
www.EBooksWorld.ir

www.EBooksWorld.ir

Title Page
Building Microservices with .NET Core
Transitioning monolithic architecture using microservices with .NET Core
Gaurav Kumar Aroraa
Lalit Kale
Kanwar Manish

 BIRMINGHAM - MUMBAI

www.EBooksWorld.ir

www.EBooksWorld.ir

Copyright

www.EBooksWorld.ir

Building Microservices with .NET Core
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written permission
of the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2017

Production reference: 1120617

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78588-783-3

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

www.EBooksWorld.ir

Credits

Authors

Gaurav Kumar Aroraa

Lalit Kale

Kanwar Manish

Copy Editor

Gladson Monteiro

Reviewers

Vidya Vrat Agarwal

Nishith Shukla

Project Coordinator

Ulhas Kambali

Commissioning Editor

Veena Pagare

Proofreader

Safis Editing

www.EBooksWorld.ir

Acquisition Editor

Denim Pinto

Indexer

Tejal Daruwale Soni

Content Development Editor

Vikas Tiwari

Graphics

Abhinash Sahu

Technical Editor

Diwakar Shukla

Production Coordinator

Shantanu N. Zagade

  

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Foreword
"Our industry does not respect tradition – it only respects innovation."
- Satya Nadella

I’ve spent my last three years at Microsoft, running customer feedback programs for
Azure microservice architectures and tooling. I believe this microservices framework is
a crucial spark of innovation in web development. In an agile world, we need an agile
framework on the cloud that is working for us, processing individual actors and
services. With this new power, we can deploy a framework that scales, improves
resiliency, greatly reduces latency, increases our control of security, and upgrades the
system without downtime. Microservices becomes the optimal architecture in our new
cloud-based development environment, and it can result in major cost benefits.

Gaurav Aroraa, Lalit Kale, and Manish Kanwar masterfully whisk us away on a journey
to explore the history of microservices, and they carefully and thoroughly take us on a
tour of the architectural design concepts that accompany the evolution of microservices,
from when James Lewis first coined the term to our current tools and implementations.
The book starts at a high level, with detailed diagrams and descriptions that explain the
architectural scenarios and uncovers all the values you’ll receive with a microservices
design. At this point, you might ask whether the book is about microservices
architecture or a how-to guide in .NET development. Importantly, the authors transition
us into the practical knowledge of translating our current applications into this bold new
world of microservices. On that journey, they do not speed up. In other books, you move
so fast that you simply cannot enjoy the view (or understand what you’re supposed to be
learning). You might just implement the code and pick up a few tactics along the way,
mostly copying and coding by autopilot. But the authors teach each concept and step in
the development process with the attention and focus that it deserves.

Personally, I have had the privilege of knowing Gaurav for a few years now. He’s a
Visual Studio and Development MVP (Microsoft’s Most Valuable Professional award)
and a key leader in the Microsoft cloud development community. I’ve worked closely
with him on his powerful contributions on TechNet Wiki. In this book, I see a dedication
and passion from Gaurav, Lalit, and Manish shine through. This book needs to be
written. I am excited when I find gems like this. The authors thoroughly go through every
detail, every parameter, and every consideration in tackling this weighty concept of a
microservices architecture in .NET development. Read this book, skip ahead where
you’re knowledgeable about the given information, absorb the authors’ knowledge, and

www.EBooksWorld.ir

share the book with your business contacts. The development community needs to adopt
a microservices approach, and this book is a powerful advocate on that journey.

Ed Price

Senior Program Manager

Microsoft AzureCAT (Customer Advisory Team), Microservices and Cloud
Development

Co-Author of Learn to Program with Microsoft Small Basic

www.EBooksWorld.ir

www.EBooksWorld.ir

About the Authors
Gaurav Kumar Aroraa has done M.Phil in computer science. He is a Microsoft MVP,
certified as a scrum trainer/coach, XEN for ITIL-F, and APMG for PRINCE-F and
PRINCE-P. Gaurav serves as a mentor at IndiaMentor, webmaster of dotnetspider,
contributor to TechNet Wiki, and co-founder of Innatus Curo Software LLC. In the 19+
years of his career, he has mentored thousands of students and industry professionals.
You can reach Gaurav via his blog, LinkedIn, and twitter handle (@g_arora).

Book writing is not an easy job, as it takes a lot of time. Sometimes, it needs
your personal/family time. So, I want to thank all who motivated me and allowed me
to spend time on this book, time that I was supposed to spend with them. My first
thank you is to my wife, Shuby Arora, for her support in all ways. Then, I would like
to thank my angel, Aarchi Arora (the newest member of our family). A great thanks to
my parents whose blessings are always with me; this is because of them. I would like
to thank the entire Packt team, especially Vikas Tiwari and Denim Pinto for their
overnight support. A great thank you to Ed Price for his in-depth knowledge and his
suggestions to improve various sections of the book. Finally, I want to say thanks to
both Lalit and Manish for their full support as co-authors and their reply when I
need for the book discussion.

Lalit Kale is a technical architect and consultant with more than 12 years of industry
experience. Lalit has helped clients achieve tangible business outcomes through the
implementation of best practices in software development. He is a practitioner of TDD
and DDD, and a big believer in agile and lean methodologies. He has worked with
several organizations, from start-ups to large enterprises, in making their systems
successful, be it in-house or mission critical, with clients in the USA, the UK, Germany,
Ireland, and India. His current interests include container technologies and machine
learning using Python. He holds a bachelor’s degree in engineering (IT).

I would like to take this opportunity to thank my coauthors, Gaurav and Manish, and
the entire Packt team, without whom this book would never have existed. I would also
like to thank Lord Ganesha and my parents. Without their support, I would never have
been creative and wouldn’t have pursued my passion with computers. I would like to
pay my respect to my source of inspiration--my beloved grandfather, Raghunath
Savdekar, who passed away during the writing of this book. Grandpa, this book is for
you.
Lastly, I’d like to acknowledge the support from my wife, Sonal, and my kid, Aaryan,

www.EBooksWorld.ir

who had to tolerate my demands for endless cups of coffee and peaceful silence
during long writing nights.

Kanwar Manish completed his masters of science in computer applications from MD
University, India, and is a cofounder of Innatus Curo Software LLC, with a presence in
India. He has been working in the IT industry across domains for the last 17 years. He
started exploring .NET right from the first release and has been glued to it ever since.
His range of experience includes global wealth management (financial service industry,
USA), life insurance (insurance industry, USA), and document management
system (DMS), ECMS, India. Manish does his bit for the community by helping young
professionals through the IndiaMentor platform.

I would like to thank my wife, Komal, and my young boys, Aadi and Veda, who had to
bear my absence while I was still around and for giving me that crucial support. And
a big thanks to the rest of my family for always encouraging me. Gaurav played a
vital role in giving his valuable input in guiding me. Also, I'd like to acknowledge the
support from Packt's editors.

www.EBooksWorld.ir

www.EBooksWorld.ir

About the Reviewers
Vidya Vrat Agarwal is software technology enthusiast, Microsoft MVP, C# Corner
MVP, TOGAF Certified Architect, Certified Scrum Master (CSM), and a published
author. He has presented sessions at various technical conferences and code camps in
India and the USA. He lives in Redmond, WA with his wife Rupali and two daughters,
Pearly and Arshika. He is passionate about .NET and works as a software
architect/.NET consultant. He can be followed on Twitter at @DotNetAuthor.

Nishith Shukla is a seasoned software architect and has been a leader in developing
software products for over 15 years. Currently, he is working in Bay Area, California
for BlackBerry. He joined BlackBerry through the acquisition of AtHoc and is playing a
key technical leadership role in transmitting BlackBerry from a hardware to a software
company.
Nishith has played a key role in various software products through his extensive
knowledge on OOP, design patterns, and architectural best practices, including
microservices, and through his balanced approach between business goals and technical
goals. Outside work, Nishith plays an active role in software community building,
playing Golf, travelling the world, and spending time with his family.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan your
personal development and advance your career.

www.EBooksWorld.ir

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.EBooksWorld.ir

www.EBooksWorld.ir

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon
page at https://www.amazon.com/dp/1785887831. If you'd like to join our team of regular
reviewers, you can e-mail us at customerreviews@packtpub.com. We award our regular
reviewers with free eBooks and videos in exchange for their valuable feedback. Help
us be relentless in improving our products!

www.EBooksWorld.ir

https://www.amazon.com/dp/1785887831

www.EBooksWorld.ir

Table of Contents
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. What Are Microservices?
Origin of microservices
Discussing microservices
Monolithic architecture

Service-oriented architecture
What is service?

Understanding the microservice architecture
Messaging in microservices

Synchronous messaging
Asynchronous messaging
Message formats

Why should we use microservices?
How does the microservice architecture work?
Advantages of microservices
SOA versus microservices
Prerequisites of the microservice architecture
Understanding problems with the monolithic architecture style

Challenges in standardizing a .NET stack
Fault tolerance

Scaling
Vertical scaling or scale up
Horizontal scaling or scale out
Deployment challenges
Organizational alignment
Modularity
Big database

Prerequisites for microservices
Functional overview of the application

www.EBooksWorld.ir

Solutions for current challenges
Handling deployment problems
Making much better monolithic applications

Introducing dependency injections
Database refactoring
Database sharding and partitioning
DevOps culture
Automation
Testing
Versioning
Deployment

Identifying decomposition candidates within monolithic
Important microservices advantages

Technology independence
Interdependency removal
Alignment with business goals
Cost benefits
Easy scalability
Security

Data management
Integrating monolithic

Summary
2. Building Microservices

Size of microservices
What makes a good service?
DDD and its importance for microservices

Domain model design
Importance for microservices

The concept of Seam
Module interdependency
Technology
Team structure
Database
Master data
Transaction

Communication between microservices
Benefits of the API gateway for microservices
API gateway versus API management

Revisiting the case study--Flix One
Prerequisites
Transitioning to our product service

www.EBooksWorld.ir

Migrations
Code migration
Creating our project
Adding the model
Adding a repository
Registering the repositories
Adding a product controller
The ProductService API
Adding EF core support
EF Core DbContext
EF Core migrations

Database migration
Revisiting repositories and the controller
Introducing ViewModel
Revisiting the product controller

Summary
3. Integration Techniques

Communication between services
Styles of collaborations

Integration patterns
The API gateway
The event-driven pattern
Event sourcing
Eventual consistency
Compensating Transaction
Competing Consumers
Azure Service Bus queues
Implementation of an Azure Service Bus queue

Prerequisites
Sending messages to the queue
Receiving messages from the queue

Summary
4. Testing Strategies

How to test microservices
Handling challenges

Testing strategies (testing approach)
Testing pyramid
Types of microservice tests

Unit testing
Component (service) testing

www.EBooksWorld.ir

Integration testing
Contract testing

Consumer-driven contracts
How to implement a consumer-driven test
How Pact-net-core helps us achieve our goal

Performance testing
End-to-end (UI/functional) testing
Sociable versus isolated unit tests
Stubs and mocks

Tests in action
 Getting ready with the test project
Unit tests
Integration tests

Summary
5. Deployment

Monolithic application deployment challenges
Understanding the deployment terminology
Prerequisites for successful microservice deployments
Isolation requirements for microservice deployment
Need for a new deployment paradigm
Containers

What are containers?
Suitability of containers over virtual machines
Transformation of the operation team's mindset
Containers are new binaries

It works on your machine? Let's ship your machine!
Docker quick introduction

Microservice deployment with Docker overview
Microservice deployment example using Docker

Setting up Docker on your machine
Creating an ASP.NET web application

Adding Docker Support
Summary

6. Security
Security in monolithic applications
Security in microservices

Why traditional .NET auth mechanism won't work?
JSON Web Tokens
What is OAuth 2.0?
What is OpenID Connect?

www.EBooksWorld.ir

Azure Active Directory
Microservice Auth example with OpenID Connect, OAuth 2.0, and Azure AD

Step 1 – Registration of TodoListService and TodoListWebApp with Azure AD tenant
Step 2 – Generation of AppKey for TodoListWebApp
Step 3 – Configuring Visual Studio solution projects
Step 4 – Generate client certificates on IIS Express
Step 5 – Run both the applications

Azure API management as an API gateway
Container security
Other security best practices

Summary
7. Monitoring

Instrumentation and telemetry
Instrumentation
Telemetry

The need for monitoring
Health monitoring
Availability monitoring
Performance monitoring
Security monitoring
SLA monitoring
Auditing sensitive data and critical business transactions
End user monitoring
Troubleshooting system failures

Monitoring challenges
Monitoring strategies

Logging
Logging challenges
Logging strategies

Centralized logging
Use of a correlation ID in logging
Semantic logging

Monitoring in Azure Cloud
Microsoft Azure Diagnostics
Storing diagnostic data using Azure storage

Using Azure portal
Specifying a storage account
Azure storage schema for diagnostic data

Introduction of Application Insights
Other microservice monitoring solutions

A brief overview of the ELK stack

www.EBooksWorld.ir

Elasticsearch
Logstash
Kibana

Splunk
Alerting
Reporting

Summary
8. Scaling

Scalability overview
Scaling infrastructure

Vertical scaling (scaling up)
Horizontal scaling (scaling out)

Microservices scalability
Scale Cube model of scalability

X-axis scaling
Z-axis scaling
Y-axis scaling

Characteristics of a scalable microservice
Scaling the infrastructure

Scaling virtual machines using scale sets
Auto Scaling
Container scaling using Docker swarm

Scaling service design
Data persistence model design
Caching mechanism
Redundancy and fault tolerance

Circuit breakers
Service discovery

Summary
9. Reactive Microservices

What are reactive microservices?
Responsiveness
Resilience
Autonomous
Being message-driven

Making it reactive
Event communication

Security
Message-level security

Scalability
Communication resilience

www.EBooksWorld.ir

Managing data
The microservice ecosystem
Reactive microservices - coding it down

Creating the project
Client - coding it down

Summary
10. Creating a Complete Microservice Solution

Architectures before microservices
The monolithic architecture
Challenges in standardizing the .NET stack
Scaling
Service-oriented architecture
Microservice-styled architecture

Messaging in microservices
Monolith transitioning

Integration techniques
Deployment
Testing microservices
Security

Monitoring
Monitoring challenges

Scale
Component lifespan
Information visualization

Monitoring strategies
Scalability

Infrastructure scaling
Service design

Reactive microservices
Greenfield application

Scoping our services
The book-listing microservice
The book-searching microservice
The shopping cart microservice
The order microservice
User authentication
Synchronous versus asynchronous

The book catalog microservice
The shopping cart microservice
The order microservice
The user auth microservice

www.EBooksWorld.ir

Summary

www.EBooksWorld.ir

www.EBooksWorld.ir

Preface
Distributed systems are always difficult to get complete success with. Lately,
microservices have been getting considerable attention. With Netflix and Spotify,
microservices implementations have some of the biggest success stories in the industry.
Microservices is quickly gaining popularity and acceptance with enterprise
architects. On the other hand, there is another camp that thinks microservices as nothing
new or only as a rebranding of SOA.

In any case, microservices architecture has critical advantages, particularly with regard
to empowering the nimble improvement and conveyance of complex venture
applications.

However, there is no clear practical advice on how to implement microservices in the
Microsoft ecosystem and especially with taking advantage of Azure and the .NET Core
framework.

This book tries to fill that void. It explores the concepts, challenges, and strengths of
planning, constructing, and operating microservices architectures built with .NET Core.
This book discusses all cross-cutting concerns, along with the microservices design. It
also highlights the more important aspects to consider while building and operating
microservices through practical how tos and best practices for security, monitoring, and
scalability.

www.EBooksWorld.ir

www.EBooksWorld.ir

What this book covers
Chapter 1, What Are Microservices?, makes you familiar with microservices architectural
styles, history, and how it differs from its predecessors, monolithic architecture and
service-oriented architecture (SOA).

Chapter 2, Building Microservices, gives you an idea of the different factors that can be
used to identify and isolate microservices at a high level, what the characteristics of a
good service are, and how to achieve the vertical isolation of microservices.

Chapter 3, Integration Techniques, introduces synchronous and asynchronous
communication, style of collaborations, and the API gateway.

Chapter 4, Testing Strategies, explores how testing microservices is different from testing
a normal .NET application. It gets you acquainted with the testing pyramid.

Chapter 5, Deployment, covers how to deploy microservices and the best practices for it.
It also takes into account the isolation factor, which is the key success factor, along with
setting up continuous integration and continuous delivery to deliver business changes at
a rapid pace.

Chapter 6, Security, describes how to secure microservices with OAuth and, also,
container security and best practices in general.

Chapter 7, Monitoring, explains that debugging and monitoring microservices is not a
trivial problem but a quite challenging one. We have used the word, challenging, on
purpose--there is no silver bullet for this. There is no single tool in the .NET ecosystem
that is, by design, made for microservices; however, Azure monitoring and
troubleshooting is the most promising one.

Chapter 8, Scaling, explains that scalability is one of the critical advantages of pursuing
the microservices architectural style. In this chapter, we will see scalability by design,
and by infrastructure as well, with respect to the microservices architecture.

Chapter 9, Reactive Microservices, gets you familiar with the concept of reactive
microservices. You will learn how you can build reactive microservices with the use of
reactive extensions. The chapter will help you focus on your main task and free you
from the chores of communicating across services.

www.EBooksWorld.ir

Chapter 10, Creating a Complete Microservices Solution, will walk you through all the
concepts of microservices that you have learned so far. Also, we will develop an
application from scratch while putting all our skills to use.

www.EBooksWorld.ir

www.EBooksWorld.ir

What you need for this book
All supporting code samples in this book are tested on .NET Core 1.1, using Visual
Studio 2015 update 3 as IDE and SQL Server 2008R2 as database on the Windows
platform.

www.EBooksWorld.ir

www.EBooksWorld.ir

Who this book is for
This book is for .NET Core developers who want to learn and understand
microservices architecture and implement it in their .NET Core applications. It’s ideal
for developers who are completely new to microservices or just have a theoretical
understanding of this architectural approach and want to gain a practical perspective in
order to manage application complexity better.

www.EBooksWorld.ir

www.EBooksWorld.ir

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Here
we are trying to showcase how our Order module gets abstracted."

A block of code is set as follows:

 namespace FlixOne.BookStore.ProductService.Models
 {
 public class Category
 {
 public Guid Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 }
 }

Any command-line input or output is written as follows:

Install-Package System.IdentityModel.Tokens.Jwt

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Clicking the Next
button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the book's
title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.EBooksWorld.ir

http://www.packtpub.com/authors

www.EBooksWorld.ir

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

www.EBooksWorld.ir

www.EBooksWorld.ir

Downloading the example code
You can download the example code files for this book from your account at http://www.pac
ktpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Buildi
ng-Microservices-with-DotNET-Core. We also have other code bundles from our rich catalog of
books and videos available at https://github.com/PacktPublishing/. Check them out!

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Building-Microservices-with-DotNET-Core
https://github.com/PacktPublishing/

www.EBooksWorld.ir

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the
code-we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata will be uploaded to our website or added to any list of existing errata
under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and
enter the name of the book in the search field. The required information will appear
under the Errata section.

www.EBooksWorld.ir

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

www.EBooksWorld.ir

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works in any form on the Internet, please provide
us with the location address or website name immediately so that we can pursue a
remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

www.EBooksWorld.ir

www.EBooksWorld.ir

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

www.EBooksWorld.ir

www.EBooksWorld.ir

What Are Microservices?
The focus of this chapter is to get you acquainted with microservices. We will start with
a brief introduction. Then, we will define its predecessors: monolithic architecture and
service-oriented architecture (SOA). After this, we will see how microservices fare
against both SOA and the monolithic architecture. We will then compare the advantages
and disadvantages of each one of these architectural styles. This will enable us to
identify the right scenario for these styles. We will understand the problems that arise
from having a layered monolithic architecture. We will discuss the solutions available
to these problems in the monolithic world. At the end, we will be able to break down
a monolithic application into a microservice architecture. We will cover the following
topics in this chapter:

Origin of microservices
Discussing microservices
Understanding the microservice architecture
Advantages of microservices
SOA versus microservices
Understanding problems with the monolithic architectural style
Challenges in standardizing the .NET stack

www.EBooksWorld.ir

www.EBooksWorld.ir

Origin of microservices
The term microservices was used for the first time in mid-2011 at a workshop of
software architects. In March 2012, James Lewis presented some of his ideas about
microservices. By the end of 2013, various groups from the IT industry started
having discussions on microservices, and by 2014, it had become popular enough to be
considered a serious contender for large enterprises.

There is no official introduction available for microservices. The understanding of the
term is purely based on the use cases and discussions held in the past. We will discuss
this in detail, but before that, let's check out the definition of microservices as per
Wikipedia (https://en.wikipedia.org/wiki/Microservices), which sums it up as:

Microservices is a specialization of and implementation approach for SOA used to
build flexible, independently deployable software systems.

In 2014, James Lewis and Martin Fowler came together and provided a few real-world
examples and presented microservices (refer to http://martinfowler.com/microservices/) in their
own words and further detailed it as follows:

The microservice architectural style is an approach to developing a single
application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HTTP resource API. These
services are built around business capabilities and independently deployable by fully
automated deployment machinery. There is a bare minimum of centralized
management of these services, which may be written in different programming
languages and use different data storage technologies.

It is very important that you see all the attributes James and Martin defined here. They
defined it as an architectural style that developers could utilize to develop a single
application with the business logic spread across a bunch of small services, each having
their own persistent storage functionality. Also, note its attributes: it can be
independently deployable, can run in its own process, is a lightweight communication
mechanism, and can be written in different programming languages.

We want to emphasize this specific definition since it is the crux of the whole concept.
And as we move along, it will come together by the time we finish this book.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Microservices
http://martinfowler.com/microservices/

www.EBooksWorld.ir

www.EBooksWorld.ir

Discussing microservices
Until now, we have gone through a few definitions of microservices; now, let's discuss
microservices in detail.

In short, a microservice architecture removes most of the drawbacks of SOA
architectures. It is more code-oriented (we will discuss this in detail in the coming
sections) than SOA services.

Slicing your application into a number of services is neither SOA nor microservices.
However, combining service design and best practices from the SOA world along with
a few emerging practices, such as isolated deployment, semantic versioning, providing
lightweight services, and service discovery in polyglot programming, is microservices.
We implement microservices to satisfy business features and implement them with
reduced time to market and greater flexibility.

Before we move on to understand the architecture, let's discuss the two important
architectures that have led to its existence:

The monolithic architecture style
SOA

Most of us would be aware of the scenario where during the life cycle of an enterprise
application development, a suitable architectural style is decided. Then, at various
stages, the initial pattern is further improved and adapted with changes that cater to
various challenges, such as deployment complexity, large code base, and scalability
issues. This is exactly how the monolithic architecture style evolved into SOA, further
leading up to microservices.

www.EBooksWorld.ir

www.EBooksWorld.ir

Monolithic architecture
The monolithic architectural style is a traditional architecture type and has been widely
used in the industry. The term monolithic is not new and is borrowed from the Unix
world. In Unix, most of the commands exist as a standalone program whose functionality
is not dependent on any other program. As seen in the succeeding image, we can have
different components in the application such as:

User interface: This handles all of the user interaction while responding with
HTML or JSON or any other preferred data interchange format (in the case of web
services).
Business logic: All the business rules applied to the input being received in the
form of user input, events, and database exist here.
Database access: This houses the complete functionality for accessing the
database for the purpose of querying and persisting objects. A widely accepted
rule is that it is utilized through business modules and never directly through user-
facing components.

Software built using this architecture is self-contained. We can imagine a single .NET
assembly that contains various components, as described in the following image:

As the software is self-contained here, its components are interconnected and
interdependent. Even a simple code change in one of the modules may break a major
functionality in other modules. This would result in a scenario where we'd need to test
the whole application. With the business depending critically on its enterprise
application frameworks, this amount of time could prove to be very critical.

Having all the components tightly coupled poses another challenge: whenever we
execute or compile such software, all the components should be available or the build

www.EBooksWorld.ir

will fail; refer to the preceding image that represents a monolithic architecture and is a
self-contained or a single .NET assembly project. However, monolithic architectures
might also have multiple assemblies. This means that even though a business layer
(assembly, data access layer assembly, and so on) is separated, at run time, all of them
will come together and run as one process.

A user interface depends on other components' direct sale and inventory in a manner
similar to all other components that depend upon each other. In this scenario, we will
not be able to execute this project in the absence of any one of these components. The
process of upgrading any one of these components will be more complex as we may
have to consider other components that require code changes too. This results in more
development time than required for the actual change.

Deploying such an application will become another challenge. During deployment, we
will have to make sure that each and every component is deployed properly; otherwise,
we may end up facing a lot of issues in our production environments.

If we develop an application using the monolithic architecture style, as discussed
previously, we might face the following challenges:

Large code base: This is a scenario where the code lines outnumber the comments
by a great margin. As components are interconnected, we will have to bear with a
repetitive code base.
Too many business modules: This is in regard to modules within the same system.
Code base complexity: This results in a higher chance of code breaking due to
the fix required in other modules or services.
Complex code deployment: You may come across minor changes that would
require whole system deployment.
One module failure affecting the whole system: This is in regard to modules that
depend on each other.
Scalability: This is required for the entire system and not just the modules in it.
Intermodule dependency: This is due to tight coupling.
Spiraling development time: This is due to code complexity and interdependency.
Inability to easily adapt to a new technology: In this case, the entire system
would need to be upgraded.

As discussed earlier, if we want to reduce development time, ease of deployment, and
improve maintainability of software for enterprise applications, we should avoid
the traditional or monolithic architecture.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Service-oriented architecture
In the previous section, we discussed the monolithic architecture and its limitations. We
also discussed why it does not fit into our enterprise application requirements. To
overcome these issues, we should go with some modular approach where we can
separate the components such that they should come out of the self-contained or single
.NET assembly.

The main difference between SOA & monolithic is not one or multiple
assembly. But as the service in SOA runs as separate process, SOA
scales better compared to monolithic.

Let's discuss the modular architecture, that is, SOA. This is a famous architectural style
using which the enterprise applications are designed with a collection of services as its
base. These services may be RESTful or ASMX Web services. To understand SOA in
more detail, let's discuss service first.

www.EBooksWorld.ir

www.EBooksWorld.ir

What is service?
Service, in this case, is an essential concept of SOA. It can be a piece of code, program,
or software that provides some functionality to other system components. This piece of
code can interact directly with the database or indirectly through another service.
Furthermore, it can be consumed by clients directly, where the client may either be a
website, desktop app, mobile app, or any other device app. Refer to the following
diagram:

Service refers to a type of functionality exposed for consumption by other systems
(generally referred to as clients/client applications). As mentioned earlier, it can be
represented by a piece of code, program, or software. Such services are exposed over
the HTTP transport protocol as a general practice. However, the HTTP protocol is not a
limiting factor, and a protocol can be picked as deemed fit for the scenario.

In the following image, Service – direct selling is directly interacting with
Database, and three different clients, namely Web, Desktop, and Mobile, are
consuming the service. On the other hand, we have clients consuming Service – partner
selling, which is interacting with Service – channel partners for database access.

A product selling service is a set of services that interacts with client applications and
provides database access directly or through another service, in this case, Service –
Channel partner. In the case of Service – direct selling, shown in the preceding
example, it is providing some functionality to a Web Store, a desktop application, and a
mobile application. This service is further interacting with the database for various
tasks, namely fetching data, persisting data, and so on.

www.EBooksWorld.ir

Normally, services interact with other systems via some communication channel,
generally the HTTP protocol. These services may or may not be deployed on the same
or single servers.

In the preceding image, we have projected an SOA example scenario. There are many
fine points to note here, so let's get started. Firstly, our services can be spread across
different physical machines. Here, Service-direct selling is hosted on two separate
machines. It is a possible scenario that instead of the entire business functionality, only a
part of it will reside on Server 1 and the remaining on Server 2. Similarly, Service –
partner selling appears to be having the same arrangement on Server 3 and Server 4.
However, it doesn't stop Service – channel partners being hosted as a complete set on
both the servers: Server 5 and Server 6.

A system that uses a service or multiple services in a fashion mentioned in the preceding
figure is called an SOA. We will discuss SOA in detail in the following sections.

Let's recall the monolithic architecture. In this case, we did not use it because it restricts
code reusability; it is a self-contained assembly, and all the components are
interconnected and interdependent. For deployment, in this case, we will have to deploy
our complete project after we select the SOA (refer to preceding image and subsequent
discussion). Now, because of the use of this architectural style, we have the benefit of
code reusability and easy deployment. Let's examine this in the wake of the preceding
figure:

www.EBooksWorld.ir

1. Reusability: Multiple clients can consume the service. The service can also be
simultaneously consumed by other services. For example, OrderService is
consumed by web and mobile clients. Now, OrderService can also be used by the
Reporting Dashboard UI.

2. Stateless: Services do not persist any state between requests from the client, that
is, the service doesn't know, nor care, that the subsequent request has come from
the client that has/hasn't made the previous request.

3. Contract-based: Interfaces make it technology-agnostic on both sides of
implementation and consumption. It also serves to make it immune to the code
updates in the underlying functionality.

4. Scalability: A system can be scaled up; SOA can be individually clustered with
appropriate load balancing.

5. Upgradation: It is very easy to roll out new functionalities or introduce new
versions of the existing functionality. The system doesn't stop you from keeping
multiple versions of the same business functionality.

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding the microservice
architecture
The microservice architecture is a way to develop a single application containing a set
of smaller services. These services are independent of each other and run in their own
processes. An important advantage of these services is that they can be developed and
deployed independently. In other words, we can say that microservices are a way to
segregate our services so they can be handled completely independent of each other in
the context of design, development, deployment, and upgrades.

In a monolithic application, we have a self-contained assembly of user interface, direct
sale, and inventory. In the microservice architecture, the services part of the application
changes to the following depiction:

Here, business components have been segregated into individual services. These
independent services now are the smaller units that existed earlier within the self-
contained assembly, in the monolithic architecture. Both direct sales and
inventory services are independent of each other, with the dotted lines depicting their
existence in the same ecosystem yet not bound within a single scope. Refer to the
following diagram:

From the preceding image, it's clear that our user interface can interact with any of the
services. There is no need to intervene in any service when a UI calls a service. Both

www.EBooksWorld.ir

the services are independent of each other, without being aware of when the other one
would be called by the user interface. Both services are liable for their own operations
and not for any other part in the whole system. Although much closer to the microservice
architecture, the preceding visualization is not entirely a complete visualization of the
intended microservice architecture.

In the microservice architecture, services are small, independent units
with their own persistent stores.

Now let's bring this final change so that each service will have its own database
persisting the necessary data:

Here, User interface is interacting with those services that have their own independent
storage. In this case, when a user interface calls a service for direct sales, the business
flow for direct sales is executed independently of any data or logic contained within the
inventory service.

The solution that the use of microservices provides has a lot of likely benefits, as
discussed next:

Smaller codebase: Each service is small, therefore, easier to develop and deploy
as a unit
Ease of independent environment: With the separation of services, all
developers work independently, deploy independently, and no one is bothered
about any module dependency

www.EBooksWorld.ir

With the adoption of the microservice architecture, monolithic applications are now
harnessing the associated benefits, as it can now be scaled easily and deployed using a
service independently.

www.EBooksWorld.ir

www.EBooksWorld.ir

Messaging in microservices
It is very important to carefully consider the choice of the messaging mechanism when
dealing with the microservice architecture. If this one aspect is ignored, then it can
compromise the entire purpose of designing using the microservice architecture. In
monolithic applications, this is not a concern as the business functionality of the
components gets invoked through function calls. On the other hand, this happens via a
loosely coupled web service level messaging feature, where services are primarily
based on SOAP. In the case of the microservice messaging mechanism, it should be
simple and lightweight.

