability but also inefficiencies, especially
for HTTP.

TCP SLOW START

The TCP slow start mechanism finds the optimal throughput of TCP over the network
without swamping, and potentially endangering, the network. TCP is a cautious algo-
rithm that starts at a low rate and builds up to full capacity, during which time it care-
fully monitors the connection and capacity that it thinks it can handle.

 The amount of data that a TCP connection can send is based on the congestion
window size. This congestion window starts conservatively, with 10 segments of 1460
bytes maximum segment size (MSS), or about 14 KB, for modern PCs and servers (a
relatively new change,2 because many servers are still on the four-segment size used
previously). During slow start, the congestion window doubles in size with each round
trip, as shown in table 9.1.

2 https://tools.ietf.org/html/rfc6928

Figure 9.3 Connection delays are greatly reduced, but remain under HTTP/2.

www.EBooksWorld.ir

286 CHAPTER 9 TCP, QUIC, and HTTP/3
This doubling in size produces exponential growth, and after several round trips
reaches the full capacity that the receiver said it’s willing to accept (see the first part of
figure 9.4).

The capping limit is also often much lower than shown in figure 9.4, and 65 KB is
common, as that was an initial limit under TCP (see the discussion of window scaling
in section 9.1.4). After maximum capacity is reached, assuming that no packet loss
occurred, the TCP congestion control enters the congestion avoidance phase and
continues to increase, but at a much slower linear rate (as opposed to the exponential

Table 9.1 Typical TCP slow start growth

Round trip MSS CWND size (segments) CWND size (KB)

1 1460 10 14

2 1460 20 28

3 1460 40 57

4 1460 80 114

5 1460 160 228

C
W

N
D

 s
iz

e
 (

s
e
g

m
e
n

ts
)

180

160

140

120

100

80

60

40

20

0 0

1 2 3 4 5 6 7 8 9 10 11 12

Round trip

C
W

N
D

 s
iz

e
 (

k
il

o
b

y
te

s
)

250

200

150

100

50

TCP slow start and congestion control

TCP slow start Congestion avoidance

Figure 9.4 TCP slow start ramps up to optimum capacity.

www.EBooksWorld.ir

287TCP inefficiencies and HTTP
rate during slow start), until it starts to see dropped packets and is assumed to hit
capacity, as shown in the second part of figure 9.4.

 Unfortunately for HTTP, the initial stage is where you’re likely to want full capac-
ity. In a Facebook session, for example, the home page alone is 125 KB, which isn’t
reached until the fourth round trip at least. After the initial download of the web page
and all its assets, there’s often less need to download data, which often happens when
TCP reaches its optimal capacity.

Is TCP slow start that slow?
Due to the exponential nature of TCP slow start, it’s not slow by most definitions. In
fact, the congestion avoidance phase of TCP is a much slower rate of growth. Slow
start refers to the initially small size, which is why it’s called slow start rather than
slow growth.

It’s certainly slower than starting at the maximum that the server can send and scal-
ing down. Every TCP connection goes through this growth, so the protocol is slow
initially—deliberately, intentionally slow, but slow nonetheless.

Squeezing as much as possible into the first 14 KB
One web performance tip that’s often touted is to fit all your critical resources into
the first 14 KB of your HTML. The theory is that the first 14 KB will be downloaded in
the first 10 TCP packets, preventing any TCP acknowledgment delays. Any critical
inlined CSS, for example, should be included in the initial 14 KB (assuming that the
browser is happy to start processing partial HTML pages, as many browsers do).

This situation changes under an HTTPS connection and in particular under an HTTP/2
connection, in which some of these initial 10 TCP packets would be used by the fol-
lowing (at least):

 Two HTTPS responses (Server Hello and Change Spec)
 Two HTTP/2 SETTINGS frames (the server sending one and acknowledging

the client’s SETTINGS frame)
 One HEADERS frame responding to the first request

That connection leaves 5 packets, or about 7 KB, in the best-case scenario. In reality,
any of those messages could be larger than one TCP packet, using more than five
packets. Also, after you add any WINDOW_UPDATE or PUSH_PROMISE frames, this fig-
ure might be smaller still.

Luckily, however, the client acknowledges those TCP packets as they’re sent, which
increases the CWND size. In some ways, the initial delays due to HTTPS may mean
that the CWND size is already larger by the time you use HTTP, though this fact is
offset by the initial setup cost of HTTPS itself.

The main point of putting your critical resources high up in your HTML still stands, but
in my opinion, there’s no need to get hung up on 14 KB under HTTPS or HTTP/2.

www.EBooksWorld.ir

288 CHAPTER 9 TCP, QUIC, and HTTP/3
I state in chapter 2 that HTTP/2, with its single connection, has an advantage over
HTTP/1.1, but this statement may not be 100% accurate when you get into the details.
On one hand, HTTP/1.1 gets to download more initially due to the multiple connec-
tions (usually six per domain, more if sharding is used), so it effectively gets multiple
initial CWNDs compared with HTTP/2 (assuming that all connections are opened at
the same time), as shown in table 9.2.

On the other hand, if only one connection is used initially (as is often the case in
downloading an HTML web page), any additional new connections under HTTP/1.1
start with the slower, lower limit than the single HTTP/2 connection, which has likely
already reached full capacity. TCP slow start affects both versions of the protocol to
some extent.

IDLE CONNECTIONS DEGRADE PERFORMANCE

The TCP slow start algorithm causes delays at the start of a connection, as well as when
the connection is idle. TCP is cautious, and after a period of idleness, the network
conditions may have changed, so TCP throttles back its CWND size and restarts the
slow start mechanism to find the optimum CWND size again.

 Unfortunately, web browsing is by its very nature made up of bursts of traffic (as
you navigate to a new page) followed by periods of idleness (as you read the web
page). Then the cycle is repeated, so resetting back to the start during idle periods
can have a large effect on web browsing.

 In the Amazon HTTP/1.1 example, the page is loaded from the main Amazon
domain, but most of the assets used are from subdomains, leading to large periods of
inactivity on the initial connection to the main domain, as highlighted in figure 9.5.

 Although this inactivity is particularly bad for the first connection highlighted (as
it’ll likely be used again on any subsequent page navigation), you can see in figure 9.5
that lots of other connections are underused. These gaps show inefficient usage of
this connection, as highlighted in chapter 2, but from a TCP point of view, it’s worse
than you may realize, as TCP throttles back the connection during these periods of
inactivity. When those connections need to be used again (such as on page naviga-
tion), the process almost starts from the beginning again, although at least the TCP

Table 9.2 Typical TCP slow start growth with six connections

Round trip MSS CWND size (segments) CWND size (KB)
CWND size for six
connections (KB)

1 1460 10 14 85

2 1460 20 28 171

3 1460 40 57 342

4 1460 80 114 684

5 1460 160 228 1368

www.EBooksWorld.ir

289TCP inefficiencies and HTTP
handshake and HTTPS handshake don’t need to be repeated if the connection is
kept open.

 HTTP/2, with its use of a single connection per domain, fares much better in this
situation. Each resource helps keep the single TCP connection active, so it’s less likely
to be idle. This situation is particularly relevant if any connection regularly communi-
cates back to the server through XHR polling, server-sent events, or similar technol-
ogy. Such activity keeps the connection warmed up and ready for the next page
navigation.

PACKET LOSS DEGRADES TCP PERFORMANCE

In addition to taking a while to get up to capacity at the beginning and when the con-
nection has been idle for some time, TCP handles packet loss as an extreme event. It
assumes that this event is due to capacity constraints and reacts sharply, halving the
CWND and thereby halving the capacity (depending on the TCP congestion algo-
rithm in use).3 Then TCP uses the congestion avoidance algorithm to build up capac-
ity and continues in a congestion avoidance phase (again depending on the TCP
algorithm), as illustrated in figure 9.6.

 This halving of the CWND causes particular problems. Packet loss can occur for
many reasons, and network congestion is only one of them. Mobile networks, for
example, can be less reliable than wired connections and can lose packets at random,
regardless of how much capacity the network has. Therefore, it can be wrong to
assume that packet loss is purely due to congestion, and so should result in a dramatic
reduction in capacity.

3 https://ieeexplore.ieee.org/document/7796870

Periods of
inactivity

Figure 9.5 Connection use by Amazon under HTTP/1

www.EBooksWorld.ir

290 CHAPTER 9 TCP, QUIC, and HTTP/3
Newer TCP congestion control algorithms treat these network drops less extremely
than the preceding example: they may drop the CWND by less than half, grow faster
after packet loss (similar to slow start), or use alternatives to packet loss to decide
capacity (such as treating average round-trip time as a better indicator than packet
loss). But at a high level, the concepts are roughly similar. Packet loss results in slow-
down of the network.

 This problem is particularly severe for HTTP/2 with a single connection. A single
packet lost in an HTTP/2 world causes all resources being downloaded to suffer.
Compare this protocol with HTTP/1.1, which potentially has six independent con-
nections. A single packet loss will slow one of those connections, but the other five will
continue at full capacity.

 A second packet loss, before the connection has recovered, could have even more
dire consequences under HTTP/2, which halves down again to 25% capacity (again
assuming the use of basic TCP congestion control). Under HTTP/1.1, this second
packet loss could happen on the connection that already experienced the problem
(also reducing capacity to 25%) or on a separate connection (reducing it to 50%), but
the other TCP connections are unaffected. Table 9.3 shows the results of six resources
being downloaded over HTTP/2 and under the two HTTP/1.1 scenarios.

 As you see in table 9.3, the average capacity under HTTP/2 is down to 25% for this
example, because the whole connection (over which all six resources are being down-
loaded) is affected, whereas the effect on six independent connections is a reduction
to between 83% and 88%, depending on which connections were affected.

TCP packet loss

C
W

N
D

 s
iz

e
 (

s
e

g
m

e
n

ts
)

C
W

N
D

 s
iz

e
 (

k
il
o

b
y

te
s

)

180

160

140

120

100

80

60

40

20

0

250

200

150

100

50

0
TCP slow start

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Round trip

Packet

loss

Congestion

avoidanceCongestion avoidance

Figure 9.6 TCP CWND size is affected by packet loss.

www.EBooksWorld.ir

291TCP inefficiencies and HTTP
If this connection is particularly bad, or if there’s a genuine capacity bottleneck, both
HTTP/1.1 and HTTP/2 will suffer. The effect is always greater under HTTP/2, how-
ever; its single connection always bears the full brunt of any packet loss.

PACKET LOSS CAUSES ITEMS TO QUEUE

HTTP/2 multiplexing allows several streams of requests to be in flight in parallel on
the same TCP connection. Doing the same thing under HTTP/1.1 requires multiple
TCP connections. An HTTP/2-specific problem arises when you have packet loss as
well as reduction in capacity. Suppose that you have three assets in flight, and they’re
downloading, as shown in figure 9.7.

Now assume that a TCP packet from the first response—the style.css headers response
being sent on stream 5—goes missing for some reason. In this case, the client won’t
acknowledge that packet, and after a while, the server resends it. This retransmission
is added to the end of the queue, as shown in figure 9.8. Note that the figure blurs the
lines between HTTP/2 frames and TCP packets somewhat for simplicity’s sake.

Table 9.3 Results of second packet loss on HTTP/2 versus HTTP/1.1 connections

Resource HTTP/2 HTTP/1.1: same connection HTTP/1.1: different connection

Resource 1 25% 25% 50%

Resource 2 25% 100% 50%

Resource 3 25% 100% 100%

Resource 4 25% 100% 100%

Resource 5 25% 100% 100%

Resource 6 25% 100% 100%

Average 25% 88% 83%

Client

(web browser)

Server

(web server)HTTP/2

requests

Responses

Single TCP connection

Stream 5

/style.css

headers

Stream 7

/script.js

headers

Stream 5

/style.css

body

Stream 7

/script.js

body

Stream 9

/img.jpg

headers

Stream 9

/img.jpg

body

Figure 9.7 Several responses in flight

www.EBooksWorld.ir

292 CHAPTER 9 TCP, QUIC, and HTTP/3
If no other packet losses occur, streams 7 and 9 will be received in their entirety before
the retransmission arrives. Those responses must be queued, however, because TCP
guarantees the order, so script.js and image.jpg can’t be used despite being down-
loaded in full. Under HTTP/1.1, this process would be carried out under three inde-
pendent TCP connections, as shown in figure 9.9.

The browser, therefore, can process script.js and image.jpg as soon as they arrive; only
style.css is delayed. In this example, the browser may wait until style.css is available,
depending on whether it considers this resource to be a critical resource (as CSS often
is). The point remains that HTTP/2 is adding a constraint here that isn’t present
under HTTP/1.1 with multiple connections. Worse, if the connection is unable to
queue up all out-of-sequence packets due to limited TCP buffer size, it may drop some
packets, requiring them to be retransmitted as well!

 HTTP/2 has solved the head-of-line (HOL) blocking issue at HTTP level, because
with multiplexing, a single delayed response doesn’t prevent the HTTP connection
from being used for other resources. HOL blocking is still present at TCP level, however.

Client

(web browser)

Server

(web server)HTTP/2

requests

Responses

Single TCP connection

Stream 5

/style.css

headers

Stream 7

/script.js

headers

Stream 5

/style.css

body

Stream 7

/script.js

body

Stream 9

/img.jpg

headers

Stream 9

/img.jpg

body

Stream 5

TCP

retransmission

Figure 9.8 TCP retransmission of part of an HTTP/2 frame

Client

(web browser)

Server

(web server)

TCP connection 1

TCP connection 2

TCP connection 3

styles.css

script.js

image.jpg

TCP retransmission

HTTP/1.1

Figure 9.9 TCP retransmissions under HTTP/1.1 affect only the connection that needs the
retransmission.

www.EBooksWorld.ir

293TCP inefficiencies and HTTP
A single dropped packet from one stream effectively blocks all the other streams, even
though they may not need to be held up.

9.1.3 Effect of TCP inefficiencies on HTTP/2

I’ve shown that TCP inefficiencies can cause problems for HTTP, but what is the real
effect, and is it any different under HTTP/1 and HTTP/2?

 I indicated earlier that HTTP/2 generally outperforms HTTP/1.1. Also, Google’s
experiments with SPDY demonstrated a considerable speed gain in both laboratory
experiments and the real world.

 The effect of performance loss isn’t to be underestimated, however. Hooman
Beheshti of Fastly did some experiments4 with the WebPagetest tool and showed that
HTTP/2 performs consistently worse than HTTP/1.1 when a consistent 2% packet
loss occurs. Granted, a consistent 2% packet loss indicates a very poor network; most
networks lose an occasional packet rather than experience this consistent level of
loss. But the experiments show that HTTP/2 may not be the silver bullet for all sce-
narios. More in-depth studies5 similarly showed the impact of packet loss and even
went so far as to recommend using limited sharding under HTTP/2, which seems to
be counterintuitive.

 I was able to repeat Beheshti’s findings on some popular sites but not on others. If
you want to repeat the tests, go to https://www.webpagetest.org/. On the Test Settings
tab, choose a custom setting and set your packet loss, as shown in figure 9.10.

4 https://www.youtube.com/watch?v=CkFEoZwWbGQ and https://www.youtube.com/watch?v=wR1gF5Lhcq0
5 https://arxiv.org/abs/1707.05836

Custom setting

Packet loss

Figure 9.10 Testing packet loss in WebPagetest

www.EBooksWorld.ir

294 CHAPTER 9 TCP, QUIC, and HTTP/3
To test HTTP/2 versus HTTP/1.1, you can use Chrome and add the --disable-
http2 command-line option, as shown in figure 9.11.

 For Firefox, you must use a slightly different method. Enter the following on the
Script tab, replacing the final navigate line with the site you want to test against:

firefoxPref network.http.spdy.enabled false
firefoxPref network.http.spdy.enabled.http2 false
firefoxPref network.http.spdy.enabled.v3-1 false
navigate https://www.fastly.com/

Be aware that you must use tabs, not spaces, between the parts of these settings, as
shown in figure 9.12.

 To prevent any bias or to keep individual results from skewing overall results, run
the tests multiple times, under different network conditions and in different loca-
tions. Figure 9.13 shows the results of one test of ebay.com.

 As you see in figure 9.13, HTTP/2 (top) is nearly half a second slower. Repeating
the same test with zero packet loss shows that HTTP/2 is faster, as expected.

 It’s also possible to export the raw data by clicking Raw Page Data on the right side
of the page, as shown in figure 9.14.

Disabling HTTP/2 with
a command-line option

Figure 9.11 Disabling HTTP/2 for Chrome

www.EBooksWorld.ir

295TCP inefficiencies and HTTP
Disabling HTTP/2 with
a command-line option

Setting a Firefox
script to disable

HTTP/2

Figure 9.12 Disabling HTTP/2 on Firefox in WebPagetest

HTTP/2 with 2%

packet loss

HTTP/1.1 with 2%

packet loss

Performance results (median run)

Performance results (median run)

Figure 9.13 Loading Ebay’s home page with 2% packet loss over HTTP/2 and HTTP/1.1

Use the
Raw Page Data

link to export run
data

Figure 9.14 Exporting WebPagetest raw data to a CSV file

www.EBooksWorld.ir

296 CHAPTER 9 TCP, QUIC, and HTTP/3
This feature can be handy when you’re making multiple runs and want to plot them
in a graph. Also, you can click Test History and select both images to see a quick com-
parison of the effect, as shown in figure 9.15.

This feature gives you access to a wealth of views and data, including size by timeline
and thumbnails, as shown in figure 9.16.

WebPagetest is a fantastic tool for running performance comparisons like this one.
You can also host your own private instance, which is well worth looking into if you
plan to perform a lot of checks or want to test development servers that aren’t avail-
able to the web version.

Should you hold off on migrating to HTTP/2 due to TCP inefficiencies?
Given the fact that HTTP/2 performance can be worse under severe packet loss,
should you hold off on moving to HTTP/2? Delaying probably would be overkill.
Remember that HTTP/2 is faster than HTTP/1.1 under most scenarios. Should you
hold up benefiting users because on some (ideally rare) occasions, it performs worse
than HTTP/1.1?

Figure 9.15 Choosing two results to compare

1.0s 1.5s 2.0s 2.5s

5% 24% 55% 99%

11% 17% 18% 59%

1: HTTP/1.1

with 2% packet

loss

(Edit)

2: HTTP/2 with

2% packet loss

(Edit)

Figure 9.16 Comparing two WebPagetest runs

www.EBooksWorld.ir

297TCP inefficiencies and HTTP
9.1.4 Optimizing TCP

You’ve seen that TCP can greatly affect the performance of HTTP. In many ways, the
inefficiencies in the HTTP protocol have been engineered out with HTTP/2, but per-
formance bottlenecks that existed elsewhere are now more apparent. HTTP HOL
blocking is no longer a problem in HTTP/2, thanks to multiplexing, but TCP HOL
blocking has become a problem, especially in lossy environments.

 The only two solutions to these problems are to improve TCP or to move away
from it. The following sections look at the first solution; section 9.2 looks at the sec-
ond. TCP has had several improvements over the years, some of which may already be
in use in some environments.

UPGRADING YOUR OPERATING SYSTEM

The biggest effect is to upgrade your operating system. Although TCP is old, dating
back to 1974, improvements and innovations are still being made as new research is
completed and as computer use changes. Unfortunately, TCP usually is controlled by
the low-level operating system, and you have less opportunity to change it outside the
operating system. Therefore, the best way to ensure that you have optimum TCP
usage is to ensure that you’re running the latest version of your operating system.

 In this section, I concentrate on Linux as an example, but these settings apply
equally to other operating systems, including Windows and macOS, even if the set-
tings aren’t in the same place or as easy to change. Where appropriate, I provide the

This chapter discusses some real problems with HTTP and TCP, but not the likelihood
that those problems will occur. The best measure is real-life metrics, rather than arti-
ficial scenarios like those in this chapter. As I stated earlier, a real-life network that
experiences continual 2% packet loss is likely to be a poor network. Unfortunately,
measuring packet loss in real life is more difficult; statistics are less readily avail-
able. Some scientific studies based on more realistic packet loss scenarios,a how-
ever, have shown that, as expected, in general HTTP/2 outperforms HTTP/1.1.

HTTP/2 implementations are still relatively new and will improve over time. The same
is true of websites, which may optimize better for HTTP/2. Finally, TCP itself is still
improving and can be optimized (see section 9.1.4). Some people have suggested
using multiple TCP connections for HTTP/2 to work around some of these issues, but
this workaround negates the reasons for moving to a single connection under
HTTP/2. HTTP/2 mostly performs better because it uses a single connection.

In a specific scenario in which most of your users have poor network connections that
can’t be improved, it may be prudent to remain on HTTP/1.1 or to shard HTTP/2 con-
nections that won’t be coalesced. Ultimately, the best advice (as always) is to mea-
sure and test any changes.

a https://www.semanticscholar.org/paper/HTTP%2F2-Performance-in-Cellular-Networks-Goel-
Steiner/63fa6b3310a7c4d799d5b0b5bf37f0620dd3fc5d?tab=abstract

www.EBooksWorld.ir

298 CHAPTER 9 TCP, QUIC, and HTTP/3
Linux version in which a change was introduced. Table 9.4 shows the Linux kernel
version included in some of the most popular Linux distributions.

INCREASING THE INITIAL CWND SIZE

TCP slow start requires a round trip to increase the CWND size, which started at a
size of 1 TCP packet but increased over the years to 2 and then 4; by Linux kernel
2.6.39, the setting increased from 4 to 10 by default. This setting is usually hard-
coded into the kernel code, so it’s not advisable to change it except by upgrading
the operating system.

Table 9.4 Linux kernel versions for popular distributions

Distribution Linux kernel version

RHEL/Centos 6 2.6.32

RHEL/Centos 7 3.10.0

Ubuntu/Debian 14.04 3.13

Ubuntu/Debian 16.04 4.4

Ubuntu/Debian 18.04 4.15

Debian 8 Jessie 3.16

Debian 9 Stretch 4.9

Finding and changing TCP connection settings
Most TCP settings in Linux are available to view in the following directory:

/proc/sys/net/ipv4/

Despite the directory name, most of these settings apply to IPv6 TCP connections
too. You can view the values with cat:

$ cat /proc/sys/net/ipv4/tcp_slow_start_after_idle
1

You can set the values with the sysctl command:

sysctl -w net.ipv4.tcp_slow_start_after_idle=0

Take care when changing any of these settings, however, because TCP is such a crit-
ical part of the system. I advise most readers not to change the settings. I suggest
instead that readers use this knowledge to make sure that these settings are appro-
priate and use them as an argument for a whole operating-system upgrade, which
should set the values to the best practice values at the time of the kernel release.

www.EBooksWorld.ir

299TCP inefficiencies and HTTP
ALLOWING WINDOW SCALING

Traditionally, TCP allows a maximum CWND window size of 65,535 bytes, but later
versions allow a scaling factor to be applied to this value, in theory allowing CWND
sizes of up to 1 GB. This setting was made the default in Linux kernel 2.6.8, so it
should be on for most readers, but to make sure, you can check it this way:

$ cat /proc/sys/net/ipv4/tcp_window_scaling
1

USING SELECTIVE ACKNOWLEDGMENT
Selective Acknowledgment (SACK) allows TCP to acknowledge receipt of packets out of
order to avoid resending them if another packet is dropped. If packets 1–10 are sent,
but packet 4 is dropped, you can acknowledge 1–3 and 5–10. That way, only packet 4
must be resent. Without this feature, packets 4–10 would need to be resent in this
example. Confirm that this feature is set to 1 (on) with this command:

$ cat /proc/sys/net/ipv4/tcp_sack
1

DISABLING SLOW START RESTART

This setting still defaults to potentially the wrong value, at least for web servers, so you
may want to consider changing it. A TCP connection throttles back after an idle
period, under the assumption that network conditions may have changed, so previous
assumptions may be incorrect. By default, however, a web server is somewhat intermit-
tent, with bursts of traffic as users browse the site, pause to read the web page, and
potentially browse to other pages, so enabling this setting may not be optimum for
web servers.

 The setting usually is enabled by default:

$ cat /proc/sys/net/ipv4/tcp_slow_start_after_idle
1

To disable it, use the following command:

sysctl -w net.ipv4.tcp_slow_start_after_idle=0

As I stated earlier, you shouldn’t change your system TCP settings lightly. But depend-
ing on what your server is used for (such as a dedicated web server), changing this set-
ting may be worth considering.

USING TCP FAST OPEN

TCP fast open allows an initial packet of traffic to be sent with the initial SYN part of
the TCP three-way handshake. This method prevents some of the setup delay associ-
ated with TCP (see section 9.1.1). For security reasons, this packet can be sent only on
TCP reconnections rather than on initial connections, and both client and server sup-
port are required. TCP fast open effectively allows HTTP (or HTTPS) messages to be
sent earlier in the handshake, as shown in figure 9.17.

www.EBooksWorld.ir

300 CHAPTER 9 TCP, QUIC, and HTTP/3
You can check Linux support of this feature as follows:

$ cat /proc/sys/net/ipv4/tcp_fastopen
0

The setting usually is disabled (set to 0). Table 9.5 lists some options for this setting.

You can change this setting with the following command:

echo "3" > /proc/sys/net/ipv4/tcp_fastopen

Support for this feature was added in Linux 3.7 and enabled by default in version 3.13,
though IPv6 support wasn’t added until Linux 3.16.

Table 9.5 TCP fast open settings

Value Meaning

0 Disabled

1 Enabled for outgoing connections

2 Enabled for incoming connections

3 Enabled for both outgoing and incoming connections

Client

TCP: SYN

Server

TCP: SYN-ACK

TCP: ACK

HTTPS: ClientHello

HTTPS: ServerHello

HTTPS: ClientKeyExchange

and ChangeCipherSpec

HTTPS: ChangeCipherSpec

HTTP: first request

T
C

P
ro

u
n

d
 t

ri
p

s

H
T

T
P

S
 r

o
u

n
d

 t
ri

p
s

Client Server

TCP: SYN-ACK

TCP: ACK

HTTPS: ClientHello

HTTPS: ServerHello

HTTPS: ClientKeyExchange

and ChangeCipherSpec

HTTPS: ChangeCipherSpec

HTTP: first request

T
C

P
ro

u
n

d
 t

ri
p

s

H
T

T
P

S
 r

o
u

n
d

 t
ri

p
s

TCP without fast open TCP with fast open

TCP: SYN

Figure 9.17 TCP and HTTPS reconnection handshake with and without fast open

www.EBooksWorld.ir

301TCP inefficiencies and HTTP
 In addition to setting this setting at the operating-system level, you must configure
your server software to use it. On the web-server side, nginx allows this setting6 but
requires compile options and configuration, so it’s not enabled by default. Windows
IIS7 supports it, but Apache makes no mention of it in the documentation, so presum-
ably it doesn’t support it. Other, less-common servers may not support this feature. On
the client side, the setting can be enabled in Edge,8 and Chrome on Android, but at
this writing, it isn’t supported in Chrome for Windows or macOS9 and is switched off
in Firefox.10

 The gains from TCP Fast Open are truly impressive. Google has stated11 that
“based on traffic analysis and network emulation, we show that TCP Fast Open would
decrease HTTP transaction network latency by 15% and whole-page load time over
10% on average, and in some cases up to 40%.” Support of this relatively new addi-
tion to TCP (the RFC was published in 2014)12 has been slow, however. Given these
complexities, TCP Fast Open probably is one to watch for in the future rather than
change now.

USING CONGESTION CONTROL ALGORITHMS, PRR, AND BBR
TCP has various congestion control algorithms that control how TCP reacts when
packet loss is experienced. Most TCP implementations use the CUBIC algorithm13

(the default since Linux kernel 2.6.19). This algorithm was enhanced by Proportional
Rate Reduction (PRR)14 congestion avoidance (the default since 3.2), which reduces the
halving of the congestion control window on packet loss.15 A detailed description of
the differences is beyond the scope of this book, but suffice it to say that a better algo-
rithm can significantly improve performance. Use this command to see the current
algorithm in use:

$ cat /proc/sys/net/ipv4/tcp_congestion_control
cubic

The available congestion control algorithms are available here:

$ cat /proc/sys/net/ipv4/tcp_available_congestion_control
reno cubic

6 https://nginx.org/en/docs/http/ngx_http_core_module.html#listen
7 https://blogs.technet.microsoft.com/networking/2016/07/18/announcing-new-transport-advancements-

in-the-anniversary-update-for-windows-10-and-windows-server-2016/
8 https://www.windowscentral.com/enable-tcp-fast-open-microsoft-edge-faster-page-load-times
9 https://bugs.chromium.org/p/chromium/issues/detail?id=635080
10 https://bugzilla.mozilla.org/show_bug.cgi?id=1398201
11 https://ai.google/research/pubs/pub37517
12 https://tools.ietf.org/html/rfc7413
13 https://tools.ietf.org/html/rfc831
14 https://tools.ietf.org/html/rfc6937
15 https://ai.google/research/pubs/pub37486

www.EBooksWorld.ir

302 CHAPTER 9 TCP, QUIC, and HTTP/3
An even newer algorithm, Bottleneck Bandwidth and Round-trip propagation time
(BBR), has been shown to improve performance further,16 particularly for HTTP/2
connections.17 BBR was created by Google and is available in Linux kernel 4.9; it
requires no client-side changes. To enable it in Linux kernels that have it (version 4.9
or later), use the following commands:

#Dynamically load the tcp_bbr module if not loaded already
sudo modprobe tcp_bbr
#Add Fair Queue traffic policing which BBR works better with
sudo echo "net.core.default_qdisc=fq" > /etc/sysctl.conf
#Change the TCP congestion algorithm to BBR
sudo echo "net.ipv4.tcp_congestion_control=bbr" > /etc/sysctl.conf
#Reload the settings
sudo sysctl -p

Some researchers,18 however, claim that BBR potentially isn’t a nice player on the net-
work, particularly when running alongside other non-BBR traffic, and can take an
unfair proportion of network resources.

9.1.5 The future of TCP and HTTP

I’ve shown you some of the complications of TCP—a seemingly simple protocol that’s
far more complex than most people realize. Like HTTP/1.1, TCP has some built-in
inefficiencies that users may only now be starting to experience, as the inefficiencies
in higher-level protocols such as HTTP are addressed, and as demands on networks
continue to increase.

 The protocol is still evolving, albeit quite slowly. Although new options and conges-
tion control algorithms are being created all the time, and browsers are being
upgraded to take advantage of these features if available, it takes some time for them
to make it into the network stacks of servers. New features usually are tied to the fun-
damentals of the operating system, so they require a full operating system upgrade. It
may be possible to turn on some of these settings manually if you’re running a version
of the operating system in which the features have been introduced but not been
made defaults, but it’s often better to upgrade the operating system. This area is a spe-
cialized one, and although I touched on a few recent innovations here that are likely
to be beneficial for the next few years, it’s usually better to allow the maintainers of
the operating system, who have the necessary skills and knowledge, to decide what
these settings should be.

 Also, I didn’t touch on all the network pipes and plumbing that usually lie between
a user’s web browser and the web server. Even if both sides support some of these rela-
tively new TCP features, if anything sitting between them doesn’t, there’s potential for

16 https://cloudplatform.googleblog.com/2017/07/TCP-BBR-congestion-control-comes-to-GCP-your-Internet-
just-got-faster.html

17 https://blog.cloudflare.com/http-2-prioritization-with-nginx/
18 https://doc.tm.uka.de/2017-kit-icnp-bbr-authors-copy.pdf

www.EBooksWorld.ir

303QUIC
a problem. Much as HTTP proxies downgrade connections to HTTP/1.1 even when
both ends support HTTP/2, innovation in this area can be held back by so-called mid-
dleboxes. Because TCP is an old algorithm, some of these middleboxes have certain
expectations about how TCP is used and don’t react well, or don’t allow it to be used
in new, unexpected ways.

 For these reasons and more, some people are questioning whether TCP is the
right underlying protocol for HTTP and whether a new protocol is the way to go—a
protocol designed from the ground up for the current (and future) needs of HTTP
without the baggage of the past or dependency on the operating system. One such
protocol is QUIC.

9.2 QUIC
QUIC (pronounced quick) is a new UDP-based protocol invented at Google (Google
again!) that aims to replace TCP and other parts of the traditional HTTP stack to
address many of the inefficiencies mentioned in this chapter. HTTP/2 introduced
some TCP-like concepts (such as packets and flow control), but QUIC takes these con-
cepts to the next level and replaces TCP.

QUIC was created with the following features in mind:19

 Dramatically reduced connection establishment time
 Improved congestion control
 Multiplexing without HOL line blocking
 Forward error correction
 Connection migration

What does QUIC stand for?
QUIC originally was an acronym for Quick UDP Internet Connections, as shown in most
of the Google Chromium documentation when the protocol was introduced.a, b, c

During formalization, the QUIC Working Group decided to drop this acronym,d and the
QUIC specification explicitly notes, “QUIC is a name, not an acronym.”e

Many sources still use the acronym, however. A member of the Working Group amus-
ingly stated, “QUIC isn’t an acronym. You’re expected to shout it ;).”f

a https://www.chromium.org/quic
b https://docs.google.com/document/d/1gY9-YNDNAB1eip-RTPbqphgySwSNS-

DHLq9D5Bty4FSU/
c https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/
d https://github.com/quicwg/base-drafts/pull/1282
e https://tools.ietf.org/html/draft-ietf-quic-transport#section-2
f https://www.ietf.org/mail-archive/web/quic/current/msg03844.html

19 https://www.chromium.org/quic

www.EBooksWorld.ir

304 CHAPTER 9 TCP, QUIC, and HTTP/3
The first three reasons should be obvious from the TCP (and HTTPS) drawbacks dis-
cussed in this chapter. The last two reasons are interesting additions that further
address these problems.

 Forward error correction (FEC) looks to reduce the need for packet retransmission by
including part of a QUIC packet in neighboring packets. The idea is that if only a sin-
gle packet is dropped, it should be possible to reassemble that packet from the suc-
cessfully delivered packets. The process has been compared with “RAID 5 on the
network level.”20 I said earlier that packets can get lost randomly, but not necessarily as
a sign of limits of the connection, and FEC aims to correct this problem. QUIC adds
redundancy and overhead costs, but given the fact that HTTP requires guaranteed
delivery (unlike, say, video stream protocols, in which packets may be dropped with-
out effect), the gains may be worth the small overhead. At this writing, this feature of
QUIC is still experimental21 and won’t be in the initial version of QUIC, as it’s explic-
itly called as out of scope in the QUIC-WG charter.22

 Connection migration aims to reduce connection setup overhead by allowing a
connection to move between networks. Under TCP, the connection is linked to the IP
address and port on either side. Changing the IP address requires establishing a new
TCP connection. This requirement was acceptable when TCP was invented, because
IP addresses were viewed as being unlikely to change during the lifetime of a session.
Now, with multiple networks (wired, wireless, and mobile), this situation can no lon-
ger be taken for granted. QUIC, therefore, allows you to start your session over Wi-Fi
at home and then move to a mobile network without having to restart your session.
You should even be able to use both your Wi-Fi and mobile networks at the same time
for one QUIC connection via a technique known as multipath that allows increased
bandwidth. Again, this multipath feature won’t be available in the first release, but
connection migration should be.

9.2.1 Performance benefits of QUIC

In April 2015, Google published a blog post23 on the performance benefits of QUIC,
including the following:

 75% of connections take advantage of the zero-round-trip connection time.
 Google Search saw a 3% improvement in mean page load time, and reducing

page load time by a second on the slowest networks. These figures may not
seem like much, but remember that Google Search is a massively optimized site
on which any improvement is special.

 YouTube users reported 30% fewer rebuffers when using QUIC.

20 https://ma.ttias.be/googles-quic-protocol-moving-web-tcp-udp/
21 https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk
22 https://datatracker.ietf.org/wg/quic/about/
23 https://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html

www.EBooksWorld.ir

305QUIC
The measurements presumably were compared with HTTP/2 and SPDY. At that time,
50% of Chrome traffic to Google used QUIC; that percentage is likely to have grown
considerably since then. Because QUIC was supported only by Chrome and Google
until recently (see section 9.2.6), its use is limited. W3Tech, for example, says that
slightly more than 1% of sites use QUIC at this writing,24 though other measures say
that this figure translates to 7.8% of traffic volume,25 of which 98% is Google.

9.2.2 QUIC and the internet stack

QUIC replaces more than TCP. Figure 9.18 shows where QUIC fits into the traditional
HTTP technology stack.

As you see in figure 9.18, QUIC replaces most of what TCP traditionally provides (the
setup, reliability, and congestion control parts), all of HTTPS (to improve the setup
delays), and even part of HTTP/2 (the flow control and header compression parts).

 QUIC aims for a one-round-trip connection setup by performing the connection
layer (TCP in the traditional world) and encryption layer (TLS in the traditional
world) at the same time. To do so, it uses many of the concepts and innovations that
have been added to TCP (such as Fast Open) and TLS (such as TLSv1.3).

 At a higher level, QUIC doesn’t replace HTTP/2, but it takes over some of the
Transport layer pieces, leaving a lighter HTTP/2 implementation running on top. As
with the move from HTTP/1.1 to HTTP/2, the core syntax of HTTP that most higher-
level developers need to care about stays the same under QUIC, and the concepts
introduced in HTTP/2 (such as multiplexed streams, header compression, and server
push) still exist in much the same way; QUIC takes care of some lower-level details.
The move from HTTP/1.1 to HTTP/2 contains bigger changes for developers, but all
the concepts remain the same under QUIC, so everything you’ve read and learned in
this book isn’t wasted! The protocol is still a multiplexed, stream-based binary proto-
col, and some of the specifics used to achieve this change at a lower level now fall
under QUIC rather than HTTP/2. To reflect the changes from HTTP/2, to differentiate

24 https://w3techs.com/technologies/details/ce-quic/all/all
25 https://blog.apnic.net/2018/05/15/how-much-of-the-internet-is-using-quic/

HTTP

HTTPS

TCP

HTTP/3

QUIC

UDP

IP Figure 9.18 Where QUIC fits into
the HTTP technology stack

www.EBooksWorld.ir

306 CHAPTER 9 TCP, QUIC, and HTTP/3
it from QUIC itself, and to show that this is the best version of HTTP, it has been
agreed HTTP over QUIC will be called HTTP/3 (discussed more in section 10.3 of
chapter 10).26

9.2.3 What UDP is and why QUIC is built on it

QUIC is based on the User Datagram Protocol (UPD), which is a light protocol compared
with TCP, but is similarly built on top of Internet Protocol (IP). TCP implements reli-
ability in IP for the network connection, including retransmission, congestion, and
flow control. These features normally are good and necessary, but in HTTP/2, they
introduce inefficiencies. These features aren’t necessarily wanted at the network level
under HTTP/2; therefore, they produce an unnecessary TCP HOL blocking issue.

 UDP is basic compared with TCP. It has the concept of ports, similar to that of
TCP, so several UDP-based services can run on the same computer. It also has an
optional checksum so that the integrity of UDP packets can be checked. Except for
those two features, there’s not much to the protocol. Reliability, ordering, and conges-
tion control don’t exist, and if you want them, they have to be built by the application.
If a UDP packet is lost, it won’t automatically be resent. If a UDP packet arrives out of
order, it’s still seen by the higher-level application. UDP was originally used for appli-
cations that didn’t need delivery guarantees (such as video, in which some frames
could be dropped without too much loss in service). UDP is also perfect for a multi-
plexed protocol such as HTTP/2 if that higher-level protocol wants to implement bet-
ter solutions to these problems than those available in TCP.

WHY NOT IMPROVE TCP?
The most obvious question is why not improve TCP? TCP is still innovating, and the
problems could be engineered out by further improvements. The main drawback is
the speed of implementation of any such improvements. TCP is such a core protocol
that it’s nearly always baked into operating systems, and although some changes can be
made to configure it or some improvements can be made on the server side, operating-
system upgrades are required to benefit from most TCP improvements. The problem
isn’t that operating systems can’t innovate; it’s the length of time required for those
innovations to be widely deployed. TCP Fast Open is a prime example; it offers huge
benefits, but isn’t used yet by the vast majority of internet browsers or servers.

 This slowness to innovate is exacerbated by the internet infrastructure, which
makes certain assumptions about protocols such as TCP and reacts badly when those
assumptions are broken. This problem is known as protocol ossification, whereby inno-
vation is stifled because of these assumptions. By moving away from TCP, QUIC hopes
to have greater freedom and fewer constraints.

26 https://lists.w3.org/Archives/Public/ietf-http-wg/2018OctDec/0065.html

www.EBooksWorld.ir

307QUIC
WHY NOT USE SCTP?
Instead of building a new transport protocol on top of UDP or waiting for innovations
in TCP to become more widespread, QUIC could have used Stream Control Transmis-
sion Protocol (SCTP).27 This protocol shares many characteristics with QUIC, such as
stream-based reliable messaging, but it already exists and has been an internet stan-
dard since 2007.

 Unfortunately, existing as a standard isn’t enough to ensure use, and adoption of
SCTP is low, primarily because TCP has been good enough until now. Therefore, mov-
ing to SCTP is likely to take as long as upgrading TCP. Even after such a move, innova-
tion in the protocol is likely to stall. QUIC aims to improve stream-level congestion
control and other issues that affect the internet, such as HTTPS handshake, limited
packet loss, and connection migration.

WHY NOT USE IP DIRECTLY?
Another option that the QUIC designers could have used was to build on IP, because
the requirements of the Transport layer are light. IP is nothing but a source and desti-
nation IP address; everything else can be built on top of it.

 But using IP directly has the same problems as using SCTP. The protocol would
have to be implemented at operating-system level, because few applications get direct
access to IP packets. Also, QUIC should be directed at a particular application, so it
needs ports, which UDP has. Many clients can open separate HTTP connections over
QUIC, such as to run Chrome and Firefox at the same time, and perhaps also an unre-
lated program that uses HTTP. Without this feature, some QUIC-controlling applica-
tion would be required to read all QUIC packets and route them to each application
as appropriate.

ADVANTAGES OF UDP
UDP is a basic protocol that’s also implemented in the kernel. Anything built on top of
it needs to be built in the Application layer, known as the user space. Being outside the
kernel allows quick innovation by deploying the application on either side. Google
uses QUIC in all its services when you use Chrome, so opening developer tools and
navigating to a Google site shows you the current version of QUIC in use (version 43,
at this writing), as shown in figure 9.19.

 In the few short years that QUIC has been around, Google has created 43 versions
of it.28 As it did when deploying SPDY, Google was able to deploy changes to the main
client used to browse the web (Chrome) and some of the most popular servers easily
and then innovate without users noticing. As of 2017, an estimated 7% of the internet
uses QUIC,29 though this figure is likely to represent mostly Google sites.

27 https://tools.ietf.org/html/rfc4960
28 The version history is detailed in the source code: https://chromium.googlesource.com/chromium/src/+/

master/net/third_party/quic/core/quic_versions.h.
29 https://ai.google/research/pubs/pub46403

www.EBooksWorld.ir

308 CHAPTER 9 TCP, QUIC, and HTTP/3
Rolling out QUIC so quickly was possible only by using UDP rather than trying to
force adoption or changes in existing protocols, which would take time and likely
would be blocked by much of the current infrastructure of the internet. Using the
light and limited UDP allowed Google to build and innovate the protocol as it saw fit,
because it could control both sides of the connection.

 UDP isn’t without problems. It’s a common protocol, but not as common as TCP.
DNS works over UDP, for example, because it’s a simple protocol that doesn’t need
the complications or slowness of TCP (though there are moves to allow DNS to work
over HTTPS, as discussed in chapter 10). Other applications (such as real-time video
streaming and online video games) also use UDP, so it’s often supported by network
infrastructure. TCP is far more common, however, and UDP is often blocked by fire-
walls and middleware traffic by default. In this case, Chrome gracefully falls back to
HTTP/2 over TCP. This concern was a large one in the beginning, but experiments by
Google showed that 93% of UDP traffic made it through, and that percentage has
improved over time. Although some infrastructure blocks UDP traffic for HTTP
(where port 443 is also used), the vast majority doesn’t. UDP is also easy to enable if it
becomes common (as it is for Google services, at least).

 The other problem with UDP is that user space isn’t always as efficient as the highly
optimized kernel space. Early measures of QUIC show that servers use up to 3.5 times
the CPU of equivalent TLS/TCP-based servers.30 Although that use has been opti-
mized to be only twice as much, the result still shows that UPD is a more expensive
protocol and is likely to remain that way while it lives outside the kernel.

30 https://dl.acm.org/citation.cfm?id=3098842

Figure 9.19 Viewing the deployed version of QUIC on www.google.com

www.EBooksWorld.ir

309QUIC
9.2.4 Standardizing QUIC

QUIC started as a Google protocol and was announced publicly in June 2013.31 Goo-
gle evolved the protocol over the next two years, and in June 2015, the company sub-
mitted it to the Internet Engineering Task Force (IETF) as a proposed standard.32

This submission occurred after Google’s last standard (SPDY) was formally adopted as
HTTP/2, so the timing was good; many people associated with that standardization
were free to work on QUIC. A few months later, the IETF QUIC Working Group was
established to work on standardizing the protocol.33

THE TWO QUICS: GQUIC AND IQUIC
Like SPDY, QUIC evolved under Google’s stewardship while the standardization pro-
cess worked through it. This evolution has led to two implementations at this writing:
gQUIC (for Google QUIC) and iQUIC (for IETF QUIC). Google continues to run its
production environment in gQUIC and continues to evolve and improve this protocol
as it sees fit, without the need to get formal approval for each change. Like SPDY,
gQUIC is expected to die out when iQUIC is formally standardized (expected to hap-
pen in early 2019), but for now, gQUIC is the only usable version of the protocol in
production environments.

 Only Chrome and Chromium-based browsers such as Opera implement QUIC
(where it uses gQUIC), and gQUIC undergoes frequent change as the Google team

Will QUIC always use UDP?
In their original FAQ released when it launched QUIC,a Google stated, “We are hopeful
that QUIC features will migrate into TCP and TLS if they prove effective.”

So perhaps UDP will be used for experimentation, and TCP will evolve with it at a
slower pace. Will QUIC revert to TCP at some point? That question is difficult to
answer, but my opinion is it’ll be difficult to give up the freedom to evolve. The inter-
net seems to be in a period of innovation at the transport layer, and it seems unlikely
that protocol developers will reach a point where they’re happy to stop innovating and
settle down to a fixed, difficult-to-upgrade protocol.

Also, QUIC is implementing fundamental changes compared with TCP, and these
changes won’t be easily adopted into TCP, even if the drive to do so existed.

More likely, HTTP will continue to be available over both TCP (HTTP/2) and UDP
(QUIC and HTTP/3), but the TCP implementation will lag UDP in terms of features
and performance.

a https://docs.google.com/document/d/1lmL9EF6qKrk7gbazY8bIdvq3Pno2Xj_l_
YShP40GLQE/

31 https://blog.chromium.org/2013/06/experimenting-with-quic.html
32 https://datatracker.ietf.org/doc/draft-tsvwg-quic-protocol/00/
33 https://datatracker.ietf.org/wg/quic/about/

www.EBooksWorld.ir

310 CHAPTER 9 TCP, QUIC, and HTTP/3
changes it.34 On the server side, all the Google services support gQUIC. Other web-
server implementations at this writing include Caddy35 and LiteSpeed,36 but because
they’re based on the evolving, nonstandardized gQUIC, they’re subject to keeping up
with Google changes and may fall behind and stop working with Chrome.37

DIFFERENCES BETWEEN GQUIC AND IQUIC
This topic is evolving as each protocol advances, but at this writing, one of the main
differences between gQUIC and iQUIC is in the encryption layer. Google used a cus-
tom cryptography design, whereas iQUIC is using TLSv1.3.38 This choice was made
only because TLSv1.3 wasn’t available when QUIC was invented. Google stated that it
will replace its custom cryptography design with TLSv1.3 when it’s formally approved,39

which has now happened, so gQUIC and iQUIC will likely converge. A few other
changes exist between the two protocols, which aren’t compatible, but at a conceptual
level, except for the use of TLSv1.3, they’re similar.

THE QUIC STANDARDS

At this writing, there’s no one QUIC standard, but six! Like HTTP/2, which is made
up of two standards (HTTP/2 and HPACK), QUIC has separate standards for its
main parts:

 QUIC Invariants40—The parts of QUIC, which shouldn’t change in future versions
 QUIC Transport41—The core transport protocol
 QUIC Recovery42—Loss detection and congestion control
 QUIC TLS43—How TLS encryption is used in QUIC
 HTTP/344—Heavily based on HTTP/2 with some changes
 QUIC QPACK45—Header compression for HTTP in QUIC

One more experimental document has been proposed: QUIC Spinbit46 would add a
single bit to be used for basic monitoring of encrypted QUIC connections. Two addi-
tional informational documents on using QUIC are available, for application develop-
ers47 and for managing QUIC on the network.48

34 See the Recent Changes by Version section of https://docs.google.com/document/d/
1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U/.

35 https://github.com/mholt/caddy/wiki/QUIC
36 https://blog.litespeedtech.com/2017/07/11/litespeed-announces-quic-support/
37 https://github.com/mholt/caddy/issues/2194
38 https://tools.ietf.org/html/rfc8446
39 https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g
40 https://tools.ietf.org/html/draft-ietf-quic-invariants
41 https://tools.ietf.org/html/draft-ietf-quic-transport
42 https://tools.ietf.org/html/draft-ietf-quic-recovery
43 https://tools.ietf.org/html/draft-ietf-quic-tls
44 https://tools.ietf.org/html/draft-ietf-quic-http
45 https://tools.ietf.org/html/draft-ietf-quic-qpack
46 https://tools.ietf.org/html/draft-ietf-quic-spin-exp
47 https://tools.ietf.org/html/draft-ietf-quic-applicability
48 https://tools.ietf.org/html/draft-ietf-quic-manageability

www.EBooksWorld.ir

311QUIC
 The IEFT Working Group is working on these documents at this writing. Because
the standard is still being worked on, these specifications (and even the number of
them) are subject to change.

 One important point to note is that QUIC is intended to be a general-purpose pro-
tocol; HTTP is only one use of it. Although HTTP currently is the main use case for
QUIC and what the working group is concentrating on at present, the protocol is
being designed with potential other use cases in mind.

9.2.5 Differences between HTTP/2 and QUIC

QUIC builds on HTTP/2, so many of the core concepts you’ve learned in this book
will stand you in good stead when QUIC becomes a standard and use grows beyond
Google servers and browsers. Some key differences exist, however, including the
underlying UDP protocol. The following sections discuss other differences.

QUIC AND HTTPS
HTTPS is built into QUIC, and unlike HTTP/2, it doesn’t make QUIC available for
unencrypted HTTP connections. This choice was made for the same practical and
ideological reasons as HTTP/2 being available only over HTTPS for web browsing
(see chapter 3).

 On the practical side, encrypting the data ensures that parties that are unfamiliar
with the protocol won’t unwittingly interfere with or make assumptions about the proto-
col. Although this situation may not seem to be a problem now (no infrastructure
should be expecting HTTP traffic over UDP), it has already caused problems for QUIC,
with middlebox vendors making assumptions that no longer held true as QUIC
evolved.49 As the protocol evolves, it will become even more important to prevent the
ossification experienced under TCP, with assumptions being made by middleboxes
inspecting TCP traffic. QUIC aims to encrypt as much as possible. A proposal to allow a
single unencrypted bit to allow middleboxes to monitor traffic50 was met with much
consternation,51 and at this writing, no firm conclusion has been reached (though the
proposal is included as a working draft, as mentioned earlier in this chapter).

ESTABLISHING A QUIC CONNECTION

HTTP/2 established several methods to negotiate the HTTP/2 protocol, including
ALPN, the Upgrade header, prior knowledge, and the Alt-Svc HTTP header or HTTP/2
frame. All these methods assume the use of TCP initially, however. Because QUIC is
based on UDP, a web browser connecting to web servers has to start a connection on
TCP and upgrade to QUIC.52 This process introduces a dependency on HTTP over TCP
and therefore negates one of the key benefits of QUIC (dramatically reduced connec-
tion establishment time). Alternatives include trying both TCP and UDP or accepting

49 https://www.youtube.com/watch?v=BazWPeUGS8M&feature=youtu.be&t=2216
50 https://datatracker.ietf.org/doc/draft-ietf-quic-spin-exp/
51 https://news.ycombinator.com/item?id=16695816
52 https://tools.ietf.org/html/draft-ietf-quic-http-12#section-2.1

www.EBooksWorld.ir

312 CHAPTER 9 TCP, QUIC, and HTTP/3
the initial performance hit, perhaps remembering next time that the server uses QUIC.
Regardless, the ALPN and Alt-Svc identifier h3 will be registered for HTTP/3 (note: this
was originally hq for HTTP over QUIC before the HTTP/3 name was agreed upon).
This identifier should be used only for the official iQUIC when it becomes standardized;
current gQUIC implementations shouldn’t use this reserved value.53

QPACK
HPACK, which is used for header compression, depends on the guaranteed nature of
TCP to ensure that HTTP header frames are received in order, so that the dynamic
table can be maintained correctly on both sides, as shown in figure 9.20.