There are no set rules for making a choice between various frameworks or protocols for
a microservice architecture. However, there are a few points worth consideration here.
Firstly, it should be simple enough to implement, without adding any complexity to your
system. Secondly, it should be lightweight enough, keeping in mind the fact that the
microservice architecture could heavily rely on interservice messaging. Let's move
ahead and consider our choices for both synchronous and asynchronous messaging along
with the different messaging formats.

www.EBooksWorld.ir

www.EBooksWorld.ir

Synchronous messaging
When a timely response is expected from a service by a system and the system waits on
it till a response is received from the service, it is synchronous messaging. What's left is
the most sought-after choice in the case of microservices. It is simple and supports
HTTP request-response, thereby leaving little room to look for an alternative. This is
also one of the reasons that most implementations of microservices use HTTP (API-
based styles).

www.EBooksWorld.ir

www.EBooksWorld.ir

Asynchronous messaging
When a system is not immediately expecting a timely response from the service and the
system can continue processing without blocking on that call, it is asynchronous
messaging.

Let's incorporate this messaging concept into our application and see how it would
change and look:

www.EBooksWorld.ir

www.EBooksWorld.ir

Message formats
Over the past many years, working with MVC and the like has got me hooked on the
JSON format. You could also consider XML. Both the formats would do fine on HTTP
with the API style resource. There are easily available binary message formats in case
you need to use one. We are not recommending any format; you can go ahead with any of
the selected message formats.

www.EBooksWorld.ir

www.EBooksWorld.ir

Why should we use microservices?
Tremendous patterns and architectures have been explored with some gaining
popularity; there are others, though, which are losing the battle of Internet traffic. With
each solution having its own advantages and disadvantages, it has become increasingly
important for companies to quickly respond to fundamental demands, such as scalability,
high performance, and easy deployment. Any single aspect failing to be not fulfilled in a
cost-effective manner could easily impact large businesses negatively, making a likely
difference between a profitable and non-profitable venture.

This is where we see microservices coming to the rescue of enterprise system
architects. They can ensure their designs against problems quoted previously, with the
help of this architectural style. It is also important to consider the fact that this objective
is met in a cost-effective manner while respecting the factor of time involved.

www.EBooksWorld.ir

www.EBooksWorld.ir

How does the microservice architecture
work?
Until now, we have discussed various things about the microservice architecture, and
we can now depict how the microservice architecture works; we can use any
combination as per our design approach or bet to a pattern that would fit in it. Here are
a few points that favor the working of the microservice architecture:

It's programming of the modern era, where we are expected to follow all SOLID
principles. It's object-oriented programming (OOP).
It is the best way is to expose the functionality to other or external components in a
way so that any other programming language will be able to use the functionality
without adhering to any specific user interfaces, that it, services (web services,
APIs, rest services, and so on).
The whole system works as per a type of collaboration that is not interconnected or
interdependent.
Every component is liable for its own responsibilities. In other words, components
are responsible for only one functionality.
It segregates code with a separation concept, and segregated code is reusable.

www.EBooksWorld.ir

www.EBooksWorld.ir

Advantages of microservices
Now let's try to quickly understand where microservices takes a leap ahead of the SOA
and monolithic architectures:

Cost effective to scale: You don't need to invest a lot to make the entire
application scalable. In terms of a Shopping cart, we could simply load balance
the product search module and the order-processing module while leaving out less
frequently used operation services, such as inventory management, order
cancellation, and delivery confirmation.
Clear code boundaries: This action should match an organization's departmental
hierarchies. With different departments sponsoring product development in large
enterprises, this can be a huge advantage.
Easier code changes: The code is done in a way that it is not dependent on the
code of other modules and is only achieving isolated functionality. If it were done
right, then the chances of a change in a microservice affecting another microservice
are very minimal.
Easy deployment: Since the entire application is more like a group of ecosystems
that are isolated from each other, deployment could be done one microservice at a
time, if required. Failure in any one of these would not bring the entire system
down.
Technology adaptation: You could port a single microservice or a whole bunch of
them overnight to a different technology without your users even knowing about it.
And yes, hopefully, you don't expect us to tell you that you need to maintain those
service contracts, though.
Distributed system: This comes implied, but a word of caution is necessary here.
Make sure that your asynchronous calls are used well and synchronous ones are not
really blocking the whole flow of information. Use data partitioning well. We will
come to this little later, so don't worry for now.
Quick market response: The world being competitive is a definite advantage, as
otherwise, users tend to quickly lose interest if you are slow to respond to new
feature requests or adoption of a new technology within your system.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

SOA versus microservices
You'll get confused between microservices and SOA if you don't have a complete
understanding of both. On the surface of it, microservices' features and advantages
sound almost like a slender version of SOA, with many experts suggesting that there is,
in fact, no need for an additional term, such as microservices, and that SOA can fulfill
all the attributes laid out by microservices. However, this is not the case. There is
enough difference to isolate them miles apart technologically.

The underlying communication system of SOA inherently suffers from the following
problems:

The communication system of SOA inherently suffers from the fact that a system
developed in SOA depends upon its components, which are interacting with each
other. So no matter how hard you try, it is eventually going to face a bottleneck in
the message queue.
Another focal point of SOA is imperative monogramming. With this, we lose the
path to make a unit of code reusable with respect to OOP.

We all know how organizations spend more and more on infrastructure. The bigger the
enterprise is, the more the complex is the question of ownership of the application being
developed. With an increasing number of stakeholders, it becomes impossible to
accommodate all of their ever-changing business needs. This is where microservices
clearly stands apart. Although cloud development is not in the current scope of our
discussion, it won't harm us to say that the scalability, modularity, and adaptability of
the microservice architecture can be easily extended further with the use of cloud
platforms. Time for a change.

www.EBooksWorld.ir

www.EBooksWorld.ir

Prerequisites of the microservice
architecture
It is important to understand the resulting ecosystem from the microservice architecture
implementation. The impact of microservices is not just preoperational in nature. So
profound will the changes in any organization opting for the microservice architecture
be that if they are not well prepared to handle it, it won't be long before advantages turn
into disadvantages.

After the adoption of the microservice architecture is agreed upon, it would be wise to
have the following prerequisites in place:

Deployment and QA: Requirements would become more demanding, with a
quicker turnaround from development requirements. It would require you to deploy
and test as quickly as possible. If it is just a small number of services, then it
would not be a problem. However, if the number of services is going up, it could
very quickly challenge the existing infrastructure and practices. For example, your
QA and staging environment may no longer suffice to test the number of builds that
would come back from the development team.
A collaboration platform for development and operations team: As the
application goes to the public domain, it won't be long before the age-old script of
Dev versus QA is played out again. The difference this time would be that the
business will be at stake. So, you need to be prepared to quickly respond in an
automated manner to identify the root cause when required.
A monitoring framework: With the increasing number of microservices, you
would quickly need a way to monitor the functioning and health of the entire system
for any possible bottlenecks or issues. Without any means of monitoring the status
of the deployed microservices and the resultant business function, it would be
impossible for any team to take a proactive deployment approach.

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding problems with the
monolithic architecture style
In this section, we will discuss all the problems with the monolithic .NET-stack-based
application. In a monolithic application, the core problem is this: scaling monolithic is
difficult. The resultant application ends up having a very large code base and poses
challenges in regard to maintainability, deployment, and modifications.

www.EBooksWorld.ir

www.EBooksWorld.ir

Challenges in standardizing a
.NET stack
In monolithic application technology, stack dependency stops the introduction of the
latest technologies from the outside world. The present stack poses challenges as a web
service itself suffers from some challenges:

Security: There is no way to identify the user via webservices (no clear consensus
on a strong authentication scheme). Just imagine a banking application sending
unencrypted data containing user credentials without encryption. All airports,
cafes, and public places offering free Wi-Fi could easily become victims of
increased identity theft and other cybercrimes.
Response time: Though the web services themselves provide some flexibility in
the overall architecture, it quickly diminishes due to the high processing time taken
by the service itself. So, there is nothing wrong with the web service in this
scenario. It is a fact that a monolithic application involves huge code; complex
logic makes the response time of a web service high, and therefore, unacceptable.
Throughput rate: This is on the higher side, and as a result, hampers subsequent
operations. A checkout operation relying on a call to the inventory web service that
has to search for a few million records is not a bad idea. However, when the same
inventory service feeds the main product searching/browsing for the entire portal,
it could result in a loss of business. One service call failure out of ten calls would
mean a 10 percent lower conversion rate for the business.
Frequent downtime: As the web services are part of the whole monolith
ecosystem, they are bound to be down and unavailable each time there is an
upgrade or an application failure. This means that the presence of any B2B
dependency from the outside world on the application's web services would
further complicate decision-making, thereby seeking downtime. This absolutely
makes the smaller upgrades of the system look expensive; thus, it further increases
the backlog of the pending system upgrades.
Technology adoption: In order to adopt or upgrade a technology stack, it would
require the whole application to be upgraded, tested, and deployed, since modules
are interdependent and the entire code base of the project is affected. Consider the
payment gateway module using a component that requires a compliance-related
framework upgrade. The development team has no option but to upgrade the
framework itself and carefully go through the entire code base to identify any code

www.EBooksWorld.ir

breaks preemptively. Of course, this would still not rule out a production crash, but
this can easily make even the best of the architects and managers sweat and lose
some sleep.

Availability is a percentage of time during which a service is operating.

Response time is the time a service responds.

Throughput is the rate of processing requests.

www.EBooksWorld.ir

www.EBooksWorld.ir

Fault tolerance
Monolithic applications have high module interdependency as they are tightly coupled.
The different modules utilize functionality in such an intramodule manner that even a
single module failure brings the system down due to the cascading effect, which is very
similar to dominoes falling. We all know that a user not getting results for a product
search would be far less severe than the entire system coming down to its knees.

Decoupling using web services has been traditionally attempted at the architecture
level. For database-level strategies, ACID has been relied upon for a long time. Let's
examine both these points further.

Web services: In the current monolithic application, customer experience is
degraded due to this very reason. Even as a customer tries to place an order,
reasons such as high response time of web services or WCF or even a complete
failure of the services itself results in a failure to place the order successfully. Not
even a single failure is acceptable as the users tend to remember their last
experience and assume a possible repeat. Not only is this loss of possible sales,
but also loss of future business prospects. Web services' failures can cause a
cascading failure in the systems that rely on them.
ACID: ACID is the acronym for atomicity, consistency, isolation, and durability;
it's an important concept in databases. It is in place, but whether it's a boon or bane
is to be judged by the sum total of the combined performance. It takes care of
failures at the database level, and there is no doubt that it does provide some
insurance against the database errors that creep in. But at the same time, every
ACID operation hampers/delays operations by other components/modules. The
point at which it brings the system where it causes more harm than benefit needs to
be judged very carefully.

www.EBooksWorld.ir

www.EBooksWorld.ir

Scaling
Factors such as availability of different means of communication, easy access to
information, and open world markets are resulting in businesses growing rapidly and
diversifying at the same time. With this rapid growth of business, there is an ever-
increasing need to accommodate an increasing client base. Scaling is one of the biggest
challenges that any business faces while trying to cater for an increased user base.

Scalability is nothing but the capability of a system/program to handle the growth of
work better. In other words, scalability is the ability of a system/program to scale.

Before starting the next section, let's discuss and understand scaling in detail, as this
will be an integral part of our exercise as we work on transitioning from monolithic to
microservices.

Scalability of a system is its capability to handle an increasing/increased load of work.
There are two main strategies or types of scalability in which we can scale our
application.

www.EBooksWorld.ir

www.EBooksWorld.ir

Vertical scaling or scale up
In vertical scaling, we analyze our existing application to find out the parts of modules
that cause the application to slow down due to higher execution time. Making the code
more efficient could be one strategy so that less memory is consumed. This exercise of
reducing memory consumption could be for a specific module or the whole application.
On the other hand, due to obvious challenges involved in this strategy, instead of
changing the application, we could add more resources to our existing IT infrastructure,
such as upgrading the RAM or adding more disk drives and so on. Both these paths in
vertical scaling have a limit for the extent to which they could be beneficial. After a
specific point in time, the resulting benefit will plateau out. It is important here to keep
in mind that this kind of scaling requires downtime.

www.EBooksWorld.ir

www.EBooksWorld.ir

Horizontal scaling or scale out
In horizontal scaling, we dig deep into modules that show a higher impact on the overall
performance for factors such as high concurrency; so this will enable our application to
serve our increased user base, which is now reaching the million mark. We also
implement load balancing to process a greater amount of work. The option of adding
more servers to the cluster does not require downtime, which is a definite advantage. It
differs from case to case and it needs to be seen whether all the additional cost of
power, licenses, and cooling is worthwhile and up to what point.

Scaling will be covered in detail in Chapter 8, Scaling.

www.EBooksWorld.ir

www.EBooksWorld.ir

Deployment challenges
The current application also has deployment challenges. It is designed as a monolithic
application, and any change in the order module would require the entire application to
be deployed again. This is time-consuming and the whole cycle will have to be repeated
with every change. This means this could be a frequent cycle. Scaling could only be a
distant dream in such a scenario.

As discussed in scaling about current application having deployment challenges which
requires us to deploy the entire assembly. The modules are interdependent, and it is a
single assembly application of .NET. The deployment of the entire application in one go
also makes it mandatory to test the entire functionality of our application. The impact of
such an exercise would be huge:

High-risk deployment: Deploying an entire solution or application in one go
poses a high risk as all modules are going to be deployed even for a single change
in one of the modules.
Higher testing time: As we have to deploy the complete application, we will
have to test the functionality of the entire application. We can't go live without
testing. Due to higher interdependency, the change might cause a problem in some
other module.
Unplanned downtime: Complete production deployment needs code to be fully
tested and hence we need to schedule our production deployment. This is a time-
consuming task that results in high downtime. Although planned downtime, during
this time, both business and customers will be affected due to the unavailability of
the system; this could cause revenue loss to the business.
Production bugs: A bug-free deployment would be the dream of any project
manager. However, this is far from reality and every team dreads this very
possibility. Monolithic applications are no different from this scenario and
productions bugs' resolution is easier said than done. The situation can only
become more complex with some previous bug getting unresolved.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Organizational alignment
In a monolithic application, having a large code base is not the only challenge that you'll
face. Having a large team to handle such a code base is one more problem that will
affect the growth of the business and application.

Same goal: In a team, all the team members have the same goal, which is timely
and bug-free delivery at the end of each day. However, having a large code base
and current, the monolithic architectural style will not be a comfortable feeling for
the team members. With team members being interdependent due to the
interdependent code and associated deliverables, the same effect that is
experienced in the code is present in the development team as well. Here everyone
is just scrambling and struggling to get the job done. The question of helping each
other out or trying something new does not arise. In short, the team is not a self-
organizing team anyway.

Roy Osherove defined three stages of a team in his book, Teamleader:

Survival phase: No time to learn

Learning phase: Learning to solve your own problems

Self-organizing phase: Facilitate, experiment

A different perspective: The development team takes too much time for
deliverables due to reasons such as feature enhancement, bug fixes, or module
interdependency stopping easy development. The QA team is dependent upon the
development team and the dev team has its own problems. The QA team is stuck
once developers start working on bugs, fixes, or feature enhancements. There is no
separate environment or build available for QA to proceed with their testing. This
delay hampers overall delivery, and customers or end users would not get the new
features or fixes on time.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Modularity
In respect to our monolithic application, where we may have an Order module, a change
in the module Orders affects the module Stock and so on. It is the absence of modularity
that has resulted in such a condition.

This also means that we can't reuse the functionality of a module within another module.
The code is not decomposed into structured pieces, which could be reused to save time
and effort. There is no segregation within the code modules, and hence, no common
code is available.

Business is growing and its customers are growing by leaps and bounds. New or
existing customers from different regions have different preferences when it comes to
the use of the application. Some like to visit the website, but others prefer to use mobile
apps. The system is structured in a way that we can't share the components across a
website and a mobile app. This makes introducing a mobile/device app for the business
a challenging task. Business is affected, as in such scenarios, the company loses out on
customers who prefer mobile apps.

The difficulty in replacing the component's application using some third-party libraries;
external system, such as payment gateways; and an external order-tracking system. It is a
tedious job to replace the old components in the currently styled monolithic
architectural application. For example, if we consider upgrading the library of our
module that is consuming an external order-tracking system, then the whole change
would prove to be very difficult. Also, it would be an intricate task to replace our
payment gateway with another one.

In any of the preceding scenarios, whenever we upgraded the components, we upgraded
everything within the application, which called for a complete testing of the system and
required a lot of downtime. Apart from this, the upgrade would possibly result in the
form of production bugs, which would require you to repeat the whole cycle of
development, testing, and deployment.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Big database
Our current application has a mammoth database containing a single schema with plenty
of indexes. This structure poses a challenging job when it comes down to fine-tuning the
performance:

Single schema: All the entities in the database are clubbed under a single schema
named dbo. This again hampers business due to the confusion with the single
schema regarding various tables that belong to different modules; for example,
Customer and Supplier tables belong to the same schema, that is, dbo.
Numerous stored procedures: Currently, the database has a large number of
stored procedures, which also contain a sizeable chunk of the business logic. Some
of the calculations are being performed within the stored procedures. As a result,
these stored procedures prove to be a baffling task to tend to when the time comes
to optimize them or break them down into smaller units.

Whenever deployment is planned, the team will have to look closely at every database
change. This again is a time-consuming exercise and many times would turn out to be
even more complex than the build and deployment exercise itself.

www.EBooksWorld.ir

www.EBooksWorld.ir

Prerequisites for microservices
To understand better, let's take up an imaginary example of Flix One Inc. With this
example as our base, let's discuss all the concepts in detail and see what it looks like to
be ready for microservices.

FlixOne is an e-commerce player (selling books) that is spread all over India. They are
growing at a very fast pace and diversifying their business at the same time. They have
built their existing system on the .NET framework, and it is a traditional three-tier
architecture. They have a massive database that is central to this system, and there are
peripheral applications in their ecosystem. One such application is for their sales and
logistics team, and it happens to be an Android app. These applications connect to their
centralized data center and face performance issues. FlixOne has an in-house
development team supported by external consultants. Refer to the following figure:

The preceding image depicts a broader sense of our current application, which is a
single .NET assembly application. Here we have the user interfaces we use for search,
order, products, tracking order, and checkout. Now check out the following diagram:

www.EBooksWorld.ir

The preceding image depicts our Shopping cart module only. The application is built
with C#, MVC5, and Entity Framework, and it has a single project application. This
image is just a pictorial overview of the architecture of our application. This
application is web-based and can be accessed from any browser. Initially, any request
that uses the HTTP protocol will land on the user interface that is developed using
MVC5 and JQuery. For cart activities, the UI interacts with the Shopping cart module,
which is nothing but a business logic layer that further talks with the database layer
(written in C#); data is persisted within the database (SQL Server 2008R2).

www.EBooksWorld.ir

www.EBooksWorld.ir

Functional overview of the application
Here we are going to understand the functional overview of the FlixOne bookstore
application. This is only for the purpose of visualizing our application. The following is
the simplified functional overview of the application until Shopping cart:

In the current application, the customer lands on the home page, where they see
featured/highlighted books. They have the option to search for a book item if they do not
get their favorite one. After getting the desired result, the customer can choose book
items and add them to their shopping cart. Customers can verify the book items before
the final checkout. As soon as the customer decides to check out, the existing cart system
redirects them to an external payment gateway for the specified amount you need to pay
for the book items in the shopping cart.

As discussed previously, our application is a monolithic application; it is structured to
be developed and deployed as a single unit. This application has a large code base that
is still growing. Small updates need to deploy the whole application at once.

www.EBooksWorld.ir

www.EBooksWorld.ir

Solutions for current challenges
Business is growing rapidly, so we decide to open our e-commerce website in 20 more
cities; however, we are still facing challenges with the existing application and
struggling to serve the existing user base properly. In this case, before we start the
transition, we should make our monolithic application ready for its transition to
microservices.

In the very first approach, the Shopping cart module will be segregated into smaller
modules, then you'll be able to make these modules interact with each other as well as
external or third-party software:

This proposed solution is not sufficient for our existing application, though developers
would be able to divide the code and reuse it. However, the internal processing of the
business logic will remain the same without any change in the way it would interact
with the UI or the database. The new code will interact with the UI and the database
layer with the database still remaining as the same old single database. With our
database remaining undivided and as tightly coupled layers, the problems of having to
update and deploy the whole code base will still remain. So this solution is not suitable
for resolving our problem.

www.EBooksWorld.ir

www.EBooksWorld.ir

Handling deployment problems
In the preceding section, we discussed the deployment challenges we will face with
the current .NET monolithic application. In this section, let's take a look at how we can
overcome these challenges by making or adapting a few practices within the same .NET
stack.

With our .NET monolithic application, our deployment is made up of xcopy
deployments. After dividing our modules into different submodules, we can adapt to
deployment strategies with the help of these. We can simply deploy our business logic
layer or some common functionality. We can adapt to continuous integration and
deployment. The xcopy deployment is a process where all the files are copied to
the server, mostly used for web projects.

www.EBooksWorld.ir

www.EBooksWorld.ir

Making much better monolithic
applications
We understand all the challenges with our existing monolithic application. We have to
serve better with our new growth. As we are growing widely, we can't miss the
opportunity to get new customers. If we miss fixing any challenge, then we would lose
business opportunities as well. Let's discuss a few points to solve these problems.

www.EBooksWorld.ir

www.EBooksWorld.ir

Introducing dependency injections
Our modules are interdependent, so we are facing issues such as reusability of code and
unresolved bugs due to changes in one module. These are deployment challenges. To
tackle these issues, let's segregate our application in such a way that we will be able to
divide modules into submodules. We can divide our Order module in such a way that it
would implement the interface, and this can be initiated from the constructor. Here is a
small code snippet that shows how we can apply this in our existing monolithic
application.

Here is a code example that shows our Order class, where we use the constructor
injection:

 namespace FlixOne.BookStore.Common
 {
 public class Order : IOrder
 {
 private readonly IOrderRepository _orderRepository;
 public Order(IOrderRepository orderRepository)
 {
 _orderRepository = orderRepository;
 }
 public OrderModel GetBy(Guid orderId)
 {
 return _orderRepository.Get(orderId);
 }
 }
 }

The inversion of control or IoC is nothing but a way in which objects do
not create other objects on whom they rely to do their work.

In the preceding code snippet, we abstracted our Order module in such a way that it could
use the IOrder interface. Afterward, our Order class implements the IOrder interface, and
with the use of inversion of control, we create an object, as this is resolved
automatically with the help of inversion of control.

Furthermore, the code snippets of IOrderRepository and OrderRepository are as follows:

 namespace FlixOne.BookStore.Common
 {
 public interface IOrderRepository
 {
 OrderModel Get(Guid orderId);
 }
 }
 namespace FlixOne.BookStore.Common

www.EBooksWorld.ir

 {
 public class OrderRepository : IOrderRepository
 {
 public OrderModel Get(Guid orderId)
 {
 //call data method here
 return new OrderModel
 {
 OrderId = Guid.NewGuid(),
 OrderDate = DateTime.Now,
 OrderStatus = "In Transit"
 };
 }
 }
 }

Here we are trying to showcase how our Order module gets abstracted. In the preceding
code snippet, we return default values for our order just to demonstrate the solution to
the actual problem.

Finally, our presentation layer (the MVC controller) will use the available methods, as
shown in the following code snippet:

 namespace FlixOne.BookStore.Controllers
 {
 public class OrderController : Controller
 {
 private readonly IOrder _order;
 public OrderController(IOrder order)
 {
 _order = order;
 }
 // GET: Order
 public ActionResult Index()
 {
 return View();
 }
 // GET: Order/Details/5
 public ActionResult Details(string id)
 {
 var orderId = Guid.Parse(id);
 var orderModel = _order.GetBy(orderId);
 return View(orderModel);
 }
 }
 }

The following is a class diagram that depicts how our interfaces and classes are
associated with each other and how they expose their methods, properties, and so on:

www.EBooksWorld.ir

Here again, we used the constructor injection, where IOrder passed and got the Order class
initialized; hence, all the methods are available within our controller.

By achieving this, we would overcome a few problems such as:

Reduced module dependency: With the introduction of IOrder in our application,
we are reducing the interdependency of the Order module. This way, if we are
required to add or remove anything from/to this module, then other modules would
not be affected, as IOrder is only implemented by the Order module. Let's say we
want to make an enhancement to our Order module; it would not affect our
Stock module. This way, we reduce module interdependency.
Introducing code reusability: If you are required to get the order details of any of
the application modules, you can easily do so using the IOrder type.
Improvements in code maintainability: We have divided our modules into
submodules or classes and interfaces now. We can now structure our code in such
a manner that all the types, that is, all the interfaces, are placed under one folder
and follow the suit for the repositories. With this structure, it would be easier for
us to arrange and maintain code.
Our current monolithic application does not have any kind of unit testing. With the
introduction of interfaces, we can now easily perform unit testing and adopt the
system of test-driven development with ease.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Database refactoring
As discussed in the preceding section, our application database is huge and depends on
a single schema. This huge database should be considered while refactoring. We will go
for this as:

Schema correction: In general practice (not required), our schema depicts our
modules. As discussed in previous sections, our huge database has a single
schema, that is dbo now, and every part of the code or table should not be related
to dbo. There might be several modules that will interact with specific tables. For
example, our Order module should contain some related schema name, such as Order.
So whenever we need to use the table, we can use them with their own schema
instead of a general dbo schema. This will not impact any functionality related to
how data would be retrieved from the database. But it will have structured or
arranged our tables in such a way that we would be able to identify and correlate
each and every table with their specific modules. This exercise will be very
helpful while we are in the stage of transitioning of a monolithic application to
microservices. Refer to the following image:

In the preceding figure, we see how the database schema is separated logically. It is not
separated physically--our Order Schema and Stock Schema belong to the same
database. So here we separate the database schema logically, not physically.

We can also take an example of our users: not all users are admin or belong to a specific
zone, area, or region. But our user table should be structured in such a way that we
should be able to identify the users by the table name or the way they are structured.
Here we can structure our user table on the basis of regions. We should map our user

www.EBooksWorld.ir

table to a region table in such a way it should not impact or lay any changes in the
existing codebase.

Moving business logic to code from stored procedures: In the current database,
we have thousands of lines Stored Procedure with a lot of business logic. We
should move the business logic to our codebase. In our monolithic application, we
are using Entity Framework; here we can avoid the creation of stored procedures.
We can incorporate all of our business logic to code.

www.EBooksWorld.ir

www.EBooksWorld.ir

Database sharding and partitioning
Between database sharding and partitioning, we can go with database sharding, where
we will break it into smaller databases. These smaller databases will be deployed on a
separate server:

In general, database sharding is simply defined as a shared-nothing partitioning scheme
for large databases. This way, we can achieve a new level of high performance and
scalability. Sharding comes from shard and spreading, which means dividing a database
into chunks(shards) and spreading to different servers.

The preceding diagram is a pictorial overview of how our database is divided into
smaller databases.Take a look at the following diagram:

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

DevOps culture
In the preceding sections, we discussed the challenges and problems with the team.
Here, we propose a solution to the DevOps team: the collaboration of the development
team with another operational team should be emphasized. We should set up a system
where development, QA, and the infrastructure team work in collaboration.

www.EBooksWorld.ir

www.EBooksWorld.ir

Automation
Infrastructure setup can be a very time-consuming job; developers would remain idle
while the infrastructure is being readied for them. He or she will take some time before
joining the team and contributing. The process of infrastructure setup should not stop a
developer from becoming productive, as it would reduce overall productivity. This
should be an automated process. With the use of Chef or PowerShell, we can easily
create our virtual machines and quickly ramp up the developer count as and when
required. This way, our developer can be ready to start the work from day one of
joining the team.

Chef is a DevOps tool that provides a framework to automate and manage your
infrastructure.

PowerShell can be used to create our Azure machines and to setup TFS.

www.EBooksWorld.ir

www.EBooksWorld.ir

Testing
We are going to introduce automated testing as a solution to our prior problems, those
we faced while testing during deployment. In this part of the solution, we have to divide
our testing approach as follows:

Adopt Test-Driven Development (TDD). With TDD, a developer is required to
test his or her own code. The test is nothing but another piece of code that could
validate whether the functionality is working as intended. If any functionality is
found to not satisfy the test code, the corresponding unit test fails. This
functionality can be easily fixed, as you know this is where the problem is. In order
to achieve this, we can utilize frameworks such as MS test or unit tests.
The QA team can use scripts to automate their tasks. They can create scripts by
utilizing QTP or the Selenium framework.

www.EBooksWorld.ir

www.EBooksWorld.ir

Versioning
The current system does not have any kind of versioning system. So there is no way to
revert if something happens during a change. To resolve this issue, we need to introduce
a version control mechanism. In our case, this should be either TFS or Git. With the use
of version control, we can now revert to our change in case it is found to break some
functionality or introduce any unexpected behavior in the application. We now have the
capability of tracking the changes being done by the team members working on this
application, at an individual level. However, in the case of our monolithic application,
we did not have the capability of doing this.

www.EBooksWorld.ir

www.EBooksWorld.ir

Deployment
In our application, deployment is a huge challenge. To resolve this, we introduce
Continuous Integration (CI). In this process, we need to set up a CI server. With the
introduction of CI, the entire process is automated. As soon as the code is checked in by
any team member, using version control TFS or Git, in our case, the CI process kicks
into action. It ensures that the new code is built and unit tests are run along with the
integration test. In both the scenarios of a successful build or otherwise, the team is
alerted to the outcome. This enables the team to quickly respond to the issue.

Next we move to continuous deployment. Here we introduce various environments,
namely a development environment, staging environment, QA environment, and so on.
Now as soon as the code is checked in by any team member, CI kicks into action. It
invokes the unit/integration test suits, builds the system, and pushes it out to the various
environments we have set up. This way, the turnaround time of the development team to
provide a suitable build for QA is reduced to minimal.

www.EBooksWorld.ir

www.EBooksWorld.ir

Identifying decomposition candidates
within monolithic
We have now clearly identified the various problems that the current Flix One
application architecture and its resultant code is posing for the development team. Also,
we understand which business challenges the development team is not able to take up
and why.