53 https://github.com/w3c/navigation-timing/issues/71

Request 1

Header

:method

:authority

:path

user-agent

Header
value

GET

www.example.com

/

Chrome-69

Header

Indexed 2

Literal index
24 with
indexing

Indexed 4

Literal index
56 with
indexing

Header
value

www.example.com

Chrome-69

Header
value

Chrome-62

www.example.com

Index
value

62

63

Header
name

user-agent

:authority

HPACK static table

Header
value

GET

POST

/

...

...

Index
value

1

2

3

4

…

58

…

61

Header
name

:authority

:method

:method

:path

...

user-agent

...

www-authenticate

Request 2

Header

:method

:authority

:path

user-agent

Header
value

GET

www.example.com

/styles.css

Chrome-69

Header

Indexed 2

Indexed 63

Literal index
4 without
indexing

Indexed 62

Header
value

/styles.css

Header
value

Chrome-62

www.example.com

Index
value

62

63

Header
name

user-agent

:authority

Dynamic table after request 1Compressed request 1

Compressed request 2 Dynamic table after request 2

Figure 9.20 HPACK compression example

www.EBooksWorld.ir

313QUIC
Request 2 uses header indices defined in request 1 (62 and 63). If part of request 1 is
lost, so that the header can’t be read in full, the state of the dynamic table can’t be
known, so request 2 can’t be processed until the missing packets are received, as, oth-
erwise, the incorrect references could be used. QUIC aims to remove the need for
guaranteed in-order packet delivery at connection level to allow streams to be pro-
cessed independently, but HPACK still requires this guarantee (at least for header
frames), reintroducing HOL blocking, which is the very problem it’s trying to solve.

 HTTP/3, therefore, needed a variation on HPACK, which was called QPACK (for
obvious reasons). This variation is complex and is still being defined at this writing,
but it appears to introduce the concept of acknowledged headers. If a sender needs to
use an unacknowledged header, it can use it (and risk being blocked on that stream)
or can send the header with literals (preventing blocking at the cost of less efficient
compression for that header value).

 QPACK introduces a few other changes. A bit defines whether the static or
dynamic table is used (rather than explicitly counting from 61, as per HPACK). Also,
headers can be duplicated more easily and efficiently to allow key headers (such as
:authority and user-agent) to remain near the top of the dynamic table and be
transferred in fewer bits.

OTHER DIFFERENCES

There are a few other changes in the frames and streams used by QUIC.54 Some of
the Transport layer protocols’ frames are removed from the HTTP/3 layer (such as
PING and WINDOW_UPDATE frames) and moved to the core QUIC-Transport layer,
which isn’t HTTP-specific (which makes sense as these frames are likely to be used
for non-HTTP protocols over QUIC). Also, the CONTINUATION frame, which was little
used in HTTP/2, has been dropped from HTTP/3. There are also some frame for-
matting changes, but because the protocol is still evolving at this writing, I won’t discuss
them here. Conceptually, nearly all of HTTP/2 remains in one format or another, and
readers who have made it this far will have a good grounding in QUIC and HTTP/3
when they’re formally standardized and become available for client and server
implementations.

9.2.6 QUIC tools

Because QUIC hasn’t yet been standardized, only gQUIC is available in the wild, though
many developers are working on iQUIC implementations.55 Often, the best tool to use
to see QUIC is Chrome when it’s connected to a Google server. A net-export page sim-
ilar to HTTP/2 (see section 4.3.1) is available. When you click a QUIC session, you see
a screen like figure 9.21.

54 https://github.com/quicwg/wg-materials/blob/master/interim-18-06/HTTP.pdf
55 https://github.com/quicwg/base-drafts/wiki/Implementations

www.EBooksWorld.ir

314 CHAPTER 9 TCP, QUIC, and HTTP/3
Other tools, such as Wireshark, have some support for gQUIC, as shown in figure 9.22.
 Because gQUIC isn’t standardized and still being changed by Google, it needs to

keep up with any changes Google makes. In my experience, you may find malformed
packets or encrypted payloads that can’t be read by non-Google tools for this reason.

9.2.7 QUIC implementations

The story is similar if you want to implement a QUIC server. Caddy had an implemen-
tation of gQUIC based on the QUIC implementation in the Go programming lan-
guage, but that implementation has been turned off as of this writing in the current
release version.56 It’s available through compiling Caddy from source code and
should make it to the next release. The Go version57 is usually kept up-to-date, so if
you download the latest version, Chrome should be able to speak gQUIC to it. Simi-
larly, LiteSpeed has had a QUIC implementation since June 201758 and has kept its
implementation up-to-date, but the open source version doesn’t support it yet, so it’s
not a great tool for experimenting with QUIC unless you’re already using LiteSpeed.
LiteSpeed also open sourced a QUIC client59 that could be useful. More recently,

56 https://github.com/mholt/caddy/issues/2190
57 https://github.com/lucas-clemente/quic-go
58 https://blog.litespeedtech.com/2017/06/26/litespeed-is-powered-by-quic/
59 https://github.com/litespeedtech/lsquic-client

Figure 9.21 Viewing QUIC data from Chrome

www.EBooksWorld.ir

315QUIC
Akamai announced gQUIC support on its content delivery network platform in May
2018,60 and in June 2018, Google announced gQUIC support for its Google Cloud
Platform load balancer,61 so those who use that platform get gQUIC straight from the
horse’s mouth, so to speak.

9.2.8 Should you use QUIC?

Unlike SPDY, gQUIC hasn’t been taken up by much of the wider community, which
seems unlikely to happen now that iQUIC is being standardized. At this point, it’s dif-
ficult to recommend QUIC except when using the Google cloud platform. For anyone
who wants to experiment with QUIC, Go probably is the best option, but it probably
shouldn’t be used in production for browsers. The browser implementation in Chrome

60 https://community.akamai.com/customers/s/article/FAQ-QUIC-Native-Platform-Support-for-Media-Delivery-
Products?language=en_US

61 https://cloudplatform.googleblog.com/2018/06/Introducing-QUIC-support-for-HTTPS-load-balancing.html

Figure 9.22 gQUIC in Wireshark

www.EBooksWorld.ir

316 CHAPTER 9 TCP, QUIC, and HTTP/3
is liable to change quite a bit, and Chrome switches off older versions of gQUIC in
browsers quickly after rolling out new versions.

 After iQUIC standardizes, I expect more implementations to crop up. There are
fewer production implementations at this stage of standardization compared to SPDY.
I suspect that the roll-out of QUIC and HTTP/3 will take longer than the roll-out of
HTTP/2, as it’s a much bigger change and because it uses UDP rather than TCP. QUIC
is a protocol to watch in the future, and a few years after standardization, I expect
developers to be where they are now with HTTP/2, with use rapidly increasing, even-
tually becoming the majority player on the web landscape. QUIC adoption for a lot of
web traffic may happen quickly, with a few players (such as Google) and CDNs serving
the majority of traffic, but the long tail of smaller companies and servers will likely
remain on the older TCP and HTTP/2 (or even HTTP/1.1) stack for some time.

Summary
 The current HTTP network stack has several inefficiencies in the TCP and

HTTPS layers.
 Because of TCP connection establishment and cautious congestion control, it

takes time for a TCP connection to reach maximum capacity, and HTTPS hand-
shaking adds more time.

 Innovations that resolve these inefficiencies exist, but on the TCP side in partic-
ular, they’re slow to roll out.

 QUIC is a new protocol built on UDP.
 By using UDP, QUIC aims to innovate much faster than TCP can.
 QUIC builds on HTTP/2 and uses many of the same concepts with additional

innovations.
 QUIC isn’t intended for HTTP only; it may also be used for other protocols in

the future.
 HTTP over QUIC will be called HTTP/3.
 QUIC is available in two versions: Google Quic (gQUIC), which is available in a

limited fashion but isn’t standardized, and IETF QUIC (iQUIC), which is cur-
rently being standardized.

 gQUIC is expected to be replaced by iQUIC when it’s approved, much as SPDY
replaced HTTP/2.

www.EBooksWorld.ir

Where HTTP
goes from here
The HTTP/2 specification was formally approved in May 2015, nearly 20 years after
HTTP/1.0 was introduced and quickly replaced by HTTP/1.1. During this time,
the internet has become an integral part of everyone’s life, and the fact that
HTTP/1.1 has lasted so well speaks volumes about the protocol. For a long time,
however, the protocol stalled, and attempts to move it forward failed,1 were limited
to more accurately documenting HTTP/1.1, or added limited new functionality
through HTTP headers.

 Now that HTTP/2 is here and rapidly being rolled out across the internet,2

where does HTTP go from here? How has HTTP/2 fared in the real world? Are the
major problems with HTTP now solved? Will it be 20 years before the next major

This chapter covers
 Controversies of HTTP/2

 HTTP/2 use since launch

 Extending HTTP beyond HTTP/2

 HTTP as a more generic transport layer

1 https://www.w3.org/Protocols/HTTP-NG/Activity.html
2 https://w3techs.com/technologies/details/ce-http2/all/all
317

www.EBooksWorld.ir

318 CHAPTER 10 Where HTTP goes from here
innovation of the protocol, or is a new phase of innovation in the internet leading to a
much greater rate of change? This chapter attempts to answer these questions and
make some educated guesses about how HTTP will evolve.

10.1 Controversies of HTTP/2 and what it didn’t fix
HTTP/2 wasn’t without its controversies, and more than a few people expressed con-
cerns throughout the standardization process, especially as it approached its conclu-
sion and ratification. Many arguments were made, some more vocal than others.3

Arguments were made that SPDY shouldn’t be used as the basis of HTTP/2 and that
the privacy issues with HTTP weren’t resolved. Also, arguments were made for and
against enforcing encryption in the protocol. I discuss these, and numerous other,
points of controversy in the following sections.

 Many of the criticisms were discussed on the HTTP Working Group (HTTP-WG)
mailing list of the Internet Engineering Task Force,4 as well as by the wider internet
community on sites such as HackerNews,5, 6, 7 SlashDot,8 and The Register.9 Many
counterarguments were made.

 Now that the protocol has had some time in the real world and the future of HTTP is
being discussed, it’s worth reexamining these arguments to see which are still true and
what developers can learn from them while considering the next iteration of HTTP.

10.1.1 Arguments against SPDY

HTTP/2 was heavily based on the SPDY protocol, proved in the real world by Google.
SPDY was a practical upgrade that could be implemented and deployed on the inter-
net. The success of SPDY led the IETF to look at upgrading HTTP,10 and although the
IETF didn’t commit to SPDY alone, that protocol was a likely basis for HTTP/2. Many
people complained that due consideration wasn’t given to what HTTP/2 should be
and instead concentrated only on how SPDY could become that new version.

WAS SPDY THE ONLY DE-FACTO OPTION FOR HTTP/2?
The HTTP Working Group’s charter11 stated the following with regard to HTTP/2:

There is emerging implementation experience and interest in a protocol that retains the
semantics of HTTP without the legacy of HTTP/1.x message framing and syntax, which
have been identified as hampering performance and encouraging misuse of the
underlying transport.

3 https://lists.w3.org/Archives/Public/ietf-http-wg/2015JanMar/0043.html
4 https://lists.w3.org/Archives/Public/ietf-http-wg/
5 https://news.ycombinator.com/item?id=8850059
6 https://news.ycombinator.com/item?id=9022470
7 https://news.ycombinator.com/item?id=9066379
8 https://tech.slashdot.org/story/15/01/09/0118226/http2---the-ietf-is-phoning-it-in
9 https://www.theregister.co.uk/2015/02/18/http2_specification_approved/
10 https://lists.w3.org/Archives/Public/ietf-http-wg/2012JanMar/0098.html
11 https://datatracker.ietf.org/wg/httpbis/charter/

www.EBooksWorld.ir

319Controversies of HTTP/2 and what it didn’t fix
The Working Group will produce a specification of a new expression of HTTP's current
semantics in ordered, bi-directional streams. As with HTTP/1.x, the primary target
transport is TCP, but it should be possible to use other transports.

Work will begin using draft-mbelshe-httpbis-spdy-00 as a starting point.

That statement left little doubt that SPDY was to form the basis of HTTP/2. Although
many people were impressed by SPDY’s success, and few doubted that it was a good
improvement over HTTP/1, many people felt that the IETF should have taken a
wider look at how HTTP could be improved overall rather than rubberstamping this
design. An arbitrary two-year timeline was proposed,12 and some people felt that meet-
ing such a timeline enforced SPDY as the only viable option.

 Two other proposals were initially considered: Microsoft’s HTTP Speed and Mobil-
ity proposal13 (based on SPDY and WebSockets14) and the Network Friendly HTTP
Upgrade.15 Both proposals were similar in many ways to SPDY (hardly surprising,
given the parameters under which HTTP/2 was defined) and concentrated on adding
a binary framing layer and HTTP header improvements.

 SPDY proved to work in the wild, however, and not only at Google. Many common
web servers and web browsers supported SPDY, and many sites had already moved to
SPDY or were in the process of moving to it. Facebook presented an early analysis of
all three proposals16 that endorsed SPDY and rejected the other two alternatives. It
made sense for SPDY to form the basis, though it was changed and improved by the
HTTP/2 Working Group during the standardization process. HTTP/2 isn’t SPDY and
isn’t wire-compatible with it, though it shares a lot of ground.

 The main concern was that an opportunity had been missed to go beyond SPDY.
SPDY was designed to address one major problem with HTTP/1—performance—and
though it performed that task well, it didn’t address other concerns about HTTP, such
as cookies. Given that previous upgrades such as HTTP-NG had failed, in large part
because the scope grew too large and there were no practical ways of introducing it
into the wild, moving forward with the one practical implementation was hardly a bad
thing. SPDY was the original impetus for upgrading HTTP, and if the next version of
the protocol hadn’t been heavily based on it, we’d likely still be on HTTP/1.1 today.

SPDY AND GOOGLE

Another area of concern was that SPDY was primarily the result of one company: Goo-
gle. Whereas other websites small and large also used SPDY (including Yahoo!, Twit-
ter, and Facebook), it was owned and defined by Google. Some people expressed
concern that Google, already a powerful presence on the web, was pushing its own

12 https://lists.w3.org/Archives/Public/ietf-http-wg/2012OctDec/0003.html
13 https://tools.ietf.org/html/draft-montenegro-httpbis-speed-mobility
14 https://blogs.msdn.microsoft.com/interoperability/2012/03/25/speed-and-mobility-an-approach-for-http-

2-0-to-make-mobile-apps-and-the-web-faster/
15 https://tools.ietf.org/html/draft-tarreau-httpbis-network-friendly
16 https://lists.w3.org/Archives/Public/ietf-http-wg/2012JulSep/0251.html

www.EBooksWorld.ir

320 CHAPTER 10 Where HTTP goes from here
protocol, and, therefore, its agenda on the larger web community. Some mistrust of
Google is due to its dominance on the internet, as there’s mistrust of all companies
that have a large presence in their fields. This situation is especially true for Google,
given that it makes much of its money through web advertising, which has privacy and
tracking implications. HTTP/2 was notable for not trying to address the privacy prob-
lems that many people saw as a larger problem with the protocol. I don’t believe that
ignoring the privacy issues of HTTP was nefarious, however, and understand that Goo-
gle saw performance as the priority to solve.

 This argument, however, missed the key value of standardizing SPDY into HTTP/2:
removing single-company dependency while allowing the web community at large and
the primary internet standards community (IEFT) to review and improve the proto-
col. Google continues to be one of the main innovators on the internet and has cre-
ated many other advances in web standards, some of which (such as QUIC; see
chapter 9) are discussed in this book. Ignoring Google’s innovations or trying to work
around them seems churlish if those innovations are beneficial.

10.1.2 Privacy issues and state in HTTP

Another controversy for HTTP/2 was privacy, especially regarding HTTP cookies.
Cookies are often cited as one of the biggest problems with HTTP, due to their secu-
rity and privacy implications. HTTP was designed to be a stateless protocol, and in
most ways it still is, even under HTTP/2. Any request you make to a server is, in the-
ory, unrelated to any previous or future request.

 The reality, however, is that modern applications and websites need state. When
you add something to your basket while shopping Amazon, you don’t want to have to
keep adding it. When you log in to internet banking, you don’t want to have to log in
again for every subsequent action (at least, for a short period). Therefore, because
HTTP offers no way to associate a request with other requests, there was a need to add
state to the protocol, and because connections weren’t always persisted or reused, it
couldn’t be done at a connection level.

 Various methods can be used to tackle this state dilemma in HTTP. URLs could be
added with session ID parameters (such as http://www.example.com?SESSIONID=
12345), but these parameters are ugly, confusing, and full of security risks due to shar-
ing or bookmarking URLs with session IDs. HTTP cookies17 were conceived as the
answer. Cookies are small pieces of information stored on the browser, which are sent
by the browser with every subsequent request. With cookies, it’s possible to have a ses-
sion identifier or other preference or setting that works with HTTP. HTTP cookies have
had a bad name recently, but HTTP cookies are neither good nor bad, and the alter-
natives (such as URL parameters) often introduce bigger problems.

 There are many reasons why HTTP cookies are seen as being bad, including the
following:

17 https://tools.ietf.org/html/rfc6265

www.EBooksWorld.ir

321Controversies of HTTP/2 and what it didn’t fix
 They allow tracking for advertising purposes (or worse!).
 They’re insecure by default.
 They’re sent with every request.

COOKIES AND THIRD-PARTY TRACKING

Cookies can be used not only by the site being loaded, but also by any resource
loaded by a web browser for that site. So-called third-party cookies are possible when a
website (such as www.example.com) loads content from an advertising site (such as
adwords.google.com) and sets a cookie that can be used on other websites (such
as www.example2.com). This cookie also references the third-party advertising website
(adwords.google.com), as shown in figure 10.1.

www.example.com

1. Page request

2. Page including

adwords.google.com

content

3. Ad content request

adwords.google.com

4. Ad plus cookie

www.example2.com

5. Page request

6. Page including

adwords.google.com

content

7. Ad content request

(this time with cookie)

adwords.google.com
8. Customised ad

based on other

sites visited

(e.g. www.example.com)

Figure 10.1 How third-party cookies allow tracking across sites

www.EBooksWorld.ir

322 CHAPTER 10 Where HTTP goes from here
A relevant advertisement can be displayed on the subsequent website based on the
user’s browsing history, but often without that user’s knowledge. As a result, the Euro-
pean Union (EU) implemented the so-called cookie law, under which websites had to
inform users that they were using cookies, as shown in figure 10.2.

Web users, particularly in the EU, had to click to hide a rather pointless “This website
is using cookies” message on every website they visited, because most websites were
using cookies. An even stricter requirement in the General Data Protection Regula-
tions (GDPR) came into effect in 2018 and has led to even bigger onscreen warnings
about cookies. Many users see this warning as another pop-up window to click
through to get to the content they want, often without realizing that the GDPR is pro-
consumer legislation that aims to give back to consumers control of their data.

HTTP COOKIES AND SECURITY

Another problem is that HTTP cookies are insecure by default. Although options
were added to make them more secure (such as Secure18 and HttpOnly19 flags), these
options require programmers to set them explicitly when creating cookies. Even then,
programmers can’t always prevent those cookies from being overwritten by insecure
cookies, so this solution is only a partial one. Studies at the time of this writing show
that approximately 8% of cookies are set with these attributes,20 showing that the vast
majority of cookies use the insecure defaults.

 This situation is bad because cookies that store session identifiers offer full access
to an account, so getting a hold of a cookie is almost the same as having the username
and password. For this reason, you’d think that cookies would be restricted (and they
can be made restricted), but by default, they aren’t.

 Cookies for a site are sent on both HTTP and HTTPS requests, unless the Secure
attribute is used when the cookie is created. Because of the performance cost of

18 https://tools.ietf.org/html/rfc6265#section-5.2.5
19 https://tools.ietf.org/html/rfc6265#section-5.2.6
20 https://github.com/mikewest/http-state-tokens#a-problem

Figure 10.2 Cookie banner on the UK Government website

www.EBooksWorld.ir

323Controversies of HTTP/2 and what it didn’t fix
HTTPS (which for the most part isn’t a problem anymore), only some login or check-
out pages commonly used HTTPS, with the rest of the site available only in HTTP, but
this arrangement exposes cookies that weren’t explicitly set with the Secure attribute
to being sent (and potentially read) over unsecured HTTP traffic. Similarly, any piece
of JavaScript loaded on a page (such as the handy script that makes your page look
good, adds a commenting system, or puts a cool widget on your page) has access to
the cookies unless the HttpOnly flag is set when the cookie is created.

 Even if you use all these protections, it’s possible for the Secure, HttpOnly cookie
to be overwritten by a malicious user who can fake an HTTP request. Cookie pre-
fixes21 have been proposed to prevent this problem by requiring, for example, a cookie
with a name starting with __Secure to have the Secure attribute. Again, this solution
requires buy-in from website owners (to use) and browsers (to enforce).

HTTP COOKIES ARE SENT WITH EVERY REQUEST

Cookies are sent with every subsequent request—a blessing in terms of simplicity, but
a curse in many other ways. Although requests to your internet banking service to
check your balance or move funds should require session information to be sent,
requests for the logo or other static resources shouldn’t need this information, yet the
browser happily sends them anyway. This situation has security implications, especially
for cross-site request forgery attacks,22 with the risk of leaking information by sending
unnecessary data with each request. A SameSite attribute23 has been proposed to pre-
vent cross-site requests that include cookies, but this attribute isn’t a default and
requires understanding to implement.

 Other types of privacy tracking methods are often named cookies even if they
aren’t HTTP cookies. Flash cookies, which are implemented in Flash instead of HTTP,
or super cookies, use other fingerprinting methods24 to track users and can also be used
to implement zombie cookies, which return even after cookies are cleared. All these vari-
ations further damage the reputation of cookies, especially as they circumvent any
controls provided by the browser that allow users to manage cookies.

SHOULD HTTP/2 HAVE ADDRESSED THE PROBLEMS WITH HTTP COOKIES?
Although HTTP cookies are viewed as being negative because of their privacy and
security implications, no viable alternative has been proposed. Cookies aren’t inher-
ently evil or dangerous; only the use of them can be. Alternatives that allow the addi-
tion of state to HTTP such as URL parameters and local storage25 have similar flaws
and give users less control, and they haven’t been given the privacy and security over-
sight that cookies have.

21 https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis#section-4.1.3
22 https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
23 https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis#section-5.3.7
24 https://nakedsecurity.sophos.com/2018/03/20/apple-burns-the-hsts-super-cookie/
25 https://dev.to/rdegges/please-stop-using-local-storage-1i04

www.EBooksWorld.ir

324 CHAPTER 10 Where HTTP goes from here
 Some people say that HTTP/2 should have addressed this problem with state and
implemented a more secure, less privacy-invasive solution. No one has come up with a
better solution than cookies, despite frequent attempts to tackle the problem.26 Any
such solution would need to support traditional HTTP cookies as well or risk not gain-
ing any traction. HTTP is stateless, and although HTTP/2 has added some concepts
of state at the networking level (such as stream states and HPACK dynamic table
state), at an application level it’s still stateless. An HTTP message sent on one HTTP/2
connection may be slightly different from one sent on another HTTP/2 connection at
a binary level (due to header compression, for example), but it’s still the same state-
less HTTP message to the higher-level application.

 Some innovations in cookies have been made, as described earlier in this chapter,
and maybe HTTP/2 could have enforced them rather than making them optional, as
under HTTP/1. But enforcement would have created barriers to adoption, which is
why the HTTP/2 charter expressed the desire to retain the semantics of HTTP/1 and
change only the transport layer.

 In the future, developers may want to implement a better state management sys-
tem for HTTP than cookies. But there’s no reason to hold back the next version of
HTTP because all the problems with the current version can’t be solved.

10.1.3 HTTP and encryption

Like state, encryption wasn’t initially a design principle for HTTP; it was added after the
fact with HTTPS. HTTPS wraps regular HTTP messages in an encrypted form before
they’re sent and unwraps them after they arrive, and for the most part, it works. Previ-
ously, there were concerns about the cost of SSL/TLS certificates and the performance
of encryption and decryption, but those cost issues have mostly been engineered out
with cheap (or even free)27 certificates and as compute power has improved,28 though
the initial connection still incurs a performance penalty, as discussed in chapter 9.

SHOULD ALL OF HTTP BE ENCRYPTED?
The main concerns about HTTPS are the complexity of initial setup and manage-
ment, the reliance on third-party certificate authorities (CAs) to provide recognized
certificates,29 and the fact it’s not ubiquitous. The last point was a bone of contention
while HTTP/2 was standardized. Many people felt that the next version of HTTP
should be available only in a secure version (HTTPS) and that the unsecured HTTP
world should be left in the past. Other people felt strongly that encryption was unnec-
essary in many cases and shouldn’t be mandated in the protocol. Ironically, these peo-
ple were often the same people who complained that HTTP/2 didn’t improve privacy
enough by addressing cookies.

26 For example: https://github.com/mikewest/http-state-tokens
27 https://letsencrypt.org/
28 https://istlsfastyet.com/
29 https://www.howtogeek.com/182425/5-serious-problems-with-https-and-ssl-security-on-the-web/

www.EBooksWorld.ir

325Controversies of HTTP/2 and what it didn’t fix
OPPORTUNISTIC ENCRYPTION

An alternative to full HTTPS encryption, which requires both encryption and authen-
tication (through the use of third-party CAs), is opportunistic encryption for HTTP
URLs. This technique encrypts the data in transport, but without any guarantees on
authentication like the ones that HTTPS provides—that users are talking to the actual
website rather than to someone pretending to be that website. Opportunistic encryp-
tion would be a step up from HTTP but not as strong as HTTPS; it could be deployed
at protocol level, however, without the use of third-party CAs or any effort on the part
of website owners.