It is not that the team is not capable enough--it is just the code. Let's move ahead and
check what would be the best strategy to zero in on for the various parts of the Flix One
application that we need to move to the microservice-styled architecture. You should
know that you have a candidate with a monolith architecture, which poses problems in
one of the following areas:

Focused deployment: Although this comes at the final stage of the whole process,
it demands more respect and rightly so. It is important to understand here that this
factor shapes and defines the whole development strategy from the very initial
stages of identification and design. Here's an example of this: the business is
asking you to resolve two problems of equal importance. One of the issues might
require you to perform testing for many more associated modules, and the
resolution for the other might allow you to get away with limited testing. Having to
make such a choice would be wrong. A business shouldn't have the option of
making such a choice.
Code complexity: Having smaller teams is the key here. You should be able to
assign small development teams for a change that is associated with a single
functionality. Small teams comprise one or two members. Any more than this and
the need for a project manager should ring a bell in your ears. This means that
something is more interdependent across modules than it should be.
Technology adoption: You should be able to upgrade components to a newer
version or a different technology without breaking stuff. If you have to think about
the components that depend on it, you have more than one candidate. Even if you
have to worry about the modules that this component depends upon, you still have
more than one candidate. I remember one of my clients who had a dedicated team
to test out whether the technology being released was a suitable candidate for their
needs. I learned later that they would actually port one of the modules and measure
the performance impact, effort requirement, and turnaround time of the whole

www.EBooksWorld.ir

system. I don't agree with this, though.
High resources: Everything in a system from memory, CPU time, and I/O
requirements should be considered a module in my opinion. If any one of the
modules spends more time, and or more frequently, it should be singled out. In any
operation that involves higher than normal memory, the processing time blocks the
delay and I/O keeps the system waiting; this would be good in our case.
Human dependency: If moving team members across modules seems like a
herculean task that requires hand over, you have more candidates. Developers are
smart, but if they have to struggle with large systems to get productive, it is not
their fault. Break the system down into smaller units and you will have productive
developers more easily.

www.EBooksWorld.ir

www.EBooksWorld.ir

Important microservices advantages
We have performed the first step of identifying our candidates for moving to
microservices. It will be worthwhile going through the corresponding advantages that
microservices provide.

www.EBooksWorld.ir

www.EBooksWorld.ir

Technology independence
With each one of the microservices being independent of each other, we now have the
power to use different technologies for each microservice. The payment gateway could
be using the latest .NET framework, whereas the product search could be shifted to any
other programming language.

The entire application could be based on an SQL server for data storage, whereas the
inventory could be based on NoSQL. The flexibility is limitless.

www.EBooksWorld.ir

www.EBooksWorld.ir

Interdependency removal
Since we try to achieve isolated functionality within each microservice, it is easy to add
new features, fix bugs, or upgrade technology within each one. This will have no impact
on other microservices. Now you have vertical code isolation that enables you to
perform all of this and still be as fast with the deployments.

This doesn't end here. The Flix One team now has the ability to release a new option for
the payment gateway alongside the existing one. Both the payment gateways could
coexist till the time both the team and the business owners are satisfied with the reports.
This is where the immense power of this architecture comes into play.

www.EBooksWorld.ir

www.EBooksWorld.ir

Alignment with business goals
It is not necessarily a forte of business owners to understand why a certain feature
would be difficult or time-consuming to implement. Their responsibility is to keep
driving the business and keep growing it. The development team should become a pivot
to the business goal and not a roadblock.

It is extremely important to understand that the capability to quickly respond to business
needs and adapt to marketing trends is not a by-product of microservices, but their goal.

The capability to achieve this with smaller teams only makes it more suitable to
business owners.

www.EBooksWorld.ir

www.EBooksWorld.ir

Cost benefits
Each microservice becomes an investment for the business since it can easily be
consumed by other microservices without having to redo the same code again and again.
Every time a microservice is reused, time is saved by avoiding the testing and
deployment of that part.

User experience is enhanced since the downtime is either eliminated or reduced to
minimal.

www.EBooksWorld.ir

www.EBooksWorld.ir

Easy scalability
With vertical isolation in place and each microservice rendering a specific service to
the whole system, it is easy to scale. Not only is the identification easier for the scaling
candidates, but the cost is less. This is because we only scale a part of the whole
microservice ecosystem.

This exercise can be cost-intensive for the business; hence, prioritization of which
microservice should be scaled first can now be a choice of the business team. This
decision no longer has to be a choice of the development team.

www.EBooksWorld.ir

www.EBooksWorld.ir

Security
Security is similar to what is provided by the traditional layered architecture;
microservices can be secured as easily. Different configurations can be used to secure
different microservices. You can have a part of the microservice ecosystem behind
firewalls and another part to user encryption. Web-facing microservices could be
secured differently from the rest of the microservices. You can suit your needs as per
choice, technology, or budget.

www.EBooksWorld.ir

www.EBooksWorld.ir

Data management
It is common to have a single database in the majority of monolithic applications. And
almost always, there is a database architect or a designated owner responsible for its
integrity and maintenance. The path to any application enhancement that requires a
change in the database has to go through this route. For me, it has never been an easy
task. This further slows down the process of application enhancement, scalability, and
technology adoption.

Because each microservice has its own independent database, the decision-making
related to changes required in the database can be easily delegated to the respective
team. We don't have to worry about the impact on the rest of the system, as there will not
be any.

At the same time, this separation of the database brings forth the possibility for the team
to become self-organized. They can now start experimenting.

For example, the team can now consider using the Azure Table storage or Azure Redis
Cache to store the massive product catalog instead of the database, as is being done
currently. Not only can the team now experiment, their experience could easily be
replicated across the whole system as required by other teams in the form of a schedule
convenient to them.

In fact, nothing is stopping the FlixOne team now from being innovative and using
a multitude of technologies available at the same, then comparing performance in the
real world and making a final decision. Once each microservice has its own DB, this is
how Flix One will look:

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Integrating monolithic
Whenever a choice is made to move away from the monolithic architecture in favor of
the microservice-styled architecture, the time and cost axis of the initiative would pose
some resistance. Business evaluation might rule against moving some parts of the
monolithic application that do not make a business case for the transition.

It would have been a different scenario if we were developing the application from the
beginning. However, this is also the power of microservices in my opinion. A correct
evaluation of the entire monolithic architecture can safely identify the monolithic parts
to be ported later.

However, to ensure that these isolated parts do not cause a problem to other
microservices in future, we must take one safeguard against the risk.

The goal for such parts of the monolithic application is to make them communicate in the
same way as that of other microservices. Doing this involves various patterns and you
utilize the technology stack in which the monolithic application was developed.

If you use the event-driven pattern, make sure that the monolithic application can publish
and consume events, including a detailed modification of the source code to make these
actions possible. This process can also be performed by creating an event proxy that
publishes and consumes events. The event proxy can then translate these events to the
monolithic application in order to keep the changes in the source code to a minimum.
Ultimately, the database would remain the same.

If you plan to use the API gateway pattern, be sure that your gateway is able to
communicate with the monolithic application. To achieve this, one option is to modify
the source code of the application to expose RESTful services that can be consumed
easily by the gateway. This can also be achieved by the creation of a separate
microservice to expose the monolithic application procedures as REST services. The
creation of a separate microservice avoids big changes in the source code. However, it
demands the maintenance and deployment of a new component.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In this chapter, we discussed what the microservice architectural style is in detail, its
history, and how it differs from its predecessors: monolithic and SOA. We further
defined the various challenges that monolithic faces when dealing with large systems.
Scalability and reusability are some definite advantages that SOA provides over
monolithic. We also discussed the limitations of the monolithic architecture, including
scaling problems, by implementing a real-life monolithic application. The microservice
architecture style resolves all these issues by reducing code interdependency and
isolating the dataset size that any one of the microservices works upon. We utilized
dependency injection and database refactoring for this. We further explored automation,
CI, and deployment. These easily allow the development team to let the business
sponsor choose what industry trends to respond to first. This results in cost benefits,
better business response, timely technology adoption, effective scaling, and removal of
human dependency.

In the next chapter, we will go ahead and transition our existing application to the
microservice-style architecture and put our knowledge to a real test.

www.EBooksWorld.ir

www.EBooksWorld.ir

Building Microservices
In the previous chapter, we discussed the problems of a layered monolith architecture.
In this chapter, we will discuss how we can refactor them from the existing system and
build separate microservices for product and order. In this chapter, we will cover the
following topics:

Size of microservices
What makes a good service?
Domain-driven design (DDD) and its importance for microservices
The concept of Seam
Communication between microservices
Revisiting the case study--Flix One

www.EBooksWorld.ir

www.EBooksWorld.ir

Size of microservices
Before we start building our microservices, we should be clear about a few of its basic
aspects, such as what factors to consider while sizing our microservices and how to
ensure their isolation from the rest of the system.

As the name suggests, microservices should be micro. A question arises: what is micro?
Microservices is all about size and granularity. To understand this better, let's consider
the application discussed in Chapter 1, What are Microservices?

We wanted the teams working on this project to stay synchronized at all times with
respect to their code. Staying synchronized is even more important when we make a
release of the complete project. For this, we needed to first decompose our
application/specific parts into smaller functionalities/segments of the main service.
Let's discuss the factors that need to be considered for high-level isolation of
microservices:

Risk due to requirement changes: Changes in the requirements of one
microservice should be independent of other microservices. In such a case, we
will isolate/split our software into smaller services in such a way that if there are
any requirement changes in one service, they will be independent of another
microservice.
Functionality changes: We will isolate the functionalities that are rarely changed
from the dependent functionalities that can be frequently modified. For example, in
our application, the customer module notification functionality will rarely change.
But its related modules, such as Order, are more likely to have frequent business
changes as part of their life cycle.
Team changes: We should also consider isolating modules in such a way that one
team can work independently of all the other teams. If the process of making a new
developer productive--regarding the tasks in such modules--is not dependent on
people outside the team, it means we are placed well.
Technology changes: Technology use needs to be isolated vertically within each
module. A module should not be dependent upon a technology or component from
another module. We should strictly isolate the modules developed in different
technologies or stacks or look at moving them to a common platform as our last
resort.

We can say that our primary goal should not be to make services just as small as

www.EBooksWorld.ir

possible; instead, our goal should be to isolate the identified bounded context and keep
it small.

www.EBooksWorld.ir

www.EBooksWorld.ir

What makes a good service?
Before microservices were conceptualized, whenever we thought of enterprise
application integration, middleware looked like the most feasible option. Software
vendors offered Enterprise Service Bus (ESB), and it was one of the options as
middleware.

Besides considering these solutions, our main priority should be inclined toward the
architectural features. When microservices arrived, middleware was no more a
consideration. Rather, the focus shifted to contemplation on business problems and how
to tackle those problems with the help of the architecture.

In order to make a service that can be used and maintained easily by developers and
users, it would require the service to have the following features (we can also consider
these as characteristics of good services):

Standard data formats: Good services should follow standardized data formats
while exchanging with other components, services, or systems. The most popular
data formats, also mostly used, in the .NET stack are XML and JSON.
Standard communication protocol: Good services should obey standard
communication formats, such as SOAP and REST.
Loose coupling: One of the most important characteristics of a good service is that
it follows loose coupling. When services are loosely coupled, we don't have to
worry about changes. Changes in one service would not impact other services.

www.EBooksWorld.ir

www.EBooksWorld.ir

DDD and its importance for
microservices
Domain-Driven Design (DDD) is a methodology and a process of designing complex
systems. In this section, we will briefly discuss DDD and how it is important in the
context of microservices.

www.EBooksWorld.ir

www.EBooksWorld.ir

Domain model design
 The main objective of domain design is to understand the exact domain problems and
then draft a model that can be written in any set of language/technologies. For example,
in our Flix One bookstore application, we need to understand Order Management and
Stock Management.

Here are a few characteristics of the domain-driven model:

A domain model should focus on a specific business model and not across multiple
business models
It should be reusable
It should be designed in a way that it should be called in the loosely coupled way,
unlike the rest of the system
It should be designed independently of persistence implementations.
It should be pulled out from a project to another location, so it should not be based
on any infrastructure framework.

www.EBooksWorld.ir

www.EBooksWorld.ir

Importance for microservices
DDD is the blueprint and can be implemented by microservices. In other words, once
DDD is done, we can implement it using microservices. This is just like how in our
application, we can easily implement Order services, Inventory services, Tracking
services, and so on.

Once you have dealt with the transition process to your satisfaction, a simple exercise
should be performed. This will help you verify that the size of the microservice is small
enough. Every system is unique and has its own complexity level. Considering these
levels of your domain, you need to have a baseline for the maximum number of domain
objects that could talk to each other. If any service fails this evaluation criterion, then
you have a possible candidate to evaluate your transition once again. However, don't get
into this exercise with a specific number in mind; you can always go easy. As long as
you have followed all the steps correctly, the system should be fine for you.

If you feel that this baseline process is difficult for you to achieve, you can take another
route. Go through all the interfaces and classes in each microservice. Considering all
the steps we have followed and the industry standard coding guidelines, anybody new to
the system should be able to make sense of its purpose.

You can also perform another simple test to check whether the correct vertical isolation
of the services was achieved. You can deploy each one of them and make them live with
the rest of the services, which are still unavailable. If your service goes live and
continues listening for incoming requests, you can pat your back now.

There are many benefits that you can derive from the isolated deployment capability.
The capability to just deploy them independently allows the host in them to enter their
own independent processes. It allows you to harness the power of the cloud and other
hybrid models of hosting that you can think of. You are free to independently pick
different technologies for each one of them as well.

www.EBooksWorld.ir

www.EBooksWorld.ir

The concept of Seam
At the very core of microservices lies the capability to work on a specific functionality
in isolation from the rest of the system. This translates into all the advantages discussed
earlier, such as reduced module dependency, code reusability, easier code maintenance,
and better deployment.

In my opinion, the same attributes that were attained with the implementation of
microservices should be maintained during the process of implementation. Why should
the whole process of moving monoliths to microservices be painful and not be as
rewarding as having the microservices itself? Just remember that the transition can't be
done overnight and would need meticulous planning. Many capable solution architects
have differed from my approach while presenting their highly capable teams. The
answer lies not just in the points already mentioned but the risk to the business itself at
the same time.

This is very well attainable. However, we must identify our way to the path correctly in
order to achieve it. Otherwise, there is a possibility that the whole process of
transitioning a monolithic application to microservices could be a dreadful one.

www.EBooksWorld.ir

www.EBooksWorld.ir

Module interdependency
This should always be the starting point when trying to transition a monolithic
application to the microservice-styled architecture. Identify and pick up those parts of
the application first that are least dependent on other modules and have the least
dependency on them as well.

It is very important to understand that by identifying such parts of the application, you
are not just trying to pick up the least challenging parts to deal with. However, at the
same time, you have identified seams, which are the most easily visible ones. These are
parts of the application where we will perform the necessary changes first. This would
allow us to completely isolate this part of the code from the rest of the system. It should
be ready to become a part of the microservice or deployed in the final stage of this
exercise.

Even though such seams are identified, the capability to achieve the microservice-styled
development is still a little farther away. This is a good start, though.

www.EBooksWorld.ir

www.EBooksWorld.ir

Technology
A two-pronged approach is required here. First, you must identify what different
features of the application's base framework are being utilized. The differentiation
could be, for example, on the basis of heavy dependency on certain data structures,
interprocess communication being performed, or the activity of report generation. This
is the easier part.

However, as the second step, I recommend that you become more confident and pick up
pieces that use a type of technology that is different from what is being used currently.
For example, there could be a piece of code relying upon simple data structures or
XML-based persistence. Identify such baggage in the system and mark it for the
transition. A lot of prudence is required in this twin-pronged approach. Making a pick
that is too ambitious could embark us on a path similar to what we have been trying to
avoid altogether.

Some of these parts might still not look like very promising candidates for the final
microservice-styled architecture application. They should still be dealt with now itself.
In the end, they would allow you to easily perform the transition.

www.EBooksWorld.ir

www.EBooksWorld.ir

Team structure
With every iteration of this identification process being executed, this factor becomes
more and more important. There could be teams that are differentiated on various
grounds, such as technical skill set, geographical location, or security requirements
(employees versus outsourced).

If there is a part of the functionality that requires a specific skill set, then you could be
looking at another probable Seam candidate. Teams can be composed of varying
degrees of these differentiation factors. As part of the transition to microservices, the
clear differentiation that could enable them to work independently could further
optimize their productivity.

This can also provide a benefit in the form of safeguarding the intellectual property of
the company--outsourcing to consultants for specific parts of the application is not
uncommon. The capability to allow consultants or partners to help you only on a
specific module makes the process simpler and secure.

www.EBooksWorld.ir

www.EBooksWorld.ir

Database
The heart and soul of any enterprise system is its database. It is the biggest asset of the
system on any given day. It is also the most vulnerable part of the whole system in such
an exercise. No wonder database architects can sound mean and intruding whenever you
request them to make even the smallest of change. Their domain is defined by database
tables and stored procedures.

The health of their domain is judged by the referential integrity and the time it takes to
perform various transactions. I don't hold them guilty of overdoing it anymore. They
have a reason for this; it is their past experiences. It's time to change that. Let me tell
you this won't be easy, as we will have to utilize a completely different approach to
handle data integrity once we embark on this path.

You might think that the easiest approach is to divide the whole database in one go, but
this is not the case. It can lead us to the situation we have been trying to avoid all along.
Let's see how to go about doing this in a more efficient manner.

As you move along, while picking up pieces after the module dependency analysis,
identify the database structures that are being used to interact with the database. There
are two steps that you need to perform here. First, check whether you can isolate the
database structures in your code to be broken down and align it with the newly defined
vertical boundaries. Second, identify what it would take to break down the underlying
database structure as well.

Don't worry yet if you see that breaking down the underlying data structure is difficult. If
it appears that it is involving other modules that you haven't started to move to
microservices, it is a good sign. Don't let the database changes define the modules that
you would pick and migrate to the microservice-styled architecture. Keep it the other
way around. This ensures that when a database change is picked up, the code that
depends on the change is already ready to absorb the change.

This ensures that you don't pick up the battle of data integrity while you are already
occupied with modifying the code that would rely on this part of the database.
Nevertheless, such database structures should draw your attention so that the modules
that depend upon them are picked next. This will allow you to easily complete the move
to microservices for all the associated modules in one go. Refer to the following
diagram:

www.EBooksWorld.ir

Here we have not broken the database yet. Instead, we have simply separated our
database access part into layers as part of step one.

What we have simply done is that the code data structure mapped to the database no
more has a dependency on each other. Let's see how this step would work out when we
remove foreign key relationships.

However, if we can transition the code structures being used to access the database
along with the database structure, we will save time. This approach might differ from
system to system and can be affected by our personal bias. If your database structure
changes seem to be impacting modules that are yet to be marked for transition, move on
for now.

Another important point to understand here is what kind of changes are acceptable when
you break down this database table or merge it with another partial structure? The most
important one is not to shy away from breaking those foreign key relationships apart.
This might sound like a big pushover from our traditional approach for maintaining data
integrity. However, removing your foreign key relationships is the most fundamental
challenge while restructuring your database to suit the microservice architecture.
Remember that a microservice is meant to be independent of other services. If there are
foreign key relationships with other parts of the system, it makes it dependent on the
services owning that part of the database. Refer to the following diagram:

www.EBooksWorld.ir

As part of step two, we have kept the foreign key fields in the database tables but have
removed the foreign key constraint. So the ORDER table is still holding information
about ProductID in the end, but the foreign key relation is broken now. Refer to the
following diagram:

This is what our microservice-styled architecture would finally look like. The central
database would be moved away in favor of each service having their own database. So,
separating the data structures in the code and removing foreign key relationships is our
preparation to finally make the change. The connected boundaries of microservices in
the preceding figure signify the interservice communication.

With the two steps performed, your code is now ready to split ORDER and
PRODUCT into separate services, with each having their own database.

If all of the discussion here has left you bewildered about all those transactions that
have been safely performed upto now, you are not alone. This outcome of the challenge
with the transactions is not a small one by any means and deserves focused attention.
Let's talk about this in detail but a bit later. Before this, there is another part that
becomes a no man's land in the database. It is master data or static data, as some may
call it.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Master data
Handling master data is more about your personal choice and system-specific
requirements. If you see that the master data is not going to change for ages and occupies
an insignificant amount of records, you are better off with the configuration files or even
code enumerations.

This requires someone to push out the configuration files once in a while when the
changes do happen. However, this still leaves gap for future. As the rest of the system
would depend on this one module, it will be responsible for these updates. If this
module does not behave correctly, other parts of the system relying on it could also be
impacted negatively.

Another option could be to wrap up master data in a separate service altogether. Having
the master data delivered through a service would have the advantage of the services
knowing the change instantly and understanding the capability to consume it as well.

The process of requesting this service might not be much different from the process of
reading configuration files when required. It might be slower for once, but then it is to
be done only as many times as necessary.

Moreover, you could also support different sets of master data itself. It would be fairly
easy to maintain product sets that can differ every year. With the microservice-
architecture style, it is always a good idea to be independent of any kind of outside
reliance in future.

www.EBooksWorld.ir

www.EBooksWorld.ir

Transaction
With our foreign keys gone and the database split into smaller parts, we need to devise
our own mechanisms for handling data integrity. Here, we need to factor in the
possibility that not all services would successfully go through a transaction for the
scope of their respective data stores.

A good example could be a user ordering a specific product. At the time the order is
being accepted, there is sufficient quantity available to be ordered. However, by the
time the order is logged, the Product service could not log the orders for some reason.
We don't know yet whether this was due to insufficient quantity or some other
communication fault within the system. There are two possible options here. Let's
discuss them one by one.

The first option is to try again and perform the remaining part of the transaction
sometime later. This would require us to orchestrate the whole transaction in a way that
tracks individual transactions across services. So every transaction that leads to
transactions being performed for more than one service must be tracked. In case one of
them does not go through, it deserves a retry. This might work for long-lived operations.

However, for other operations, this could cast a real problem. If the operation is not
long-lived and you still decide to retry, the outcome will result in either locking out
other transactions or making the transaction wait--impossible to be completed.

Another option that we can contemplate here is to cancel the entire set of transactions
spread across various services. This means that a single failure at any stage of the entire
set of transaction would result in the reversal of all the previous transactions.

This will be one area where maximum prudence would be required, and it would be
time well invested. A stable outcome is only guaranteed when the transactions are
planned out well in any microservice-style architecture application.

www.EBooksWorld.ir

www.EBooksWorld.ir

Communication between microservices
In the preceding section, we separated our Order module into Order Services and
discussed how we can break down the foreign key relationship between ORDER and
PRODUCT tables.

In a monolithic application, we have a single repository that queries the database to
fetch the records from both ORDER and PRODUCT tables. However, in our upcoming
microservice application, we will segregate repositories between Order Service and
Product Service. With each service having its respective database, each one would
access its own database only. Order Service would only be able to access order
Database, whereas Product Service would be able to access product Database only.
Order Service should not be allowed to access product Database and vice versa.
Refer to the following image:

We will discuss communication between microservices in Chapter 3,
Integration Techniques, in detail.

In the preceding figure, we see that our UI is interacting with Order Service and
Product service via API gateway. Both the services are physically separated from
each other and there is no direct interaction between these services. Communication
performed in this manner is also referred to as communication that is based on the API
Gateway Pattern.

www.EBooksWorld.ir

The API gateway is nothing but a middle tier via which the UI can interact with the
microservices. It also provides a simpler interface and makes the process of consuming
these services simpler. It provides a different level of granularity to different clients as
required (that is browser and desktop).

We can say that it provides coarse-grained APIs to mobile clients and fine-grained APIs
to desktop clients, and it can use a high-performance network underneath its hood to
provide some serious throughput.

The definition of granularity from wiki:

Granularity is the extent to which a system is broken down into small parts, either
the system itself or its description or observation. It is the extent to which a larger
entity is subdivided. For example, a yard broken into inches has finer granularity
than a yard broken into feet.
Coarse-grained systems consist of fewer, larger components than fine-grained
systems; a coarse-grained description of a system regards large subcomponents while
a fine-grained description regards smaller components of which the larger ones are
composed.

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Granularity

www.EBooksWorld.ir

Benefits of the API gateway for
microservices
There is no doubt that the API gateway is beneficial for microservices. With its use, you
can do this:

Services are invoked through the API gateway
Round trips between the client and the application are reduced
The client has the ability to access different APIs in one place, as segregated by the
gateway

It provides flexibility to clients in such a manner that they are able to interact with
different services as and when they need. This way, there is no need to expose
complete/all services at all. API gateway is a component of complete API management.
In our solution, we will use Azure API management and explain it further in Chapter
3, Integration Techniques.

www.EBooksWorld.ir

www.EBooksWorld.ir

API gateway versus API management
In the preceding section, we discussed how the API gateway hides the actual APIs from
its client and then simply redirects the calls to the actual API from these clients. The
API management solution provides a complete management system to manage all the
APIs of its external consumers. Mostly, all API management solutions (such as Azure
API management) provide various capabilities and functionalities, such as:

Design
Development
Security
Publishing
Scalability
Monitoring
Analysis
Monetization

www.EBooksWorld.ir

www.EBooksWorld.ir

Revisiting the case study--Flix One
In the preceding chapter, we took an example of an imaginary company, Flix One Inc.,
operating in the e-commerce domain and having its own .NET monolithic
application: Flix One book store. We have already discussed:

How to segregate the code
How to segregate the database
How to denormalize the database
How to begin transitioning
The available refactoring approaches

In this section, we will start writing/transitioning .NET monolith to a microservice
application.

www.EBooksWorld.ir

www.EBooksWorld.ir

Prerequisites
We will use the following tools and technologies while transitioning our monolithic
application to the microservice-styled architecture:

Visual Studio 2015 or later
C# 6.0
ASP.NET Core MVC/Web API
Entity Framework
SQL Server

www.EBooksWorld.ir

www.EBooksWorld.ir

Transitioning to our product service
We already have our product module in place. We are going to pull back this module
now and start with a new ASP.NET Core MVC project. For this, follow all the steps we
discussed in the preceding sections and in Chapter 1, What Are Microservices? Let's see
what technology and database we will use.

Technology stack: We have already selected this for our product service; we will
go with ASP.NET Core, C#, Entity framework (EF), and so on. Microservices
can be written using different technology stacks and can be consumed by clients
created in different technologies. For our product service, we will go with
ASP.NET Core.
Database: We have already discussed this in chapter 2, Building Microservices,
when talking about a monolithic application and segregating its database. Here we
will go with SQL Server, and the database schema would be Product instead of dbo.

Our product database is segregated. We will use this database in our product service, as
shown in the following image:

www.EBooksWorld.ir

We have created a separated product database for our product service. We did not
migrate the entire data. In the following sections, we will discuss product database
migrations as well. Migration is important as we have numerous existing records of
FlixOne book store customers. We can't ignore these records, and they need to be
migrated to our modified structure. Let's get started.

www.EBooksWorld.ir

www.EBooksWorld.ir

Migrations
In the preceding section, we separated our product database to ensure that it would only
be used by our product service. We also selected a technology stack of our choice to
build our microservice (product service). In this section, we will discuss how we can
migrate both our existing code and database to ensure that they fit right in with our new
architectural style.

www.EBooksWorld.ir

www.EBooksWorld.ir

Code migration
Code migration does not involve just pulling out a few layers of code from the existing
monolithic application and then bundling it with our newly created Product service. In
order to achieve this, you'll need to implement all that you have learned until now. In the
existing monolithic application, we have a single repository, which is common across
all modules. Whereas, for microservices, we will create repositories for each module
separately and keep them isolated from each other as well.

In the preceding image, Product Service has a Product repository, which further
interacts with its designated data store, named Product Database. We can now discuss
a bit about microcomponents as well. They are nothing but isolated parts within the
application (microservice), namely common classes and business functionality. It is
worthwhile to note here that the Product repository itself is a microcomponent in the
world of microservices.

In our final product service, which is to be done in ASP.NET Core MVC, we will work
with a model and controller to create our REST API. Let's talk about both of these
briefly:

Model: This is an object that represents the data in the product service. In our
case, the identified models are stacked into product and category fields. In our
code, models are nothing but a set of simple C# class. When we talk in terms
of EF, they are commonly referred to as plain old CLR objects (POCOs). POCOs
are nothing but simple entities without any data access functionality.

www.EBooksWorld.ir

Controller: This is a simple C# class that inherits an abstract class controller of
the namespace Microsoft.AspNetCore.Mvc. It handles HTTP requests and is responsible
for the creation of the HTTP response to be sent back. In our Product Service, we
have a product controller that handles everything.

Let's follow a step-by-step approach to create our product service.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating our project
As already decided in the previous sections, we will create our ProductService in
ASP.NET Core or C#, using Visual Studio. Let's see what steps are required to do this:

1. Start Visual Studio.
2. Create a new project by navigating to File | New | Project.
3. From the template options available, select ASP.NET Core Web Application, name

it FlixOne.BookStore.ProductService, and click on ok.
4. Next, select Web API from the template screen and click on ok.

The following image depicts how our new solution should look:

www.EBooksWorld.ir

www.EBooksWorld.ir

Adding the model
In our monolithic application, we do not have any model classes yet. So let's go ahead
and add a new model as required. To add the new model, follow these simple steps:

First, add a new folder and name it Models. In Solution Explorer, right-click on
project and then click on chose options from Add | New Folder:

There is no hard and fast rule about putting all the model classes in a folder named
Models. As a matter of fact, we can put our model classes anywhere in the project in our

www.EBooksWorld.ir

application. We follow this practice as it becomes self-explanatory from folder names.
At the same time, it easily identifies that this folder is for the model classes.

To add new classes (these classes will represent our POCOs) Product and Category:

1. Right-click on the Models folder and chose Option.
2. Add New Item|Class. We will name them Product and Category.
3. Now add the properties that depict our product database column name from the

tables Product and Category.

There is no restriction for having the property name match the table
column name. It is just general practice.

The following code snippet depicts what our Product.cs model class will look like:

 namespace FlixOne.BookStore.ProductService.Models
 {
 public class Product
 {
 public Guid Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public string Image { get; set; }
 public decimal Price { get; set; }
 public Guid CategoryId { get; set; }
 }
 }

The following code snippet shows what our Category.cs model class will look like:

 namespace FlixOne.BookStore.ProductService.Models
 {
 public class Category
 {
 public Guid Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 }
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

Adding a repository
In our monolithic application, we have a common repository throughout the project. In
ProductService, by virtue of following all the principals learned until now, we will create
microcomponents, which means separate repositories encapsulating the data layer.

A repository is nothing but a simple C# class that contains logic to retrieve data from
the database and map it to the model.

Create a new folder and name it Persistence. Add the IProduct interface and a Product class
that will implement the IProduct interface. Again, we named the folder Persistence in our
effort to follow the general principal for easy identification. The following code snippet
provides an overview of the Product class (it is still without any implementation and it
does not have any interaction with the database yet):

 namespace FlixOne.BookStore.ProductService.Persistence
 {
 interface IProductRepository
 {
 void Add(Product Product);
 IEnumerable<Product> GetAll();
 Product GetBy(Guid id);
 bool Remove(Guid id);
 void Update(Product Product);
 }
 }

 namespace FlixOne.BookStore.ProductService.Persistence
 {
 public class ProductRepository : IProductRepository
 {
 public void Add(Product Product)
 {
 throw new NotImplementedException();
 }
 public IEnumerable<Product> GetAll()
 {
 throw new NotImplementedException();
 }
 public Product GetBy(Guid id)
 {
 throw new NotImplementedException();
 }
 public bool Remove(Guid id)
 {
 throw new NotImplementedException();
 }
 public void Update(Product Product)
 {
 throw new NotImplementedException();
 }
 }
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Registering the repositories
For ProductService, we will use built-in dependency injection support with ASP.NET
Core. To do so, follow these simple steps:

1. Open Startup.cs.
2. Add the repository in the ConfigureServices method. It should look like this:

 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddMvc();
 services.AddSingleton<IProductRepository, ProductRepository>();
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

Adding a product controller
Finally, we have reached the stage where we can proceed to add our controller class.
This controller would be actually responsible for responding to the incoming HTTP
requests with the applicable HTTP response. You can now get rid of the
ValueController class, as it is a default class provided by the ASP.NET core template, in
case you are wondering what is to be done with that.