HTTP/2 AND ENCRYPTION

In the end, after many arguments, no consensus was reached, and HTTP/2 was pub-
lished with the ability to use both an encrypted (h2) and unencrypted (h2c) connec-
tion. The middle ground of using opportunistic encryption wasn’t included.

 The reality is a bit more one-sided. All web browsers (the primary clients of HTTP)
decided to implement HTTP/2 only over HTTPS (h2), as discussed in chapter 3. This
was done for ideological reasons (the main browser vendors stated their intention to
move to an encrypted web)30 and also for technical reasons; by using encrypted ses-
sions, the new protocol could be introduced without any middleware internet net-
working infrastructure needing to know about this format. Microsoft was the only
browser vendor that expressed interest in allowing unencrypted HTTP/2, but in the
end, it shipped only the encrypted version, apparently after seeing interoperability
issues when HTTP/2 wasn’t used over HTTPS.

 Firefox allows the use of the Alt-Svc header to fetch websites over alternative ser-
vices, which has led to some vendors offering HTTP/2 for HTTP sites.31 This method
works for sites that have an HTTPS version but aren’t ready to switch to it (such as to
avoid mixed-content warnings). Firefox can use the Alt-Svc header to fetch the site
over HTTPS (and HTTP/2) but present it as an HTTP site, which is opportunistic
encryption with a twist.

 Calls for HTTP/2 to be available only over HTTPS may have been premature.
HTTPS use has jumped considerably over the past few years, but unfortunately, it’s
still far from universal. Chapter 6 stated that Firefox serves more than 70% of its web
traffic over HTTPS, but that statistic is skewed by the larger players. When you look at
the bigger picture, the numbers are less optimistic. The top 10 million websites still
have slightly more than 40% of HTTPS use,32 as shown in figure 10.3, though that fig-
ure also is trending upward. In 2015, when HTTP/2 was approved, only about 5% of
sites used HTTPS by default.

 Arguably, security (and performance, for that matter) is more important for larger
sites, but there’s still a way to go before HTTPS is a requirement for running a website.

30 https://blog.mozilla.org/security/2015/04/30/deprecating-non-secure-http/ and https://blog.cloudflare
.com/ opportunistic-encryption-bringing-http-2-to-the-unencrypted-web/

31 https://blog.cloudflare.com/opportunistic-encryption-bringing-http-2-to-the-unencrypted-web/
32 https://w3techs.com/technologies/details/ce-httpsdefault/all/all

www.EBooksWorld.ir

326 CHAPTER 10 Where HTTP goes from here
For this reason alone, limiting HTTP/2 to HTTPS when it was standardized probably
jumped the gun a little. There’s a careful balance between using incentives to encour-
age adoption of good standards and adding another barrier to adoption.

 The other use case to remember is internal, non-internet-facing traffic—both
intranet sites and backend application servers fronted by a web server where HTTPS is
offloaded. Intranet websites should be secured with HTTPS in the same way that
external websites are, but this practice requires a level of commitment and infrastruc-
ture that isn’t always present. The internet is only now moving to encryption, due in
part to the risks of the open network it lives on. The closed internal network is often
seen as being much less risky, and so encrypting intranet sites is often a lower priority.
Use of HTTPS on intranet sites is likely to lag the internet HTTPS adoption for some
time, especially for backend servers when a frontend web server is used to offload the
HTTPS requirements. It’s often seen as being unnecessary to encrypt between a web
server and a backend application server, especially because of the extra effort
required to manage HTTPS certificates on some application servers.

 Internal-only sites often can’t use commercial CAs (especially automated free CAs
like Let’s Encrypt) unless they expose themselves to the public internet or use a wild-
card certificate, which is more expensive and not as easy to automate. Running an
internal CA is often the answer, but internal CAs typically don’t have the level of
automation to allow automatic issuance and renewal of certificates. Finally, some web
servers (particularly Java-based ones with a Java key store and IIS) require extra steps

0
1 Sep’17 1 Oct 1 Nov

Usage of default protocol https for websites, 30 Sep 2018, W3Techs.com

1 Dec 1 Jan’18 1 Feb 1 Mar 1 Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sep

5

10

15

20

25

30

35

40

45

Figure 10.3 HTTPS use on the top 10 million websites

www.EBooksWorld.ir

327Controversies of HTTP/2 and what it didn’t fix
to install certificates, so even if you can automate certificate issuance, you need to look
at how to automatically install and use certificates each time they approach expiration.

 HTTP/2 isn’t a requirement for a website, of course; you can view it as being an
option for those who want speed gains, and this sort of advanced user is likely to be on
HTTPS anyway. On intranet sites, latency shouldn’t be as big an issue as on the public
internet, so the benefits of moving to HTTP/2 are fewer. I showed in earlier chapters
that there’s no need to support HTTP/2 on backend servers at present as long as the
edge server that visitors access is available over HTTP/2. Regardless, it makes little
sense to try to invent a new version of the core protocol for the web when a large per-
centage of users would be unable to use it—up to 60% of the public internet at this
writing and 95% when HTTP/2 was standardized. On private intranets, the percent-
ages are likely to be much higher.

 There’s also the small matter of the growth of HTTP beyond websites and to the
Internet of Things (IoT) domain, where certificate and HTTPS management are cer-
tainly more complicated. This area hasn’t been sufficiently addressed even at this
writing, though some proposals have been put forward, such as HTTPS in the Local
Network.33 Although IoT devices may not need the benefits of HTTP/2, it seems back-
ward to force them to remain on HTTP/1 by insisting on encryption until this issue
can be solved.

 Ultimately, given the landscape when HTTP/2 was approved, it’s not surprising
that it wasn’t standardized with an HTTPS-only requirement. Although there are good
reasons to push for HTTPS as the norm, caution should be taken to push it in the
right ways at the right time, and it was too early to do this for HTTP/2. QUIC decided
to push for HTTPS only, which may make more sense because the landscape has
changed in the three or four years between these two protocols, but many of the argu-
ments for non-public-facing HTTP implementations still stand and haven’t been ade-
quately resolved.

10.1.4 Transport protocol issues

Other complaints were about the protocol itself at a transport level. Previously, HTTP
didn’t involve itself much at the transport layer other than saying that it was a stream
of data preceded by a request (or response) line and HTTP headers. HTTP/2
changes this situation by introducing the binary framing layer.

LAYERING VIOLATIONS

As discussed way back in chapter 1, network protocols are often built in distinct layers.
HTTP/2 stepped out of its traditional layer and took on many characteristics of TCP.
Figure 10.4 shows the web stack and how it (roughly) maps to some of the OSI net-
working model layers, though there’s some overlap. Layer 6, for example, doesn’t
map directly to any of these technologies, although HTTP allows communication of
file formats.

33 https://www.w3.org/community/httpslocal/

www.EBooksWorld.ir

328 CHAPTER 10 Where HTTP goes from here
HTTP/2 no longer maps only to the top Application layer, as HTTP/1 did; it manages
many items traditionally considered to be the remit of the transport layer, such as mul-
tiplexing and flow control. Because HTTP/2 repeats rather than replaces the han-
dling of these concepts in TCP, it’s more like HTTP/2, supplementing what is
traditionally thought of as HTTP. The new binary framing layer, therefore, spans sev-
eral layers, as shown in figure 10.5.

 Many people felt that this “layering violation” was a bad idea. Layering of protocols
has allowed simpler implementations at each level and is generally seen as being a
good thing. Although layering is never as clearly defined in the real world, and people
can get too hung up on it (which isn’t advisable),34 the argument does have merit. In
particular, the repetition of TCP concepts, while still being constrained by TCP limita-
tions, leads to problems, as discussed in Chapter 9.

 QUIC seeks to return a more defined layering between the application transport
protocol (HTTP) and the network transport protocol (TCP and UDP), somewhat as
shown in figure 10.6. In this model, HTTP/3 maps the HTTP frame types and shows
how they should be used for HTTP traffic, but leaves the transport layer information

34 https://tools.ietf.org/html/rfc3439#section-3

HTTP

Session layer

(Secure Sockets Layer - SSL / Transport Layer Security - TLS)5

4
Transport & Session layer

(Transmission Control Protocol - TCP)

7
Application layer

(Hypertext Transport Protocol - HTTP)

6
Presentation layer

(File format - such as ASCII, UTF-8, JPG, PNG...and so on)

HTTPS

TCP

IP
Network layer

(Internet Protocol - IP)3

Figure 10.4 The OSI model and the web networking stack

www.EBooksWorld.ir

329Controversies of HTTP/2 and what it didn’t fix
Session layer

(Secure Sockets Layer - SSL / Transport Layer Security - TLS)5

4
Transport & Session layer

(Transmission Control Protocol - TCP)

7
Application layer

(Hypertext Transport Protocol - HTTP)

6
Presentation layer

(File format - such as ASCII, UTF-8, JPG, PNG...so on)

TCP

HTTP

HTTPS

IP
Network layer

(Internet Protocol - IP)3

H
T

T
P

/2

Figure 10.5 The OSI model and the web networking stack with HTTP/2

HTTPP HTTP/3

Session layer

(Secure Sockets Layer - SSL / Transport Layer Security - TLS)5

4 Transport & Session layer

(Transmission Control Protocol - TCP)

7 Application layer

(Hypertext Transport Protocol - HTTP)

6 Presentation layer

(File format - such as ASCII, UTF-8, JPG, PNG...so on)

HTTPSHTTPS

TCP

IP
Network layer

(Internet Protocol - IP)3

H
T

T
P

/2

IP

QUIC

UDP

Figure 10.6 The OSI model and the web networking stack with QUIC and HTTP/3

www.EBooksWorld.ir

330 CHAPTER 10 Where HTTP goes from here
(such as managing the multiplex streams) to QUIC itself. In other ways, QUIC argu-
ably blurs the layers even more by merging parts of the TCP and HTTPS layers, but
this arrangement perhaps makes sense. HTTPS was always mostly separate from
HTTP, so it probably does belong more with the session and transport layers than the
application layer.

TCP HOL BLOCKING

Chapter 9 explained how HTTP/2 multiplexing solved the HTTP head-of-line (HOL)
blocking problem, but pushed it to the TCP level. Therefore, in certain lossy conditions,
HTTP/2 is perhaps slower than HTTP/1. This problem was apparent from the start and
was mentioned in the first HTTP/2 draft35 (but removed from later drafts), which
explained that the benefits of a single TCP connection outweigh the negative effects:

The use of multiple connections isn’t without benefit, however. Because SPDY multiplexes
multiple, independent streams onto a single stream, it creates a potential for head-of-line
blocking problems at the transport level. In tests so far, the negative effects of head-of-
line blocking (especially in the presence of packet loss) are outweighed by the benefits of
compression and prioritization.

 —HTTP/2 specification version 00

As you saw in chapter 9, QUIC aims to address this problem, but for most connections
HTTP/2 was good enough. Holding out for the perfect solution would have need-
lessly delayed a useful upgrade, not to mention making the leap from HTTP/1.1 to
QUIC and HTTP/3 a huge upgrade!

HTTP IS NO LONGER STATELESS

Another argument is that the protocol introduces state to core protocol HTTP for the
first time. HTTP cookies, discussed earlier in this chapter, allow state to be transferred
over HTTP but don’t add state to the core protocol itself. The multiplexed nature of
the protocol and stream IDs (chapter 4), the HTTP/2 state machine (chapter 7), and
HPACK header compression (chapter 8) all add concepts of state to a previously state-
less protocol without adding the one definition of state that HTTP users actually
need: session state, as discussed in section 10.1.2. Although this choice was deliberate,
it isn’t as contradictory as it appears to be. Although state has been added to HTTP/2
at a connection level, at an overall HTTP level, it doesn’t matter. The same HTTP
request can still be made over a separate HTTP/2 connection, either in a parallel con-
nection or later, and still conveys the same semantic meaning at the HTTP level. State
is added to handle the multiplexed protocol and the header compression, but isn’t
used beyond those purposes. If the state gets muddled in any way, the connection can
be torn down and reestablished, and the HTTP request can be attempted over the
new connection with exactly the same issues and limitations as in HTTP (such as when
it’s safe to resend [idempotent]).36 The stateful parts of HTTP/2 are no less or more

35 https://tools.ietf.org/html/draft-ietf-httpbis-http2-00#section-4.3
36 https://tools.ietf.org/html/rfc7231#section-4.2.2

www.EBooksWorld.ir

331Controversies of HTTP/2 and what it didn’t fix
important than the stateful parts of TCP that were always there. In fact, state has been
added only to allow HTTP/2’s streams to act more like TCP.

TOOLING FOR HTTP/2
The binary layering and the move from plain text also annoyed some people, as sim-
ple tools such as Telnet couldn’t be used anymore; I used them in chapter 1 to show
their use in HTTP. This complaint has little merit, however, because HTTPS encrypted
connections suffer the same issues, and the toolset evolved to support HTTPS. Per-
haps a better argument can be made that some HTTP-aware network devices (such as
HTTP caches like Varnish) now need to implement more of HTTP to fully under-
stand HTTP messages. But that argument hardly supports not evolving the protocol
or letting infrastructure attempt to route HTTP traffic without fully understanding
the details of the HTTP message.

IS HTTP/2 EVEN ABOUT IMPROVING HTTP?
Finally, most of the changes in HTTP/2 are at the transport level rather than what is
traditionally thought of as HTTP level. Were enough improvements made at an HTTP
level to warrant the HTTP/2 title, or should the protocol have been named
HTTP/1.2, TCP/2, or HTTPS/2 instead? Further work in this area with QUIC seems
to confirm that this layering perhaps shouldn’t be considered to be part of HTTP.
Ultimately, such an argument isn’t productive. The new protocol contained breaking
changes, so by any reasonable definition, it should be differentiated from the preced-
ing version. Also, version numbers are cheap and used far too sparingly in many tech-
nology implementations. Moving to a version 2 after 20 years because it includes
numerous breaking changes and isn’t backward-compatible isn’t unreasonable and in
fact is the recommended path.

10.1.5 HTTP/2 is far too complicated

Another argument frequently put forward is that HTTP/2 is complicated. There’s no
doubt that this is the case, especially compared with the seemingly simple HTTP/1.1.
The framing layer, its binary nature, and stateful protocol are tough concepts to get
your head around compared with HTTP/1, let alone complex prioritization and
header compression. You need a whole book to understand these concepts! Although
that situation creates interesting work for technical authors, it’s a real concern for the
protocol. One of the main reasons for HTTP’s success is its simplicity. The basic
details of HTTP are in the one-page specification (if the page could be called a speci-
fication) of HTTP/0.9, and although HTTP/1.0 and 1.1 added to it, conceptually,
HTTP is still easy to understand.

 That isn’t the whole story, however. Although HTTP/1.1 was easy for humans to
understand, it was difficult to implement in software. All sorts of edge cases and extra
processing are needed to ascertain the meaning of this unformatted, unstructured,
text-based protocol. HTTP/2 seems to be a lot more complicated, but all those com-
plexities can be automated fairly easily. This isn’t to say that there won’t be implemen-
tation errors or nuances in implementations that website developers won’t need to

www.EBooksWorld.ir

332 CHAPTER 10 Where HTTP goes from here
work though (another reason for a book like this one), but that situation is true of any
new technology and was especially true of HTTP/1. The complexities of HTTP/2, like
those of HTTP/1, affect mostly low-level implementers such as web-browser and web-
server developers, rather than higher-level web developers, and most of those low-
level developers have argued that HTTP/2 is simpler to implement than HTTP/1.

 Perhaps the main measure of whether complexity is an issue is the sheer number
of implementations. The HTTP/2 home page lists more than 80 separate, active imple-
mentations.37 Nearly all common web servers and web browsers support HTTP/2, and
many supported it shortly after it went live. Although those implementations have had
bugs and implementation issues, which may continue for some time, the speed of
uptake suggests that these issues aren’t serious problems. Note, however, that some
parts of the specification (such as HTTP/2 push and prioritization) aren’t present in
every implementation because of the complexity involved.

 It’s hard not to argue that HTTP/2 is complex conceptually, which isn’t as big a
problem as you may think. In most cases, simplicity beats complexity (the Keep It Sim-
ple Stupid [KISS] principle), but HTTP/1 isn’t as simple as it looks. Despite all the
arguments that complexity doesn’t matter, those who discover some obscure HTTP/2
implementation issue that takes them days to resolve will undoubtedly curse the com-
plexity, and those of us who have been there and done that will sympathize!

10.1.6 HTTP/2 is a stopgap

HTTP/2 didn’t attempt to resolve all the issues with HTTP. After years of stagnation,
and with the proven use case of SPDY, the IETF HTTP-WG was keen to avoid getting
stuck down rabbit holes, so many issues weren’t fully resolved, and HTTP/2 was
approved without consensus on some issues. This situation undoubtedly frustrated
those who felt that some of the issues should have been resolved in HTTP/2, but the
approach seems to be pragmatic.

 HTTP/2 improved the performance of the protocol, removing some of the funda-
mental bottlenecks, so it was good to be launched and used in the real world. Nothing
stops a future version of HTTP from further improving what this revision couldn’t. In
fact, additional ways to improve the protocol are being proposed through new settings
and frame types.

 QUIC aims to address some of the issues that HTTP/2 didn’t resolve, such as
TCP HOL blocking, more complete encryption, improved connection establish-
ment, and connection migration. It could have taken another four years to incorpo-
rate these changes into HTTP/2, but there seemed to be no need for such a wait.
When QUIC is standardized, it’s likely to take longer to be implemented because it’s
even more complicated than HTTP/2. At a similar point in the standardization pro-
cess, QUIC has fewer implementations than HTTP/2 did, probably due to the ease
of migrating existing SPDY implementations to HTTP/2 implementations. But gQUIC

37 https://github.com/http2/http2-spec/wiki/Implementations

www.EBooksWorld.ir

333HTTP/2 in the real world
hasn’t been taken up in the same way. The move to UDP will also create challenges
for an internet that has traditionally been almost completely TCP-based. Given that
complexity, the fact that HTTP/2 is a stopgap and is making some progress is posi-
tive, not negative.

10.2 HTTP/2 in the real world
All those arguments were raised before HTTP/2 was formally standardized, but none
was viewed as being serious enough to prevent or delay final standardization. Since
then, HTTP/2 has been adopted quickly, with more than 30% of the top 10 million
websites supporting it at this writing38 (figure 10.7).

Even better, more than 55% of web traffic uses HTTP/2,39 because large sites such as
Google, YouTube, and Facebook support HTTP/2 and generate proportionally more
traffic than smaller sites do. Based on these statistics, HTTP/2 has already proved to
be a great success.

 In addition, HTTP/2 has already been expanded, with new settings and frame
types for enhancements to the protocol, such as Alternative Services,40 the ORIGIN

38 https://w3techs.com/technologies/details/ce-http2/all/all
39 https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&measure=HTTP_RESPONSE_VERSION
40 https://tools.ietf.org/html/rfc7838

0
1 Sep’17 1 Oct 1 Nov 1 Dec 1 Jan’18

Usage of HTTP/2 for websites, 30 Sep 2018, W3Techs.com

1 Feb 1 Mar 1 Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sep

5

10

15

20

25

30

35

Figure 10.7 HTTP/2 growth from September 2017 to September 2018

www.EBooksWorld.ir

334 CHAPTER 10 Where HTTP goes from here
frame,41 and WebSockets over HTTP/2.42 Other proposals, such as Cache Digests,43 seek to
further extend HTTP/2, and many more suggestions are in the pipeline.

 All in all, HTTP/2 has become a widespread part of the internet and continues to
grow in both use and functionality. All the concerns discussed in this chapter,
although not completely without merit, haven’t proved to be big problems in real life.

 Not everything has been a success, however. HTTP/2 push in particular has failed to
make any particular impact so far, mostly due to the complexities of using it correctly
(discussed in chapter 5), though lack of server-side support hasn’t helped. Perhaps in
hindsight, HTTP/2 push wasn’t the panacea that some people thought it might be for
performance. Maybe it should have been left out of the original HTTP/2 proposal and
added as an optional frame later, if necessary. Some people are even calling for its
removal from the specification, though that act seems to be a little premature.

 Further, complications in implementing HTTP/2 show that HTTP/2 isn’t as easy
to switch on as you may like (not surprising for a major new protocol); neither is it a
guaranteed performance boost. Most sites see performance improvements with a
switch to HTTP/2, but some have seen a degradation in performance or haven’t ben-
efited as much as they thought they would. Getting the most out of any new technol-
ogy takes good understanding. I expect HTTP/2 to continue to grow, at least until
QUIC is released and becomes ubiquitous, but neither will replace HTTP/1 in many
implementations any time soon, if at all.

10.3 Future versions of HTTP/2 and what HTTP/3 or
HTTP/4 may bring
Now that HTTP/2 is out in the real world and use is growing, what can you expect
from the next iteration of HTTP? Will it be HTTP/2.1 or HTTP/3?

10.3.1 Is QUIC HTTP/3?

QUIC takes the concepts of HTTP/2 to the next level, so is seen as the successor to
HTTP/2, making it HTTP/3 by definition. In July 2018, one of the two chairs of the
HTTP Working Group stated,44 “I view QUIC as [HTTP/3] in most ways. . . hq is a log-
ical successor to h2,” and in November 2018, the HTTP Working Group agreed that
the HTTP part of QUIC should be called HTTP/3 and move it (and QPACK) from
the QUIC Working Group to the HTTP Working Group after publication.45 The name
HTTP/3 will not be formally registered until QUIC is ratified, so it is not guaranteed
this is what HTTP/3 will be, but it is looking very likely at this writing.

 QUIC is being positioned as a much larger, more generic Transport layer protocol
however, intended for much more than HTTP, and HTTP/3 is only one use case for

41 https://tools.ietf.org/html/rfc8336
42 https://tools.ietf.org/html/rfc8441
43 https://datatracker.ietf.org/doc/draft-ietf-httpbis-cache-digest/?include_text=1
44 Patrick McManus (HTTP-WG co-chair), IETF 102 HTTPBIS meeting II (https://youtu.be/tQAfDmW0qlI?t=588)
45 HTTP Working Group IETF 103 (https://youtu.be/uVf_yyMfIPQ?t=4956)

www.EBooksWorld.ir

335Future versions of HTTP/2 and what HTTP/3 or HTTP/4 may bring
QUIC. In many ways, QUIC is the successor to TCP rather than HTTP/2, though
some people take issue with the name TCP/2.46 This is another reason the name
HTTP/3 will be used to differentiate between the larger QUIC protocol and the
HTTP part of this. This does not mean HTTP/2 is finished and will not evolve further,
any more than HTTP/1.1 stopped being used once HTTP/2 came along—there are
no plans to retire either HTTP/1.1 or HTTP/2, as many HTTP implementations will
likely remain under TCP, using HTTP/2 or HTTP/1.1. However once QUIC becomes
widely available, which will take some time, then HTTP/3 will represent the best ver-
sion of HTTP and should be used where possible—hence the name.

10.3.2 Evolving the HTTP binary protocol further

Sidestepping the differences and future direction of the QUIC (h3) and TCP ver-
sions (h2/h2c), how should this new binary and multiplexed protocol be extended in
the future?

 In the past, HTTP headers enabled extension of the core HTTP protocol, depend-
ing on client and server use of these headers. HTTP/2 adds new abilities with new set-
ting values and new frame types. The setting values47 in particular allow new abilities
to be discovered up front as the connection is established, which is much better than
sending an HTTP header in the hope that the other side will understand it.

 The protocol has been extended with the ALTSVC, ORIGIN, and (the proposed)
CACHE_DIGEST frames. Other suggestions have been proposed, such as secondary cer-
tificates,48 so a robust way exists of taking the protocol forward with new frame types.49

There’s no clear need for version numbering like HTTP/2.1 at this time, which is also
why the HTTP Working Group dropped the minor version number and called the
protocol HTTP/2 rather than HTTP/2.0.

10.3.3 Evolving HTTP above the transport layer

Although HTTP/2 and QUIC look at the lower-level transport layer of HTTP, what’s
being done at the higher level of HTTP? There’s been a steady stream of new HTTP
headers to control client and server behavior, but the HTTP semantics haven’t changed
much since HTTP/1.1, and HTTP/2 didn’t bring any changes to this higher level.

 As I mention earlier, one area of concern that keeps coming up is an alternative
to HTTP cookies. So far, though, no proposal to replace them appears to be gaining
traction.

 Otherwise, HTTP has proved to be surprisingly robust at a higher level and has
required clarification and tweaking rather than extension. Numerous extensions to
HTTP are being worked on by the IETF Working Group,50 the less-formal Web Platform

46 https://github.com/HTTPWorkshop/workshop2016/blob/master/talks/quic.pdf
47 https://www.iana.org/assignments/http2-parameters/http2-parameters.xhtml#settings
48 https://tools.ietf.org/html/draft-ietf-httpbis-http2-secondary-certs
49 https://www.iana.org/assignments/http2-parameters/http2-parameters.xhtml#frame-type
50 https://github.com/httpwg/http-extensions

www.EBooksWorld.ir

336 CHAPTER 10 Where HTTP goes from here
Incubator Community Group (WICG),51 or as private outside interests—like SPDY and
QUIC started as with Google. Most of these extensions can be implemented without
fundamentally changing HTTP, instead using the extension methods already available
(HTTP headers, HTTP/2 settings, or new HTTP/2 frame types).

NEW HTTP METHODS

What is perhaps most surprising is the fact that the main HTTP methods (GET, POST,
PUT, DELETE, and so on) haven’t been extended since HTTP/1.1. Web Distributed Author-
ing and Versioning (WebDAV) 52 introduced some new methods (including PROPFIND,
COPY, and LOCK), and a few RFCs introduced others,53 but the last one was registered in
2010 (BIND). On the whole, HTTP survives mostly on the four core methods intro-
duced 20 years ago (mostly GET and POST, with some use of PUT and DELETE).

 HTTP methods would be relatively easy to add, but there’s been no need for them,
and most requirements can be proxied through POST. The action variable in the fol-
lowing example conveys the necessary application-specific method (order this item),
so doing the same in HTTP isn’t necessary:

:method: POST
:path: /api/doaction

{
 "action": "order",
 "item": 12345,
. "quantity": 1
}

Other HTTP implementations use HTTP headers to provide additional information,
including the action to take:

:method: POST
:path: /api/doaction
action: order

{
 "item": 12345,
 "quantity": 1
}

After 20 years, I don’t see an immediate desire for new HTTP methods. Although some
new methods will undoubtedly be introduced in the coming years, I don’t expect
them to have a major impact beyond the applications for which they’re introduced.

51 https://www.w3.org/blog/2015/07/wicg/
52 https://tools.ietf.org/html/rfc4918
53 https://www.iana.org/assignments/http-methods/http-methods.xhtml

www.EBooksWorld.ir

337Future versions of HTTP/2 and what HTTP/3 or HTTP/4 may bring
NEW HTTP HEADERS

The use of new HTTP headers has grown over time, and I expect it to continue to
grow. HTTP/2 expressly forbids the use of new pseudoheader fields54 that begin with
a colon (:method, :scheme, :authority, :path, and :status), though these fields can
be added with new specifications (such as the :protocol pseudoheader added with
the Bootstrapping Websockets over HTTP/2 RFC).55

 Other headers can be, and have been, added as applications see fit. The HTTP spec-
ification gives advice on considerations for new header fields,56 showing that they’re
intended to be extended. There’s an official registry of message headers57 (including
those used by HTTP), but applications use many headers without registering.

 HTTP headers allow new functionality to be added easily, whether that functional-
ity is additional information between the parties (such as “This response is using the
XXX format”), hints (such as “FYI, I support the following formats”), authentication
information (such as cookies), routing information (“This was forwarded from this IP
address”), and much more. The applications at either end can act on the headers
even if the HTTP infrastructure in between (such as an HTTP server or web browser)
doesn’t understand the header and blindly passes it on.

 Using HTTP headers for security in particular has grown in the past few years.
These headers are often sent from the website to the browser in responses as instruc-
tions to enable security features such as Content-Security-Policy (CSP)58 and HTTP
Strict-Transport-Security (HSTS).59 Going the other way, there are proposals to pro-
vide more information to the server about the client (web browser or other), such as
the Client Hints specification,60 which should allow different content to be delivered
based on what the client supports.

 Many new headers will undoubtedly be added as HTTP use continues to grow and
new features are added on the client and server sides. New HTTP headers haven’t
required and shouldn’t require new versions of HTTP.

NEW FORMATS

Since the introduction of HTTP headers in HTTP/1.0, HTTP has supported different
file formats and allowed different content encoding to be used by the HTTP protocol
(like compression methods such as gzip and br). Again, HTTP is easy to extend in this
area without the need for a new version number.

54 https://httpwg.org/specs/rfc7540.html#PseudoHeaderFields
55 https://tools.ietf.org/html/rfc8441
56 https://tools.ietf.org/html/rfc7231#section-8.3
57 https://www.iana.org/assignments/message-headers/message-headers.xhtml
58 https://w3c.github.io/webappsec-csp/
59 https://tools.ietf.org/html/rfc6797
60 https://tools.ietf.org/html/draft-ietf-httpbis-client-hints

www.EBooksWorld.ir

338 CHAPTER 10 Where HTTP goes from here
NEW STATUS CODES

HTTP status codes61 are other ways of extending the functionality of HTTP. They
don’t require a new version, at least for new status codes within the rough groupings
defined by the core HTTP specification,62 as shown in table 10.1.

HTTP status code 103,63 for example, was introduced at the end of 2017 without
requiring a new HTTP version. When 103 was first used, however, it revealed problems
in many HTTP implementations (such as web browsers) that didn’t expect to receive
more than one HTTP response, due to the fact that 1XX informational responses
hadn’t been used much except under specific circumstances. Technically, this change
was a nonbreaking change that didn’t require a new version. But because it worked
slightly differently from the existing status codes, many clients saw it as a breaking
change until they corrected their implementations.

 There’s also the possibility of adding new categories (6XX, 7XX, 8XX, 9XX) with-
out needing to extend the traditional three-digit response status code categories. In
the 20 years that HTTP has been around, there’s been no requirement to extend the
status code categories, but extension may happen in the future; the scope is there.

10.3.4 What would require a new HTTP version?

Given all the ways of extending HTTP, it’s perhaps unsurprising that the version of
HTTP didn’t change over the past 20 years. What would need to change to require a
new version? The answer is that nobody knows at this point! The HTTP Working
Group has brainstormed ideas,64 and some areas of HTTP/2 weren’t resolved (most
of which are resolved under QUIC and HTTP/3). But at the moment, there’s no firm
idea about what the next version of HTTP beyond HTTP/3 might bring.

 One thing is sure: like HTTP/2 and HTTP/3, the next major version needs to
bring some breaking changes that aren’t backward-compatible to warrant a major ver-
sion-number upgrade. Whether these are changes in the wire format (as in HTTP/2),

61 https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml#http-status-codes-1

Table 10.1 HTTP status code groupings

Code Type Description

1xx Informational The request was received; the process is continuing.

2xx Successful The request was successfully received, understood, and accepted.

3xx Redirection Further action needs to be taken to complete the request.

4xx Client Error The request contains bad syntax or can’t be fulfilled.

5xx Server Error The server failed to fulfill an apparently valid request.

62 https://tools.ietf.org/html/rfc7231#section-6
63 https://tools.ietf.org/html/rfc8297
64 https://github.com/HTTPWorkshop/workshop2016/wiki/Future-of-HTTP#http3

www.EBooksWorld.ir

339HTTP as a more generic transport protocol
changes in the underlying expectations of the transport (as in HTTP/3 moving to
QUIC over UDP), or something else remains to be seen.

10.3.5 How future versions of HTTP might be introduced

The introduction of HTTP/2 provides more opportunities to extend the protocol and
also introduces a path to introduce a new version with the use of ALPN or the other
upgrade methods detailed in chapter 4. If a breaking change is required at some
point, it should be easier to introduce, which ideally will lead to more innovation than
has occurred over the past 20 years.

 HTTP/3 also seeks to move away from TCP, and if it’s successful, it opens new
doors for moving to all-new underlying technologies in the future. Will developers use
something other than TCP and UDP to deliver HTTP messages in the future? Will IP
change? The answers are unclear, but this is a new age of advancement for internet
protocols, and developers finally have the methods to introduce them.

10.4 HTTP as a more generic transport protocol
What about changes in HTTP use, and where might they lead the protocol in the
future? The initial use case for HTTP was web pages, but there’s a wide desire to use
the popular HTTP beyond this use case. HTTP is a fairly easy protocol to understand
and is widely supported, so many implementations and libraries exist. For HTTP/1.1,
at least, it’s easy to get a simple HTTP server or client with any software that allows
reading or writing of a TCP channel (though as discussed earlier, the textual nature
of HTTP/1.1 can lead to many problems that are initially concealed by this seeming
simplicity).

 HTTP is a protocol ripe for use beyond its original intention. In this ever-connected
world, HTTP allows simple communication between separate systems in a standard-
ized, well-understood way. From complex applications that use REST APIs or similar
technology to IoT devices, HTTP is used within web applications and directly in
nonweb applications.

 Applications that want to use HTTP have several options:

 Use HTTP semantics and messages to deliver nonweb traffic.
 Use the HTTP/2 binary framing layer.
 Use HTTP to start another protocol.

I explore these options in the remainder of this chapter.

10.4.1 Using HTTP semantics and messages to deliver nonweb traffic

This method is the most common method of using HTTP outside web pages. API mes-
sages can be sent over HTTP in whatever format the client and server know to use
(XML, JSON, or some proprietary format). Often, these HTTP-based APIs use com-
mon HTTP methods (GET, POST, PUT, and DELETE) to perform actions across services.
The microservices architecture, for example, uses small independent services, for

www.EBooksWorld.ir

340 CHAPTER 10 Where HTTP goes from here
which HTTP is an excellent option. Other protocols can be modeled easily in HTTP
(see the sidebar below).

The IETF has published a specification, On the Use of HTTP as a Substrate,65 which lists
a set of recommendations and best practices to get the most out of using HTTP this
way. Some applications diverge from the core HTTP specifications and use only part
of the protocol, and this document doesn’t attempt to forbid this divergence, but it
points out why doing so may lose some of the benefits and learnings of using HTTP.
HTTP has evolved the way it has for many reasons, some of which may not be immedi-
ately apparent, and this document tries to make these reasons clear for alternative
users of the protocol.

DNS over HTTPS (DoH)
The Domain Name System (DNS) is a relatively simple protocol that usually involves
fetching one record type from a central directory. Although DNS was traditionally its
own proprietary format on a separate port (port 53), it could also be implemented with
a simple GET request.

One reason to switch to HTTP is to use the encryption provided by HTTPS. In the past,
DNS has been an unencrypted system, and attempts to add encryption led to complex
protocols such as DNSSEC and DANE that have their own flaws and weaknesses,
which are beyond the scope of this book. HTTPS is proven, secure (when configured
correctly), and well supported. By putting an HTTPS interface on DNS, developers can
solve the DNS encryption issue that they’ve argued about for decades. This system is
known as DNS over HTTPS,a or DoH. (Try not to think of Homer Simpson.)

Developers could use TLS over the existing DNS messaging rather than move to
HTTPS, and a separate specification exists for this purpose too,b but using HTTPS
seems to be simpler to implement and allows the use of other benefits of HTTP.
Those benefits include widely supported, proxy-friendliness use of HTTP/2 or QUIC in
multiplex requests, and using HTTP/2 push to send back more than one response.

At this writing, Googlec and Cloudflared support DoH on the server side; Firefox has
added support and started experimenting with it,e and has an excellent explanation
of it.f The results are encouraging,g which shows the power of using HTTP for an appli-
cation—even one that already has its own transfer protocol!

a https://tools.ietf.org/html/draft-ietf-doh-dns-over-https
b https://tools.ietf.org/html/rfc7858
c https://tools.ietf.org/html/rfc8484
d https://developers.cloudflare.com/1.1.1.1/dns-over-https/
e https://blog.nightly.mozilla.org/2018/06/01/improving-dns-privacy-in-firefox/
f https://hacks.mozilla.org/2018/05/a-cartoon-intro-to-dns-over-https/
g https://blog.nightly.mozilla.org/2018/08/28/firefox-nightly-secure-dns-experimental-results/

65 https://tools.ietf.org/html/rfc3205 but currently in the process of being upgraded so should soon be
replaced by https://tools.ietf.org/html/draft-ietf-httpbis-bcp56bis

www.EBooksWorld.ir

341HTTP as a more generic transport protocol
10.4.2 Using the HTTP/2 binary framing layer

The multiplexed binary framing layer introduces new options and reasons to use
HTTP. Whereas HTTP may have been rejected due to its inefficiency in favor of direct
TCP connections or perhaps WebSockets, HTTP/2 addresses many of these issues and
becomes a contender. Google’s new gRPC protocol (short for gRPC Remote Proce-
dure Calls),66 for example, uses the HTTP semantics and HTTP/2 binary framing
layer67 to implement a more efficient API based on protocol buffers,68 rather than less
efficient formats such as JSON. It’s unlikely that Google would have chosen HTTP for
this purpose without the improvements offered by HTTP/2.

 Some people may want to use the HTTP/2 binary framing layer for non-HTTP
traffic as a full duplex protocol rather than the client-initiated protocol that HTTP/2
is, with only constrained HTTP/2 push for server-to-client requests. At present, this
feature isn’t supported. Perhaps QUIC, being built from the ground up with use for
other protocols in mind, is better suited to this purpose (or perhaps any such imple-
mentations will be back-ported into HTTP/2 over TCP). In the meantime, developers
can use HTTP as a way to start another protocol, such as a true two-way protocol.

10.4.3 Using HTTP to start another protocol

The final option for using HTTP as a more generic protocol is to use HTTP at the
start and then switch to another protocol. HTTP is a widely supported protocol and
can be useful for masking other protocols to look like HTTP for wider network sup-
port, particularly over proxies and other intermediaries. The options include using
the HTTP CONNECT method and upgrading the connection from HTTP (such as Web-
Sockets). Both options start as HTTP and quickly diverge to another protocol. To out-
side observers, however, they may appear to be HTTP traffic.

HTTP CONNECT METHOD

Since HTTP/1.1, HTTP has had the CONNECT method, which allows the HTTP con-
nection to be used as a proxy to tunnel through to an alternative server and port. This
method is often used to allow an HTTP proxy to tunnel an HTTPS connection with
syntax like this:

CONNECT example.com:443 HTTP/1.1

The syntax in HTTP/2 format is similar:

:method: CONNECT
:authority: example.com:443

66 https://grpc.io/faq/
67 https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md
68 https://developers.google.com/protocol-buffers/docs/overview

www.EBooksWorld.ir

342 CHAPTER 10 Where HTTP goes from here
This code creates a new connection from the HTTP server to example.com and allows
messages to pass from the client to this server, as illustrated in figure 10.8.

Note that this use of a proxy is separate from a man-in-the-middle proxy, which creates
two separate HTTP connections. In this scenario, there’s one HTTPS connection all
the way through but over two TCP connections, so after the initial setup, it’s as though
the client were connecting directly to the end server.

 The HTTPS connection isn’t readable by the proxy because there’s an end-to-
end HTTPS connection, so this setup even allows HTTP/2 connections through an
HTTP/1.1 proxy if the client and the server at either end support HTTP/2. See fig-
ure 10.9.

HTTPS request(s) HTTPS request(s)

Opens connection to

example.com on port

443 and allows the

original client to send

messages to it

HTTP connection HTTPS connection over HTTP

Client Proxy server Server - example.com

:method: CONNECT

:authority: example.com:443

Figure 10.8 Using CONNECT to tunnel an HTTPS connection over an HTTP proxy connection

HTTP/2 request(s) HTTP/2 request(s)

HTTP/1.1 connection HTTP/2 connection over HTTPS using HTTP/1.1

Client

(supports HTTP/2)

Proxy server

(supports HTTP/1.1 only)

Server - example.com

(supports HTTP/2)

Opens connection to

example.com on port

443 and allows the

original client to send

messages to it

CONNECT

example.com:443

Figure 10.9 Using CONNECT to tunnel an HTTP/2 connection over an HTTP/1.1 proxy

www.EBooksWorld.ir

343HTTP as a more generic transport protocol
The tunneled connection doesn’t need to carry HTTP messages except for the initial
message and can use any protocol. Figure 10.10 uses HTTP to connect to exam-
ple.com on port 22 (used by SSH). Thereafter, any messages sent on this connection
should be SSH instructions, not HTTP.

Again, this setup can be useful to allow alternative protocols that might not be avail-
able directly from a system (assuming that they’re available on the proxy server). All
these examples show that HTTP can be used to allow other protocols to be intro-
duced to environments. HTTP, therefore, can be used to introduce new protocols
without worrying about networking infrastructure handling them, especially when
HTTPS is used to hide the details from the proxy servers themselves. This process
could be even more interesting over QUIC in moving from TCP to the lighter UDP
protocol. At present, HTTP/3 doesn’t support the CONNECT method without reverting
to TCP, but proposals are already being raised for this purpose.69 This setup requires a
proxy server, and the client must be configured to connect via the proxy server.

UPGRADING THE CONNECTION FROM HTTP (SUCH AS WEBSOCKETS)
Yet another option is to use HTTP to start a connection and then upgrade that con-
nection to an alternative protocol. WebSockets works this way. The handshake is illus-
trated below, using HTTP/1.1 syntax.

 Client request (some other WebSockets header fields aren’t included for simplic-
ity’s sake)

GET /application HTTP/1.1
Host: example.com
Upgrade: websocket
Connection: Upgrade

69 https://tools.ietf.org/html/draft-pardue-httpbis-http-network-tunnelling

SSH request(s) SSH request(s)

Client Proxy server Server - example.com

(SSH)

HTTP connection SSH connection over HTTP

:method: CONNECT

:authority: example.com:22

Opens connection to

example.com on port

22 and allows the

original client to send

messages to it

Figure 10.10 Using CONNECT to tunnel an SSH connection over an HTTP connection

www.EBooksWorld.ir

344 CHAPTER 10 Where HTTP goes from here
Server response

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade

Then the HTTP connection, still delivered over TCP ports 80 or 443, is converted to a
WebSockets connection. WebSockets can be more efficient than HTTP for smaller
messages, as there’s no overhead for HTTP headers (which are much reduced in
HTTP/2 thanks to HPACK but still have overhead), and it also allows full duplex com-
munication. Using WebSockets can be useful, therefore, for real-time update applica-
tions such as chat, financial price applications, or sports updates.

 This method isn’t supported over HTTP/2 because it requires upgrading the whole
HTTP connection, which doesn’t make sense for a multiplexed connection in which
only the stream should be upgraded. Therefore, WebSockets over HTTP/2 should use
the CONNECT method70 (with a slight variation to allow the protocol to be specified).

 Client request (some WebSockets header fields aren’t included for simplicity’s sake)

:method = CONNECT
:protocol = websocket
:scheme = https
:path = /application
:authority = example.com

Server response

:status = 200

Thereafter, WebSockets data can be exchanged in either direction on that stream.
The other HTTP/2 streams on that connection can continue to talk HTTP, other
WebSockets communications, or even some other protocol that could be defined in a
similar way. WebSockets opens many possibilities that the request-and-response nature
of HTTP makes difficult. The same method could be used to switch to any other pro-
tocol, so I end this chapter with yet another way of using HTTP!

 In this final chapter, I attempted to look to the future to see where HTTP goes
from here. There’s admittedly a lot of conjecture and little definitive information
on what the next version of HTTP may look like, because at this stage, nobody
knows. Two things you can be sure of are that HTTP will stay an important part of
the internet and that its use will likely grow. At the beginning of chapter 1, I stated
that “the World Wide Web was often incorrectly used interchangeably with the inter-
net, [but] the continued rise of the Web, or at least HTTP which was created for it,
may mean that soon it may not be as far off the truth as it once was.” This chapter
explains the various options that have allowed HTTP use to grow and that will con-
tinue to allow growth.

70 https://tools.ietf.org/html/draft-ietf-httpbis-h2-websockets

www.EBooksWorld.ir

345Summary
 By now, you should have a good understanding of HTTP/2 and the surrounding
technologies. You’ve also discovered that although HTTP/2 offers many opportuni-
ties and potential speed improvements, it’s not guaranteed to improve performance.
Those who are looking for a quick fix may be somewhat dissatisfied, but HTTP/2 is
still faster for most sites, and it’s still in the early stages of use. QUIC and HTTP/3 will
use the same concepts as HTTP/2 and take them to the next level. With the knowl-
edge you’ve gained from this book, you should be well positioned to take advantage of
QUIC. Even before QUIC comes along, there’s still much to learn about HTTP/2 and
how to use it best. But I hope that this book has given you the ability and interest to
experiment further and watch the evolution of this interesting, widely used protocol.
Happy experimenting!

Summary
 HTTP/2 had some controversies during the standardization process and a fair

number of detractors. Those issues haven’t hindered adoption of HTTP/2 in
the real world and in most cases haven’t proved to be as problematic as feared.

 HTTP/2 has been widely adopted in the real world and can already be consid-
ered a success for that reason.

 HTTP now consists of the HTTP/2 binary framing layer and the HTTP seman-
tics that are sent via these frames.

 QUIC is seen as the natural successor to HTTP/2 and when this is published,
the HTTP part of the QUIC specification will be called HTTP/3.

 HTTP has many methods for extending its use, and HTTP/2 adds more.
 HTTP can be used to transport other protocols.
 The future of HTTP looks bright!

www.EBooksWorld.ir

appendix
Upgrading common

web servers to HTTP/2

This appendix covers upgrading some common web servers to enable HTTP/2
support in direct mode (A1) or as a reverse proxy (A2). The appendix is in no way
intended to be a definitive reference for all web servers that support HTTP/2; you
should refer to the documentation for your own web browser.

A.1 Upgrading your web server to support HTTP/2
In the following sections, I discuss how to install HTTP/2-compatible versions of
common web servers and also how to configure them for HTTP/2 support. Note
that this list is far from exhaustive and will change over time; it’s meant to reflect
some examples of setting up HTTP/2-compatible web servers. Each section repeats
many steps, so skip to the section on the server you’re most interested in.

Self-signed HTTPS certificates and certificate errors
Most of the examples in this appendix use self-signed SSL/TLS certificates (AKA
HTTPS certificates). These certificates are supplied with the web server or created
with an openssl command or the like. For a certificate to be recognized and
trusted by a browser, it must be issued by a recognized certificate authority (CA).
Each browser or operating system keeps a list of these CAs that it checks any cer-
tificates against. The dummy certificates that come with web servers (and those
that you create in this appendix) aren’t issued by a CA, and they’re known as self-
signed certificates. These certificates allow the site to run over HTTPS, but you get
a warning from the browser because of the certificate. It’s usually possible to skip
through these errors and gain access to the site, but there are a few issues with
using self-signed certificates even if you ignore the scary warning and the red padlock.
346

www.EBooksWorld.ir

347Upgrading your web server to support HTTP/2
A.1.1 Apache

Apache HTTP Server (AKA httpd) introduced HTTP/2 support in version 2.4.17
through the mod_http2 module (called mod_h2 when it was managed outside core
Apache as a separate module).1 It was marked as experimental until version 2.4.26. I
recommend running the latest version of Apache (available at http://httpd.apache.org/),
as this module was actively improved between those versions and beyond.

 Apache supports HTTP/2 over HTTPS using ALPN and never implemented the
older NPN method of negotiating SPDY/HTTP/2. Therefore, Apache requires at
least OpenSSL 1.0.2 (or the equivalent) to enable HTTP/2 support even for browsers
that still support NPN. Apache does allow HTTP/2 over plain-text HTTP connections
(known as h2c), though this feature is of limited use because no browser supports it.
Apache uses the nghttp2 HTTP/2 library as the basis of its HTTP/2 functionality and
requires version 1.5.0 or later for full functionality at this writing.

 HTTP/2 push is supported in Apache (covered in chapter 5). Apache also has the
mod_proxy_http2 module, which allows connections to backend systems over HTTP/2,
though this module is still marked as experimental at this writing. As the “Do you
need to speak HTTP/2 all the way through?” sidebar in chapter 3 discusses, speaking
HTTP/2 all the way through to a backend connection often isn’t necessary.

APACHE ON WINDOWS

Although using Apache on Windows on production systems perhaps isn’t as common
as it is on Linux, the Windows version is often used for development purposes. Com-
piling Apache from source for Windows is beyond the scope of this book. But if
you’re looking to get Apache up and running locally to experiment with HTTP/2,
you can use prebuilt Windows versions from a variety of sources—unfortunately, not
from Apache. Popular options for Windows versions include Apache Haus,2 Apache

When clicking through certificate errors, however, Chrome and Opera don’t use HTTP
caching as a security feature,a so HTTP/2 push can’t be used.

It’s possible to add a self-signed certificate to the trust store of the computer so that
the browser will recognize the certificate, display the green padlock, and resolve
these errors. This technique is recommended for local development (via localhost).
How you do it depends on your browser and operating system, but usually, double-
clicking the certificate gives the option to do it.

If you’re running a server with a real domain name, obtaining a real certificate is much
preferred, because all browsers will recognize it without requiring an extra step to reg-
ister it. This option isn’t available for localhost or any nonprivate IP address (such as
127.0.0.1 or ::0).

a https://bugs.chromium.org/p/chromium/issues/detail?id=103875#c8

1 https://github.com/icing/mod_h2
2 https://www.apachehaus.com/cgi-bin/download.plx

www.EBooksWorld.ir

348 APPENDIX Upgrading common web servers to HTTP/2
Lounge,3 and various XAMPP installations. These options are listed on the Apache web-
site at http://httpd.apache.org/docs/current/platform/windows.html#down. You usu-
ally need to pick the type of Apache to use. Your choice depends on the following:

■ Which version of Visual C++ you want to use—You may have to install Visual C++
Distributable (available from Microsoft). Be aware that Microsoft likes to refer
to these distributables by year in some documentation and by version in other
documentation. I list both types for ease of reference:
– Visual Studio 2008: VC++ 9
– Visual Studio 2010: VC++ 10
– Visual Studio 2012: VC++ 11
– Visual Studio 2013: VC++ 12
– Visual Studio 2015: VC++ 14
– Visual Studio 2017: VC++ 15
You can see the versions you’ve installed in the Add or Remove Programs Con-
trol Panel of your Windows system. Installing a later version is easy, and I recom-
mend choosing the latest version.

■ The architecture—The choice is between 64-bit and 32-bit (aka x86). If you’re
running a 64-bit operating system, I recommend 64-bit Apache. If you’re not
running a 64-bit operating system, ask yourself why not, in this day and age! You
can see the architecture by right-clicking My Computer (or My PC, in some ver-
sions) and choosing Properties from the contextual menu. In the resulting win-
dow, you should see the architecture listed below System Type.

■ The OpenSSL version—You need 1.0.2 or later, but some sites offer builds against
1.1.0 or newer, and you may as well use the latest version where possible.

Here’s how to install the Apache Haus packages with HTTP/2 support. Installing the
others is similar:

1 Download the appropriate version, based on the preceding three choices, and
unzip the folder to your preferred location (C:\Program Files\Apache\Apache24,
for example).

2 Edit the conf\httpd.conf file to change this line

Define SRVROOT "/Apache24"

to your server location, for example

Define SRVROOT "C:\Program Files\Apache\Apache24"

Make sure that you don’t end this line with a slash (C:\Program Files\Apache\
Apache24\), and remember to include the path in quotes if it contains a space
(such as Program Files).

3 https://www.apachelounge.com/download/

www.EBooksWorld.ir

349Upgrading your web server to support HTTP/2
3 Make sure that the mod_http2 module is activated and not commented out
(with a hash before it):

LoadModule http2_module modules/mod_http2.so

4 Save the changes to httpd.conf, which may require administrator privileges if
it’s in the Program Files folder.

5 Start Apache, preferably from the command prompt so that you can see any errors:

cd "c:\Program Files\Apache\Apache24\bin"
httpd.exe

Following are some common problems that could prevent this command from
working:

– An error message complains about a missing VCRUNTIME140.dll or a simi-
lar file, which indicates that you haven’t installed the required Visual C++
redistributable, as discussed earlier in this appendix.