Right-click on the controllers folder, chose the Add ->New Item option, and select Web
API Controller Class. Name it ProductController. Here we are going to utilize whatever
code/functionality we can from the monolithic application. Go back to the legacy code
and see the operations you're performing there; they can be borrowed for our
ProductController class. Refer to the following screenshot:

After we have made the required modifications to ProductController, it should look
something similar to this:

www.EBooksWorld.ir

 using Microsoft.AspNetCore.Mvc;
 using FlixOne.BookStore.ProductService.Persistence;
 namespace FlixOne.BookStore.ProductService.Controllers
 {
 [Route("api/[controller]")]
 public class ProductController : Controller
 {
 private readonly IProductRepository _ProductRepository;
 public ProductController(IProductRepository ProductRepository)
 {
 _ProductRepository = ProductRepository;
 }
 }
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

The ProductService API
In our monolithic application, for the Product module, we were doing the following:

Adding a new Product module
Updating an existing Product module
Deleting an existing Product module
Retrieving a Product module

Now we will create ProductService; we require the following APIs:

API Resource Description

GET /api/Product Get a list of products

GET /api/Product{id} Get a product

PUT /api/Product{id} Update an existing product

DELETE /api/Product{id} Delete an existing product

POST /api/Product Add a new product

www.EBooksWorld.ir

www.EBooksWorld.ir

Adding EF core support
Before going further, we need to add EF so that our service can interact with the actual
product database. Until now, we did not add any method to our repository that could
interact with the database.

To add EF core support, we need to add EF's core sqlserver package (we are adding
the sqlserrver package because we are using SQL Server as our DB server). Open
the project.json file and add the following package under dependencies:

"Microsoft.EntityFrameworkCore.SqlServer": "1.1.0"

Otherwise, the same package can be added using NuGet Package Manager. Just open
NuGet package and search for Microsoft.EntityFrameworkCore.SqlServer:

www.EBooksWorld.ir

www.EBooksWorld.ir

EF Core DbContext
In the preceding section, we added the EF Core package for SQL Server support; now
we need to create a context so our models could interact with our product database. We
have the Product and Category models. To do so, refer to this list:

Add a new folder and name it Contexts--it is not compulsory to add a new folder
In the context folder, add a new C# class and name it ProductContext--we are creating
DbContext for ProductDatabase, so to make the similarity here, we are creating
ProductContext

Make sure the ProductContext class inherits the DbContext class
Make the changes and our ProductContext class will look like this:

 using FlixOne.BookStore.ProductService.Models;
 using Microsoft.EntityFrameworkCore;
 namespace FlixOne.BookStore.ProductService.Contexts
 {
 public class ProductContext : DbContext
 {
 public ProductContext(DbContextOptions<ProductContext> options): base(options)
 { }
 public ProductContext()
 { }
 public DbSet<Product> Products { get; set; }
 public DbSet<Category> Categories { get; set; }
 }
 }

We have created our context, but this context is independent of Product database. We
need to add a provider and connection string so that ProductContext can talk with our
database.

Once again open the Startup.cs file and add the SQL Server db provider for our EF
Core support, under the ConfigureServcies method. Once you add the
provider's ConfigureServcies method, our Startup.cs file will look like this:

 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddMvc();
 services.AddSingleton<IProductRepository, ProductRepository>(); services.AddDbContext<ProductContext>(o => o.UseSqlServer(Configuration.GetConnectionString("ProductsConnection")));
 }

Open the appsettings.json file and add the required database connection string. In our
provider, we have already set the connection key as ProductsConnection. So now add
the following line to set the connection string with the same key:

www.EBooksWorld.ir

 {
 "ConnectionStrings": {
 "ProductConnection":
 "Data Source=.SQLEXPRESS;Initial Catalog=ProductsDB;Integrated Security=True;MultipleActiveResultSets=True"
 }
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

EF Core migrations
Although we have already created our product database, it is not time yet to
underestimate the power of EF Core migrations. EF Core migrations will be helpful for
us to perform any future modification to the database. This modification could be in the
form of a simple field addition or any other update to the database structure. We can
simply rely upon these EF Core migration commands every time to do the necessary
changes for us. In order to utilize this capability, follow these simple steps:

1. Go to Tools | NuGet Package Manager | Package Manager Console.
2. Run the following commands from Package Manager Console:

Install--Package Microsoft.EntityFrameworkCore.Tools--pre
Install--Package Microsoft.EntityFrameworkCore.Design

3. To initiate the migration, run this command:
Add-Migration ProductDB migration
It is important to note that this is to be done only for the first time (when we do not
yet have a database created by this command).

4. Now, whenever there are any changes in your model, simply execute the following
command:
Update-Database

www.EBooksWorld.ir

www.EBooksWorld.ir

Database migration
At this point, we are done with our ProductDatabase creation. Now its time to migrate
our existing database. There are many different ways to do this. Our monolithic
application, which presently has a huge database, contains a large number of records as
well. It is not possible to migrate them by simply using a database SQL script.
We need to explicitly create a script to migrate the database with all of its data. Another
option is to go ahead and create a DB package as required. Depending on the
complexity of your data and the records, you might need to create more than one data
package to ensure that the data is migrated correctly to our newly created
database: ProductDB.

www.EBooksWorld.ir

www.EBooksWorld.ir

Revisiting repositories and the controller
We are now ready to facilitate interaction between our model and database via our
newly created repositories. After making the appropriate changes to ProductRepository, it
will look like this:

 using System.Collections.Generic;
 using System.Linq;
 using FlixOne.BookStore.ProductService.Contexts;
 using FlixOne.BookStore.ProductService.Models;
 namespace FlixOne.BookStore.ProductService.Persistence
 {
 public class ProductRepository : IProductRepository
 {
 private readonly ProductContext _context;
 public ProductRepository(ProductContext context)
 {
 _context = context;
 }
 public void Add(Product Product)
 {
 _context.Add(Product);
 _context.SaveChanges();
 }
 public IEnumerable<Product> GetAll()
 {
 return _context.Products.ToList();
 }
 //Rest of the code has been deleted
 }
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

Introducing ViewModel
Add a new class to the models folder and name it ProductViewModel--this is because in our
monolithic application, whenever we search for a product, it should be displayed with
its product category. In order to support this, we need to incorporate the
necessary fields into our view model. Our ProductViewModel class will look like this:

 using System;
 namespace FlixOne.BookStore.ProductService.Models
 {
 public class ProductViewModel
 {
 public Guid ProductId { get; set; }
 public string ProductName { get; set; }
 public string ProductDescription { get; set; }
 public string ProductImage { get; set; }
 public decimal ProductPrice { get; set; }
 public Guid CategoryId { get; set; }
 public string CategoryName { get; set; }
 public string CategoryDescription { get; set; }
 }
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

Revisiting the product controller
Finally, we are ready to create REST API for ProductService. After the changes are made,
here is what ProductController will look like:

 using System.Linq;
 using FlixOne.BookStore.ProductService.Models;
 using FlixOne.BookStore.ProductService.Persistence;
 using Microsoft.AspNetCore.Mvc;
 namespace FlixOne.BookStore.ProductService.Controllers
 {
 [Route("api/[controller]")]
 public class ProductController : Controller
 {
 private readonly IProductRepository _ProductRepository;
 public ProductController(IProductRepository ProductRepository)
 {
 _ProductRepository = ProductRepository;
 }
 public IActionResult Get()
 {
 var Productvm = _ProductRepository.GetAll().Select(Product => new ProductViewModel
 {
 CategoryId = Product.CategoryId,
 CategoryDescription = Product.Category.Description,
 CategoryName = Product.Category.Name,
 ProductDescription = Product.Description,
 ProductId = Product.Id,
 ProductImage = Product.Image,
 ProductName = Product.Name,
 ProductPrice = Product.Price
 }).ToList();
 return new OkObjectResult(Productvm);
 }
 //Rest of code has been removed
 }
 }

Finally, we have completed the transition of our monolith .NET application to
microservices in the process of discussing the step-by-step transition of ProductService.
There are more steps to go with this application:

How microservices communicate--this will be discussed in Chapter 3, Integration
Techniques
How to test a microservice-- this will be discussed in Chapter 4, Testing Strategies
Deploying microservices--this will be discussed in Chapter 5, Deployment
How can we make sure our microservices are secure and we monitor our
microservices--this will be discussed in Chapter 6, Security, and Chapter 7,
Monitoring
How microservices are scaled--this will be discussed in Chapter 8, Scaling

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In this chapter, we discussed different factors that can be used to identify and isolate
microservices at a high level. We also discussed the various characteristics of a good
service. Talking about DDD, we saw what its importance is in the context of
microservices.

Further, we analyzed how we can correctly achieve vertical isolation of microservices
through various parameters in detail. While we tried to draw upon our previous
understanding of the challenges posed by a monolithic application and its solution in
microservices, we saw that we can use factors such as module interdependency,
technology utilization, and team structure to identify seams and perform the transition
from a monolithic architecture to microservices in an organized manner.

It became apparent that the database can pose a clear challenge in the process.
However, we identified how we can still perform this with a simple strategy and the
possible approaches to do this. We then discussed that with the foreign keys
reduced/removed, how the transactions are to be handled in a completely different
manner.

Moving ahead from the requirement of dividing a monolith into bounded contexts, we
further applied our knowledge to transition the FlixOne application to a microservice
architecture.

www.EBooksWorld.ir

www.EBooksWorld.ir

Integration Techniques
In the previous chapter, we developed microservices using a .NET monolithic
application. These services are independent of each other and are located on different
servers. What would be a better way to have inter-service communication, where one
service interacts/communicates with the other? In this chapter, we will discuss the
various patterns and ways that will help us foster this communication. We will cover the
following topics:

Communication between services
Styles of collaborations
Integration patterns
The API gateway
The event-driven pattern
Azure Service Bus

www.EBooksWorld.ir

www.EBooksWorld.ir

Communication between services
In the case of a .NET monolithic application, if there is a need to access third-party
components or external services, we use the HTTP client or another client framework to
access the resources. In Chapter 2, Building Microservices, we developed Product
service in such a way that it would work independently. But this was not the case; we
mandatorily required a few services to interact with each other. So this is a challenge:
having services communicate with each other. Both Product service and Order
service are hosted on separate servers. Both these servers are independent of each
other, are based on REST, and have their own endpoints via which they communicate
with each other (when a service interacts with another service and vice versa, we refer
to it as inter-service communication as well).

There are ways in which services communicate with each other; let's discuss them
briefly:

Synchronous: In this, the client makes a request to the remote service (called a
service) for a specific functionality and waits until it gets the response.

In the preceding image (pictorial view, not complete), you can see our different
microservices communicate with each other. All our services are RESTful. They are
based on the ASP.NET Core Web API. In the upcoming section, we will discuss this in
detail: how exactly a service is called. This is known as the synchronous method, where
clients have to wait for a response from the service. In this case, the client had to wait

www.EBooksWorld.ir

until it gets a complete response.

Asynchronous: In this, clients make a request to the remote service (called a
service) for a specific functionality and does not wait although it does care about
the response. We will discuss this in detail in the following sections.

www.EBooksWorld.ir

www.EBooksWorld.ir

Styles of collaborations
In the preceding section, we discussed two different modes of how services
intercommunicate. These modes are nothing but styles of collaborations, which are as
follows:

request/response: In this, the client sends a request and waits for the response
from the server. This is an implementation of synchronous communication. But it is
not true that request/response is only an implementation of synchronous
communication; we can use it for asynchronous communication as well.

Let's consider an example to understand the concept. In Chapter 2, Building
Microservices, we developed ProductService. This service has the
GetProduct method, which is synchronous. The client has to wait for a
response whenever it calls this method:

 [HttpGet]
 [Route("GetProduct")]
 public IActionResult Get()
 {
 return new OkObjectResult(_productRepository.GetAll().ToViewModel());
 }

As per the preceding code snippet, whenever this method is called by the
client (who is requesting for this), they will have to wait for the response, in
other words, they will have to wait until the extension method ToViewModel() is
executed:

 [HttpGet]
 [Route("GetProductSync")]
 public IActionResult GetIsStillSynchronous()
 {
 var task = Task.Run(async() => await _productRepository.GetAllAsync());
 return new OkObjectResult(task.Result.ToViewModel());
 }

In the preceding code snippet, we see that our method is implemented in
such a way that whenever a client makes a request, they will have to wait
until the async method is executed. Here, we call async in the sync way.

To make our code short, we added extension methods to the already existing
code written in Chapter 2, Building Microservices:

 using System.Collections.Generic;
 using System.Linq;

www.EBooksWorld.ir

 using FlixOne.BookStore.ProductService.Models;

 namespace FlixOne.BookStore.ProductService.Helpers.Extensions
 {
 public static class Transpose
 {
 public static ProductViewModel ToViewModel(this Product product)
 {
 return new ProductViewModel
 {
 CategoryId = product.CategoryId,
 CategoryDescription = product.Category.Description,
 CategoryName = product.Category.Name,
 ProductDescription = product.Description,
 ProductId = product.Id,
 ProductImage = product.Image,
 ProductName = product.Name,
 ProductPrice = product.Price
 };
 }
 public static IEnumerable<ProductViewModel> ToViewModel(this IEnumerable<Product> products)
 {
 return products.Select(ToViewModel).ToList();
 }
 }
 }

To sum up, we can say that the collaboration style request/response does not
mean that it can be implemented only synchronously; we can use
asynchronous calls for this as well.

Event-based: The implementation of this collaborative style is purely
asynchronous. This is a way of implementation where clients that emit an event do
not know exactly how to react.

In the preceding section, we discussed Product service in a synchronous
manner. Let's take an example of how users/customers can place an order; here
is a pictorial overview of the functionality:

www.EBooksWorld.ir

The preceding figure shows that the process of purchasing a book has a few main
functions:

1. With the help of the search functionality, customers can find a specific book.

2. After getting the results for the searched book, customers can view the details of
the book.

3. As soon as they proceed to checkout, our system will make sure that the display
(available books to purchase) would show the right quantity, for example,
the available quantity is 10 copies of Microservices for .NET and the customer
checks out with one book. In this case, the available quantity should now show
nine copies.

4. The system will generate an invoice for the purchased book and send it to
the customer on their registered e-mail.

Conceptually, this looks easy; however, when we talk about implementing
microservices, we are taking about services that are hosted separately and have
their own REST API, database and so on. This looks bit complex. There are
many aspects involved, for example, how a service will call or invoke another
service on a successful response from one or more services. This is where the
event-driven architecture comes into the picture.

www.EBooksWorld.ir

In the preceding image, we can see that InvoiceService and ProductService are
triggered when OrderService is executed. These services further call internal
asynchronous methods to complete their functionalities.

We are using Azure API management as our API gateway. In the
upcoming sections, we will discuss this in detail.

www.EBooksWorld.ir

www.EBooksWorld.ir

Integration patterns
Until now, we have discussed inter-service communication and have gone through the
practical implementation of Product service with the use of synchronous and
asynchronous communication. We've also implemented microservices using different
styles of collaborations. Our FlixOne bookstore (developed as per the microservice
architectural style) required more interaction; therefore, it required more patterns. In
this section, we will discuss the implementation of various integration patterns required
for our application.

The complete application of the FlixOne bookstore is available in Chapte
r 10, Creating a Complete Microservice Solution.

www.EBooksWorld.ir

www.EBooksWorld.ir

The API gateway
In the styles of collaboration section, we discussed two styles using which we can
foster intercommunication between microservices. Our application is spread into
various microservices:

Product service
Order service
Invoice service
Customer service

In our FlixOne bookstore (user interface), we need to show a few details:

Book title, author name, price, discount, and so on
Availability
Book reviews
Book ratings
Publisher ranking and so on

Before we check out the implementation, let's discuss the API gateway.

The API gateway is nothing but an implementation of Backend For Frontend (BFF).
Sam Newman introduced this pattern. It acts as a proxy between client applications and
services. In our example, we are using Azure API management as our API gateway.

It is responsible for the following functionalities:

Accepting API calls and routes them to your backends
Verifying API keys, JWT tokens, and certificates
Supporting Auth through Azure AD and the OAuth 2.0 access token
Enforcing usage quotas and rate limits
Transforming your API on the fly without code modifications
Caching backend responses wherever they are set up
Logging call metadata for analytics purposes

Refer to Azure API management to know more about the process of setting up
the API Azure portal and working with REST APIs.

www.EBooksWorld.ir

https://social.technet.microsoft.com/wiki/contents/articles/31923.azure-create-and-deploy-asp-net-webapi-to-azure-and-manage-using-azure-api-management.aspx

In the preceding image, we have different clients, such as a mobile and desktop
application and a web application, that are using microservices. Here Azure API
management is working as an API gateway. Our client does not know the actual server
where our services are located. The API gateway provides them with the address of its
own server, and internally, it authenticates the request from clients with the use of a
valid Ocp-Apim-Subscription-Key.

Our ProductService has a REST API, refer to the following table:

API resource Description

GET /api/product Get a list of products

GET /api/product{id} Get a product

PUT /api/product{id} Update an existing product

DELETE /api/product{id} Delete an existing product

POST /api/product Add a new product

We have already created ProductClient--a .NET console application. It makes a request to
Azure API management by passing the subscription key. Here is the code snippet for
this:

 namespace FlixOne.BookStore.ProductClient
 {
 internal class Program
 {
 private const string ApiKey = "myAPI Key";
 private const string BaseUrl = "https://api.flixone.com";
 private static void Main(string[] args)
 {

www.EBooksWorld.ir

 GetProductList("/product/GetProductSync");
 Console.WriteLine("Hit ENTER to exit...");
 Console.ReadLine();
 }
 private static async void GetProductList(string resource)
 {
 using (var client = new HttpClient())
 {
 var queryString = HttpUtility.ParseQueryString(string.Empty);
 client.DefaultRequestHeaders.Add("Ocp-Apim- Subscription-Key", ApiKey);
 var uri = $"{BaseUrl}{resource}?{queryString}";
 //Get asynchronous response for further usage
 var response = await client.GetAsync(uri);
 }
 }
 }
 }

In the preceding code, our client is requesting a REST API to get all the products. Here
a brief description of the terms that appear in the code:

BaseUrl This is the address of the proxy server.

Ocp-Apim-
Subscription-
Key

This is a key assigned by API Management to a specific product,
which the client has opted for.

Resource This is our API resource, which is configured over Azure API
Management. It will be different from our actual Rest API resource.

Response This refers to the response to a specific request, in our case, the
default JSON format.

Since we're using Azure API Management as an API gateway, there are certain benefits
we'll enjoy:

We can manage our various APIs from a single platform; for
example, ProductService, OrderService, and other services can be easily managed and
called by many clients.
Because we're using API management, it does not only provide us with a proxy
server, but also provides the facility to create and maintain documentation of our
APIs.
It provides a built-in facility to define various policies for quota, output formats,
and format conversions, such as XML to JSON or vice versa.

So with the help of the API gateway, we can have access to some great features.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

The event-driven pattern
The microservice architecture has the database per service pattern, which means it has
an independent database for every dependent or independent service:

Dependent service: Our application would require a few external services (third-
party services or components and so on) and/or internal services (these are our
own services) to work or function as expected. For instance, Checkoutservice
requires Customer service; also, Checkout service requires an external (third-
party) service to verify a customer's identity (such as Aadhar card ID in the case of
Indian customers). Here our Checkoutservice service is a dependent service, as it
requires two (internal service and external service) services to function as
expected. Dependent services would not work if any or all the services on which
the service is dependent on do not work properly (there are a lot of causes due to
which a service would not work, including network failure, unhandled exception,
and so on).
Independent service: In our application, we have services that do not require any
other service to work properly. Services that do not need any other service to work
in order to function are called independent services; these services can be self-
hosted. Our Cusomer service does not require any other service to function
properly, but other services may or may not require this service.

The main challenge is to maintain business transactions to ensure data consistency
across these services. For instance, when and how Customer service would know that
CheckoutService has functioned and now it requires the functionality of Customer
service. There may be several services (services may be self-hosted) in an application.
In our case, when CheckoutService is triggered and Customer service is not invoked,
then how will our application identifies the customer’s details?

ASP.NET WebHooks can also be used for providing event notifications;
refer to WebHooks documentation for more information.

To overcome the related problems/challenges we've discussed (for CheckoutService
and CustomerService), we can use an event-driven pattern (or the eventual consistency
approach) and use distributed transactions.

A distributed transaction is a transaction that updates data on two or more

www.EBooksWorld.ir

networked computer systems. Distributed transactions extend the benefits of
transactions to applications that must update distributed data. Implementing robust
distributed applications is difficult because these applications are subject to multiple
failures, including failure of the client, the server, and the network connection
between the client and server. In the absence of distributed transactions, the
application program itself must detect and recover from these failures. - msdn

The following image describes an actual implementation of the event-driven pattern in
our application, where ProductService subscribes to the events and Event-Manager
manages all the events:

In an event-driven pattern, we implement a service in such a way that it publishes an
event whenever a service updates its data and another service (dependent service)
subscribes to this event. Now whenever a dependent service receives an event, it
updates its data. This way, our dependent services can get and update their data as/if
required. The preceding image shows an overview of how services subscribe to and
publish events. In the image, Event-Manger could be a program running on a service or
a mediator helping you manage all the events of the subscribers and publishers. It
registers an event of the publisher and notifies it to a subscriber whenever a specific
event is occurred/triggered. It also helps you to form a queue and wait for events. In our
implementation, we will use Azure Service Bus queues for this activity.

Let's consider an example. In our application, this is how our services will publish and
receive an event:

1. CustomerService performs a few checks for the users, namely login check,

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681205(v=vs.85).aspx

customer details check, and so on; after these necessary checks are conducted, the
service publishes an event called CustomerVerified.

2. CheckOutService receives this event and after performing the necessary
operations, it publishes an event called ReadyToCheckout.

3. Order-Service receives this event and updates the quantity.
4. As soon as the checkout is performed, CheckOutService publishes an event.

Whatever result is received from the external service, either CheckedoutSuccess or
CheckedoutFailed, it is used by CheckoutService.

5. When InventoryService receives these events, it updates the data to make sure the
exact item is added or removed.

With the use of event-driven patterns, services can automatically update the database
and publish an event.

www.EBooksWorld.ir

www.EBooksWorld.ir

Event sourcing
This pattern helps us ensure that the service will publish an event whenever the state
changes. In this pattern, we take a business entity (product, customer, and so on) as a
sequence of state-changing events. The event store persists the events and these events
are available for subscription or as other services. This pattern simplifies our tasks by
avoiding the requirement to synchronize the data model and the business domain. It
improves performance, scalability, and responsiveness.

This simply defines an approach indicating how we can handle the various
operations on our data by a sequence of events; these events are recorded in a
store.
An event represents a set of changes made to the data, for example,
InvoiceCreated.

The preceding image describes how an event would work for Orderservice:

The commands issue a book from the UI to Order.
OrderService queries (from the event store) and populates the results with the
CreateOrder event.
Then, the command handler raises an event to order the book.
Our service performs the related operations.
Finally, the system appends the event to the event store.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Eventual consistency
Eventual consistency is nothing but an implementation of the data consistency approach.
This suggests implementation so, the system would be a scalable system with high
availability.

Eventual consistency is unlikely to be specified as an explicit requirement of a
distributed system. Instead it is often a result of implementing a system that must
exhibit scalability and high availability, which precludes most common strategies for
providing strong consistency - msdn

According to this distributed data, stores are subject to the CAP theorem. The CAP
theorem is also known as Brewer's theorem. Consistency, Availability, (network)
Partition tolerance (CAP). According to this theorem, in a distributed system, we can
only choose two out of these three:

Consistency
Availability
Partition tolerance

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/library/dn589800.aspx

www.EBooksWorld.ir

Compensating Transaction
Compensating Transactions provide a way to roll back or undo all the tasks performed
in a step of series. Suppose one or more services have implemented operations in a
series and one or more of them have failed. What would be your next steps then? Would
you reverse all the steps or commit to a half-completed functionality?

In our case, where a customer orders a book and ProductService marks the ordered
book as sold temporarily, after the confirmation of the order, OrderService calls an
external service for completing the payment process. If the payment fails, we would
need to undo our previous tasks, which means we will have to check ProductService so
it would mark the specific book as unsold.

www.EBooksWorld.ir

www.EBooksWorld.ir

Competing Consumers
Competing Consumers provides a way to process messages for multiple concurrent
consumers, where they receive these messages on the same channel. This application is
meant for handling a large number of requests. It can be implemented by passing a
messaging system to another service (a consumer service), and it can be handled
asynchronously.

This scenario can be implemented with the use of Azure Service Bus queues.

www.EBooksWorld.ir

www.EBooksWorld.ir

Azure Service Bus queues
In the event-driven pattern, we discussed services' publish and subscribe events. We
used an event manager to manage all the events. In this section, we will see how Azure
Service Bus manages events and provides the facility to work with microservices.

Azure Service Bus is nothing but an information delivery service. It is used to make
communication easier between two or more components/services. In our case,
whenever services need to exchange information, they will communicate using this.
Azure Service Bus plays an important role here. There are two main types of services
provided by Azure Service Bus:

Brokered communication – This service can also be called hired service. It
works in the similar way as postal services work in our real world. Whenever
a person wants to send message/information, he/she can send a letter to another
person. This way, one can send various types of messages in the form of letters,
packages, gifts, and so on. This type of messaging service ensures delivery of a
message even when both the sender and receiver are not online at the same time.
This is a messaging platform with components such as queues, topics and
subscriptions, and so on.
Non-brokered communication – This is similar to making a phone call. In this, the
caller (sender) calls a person (receiver) without any confirmation indicating
whether he/she will pick the call or not. In this, the sender sends information and it
purely depends upon the receiver to receive the communication and pass the
message back to the sender.

www.EBooksWorld.ir

Service Bus is a multi-tenant cloud service, which means that the service is shared by
multiple users. Each user, such as an application developer, creates a namespace,
then defines the communication mechanisms she needs within that namespace - msdn

The preceding image is a pictorial view of Azure Service Bus and it depicts four
different communication mechanisms. Everyone has own taste via which it connects
application.

Queues – These allow one-directional communication and act as brokers.
Topics – These provide one-directional communication where a single topic can
have multiple subscriptions.
Relays – These provide bi-directional communication. They do not store messages
(as queues and topics do). Relays pass messages to the destination application.

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-fundamentals-hybrid-solutions

www.EBooksWorld.ir

Implementation of an Azure Service Bus
queue
In this section, we will see the actual implementation of an Azure Service Bus queue by
creating the following:

A Service Bus namespace
A Service Bus messaging queue
A console application to send a message
A console application to receive a message

www.EBooksWorld.ir

www.EBooksWorld.ir

Prerequisites
We need the following to implement this solution:

Visual Studio 2015 Update 3 or later
A valid Azure subscription

If you do not have any Azure subscription, you can get it for free by signing in here:
https://azure.microsoft.com/en-us/free/

If you have everything, as mentioned, you can start by following these steps:

1. Log on to the Azure portal (https://portal.azure.com/).
2. In the left navigation bar, click on Service Bus--if unavailable, you can find it by

clicking on More Services.
3. Click on Add.

www.EBooksWorld.ir

https://azure.microsoft.com/en-us/free/
https://portal.azure.com/

4. In the Create namespace dialog, enter a namespace, say flixone. Select the pricing
tier next: Basic, Standard, or Premium .

5. Select your subscription.
6. Choose an existing resource or create a new one.
7. Select the location where you want to host the namespace
8. Open a newly created namespace (we just created flixone)
9. Now click on Shared access policies.

10. Click on RootManageSharedAccessKey:

www.EBooksWorld.ir

11. Click on Queues in the main dialog of the flixone namespace.

12. From the Policy: RootManageSharedAccessKey window, note the primary key
connection string for further use.

www.EBooksWorld.ir

13. Click on Add Queue name (say flixonequeue) and click on Create (we're using rest
values as default values):

www.EBooksWorld.ir

You can verify the creation of the queue by visiting the Queues dialog.

www.EBooksWorld.ir

Now we are ready to create our sender and receiver applications for messages.

www.EBooksWorld.ir

www.EBooksWorld.ir

Sending messages to the queue
In this section, we will create a console application that will actually send messages to
the queue. To create this application, follow these steps:

1. Create a new console application and name it
FlixOne.BookStore.MessageSender using Visual Studio's new project (C#)
template:

2. Add the Nuget package Microsoft Azure Service Bus by right-clicking on the
project.

3. Open the app.config file and add the connection string and queue name.

 <appSettings>
 <!-- Service Bus specific app settings for messaging connections -->
 <add key="Microsoft.ServiceBus.ConnectionString" value="Endpoint=sb://flixone.servicebus.windows.net/;SharedAccessKeyN ame=RootManageSharedAccessKey;SharedAccessKey=sharedprimarykey"/>
 <add key="FlixOneQueueName" value="flixonequeue"/>
 </appSettings>

4. Add a reference of System.Configuration.
5. Write the code to send the message to the queue, and your Program.cs file will look

like this:

 using System.Configuration;
 using Microsoft.ServiceBus.Messaging;
 namespace FlixOne.BookStore.MessageSender
 {
 internal class Program
 {
 private static void Main(string[] args)
 {
 var connectionString = ConfigurationManager.AppSettings["Microsoft.ServiceBus.ConnectionStri ng"];
 var queueName = ConfigurationManager.AppSettings["FlixOneQueueName"];
 var client = QueueClient.CreateFromConnectionString(connectionString, queueName); var message = new BrokeredMessage("A message from FlixOne.BookStore.MessageSender"); client.Send(message);
 }
 }
 }

6. Run the program and wait for a while.

www.EBooksWorld.ir

7. Go to the created queue and check whether it displays a message:

www.EBooksWorld.ir

www.EBooksWorld.ir

Receiving messages from the queue
In this section, we will create a console application that would receive messages from
the queue. To create this application, follow these steps:

1. Create a new console application (C#) and name it FlixOne.BookStore.MessageReceiver.
2. Add the NuGet package for Azure Service Bus (same as added in the previous

application).
3. Add config keys/values to your App.Config file and a reference of

System.Configuration to the project.
4. Write the code to receive messages from the Azure Bus Service queue, so your

program.cs file should look like this:

 using System;
 using System.Configuration;
 using Microsoft.ServiceBus.Messaging;
 namespace FlixOne.BookStore.MessageReceiver
 {
 internal class Program
 {
 private static void Main(string[] args)
 {
 var connectionString = ConfigurationManager.AppSettings["Microsoft.ServiceBus.ConnectionStri ng"];
 var queueName = ConfigurationManager.AppSettings["QueueName"];
 var client = QueueClient.CreateFromConnectionString(connectionString, queueName); client.OnMessage(message =>
 {
 Console.WriteLine($"Message: {message.GetBody<string>()}");
 Console.WriteLine($"Message id: {message.MessageId}");
 });
 Console.ReadLine();
 }
 }
 }

Note that we have sent one message to our Azure Bus Service queue.

Now, run the application and see the result.