– The log file is set to read-only, so you see an error message about not being
able to open the Error log. Right-click the C:\Program Files\Apache\
Apache24\Logs folder, choose Properties from the contextual menu, and
deselect the Read-Only option if it’s selected.

– A Windows Firewall pop-up window asks you to give it access to this web
server. You need to answer yes.

– An error message says you don’t have permission to port 80 or port 443. Most
likely, another program is using this port. Common culprits include World
Wide Web Publishing Service (AKA IIS) in the Services application. (Stop
this service and set it to Manual instead of Automatic if you don’t use IIS,
Skype, or another web server.)

6 When Apache is running, check http://localhost, where you should see the
Apache Haus welcome page. Then try https://locahost, where you get a certifi-
cate error if you’re using the default dummy certificate. Skip the certificate
error, and you should see your page delivered over HTTP/2 if you open devel-
oper tools and add the Protocol column, as shown in figure A.1.

7 When you have Apache running manually and correctly, you can install it as a
service to make stopping and starting easy and to have it start automatically
when your machine restarts. Launch a command prompt as administrator, and
run the following commands:

cd "c:\Program Files\Apache\Apache24\bin"
httpd.exe -k install

You should see the service on your Services screen. You can remove the service
with the following code:

cd "c:\Program Files\Apache\Apache24\bin"
httpd.exe -k uninstall

www.EBooksWorld.ir

350 APPENDIX Upgrading common web servers to HTTP/2
APACHE ON LINUX

Using HTTP/2 on Apache on Linux servers is more complicated, due to the older
versions of Apache and the required software (discussed in chapter 3). You often have
to install from source. I discuss one such method for Red Hat/CentOS in this section,
but you need to adapt this method if you’re running a different flavor of Linux.

 Red Hat Enterprise Linux (RHEL) and CentOS, which it’s based on, added
OpenSSL 1.0.2 support in version 7.4, which solves one issue. But at this writing, they
don’t include a version of Apache with HTTP/2 support; instead, they include the
older 2.4.6 version by default. Also, HTTP/2 isn’t supported when Apache is using
the prefork MPM (Multi-Processing Module),4 which is often installed by default for
compatibility reasons and can’t be changed without recompiling.

 Two semiofficial additional repos are available for Red Hat/CentOS:

■ The Extra Packages for Enterprise Linux (EPEL) repo5 is maintained by a Fedora
special interest group and allows ease of installation of additional packages for

4 https://serverfault.com/questions/383526/how-do-i-select-which-apache-mpm-to-use
5 https://fedoraproject.org/wiki/EPEL

Figure A.1 Apache running HTTP/2

www.EBooksWorld.ir

351Upgrading your web server to support HTTP/2
Red Hat/CentOS. Unfortunately, it doesn’t include Apache, though it does
include a more recent version of nghttp2 needed to enable HTTP/2 support
in Apache.

■ The Red Hat Software Collections (RHSCL) repo6 is an officially maintained
Red Hat repo that includes later versions of common software. Version 3.1
includes Apache 2.4.27, which includes HTTP/2 support provided that you’re
using RHEL/CentOS 7.4 or later. This repo installs an additional version of
Apache (apache24) in a separate location (/opt/rh/httpd24/) with different
configuration files and locations from normal, so it can take some getting used
to. Also, because HTTP/2 is in active development, additional developments
have occurred since version 2.4.27. These collections give you a semi-supported
version, but may not be ideal, because they may be running older versions.

To get the latest version, you probably need to install from an unofficial location or
install from source code. Neither method is ideal or to be chosen without careful con-
sideration (see chapter 3).

 With those warnings dispensed, and assuming that you still want to download from
source, I’ll show you how. The exact procedure depends on the version of RHEL/
CentOS you’re using. For versions before 7.4, you also have to install OpenSSL from
source, as version 1.0.2 with ALPN support wasn’t available. For 7.4 and later, some of
the steps are easier because you can use the default version of OpenSSL:

1 Install all the dependencies required:

sudo yum -y install wget
sudo yum -y install perl
sudo yum -y install zlib-devel
sudo yum -y install gcc
sudo yum -y install pcre-devel
sudo yum -y install expat-devel
sudo yum -y install epel-release

2 Set up a directory for the software:

cd /tmp
mkdir sources
cd sources

For OpenSSL, you have two choices.

If you’re using RHEL/CentOS 7.4 or later, you can use the packaged version
of OpenSSL, which includes ALPN support:

sudo yum -y install openssl-devel

6 https://developers.redhat.com/products/softwarecollections/overview/

www.EBooksWorld.ir

352 APPENDIX Upgrading common web servers to HTTP/2
If you’re using an older version or want the latest OpenSSL, you have to install
it from source:

#Get it from http://openssl.org/source/
#For example:
wget https://www.openssl.org/source/openssl-1.1.1a.tar.gz
wget https://www.openssl.org/source/openssl-1.1.1a.tar.gz.asc
#Verify the package after download
gpg --verify openssl-1.1.1a.tar.gz.asc
#If you get a "Can't check signature: No public key" error
#then get the appropriate public key and verify again.
#For example:
gpg --recv-keys 0E604491
gpg --verify openssl-1.1.1a.tar.gz.asc
#Note you will see a WARNING that the key isn’t certified
#with a trusted signature. This is expected and isn’t covered here.
#Extract the file and compile it:
tar -zxvf openssl-1.1.1a.tar.gz
cd openssl-1.1.1a
./config shared zlib-dynamic --prefix=/usr/local/ssl
make
sudo make install
cd ..

3 Install nghttp2. Again, you can use the packaged version:

sudo yum install -y libnghttp2-devel

This version works for both RHEL/CentOS 6 and 7. If you want to get the latest
version, because it has features you want to use, install from source (but note
that no PGP key is included):

#Download and install nghttp2 (needed for mod_http2).
#Get it from https://nghttp2.org/
#Latest version here: https://github.com/nghttp2/nghttp2/releases/
#For example:
wget https://github.com/nghttp2/nghttp2/releases/download/v1.34.0/
nghttp2-1.34.0.tar.gz
tar -zxvf nghttp2-1.34.0.tar.gz
cd nghttp2-1.34.0
./configure
make
sudo make install
cd ..

4 Next, grab the signature keys needed to verify the Apache download:

#Download and install PGP keys used by Apache
wget https://www.apache.org/dist/httpd/KEYS
gpg --import KEYS
wget https://people.apache.org/keys/group/apr.asc
gpg --import apr.asc

www.EBooksWorld.ir

353Upgrading your web server to support HTTP/2
5 Now you need to install the apr and apr-util development libraries. If you’re
using RHEL/CentOS 7.4 and the packaged OpenSSL (1.0.2), you can use the
packaged versions:

sudo yum -y install apr-devel
sudo yum -y install apr-util-devel

If you want to use Openssl 1.1.0 or above or are using a version of RHEL/Cen-
tOS before 7.4, you should install from source:

#Download and install latest apr
#Note if using openssl 1.1.0 or above then need to be on APR 1.6 or above
#Get it from http://apr.apache.org/
#For example:
wget http://mirrors.whoishostingthis.com/apache/apr/apr-1.6.5.tar.gz
wget https://www.apache.org/dist/apr/apr-1.6.5.tar.gz.asc
#Verify the package after download
gpg --verify apr-1.6.5.tar.gz.asc
#Note you will see a WARNING that the key isn’t certified
#with a trusted signature. This is expected.
#Install the package:
tar -zxvf apr-1.6.5.tar.gz
cd apr-1.6.5
./configure
make
sudo make install
cd ..

#Download and install latest apr-util
#Note if using openssl 1.1.0 then need to be on APR-UTIL 1.6 or above
#Get it from http://apr.apache.org/
#For example:
wget http://mirrors.whoishostingthis.com/apache/apr/apr-util-1.6.1.tar.gz
wget https://www.apache.org/dist/apr/apr-util-1.6.1.tar.gz.asc
#Verify the package after download:
gpg --verify apr-util-1.6.1.tar.gz.asc
#Note you will see a WARNING that the key isn’t certified
#with a trusted signature. This is expected.
tar -zxvf apr-util-1.6.1.tar.gz
cd apr-util-1.6.1
./configure --with-apr=/usr/local/apr
make
sudo make install
cd ..

6 Finally, install Apache:

#Download and install apache
#For example:
wget http://mirrors.whoishostingthis.com/apache/httpd/httpd-
2.4.37.tar.gz
wget https://www.apache.org/dist/httpd/httpd-2.4.37.tar.gz.asc
#Verify the package after download:

www.EBooksWorld.ir

354 APPENDIX Upgrading common web servers to HTTP/2
gpg --verify httpd-2.4.37.tar.gz.asc
#Note you will see a WARNING that the key isn’t certified
#with a trusted signature. This is expected.
#Extract the source code
tar -zxvf httpd-2.4.37.tar.gz
cd httpd-2.4.37

7 This step depends on whether you compiled openssl, nghttp, apr, and apr-util
in the preceding steps. If you’re using the system-installed versions of all these
libraries, you can compile Apache as follows:

./configure --enable-ssl --enable-so --enable-http2
make
sudo make install
cd ..

If you used a local apr, apr-util, and openssl, you need to do the following to
use those versions:

./configure --with-ssl=/usr/local/ssl \
 --with-apr=/usr/local/apr/bin/apr-1-config \
 --with-apr-util=/usr/local/apr/bin/apu-1-config \
 --enable-ssl --enable-so --enable-http2make
sudo make install
cd ..

This code should install Apache to /usr/local/apache2.

8 Start Apache to see whether it works with basic HTTP:

sudo /usr/local/apache2/bin/apachectl -k graceful

If all is well, you should be able to visit your site over HTTP and see the default
“It works” page.

Getting HTTP/2 working requires a few more steps.

9 If you compiled OpenSSL or nghttp2, you need to edit the envvars file in the
bin directory to load the paths for the local installations. If you’re using the stan-
dard installs because you’re using 7.4, skip to the next step:

if test "x$LD_LIBRARY_PATH" != "x" ; then
 LD_LIBRARY_PATH="/usr/local/apache2/lib:/usr/local/lib/:
 /usr/local/ssl/lib:$LD_LIBRARY_PATH"
else
 LD_LIBRARY_PATH="/usr/local/apache2/lib:/usr/local/lib/:
 /usr/local/ssl/lib"
fi

10 Uncomment the following modules from your httpd.conf file to load the SSL
and HTTP modules, as well as the socache module required by SSL:

LoadModule socache_shmcb_module modules/mod_socache_shmcb.so
LoadModule ssl_module modules/mod_ssl.so
LoadModule http2_module modules/mod_http2.so

www.EBooksWorld.ir

355Upgrading your web server to support HTTP/2
11 Add this line to include the SSL config:

Include conf/extra/httpd-ssl.conf

12 Add this line to show that the server prefers HTTP/2 (h2) first and then
HTTP/1 and to enable logging:

<IfModule http2_module>
 Protocols h2 http/1.1
 LogLevel http2:info
</IfModule>

You can also add h2c to the Protocols line if you want to enable HTTP/2 over
HTTP (and not require HTTPS), but this feature isn’t supported by any
browser and is of limited use.

13 Install an HTTPS certificate. Obtaining a certificate is beyond the scope of this
book, so I show you how to use OpenSSL to generate a basic self-signed certificate.
The browser won’t recognize this certificate, but it’ll work for some basic tests:

#Note the openssl command I’ll use needs to be run as root
sudo su –
cd /usr/local/apache2/conf
openssl req \
 -newkey rsa:2048 \
 -x509 \
 -nodes \
 -keyout server.key \
 -new \
 -out server.crt \
 -subj /CN=server.domain.tld \
 -reqexts SAN \
 -extensions SAN \
 -config <(cat /etc/pki/tls/openssl.cnf \
 <(printf '[SAN]\nsubjectAltName=DNS:server.domain.tld')) \
 -sha256 \
 -days 3650

You should enter a correct subject and SAN for your server (shown as
server.domain.tld in two places in the preceding code), but as the certificate
won’t be recognized anyway, this information isn’t too important.

The default Apache config (in conf/extra/httpd-ssl.conf) expects the certifi-
cates to be called server.key and server.crt, but change the names as appropriate
if you’re using nondefault config.

14 Stop and restart Apache to pick up the new config. A graceful restart, which
you’d normally do, isn’t sufficient if you changed the envvars file in step 9:

/usr/local/apache2/bin/apachectl -k stop

Run the following command to ensure that all httpd processes have stopped:

ps -ef | grep httpd

www.EBooksWorld.ir

356 APPENDIX Upgrading common web servers to HTTP/2
Restart with the following command:

/usr/local/apache2/bin/apachectl -k graceful

15 Visit the site over HTTPS, and ignore the certificate error if you’re using the
self-signed test certificate from step 13 instead of a real certificate. You should
see the page loaded over HTTP/2 (h2), similar to figure A.1, by opening devel-
oper tools and adding the Protocol column.

APACHE ON MACOS
Installing Apache on macOS is similar to installing it on Linux. First, check the
installed version. The example commands are for macOS Mojave 10.14:

$ httpd -V
Server version: Apache/2.4.34 (Unix)
Server built: Aug 17 2018 16:29:43
Server's Module Magic Number: 20120211:79
Server loaded: APR 1.5.2, APR-UTIL 1.5.4
Compiled using: APR 1.5.2, APR-UTIL 1.5.4
Architecture: 64-bit
Server MPM: prefork
 threaded: no
 forked: yes (variable process count)

This initially looks promising; you’re using a recent version of Apache that has
HTTP/2 support. You can see, however, that Apache has been compiled with the pre-
fork version of Apache, which doesn’t support HTTP/2. You have two options:

■ Install from another package manager, such as Homebrew.7

■ Install from source.

Neither option is ideal (see chapter 3).
 Installing via Homebrew is simple and involves two commands:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install)"

brew install httpd

To check it, start Apache:

brew services restart httpd

Homebrew makes Apache available over ports 8080 and 8443 rather than the usual 80
and 443, so visit http://localhost:8080/ to see your new web server.

7 https://brew.sh/

www.EBooksWorld.ir

357Upgrading your web server to support HTTP/2
Configuring HTTP/2 requires editing the main configuration file

/usr/local/etc/httpd/httpd.conf

and making the following changes

1 Switch from prefork MPM to event MPM:

LoadModule mpm_event_module lib/httpd/modules/mod_mpm_event.so
#LoadModule mpm_prefork_module lib/httpd/modules/mod_mpm_prefork.so

2 Uncomment the following modules:

LoadModule socache_shmcb_module lib/httpd/modules/mod_socache_shmcb.so
LoadModule ssl_module lib/httpd/modules/mod_ssl.so
LoadModule http2_module lib/httpd/modules/mod_http2.so

3 Provide a server name (such as localhost):

#ServerName www.example.com:8080
ServerName localhost

4 Add the following config at the bottom:

<IfModule http2_module>
 Protocols h2 http/1.1
 LogLevel http2:info
</IfModule>

5 Set up an HTTPS certificate:

#Note the openssl command I’ll use needs to be run as root
sudo su –
cd /usr/local/etc/httpd
cat /System/Library/OpenSSL/openssl.cnf > /tmp/openssl.cnf
echo '[SAN]\nsubjectAltName=DNS:localhost' >> /tmp/openssl.cnf
openssl req \
 -newkey rsa:2048 \
 -x509 \
 -nodes \
 -keyout server.key \
 -new \
 -out server.crt \
 -subj /CN=localhost \
 -reqexts SAN \
 -extensions SAN \
 -config /tmp/openssl.cnf \
 -sha256 \
 -days 3650

6 You should be good to restart Apache:

brew services restart httpd

Check https://localhost:8443/, and you should see the page served over HTTP/2.

www.EBooksWorld.ir

358 APPENDIX Upgrading common web servers to HTTP/2
 Downloading from source is a little more convoluted and similar to the Linux setup:

1 Set up a directory for the software:

cd /tmp
mkdir sources
cd sources

2 Install the latest OpenSSL (or LibreSSL, if you prefer):

#Get it from http://openssl.org/source/
#For example:
curl -O https://www.openssl.org/source/openssl-1.1.1a.tar.gz
curl -O https://www.openssl.org/source/openssl-1.1.1a.tar.gz.sha256
#Verify the package after download by comparing these two values:
openssl dgst -sha256 openssl-1.1.1a.tar.gz
cat openssl-1.1.1a.tar.gz.sha256
#Extract the file and compile it:
tar -zxvf openssl-1.1.1a.tar.gz
cd openssl-1.1.1a
./config shared zlib-dynamic --prefix=/usr/local/ssl
make
sudo make install
cd ..

3 Install the nghttp2 module:

#Download and install nghttp2 (needed for mod_http2).
#Get it from https://nghttp2.org/
#Latest version here: https://github.com/nghttp2/nghttp2/releases/
#For example:
curl -O -L https://github.com/nghttp2/nghttp2/releases/download/v1.33.0/
nghttp2-1.33.0.tar.gz
tar -zxvf nghttp2-1.33.0.tar.gz
cd nghttp2-1.33.0
./configure
make
sudo make install
cd ..

4 Get apr, apr-util, and PCRE:

#Download and install latest apr
#Note if using openssl 1.1.0 then need to be on APR 1.6 or above
#Get it from http://apr.apache.org/
#For example:
curl -O http://mirrors.whoishostingthis.com/apache/apr/apr-1.6.5.tar.gz
curl -O https://www.apache.org/dist/apr/apr-1.6.5.tar.gz.sha256
#Verify the package after download
cat apr-1.6.5.tar.gz.sha256
openssl dgst -sha256 apr-1.6.5.tar.gz
#Install the package:
tar -zxvf apr-1.6.5.tar.gz
cd apr-1.6.5
./configure

www.EBooksWorld.ir

359Upgrading your web server to support HTTP/2
make
sudo make install
cd ..

#Download and install latest apr-util
#Note if using openssl 1.1.0 then need to be on APR-UTIL 1.6 or above
#Get it from http://apr.apache.org/
#For example:
curl -O http://mirrors.whoishostingthis.com/apache/apr/
apr-util-1.6.1.tar.gz
curl -O https://www.apache.org/dist/apr/apr-util-1.6.1.tar.gz.sha256
#Verify the package after download:
cat apr-util-1.6.1.tar.gz.sha256
openssl dgst -sha256 apr-util-1.6.1.tar.gz
#Install the package:
tar -zxvf apr-util-1.6.1.tar.gz
cd apr-util-1.6.1
./configure --with-apr=/usr/local/apr
make
sudo make install
cd ..

#Download and install latest PCRE from version 8 branch
#note apache only works with PCRE 8 branch and not PCRE 10
#Get it from http://www.pcre.org/
#For example:
curl -O https://ftp.pcre.org/pub/pcre/pcre-8.42.tar.gz
#Install the package:
tar -zxvf pcre-8.42.tar.gz
cd pcre-8.42
./configure
make
sudo make install
cd ..

5 Install Apache:

#Download and install apache
#For example:
curl -O http://mirrors.whoishostingthis.com/apache/httpd/httpd-
2.4.37.tar.gz
curl -O https://www.apache.org/dist/httpd/httpd-2.4.37.tar.gz.sha256
#Verify the package after download:
cat httpd-2.4.37.tar.gz.sha256
openssl dgst -sha256 httpd-2.4.37.tar.gz
#Extract the source code
tar -zxvf httpd-2.4.37.tar.gz
cd httpd-2.4.37
./configure --with-ssl=/usr/local/ssl --with-pcre=/usr/local/bin/pcre-
config --enable-ssl --enable-so --with-apr=/usr/local/apr/bin/apr-1-
config --with-apr-util=/usr/local/apr/bin/apu-1-config --with-nghttp2=/
usr/local/opt/nghttp2 --enable-http2
make
sudo make install
cd ..

www.EBooksWorld.ir

360 APPENDIX Upgrading common web servers to HTTP/2
This code should install Apache to /usr/local/apache2.

6 Start Apache to see whether it works with basic HTTP:

sudo /usr/local/apache2/bin/apachectl -k graceful

If all is well, you should be able to visit your site over HTTP and see the default
“It works” page on http://localhost, as shown in figure A.2.

Getting HTTP/2 working requires a few more steps.

7 Uncomment the following modules from your httpd.conf file to load the SSL
and HTTP modules, as well as the socache module required by SSL:

LoadModule socache_shmcb_module modules/mod_socache_shmcb.so
LoadModule ssl_module modules/mod_ssl.so
LoadModule http2_module modules/mod_http2.so

8 Add this line to include the SSL config:

Include conf/extra/httpd-ssl.conf

9 Add this line to show that this server prefers HTTP/2 (h2) first and then
HTTP/1 and to enable logging:

<IfModule http2_module>
 Protocols h2 http/1.1
 LogLevel http2:info
</IfModule>

Figure A.2 Default Apache “It works!” page on macOS

www.EBooksWorld.ir

361Upgrading your web server to support HTTP/2
You can add h2c to the Protocols line if you want to enable HTTP/2 over HTTP
(and not require HTTPS), but this feature isn’t supported by any browser and is
of limited use.

10 Next, install an HTTPS certificate. Obtaining a certificate is beyond the scope
of this book, so I show you how to use OpenSSL to generate a basic self-signed
certificate. The browser won’t recognize this certificate, but it’ll work for some
basic tests:

#Note the openssl command I’ll use needs to be run as root
sudo su –
cd /usr/local/apache2/conf
cat /System/Library/OpenSSL/openssl.cnf > /tmp/openssl.cnf
echo '[SAN]\nsubjectAltName=DNS:localhost' >> /tmp/openssl.cnf
openssl req \
 -newkey rsa:2048 \
 -x509 \
 -nodes \
 -keyout server.key \
 -new \
 -out server.crt \
 -subj /CN=localhost \
 -reqexts SAN \
 -extensions SAN \
 -config /tmp/openssl.cnf \
 -sha256 \
 -days 3650

You should give a correct subject and SAN for your server (shown as localhost in
two places in the code), but the certificate won’t be recognized anyway, so this
information isn’t too important.

The default Apache config (in conf/extra/httpd-ssl.conf) expects the certifi-
cates to be called server.key and server.crt, but change the names as appropriate
if you’re using nondefault config.

11 Stop and restart Apache to pick up the new config with the following com-
mand:

/usr/local/apache2/bin/apachectl -k graceful

12 Visit the site over HTTPS, and ignore the certificate error if you’re using the
self-signed test certificate from step 10 instead of a real certificate. You should
see the page loaded over HTTP/2 (h2), similar to figure A.1, by opening devel-
oper tools and adding the Protocol column.

A.1.2 nginx

nginx (pronounced Eengine-X) introduced HTTP/2 support in version 1.9.5 through
ngx_http_v2_module, which replaced ngx_http_spdy_module. I recommend that you
run the latest stable version of nginx (available at https://nginx.org/en/download.html),

www.EBooksWorld.ir

362 APPENDIX Upgrading common web servers to HTTP/2
as this module is still fairly new and was actively improved between 1.9.5 and the cur-
rent version at this writing (1.14.2).

 nginx doesn’t support backend connections over HTTP/2 (nginx acting as a
reverse proxy), and at this writing, there are no no plans to add this support.8 nginx
supports HTTP/2 over HTTPS using NPN and ALPN. As Chrome supports only
ALPN, however, it’s best to build nginx with at least OpenSSL 1.0.2 (or the equivalent)
to enable HTTP/2 support for all browsers. nginx allows HTTP/2 over plain-text
HTTP connections (known as h2c), though this feature is of limited use because no
browser supports it.

NGINX ON WINDOWS

Unlike Apache, nginx provides Windows builds on its download page.9 To get an
HTTP/2 version of nginx running on Windows, do the following:

1 Download the latest stable version from the download page.10

2 Unzip the software wherever you want to install it (such as C:\Program Files\nginx).
3 Start a command prompt as administrator, and start the nginx.exe executable:

cd C:\Program Files\nginx
start nginx.exe

If you get any errors like these, another web server is already listening on port 80:

nginx: [emerg] bind() to 0.0.0.0:80 failed (10013: An attempt was made
to access a socket in a way forbidden by its access permissions)

On Windows, this server usually is the World Wide Web Publishing Service/IIS,
so go into Services and stop it. Skype can cause similar problems.

At this point, you should be able to view the default nginx page over HTTP
(but not HTTPS), and it should be served over HTTP/1.1 when you open
developer tools and add the Protocol column.

4 Next, create some HTTPS certificates. Unfortunately, this process is a little
tricky on Windows, as unlike Apache, nginx doesn’t include any dummy certifi-
cates in the default Windows download. The easiest option is to generate the
certificates on a Linux server by using the command shown in the Apache on
Linux section. If using a Linux server isn’t an option, use an online service such
as http://www.selfsignedcertificate.com/ to generate certificates. These certifi-
cates should be used only on test servers, not on production servers. Save the
key in a file called cert.key in the conf directory, and save the certificate in a file
called cert.pem.

8 https://trac.nginx.org/nginx/ticket/923
9 https://nginx.org/en/download.html
10 https://nginx.org/en/download.html

www.EBooksWorld.ir

363Upgrading your web server to support HTTP/2
5 Configure nginx by editing the main configuration file (such as conf/nginx.conf),
uncomment the SSL host section, and add http2 to the listen command:

 # HTTPS server
 #
 server {
 listen 443 ssl http2;

6 Reload the nginx config by running the following command in your command
line:

nginx -s reload

7 Visit the default website over HTTP/2. You may have to ignore certificate errors
if you’re using self-signed certificates, which the browser won’t recognize.

NGINX ON LINUX FROM NGINX REPOS

nginx.org offers official nginx repositories for the major operating systems.11 As of ver-
sion 1.12.2, the stable repo is built against OpenSSL 1.0.2 with ALPN support where
the operating system supports it, so you can install the repo on an RHEL/CentOS 7.4
machine by following these steps:

1 Install the nginx repo by creating the repo file by using an editor such as vi:

sudo vi /etc/yum.repos.d/nginx.repo

2 Add the config to the nginx.repo file.
For RHEL 7 (7.4 minimum), use

[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/rhel/7/$basearch/
gpgcheck=0
enabled=1

For CentOS 7 (7.4 minimum), use the same code but change baseurl as follows:

baseurl=http://nginx.org/packages/centos/7/$basearch/

nginx also has a mainline version that includes the latest fixes, but I don’t rec-
ommend installing it on a production system.

3 Install nginx:

sudo yum install nginx

4 Start nginx:

sudo nginx

11 https://nginx.org/en/linux_packages.html

www.EBooksWorld.ir

364 APPENDIX Upgrading common web servers to HTTP/2
5 Check the default page loads over HTTP by opening developer tools and add-
ing the Protocol column.

6 To turn on HTTP/2, add a default_ssl.conf file:

vi /etc/nginx/conf.d/default_ssl.conf

7 Add the following to the default_ssl.conf file:

HTTPS server
#
server {
 listen 443 ssl http2;
 server_name localhost;

 ssl_certificate cert.pem;
 ssl_certificate_key cert.key;

 ssl_session_cache shared:SSL:1m;
 ssl_session_timeout 5m;

 ssl_ciphers HIGH:!aNULL:!MD5;
 ssl_prefer_server_ciphers on;

 location / {
 root /usr/share/nginx/html;
 index index.html index.htm;
 }

}

8 Create an HTTPS certificate:

#Note the openssl command I’ll use needs to be run as root
sudo su –
cd /etc/nginx/conf
openssl req \
 -newkey rsa:2048 \
 -x509 \
 -nodes \
 -keyout cert.key \
 -new \
 -out cert.pem \
 -subj /CN=server.domain.tld \
 -reqexts SAN \
 -extensions SAN \
 -config <(cat /etc/pki/tls/openssl.cnf \
 <(printf '[SAN]\nsubjectAltName=DNS:server.domain.tld')) \
 -sha256 \
 -days 3650

Replace server.domain.tld in both places with your domain name. You receive
a certificate error anyway, so don’t worry too much about this part.

www.EBooksWorld.ir

365Upgrading your web server to support HTTP/2
9 Reload the nginx config:

nginx -s reload

10 Load the page over HTTPS, and make sure that it’s displaying HTTP/2 by
opening developer tools and adding the Protocol column (refer to figure A.1).

NGINX ON LINUX FROM SOURCE CODE

Because the official packaged version of nginx is built against OpenSSL 1.0.2 for those
platforms that support it (such as RHEL/CentOS 7.4), you shouldn’t need to build
from source. If you’re on an older platform, follow these steps:

1 Install the dependencies:

sudo yum -y install wget
sudo yum -y install perl
sudo yum -y install zlib-devel
sudo yum -y install gcc
sudo yum -y install pcre-devel
sudo yum -y install expat-devel
sudo yum -y install epel-release
sudo yum -y install libnghttp2-devel
sudo yum -y install openssl-devel

cd /tmp
mkdir sources
cd sources

2 For RHEL/CentOS before 7.4, install OpenSSL from source as well:

#Install Openssl http://openssl.org/source/
#For example:
wget https://www.openssl.org/source/openssl-1.1.1a.tar.gz
wget https://www.openssl.org/source/openssl-1.1.1a.tar.gz.asc
#Verify the package after download
gpg --verify openssl-1.1.1a.tar.gz.asc
#If you get a “Can't check signature: No public key” error
#then get the appropriate public key and verify again.
gpg --recv-keys 0E604491
gpg --verify openssl-1.1.1a.tar.gz.asc
#Extract the file and compile it:
tar -zxvf openssl-1.1.1a.tar.gz
cd openssl-1.1.1a
./config shared zlib-dynamic --prefix=/usr/local/ssl
make
sudo make install
cd ..

3 Download and extract the latest stable version of nginx:

cd /tmp
mkdir sources
cd sources
#Download the lastest stable version

www.EBooksWorld.ir

366 APPENDIX Upgrading common web servers to HTTP/2
#Get it from https://nginx.org/en/download.html
#For example:
wget https://nginx.org/download/nginx-1.14.2.tar.gz
wget https://nginx.org/download/nginx-1.14.2.tar.gz.asc
#Verify download:
#nginx keys are here: https://nginx.org/en/pgp_keys.html
#Install them all like this:
wget https://nginx.org/keys/mdounin.key
gpg –import mdounin.key
#Then verify the package:
gpg --verify nginx-1.14.2.tar.gz.asc
#Note you will see a WARNING that the key isn’t certified
#with a trusted signature. This is expected.
#Extract the file and compile it:
tar -xvf nginx-1.14.2.tar.gz
cd nginx-1.14.2

4 Configure the make script.
For RHEL/CentOS 7.4, in which you’re using the system openssl, use the

following:

#Configure and compile:
./configure --with-http_ssl_module --with-http_v2_module

For RHEL/CentOS before 7.4, you need to use the custom OpenSSL you
installed:

#Configure and compile:
./configure --with-http_ssl_module --with-http_v2_module \
 --with-openssl=/tmp/sources/openssl-1.1.1a

5 Make and install the build:

make
sudo make install
cd ..

6 Start nginx:

sudo /usr/local/nginx/sbin/nginx

7 Test the basic HTTP site (but not HTTPS) by opening developer tools and add-
ing the Protocol column.

8 Configure nginx for HTTPS and HTTP/2 by editing the main configuration
file (such as /usr/local/nginx/conf/nginx.conf), making sure that the HTTPS
section is uncommented, and adding the http2 option shown in bold:

 # HTTPS server
 #
 server {
 listen 443 ssl http2;

www.EBooksWorld.ir

367Upgrading your web server to support HTTP/2
9 Create an HTTPS certificate:

#The openssl command needs to be run as root so sudo to that
sudo su –
cd /usr/local/nginx/conf
openssl req \
 -newkey rsa:2048 \
 -x509 \
 -nodes \
 -keyout cert.key \
 -new \
 -out cert.pem \
 -subj /CN=server.domain.tld \
 -reqexts SAN \
 -extensions SAN \
 -config <(cat /etc/pki/tls/openssl.cnf \
 <(printf '[SAN]\nsubjectAltName=DNS:server.domain.tld')) \
 -sha256 \
 -days 3650

You should give a correct subject and SAN for your server (shown as
server.domain.tld in two places in the code). But the certificate won’t be rec-
ognized anyway, so this part isn’t too important.

The default nginx config (in conf/nginx.conf) expects the certificates to be
called cert.key and cert.pem, but change the names as appropriate if you’re
using nondefault config.

10 Reload the nginx config:

sudo /usr/local/nginx/sbin/nginx -s reload

11 View the default “Welcome to nginx” page over HTTP/2.

NGINX ON MACOS
You have two ways to install nginx on macOS:

■ Install from another package manager, such as Homebrew.
■ Install from source.

Neither option is ideal (see chapter 3).
 Installing via Homebrew is simple and involves two commands:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install)"

brew install nginx

To check that works, start nginx:

brew services start nginx

www.EBooksWorld.ir

368 APPENDIX Upgrading common web servers to HTTP/2
Homebrew makes nginx available over ports 8080 and 8443 rather than the usual 80
and 443, so visit http://localhost:8080/ to see your new web server.

 Configuring HTTP/2 requires editing the main configuration file

/usr/local/etc/nginx/nginx.conf

and making the following changes

1 Uncomment the following lines to add the HTTPS server, and add the http2
directive to the listen line:

HTTPS server
#
server {
 listen 8443 ssl http2;
 server_name localhost;

 ssl_certificate cert.pem;
 ssl_certificate_key cert.key;

 ssl_session_cache shared:SSL:1m;
 ssl_session_timeout 5m;

 ssl_ciphers HIGH:!aNULL:!MD5;
 ssl_prefer_server_ciphers on;

 location / {
 root html;
 index index.html index.htm;
 }

}

2 Set up an HTTPS certificate:

#Note the openssl command I’ll use needs to be run as root
sudo su –
cd /usr/local/etc/nginx
cat /System/Library/OpenSSL/openssl.cnf > /tmp/openssl.cnf
echo '[SAN]\nsubjectAltName=DNS:localhost' >> /tmp/openssl.cnf
openssl req \
 -newkey rsa:2048 \
 -x509 \
 -nodes \
 -keyout cert.key \
 -new \
 -out cert.pem \
 -subj /CN=localhost \
 -reqexts SAN \
 -extensions SAN \
 -config /tmp/openssl.cnf \
 -sha256 \
 -days 3650

www.EBooksWorld.ir

369Upgrading your web server to support HTTP/2
3 Restart nginx:

brew services restart nginx

4 Check whether the site loads over HTTP/2 at https://localhost:8443/.

If you prefer not to use Homebrew, downloading from source is a little more convo-
luted and similar to the Linux setup:

1 Set up a directory for the software:

cd /tmp
mkdir sources
cd sources

2 Install the latest OpenSSL (or LibreSSL, if you prefer):

#Get it from http://openssl.org/source/
#For example:
curl -O https://www.openssl.org/source/openssl-1.1.1a.tar.gz
curl -o https://www.openssl.org/source/openssl-1.1.1a.tar.gz.sha256
#Verify the package after download by comparing these two values:
openssl dgst -sha256 openssl-1.1.1a.tar.gz
cat openssl-1.1.1a.tar.gz.sha256
#Extract the file and compile it:
tar -zxvf openssl-1.1.1a.tar.gz
cd openssl-1.1.1a
./config shared zlib-dynamic --prefix=/usr/local/ssl
make
sudo make install
cd ..

3 Install nginx:

#Download and install nginx
#For example:
curl -O https://nginx.org/download/nginx-1.14.2.tar.gz
#Extract the source code
tar -zxvf nginx-1.14.2.tar.gz
cd nginx-1.14.2
./configure --with-http_ssl_module --with-http_v2_module \
 --with-cc-opt="-I/usr/local/ssl/include" \
 --with-ld-opt="-L/usr/local/ssl/lib"
make
sudo make install
cd ..

4 Start nginx as root. Note that when installing from source, you use the default
ports of 80 and 443, which require root access to use:

sudo /usr/local/nginx/sbin/nginx

5 Test the basic HTTP site (but not HTTPS) by opening developer tools and add-
ing the Protocol column.

www.EBooksWorld.ir

370 APPENDIX Upgrading common web servers to HTTP/2
6 Configure HTTP/2 by editing the main configuration file, using a text editor
such as vi:

sudo vi /usr/local/nginx/conf/nginx.conf

Also uncomment the following lines to add the HTTPS server, and add the
http2 directive to the listen line:

HTTPS server
#
server {
 listen 443 ssl http2;
 server_name localhost;

 ssl_certificate cert.pem;
 ssl_certificate_key cert.key;

 ssl_session_cache shared:SSL:1m;
 ssl_session_timeout 5m;

 ssl_ciphers HIGH:!aNULL:!MD5;
 ssl_prefer_server_ciphers on;

 location / {
 root html;
 index index.html index.htm;
 }

}

7 Set up an HTTPS certificate:

#Note the openssl command I’ll use needs to be run as root
sudo su –
cd /usr/local/etc/nginx
cat /System/Library/OpenSSL/openssl.cnf > /tmp/openssl.cnf
echo '[SAN]\nsubjectAltName=DNS:localhost' >> /tmp/openssl.cnf
openssl req \
 -newkey rsa:2048 \
 -x509 \
 -nodes \
 -keyout cert.key \
 -new \
 -out cert.pem \
 -subj /CN=localhost \
 -reqexts SAN \
 -extensions SAN \
 -config /tmp/openssl.cnf \
 -sha256 \
 -days 3650

8 Restart nginx to pick up the new configuration:

sudo /usr/local/nginx/sbin/nginx -s reload

9 Check whether the site loads over HTTP/2 at https://localhost/.

www.EBooksWorld.ir

371Upgrading your web server to support HTTP/2
A.1.3 Microsoft Internet Information Services (IIS)

HTTP/2 support was added in IIS 10, introduced in Windows Server 2016 and Win-
dows 10. IIS supports HTTP/2 only over HTTPS. IIS 10 has HTTP/2 turned on by
default, so if you’re running Windows Server 2016 or later with HTTPS, you’re proba-
bly already using HTTP/2 if you have an HTTPS site. If your server is earlier than
Windows Server 2016, the only option is to upgrade the whole server. It’s not possible
to install IIS 10 with HTTP/2 support on older Windows machines.

 For Windows 10 desktop machines, you may need to enable the IIS Management
Console on the “Turn Windows features on or off” screen (available from the Start
option by searching for Windows features), as shown in figure A.3.

When this console is enabled, you should be able to configure the site as usual in the
following location: Control Panel\All Control Panel Items\Administrative Tools\Inter-
net Information Services (IIS) Manager.

 After you’ve installed an HTTPS certificate (not covered here), you should be able
to load the default website over HTTP/2.

Figure A.3 Enabling the IIS Management Console

www.EBooksWorld.ir

372 APPENDIX Upgrading common web servers to HTTP/2
A.1.4 Other servers

Other servers can be installed in a similar fashion. The important points are to check
for HTTP/2 (and which version it was added in), to check which version of OpenSSL
(or similar) it was built with, and to enable HTTP/2 and HTTPS. The HTTP/2 Imple-
mentations page12 lists over 50 servers that support HTTP/2 at this writing.

A.2 Setting up HTTP/2 via a reverse proxy server
If upgrading your main web server to support HTTP/2 isn’t possible, or if you want to
test HTTP/2 without making any changes in your current setup, you may want to set
up a reverse proxy in front of your web server to enable HTTP/2 support. In the fol-
lowing sections, I provide basic instructions for Apache and nginx.

 In both these examples, the reverse proxy uses HTTP/1.1 to communicate with
the backend server. Apache allows the use of HTTP/2 via the mod_proxy_http2 mod-
ule. At this writing, the module is still marked as experimental,13 and there are few
benefits for proxying backend connections over HTTP/2 at this time (see the “Do you
need to speak HTTP/2 all the way through?” sidebar in chapter 3), so that use case
isn’t covered here. The following examples allow Apache or nginx to handle HTTP/2
communication and leave the backend server using HTTP/1.1.

A.2.1 Apache

For Apache to act as a proxy server, you need to enable HTTP/2 as detailed in the pre-
ceding section and to enable the following modules in the main configuration file:

proxy_module
proxy_http_module

You can enable these modules by uncommenting or adding the appropriate Load-
Module lines in the main config file (httpd.conf or apache.conf) or by using a2enmod
for Ubuntu-based systems.

 Then you add the proxy config (assuming that the web server you want to proxy to
is on localhost port 8080):

ProxyPreserveHost On

Proxy all requests to localhost port 8080
ProxyPass / http://127.0.0.1:8080/
ProxyPassReverse / http://127.0.0.1:8080/

This code passes requests directly to the backend server by using the Ipv4 loopback
address (127.0.0.1). You can also use the Ipv6 loopback address (::1) if you prefer. Either
option is preferable to the localhost name, which requires a needless DNS lookup.

12 https://github.com/http2/http2-spec/wiki/Implementations
13 https://httpd.apache.org/docs/trunk/mod/mod_proxy_http2.html

www.EBooksWorld.ir

373Setting up HTTP/2 via a reverse proxy server
 The application may need to be configured to act with a proxy server in front of it.
Any links that it produces, for example, should reference the proxy port (80/443),
rather than the actual port it’s running on (8080 in this example). Because reverse-
proxying application servers is common, many applications make configuring this
server easy with a Base URL or similar option. If the backend server doesn’t provide this
option, Apache allows you to use the proxy_html_module to rewrite HTML dynamically
to replace links automatically (such as replacing http://www.example.com:8080 with
https://www.example.com).

A.2.2 nginx

nginx works in a similar manner to Apache, with the following config:

location / {
 proxy_pass http://127.0.0.1:8080/;
}

Similar to the comment in the Apache section, the application server may need
configuring to tell it that it’s running behind a reverse proxy. If this configuration
isn’t possible, the ngx_http_sub_module can dynamically rewrite any URLs similarly to
proxy_html_module for Apache.

www.EBooksWorld.ir

www.EBooksWorld.ir

index
Symbols

? character. See Query Parameters

Numerics

103 Early Hints status 159–160, 162, 172, 178–179,
209

200 response code 110
304 (Not Modified) response code 89, 202
404 (Not Found) status code 7, 174

A

accept header 100, 250
accept-encoding header 101, 255
Advanced REST client application 33
AJAX (Asynchronous JavaScript and XML) 38
algorithms, congestion control 301–302
ALPN (Application-Layer Protocol Negotiation)

HTTPS handshakes with 107–109
overview of 105–106

Alternative Services 333
ALTSVC frame 112, 139–140
Alt-Svc header 112, 325
antipatterns 67–68
Apache Haus 348
Apache Lounge 348
Apache web server 347–361

on Linux 350–356
on macOS 356–361
on Windows 347–349
setting up HTTP/2 via reverse proxy

server 372–373
Application-Layer Protocol Negotiation. See ALPN
as attribute 147, 173

asymmetric encryption 103
async attribute 186
async/await code 156
Asynchronous JavaScript and XML (AJAX) 38
automating server push 172

B

bandwidth 191
BBR (Bottleneck Bandwidth and Round-trip prop-

agation time) 301–302
binary framing layer 341
binary protocol 335
blocking, HOL 330
body compression 255–257
Bottleneck Bandwidth and Round-trip propaga-

tion time. See BBR
Brotli compression algorithm 198
browsers

developer tools in 31–33
HTTP/2 for 72–73
HTTPS for 72–73
server push in 163–167

push caches 163–166
refusing pushes with RST_STREAM 166–167

stream priorities in 241–245
support for 70–74

C

cache digests 169–170, 334
cache-control header 27, 164, 166–167, 202–205
CACHE_DIGEST frame 140–141, 169
caching. See also push caches 27, 48, 202–205
Caddy 310, 314
CAs (certificate authorities) 29, 324, 346
375

www.EBooksWorld.ir

INDEX376
CDN (content delivery network) 50, 78, 84–85,
146, 183, 246

CentOS 350
certificate authorities. See CAs
CertificateRequest SSL/TLS message 103–108
CGI (Common Gateway Interface) 38
ChangeCipherSpec SSL/TLS message 103–108
Chrome developer tools 155
ClientCertificate SSL/TLS message 103–108
ClientHello SSL/TLS message 103–108, 119
clients

detecting HTTP/2 support on client side 217
HPACK header compression 275–277

Cloudflare 277, 340
CMS (content management system) 38
coalescing connections 218–220
CodeIt 79
Common Gateway Interface (CGI). See CGI
compressing

headers, see also HPACK 100–101, 249–277
larger resources 189–191
lookback compression 254–255
overview of 251–255

encoding techniques 252–254
lookup tables 252

text data 197–198
Compression Ratio Info-leak Made Easy

(CRIME) 257
conformance testing 245–247

clients 247
servers 245–247

congestion control
algorithms 301–302
inefficiencies in TCP 284–293

idle connections 288–289
packet loss 289–291
packet loss causing items to queue 291–293

congestion window (CWND) 45, 230
CONNECT method 341–344
connections

coalescing 218–220
establishing 101–113

HTTP Alternative Services 112
HTTP/2 preface message 113
using HTTP upgrade headers 109–112
using HTTPS negotiation 102–109
using prior knowledge 112

idle 288–289
persistent 24–27
QUIC 311–312
upgrading from HTTP 343–345

contending resources 191
content delivery network (CDN). See CDN
content management system (CMS). See CMS
content-encoding HTTP header 198

content-length HTTP header 25
Content-Security-Policy (CSP) 27, 48, 251, 337
CONTINUATION frames 132, 137, 229, 313
cookies 264, 320–323

cookie headers 100, 250, 276
pushes based on 168–169
sent with every request 323

COPY method 336
CRIME. See Compression Ratio Info-leak Made

Easy
crossorigin attribute 147
cryptographic library 76
CSP. See Content-Security-Policy
CSS (Cascading Style Sheets) 7
CUBIC algorithm 301
CWND. See congestion window

D

data
minimizing amount transferred 194–201

compressing text data 197–198
minifying code 199–201

resending 202–205
sending only necessary data 206–207

DATA frames 134–135, 150, 160, 232, 247
defer attribute 186
Deflate-based algorithm 255
DELETE method 22, 259
dependencies 235–237
digests. See cache digests
DNS (Domain Name System) 5, 42, 340
dns-prefetch hint 207–208
DoH (DNS over HTTPS) 340
DOM (Document Object Model) 7
Domain Name System (DNS). See DNS
domain sharding 44
Domain Validated (DV) certificates 29
downstream systems 151–155
dummy streams 239
duplicate entries 276
DV (Domain Validated) certificates. See Domain

Validated (DV) certificates

E

edge server 162, 213
encoding. See also Huffman encoding 252–254
encryption 28

HTTP and 324–327
HTTP/2 and 325–327
opportunistic 325

encryption keys 30
END_HEADERS flag 131
END_STREAM flag 137, 227

www.EBooksWorld.ir

INDEX 377
EPEL (Extra Packages for Enterprise Linux) 350
ERR_SPDY_PROTOCOL_ERROR message 89,

131
etag HTTP header 168–169
eTag value 203
EV (Extended Validation) certificate 29
evergreen browsers 74–75
expires header 27
Extended Validation (EV) certificate. See EV

(Extended Validated) certificate
Extra Packages for Enterprise Linux. See EPEL

F

FEC (forward error correction) 304
fetch attribute 147
first paint time 41
flow control 229–234, 328

example of 230–232
overview of 99–100
setting on servers 234

font attribute 147
formats 337
forward error correction. See FEC
frames 114–141

examining message flow 122–136
format of 121–122
viewing 114–120

choosing which tool to use 120
chrome net-internals 114–116
using nghttp 116
using Wireshark 116–119

G

Gartner hype cycle 63
GDPR (General Data Protection Regulations) 322
generic transport protocol, HTTP as 339–345

delivering nonweb traffic with HTTP semantics
and messages 339–340

HTTP/2 binary framing layer 341
starting protocols with HTTP 341–345

GET method 10, 14, 17, 249
GOAWAY frame 135–136
Google and SPDY 319–320
gQUIC 309–310
gRPC protocol (gRPC Remote Procedure

Calls) 341
Gzip 198, 200

H

H2PushDiarySize directive 167, 170
H2PushResource directive 155, 158
half-closed stream state 227

handshakes, HTTPS
overview of 103–105
with ALPN 107–109

HEAD method 17
HEAD tag 153
Header Block Fragment field 131, 137
headers 337

compressing 100–101
HPACK header compression 249–277

advantages of 249–251
examples of 268–275
HPACK dynamic table 259
HPACK static table 258–259
HTTP body compression 255–257
in client implementations 275–277
in server implementations 275–277
overview of compression 251–255
value of 277

HPACK header types 259–264
literal header field never indexed 263–264
literal header field representation 259–260
literal header field with incremental

indexing 260–262
literal header field without indexing 262–263

HTTP link headers 146–148
HTTP upgrade headers 109–112

issues with sending 111–112
server-suggested upgrades 110–111
successful upgrade requests 110
unsuccessful upgrade requests 109

link headers 151–155
mandatory host headers 23–24
request headers 18–19
response headers 21–22

HEADERS frame 129, 132–133, 150, 160, 227, 271
HOL (head-of-line) blocking 40, 95, 292, 297,

313, 330
host header 23–24, 100
HPACK

dynamic table 259
header compression 249–277

advantages of 249–251
examples of 268–275
Huffman encoding 265–268
in client implementations 275–277
in server implementations 275–277
overview of 251–255
value of 277

header types 259–264
literal header field never indexed 263–264
literal header field representation 259–260
literal header field with incremental

indexing 260–262
literal header field without indexing 262–263

static table 258–259

www.EBooksWorld.ir

INDEX378
HSTS (HTTP Strict-Transport-Security) 27, 337
HTTP (hypertext transfer protocol)

Alternative Services 112
as generic transport protocol 339–345
body compression 255–257
conditional requests 168
CONNECT method 341–343
encryption and 324–327
evolving above transport layer 335–338
formats 337
future of 302–303
headers 337
history of 15–27
how future versions might be introduced 339
link headers 146–148
messages 339–340
methods 336
multiple connections 44–46
no longer stateless 330–331
overview of 9–15
privacy issues in 320–324

cookies 321–322
HTTP cookies 322–323
third-party tracking 321–322

resource hints 207–209
dns-prefetch hint 207–208
preconnect hint 208
prefetch hint 208
preload hint 208–209
prerender hint 209

semantics 339–340
setup delay in creating connections 283–284
starting protocols with 341–345
status codes 338
upgrade headers 109–112

issues with sending 111–112
server-suggested upgrades 110–111
successful upgrade requests 110
unsuccessful upgrade requests 109

upgrading connections from 343–345
HTTP Archive 36
HTTP Strict-Transport-Security. See HSTS
HTTP WG (HTTP Working Group) 16, 318
HTTP/0.9 15–16
HTTP/1.0 16–22
HTTP/1.1 22–27

issues with 38–40, 48–49
mandatory host headers 23–24
moving to HTTP/2 56–59
optimizing for

connection coalescing 218–220
detecting HTTP/2 support on client

side 217
detecting HTTP/2 support on server

side 214–217

how long to 220
measuring HTTP/2 traffic 213–214

persistent connections 24–27
pipelining for 40
workarounds for performance issues 43–48

making fewer requests 46–48
multiple HTTP connections 44–46

World Wide Web and 36–43
HTTP/2

advantages over HTTP/1.1 94–101
binary rather than textual 95–96
flow control 99–100
header compression 100–101
multiplexed rather than synchronous

96–99
server push 101
stream prioritization 99–100

as stopgap 332–333
complexity of 331–332
differences between QUIC and 311–313
enabling for websites 78–85
encryption and 325–327
for browsers 72–73
limits of 187–189
meaning for web developers 183
moving from HTTP/1.1 56–59
on web servers 78–80
performance gains with 62–67
real-world examples 333–334
setting up via reverse proxy servers

372–373
Apache 372–373
nginx 373

through CDN 84–85
tooling for 331
troubleshooting setup 85–89
upgrading to 69–89
upgrading web servers to 346–373

Apache 347–361
Microsoft IIS (Internet Information

Services) 371
nginx 361–370

with reverse proxy 80–84
HTTP/2 push cache 165
HTTP/3. See also QUIC 305–316, 328–330,

334–335, 338–339, 343, 345
http2 option 118, 161, 366
$http2 variable 215
HttpOnly flag 256, 322–323
HTTPS (hypertext transfer protocol secure)

for browsers 72–73
handshakes

overview of 103–105
with ALPN 107–109

libraries 76–77

www.EBooksWorld.ir

INDEX 379
HTTPS (hypertext transfer protocol secure)
(continued)

negotiation 102–109
ALPN (Application-Layer Protocol

Negotiation) 105–106
NPN (Next Protocol Negotiation)