The console window will display the message and its ID. Now go to the Azure portal
and verify the message. It should be zero:

www.EBooksWorld.ir

The preceding example demonstrates how we can use Azure Bus Service to
send/receive messages for our microservices.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
Inter-service communication is possible with synchronous or asynchronous
communication, which are styles of collaborations. Microservices should have
asynchronous APIs. The API gateway is a proxy server that provides a way to interact
various clients with APIs. API management, as an API gateway, provides plenty of
features to manage/host various RESTful APIs. There are various patterns that help us
communicate with microservices. With the use of Azure Bus Service, we can easily
manage and play with inter-service communication using the Azure Bus Service
message queue; services can easily send or receive messages from each other through
this. Eventual consistency talks about scalable systems with high scalability, and it is
proven with the CAP theorem.

In the next chapter, we will discuss various testing strategies to test an application and
build on the microservice architectural style.

www.EBooksWorld.ir

www.EBooksWorld.ir

Testing Strategies
Quality assurance or testing is a great way to assess a system, program, or an
application with different aspects. Sometimes, a system requires testing to identify
erroneous code; on other occasions, we may need it to assess our system's business
compliance. Testing could vary from system to system and can be considerably different
as per the architectural style of the application. Everything depends on how we are
strategizing our testing approach or plan; for example, testing a monolith .NET
application will be different as compared to testing SOA or microservices. In this
chapter, we will cover these topics:

How to test microservices
Handling challenges
Testing strategies
The testing pyramid
Types of microservice tests

www.EBooksWorld.ir

www.EBooksWorld.ir

How to test microservices
Testing microservices could be a challenging job as it is different from how we test
applications built using the traditional architectural style. In a .NET monolithic
application, testing is a bit easier compared to microservices, which provides
implementation independence and short delivery cycles.

Let's understand it in the context of our .NET monolithic application, where we did not
utilize continuous integration and deployment. It becomes more complex when testing is
combined with continuous integration and deployment. In microservices, we will be
required to understand the tests for every service and how these tests differ from each
other. Also, note that automated testing does not mean that we will not perform any
manual testing at all.

Here are a few things that make microservice testing a complex and challenging task:

Microservices might have multiple services that work together or individually for
an enterprise system, so they can be complex.
Microservices are meant to target multiple clients, hence they involve more
complex use cases.
Each component/service of the microservice architectural style is isolated and
independent, so it is a bit complex to test them as they need to be tested
individually and as a complete system.
There might be independent teams working on separate components/services,
which might be required to interact with each other; therefore, they should be
tested in a way that the tests would cover not only internal but also external
services. This makes the job of testing microservices more challenging and
complex.
In microservices, each component/service is designed to work independently, but
they might be common for various other services and have a requirement to access
common/shared data. But in microservices, each service is responsible for
modifying its own database. So, testing microservices is going to be more complex
as services would now need to access data using API calls with other services,
which further adds dependencies to other services. This type of testing will have to
be handled using mock tests.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Handling challenges
In the previous section, we discussed that testing a microservice is a complex
and challenging job. In this section, we will discuss some points that will indicate how
conducting various tests could help us overcome these challenges:

A unit test framework, such as Microsoft Unit Testing Framework, provides a
facility to test individual operations of independent components. To ensure that all
the tests pass and that a new functionality or change does not break anything (if any
functionality breaks down, then the related unit test would fail), these tests can be
run on every compilation of code.
To make sure that responses are consistent with the expectations of the clients or
consumers, consumer-driven contract testing can be used.
Services use data from an external party or from other services, and they can be
tested by setting up the endpoint of the services that are responsible for
handling the data. Then we can use mocking framework or library such as moq to
mock these endpoints during the integration process.

www.EBooksWorld.ir

www.EBooksWorld.ir

Testing strategies (testing approach)
As mentioned in the prerequisites section of Chapter 1, What are Microservices?,
deployment and QA requirements would become more demanding. The only way to
effectively handle this scenario would be through preemptive planning. I have always
favored the representation of the QA team during the early requirement gathering and
design phase. In the case of microservices, it becomes a necessity to have a close
collaboration between the architecture group and the QA group. Not only would the QA
group input be helpful, but the QA group would be able to draw up a strategy to test the
microservices effectively.

Test strategies are nothing but a map or outlined plan that describes the complete
approach of testing.

Different systems require different testing approaches. It is not possible to implement a
pure testing approach to a system that is developed using a newer approach rather than
the earlier developed system. Testing strategies should be clear to everyone so that the
created tests can help non-technical members of the team (such as stakeholders)
understand how the system is working. Such tests can be automated, which simply tests
the business flow, or they could be manual tests which could be simply performed by a
user working on the User Acceptance Testing system.

Testing strategies or approaches have the following techniques:

Proactive – This is kind of an early approach and tries to fix defects at the
earliest before the build is created by the initiated test designs.
Reactive – In this approach, testing is started or comes into the picture once
coding is completed.

www.EBooksWorld.ir

www.EBooksWorld.ir

Testing pyramid
The testing pyramid is a strategy or a way to define what you should test in
microservices. In other words, we can say it helps us define the testing scope of
microservices. The concept of the testing pyramid was originated by Mike Cohn (http://w
ww.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid) in 2009. There are
various flavors of the testing pyramid; different authors have described this by
indicating how they had placed or prioritized their testing scope. The following image
depicts the same concept that was defined by Mike Cohn:

The Testing pyramid showcases how a well-designed test strategy is structured. When
we closely look at it, we can easily notice how we should follow the testing approach
for microservices (note that the testing pyramid is not specific to microservices). Let's
start from the bottom of this pyramid. We can see that the testing scope is very limited
with the use of Unit tests. As soon as we move to the top, our testing scope is expanded
into a broader scope where we can perform complete system testing.

Let's talk about these layers in detail (bottom-to-top approach):

Unit tests: These are tests that test small functionalities of an application based on
the microservice architectural style.
Service tests: These are tests that test an independent service or a service that
could communicate with another/external service.
System tests: These are tests that help in testing an entire system with the aspect
of the user interface. These are end-to-end tests.

www.EBooksWorld.ir

http://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid

One interesting point in this concept is the top-layered tests, that is, system tests, are
slow and expensive to write and maintain. On the other hand, the bottom-layered tests,
that is, unit tests, are comparatively fast and less expensive.

In the upcoming sections, we will discuss these tests in detail.

www.EBooksWorld.ir

www.EBooksWorld.ir

Types of microservice tests
In the previous section, we discussed test approaches or testing strategies. These
strategies decide how we will proceed with the testing of the system. In this section, we
will discuss various types of microservice testing.

www.EBooksWorld.ir

www.EBooksWorld.ir

Unit testing
Unit tests are tests that typically test a single function call to ensure that the smallest
piece of the program is tested. So these tests are meant to verify specific functionality
without considering other components:

Testing would be more complex when components are broken down into small,
independent pieces and that are supposed to be tested independently. Here, testing
strategies come in handy and ensure that the best quality assurance of a system
would be performed. It adds more power when it comes along with the Test-
Driven Development (TDD) approach.
Unit tests are of any size, or say, there is no definition for the size of unit tests.
Generally, these tests are written at the class level.
Smaller unit tests are good to test every possible functionality of a complex system.

www.EBooksWorld.ir

www.EBooksWorld.ir

Component (service) testing
Component or service testing is a method where we bypass the UI and directly test the
API (in our case, the ASP.NET Core Web API). Using this test, we confirm that an
individual service does not have any code bugs or that it is working fine functionality-
wise.

Testing a service does not mean it is an independent service. This service might be
interacting with an external service. In such a scenario, we should not call the actual
service but use the mock and stub approach. The reason for this is our motto to test code
and make sure it is bug-free. In our case, we will use the moq framework for mocking our
services.

There are a few things worth to be noted in the case of component or service testing:

As we need to verify the functionality of the services, these kinds of tests could be
small and fast.
With the help of mocking, we don't need to deal with the actual database; therefore,
test execution time is less or nominally higher.
The scope of these tests is broader than unit tests.

www.EBooksWorld.ir

www.EBooksWorld.ir

Integration testing
In unit testing, we test a single unit of code. In component or service testing, we test
mock services depending on an external or third-party component. But integration
testing in microservices is a bit challenging or critical as in this type of testing, we test
components that work together; also, service calls here should be made with integration
with external services. In this test strategy, we make sure that the system is working
together correctly and the behavior of services are as expected. In our case, we have
various microservices and some of them depend upon external services.

For example, StockService depends upon OrderService in a way that a particular
number of items is reduced from the stock as soon as the customer successfully orders
that specific item. In this scenario, when we test StockService, we should mock
OrderService. Our motto should be to test StockService and not communicate with
OrderService. We do not test directly with the database of any service.

www.EBooksWorld.ir

www.EBooksWorld.ir

Contract testing
Contract testing is an approach where each service calls independently verifies the
response. If any service is dependent, then dependencies are stubbed. This way, the
service functions without interacting with any other service. This is an integration test
that allows us to check the contract of external services. Here we come to a concept
called the consumer-driven contract (we will discuss this in detail in the following
section).

For example, CustomerService allows new customers to register with the FlixOne
Store. We do not store new customers' data in our database. We verify customer data
before this to check for blacklisting or fraud user listing and so on. This process calls an
external service that is maintained by another team or entirely by a third-party. Out tests
will still pass if someone changes the contract of this external service because this
change would not affect our test, as we stubbed the contract of this external service.

www.EBooksWorld.ir

www.EBooksWorld.ir

Consumer-driven contracts
In microservices, we have several services that are independent or services that require
communication with each other. Apart from this, from a user's (here, the user is a
developer, who is consuming the API being referred to) point of view, they know about
the service and whether it has or doesn't have several clients/consumers/users. These
clients can have the same or different needs.

Consumer-driven contracts refer to a pattern that specifies and verifies all the
interactions between clients/consumers and the API owner (application). So here,
consumer-driven means that the client/consumer specifies what kind of interactions it is
asking for with the defined format. On the other hand, the API owner (application
services) must then agree to these contracts and ensure that they are not breaking them:

These are the contracts:

Provider contract: This is nothing but a complete description of the service
provided by the API owner (application). Swagger's documentation can be used
for our REST API (web API).
Consumer contract: This is nothing but a description of how consumers/clients
are going to utilize the Provider contract.
Consumer-driven contract: This is nothing but a description of how the API
owner satisfies consumer/client contracts.

www.EBooksWorld.ir

www.EBooksWorld.ir

How to implement a consumer-driven
test
In the case of microservices, it's a bit challenging/harder to implement a consumer-
driven test instead of a .NET monolithic application. This is because in monolithic
applications, we can directly use any unit test framework, such as MS tests or NUnit,
but we can't do this directly in the microservice architecture. In microservices, we
would need to mock not only method calls, but also the services themselves, which get
called via either HTTP or HTTPs.

To implement a consumer-driven test, there are tools available that will help. One
famous open source tool for .NET framework is Pact-net (https://github.com/SEEK-Jobs/pact-
net) and another for .NET Core is Pact-net-core (https://github.com/garora/pact-net-core). These
are based on Pact (https://docs.pact.io/) standards.

www.EBooksWorld.ir

https://github.com/SEEK-Jobs/pact-net
https://github.com/garora/pact-net-core
https://docs.pact.io/

www.EBooksWorld.ir

How Pact-net-core helps us achieve our
goal
In a consumer-driven test, our goal is to make sure that we should be able to test all the
services, internal components, and services that depend on or communicate with
other/external services.

Pact-net-core is written in a way that it guarantees the contacts would be met. Here are
a few points on how it helps us in a better way to achieve our goal:

The execution is very fast
It helps identify failure causes
The main thing is that Pact does not require a separate environment to manage
automation test integration.

There are two steps to work with Pact:

Defining expectations: In the very first step, the consumer team has to define the
contract. In the preceding image, Pact helps record the consumer contract, which
will be verified when replayed:

Verifying expectations – As part of the next step, the contract is provided to the
provider team and then the provider service is implemented to fulfill the same. In
the following image, we are showing the replaying of a contract on the provider
side to fulfill the defined contract.

www.EBooksWorld.ir

We have gone through consumer-driven contracts; they mitigate our challenges of
microservice architectures with the help of an open source tool called Pact-net.

www.EBooksWorld.ir

www.EBooksWorld.ir

Performance testing
This is non-functional testing, and its main motto is not to verify the code or test the
code health. This is meant to ensure that the system is performing well, based on the
various measures, namely scalability, reliability, and so on.

The following are the different techniques or types of performance testing:

Load testing: This is nothing but a process where we test the behavior of the
system under various circumstances of specific load. It also covers critical
transactions, database load, application server, and so on.
Stress testing: This is an approach where the system goes under regress testing
and finds the upper limit capacity of the system. It is also determined by how a
system behaves in this critical situation, where the current load goes above the
expected maximum load.
Soak testing: This is also called endurance testing. In this test, the main purpose is
to monitor memory utilizations, memory leaks, or various factors that affect the
system performance.
Spike testing: This is an approach where we make sure that the system is able to
sustain the workload. One of the best tasks to determine performance is by
suddenly increasing the user load.

www.EBooksWorld.ir

www.EBooksWorld.ir

End-to-end (UI/functional) testing
End-to-end or UI or functional tests are those that perform for the entire system,
including the entire service and database integration. These tests increase the scope of
testing. It is the highest level of testing and includes frontend integration and tests the
system as an end user would use it. This testing is somehow similar to the end user
working with the system.

www.EBooksWorld.ir

www.EBooksWorld.ir

Sociable versus isolated unit tests
Sociable unit tests are those that contain concrete collaborators and cross boundaries.
They are not solitary tests. Solitary tests are those that ensure that the methods of a class
are tested. Sociable testing is not new. This word is explained in detail by
Martin Fowler as a unit test (https://martinfowler.com/bliki/UnitTest.html):

Sociable tests: This is nothing but a test that lets us know the application is
working as expected. This is the environment where other applications behave
correctly, run smoothly, and produce the expected results. It also, somehow, tests
the functioning of new functions/methods, including other software for the same
environment. Sociable tests resemble system testing because these tests behave
like system tests.
Isolated unit tests: As the name suggests, you can use this to perform unit testing
in an isolated way by performing stubbing and mocking. We can perform unit
testing with a concrete class using stubs.

www.EBooksWorld.ir

https://martinfowler.com/bliki/UnitTest.html

www.EBooksWorld.ir

Stubs and mocks
Stubs are nothing but returned canned responses to calls made during the test; mocks are
meant to set expectations:

Stubs: In a stubs object, we always get a valid stubbed response. The response
doesn’t care what input you provide. In any circumstances, the output will be the
same.
Mocks: In a mock object, we can test or validate methods that can be called on
mocked objects. This is a fake object that validates whether a unit test has failed or
passed. In other words, we can say that mock objects are just a replica of our
actual object. In the following code, we use the moq framework to implement a
mocked object:

 [Fact]
 public void Get_Returns_ActionResults()
 {
 // Arrange
 var mockRepo = new Mock<IProductRepository>();
 mockRepo.Setup(repo => repo.GetAll().ToViewModel()).Returns(GetProducts());
 var controller = new ProductController(mockRepo.Object);
 // Act
 var result = controller.Get();
 // Assert
 var viewResult = Assert.IsType<OkObjectResult>(result);
 var model = Assert.IsAssignableFrom<IEnumerable<ProductViewModel>>(viewResult.Value);
 Assert.Equal(2, model.Count());
 }

In the preceding code example, we mocked our IProductRepository repository and verified
the mocked result.

In the upcoming sections, we will understand these terms in more detail, using more
code examples from our FlixOne bookstore application.

www.EBooksWorld.ir

www.EBooksWorld.ir

Tests in action
Until now, we have discussed test strategies and various types of microservice tests.
We've also discussed how to test and what to test. In this section, we will see tests in
action; we will implement tests with the use of:

Visual Studio 2017 RC or later
.NET Core
ASP.NET Core API
xUnit and MS tests
The Moq framework

www.EBooksWorld.ir

www.EBooksWorld.ir

 Getting ready with the test project
We will test our microservice application: FlixOne bookstore. With the help of code
examples, we will see how to perform unit tests, stubbing, and mocking.

We created the FlixOne bookstore application in Chapter 2, Building
Microservices.

Before we start writing tests, we should set up a test project in our existing application.
There are a few simple steps we can take with this test project setup:

Using Visual Studio, add a new .NET Core (class library) project to your existing
solution
You can alternatively use the cli command to add the new project--open the bash
command or the Visual Studio command prompt and execute dotnet new -t xunittest
Open the project.json file of your test project and make sure these dependencies and
packages are there:

 {
 "version": "1.0.0-*",
 "buildOptions": {
 "debugType": "portable"
 },
 "dependencies": {
 "System.Runtime.Serialization.Primitives": "4.1.1",
 "xunit": "2.1.0",
 "dotnet-test-xunit": "1.0.0-rc2-192208-24",
 "FlixOne.BookStore.ProductService": { "target": "project" },
 "Microsoft.AspNetCore.TestHost": "1.1.0"
 },
 "testRunner": "xunit",
 "frameworks": {
 "netcoreapp1.0": {
 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.1"
 }
 },
 "imports": [
 "dotnet5.4",
 "portable-net451+win8"
]
 }
 }
 }

Our project structure should look like this:

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Unit tests
In ProductService, let's make sure that our service returns product data without failure:

 namespace FlixOne.BookStore.ProductService.Tests.Services
 {
 public class ProductTests
 {
 private IEnumerable<ProductViewModel> GetProducts()
 {
 var productVm = new List<ProductViewModel>
 {
 new ProductViewModel
 {
 CategoryId = Guid.NewGuid(),
 CategoryDescription = "Category Description",
 CategoryName = "Category Name",
 ProductDescription = "Product Description",
 ProductId = Guid.NewGuid(),
 ProductImage = "Image full path",
 ProductName = "Product Name",
 ProductPrice = 112M
 },
 new ProductViewModel
 {
 CategoryId = Guid.NewGuid(),
 CategoryDescription = "Category Description-01",
 CategoryName = "Category Name-01",
 ProductDescription = "Product Description-01",
 ProductId = Guid.NewGuid(),
 ProductImage = "Image full path",
 ProductName = "Product Name-01",
 ProductPrice = 12M
 }
 };
 return productVm;
 }
 [Fact]
 public void Get_Returns_ActionResults()
 {
 // Arrange
 var mockRepo = new Mock<IProductRepository>();
 mockRepo.Setup(repo => repo.GetAll().ToViewModel()).Returns(GetProducts());
 var controller = new ProductController(mockRepo.Object);
 // Act
 var result = controller.Get();
 // Assert
 var viewResult = Assert.IsType<OkObjectResult>(result);
 var model = Assert.IsAssignableFrom<IEnumerable<ProductViewModel>> (viewResult.Value);
 Assert.Equal(2, model.Count());
 }
 }
 }

In the preceding code example, which is a unit test example, we are mocking our
repository and testing the output of our WebAPI controller. This test is based on
the AAA technique; it will be passed if you meet the mocked data during setup.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Integration tests
In ProductService, let's make sure that our service returns the product data without failure:

 namespace FlixOne.BookStore.ProductService.IntegrationTests.Services
 {
 public class ProductTest
 {
 public ProductTest()
 {
 // Arrange
 _server = new TestServer(new WebHostBuilder()
 .UseStartup<Startup>());
 _client = _server.CreateClient();
 _client.BaseAddress = new Uri("http://localhost:20077");
 }
 private readonly HttpClient _client;
 private readonly TestServer _server;
 [Fact]
 public async Task ReturnHelloWorld()
 {
 // Act
 var response = await _client.GetAsync("/GetProduct");
 response.EnsureSuccessStatusCode();
 var responseString = await response.Content.ReadAsStringAsync();
 // Assert
 Assert.NotEmpty(responseString);
 }
 }
 }

In the preceding code example, we are checking a simple test, where we are trying to
verify the response of a service by setting up a client with the use of HttpClient. The test
will fail if the response goes empty.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
Testing microservices is a bit different from applications built on the traditional
architectural style. In a .NET monolithic application, testing is a bit easier as compared
to microservices, and it provides implementation independence and short delivery
cycles. Microservices face challenges while performing the testing. With the help of the
testing pyramid concept, we can strategize how to go with testing. Referring to the
testing pyramid, we can easily see that unit tests provide the facility to test a small
function of a class and are less time-consuming. On the other hand, the top layer of the
testing pyramid enters a large scope with system or end-to-end testing, and these tests
are time taking and much expensive. Consumer-driven contracts are a very useful way to
test microservices. Pact-net is an open source tool meant for this. Finally, we went
through the actual test implementation.

In the next chapter, we will see how to deploy a microservice application. We will
discuss continuation integration and continuation deployment in detail.

www.EBooksWorld.ir

www.EBooksWorld.ir

Deployment
Both monolith and microservice architectural styles come with different
deployment challenges. In the case of .NET monolithic applications, more often,
deployments are a flavor of xcopy deployments. Microservice deployments present a
different set of challenges. Continuous integration and continuous deployment are the
key practices to deliver microservice applications. Also, container technologies and
their toolchain to build and deploy, which promises greater isolation boundaries, are
essential for microservice deployment and scaling.

In this chapter, we will discuss the fundamentals of microservice deployment and the
influence of emerging practices, such as CI/CD tools and containers, on microservice
deployment. We will also walk through the deployment of a simple .NET Core service
into a Docker container.

By the end of the chapter, you will have an understanding of the following topics:

Deployment terminology
What are the factors for successful microservice deployments?
What is continuous integration and continuous deployment?
Isolation requirements for microservice deployment
Containerization technology and its need for microservice deployment
Quick introduction to docker
How to package an application as a docker container using Visual Studio

www.EBooksWorld.ir

www.EBooksWorld.ir

Monolithic application deployment
challenges
Monolithic applications are applications where all of the database and business logic is
tied together and packaged as a single system. Since, in general, monolithic applications
are deployed as a single package, deployments are somewhat simple but painful due to
the following reasons:

Deployment and release as a single concept: There is no differentiation between
deploying build artifacts and actually making features available to the end user.
More often, releases have coupling to the environments. This increases the risk of
deploying new features.

All or nothing deployment: All or nothing deployment increases the risk of
application downtime and failures. In the case of rollbacks, teams fail to deliver
the expected new features. Besides, hotfixes, or service packs become the norm to
deliver the right kind of functionality.

Central databases as a single point of failure: In monolithic applications, a big,
centralized database is a single point of failure. This database is quite often large
and difficult to break down. This results in an increase in mean time to recover
(MMTR) and mean time between failures (MTBF).

Deployment and releases are big events: Due to small changes in
the application, the entire application could get deployed. This comes with
developers and ops teams' huge time and energy investment. Needless to say,
collaboration between the various teams involved is the key for a successful
release. This becomes even harder when many geo-distributed teams are working
on the development and release. These kinds of deployments/releases use a lot of
handholding and manual steps. This impacts the end customers who have to face
application downtime. If you are familiar with these kinds of deployments, then
you'll also be familiar with marathon sessions in the so-called war rooms and
endless sessions of defect triage on conference bridges.

Time to market: Carrying out any change to the system in such cases becomes
harder. In such environments, executing any business change takes time. This makes
responding to market forces difficult--the business can also lose its market share.

www.EBooksWorld.ir

With the microservice architecture, we are addressing some of these challenges.
This architecture provides greater flexibility and isolation for service deployment.
It has proven to deliver much faster turnaround time and much needed business
agility.

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding the deployment
terminology
It is important that we understand the terminologies around microservices. This will
help us navigate through much jargon and buzzwords. This sets our microservice
journey on the right track:

Build: In the build stage, the service source gets compiled without any errors along
with the passing of all corresponding unit tests. This stage produces build artifacts.
Continuous Integration (CI): CI forces the entire application to build again every
time a developer commits any change--the application code gets compiled and a
comprehensive set of automated tests run against it. This practice emerged out of
the problems of frequent integration of code in large teams. The basic idea is to
keep the delta or change of the software small. This provides the required
confidence of having software in a workable state. Even if a check-in made by a
developer breaks the system, it is easy to fix it this way.
Deployment: Hardware provisioning and installing the base OS and correct
version of .NET framework installation are prerequisites to deployment. The next
part of it is to promote these build artifacts in production through various stages.
The combination of these two parts is referred to as the deployment stage. There is
no distinction between the deployment and release stage in most monolithic
applications.
Continuous Deployment (CD): In CD practice, each successful build gets
deployed to production. CD is more important from the technical team's
perspective. Under CD, there are several other practices, such as automated unit
testing, labeling and versioning of build number, and traceability of changes. With
continuous delivery, the technical team ensures that the change pushed to
production through various lower environments work as expected in production.
Usually, these are smaller changes and deployed very quickly.
Continuous delivery: Continuous delivery is different from CD. CD comes from
the technical team's perspective, whereas continuous delivery is more focused
toward giving the deployed code as early as possible to the customer. To make
sure that customers get the right defect-free product, in continuous delivery, every
build must pass through all the quality assurance checks. Once the product passes
the satisfactory quality verification, it is the business stakeholders' decision when
to release it.

www.EBooksWorld.ir

Build and deployment pipelines: Build and deployment pipeline is part of
implementing continuous delivery through automation. It is a workflow of steps
through which, code is committed in source repository. At the other end of the
deployment pipeline, the artifacts for release are produced. Some of the steps that
may be part of the build and deployment pipelines are as follows:

1. Unit tests
2. Integration tests
3. Code coverage and static analysis
4. Regression tests
5. Deployments to staging environment
6. Load/stress tests
7. Deployment to release repository

Release: A business feature made available to the end user is referred to as
the release of a feature. To release a feature or service, the relevant build artifacts
should be deployed beforehand. Usually, feature toggle manages the release of a
feature. If the feature flag (also called feature toggle) is not switched on in
production, it is called a dark release of the specified feature.

www.EBooksWorld.ir

www.EBooksWorld.ir

Prerequisites for successful microservice
deployments
Any architectural style comes with a set of associated patterns and practices to follow.
The microservice architectural style is no different. Microservice implementation has
more chances of being successful with the adoption of the following practices:

Self-sufficient teams: Amazon, who is a pioneer of SOA and microservice
architectures, follows the Two Pizza Teams paradigm. This means usually a
microservice team will have no more than 7-10 team members. These team
members will have all the necessary skills and roles, for example, development,
operations, and business analyst. Such a service team handles the development,
operations, and management of a microservice.
CI and CD: CI and CD are prerequisites for implementing microservices. Smaller
self-sufficient teams, who can integrate their work frequently, are precursors to the
success of microservices. This architecture is not as simple as monolith. However,
automation and the ability to push code upgrades regularly enables teams to handle
complexity. Tools, such as TFS, Team Foundation Online Services, Teamcity, and
Jenkins, are quite popular toolchains in this space.
Infrastructure as code: The idea of representing hardware and infrastructure
components, such as networks with code, is new. It helps you make deployment
environments, such as integration, testing, and production, look exactly identical.
This means developers and test engineers will be able to easily reproduce
production defects in lower environments. With tools such as CFEngine, Chef,
Puppet, Ansible, and Powershell DSC, you can write your entire infrastructure as
code. With this paradigm shift, you can also put your infrastructure under a version
control system and ship it as an artifact in deployment.
Utilization of cloud computing: Cloud computing is a big catalyst toward
adopting microservices. It is not mandatory as such for microservice deployment,
though. Cloud computing comes with near infinite scale, elasticity, and rapid
provisioning capability. It is a no brainer that the cloud is a natural ally for
microservices. So, knowledge and experience with the Azure cloud will help you
adopt microservices.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Isolation requirements for microservice
deployment
In 2012, Adam Wiggins, cofounder of the Heroku platform, presented 12 basic
principles. These principles talk about defining new modern web applications from
idea to deployment. This set of principles is now known as 12 factor App. These
principles paved the way for new architectural styles, which evolved into microservice
architectures. One of the principles of 12 factor app was as follows:

"Execute the app as one or more stateless processes"
- Adam Wiggins (https://12factor.net/)

This means microservices are shared nothing architectures. So, services will be
essentially stateless (except the database, which acts as the state store). The shared
nothing principle is also applied across the entire spectrum of patterns and practices.
This is nothing but isolation of components to achieve scale and agility.

In the microservice world, this principle of isolation is applied in the following ways:

Service teams: There will be self-sufficient teams built around services. In effect,
the teams will be able to take all the decisions necessary to develop and support
the microservices they are responsible for.
Source control isolation: The source repository of every microservice will be
separate. It will not share any source code, files, and so on. It is okay to duplicate
a few bits of code in the microservice world across services.
Build stage isolation: Build and deploy pipelines for every microservice should
be kept isolated. Build and deploy pipelines can even run in parallel, isolated, and
deployed services. Due to this, CI-CD tools should be scaled to support different
services and pipelines at a much faster speed.
Release stage isolation: Every microservice should be released in isolation with
other services. It is also possible that the same service with different versions is in
the production environment.
Deploy stage isolation: This is the most important part of isolation. Traditional
monolith deployment is done with bare metal servers. With the advancement in
virtualization, virtual servers have replaced bare metal servers.

In general, monoliths' standard release process looks like this:

www.EBooksWorld.ir

https://12factor.net/

Considering these isolation levels, the microservice build and deployment pipeline may
look like this:

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Need for a new deployment paradigm
The highest level of isolation for an application can be achieved by raising a new
physical machine or bare metal server. So there is a server with its own operating
system running on top of it and managing all system resources. This was regular stuff in
legacy applications. But it is not practical for modern applications. Modern
applications are massive systems. Some examples of these systems are Amazon, Netflix,
and Nike, or even traditional financial banks, such as ING. These systems are hosted on
tens of thousands of servers. These kinds of modern applications demand ultra-
scalability to serve to their millions of users. For a microservice architecture, it does
not make any sense to set up a new server just to run a small service on top of it.

With the new CPU architectural breakthroughs, one of the options that emerged is virtual
machines. Virtual machines abstract out all the hardware interactions of an operating
system through the hypervisor technology. Hypervisor enabled us to run many machines
or servers on a single physical machine. One significant point to note is that all the
virtual machines get their piece of isolated system resources from physical host
resources.

This is still a good isolated environment to run the applications. Virtualization
brought rationale to raise the server for the entire application. While doing so, it kept
the components fairly isolated. This helped us utilize spare compute resources in our
data centers. It improved the efficiency of our data centers while satisfying applications'
fair isolation needs.

Yet, virtualization on its own is not able to support some of the microservice needs.
Under the 12 factors principles, Adam also talks about this:

The twelve-factor app’s processes are disposable, meaning they can be started or
stopped at a moment’s notice. This facilitates fast elastic scaling, rapid deployment
of code or config changes, and robustness of production deploys.
- Adam Wiggins (https://12factor.net/)

This principle is important for the microservice architectural style. So, with
microservices, ensure that the services spin faster. In this case, let's assume that there is
one service per virtual machine. If we want to spin this service, it first needs to spin the
virtual machine; however, the boot time of virtual machines is long. Another thing is that
with such applications, we are talking about a lot of cluster deployments. So services

www.EBooksWorld.ir

https://12factor.net/

will definitely be distributed in clusters. This also implies that virtual machines might
need to be raised up on one of the nodes in the clusters and booted. This is again a
problem with virtual machines' boot-up time. This does not bring the kind of efficiency
that we are expecting for microservices.

Now, the only option left is to use the operating system process model, which comes
with faster boot time. Processes' programming model has been well-known for ages.
But even processes come at a cost. They are not well isolated and share system
resources as well as the kernel of the operating system.

For microservices, we need a better isolation deployment model and a new paradigm of
deployment. The answer is this: innovation of the container technology. A good
consideration factor is that the container technology sits well between virtualization and
the operating system's process model.

www.EBooksWorld.ir

www.EBooksWorld.ir

Containers
Container technology is not new to the Linux world. Containers are based on Linux's
LXC technology. In this section, let's see how containers are important in the case of
microservices.

www.EBooksWorld.ir

www.EBooksWorld.ir

What are containers?
A container is a piece of software in a complete filesystem. It contains everything that is
needed to run: code, runtime, system tools, and system libraries--anything that can be
installed on a server. This guarantees that the software will always run in the same way,
regardless of its environment. Containers share their host operating system and kernel
with other containers on the same host. The technology around containers is not new. It
has been a part of the Linux ecosystem for a long time. Due to the recent microservice-
based discussions around it, container technology came into the limelight again. Also, it
is the technology on which Google, Amazon, and Netflix runs.

www.EBooksWorld.ir

www.EBooksWorld.ir

Suitability of containers over virtual
machines
Let's understand the difference between containers and virtual machines--at the surface
level, both are tools to achieve isolation and virtualization.

The architectural difference between virtual machines and containers is quite evident
from the following diagram:

In virtual machine internals, we can see that there is a host operating system along with
a kernel, and on top of it, the hypervisor layer. Hosted applications have to bring in their
own operating system and environment. In containers though, the containerization
technology layer serves as a single layer and is shared across different applications.
This removes the need for a guest operating system. Thus, applications in a container
come with a smaller footprint and strong isolation levels. Another aspect that will
encourage you to use containers for microservice deployment is that we can pack more
applications on the same physical machine when compared to the same applications
deployed on a virtual machine. This helps us achieve greater economy of scale benefits
and provides a comparison of the benefits of virtual machines.

One more thing to note with containers is that they can be run on virtual machines as
well. So it is okay to have a physical server with a virtual machine on it. This virtual
machine serves as a host to a number of containers.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Transformation of the operation team's
mindset
Microsoft's Bill Baker came up with this analogy of pets and cattle and he applied it to
the servers in the data center. Okay, honestly we care for our pets. We love them and
show affection towards them, name them as well. We think of their hygiene; if they fall
sick, we take them to the vet. Do we take such care of our cattle? Of course, we don't;
this is because we do not care that much about cattle.

The same analogy is true with respect to servers and containers. In pre-DevOps days,
server admins cared about servers. They used to name those server machines and also
have dedicated maintenance downtime and so on. With DevOps practices, such as
infrastructure as code and containerization, containers can be treated as cattle. As the
operations team, we do not need to care for them since containers are meant for a short
lifespan. They can be booted up quickly in clusters and teared down fast as well. When
you are dealing with containers, always keep in mind this analogy. As far as daily
operations go, expect the spinning up of and teardown of containers to act as normal.

This analogy itself changes the perspective towards microservice deployment and how
it supports containerization.

www.EBooksWorld.ir

www.EBooksWorld.ir

Containers are new binaries
Containers are new binaries of deployment
- Steve Lasker, Principal Program Manager at Microsoft

This is a new reality you will face as a .NET developer: working with microservices.
Containers are new binaries. With Visual Studio, we compile the .NET program. And
after compilation, Visual Studio produces .NET assemblies, namely DLLs or EXE. We
take this set of associated DLLs and EXEs emitted by the compiler and deploy them on
the servers. So, in short, our deployment unit was in the form of assemblies. Not
anymore! Well, we still have .the NET program generating EXEs and DLLs, but our
deployment unit has changed in the microservice world. It is a container now. We will
be still compiling programs into assemblies. These assemblies will be pushed to
the container and ready to be shipped.

As you see the code walkthrough in the following section of this chapter, you will
understand more about this point. We, as .NET developers, have the ability (and may I
say necessity) to ship the containers. Along with this, another advantage of container
deployment is that it removes the barrier between different operating systems and even
different languages and runtimes.

www.EBooksWorld.ir

www.EBooksWorld.ir

It works on your machine? Let's ship
your machine!
Usually, we hear this a lot from developers: Well, it works on my machine! This usually
happens when there is a defect that is not reproducible in production. Since containers
are immutable and composable, it is quite possible to eliminate the configuration
impedance between the development and production environment.

www.EBooksWorld.ir

www.EBooksWorld.ir

Docker quick introduction
Docker (www.docker.com) is a company who has been a major force behind popularizing
containerization of applications. Docker is to containers what Google is for search.
Sometimes, people even use containers and Docker as synonyms. Microsoft has
partnered with docker and is actively contributing to the docker platform and tools in
open source. This makes docker important for us as .NET developers.

Docker is a very important topic and will be significant enough to learn for any serious
.NET developer. However, due to time and scope constraints, we will just scratch the
surface of the ecosystem of docker here. We strongly recommend that you read through
the Docker books made available by Packt Publishing.

If you want to safely try and learn docker without even installing it on
your machine, you can do so with https://KataCoda.com.

Now let's focus on some of the terminologies and tools of the Docker platform. This
will be essential for our next section.

Docker image: A Docker image is a read-only template with instructions for
creating a Docker container. A Docker image consists of a separate filesystem and
associated libraries and so on. Here, an image is always read-only and can run
exactly the same abstracting underlying host differences. A Docker image can be
composed as one layer on top of another. This composability of the Docker image
can be compared with the analogy of layered cake. Docker images that are used
across different containers can be reused. This also helps reduce the deployment
footprint of applications that use the same base images.
Docker registry: A Docker registry is a library of images. A registry can be either
public or private. Also, it can be on the same server as the Docker daemon or
Docker client or on a totally separate server.
Docker hub: This is a public registry and it stores images. It is located at http://hub.d
ocker.com.
Docker File: Dockerfile is a build or scripting file that contains instructions to
build a Docker image. There can be multiple steps documented in a Dockerfile,
starting from getting the base image.
Docker container: A Docker container is a runnable instance of a Docker image.
Docker compose: Docker compose allows you to define an application’s

www.EBooksWorld.ir

https://www.katacoda.com/
http://hub.docker.com/

components--their containers, configuration, links, and volumes--in a single file.
Then, a single command will set everything up and start your application. It is an
architecture/dependency map for your application.
Docker swarm: Swarm is the Docker service with which container nodes work
together. It runs a defined number of instances of a replica task, which is itself a
Docker image.

Let's look into the individual components of the Docker ecosystem; let's try to
understand one of the ways in which the Docker workflow makes sense in the software
development life cycle.

www.EBooksWorld.ir

www.EBooksWorld.ir

Microservice deployment with Docker
overview
In order to support this workflow, we need a CI tool and a configuration management
tool. For illustration purposes, we have taken the Visual Studio Team Services (VSTS)
build service as CI and VSTS release management for continuous delivery. The
workflow would remain the same for any other tools or modes of deployment. The
following is one of the flavors of microservice deployment with Docker:

1. The code is checked into the Visual Studio team service repository. If this is the
project's first check-in, it is done along with Dockerfile for the project.

2. The preceding check-in triggers VSTS to build the service from the source code
and run unit/integration tests.

3. If tests are successful, VSTS builds a Docker image that is pushed to a Docker
registry. VSTS release services deploy the image to the Azure container service.

4. If QA tests pass as well, VSTS is used to promote the container to deploy and
start it in production.

The following diagram depicts the steps in detail:

Note that usual .NET CI-CD tools, such as TeamCity and Octopus
Deploy (capabilities are in alpha stage), have features to produce a
Docker container as a build artifact and deploy it to production.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Microservice deployment example using
Docker
Now we have all the essentials required to move toward coding and see for ourselves
how things work. We have taken the product catalog service example here to be
deployed as a Docker container. After running the source code accompanied, you should
be able to successfully run the product catalog service in the Docker container.

We will follow the steps discussed next.

www.EBooksWorld.ir

www.EBooksWorld.ir

Setting up Docker on your machine
This tutorial doesn't require any existing knowledge of Docker and should take about 20
or 30 minutes to complete. Ready? Let's go!

Prerequisites

You will need to have the following software bits installed:

Microsoft Visual Studio 2015 Update 3 (https://www.visualstudio.com/downloads/download-visua
l-studio-vs)
.NET Core 1.0.1 - VS 2015 Tooling Preview 2 (https://go.microsoft.com/fwlink/?LinkID=8275
46)
Docker For Windows to run your Docker containers locally (https://www.docker.com/prod
ucts/docker#/windows)

Once Docker for Windows is installed, right-click on the Docker icon in the system tray
and click on Settings and select Shared Drives:

www.EBooksWorld.ir

https://www.visualstudio.com/downloads/download-visual-studio-vs
https://go.microsoft.com/fwlink/?LinkID=827546
https://www.docker.com/products/docker#/windows

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating an ASP.NET web application
Create a new project by navigating to File | New Project | .NET Core | Select ASP.NET
Core Web Application, as per the following screenshot:

You can now delete valuescontroller.cs and ProductCatalogService.cs from the source code
accompanied with this chapter.

Also, you can copy and replace the launchSettings.json file.

www.EBooksWorld.ir

www.EBooksWorld.ir

Adding Docker Support
Using Visual Studio, create a new ASP.NET Core Web application. When the
application is loaded, either select Add Docker Support from the PROJECT menu or
right-click on the project from the solution explorer and select Add Docker Support as
shown in the following screenshot:

The following files are added to the project:

Dockerfile: The Docker file for ASP.NET Core applications is based on the microsoft/asp
netcore image. This image includes the ASP.NET Core NuGet packages, which have
been prejitted, improving startup performance. When building ASP.NET Core
applications, the Docker file FROM instruction (command) points to the most recent
microsoft/dotnet image on the Docker hub.
Docker-compose.yml: This is the baseDocker-compose file used to define the collection of
images to be built and run with Docker-compose build/run.
Docker-compose.dev.debug.yml: This is an additional Docker-compose file for iterative
changes when your configuration is set to debug. Visual Studio will call -f docker-
compose.yml and -f docker-compose.dev.debug.yml to merge them. This compose file is
used by Visual Studio development tools.
Docker-compose.dev.release.yml: This is an additional Docker Compose file to debug
your release definition. It will load the debugger in isolation so it does not change
the content of production image.

The docker-compose.yml file contains the name of the image that is created when the project
is run.

www.EBooksWorld.ir

https://hub.docker.com/r/microsoft/aspnetcore
https://hub.docker.com/r/microsoft/dotnet

The Dockerfile contents are straightforward:

 FROM microsoft/aspnetcore:1.0.1
 ENTRYPOINT ["dotnet", "ProductCatalogService.dll"]
 ARG source=.
 WORKDIR /app
 EXPOSE 80
 COPY $source .

Here’s what each of these instructions does:

FROM tells Docker that to pull the base image on the existing image, call
microsoft/aspnetcore:1.0.1. This image already contains all the dependencies for running
the ASP.NET Core on Linux, so we don't have to set it.

COPY and WORKDIR copy the current directory's contents to a new directory inside the
called/app container and set it to the working directory for subsequent instructions.

EXPOSE tells Docker to expose the product catalog service on port 80 of the container.

ENTRYPOINT specifies the command to execute when the container starts up. In this case, it's
.NET.

Run and test the image in a live container. Now if you may have noticed in the last step,
when you add Docker support to the ProductCatalogService project, Visual Studio adds
Docker as an option in the run menu as well:

Now all you have to do is press F5 and launch your service in the container. This is the
easiest way to put your service in the container. Once your microservice is
containerized, you can use Visual Studio team services and Azure container services to
deploy your container to the Azure cloud.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
Microservice deployment is an exciting journey for us. For successful microservice
delivery, deployment best practices should be followed. We need to focus on
implementing isolation requirements for microservices even before we talk about
deployment using automated tools. With successful microservice deployment practices,
we can deliver business changes rapidly. The different isolation requirements from self-
sufficient teams to continuous delivery, give scale and agility that are fundamental
promises of microservices. Containerization is by far one of the most important
innovative technologies we have, and we must take advantage of it for microservice
deployment. Combining Azure cloud with Docker will help us deliver the scale and
isolation we are expecting from microservices. With Docker, we can easily achieve
greater application density, which means reduction in our cloud infrastructure cost. We
also saw how easy it is to start these deployments with Visual Studio and Docker tools
for Windows.

In our next chapter, we will look at microservice security. We will discuss the Azure
active directory for authentication, how to leverage OAuth 2.0, and how to secure an
API gateway with Azure API Management.

www.EBooksWorld.ir

www.EBooksWorld.ir

Security
Security is one of the most important cross-cutting concerns for web applications.
Unfortunately, data breaches of well-known sites seem common news these days. Taking
this into account, information and application security has become critical to web
applications. For the same reason, secure applications now should not be an
afterthought. Security is everyone's responsibility in an organization.

Monolithic applications have less surface area when compared to microservices.
However, microservices are distributed systems by nature. Also, in principle,
microservices are isolated from each other. Hence, well-implemented microservices
are more secure, compared to monolithic applications. Monolith has different attack
vectors compared to microservices. The microservice architectural style forces us to
think differently in the context of security. However, let me tell you upfront,
microservice security is a complex domain to understand and implement.

Before we deep dive into microservice security, let's understand our approach toward
it. We will be focusing more on how authentication and authorization (collectively
referred to as auth in the chapter henceforth) work and the options available within the
.NET ecosystem. We will explore Azure API management and its suitability as an API
gateway for .NET-based microservice environments; we'll also see how Azure API
management can help us protect microservices through its security features. Then, we'll
briefly touch base with different peripheral aspects having defense in
depth mechanisms for microservice security. We will also discuss the following topics
along the line:

Why form authentication and older techniques are not sufficient
Authentication and the available options, including OpenID and Azure Active
Directory
Introducing OAuth 2.0
Introducing Azure API management as an API gateway
Using Azure API management for security
Interservices communication security approaches
Container security and other peripheral security aspects

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Security in monolithic applications
To understand microservice security, let's step back and recall how we used to secure
.NET monolithic applications. This will help us better grasp why a microservice's
authentication and authorization mechanism needs to be different.

The critical mechanism to secure applications has always been authentication and
authorization. Authentication verifies the identity of a user. Authorization manages what
a user can or cannot access, which is nothing but permissions. And encryption, well,
that's the mechanism that helps you protect data as it passes between the client and
server. We're not going to discuss a lot about encryption, though. Just ensure the data that
goes over the wire is encrypted everywhere. This is very well achieved through the use
of the HTTPS protocol.

The following diagram depicts the flow of a typical authentication and authorization
mechanism in .NET monoliths:

In the preceding diagram, we can see that the user enters his or her username and
password typically through a Web browser. Then, this request hits some thin layer in
a web application that is responsible for authentication and authorization. This layer or
component connects to the user credential store, typically an SQL server in the case of a
.NET application. The auth layer verifies user-supplied credentials against the
username and password stored in the credential store.

Once the user credentials are verified for the session, a session cookie gets created on

www.EBooksWorld.ir

the browser. Unless the user has a valid session cookie, he cannot access the app.
Typically, a session cookie is sent with every request. Within these kinds of monolithic
applications, modules can freely interact with each other since they are in the same
process and have in-memory access. This means trust is implicit within those
application modules. So they do not need separate validation and verification of
requests while talking to each other.

www.EBooksWorld.ir

www.EBooksWorld.ir

Security in microservices
Now let's look at the case of microservices. By nature, microservices are distributed
systems. There is not a single instance of an application, rather, there are several
distinct applications that coordinate with each other in harmony to produce the desired
output.

www.EBooksWorld.ir

www.EBooksWorld.ir

Why traditional .NET auth mechanism
won't work?
One of the possible approaches for microservice security might be this: we mimic the
same behavior as that of the auth layer in a monolith. This could be depicted as follows:

In this approach, we distributed the auth layer and provided it to all the microservices.
Since each one is a different application, it will need its own auth mechanism. This
inherently means that the user credential store is also different for every microservice.
This raises so many questions, such as how do we keep the auth in sync across all
services? How can we validate inter service communication or are we skipping it? We
do not have satisfactory answers to these questions. Hence, this approach does not make
sense and just increases complexity. With this approach, we can not even be sure
whether it will work in the real world.

There is one more factor we need to take into account for modern applications. In the
microservice world, we need to support native mobile apps, and other non-standard
form factor devices as well as IoT applications. With the significant proliferation of
native mobile applications, the microservice architecture also needs to support secure
communication between those clients and microservices. This is different from the
traditional web browser-based user interface. On mobile platforms, a web browser is
not part of any native mobile app. This means cookie-based or session-based
authentication is not possible. So microservices need to support this kind of
interoperability between client applications. This was not at all a concern for .NET
monolithic applications.

In the case of traditional authentication, the browser is responsible for sending the

www.EBooksWorld.ir

cookie upon each request. But we're not using the browser for a native mobile app. In
fact, we're neither using ASPX pages, nor the form's authentication module. For an iOS
client or Android, it's something different altogether. What's more, we are also trying to
restrict unauthorized access to our API. In the preceding example, we'd be securing the
client, be it an MVC app or a Windows phone app, and not the microservice. Moreover,
all these mobile client devices are not part of the trust subsystem. For every request, we
cannot trust that the mobile user is indeed the owner; the communication channel is not
secured as well. So any request coming from them cannot be trusted at all.

But apart from these problems, there's another more conceptual problem we have. Why
should the application be responsible for authenticating users and authorization?
Shouldn't this be separated out?

One more solution to this is using the SAML protocol, but again, this is based on SOAP
and XML, so not really a good fit for microservices. The complexity of the
implementation of SAML is also high.

Therefore, it is evident from the preceding discussion that we need a token-based
solution. The solution for microservices' auth comes in the form of OpenID Connect and
OAuth 2.0. OpenID Connect is the standard for authentication and OAuth 2.0 is
the specification for the authorization. However, this authorization is delegated by
nature.

We will see this in detail in further sections. But before that, let's take a detour of JSON
Web Token and see why they are significant with respect to microservice security.

www.EBooksWorld.ir

www.EBooksWorld.ir

JSON Web Tokens
JSON Web Tokens (JWT) is pronounced JOT. It is a well-defined JSON schema or
format to describe the tokens involved in a data exchange process. JWTs are described
in RFC 7519.

JWTs are not tied to either OpenID Connect or OAuth 2.0. This means they can be used
independently, irrespective of OAuth 2.0 or OpenID Connect. OpenID Connect
mandates the use of a JWT for all the tokens that are exchanged in the process. In OAuth
2.0, the use of JWTs isn't mandated but a kind of de facto implementation format.
Moreover, the .NET framework has in-built support for JWT.

The purpose of a JWT-based security token is to produce a data structure that contains
information about the issuer and the recipient along with a description of the sender's
identity. Therefore, tokens should be protected over the wire so they could not be
tampered with. To do so, tokens are signed with symmetric or asymmetric keys. This
means when a receiver trusts the issuer of the token, it can also trust the information
inside it.

Here is an example of a JWT:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

This is the encoded form of a JWT. If we see the same token in decoded form, it has
three components: header, payload, and signature; they are all separated by a period (.).
The preceding example token can be decoded as follows:

 Header: {"alg": "HS256", "type": "JWT"}

 Payload: {"sub": "1234567890","name": "John Doe","admin": true}

 Signature:HMACSHA256(base64UrlEncode(header) + "." + base64UrlEncode(payload),secret)

NET v.4.5.1 and onward has built-in support for generating and consuming JWTs. You
can install JWT support in any .NET application using the package manager console and
issuing the following command:

Install-Package System.IdentityModel.Tokens.Jwt

Via https://jwt.io/, you can view and decode JWTs very easily. Moreover,
you can add it as part of Chrome debugger as well, which is quite
handy.

www.EBooksWorld.ir

https://jwt.io/

www.EBooksWorld.ir

www.EBooksWorld.ir

What is OAuth 2.0?
Okay, you might not know what OAuth 2.0 is, but you surely have used it on several
websites. Nowadays, many websites allow you to log in through your username and
password with either Facebook, Twitter, or Google accounts. Land on your favorite
website, for example, the www.stackoverflow.com login page. There is a login button that
says you can sign in with your Google account, for example. When you click on the
Google button, it takes you to Google's login page along with some permissions
mentioned. Here you provide your Google username and password and click on the
Allow button to grant permissions to your favorite site. Then Google redirects you to
Stack Overflow and you are logged in with appropriate permissions in Stack Overflow.
This is nothing but end user experience for OAuth 2.0 and OpenID Connect.

OAuth 2.0 can be best described as a series of specification turned authorization
frameworks. RFC 6749 defines OAuth as follows:

The OAuth 2.0 authorization framework enables a third-party application to obtain
limited access to an HTTP service, either on behalf of a resource owner by
orchestrating an approval interaction between the resource owner and the HTTP
service, or by allowing the third-party application to obtain access on its own behalf.

OAuth 2.0 handles authorization in the Web, native mobile applications, and all
headless server applications (these are nothing but microservice instances in our
context). You must be wondering why we are discussing authorization first instead of
authentication. The reason is that OAuth 2.0 is a delegated authorization framework.
This means, to complete the authorization flow, it relies on an authentication mechanism.

Now let's see some terminologies associated with it.

OAuth 2.0 roles describes the involved parties in the authorization process:

1. Resource: The entity that is getting protected from unintended access and usage.
This is nothing but a microservice in our case.

2. Resource owner: Resource owner is a person or entity who owns the specified
resource. When a person owns a resource, he or she is an end user.

3. Client: Client is the term used to refer to all kinds of client applications. This
refers to any application trying to access the protected resource. In microservices'

www.EBooksWorld.ir

context, the applications involved are single page application, web user interface
client, and native mobile applications or even a microservice that is trying to
access another microservice downstream.

4. Authorization server: This is the server that hosts the secure token service and
issues tokens to the client after successfully authenticating the resource owner and
obtaining permissions from the resource owner or their behalf.

You may have noticed that, OAuth does differentiate between end users and applications
used by an end user. This is a bit odd but make perfect sense since it is also generally
viewed as, I am authorizing this app to perform these actions on my behalf.

The following diagram depicts how these roles interact with each other in the general
flow of authorization in the OAuth framework:

In step 6 illustrated in the preceding diagram, the client passes the authorization grant to
the authorization server. This step is not as simple as it looks. Authorization grants are
of different types. The grant types represent four different possible use cases for getting
access tokens in oAuth 2.0. If you choose the wrong grant type, you might be
compromising on security:

Authorization code: This is the typical OAuth grant used by server-side web

www.EBooksWorld.ir

applications, the one you would use in your ASP.NET apps.
Implicit: Authenticating with a server returns an access token to the browser,
which can then be used to access resources. This is useful for single page
applications where communication cannot be private.
Resource owner password credentials: This requires the user to directly enter
their username and password to the application. It is useful when you are
developing a first-party application to authenticate with your own servers, for
example, the mobile app might use a resource owner grant to authenticate with your
own servers.
Client credentials: This is typically used when the client is acting on its own
behalf (the client is also the resource owner) or is requesting access to protected
resources based on an authorization previously arranged with the authorization
server.

www.EBooksWorld.ir

www.EBooksWorld.ir

What is OpenID Connect?
OpenID Connect 1.0 is a simple identity layer on top of the OAuth 2.0 protocol. OpenID
Connect is all about authentication. It allows clients to verify end users based on the
authentication performed by an authorization server. Also, it is used to obtain basic
profile information about the end user in an interoperable and REST-like manner.

So OpenID Connect allows clients of all types--web-based, mobile, and JavaScript--to
request and receive information about authenticated sessions and end users. We know
that OAuth 2.0 defines access tokens. Well, OpenID Connect defines a standardized
identity token (commonly referred to as ID token). The identity token is sent to the
application so the application can validate who the user is. It defines an endpoint to get
identity information for that user, such as their name or e-mail address. That's the user
info endpoint.

It's built on top of OAuth 2.0, so the flows are the same. It can be used with the
authorization code grant and implicit grant. It's not possible with the client credentials
grant, as the client credentials grant is for server-to-server communication.

There's no end user involved in the process. So there's no end user identity either.
Likewise, it doesn't make sense for the resource owner path of usage or process. Now
how does that work? Well, instead of only requesting an access token, we'll request an
additional ID token from the security token service (STS) that implements the OpenID
Connect specification. The client receives an ID token, and usually, also an access
token. To get more information for the authenticated user, the client can then send a
request to the user info endpoint with the access token; this user info endpoint will then
return the claims about the new user.

OpenID supports authorization code flow and implicit flow. It also adds some more
additional protocols, which are discovery and dynamic registration.

www.EBooksWorld.ir

www.EBooksWorld.ir

Azure Active Directory
There are multiple providers for OAuth 2.0 and OpenID Connect 1.0 specifications.
Azure Active Directory (Azure AD) is one of them. Azure AD provides organizations
with enterprise-grade identity management for cloud applications. Azure AD integration
will give your users a streamlined sign in experience, and it will help your application
conform to the IT policy. Azure AD provides advanced security features, such as
multifactor authentication, and scales really well with application growth. It is used in
all Microsoft Azure Cloud products, including Office 365, and processes more than a
billion sign ins per day.

One more interesting aspect of traditional .NET environments is that they can integrate
their organizational windows server Active Directory with Azure AD really well. This
can be done by Azure AD sync tool or the new capability of pass-through authentication.
So, organizational IT compliances will still be managed.

www.EBooksWorld.ir

www.EBooksWorld.ir

Microservice Auth example with
OpenID Connect, OAuth 2.0, and Azure
AD
Now we are well-equipped with all the prerequisite knowledge to go for coding. Let's
try and build a ToDoList application. We are going to secure TodoListService, which
represents one of our microservices. In the solution, the ToDoList microservice is
represented by the TodoListService project. And ToDoListWebApp represents
the server-side web application. It will be easier to follow if you open up the Visual
Studio solution named OpenIdOAuthAzureAD.sln provided with this chapter. This example
uses the client credentials grant.

Note that due to the ever-changing nature of Azure portal and the corresponding Azure
services UI, it is advisable that you use the Azure Service management API and
automate some of the registration tasks about to follow. However, for understanding
purposes and largely for encouraging developers who are new to Azure or might be
trying Azure AD for the first time, we are going to follow the Azure portal user
interface.

Here are the prerequisites:

Visual Studio 2013 with update 3 or Visual Studio 2015
An Azure subscription (if you don't have this, you can use the free trial account for
this demo)
Azure AD tenant (single-tenant): You can also work with your Azure account's own
default directory, which should be different from that of the Microsoft organization.

www.EBooksWorld.ir

www.EBooksWorld.ir

Step 1 – Registration of TodoListService
and TodoListWebApp with Azure AD
tenant
Now let's look at how to register TodoListService.

In this step, we will add TodoListService with Azure AD tenant. To achieve this, log in
to the Azure management portal, then do this:

1. Click on App registrations. Click on Add button. It will open the Create pane, as
depicted here:

2. Provide all the mandatory details as displayed in the preceding diagram and click
on the create button at the bottom of the Create pane. While we are providing a
sign-on URL, make sure that you are providing it for your app. In our case,
TodoListService is a microservice, so we won't have a special sign-in URL.
Hence, we have to provide the default URL or just the hostname of our
microservice. Here we are going to run the service from our machine, so the
localhost URL will be sufficient. You can find the sign-in URL once you right-click
on project URL under TodoListService project|Web, as shown in the following
diagram:

www.EBooksWorld.ir

A sign-in URL in Azure portal should have the trailing /; otherwise, you
may face an error, even if you execute all the steps correctly.

3. If you deploy your service with the Microsoft Azure App Service plan, you will
get a URL that is similar to https://todolistservice-xyz.azurewebsites.net/. You can later change
the sign-on URL if you deploy the service on Azure.

4. Once you click on the Create button, Azure will add the application to your Azure
AD Tenant. However, there are still a few more details that need to be completed
for finishing the registration of TodoListService. So navigate to App Registration
| TodoListService | Properties. You will notice that there are a few more additional
properties, such as App ID URI, which has been provided now.

5. For the App ID URI, enter https://[Your_Tenant_Name]/TodoListService,
replacing [Your_Tenant_Name] with the name of your Azure AD tenant. Click on OK to
complete the registration. The final configuration should look like this:

www.EBooksWorld.ir

https://todolistservice-xyz.azurewebsites.net/
https://%5BYour_Tenant_Name%5D/TodoListService

Now we move on to the registration of TodoListWebApp.

First, we register TodoListWebApp. This is necessary since we are going to use
OpenID Connect to connect to this browser-based web application. So we need to
establish the trust between the end user, that is, us and TodoListWebApp.
Click on App registrations. Click on the Add button. It will open up the Create
pane, as depicted in the following screenshot. Fill in the sign-in URL as https://localhos
t:44322/.
Once again, as in the TodoListService registration, we will be able to view most
of the additional properties once we create the web app. So, the final properties
configuration will look like this:

www.EBooksWorld.ir

https://localhost:44322/

A setting to note here is the logout URL: we set it as https://localhost:44322/Account/EndSessi
on.
This is because after ending the session, Azure AD will redirect the user to this
URL. For the App ID URI, enter https://[Your_AD_Tenant_Name]/TodoListWebApp,
replacing [Your_AD_Tenant_Name] with the name of your Azure AD tenant. Click on OK
to complete the registration.
Now we need to set up permissions between TodoListWebApp so that it can call
our microservice: TodoListService. So, navigate to App
Registration | TodoListWebApp | Required Permissions again and click on Add.
Now click on 1 Select an API. This navigation is displayed in the following
screenshot. You need to key in ToDoListService for it to show up in the API pane.

www.EBooksWorld.ir

https://localhost:44322/Account/EndSession
https://%5BYour_AD_Tenant_Name%5D/TodoListWebApp/

Now you will be able to view the Enable Access pane, where you have to tick for
Access TodoListService permissions under delegated permissions and done under
the Add API access pane. This will save the permissions.

www.EBooksWorld.ir

www.EBooksWorld.ir

Step 2 – Generation of AppKey for
TodoListWebApp
Another important step for registration is putting client_secret , which is necessary to
establish trust between Azure AD and TodoListWebApp. This client_secret is generated
only once and configured in the web application. To generate this key, navigate to App
Registrations | TodoListWebApp | Keys. Then, add the description as AppKey and click on
save. Once the key is saved, the value of the key is autogenerated by Azure and will be
displayed next to the description. This key is displayed only once, so you have to
immediately copy it and save it for later purposes. We will be keeping this key in the
web.config file of TodoListWebApp in this case.

The key stored will be displayed on the Azure portal as follows:

For production-grade applications, it is a bad idea to keep client_Secret
and all such critical key values in web.config. It is good practice to keep
them encrypted and isolated from applications. For such purposes, in
production-grade applications, you can use Azure key-vault (https://azure.m
icrosoft.com/en-us/services/key-vault/) to keep all your keys protected. Another
advantage of key vault is that you can manage the keys according to
the environment, such as dev-test-staging and production.

www.EBooksWorld.ir

https://azure.microsoft.com/en-us/services/key-vault/

www.EBooksWorld.ir

www.EBooksWorld.ir

Step 3 – Configuring Visual Studio
solution projects
First we look at how to configure this with the TodoListService project.

Open the web.config file and replace the following keys:

1. Search for the ida:Tenant key. Replace its value with your AD tenant name, for
example, contoso.onmicrosoft.com. This will also be part of any of the application's
APP ID URI.