106–107
optimizing 209–212
overview of 28–31
QUIC and 311

HTTP-settings header 109
Huffman encoding 253, 261, 263

disadvantages of 268
script for 266–267
table 265–266

hypertext 15
Hypertext Markup Language (HTML) 4
hypertext transfer protocol. See HTTP
hypertext transfer protocol secure. See HTTPS

I

IANA (Internet Assigned Numbers Authority) 21,
137

ID parameters 320
idle stream state 227
IETF (Internet Engineering Task Force) 9, 28, 58,

180, 309, 320
if-none-match header 204
IIS (Internet Information Services) 371
image attribute 147
image cache 165
indexing

incremental 260–262
literal header field never indexed 263–264
literal header fields without 262–263

initialWindowSize setting 234
inlining 193–194
intercepting proxies 73–74
Internet Assigned Numbers Authority. See IANA
Internet Engineering Task Force. See IETF
Internet Information Services. See IIS
Internet of Things (IoT) 3, 327
Internet Protocol. See IP
internet stack 305–306
internet vs. World Wide Web 4
IoT. See Internet of Things
IP (Internet Protocol) 4, 306–307
iQUIC 309–310
ISP (internet service provider) 28

J

Java Servlet/Java Server Pages (JSPs) 38
Jetty (Java servlet engine) 172

K

keep-alives 24–27
KISS (Keep It Simple Stupid) 332

L

latency 36, 40, 46, 209
Layer 4 load balancer 214
layering violations 327–330
Let's Encrypt 210–211, 326
libraries 76–77
link headers

HTTP 146–148
pushing from downstream systems

151–155
LINK method 22
<link> element 207
Linux operating system

Apache on 350–356
nginx on

from nginx repos 363–365
from source code 365–367

listen command 363
literal header fields

never indexed 263–264
representation 259–260
with incremental indexing

260–262
without indexing 262–263

LiteSpeed 59, 310, 314
live-live load balancers 81
live-standby load balancers 81
load balancer 214
LocalStorage 168
LOCK method 336
LogFormat directives 213, 215
lookback compression 254–255, 264
lookup tables 252
lossy compression 251

M

macOS operating system
Apache on 356–361
nginx on 367–370

mandatory host headers 23–24
maximum segment size (MSS) 285
message flow 122–136

DATA frame 134–135
GOAWAY frame 135–136
HEADERS frame 129–133
PRIORITY frame 128–129
SETTINGS frame 124–127
WINDOW_UPDATE frame 127–128

www.EBooksWorld.ir

INDEX380
messages
HTTP 339–340
receiving 31–34
sending 31–34
viewing 31–34
See also preface messages

Microsoft IIS (Internet Information Services). See
Internet Information Services (IIS)

minifying code 199–201
mod_http2 module 347
mod_proxy_http2 module 347, 349, 372
Mozilla SSL Configuration Generator 88, 211
MPM (Multi-Processing Module) 350
MSS. See maximum segment size
multiplexed streams 57
multiplexing 96–99, 328

N

negotiation, HTTPS 102–109
ALPN (Application-Layer Protocol

Negotiation) 105–106
NPN (Next Protocol Negotiation) 106–107

net-internals/net-export (Chrome) 114–116
Next Protocol Negotiation (NPN) 76, 106–107
nextHopProtocol attribute 217
nghttp library 116
nghttp2 module 358
nginx servers 361–370

on Linux
from nginx repos 363–365
from source code 365–367

on macOS 367–370
on Windows 362–363
setting up HTTP/2 via reverse proxy

server 373
ngx_http_spdy_module 361
ngx_http_sub_module 373
ngx_http_v2_module 361
nonweb traffic

delivering with HTTP messages 339–340
delivering with HTTP semantics 339–340

nopush attribute 176–177, 209
NPN. See Next Protocol Negotiation

O

octets 122
onload event, JavaScript 8, 64
Opaque Data field 138
open stream state 227
Open Systems Interconnection (OSI) model 9
openssl command 346
operating systems, upgrading 297–298
opportunistic encryption 325

optimizing 182–220
bandwidth limitations 191
compression for larger resources 189–191
cost of HTTP/2 requests 184–186
for both HTTP/1.1 and HTTP/2

connection coalescing 218–220
detecting HTTP/2 support on client side 217
detecting HTTP/2 support on server

side 214–217
how long to optimize for HTTP/1.1 users 220
measuring HTTP/2 traffic 213–214

HTTPS 209–212
inlining 193–194
limits of HTTP/2 187–189
resource contention 191
sharding 192–193
TCP

allowing window scaling 299
BBR 301–302
congestion control algorithms 301–302
disabling slow start restart 299
increasing initial CWND size 298
PPR 301–302
SACK 299
TCP fast open 299–301
upgrading operating systems 297–298

web performance techniques 194–212
caching to prevent resending data 202–205
HTTP resource hints 207–209
minimizing amount of data transferred

194–201
non-HTTP-related 212
reducing last-mile latency 209
sending only necessary data 206–207
service workers 206

ORIGIN frame 140, 219
origin servers 24, 84
OSI. See Open Systems Interconnection model
otherwise-untrusted certificates 174
OV (Organizational Validated) certificates 29

P

package managers 79
packet loss 292

causing items to queue 291–293
overview of 289–291

Pad Length field 134
parent stream 236
partial lookback compression 264
persistent connections 24–27
PING frame 137–138
pipelining 40
POST method 17
preconnect hint 208

www.EBooksWorld.ir

INDEX 381
preface messages 113
prefetch hint 208
preload cache 165
preload hint 208–209
preload link header 147
preload vs. server push 176–179
prerender hint 209
PRI method 113
prior knowledge 112
PRIORITY frames 128–129, 231, 239, 243
privacy issues 320–324

cookies 321–322
HTTP cookies 322–323
third-party tracking 321–322

PROPFIND method 336
Proportional Rate Reduction. See PRR
PROTOCOL_ERROR messages 229
protocols 93–141

establishing connections 101–113
HTTP Alternative Services 112
HTTP/2 preface message 113
using HTTP upgrade headers 109–112
using HTTPS negotiation 102–109
using prior knowledge 112

frames 114–141
examining message flow 122–136
format of 121–122
viewing 114–120

starting with HTTP 341–345
proxies. See also reverse proxy servers 24, 73–74
proxy_html_module 373
PRR (Proportional Rate Reduction) 301–302
pseudoheaders 130, 132, 250
public key cryptography 30, 103
push caches 163–166
push. See server push
PushDiary 148
PUSH_PROMISE frame 137–138, 150, 157, 160,

173, 287
PUT method 22
PuTTY 11

Q

QPACK 312–313
query parameters 18, 48
queueing items 291–293
QUIC 303–316

as HTTP/3 334–335
choosing to use 315–316
differences between HTTP/2 and 311–313
establishing connections 311–312
HTTPS and 311
implementing 314–315
internet stack and 305–306

performance benefits of 304–305
standardizing 309–311

gQUIC 309–310
iQUIC 309–310

standards for 310–311
tools for 313–314
UPD and 306–308

advantages of UDP 307–308
IP vs. UPD 307
SCTP 307
TCP 306

R

raw HTTP requests 33
rebuffers 304
receiving messages 31–34
Red Hat Enterprise Linux. See RHEL
Red Hat Software Collections. See RHSCL
referer header 172
REFUSED_STREAM code 166
rel=preload attribute 147
repos 363–365
Request for Comments. See RFC
request headers 18–19
requests 46–48

conditional 168
cookies sent with 323
cost of 184–186
sending 33–34
successful upgrade requests 110
unsuccessful upgrade requests 109
viewing 34

resending data 202–205
reserved stream state 227
resources, contending 191
response codes 19–21
response headers 21–22
return characters (as HTTP line endings) 10, 18
reverse proxy servers 183

HTTP/2 with 80–84
setting up HTTP/2 via 372–373

Apache 372–373
nginx 373

RFC (Request for Comments) 16, 56
RHEL (Red Hat Enterprise Linux) 350
RHSCL (Red Hat Software Collections) 351
RST_STREAM frame 228

overview of 138–139
refusing pushes with 166–167

S

SACK (Selective Acknowledgement) 299
SameSite attribute 323

www.EBooksWorld.ir

INDEX382
SAN (Subject Alternative Name) 174
Scalable Vector Graph. See SVG
scaling 299
s_client command 31
script attribute 147
<script> tags 51, 143
SCTP (Stream Control Transmission

Protocol) 307
Secure flag 322–323
Secure Sockets Layer. See SSL
securely encrypted 29
security 211, 251
self-signed certificates 174, 346
semantics 339–340
sending

HTTP Upgrade headers 111–112
messages 31–34
only necessary data 206–207
requests 33–34

server push 101, 142–146, 162–181
automating 172
choosing assets to push 170–172
in browsers 163–167
overview of 142–145
performance impact of 175–176
preload vs. 176–179
pushing conditionally 167–170

tracking pushes on server side 167–168
using cache digests 169–170
using cookie-based pushes 168–169
using HTTP conditional requests 168

pushing earlier 155–160
pushing from downstream systems using link

headers 151–155
refusing with RST_STREAM 166–167
troubleshooting 173–174
use cases for 179–181
using HTTP link headers 146–148
viewing 148–150

ServerCertificate SSL/TLS message 103–108
ServerHello SSL/TLS message 103–108, 119
ServerHelloDone SSL/TLS message

103–108
ServerKeyExchange SSL/TLS message

103–108
$server_protocol variable 213
servers

detecting HTTP/2 support on 214–217
HPACK header compression 275–277
setting flow control on 234
support for 75–77
upgrades suggested by 110–111
See also web servers

server-sent events (SSE) 146, 179
service workers 165, 206

session resumption 105
SessionStorage 168
SETTINGS frame 110, 124–127, 227, 259
SETTINGS_ENABLE_PUSH option 126, 170
SETTINGS_HEADER_TABLE_SIZE value 126,

259
SETTINGS_INITIAL_WINDOW_SIZE 126
SETTINGS_MAX_CONCURRENT_STREAMS

126, 187
SETTINGS_MAX_FRAME_SIZE 126
SETTINGS_MAX_HEADER_LIST_SIZE 126
sharding 192–193
Shimmercat 242
Signed HTTP Exchanges 171
slow start restart 299
slow-start algorithm 45, 287
SPDY 56–57

as option for HTTP/2 318–319
disadvantages of 318–320
Google and 319–320

speed index 64
spriting 46
SSE (server-sent events) 146, 179
SSL (Secure Sockets Layer). See also HTTPS 28
SSLKEYLOGFILE environment file 117
SSLLabs 86
Stale-While-Revalidate 205
start render 41
status codes 20–21, 338
Stream Control Transmission Protocol. See

SCTP
stream identifier 227
streams

dependencies 235–237
prioritization of 99–100, 234–245

in browsers 241–245
in web servers 241–245

states 226–229
weighting 238–240

Strict-Transport-Security header. See HSTS
(HTTP Strict-Transport-Security)

style attribute 147
<style> tags 47, 143
Subject Alternative Name. See SAN
support 69–77

fallback when not supported 77
for browsers 70–74

HTTP/2 for browsers 72–73
HTTPS for browsers 72–73
intercepting proxies 73–74

for servers 75–77
on client side 217
on server side 214–217

SVG (Scalable Vector Graphic) 47
synchronization (SYN) message 45

www.EBooksWorld.ir

INDEX 383
T

tables
HPACK dynamic table 259
HPACK static table 258–259
Huffman encoding 265–266
lookup tables 252

TCP (Transmission Control Protocol) 6, 281–316
congestion control inefficiencies in 284–293

idle connections 288–289
packet loss 289–291
packet loss causing items to queue 291–293

effect of inefficiencies 293–296
fast open 299–301
future of 302–303
HOL (head-of-line) blocking 330
inefficiencies in 282–303
optimizing

allowing window scaling 299
BBR 301–302
congestion control algorithms 301–302
disabling slow start restart 299
increasing initial CWND size 298
PRR 301–302
SACK 299
upgrading operating systems 297–298

TCP Fast Open 301
testing conformance 245–247

of clients 247
of servers 245–247

text data compression 197–198
text-based protocols 95
third-party cookies 321
third-party tracking 321–322
time to live. See TTL
TinyPNG 47
TLS (Transport Layer Security) protocol. See also

HTTPS 28, 30, 211
tracking pushes 167–168
traffic

measuring 213–214
nonweb traffic

delivering with HTTP messages 339–340
delivering with HTTP semantics 339–340

trailing headers 133
transferring data 194–201

compressing text data 197–198
minifying code 199–201

Transmission Control Protocol. See TCP
Transport Layer Security protocol. See TLS
transport layer, evolving HTTP above 335–338

new formats 337
new HTTP headers 337
new HTTP methods 336
new status codes 338

transport protocol, issues with 327–331
HTTP no longer stateless 330–331
layering violations 327–330
TCP (Transmission Control Protocol) HOL

(head-of-line) blocking 330
tooling for HTTP/2 331
See also generic transport protocol, HTTP as

troubleshooting
HTTP/2 setup 85–89
server push 173–174

TTL (time to live) 207

U

Uniform Resource Identifier. See URI
UNLINK method 22
UPD (User Datagram Protocol)

advantages of 307–308
IP vs. 307
QUIC and 306–308

SCTP 307
TCP 306

upgrade headers, HTTP 109–112
issues with sending 111–112
server-suggested upgrades 110–111
successful upgrade requests 110
unsuccessful upgrade requests 109

upgrade-insecure-requests 211
upgrading

connections from HTTP 343–345
operating systems 297–298
successful requests for 110
suggested by server 110–111
to HTTP/2 69–89
unsuccessful requests for 109
web servers to HTTP/2 346–373

Apache 347–361
Microsoft IIS 371
nginx 361–370
setting up HTTP/2 via reverse proxy

servers 372–373
URI (Uniform Resource Identifier) 18
Usage Relative view 70
User Datagram Protocol. See UPD
user space 307
user-agent header 100, 250, 273

V

variable-length encoding 253
Varnish 331
viewing

frames 114–120
choosing which tool to use 120
chrome net-internals 114–116

www.EBooksWorld.ir

INDEX384
viewing (continued)
using nghttp 116
using Wireshark 116–119

messages 31–34
requests 34
server push 148–150

virtual hosting 23

W

waterfall diagrams 41–43
web

and HTTP/1.1 36–43
internet vs. 4
overview of 3–9

web browsers. See browsers
Web Hypertext Application Technology Working

Group. See WHATWG
web performance 59–68, 194–212

caching to prevent resending data 202–205
HTTP resource hints 207–209

dns-prefetch hint 207–208
preconnect hint 208
prefetch hint 208
preload hint 208–209
prerender hint 209

minimizing amount of data transferred 194–201
compressing text data 197–198
minifying code 199–201

non-HTTP-related techniques 212
performance gains with HTTP/2 62–67
reducing last-mile latency 209
sending only necessary data 206–207
service workers 206
waterfall diagrams for measuring 41–43

Web Platform Incubator Community Group. See
WICG

web servers
HTTP/2 on 78–80
stream priorities in 241–245
upgrading to HTTP/2 346–373

Apache 347–361
Microsoft IIS (Internet Information

Services) 371
nginx 361–370
setting up HTTP/2 via reverse proxy

servers 372–373
WebDAV (Web Distributed Authoring and

Versioning) 336
WebPagetest 42, 293
websites, enabling HTTP/2 for 78–85
WebSockets 145, 179, 341
weighting streams 238–240
WHATWG (Web Hypertext Application Technol-

ogy Working Group) 166
WICG (Web Platform Incubator Community

Group) 335
window scaling 299
Windows operating system

Apache on 347–349
nginx on 362–363

WINDOW_UPDATE frames 125, 127–128,
230–231, 233, 287, 313

Wireshark analyzer 116–119
Wireshark frame 269
World Wide Web. See web

X

X-Content-Type header 27
X-Frame-Options header 27
XHR polling 289
x-http2-push-only attribute 147
X-XSS-Protection header 27

www.EBooksWorld.ir

Barry Pollard

HTTP—Hypertext Transfer Protocol—is the standard
for exchanging messages between websites and

browsers. And after 20 years, it’s gotten a much-needed
upgrade. With support for streams, server push, header
compression, and prioritization, HTTP/2 delivers vast
improvements in speed, security, and effi ciency.

HTTP/2 in Action teaches you everything you need to know
to use HTTP/2 effectively. You’ll learn how to optimize web
performance with new features like frames, multiplexing, and
push. You’ll also explore real-world examples on advanced
topics like fl ow control and dependencies. With ready-to-
implement tips and best practices, this practical guide is sure
to get you—and your websites—up to speed!

What’s Inside
● HTTP/2 for web developers
● Upgrading and troubleshooting
● Real-world examples and case studies
● QUIC and HTTP/3

Written for web developers and site administrators.

Barry Pollard is a professional developer with two decades
of experience developing, supporting, and tuning software
and infrastructure.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/http2-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

HTTP/2 IN ACTION

WEB DEVELOPMENT

M A N N I N G

“An excellent introduction
to the new HTTP/2 standard,
with insightful explanations
and very good examples.”—Alain Couniot, STIB-MIVB

“The most signifi cant
change to this protocol in
two decades, thoroughly

described. Critical reading
 for web ops and web devs.”—Ronald Cranston, Sky UK

“A great resource for
learning all the nuances

of HTTP/2 and how it will
affect development
going forward.”—Tom McKearney

Applied Information Sciences

“The clearest explanation of
HTTP/2 I have seen to date.

Highly recommended.”—Edwin Kwok, Red Soldier

See first page

www.EBooksWorld.ir

	HTTP/2 in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized
	About the code
	liveBook discussion forum
	Online resources

	about the author
	about the cover illustration
	Part 1?Moving to HTTP/2
	1 Web technologies and HTTP
	1.1 How the web works
	1.1.1 The internet versus the World Wide Web
	1.1.2 What happens when you browse the web?

	1.2 What is HTTP?
	1.3 The syntax and history of HTTP
	1.3.1 HTTP/0.9
	1.3.2 HTTP/1.0
	1.3.3 HTTP/1.1

	1.4 Introduction to HTTPS
	1.5 Tools for viewing, sending, and receiving HTTP messages
	1.5.1 Using developer tools in web browsers
	1.5.2 Sending HTTP requests
	1.5.3 Other tools for viewing and sending HTTP requests

	Summary

	2 The road to HTTP/2
	2.1 HTTP/1.1 and the current World Wide Web
	2.1.1 HTTP/1.1?s fundamental performance problem
	2.1.2 Pipelining for HTTP/1.1
	2.1.3 Waterfall diagrams for web performance measurement

	2.2 Workarounds for HTTP/1.1 performance issues
	2.2.1 Use multiple HTTP connections
	2.2.2 Make fewer requests
	2.2.3 HTTP/1 performance optimizations summary

	2.3 Other issues with HTTP/1.1
	2.4 Real-world examples
	2.4.1 Example website 1: amazon.com
	2.4.2 Example website 2: imgur.com
	2.4.3 How much of a problem is this really?

	2.5 Moving from HTTP/1.1 to HTTP/2
	2.5.1 SPDY
	2.5.2 HTTP/2

	2.6 What HTTP/2 means for web performance
	2.6.1 Extreme example of the power of HTTP/2
	2.6.2 Setting expectations of HTTP/2 performance gains
	2.6.3 Performance workarounds for HTTP/1.1 as potential antipatterns

	Summary

	3 Upgrading to HTTP/2
	3.1 HTTP/2 support
	3.1.1 HTTP/2 support on the browser side
	3.1.2 HTTP/2 support for servers
	3.1.3 Fallback when HTTP/2 isn?t supported

	3.2 Ways to enable HTTP/2 for your website
	3.2.1 HTTP/2 on your web server
	3.2.2 HTTP/2 with a reverse proxy
	3.2.3 HTTP/2 through a CDN
	3.2.4 Implementing HTTP/2 summary

	3.3 Troubleshooting HTTP/2 setup
	Summary

	Part 2?Using HTTP/2
	4 HTTP/2 protocol basics
	4.1 Why HTTP/2 instead of HTTP/1.2?
	4.1.1 Binary rather than textual
	4.1.2 Multiplexed rather than synchronous
	4.1.3 Stream prioritization and flow control
	4.1.4 Header compression
	4.1.5 Server push

	4.2 How an HTTP/2 connection is established
	4.2.1 Using HTTPS negotiation
	4.2.2 Using the HTTP upgrade header
	4.2.3 Using prior knowledge
	4.2.4 HTTP Alternative Services
	4.2.5 The HTTP/2 preface message

	4.3 HTTP/2 frames
	4.3.1 Viewing HTTP/2 frames
	4.3.2 HTTP/2 frame format
	4.3.3 Examining HTTP/2 message flow by example
	4.3.4 Other frames

	Summary

	5 Implementing HTTP/2 push
	5.1 What is HTTP/2 server push?
	5.2 How to push
	5.2.1 Using HTTP link headers to push
	5.2.2 Viewing HTTP/2 pushes
	5.2.3 Pushing from downstream systems by using link headers
	5.2.4 Pushing earlier
	5.2.5 Pushing in other ways

	5.3 How HTTP/2 push works in the browser
	5.3.1 Seeing how the push cache works
	5.3.2 Refusing pushes with RST_STREAM

	5.4 How to push conditionally
	5.4.1 Tracking pushes on the server side
	5.4.2 Using HTTP conditional requests
	5.4.3 Using cookie-based pushes
	5.4.4 Using cache digests

	5.5 What to push
	5.5.1 What can you push?
	5.5.2 What should you push?
	5.5.3 Automating push

	5.6 Troubleshooting HTTP/2 push
	5.7 The performance impact of HTTP/2 push
	5.8 Push versus preload
	5.9 Other use cases for HTTP/2 push
	Summary

	6 Optimizing for HTTP/2
	6.1 What HTTP/2 means for web developers
	6.2 Are some HTTP/1.1 optimizations now antipatterns?
	6.2.1 HTTP/2 requests still have a cost
	6.2.2 HTTP/2 isn?t limitless
	6.2.3 Compression is more efficient for larger resources
	6.2.4 Bandwidth limitations and resource contention
	6.2.5 Sharding
	6.2.6 Inlining
	6.2.7 Conclusion

	6.3 Web performance techniques still relevant under HTTP/2
	6.3.1 Minimizing the amount of data transferred
	6.3.2 Using caching to prevent resending data
	6.3.3 Service workers can further reduce load on the network
	6.3.4 Don?t send what you don?t need
	6.3.5 HTTP resource hints
	6.3.6 Reduce last-mile latency
	6.3.7 Optimize HTTPS
	6.3.8 Non-HTTP-related web performance techniques

	6.4 Optimizing for both HTTP/1.1 and HTTP/2
	6.4.1 Measuring HTTP/2 traffic
	6.4.2 Detecting HTTP/2 support on the server side
	6.4.3 Detecting HTTP/2 support on the client side
	6.4.4 Connection coalescing
	6.4.5 How long to optimize for HTTP/1.1 users

	Summary

	Part 3?Advanced HTTP/2
	7 Advanced HTTP/2 concepts
	7.1 Stream states
	7.2 Flow control
	7.2.1 Example of flow control
	7.2.2 Setting flow control on the server

	7.3 Stream priorities
	7.3.1 Stream dependencies
	7.3.2 Stream weighting
	7.3.3 Why does prioritization need to be so complicated?
	7.3.4 Prioritization in web servers and browsers

	7.4 HTTP/2 conformance testing
	7.4.1 Server conformance testing
	7.4.2 Client conformance testing

	Summary

	8 HPACK header compression
	8.1 Why is header compression needed?
	8.2 How compression works
	8.2.1 Lookup tables
	8.2.2 More-efficient encoding techniques
	8.2.3 Lookback compression

	8.3 HTTP body compression
	8.4 HPACK header compression for HTTP/2
	8.4.1 HPACK static table
	8.4.2 HPACK dynamic table
	8.4.3 HPACK header types
	8.4.4 Huffman encoding table
	8.4.5 Huffman encoding script
	8.4.6 Why Huffman encoding isn?t always optimal

	8.5 Real-world examples of HPACK compression
	8.6 HPACK in client and server implementations
	8.7 The value of HPACK
	Summary

	Part 4?The future of HTTP
	9 TCP, QUIC, and HTTP/3
	9.1 TCP inefficiencies and HTTP
	9.1.1 Setup delay in creating an HTTP connection
	9.1.2 Congestion control inefficiencies in TCP
	9.1.3 Effect of TCP inefficiencies on HTTP/2
	9.1.4 Optimizing TCP
	9.1.5 The future of TCP and HTTP

	9.2 QUIC
	9.2.1 Performance benefits of QUIC
	9.2.2 QUIC and the internet stack
	9.2.3 What UDP is and why QUIC is built on it
	9.2.4 Standardizing QUIC
	9.2.5 Differences between HTTP/2 and QUIC
	9.2.6 QUIC tools
	9.2.7 QUIC implementations
	9.2.8 Should you use QUIC?

	Summary

	10 Where HTTP goes from here
	10.1 Controversies of HTTP/2 and what it didn?t fix
	10.1.1 Arguments against SPDY
	10.1.2 Privacy issues and state in HTTP
	10.1.3 HTTP and encryption
	10.1.4 Transport protocol issues
	10.1.5 HTTP/2 is far too complicated
	10.1.6 HTTP/2 is a stopgap

	10.2 HTTP/2 in the real world
	10.3 Future versions of HTTP/2 and what HTTP/3 or HTTP/4 may bring
	10.3.1 Is QUIC HTTP/3?
	10.3.2 Evolving the HTTP binary protocol further
	10.3.3 Evolving HTTP above the transport layer
	10.3.4 What would require a new HTTP version?
	10.3.5 How future versions of HTTP might be introduced

	10.4 HTTP as a more generic transport protocol
	10.4.1 Using HTTP semantics and messages to deliver nonweb traffic
	10.4.2 Using the HTTP/2 binary framing layer
	10.4.3 Using HTTP to start another protocol

	Summary

	Appendix?Upgrading common web servers to HTTP/2
	A.1 Upgrading your web server to support HTTP/2
	A.1.1 Apache
	A.1.2 nginx
	A.1.3 Microsoft Internet Information Services (IIS)
	A.1.4 Other servers

	A.2 Setting up HTTP/2 via a reverse proxy server
	A.2.1 Apache
	A.2.2 nginx

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