2. Replace the ida:Audience key. Replace its value
with https://[Your_AD_Tenant_Name]/TodoListService.
Replace [Your_AD_Tenant_Name] with the name of your Azure AD tenant.

Now let's see how to configure this with the TodoListWebApp project.

Open the web.config file and find and replace the following keys with the provided
values:

1. Replace todo:TodoListResourceid with https://[Your_Tenant_Name]/TodoListService.
2. Replace todo:TodoListBaseAddress with https://localhost:44321/.
3. Replace ida:ClientId with the application ID of ToDoListWebApp. You can get it by

navigating to App Registration | TodoListWebApp.
4. Replace ida:AppKey with client_secret that we generated in step 2 of the process of

registering TodoListWebApp. If you missed noting this key, you need to delete
the previous key and regenerate a new key again.

5. Replace ida:Tenant with your AD tenant name, for example, contoso.onmicrosoft.com.
6. Replace ida:RedirectUri with the URL you want the application to redirect to when

the user signs out of TodoListWebApp. In our case, the default is https://localhost:44
322/

since we want the user to navigate to the home page of the application.

www.EBooksWorld.ir

https://localhost:44322/

www.EBooksWorld.ir

www.EBooksWorld.ir

Step 4 – Generate client certificates on
IIS Express
Now TodoListService and TodoListWebApp will talk over a secure channel. To
establish a secure channel, ToDoListWebApp needs to trust the client certificate. Both
services are hosted on the same machine and run on IIS Express.

To configure your computer to trust the IIS Express SSL certificate, open the PowerShell
command window as the administrator. Query your personal certificate store to find the
thumbprint of the certificate for CN=localhost:

PS C:windowssystem32> dir Cert:LocalMachineMy
Directory: Microsoft.PowerShell.SecurityCertificate::LocalMachineMy
Thumbprint Subject
---------- -------
C24798908DA71693C1053F42A462327543B38042 CN=localhost

Next, add the certificate to the Trusted Root store:

PS C:windowssystem32> $cert = (get-item cert:LocalMachineMyC24798908DA71693C1053F42A462327543B38042)
PS C:windowssystem32> $store = (get-item cert:LocalmachineRoot)
PS C:windowssystem32> $store.Open("ReadWrite")
PS C:windowssystem32> $store.Add($cert)
PS C:windowssystem32> $store.Close()

The preceding set of instructions will add a client certificate to the local machine's
certificate store.

www.EBooksWorld.ir

www.EBooksWorld.ir

Step 5 – Run both the applications
We are done with all those tedious configuration screens and replacing of keys.
Excited? But before you hit F5, set ToDoListService and ToDoListWebApp as startup
projects. Once this is done, we can safely run our application and be greeted with
the landing page of our application. If you click on the sign-in button, you will be
redirected to login.microsoftonline.com; this represents the Azure AD login. Once you are able
to log in, you will see the landing page as follows:

You can observe network traffic and URL redirection when you log in to the application
to study a detailed exchange of ID tokens and get an access token. If you explore the
application through the To Do List menu, you will be able to access the To Do List
screen as well as add items to To Do List. This is where our TodoListService
microservice is getting called as well as getting authorization permissions from the
TodoWebApp web application. If you explore the profile menu, you will see the ID
token return along with your first name, last name, and e-mail ID, which shows OpenID
Connect in action.

If you want to explore the code in detail, TodoListController.cs in TodoListService project,
Startup.Auth.cs, and TodoListController.cs contains interesting bits of code along with
explanatory comments.

www.EBooksWorld.ir

http://login.microsoftonline.com

In this example, we used OAuth and OpenID Connect to secure a browser-based user
interface, a web application, and a microservice. Things might be different if we have
an API gateway between the user interface web app and microservice. In this case, we
need to establish trust between the web app and API gateway. Also, we have to pass the
ID token and access token from the web app to the API gateway. This, in turn, passes the
tokens to the microservice. However, it is not feasible to cover the discussion and
implementation in this chapter's scope.

www.EBooksWorld.ir

www.EBooksWorld.ir

Azure API management as an API
gateway
Another important pattern in microservices' implementation is Backends For
Frontends (BFF). This pattern was introduced and made popular by Sam Newman. The
actual implementation of the BFF pattern is done by introducing the API gateway
between various types of clients and microservices. This is depicted in the following
diagram:

Azure API Management (henceforth referred to as Azure APIM or just APIM) is just
the right fit, and it can act as an API gateway in .NET-based microservice
implementation. Since Azure APIM is one of the cloud services, it is ultra-scalable and
can be integrated well within the Azure ecosystem. In the current chapter, we will focus
on the following features of Azure APIM.

Azure APIM is logically divided into three parts:

API gateway: API Gateway is nothing but a proxy between client applications and
services. It is responsible for the following functionalities; this is mainly used by

www.EBooksWorld.ir

various applications to talk to microservices:
Accepts API calls and routes them to your backends
Verifies API keys, JWTs, and certificates
Supports auth through Azure AD and OAuth 2.0 access token
Enforces usage quotas and rate limits
Transforms your API on the fly without code modifications
Caches backend responses where set up
Logs call metadata for analytics purposes

Publisher portal: This is the administrative interface to organize and publish an
API program. It is mainly used by microservice developers to make
microservices/APIs available to API consumers or client applications. Through
this, API developers can:

Define or import API schema
Package APIs into products
Set up policies such as quotas or transformations on the APIs
Get insights from analytics
Manage users

Developer portal: This serves as the main web presence for API consumers
where they can do this:

Read the API documentation
Try out an API via the interactive console
Create an account and subscribe to it to get the API keys
Access analytics on their own usage

Azure APIM comes with an easy-to-follow user interface and good documentation.
Azure API management also comes with its REST API, hence all the capabilities of the
Azure APIM portal, which you see can see, can be programmatically achieved by Azure
REST API endpoint available for Azure APIM.

Now, let's quickly look at some security-related concepts in Azure APIM and how they
can be used in microservices:

 1. Products: Products are nothing but a collection of APIs. They also contain usage
quota and terms of use.

2. Policies: Policies is one of the dynamic security features of API management. They
allow the publisher to change the behavior of the API through configuration. Policies
are a collection of statements that are executed sequentially upon the request or
response of an API. API management is fundamentally a proxy that is sitting between

www.EBooksWorld.ir

our microservices hosted in Azure and client applications. By virtue of the fact that it is
an intermediate layer, it is able to provide additional services. These additional
services are defined in a declarative XML-based syntax called policies. Azure APIM
allows various policies. In fact, you can compose your own custom policies by
combining the existing ones. A few of the important policies are mentioned next.

Access restriction policies:
Check the HTTP header: This policy checks whether a specific HTTP header
or its value exists in every request received by Azure APIM.
Limit call rate by subscription: This policy provides allow or deny access to
the microservice based on the number of times the specific service has been
called on a per subscription basis.
Restrict caller IPs: This policy refers to whiteboxing of IP addresses so only
known IPs can access the services.
Set usage quota by subscription: This policy allows a number of calls. It
allows you to enforce a renewable or lifetime call volume and/or bandwidth
quota on a per subscription basis.
Validate JWT: This policy validates the JWT token parameter that is used for
auth in applications.

Authentication policies:
Authenticate with basic : This policy helps apply basic authentication over
the incoming request.
Authenticate with client certificate: This policy helps carry out authentication
of a service that is behind the API gateway, using client certificates.

Cross domain policies
Allow cross-domain calls: This policy enables us to make CORS requests
through Azure APIM.
CORS : This adds CORS support to an endpoint or a microservice to allow
cross-domain calls from browser-based web applications.
JSONP: The JSONP policy adds JSON padding (JSONP) support to an
endpoint or entire microservice to allow cross-domain calls from Java Script
web applications.

Transformation policies
Mask URLs in content: This policy masks URLs in response; it does so via
Azure APIM.
Set backend service: This policy alters the behavior of the backend service of
an incoming request.

Another great thing about policies is they can be applied for inbound and outbound

www.EBooksWorld.ir

requests.

3. Rate limit and quota policy example:

As in preceding section, we have seen what is meant by policy. Now let's see an
example. The following is one of the quota policies applied for an endpoint:

<policies>
<inbound>
 <!-- Change the quota to immediately see the effect-->
 <rate-limit calls="100" renewal-period="60">
 </rate-limit>
 <quota calls="200" renewal-period="604800">
 </quota>
 <base />
</inbound>
<outbound>
 <base/>
 </outbound>
</policies>

In this example, we are limiting incoming requests (inbound) from a single user. So,
an API user can only make 100 calls within 60 seconds. If they try to make more calls
within that duration, the user will get an error with status code 429, which basically
states Rate limit is exceeded. Also, we are assigning the quota limit of 200 calls in a
year for the same user. This kind of throttling behavior is a great way to protect
microservices from unwanted requests and even DOS attacks.

Azure APIM also supports Auth with OAuth 2.0 and OpenID Connect. Inside the
publisher portal, you can easily see OAuth and OpenID Connect tabs to configure the
providers.

www.EBooksWorld.ir

www.EBooksWorld.ir

Container security
Docker is a grand force around containerization of applications in the industry. With
widespread usage of containers, it is evident that we need to have effective security
measures around containers. If we take a look at the internal architecture of containers,
they are quite close to the host operating system kernel.

Docker applies the principle of least privilege to provide isolation and reduce the
attack surface. Despite the advances, the following points will help you understand the
security measures you can take around containers:

Ensure all the container images used for microservices are signed and originate
from a trusted registry
Harden the host environment, the daemon process, and images
Follow the principle of least privilege and do not elevate access to access devices
Use control groups in Linux to manage keeping a tab on resources, such as memory,
I/O, and CPU
Even though containers live for a very short duration, logging all of the container
activity is advisable and important to understand for post analysis
If possible, integrate the container scanning process with tools, such as aqua (http://w
ww.aquasec.com) or Twistlock (https://www.twistlock.com)

www.EBooksWorld.ir

http://www.aquasec.com
https://www.twistlock.com

www.EBooksWorld.ir

Other security best practices
The microservice architectural style is new, although some of the security practices
around the infrastructure and writing secure code are still applicable. In this section,
let's discuss some of these practices:

Standardization of libraries and frameworks: There should be a process to
introduce new libraries and frameworks or tools in the development process. This
will ease out patching in case any vulnerability is found; it will also minimize the
risks introduced by ad hoc implementation of libraries or tools around
development.
Regular vulnerability identification and mitigation: Using the industry standard
vulnerability scanner to scan the source code and binaries should be a regular part
of development. The findings and observations should be addressed as equally as
functional defects.
Third-party audits and pen testing: External audits and penetration testing
exercises are immensely valuable. There should be a regular practice of
conducting such exercises. This is quite essential in applications where mission
critical or sensitive data is handled.
Logging and monitoring: Logging is quite a useful technique for detecting and
recovering from attacks. Having the capability of aggregating logs from different
systems is essential in the case of microservices. Tools such as riverbed,
AppDynamics, and Splunk are quite useful in this space.
Firewalls: Having one or more firewall at network boundaries is always
beneficial. Firewall rules should be properly configured.

Network segregation: Network partitioning is constrained and limited in the case
of monoliths. However, with microservices, we need to logically create different
network segments and subnets. Segmentation based on microservices' interaction
patterns can be very effective to keep and develop additional security measures.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
The microservice architectural style being distributed by design gives us better options
to protect valuable business critical system. Traditional .NET-based authentication and
authorization techniques are not sufficient and cannot be applied to the microservice
world. We also saw why secure-token-based approaches, such as OAuth 2.0 and
OpenID Connect 1.0, are becoming de facto standards for microservice authorization
and authentication. If you want to have more general information related to security, do
visit Open Web Application Security Project (OWASP) at http://www.owasp.org and
Microsoft Security development life cycle at https://www.microsoft.com/en-us/sdl/. Azure AD
can very well support OAuth 2.0 and OpenID Connect 1.0. Azure API Management can
also act as an API gateway in microservices' implementation and also provide nifty
security features, such as policies.

Azure AD and Azure API management provide quite a few powerful capabilities to
monitor and log the requests received. This will be quite useful, not only for security but
also for tracing and troubleshooting scenarios. We will see logging, monitoring, and the
overall instrumentation around troubleshooting of microservices in the next chapter.

www.EBooksWorld.ir

http://www.owasp.org
https://www.microsoft.com/en-us/sdl/

www.EBooksWorld.ir

Monitoring
When something goes wrong in a system, the concerned stakeholders will want to know
what has happened, why it has happened and any hint or clue for fixing it, and how to
prevent the same problem from occurring again in the future. This is one of the primary
uses of monitoring. However, monitoring spans well beyond this primary usage.

In .NET monoliths, there are multiple monitoring solutions available to choose from.
Also, the monitoring target is always centralized, and monitoring is certainly easy to set
up and configure. If something breaks down, we know what to look for and where to
look for it since only a finite number of components participate in a system, and they
have a fairly long life span.

However, microservices are distributed systems and, by nature, more complex than
monoliths. So resource utilization and health and performance monitoring are quite
essential in a microservice production environment. We can use this diagnostic piece of
information to detect and correct issues and also to spot potential problems and prevent
them from occurring. Monitoring microservices presents different challenges. In this
chapter, we will primarily discuss the following topics:

The need for monitoring
Monitoring and logging challenges in microservices
Available tools and strategies for microservices in the .NET monitoring space
Use of Azure diagnostics and application insight
A brief overview of the ELK stack and Splunk

What does monitoring really mean? There is no formal definition of
monitoring; however, the following is appropriate:

Monitoring provides information around the behavior of an entire system or different
parts of a system in their operational environment. This information can be used for
diagnosing and gaining insight into the different characteristics of a system.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Instrumentation and telemetry
A monitoring solution is dependent upon instrumentation and telemetry. So it is natural
that when we speak about monitoring microservices, we also discuss instrumentation
and telemetry data. Logs are nothing but an instrumentation mechanism.

www.EBooksWorld.ir

www.EBooksWorld.ir

Instrumentation
Now let's see what is instrumentation. Instrumentation is one of the ways through which
you can add diagnostic features to applications. It can be formally defined like this:

Most applications will include diagnostic features that generate custom monitoring
and debugging information, especially when an error occurs. This is referred to
as instrumentation and is usually implemented by adding event and error handling
code to the application. -MSDN

Under normal conditions, data from some informational events may not be required, thus
reducing the cost of storage and the transactions required to collect it. However, when
there is an issue with the application, you have to update the application configuration
so that the diagnostic and instrumentation systems can collect informational event data
as well as error and warning messages to assist in isolating and fixing faults. It may be
necessary to run the application in this extended reporting mode for some time if the
problem appears only intermittently.

www.EBooksWorld.ir

www.EBooksWorld.ir

Telemetry
Telemetry, in its most basic form, is the process of gathering information generated by
instrumentation and logging systems. Typically, it is performed using asynchronous
mechanisms that support massive scaling and wide distribution of application services.
It can be defined as follows:

The process of gathering remote information that is collected by instrumentation is
usually referred to as telemetry. -MSDN

In large and complex applications, information is usually captured in a data pipeline and
stored in a form that makes it easier to analyze and capable of presenting information at
different levels of granularity. This information is used to discover trends, gain insight
into usage and performance, and detect and isolate faults.

Azure has no built-in system that directly provides a telemetry and reporting system of
this type. However, a combination of the features exposed by all the Azure services,
Azure diagnostics, and application insight allows you to create telemetry mechanisms
that span the range of simple monitoring mechanisms to comprehensive dashboards. The
complexity of the telemetry mechanism you require usually depends on the size of the
application. This is based on several factors, such as the number of roles or virtual
machine instances, the number of ancillary services it uses, the distribution of the
application across different data centers, and other related factors.

www.EBooksWorld.ir

www.EBooksWorld.ir

The need for monitoring
Microservices are complex, distributed systems. Microservice implementation is the
backbone of any modern IT business. Understanding the internals of the services along
with their interactions and behaviors will help you make the overall business more
flexible and agile. The performance, availability, scale, and security of microservices
can directly affect a business and also its revenue. Hence, monitoring microservices is
vital. It helps us observe and manage the quality of the service attributes. Let's discuss
the scenarios where it is required.

www.EBooksWorld.ir

www.EBooksWorld.ir

Health monitoring
With health monitoring, we monitor the health of a system and its various components at
a certain frequency, typically a few seconds. This ensures that the system and its
components behave as expected. With the help of an exhaustive health monitoring
system, we can keep tabs on the overall system health, which has data points, such as
CPU, memory utilization, and so on. It might be in the form of pings or extensive health
monitoring endpoints, which emit the health status of services along with some useful
metadata at that point in time.

For health monitoring, we can use the rate of request failures and successes; we can
also utilize techniques such as synthetic user monitoring. We will see synthetic user
monitoring a little later in this chapter.

The metrics for heath monitoring are based on the threshold values of success or failure
rates. If the parameter value goes out of the configured threshold, an alert is triggered. It
is quite possible that some preventive action to maintain the health of the system would
be triggered due to this failure. This action can be something like restarting the service
in the failure state or provisioning some server resource.

www.EBooksWorld.ir

www.EBooksWorld.ir

Availability monitoring
Availability monitoring is quite similar to health status monitoring, which we just
discussed. However, the subtle difference is that in availability monitoring, the focus is
on the availability of systems rather than a snapshot of the health at that point in time.

Availability of systems is dependent on various factors, such as the overall nature and
domain of the application, services, and service dependencies as well as infrastructure
or environment. The availability monitoring system captures low-level data points
related to these factors and represents them so as to make a business-level feature
available. Many times, availability monitoring parameters are used to track business
metrics and service level agreements (SLA).

www.EBooksWorld.ir

www.EBooksWorld.ir

Performance monitoring
The performance of a system is often measured by key performance indicators. Some of
the key performance indicators of any large web-based system are as follows:

The number of requests served per hour
The number of concurrent users served per hour
The average processing time required by users to perform business transactions,
for example, placing an order

Additionally, performance is also gauged by system-level parameters, such as:

CPU utilization
Memory utilization
I/O rates
Number of queued messages

If any of these key performance indicators is not met by the system, an alert is raised.

Often, while analyzing performance issues, historical data from previous benchmarks -
captured by the monitoring system , is used to troubleshoot.

www.EBooksWorld.ir

www.EBooksWorld.ir

Security monitoring
Monitoring systems can detect unusual data pattern requests or even unusual resource
consumption patterns and detect attacks on the system. Specifically, in the case of DOS,
attacks or injection attacks could be identified beforehand and the teams could be
alerted. Security monitoring also keeps audit trails of authenticated users and gives
a history of the users who have checked in and out of the system. It also comes in handy
for getting satisfying compliance requirements.

Security is a cross-cutting aspect of distributed systems, including microservices. So
there are multiple avenues of getting such data generated in the system. Security
monitoring can get data from various tools that are not part of the system but may be part
of the infrastructure or environment in which the system is hosted. Different types of
logs and database entries can serve as data sources. However, this really depends upon
the nature of the system.

www.EBooksWorld.ir

www.EBooksWorld.ir

SLA monitoring
Systems with SLAs basically guarantee certain characteristics, such as performance and
availability. For cloud-based services, this is a pretty common scenario. Essentially,
SLA monitoring is all about monitoring those guaranteed SLAs for the system. SLA
monitoring is enforced as a contractual obligation between a service provider and
consumer.

It is often defined on the basis of availability, response time, and throughput. Data points
required for SLA monitoring can come from performance endpoint monitoring or
logging and availability of monitoring parameters. For internal applications, many
organizations track the number of incidences raised due to service downtime. The action
taken against these incidences' Root Cause Analysis (RCA) mitigates the risk of
repeating those issues and helps meet the SLAs.

For internal purposes, an organization might also track the number and nature of
incidents that had caused the service to fail. Learning how to resolve these issues
quickly or eliminate them completely helps reduce downtime and meet SLAs.

www.EBooksWorld.ir

www.EBooksWorld.ir

Auditing sensitive data and critical
business transactions
For any legal obligations or compliance reasons, the system might need to keep audit
trails of user activities in the system and record all their data accesses and
modifications. Since audit information is highly sensitive in nature, it might be disclosed
only to a few privileged and trusted individuals in the system. Audit trails can be part of
a security subsystem or separately logged. You may need to transfer and store audit
trails in a specific format, as stated by the regulation or compliance specifications.

www.EBooksWorld.ir

www.EBooksWorld.ir

End user monitoring
In end user monitoring, the usage of the features of the system and/or the overall system
usage by the end users is tracked and logged. Usage monitoring could be done using
various user-tracking parameters, such as the features used, the time required to
complete a critical transaction for the specified user, or even enforced quotas.
(Enforced quotas are constraints or limits put on an end user in regard to system usage.
In general, various pay-as-you-go services use enforced quotas, for example, a free
trial, where you can upload files only up to 25 MB.) The data source for this type of
monitoring is typically collected in terms of logs and tracking user behavior.

www.EBooksWorld.ir

www.EBooksWorld.ir

Troubleshooting system failures
The end users of a system might experience system failures. This can be in the form of
either a system failure or a situation where users are not able to perform a certain
activity. These kinds of issues are monitored using system logs; if not, the end user
would need to provide a detailed information report. Also, sometimes server crash
dumps or memory dumps can be immensely helpful. However, in the case of distributed
systems, it will be a bit difficult to understand the exact root cause of the failures.

In many scenarios of monitoring, using only one monitoring technique is not effective. It
is better to use multiple monitoring techniques and tools for diagnostics. In
particular monitoring a distributed system is quite challenging and requires data from
various sources. In addition to analyzing the situation properly and deciding on the
action points, we must consider a holistic view of monitoring rather than looking into
only one type of system perspective.

Now that we have a better idea about what needs to be done for general purpose
monitoring, let's revisit the microservice perspective. So we will discuss the different
monitoring challenges presented by the microservice architectural style.

www.EBooksWorld.ir

www.EBooksWorld.ir

Monitoring challenges
Microservice monitoring presents different challenges. Let's check them out first in this
section:

Scale: One service could be dependent upon the functionality provided by various
other microservices. This yields complexity, which is not usual in the case of .NET
monolith systems. Instrumenting all these dependencies is quite difficult. Another
problem that comes along with scale is the rate of change. With the advancement of
continuous deployment and container-based microservices, the code is always in a
deployable state. Containers always live for minutes, if not seconds. The same is
true for virtual machines. Virtual machines have a life of around a couple of
minutes to a couple of hours. In such a case, measuring regular signals, such as
CPU usage and memory consumption usage per minute, does not make sense.
Container instances sometimes might not be alive for a minute. Before a minute
passes, the container instance might have been disposed. This is one of the
challenges of microservice monitoring.

DevOps mindset: Traditionally, services or systems once deployed are owned and
cared for by the operational teams. However, DevOps promises to break down the
silos between developers and operations teams. It comes with lots of practices,
such as continuous integration and continuous delivery as well as continuous
monitoring.

Along with these new practices come new toolsets.

However, DevOps is not just a set of practices or tools; it is, more
importantly, a mindset. It is always a difficult and slow process to change
the mindset of people. Microservice monitoring also requires a similar
mindset shift.

With the emergence of autonomy of services, developer teams now have to
own services. This also means that they have to work through and fix
development issues as well as keep an eye on all operational parameters and
SLAs of the services. Just by using state-of-the-art monitoring tools,
development teams will not be transformed overnight. This is true for
operational teams as well. It won't suddenly become a core platform
team (or whatever fancy name you prefer) overnight.

www.EBooksWorld.ir

To make microservices successful and meaningful for organizations,
developers and operations teams need to help each other understand their
own pain points and also think in the same direction, that is, how they can
deliver value to the business together. Monitoring cannot happen without the
instrumentation of services, which is the part where developer teams can
help. And, alerting and setting up of operational metrics and running books
won't happen without the operational team's help. This is one of the
challenges in delivering microservice monitoring solutions.

Data flow visualization: There are a number of tools present on the market for
data flow visualization. Some of them are AppDynamics, New Relic, and so on.
These tools are capable of handling visualization of 10 to, maybe, 100s of
microservices. However, in larger settings, where there are thousands of
microservices, these tools are unable to handle visualization. This is one of the
challenges in microservice monitoring.
Testing of monitoring tools: We trust monitoring tools with the understanding
that they depict a factual representation of the big picture of our microservice
implementation. However, to make sure that they remain true to this understanding,
we will have to test the monitoring tools. This is never a challenge in monolith
implementations. However, when it comes to microservices, visualization of
microservices is required for monitoring purposes. This means generating
fake/synthetic transactions and time and utilizing the entire infrastructure rather
than serving the customer. Hence, the testing of monitoring tools is a costly affair
and presents a significant challenge in microservice monitoring.

www.EBooksWorld.ir

www.EBooksWorld.ir

Monitoring strategies
In this section, we will take a look at the monitoring strategies that will make
microservices observable. It is common to implement the following or more strategies
to create a well-defined and holistic monitoring solution:

Application/system monitoring: This strategy is also called a framework-based
strategy. Here, the application, or in our case microservice, itself generates the
monitoring information within the given context of execution. The application can
be dynamically configured based on the thresholds or trigger points in the
application data, which can generate tracing statements. It is also possible to have
a probe-based framework (such as .NET CLR, which provides hooks to get more
information) to generate monitoring data. So, effective instrumentation points
themselves can be embedded into the application to facilitate this kind of
monitoring. On top of it, the underlying infrastructure, where microservices are
hosted, can also raise critical events. These events can be listened to and recorded
by the monitoring agents present on the same host as that of the application.
Real user monitoring: This strategy is based on a real end user's
transactional flow across the system. While the end user is using the system in real
time, the parameters related to the response time and latency, as well as the number
of errors experienced by the user, can be captured using it. This is useful for
specific troubleshooting and issue resolution. With this strategy, the system's
hotspot and bottlenecks around service interactions can be captured as well. It is
possible to record the entire end-to-end user flow or transactions to replay it at a
later time. The benefits of this are that these kinds of recorded plays can be used
for troubleshooting of issues as well as for various types of testing purposes.
Semantic monitoring and synthetic transactions: The semantic monitoring
strategy focuses on business transactions; however, it is implemented through
the use of synthetic transactions. In semantic monitoring, as the name suggests, we
try to emulate end user flows. However, this is done in a controlled fashion and
with dummy data so you can differentiate the output of the flow from the actual end
user flow data. This strategy is typically used for service dependency, health
checking, and diagnostics of problems occurring across the system. To implement
synthetic transactions, we need to be careful while planning the flow; also, we
need to be careful enough not to stress the system out. Here's an example: creating
fake orders for fake product catalogs and observing the response time and output
across this whole transaction propagating in the system.

www.EBooksWorld.ir

Profiling: This approach is specifically focused on solving performance
bottlenecks across the system. This approach is different from the preceding
approaches. Real and semantic monitoring focuses on business transactions or
functional aspects of the system and collects data around it. Rather, profiling is all
about system-level or low-level information capture. A few of these parameters
are response time, memory, or threads. This approach uses a probing technique in
the application code or framework and collects data. Utilizing the data points
captured during the profiling, the relevant DevOps team can identify the cause of
the performance problem. Profiling using probing should be avoided on production
environments. However, it is perfectly fine to generate call times and so on without
overloading the system at runtime. A good example of profiling, in general, is an
ASP.NET MVC application profiled with an ASP.NET miniprofiler or even with
Glimpse.
Endpoint monitoring: With this approach, we expose one or more endpoints of a
service to emit diagnostic information related to the service itself as well as the
infrastructure parameters. Generally, different endpoints focus on providing
different information. For example, one endpoint can give the health status of the
service, while the other could provide the HTTP 500 error information that
occurred in that service execution. This is a very helpful technique for
microservices since it inherently changes the monitoring from being a push model
to a pull model and reduces the overhead of service monitoring. We can scrap data
from these endpoints at a certain time interval and build a dashboard and collect
data for operational metrics.

www.EBooksWorld.ir

www.EBooksWorld.ir

Logging
Logging is a type of instrumentation made available by the system, its various
components, or the infrastructure layer. In this section, we will first visit logging
challenges and then discuss strategies to reach a solution for these challenges.

www.EBooksWorld.ir

www.EBooksWorld.ir

Logging challenges
We will first try to understand the problem with log management in microservices:

To log the information related to a system event and parameter as well as the
infrastructure state, we will need to persist log files. In traditional .NET monoliths,
log files are kept on the same machine where the application is deployed. In
the case of microservices, they are hosted either on virtual machines or containers.
But virtual machines and containers are both ephemeral, which means they do not
persist states. In this situation, if we persist log files with virtual machines or
containers, we will lose them. This is one of the challenges of log management in
microservices.
In the microservice architecture, there are a number of services that constitute a
transaction. Let's assume we have an order placement transaction where service A,
service B, and Service C take part in the transaction. If, say, service B fails during
the transaction, how are we going to understand and capture this failure in logs.
Not only that but more importantly, how are we going to understand that a specific
instance of service B has failed and it was taking part in the said transaction? This
scenario presents another challenge in microservices.

www.EBooksWorld.ir

www.EBooksWorld.ir

Logging strategies
To implement logging in microservices, we can use the key logging strategies discussed
next.

www.EBooksWorld.ir

www.EBooksWorld.ir

Centralized logging
There is a difference between centralized logging and centralized monitoring. In
centralized logging, we log all the details about the events that occur in our system--they
may be errors or warnings or just for informational purposes. Whereas in centralized
monitoring, we monitor critical parameters, that is, specific information.

With logs, we can understand what has actually happened in the system or a specific
transaction. We will have all the details about the specific transaction, such as why it
started, who triggered it, what kind of data or resources it recorded, and so on. In a
complex distributed system, such as microservices, this is really the key piece of
information with which we can solve the entire puzzle of information flow or errors. We
also need to treat timeouts, exceptions, and errors as events that we need to log.

The information we record regarding a specific event should also be structured, and this
structure should be consistent across our system. So, for example, our structured log
entry might contain level-based information to state whether the log entry is for
information or an error or whether it's debug information or statistics that's been
recorded as a log entry event. The structured log entry must also have a date and time so
we know when the event happened. We should also include the hostname within our
structured log so that we know where exactly the log entry came from. We should also
include the service name and the service instance so we know exactly which
microservice made the log entry.

Finally, we should also include a message in our structured logging format, which is the
key information associated with the event. So, for example, for an error, this might be
the call stack or details regarding the exception. The key thing is that we keep our
structured logging format consistent. A consistent format will allow us to query the
logging information. Then we can basically search for specific patterns and issues using
our centralized logging tool. Another key aspect of centralized logging within a
microservice architecture is to make distributed transactions more traceable.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Use of a correlation ID in logging
A correlation ID is a unique ID that is assigned to every transaction. So, when a
transaction becomes distributed across multiple services, we can follow that transaction
across different services using the logging information. The correlation ID is basically
passed from service to service. All services that process that specific transaction
receive the correlation ID and pass it to the next service and so on so that they can log
any events associated with that transaction to our centralized logs. This helps us hugely
when we have to visualize and understand what has happened with this transaction
across different microservices.

www.EBooksWorld.ir

www.EBooksWorld.ir

Semantic logging
Event Tracing for Windows (ETW) is a structural logging mechanism where you can
store a structured payload with the log entry. This information is generated by event
listeners and may include typed metadata about the event. This is nothing but an example
of semantic logging. Semantic logging strives for passing additional data along with the
log entry so that the processing system can get the context structured around the event.
Hence, semantic logging is also referred to as structured logging or typed logging.

As an example, an event that indicates an order was placed can generate a log entry that
contains the number of items as an integer value, the total value as a decimal number, the
customer identifier as a long value, and the city for delivery as a string value. An order
monitoring system can read the payload and easily extract the individual values. ETW is
the standard shipped feature with Windows.

In Azure Cloud, it is possible to get your log data source from ETW. The Semantic
Logging Application Block developed by Microsoft's patterns and practices team is an
example of a framework that makes comprehensive logging easier. When you write
events to the custom event source, the Semantic Logging Application Block detects this
and allows you to write the event to other logging destinations, such as a disk file,
database, e-mail message, and more. You can use the Semantic Logging Application
Block in Azure applications that are written in .NET and run in Azure websites, cloud
services, and virtual machines.

www.EBooksWorld.ir

www.EBooksWorld.ir

Monitoring in Azure Cloud
Definitely, there is not even one right-off-the-shelf solution or offering found as of now
on Azure or for that matter any cloud provider to the monitoring challenges presented by
microservices. Interestingly enough, there are not too many open source tools available
that can work with .NET-based microservices.

We are utilizing Microsoft Azure Cloud and cloud services for building our
microservices, so it is useful to look for the monitoring capability it comes along with.
If you are looking to manage around a couple of hundred microservices, you can utilize
a custom monitoring solution (mostly interweaving Powershell scripts) based on a
Microsoft Azure-based solution.

We will be primarily focusing on the following logging and monitoring solutions:

Microsoft Azure Diagnostics: This helps in collecting and analyzing resources
through resource and activity logs.
Application Insights: This helps in collecting all of the telemetry data about our
microservices and analyzing them. This is a framework-based approach for
monitoring.
Log Analytics: Log Analytics analyzes and displays data and provides scalable
querying capability over collected logs.

Let's look at these solutions from a different perspective. This perspective will help us
visualize our Azure-based microservice monitoring solution. A microservice is
composed of the following:

1. Infrastructure layer, a virtual machine or an application container (for example,
Docker container).

2. Application stack layer, which constitutes the operating system, .NET CLR, and the
microservice application code.

Each of these layer components can be monitored as follows:

Virtual machine: Using Azure Diagnostics Logs
Docker containers: Using container logs and Application Insights or a third-party
container monitoring solution, such as cAdvisor, Prometheus, or Sensu
Windows operating system: Using Azure Diagnostics Logs and Activity Logs

www.EBooksWorld.ir

A microservice application: Using Application Insights
Data visualization and metric monitoring: Using Log Analytics or third-party
solutions, such as Splunk or ELK stack

Various Azure services come with an activity ID in their log entries. This activity ID is
a unique GUID assigned for each request, which can be utilized as a correlation ID
during log analysis.

www.EBooksWorld.ir

www.EBooksWorld.ir

Microsoft Azure Diagnostics
Azure diagnostics logs give us the capability to collect diagnostic data for a deployed
microservice. We can also use a diagnostic extension to collect data from various
sources. Azure diagnostics is supported by web and worker roles, Azure virtual
machines, and all Azure App services. Other Azure services have their own separate
diagnostics.

Enabling Azure diagnostics logs and exploring various settings in the Azure app service
is easy and available as a toggle switch, as shown in the following screenshot:

Azure diagnostics can collect data from the following sources:

Performance counters
Application logs
Windows event logs
.NET event source

www.EBooksWorld.ir

IIS logs
Manifest-based ETW
Crash dumps
Custom error logs
Azure diagnostic infrastructure logs

www.EBooksWorld.ir

www.EBooksWorld.ir

Storing diagnostic data using Azure
storage
Azure diagnostics logs are not permanently stored. They are rollover logs, that is, they
are overwritten by newer ones. So, if we have to use them for any analysis work, we
have to store them. Azure diagnostics logs can be either stored in a file system or
transferred via FTP; better still, it can be stored in an Azure storage container.

There are different ways to specify an Azure storage container for diagnostics data for
the specified Azure resource (in our case, microservices hosted on the Azure app
service). These are as follows:

CLI tools
PowerShell
Azure Resource Manager
Visual Studio 2013 with Azure SDK 2.5 and higher
Azure portal

www.EBooksWorld.ir

www.EBooksWorld.ir

Using Azure portal
The following screenshot depicts the Azure storage container provisioned through
the Azure portal:

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Specifying a storage account
Another way to specify the storage account for storing application-specific diagnostic
data is by specifying the storage account in the ServiceConfiguration.cscfg file. This is also
convenient as during the development time itself, you can specify the storage account. It
is also possible to specify an altogether different storage account during development
and production. The Azure storage account might also be configured as one of the
dynamic environment variables during the deployment process.

The account information is defined as a connection string in a configuration setting. The
following example shows the default connection string created for a new microservice
project in Visual Studio:

<ConfigurationSettings>
<Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true"
</ConfigurationSettings>

You can change this connection string to provide account information for an Azure
storage account.

Now, let's see how Azure storage stores the diagnostic data. All the log entries are
stored in either a blob or table storage container. The storage choice of can be specified
while we create and associate the Azure storage container.

www.EBooksWorld.ir

www.EBooksWorld.ir

Azure storage schema for diagnostic
data
The structure of Azure table storage for storing diagnostic data is as follows:

If the storage is in the form of tables, we will see following tables schema:

WadLogsTable: This table stores the log statements written during code execution,
using the trace listener.
WADDiagnosticInfrastructureLogsTable: This table specifies the diagnostic
monitor and configuration changes.
WADDirectoriesTable: This table includes the directories that the diagnostic
monitor is monitoring. This includes IIS logs, IIS-failed request logs, and custom
directories. The location of the blob log file is specified in the container field and
the name of the blob is in the RelativePath field. The AbsolutePath field indicates
the location and the name of the file as it existed on the Azure virtual machine.
WADPerformanceCountersTable: This table contains data related to the
configured performance counters.
WADWindowsEventLogsTable: This table contains Windows' event tracing log
entries.

For a blob storage container, the diagnostic storage schema is as follows:

wad-control-container: This is only for SDK 2.4 and previous versions. It
contains the XML configuration files that control Azure diagnostics.
wad-iis-failedreqlogfiles: This contains information from the IIS-failed request
logs.
wad-iis-logfiles: This contains information about IIS logs.
custom: This is a custom container based on the configuring directories that are
monitored by the diagnostic monitor. The name of this blob container will be
specified in WADDirectoriesTable.

An interesting fact to note here is that the WAD suffix, which can be seen on these
container tables or blobs, comes from Microsoft Azure Diagnostics's previous product
name, which is Windows Azure Diagnostics.

You can use Cloud Explorer from Visual Studio to explore the stored

www.EBooksWorld.ir

Azure diagnostics data.

www.EBooksWorld.ir

www.EBooksWorld.ir

Introduction of Application Insights
Application Insights is an application performance management (APM) offering from
Microsoft. It is a useful service offering to monitor the performance of .NET-based
microservices. It is useful to understand the internal operational behavior of individual
microservices. Instead of just focusing on detecting and diagnosing issues, it will tune
the service performance and understand the performance characteristic of your
microservice. It is one of the examples of a framework-based approach to monitoring.
What it means is that during the development of a microservice, we will add the
Application Insights package to the Visual Studio solution of our microservice. This is
how Application Insights instruments your microservice for telemetry data. This might
not always be an ideal approach for every microservice; however, it comes in handy if
you have not given any good, thorough thought about monitoring your microservices.
This way, monitoring comes out of the box with your service.

With the help of Application Insights, you can collect and analyze the following types of
telemetry data types:

HTTP request rates, response times, and success rates
Dependency (HTTP & SQL) call rates, response times, and success rates
Exception traces from both server and client
Diagnostic log traces
Page view counts, user and session counts, browser load times, and exceptions
AJAX call rates, response times, and success rates
Server performance counters
Custom client and server telemetry
Segmentation by client location, browser version, OS version, server instance,
custom dimensions, and more
Availability tests

Along with the preceding types, there are associated diagnostic and analytics tools
available for alerting and monitoring with various different customizable metrics. With
its own query language and customizable dashboards, Application Insights forms a good
monitoring solution for .NET microservices.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Other microservice monitoring solutions
Now let's look at some of the popular monitoring solutions that can be used to build a
custom microservice monitoring solution. It is inherent that these solutions do not come
out of the box; however, they are definitely time tested by the open source community
and can be easily integrated within .NET-based environments.

www.EBooksWorld.ir

www.EBooksWorld.ir

A brief overview of the ELK stack
As we saw, one of the fundamental tools for monitoring is logging. For microservices,
there will be a volume of logs generated that are astounding and sometimes not even
comprehended by humans. The ELK stack (also referred to as the elastic stack) is the
most popular log management platform. It is also a good candidate for microservice
monitoring because of its ability to aggregate, analyze, visualize, and monitor. The ELK
stack is a toolchain that includes three distinct tools, namely Elasticsearch, Logstash,
and Kibana. Let's visit them one by one to understand their role in the ELK stack.

www.EBooksWorld.ir

www.EBooksWorld.ir

Elasticsearch
Elasticsearch is full text search engine based on the Apache Lucene library. The project
is open source and developed in Java. Elasticsearch supports horizontal scaling
and multitenancy and clustered approaches. The fundamental element of Elasticsearch is
its search index. This index is stored in forms of JSON internally. A single
Elasticsearch server stores multiple indexes (each index represents a database), and a
single query can search data with multiple indexes.

Elasticsearch can really provide near real-time searches and can scale with very low
latency. The search and results programming model is exposed through the Elasticsearch
API and available over HTTP.

www.EBooksWorld.ir

www.EBooksWorld.ir

Logstash
Logstash plays the role of a log aggregator in the ELK stack. It is a log aggregation
engine that collects, parses, processes, and persists the log entries in its persistent store.
Logstash is extensive due to its data-pipeline-based architecture pattern. It is deployed
as an agent, and it sends the output to Elasticsearch.

www.EBooksWorld.ir

www.EBooksWorld.ir

Kibana
Kibana is an open source data visualization solution. It is designed to work with
Elasticsearch. You use Kibana to search, view, and interact with the data stored in the
Elasticsearch indices.

It is a browser-based web application that lets you perform advanced data analysis and
visualize your data in a variety of charts, tables, and maps. Moreover, it is a zero
configuration application. Therefore, it neither needs any coding nor additional
infrastructure after the installation.

www.EBooksWorld.ir

www.EBooksWorld.ir

Splunk
Splunk is one of the best commercial log management solutions. It can handle even
terabytes of log data very easily. Over the period of its existence, it has added many
additional capabilities and is now recognized as a full-fledged leading platform for
operational intelligence. Splunk is used to monitor numerous applications and
environments. It plays a vital role in monitoring any infrastructure and application in
real time and is essential to identify issues, problems, and attacks before they impact
customers, services, and profitability. Splunk's monitoring abilities, specific patterns,
trends and thresholds, and so on can be established as events for Splunk to keep an alert
for. This is so that specific individuals don't have to do this manually.

Splunk has an alerting capability included in its platform. So it can trigger alert
notifications in real time so that appropriate action can be taken to avoid application or
infrastructure downtime.

Based on a trigger of alert and action configured, Splunk can:

Send an e-mail
Execute a script or trigger a runbook
Create an organizational support or action ticket

Typically, Splunk monitoring marks might include the following:

Application logs
Active Directory changes events data
Windows event logs
Windows performance logs
WMI-based data
Windows registry information
Data from specific files and directories
Performance monitoring data
Scripted input to get data from the APIs and other remote data interfaces and
message queues

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Alerting
Like with any monitoring solution, Splunk also has alert functionalities. It can be
configured to set an alert based on any real-time or historical search patterns. These
alert queries can be run periodically and automatically, and alerts can be triggered on
the results of these real-time or historical queries.

You can base your Splunk alerts on a wide range of threshold- and trend-based
situations, such as conditions, critical server or application errors, or threshold amounts
of resource utilizations.

www.EBooksWorld.ir

www.EBooksWorld.ir

Reporting
Splunk can report on alerts that have been triggered and executed as well as if they meet
certain conditions. Splunk's alert manager can be used to create a report based on the
preceding alert data.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
Debugging and monitoring of microservices is not a simple but a challenging problem.
We have used the word challenging on purpose: there is no silver bullet for this. There
is no single tool that you can install that works like magic. However, with Azure
Diagnostics and Application Insights or with ELK stack or Splunk, you can come up
with solutions that will help you solve microservice monitoring challenges.
Implementing microservice monitoring strategies, such as application/system
monitoring, real user monitoring, synthetic transactions, centralized logging, semantic
logging block, and implementation of correlation ID throughout transactional HTTP
requests, is a helpful way to monitor microservice implementations.

In the next chapter, we will see how we can scale microservices and the solutions and
strategies around scaling microservice solutions.

www.EBooksWorld.ir

www.EBooksWorld.ir

Scaling
Imagine you are part of a development and support team that is responsible for
developing the company's flagship product: TaxCloud. TaxCloud helps taxpayers file
their own taxes and charges them a small fee upon the successful filing of taxes.
Consider you had developed this application using microservices. Now say the product
gets popular and gains traction, and suddenly, on the last day of tax filing, you get a rush
of consumers wanting to use your product and file their taxes. However, the payments
service of your system is slow, which has almost brought the system down, and all the
new customers are moving to your competitor's product. This is a lost opportunity for
your business.

Even though this is a fictitious scenario, it can very well happen to any business. In e-
commerce, we have always experienced these kinds of things in real life, especially on
special occasions such as Christmas and Black Fridays. All in all, they point toward
one major significant characteristic: scalability of the system. Scalability is one of the
important non-functional requirements of any mission critical system. Serving to a
couple of users having hundreds of transactions is not the same as serving to millions of
users having several millions of transactions. In this chapter, we will discuss scalability
in general. We'll also discuss how to scale microservices individually and the
considerations when we design them and how to avoid cascading failures using
different patterns. By the end of this chapter, you will have learned about:

Horizontal scaling
Vertical scaling
The Scale Cube model of scalability
How to scale infrastructure using Azure scale sets and Docker Swarm
How to scale a service design through data model caching and response caching
The Circuit Breaker pattern
Service discovery

www.EBooksWorld.ir

www.EBooksWorld.ir

Scalability overview
Design decisions go a long way in impacting the scalability of a single microservice. As
with other application capabilities, decisions that are made during the design and early
coding phases largely influence the scalability of services.

Microservice scalability requires a balanced approach between services and their
supporting infrastructures. Services and their infrastructures also need to scale in
harmony.

Scalability is one of the important non-functional characteristics of a system by which it
can handle more payload. It is often felt that scalability is usually a concern for large-
scale distributed systems. Performance and scalability are two different characteristics
of a system. Performance deals with the throughput of the system, whereas scalability
deals with serving the desired throughput for a larger number of users or a larger
number of transactions.

www.EBooksWorld.ir

www.EBooksWorld.ir

Scaling infrastructure
Microservices are modern applications and usually take advantage of the cloud.
Therefore, when it comes to scalability, the cloud provides certain advantages.
However, it is also about automation and managing costs. So even in the cloud, we need
to understand how to provision infrastructure, such as virtual machines or containers, to
successfully serve our microservice-based application even in the case of sudden traffic
spikes.

Now we will visit each component of our infrastructure and see how we can scale it.
The initial scaling up and scaling out methods are applied more toward hardware
scaling. With the Auto Scaling feature, you will understand Azure virtual manager scale
sets. Finally, you will learn about scaling with containers with Docker Swarm mode.

www.EBooksWorld.ir

www.EBooksWorld.ir

Vertical scaling (scaling up)
Scaling up is a term used for achieving scalability by adding more resources to the same
machine. It includes the addition of more memory or processors with higher speed or
simply the migration of applications to a more powerful mac

With upgrades in hardware, there is a limit to which you can scale the machine. It is
more likely that you are just shifting the bottleneck rather than solving the real problem
of improving scalability. If you add more processors to the machine, you might shift the
bottleneck to memory. Processing power does not increase the performance of your
system linearly. At a certain point, the performance of a system stabilizes even if you
add more processing capacity. Another aspect to scaling up is that since only one
machine is serving all the requests, it becomes a single point of failure as well.

In summary, scaling vertically is easy since it involves no code changes; however, it is
quite an expensive technique. Stack Overflow is one of those rare examples of a .NET-
based system that is scaled vertically.

www.EBooksWorld.ir

www.EBooksWorld.ir

Horizontal scaling (scaling out)
If you do not want to scale vertically, you can always scale your system horizontally.
Often, it is also referred to as scaling out. Google has really made this approach quite
popular. The Google search engine is running out of inexpensive hardware boxes. So,
despite being a distributed system, scaling out helped Google in its early days expand
its search in a short amount of time while being inexpensive. Most of the time, common
tasks are assigned to worker machines and their output is collected by several machines
doing the same task. This kind of arrangement also survives through failures. To scale
out, load balancing techniques are useful. In this arrangement, a load balancer is usually
added in front of all the clusters of the nodes. So, from a consumer perspective, it does
not matter which machine/box you are hitting. This makes it easy to add capacity by
adding more servers. Adding servers to clusters improves scalability linearly.

Scaling out is a successful strategy when the application code does not depend upon
which server it is running. If the request needs to be executed on a specific server, that
is, if the application code has server affinity, it will be difficult to scale out. However,
in the case of stateless code, it is easier to get that code executed on any server. Hence,
scalability is improved when stateless code is run on horizontally scaled machines or
clusters.

Due to this nature of horizontal scaling, it is a commonly used approach across the
industry. You can see many examples of large scalable systems managed this way, for
example, Google, Amazon, and Microsoft. We recommend that you scale microservices
in a horizontal fashion as well.

www.EBooksWorld.ir

www.EBooksWorld.ir

Microservices scalability
In this section, we will view the scaling strategies available for microservices. We will
visit the Scale Cube model of scalability, see how to scale the infrastructure layer for
microservices, and embed scalability into the microservice design.

www.EBooksWorld.ir

www.EBooksWorld.ir

Scale Cube model of scalability
One way to look into scalability is by understanding Scale Cube. In the book The Art of
Scalability: Scalable Web Architecture, Processes, and Organizations for the Modern
Enterprise, Martin L. Abbott and Michael T. Fisher defines Scale Cube to view and
understand system scalability. Scale Cube applies to microservice architectures as
well:

In this three-dimensional model of scalability, the origin (0,0,0) represents the least
scalable system. It assumes that the system is a monolith deployed on a single server
instance. As shown, a system can be scaled by putting the right amount of effort in three
dimensions. To move a system toward the right scalable direction, we need to do the
right trade-offs. These trade-offs will help you gain the highest scalability for your
system. This will help your system cater to increasing customer demand. This is
signified by the Scale Cube model. Let's look into every axis of this model and discuss
what it signifies in terms of microservices' scalability.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

X-axis scaling
Scaling over the x-axis means running multiple instances of an application behind a load
balancer. This is a very common approach used in monolithic applications. One of the
drawbacks of this approach is that any instance of an application can utilize all the data
available for the application. It also fails to address application complexity.

Microservices should not share a global state or a kind of data store that can be
accessed by all the services. This will create a bottleneck and a single point of failure.
Hence, approaching microservices' scaling merely over the x-axis of Scale Cube would
not be the right approach.

Now let's visit z-axis scaling. We have skipped y-axis scaling for a reason.

www.EBooksWorld.ir

www.EBooksWorld.ir

Z-axis scaling
Z-axis scaling is based on a split, which is based on mostly the customer or requestor of
a transaction. While z-axis splits may or may not address the monolithic nature of
instructions, processes, or code, they very often do address the monolithic nature of the
data necessary to perform these instructions, processes, or code. Naturally, in z-axis
scaling, to apply the bias factor, there is one dedicated component responsible. To give
an example of a bias factor, it might be a country, request origin, customer segment, or
any form of subscription plan associated with the requestor or request. Note that z-axis
scaling has many benefits, such as improved isolation and caching for requests;
however, it also suffers from the following drawbacks:

It has increased application complexity.
It needs a partitioning scheme, which can be tricky especially if we ever need to
repartition data.
It doesn't solve the problems of increasing development and application
complexity. To solve these problems, we need to apply y-axis scaling.

Due to the preceding nature of z-axis scaling, it is not suitable for use in the case of
microservices.

www.EBooksWorld.ir

www.EBooksWorld.ir

Y-axis scaling
Y-axis scaling is based on a functional decomposition of an application into different
components. The y-axis of Scale Cube represents the separation of responsibility by
role or type of data or work performed by a certain component in a transaction. To split
the responsibility, we need to split the components of the system as per their actions or
role performed. These roles might be based on large portions of a transaction or a very
small one. Based on the size of the role, we can scale these components. This splitting
scheme is referred to as a service or resource-oriented splits.

This very much resembles what we see in microservices. We split the entire application
based on their roles or actions, and we scale individual microservice as per its role in
the system. This resemblance is not accidental; it is the product of the design. So we can
fairly say that y-axis scaling is quite suitable for microservices.

Understanding y-axis scaling is very significant for scaling a microservice-architecture-
based system. So, effectively, we are saying microservices can be scaled by splitting
them as per their roles and actions. Consider an order management system that is
designed to, say, meet certain initial customer demands; for this, splitting the application
into services such as Customer Service, Order service, and Payment service will work
fine. However, if demand increases, you would need to review the existing system
closely. You might discover the sub components of an already existing service, which
can be very well separated again since they are performing a very specific role in that
service and the application as a whole. This revisit to design with respect to increased
demand/load may trigger resplitting of Order service into Quote service, Order
processing service, Order fulfillment service, and so on. Now, definitely, quote service
might need more compute power, so we might push more instances (identical copies
behind it) as compared to other services.

This is a near real-world example of how we should scale microservices on the AFK
Scale Cube's three-dimensional model. You can observe this kind of three-dimensional
scalability and y-axis scaling of services in some well-known microservice
architectures that belong to the industry, such as Amazon, Netflix, and Spotify.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Characteristics of a scalable
microservice
In Scale Cube section, we largely focused on scaling the characteristics of an entire
system or application. In this section, we will focus on scaling the characteristics of an
individual microservice. A microservice is said to be scalable and performant when it
exhibits the following characteristics:

Known growth curve: For example, in the case of an order management system,
we need to know how many orders are supported by the current services and how
they are proportionate to the order fulfillment service metric (measured in
"requests per seconds"). The current measured metrics around these are called
baseline figures.
Well-studied usage metrics: The traffic pattern generally reveals customer
demand and based on customer demand, many parameters mentioned in the
previous sections on microservices can be calculated. Hence, microservices are
instrumented, and monitoring tools are the necessary companions of microservices.
Effective use of infrastructure resources: Based on qualitative and quantitative
parameters, the anticipation of resource utilization can be done. This will help the
team predict the cost of infrastructure and plan for it.
Ability to measure, monitor, and increase the capacity using an automated
infrastructure: Based on the operational and growth pattern of resource
consumption of microservices, it is very easy to plan for future capacity.
Nowadays, with cloud elasticity, it is even more important to be able to plan and
automate capacity. Essentially, cloud-based architectures are cost-driven
architectures.
Known bottlenecks: Resource requirements are the specific resources (compute,
memory, storage, and I/O) that each microservice needs. Identifying these are
essential for a smoother operational and scalable service. If we identify resource
bottlenecks, they can be worked upon and eliminated.
Has dependency scaling in the same ratio: This is self-explanatory. However,
you cannot just focus on a microservice, leaving its dependencies as bottlenecks.
So microservice is as scalable as its least scaling dependency.
Fault tolerant and highly available: Failures are inevitable in distributed
systems. In case you encounter a microservice instance failure, it should be
automatically rerouted to a healthy instance of microservice. Just putting load

www.EBooksWorld.ir

balancers in front of microservice clusters won't be sufficient in this case. Service
discovery tools are quite helpful to satisfy this characteristic of scalable
microservices.
Have scalable data persistence mechanism: Individual data store choices and
design should be scalable and fault-tolerant for scalable microservices. Caching
and separating out read and write storage will help in this case.

Now while we are discussing microservices and scalability, the natural arrangement of
scaling comes into the picture, which is nothing but the following:

Scaling the infrastructure: Microservices operate well over dynamic and
software-defined infrastructures. So, scaling the infrastructure is an essential
component of scaling microservices.
Scaling around service design: Microservices' design comprises an HTTP-based
API as well as a data store in which the local state for the services is stored.

www.EBooksWorld.ir

www.EBooksWorld.ir

Scaling the infrastructure
In this section, we will visit all the layers of the microservice infrastructure and see
them in relation to each other, that is, how each individual infrastructure layer can be
scaled. For our microservice implementation, there are two major components. One is
virtual machines and the other is the container hosted on virtual or physical machines.
The following diagram shows a logical view of the microservice infrastructure:

www.EBooksWorld.ir

www.EBooksWorld.ir

Scaling virtual machines using scale sets
Scaling virtual machines is quite simple and easy in Azure Cloud. This is where
microservices shine through. With scale sets, you can raise the instances of the same
virtual machine images in a short amount of time, and that automatically too, based on
the ruleset. Scale sets are integrated with Azure autoscale.

Azure virtual machines can be created in a way that as a group, they would always
serve the requests even if the volume of the requests increases. In specific situations,
they can also be deleted automatically, if those virtual machines are not needed to
perform the workload. This is taken care of by the virtual machine scale set.

Scale sets also integrate well with load balancers in Azure. Since they are represented
as one of the compute resources, they can be used with Azure's resource manager. Scale
sets can be configured such that virtual machines can be created or deleted on demand.
This helps manage virtual machines with the mindset of pets vs. cattle, which we saw in
the chapter for deployment.

For applications that need to scale compute resources in and out, scale operations are
implicitly balanced across fault and update domains.

With scale sets, you don't need to correlate loops of independent resources, such as
NICs, storage accounts, and virtual machines. Even while scaling out, how are we going
to take care of the availability of these virtual managers? All such concerns and
challenges have already been addressed with virtual machine scale sets.

A scale set allows you to automatically grow and shrink an application based on
demand. Let's say there's a threshold of 40 percent utilization. So, maybe once we reach
40 percent utilization, we'll begin to experience performance degradation. And as 40
percent utilization, new web servers gets added. A scale set allows you to set a rule just
as mentioned in the previous sections. An input to scale set is a virtual machine. The
rules on a scale set says 'at 40 percent average CPU for 5 minutes, Azure will add
another virtual machine to the scale set. After doing this, calibrate the rule again. If the
performance is still above 40 percent, add a third virtual machine until it reaches the
acceptable threshold. Once the performance drops below 40 percent, it will start
deleting these virtual machines based on traffic inactivity and so on to reduce your cost
of operation.

www.EBooksWorld.ir

So by implementing a scale set, you can construct a rule for the performance and make
your application bigger to handle greater load by simply automatically adding and
removing virtual machines. You, as the administrator, will be left with nothing to do
once these rules are established.

Azure autoscale measures performance and determines when to scale up and down. It is
also integrated with the load balancer and with NAT. Now the reason they're integrated
with the load balancer and with NAT is because as we add these additional virtual
machines, we're going to have a load balancer and a NAT device in front. As requests
keep coming in, in addition to deploying the virtual machine, we've now got add a rule
as well that would allow traffic to be redirected to the new instances. The great thing
about scale sets is that they not only add virtual machines but also work with all the
other components of the infrastructure, including things such as network load balancers.

In the Azure portal, a scale set can be viewed as a single entry, even though it has
multiple virtual machines included in it. To look at the configurations and specification
details of virtual machines in a scale set, you will have to use the Azure Resource
Explorer tool. It's a web-based tool available at https://resources.azure.com . Here you can
view all the objects under your subscription. You can view scale sets under the
Microsoft.Compute section.

Building a scale set is very easy through the Azure templates repository. Once you
create your own Azure Resource Manager (ARM) template, you can also create
custom templates based on scale sets. Due to the scope and space constraints, we have
omitted a detailed discussion and instructions on how to build a scale set. You can
follow these instructions by utilizing ARM templates given at https://github.com/gbowerman/azur
e-myriad.

Availability set is an older technology, and this feature has limited
support. Microsoft recommends that you migrate to virtual machine
scale sets for faster and more reliable autoscale support.

www.EBooksWorld.ir

https://resources.azure.com
https://github.com/gbowerman/azure-myriad

www.EBooksWorld.ir

Auto Scaling
With the help of monitoring solutions, we can measure the performance parameters of an
infrastructure. This is usually in the form of performance SLAs. Auto Scaling gives us
the ability to increase or decrease the resources available to the system, based on
performance thresholds.

The Auto Scaling feature adds additional resources to cater to increased load. It goes in
the reverse way as well. If load gets reduced, then Auto Scaling reduces the number of
resources available to perform the task. Auto Scaling does it all without pre-
provisioning the resources and that too in an automated way.

Auto Scaling can scale in both ways: vertically (adding more resources to the existing
resource type) or horizontally (adding resources by creating another instance of that type
of resource).

The Auto Scaling feature makes the decision of adding or removing resources based on
two strategies. One is based on the available metrics of the resource or on meeting some
system threshold value. The other type of strategy is based on time, for example,
between 9.00 a.m. and 5:00 p.m. IST, instead of three web servers, the system needs 30
web servers.

Azure monitoring instruments every resource; through this, all the metric-related data is
collected and monitored. Based on the data collected, auto scaling takes decisions.

Azure Monitor autoscale applies only to virtual machine scale sets, cloud services, and
app services--web apps.

www.EBooksWorld.ir

www.EBooksWorld.ir

Container scaling using Docker swarm
Earlier, in the chapter on deployment, we saw how to package a microservice into a
Docker container. We also discussed in detail why containerization is useful in
the microservice world. In this section, we will advance our skills with Docker and
also see how easily we can scale our microservices with Docker swarm.

Inherently, microservices are distributed systems and need to be distributed and isolated
resources. Docker swarm provides container orchestration clustering capabilities so
that multiple docker engines can work as a single virtual engine. It is similar to the load
balancer capabilities; besides, it also creates new instances of containers or deletes
containers, if the need arises.

You can use any of the available service discovery mechanisms, such as DNS, consul,
or zookeeper tools, with Docker swarm.

A swarm is a cluster of Docker engines or nodes where you can deploy your
microservices as "services." Now, do not confuse these services with microservices.
Services is a different concept in Docker implementation. A service is the definition of
the tasks to execute on the worker nodes. You may want to understand the node we are
referring to in the last sentence. The node, in a Docker swarm context, is used for the
Docker engine participating in a cluster. A complete swarm demo is possible, and
ASP.NET Core images are available at ASP.NET-Docker project on GitHub (https://github.
com/aspnet/aspnet-docker).

Azure Container Service has been recently made available. It is a good
solution for scaling and orchestrating Linux or Windows containers
using DC/OS, Docker swarm, or Google Kubernetes.

Now that we have understood how to scale a microservice infrastructure, let's visit the
scalability aspects around the microservice design in our next section.

www.EBooksWorld.ir

https://github.com/aspnet/aspnet-docker

www.EBooksWorld.ir

Scaling service design
In this section, we will visit the components/concerns that need to be taken care of
while designing or implementing a microservice. With infrastructure scaling taking care
of service design, we can truly unleash the power of the microservice architecture and
get a lot of business value around making microservices a true success story. So what
are those components in service design; let's have a look.

www.EBooksWorld.ir

www.EBooksWorld.ir

Data persistence model design
In traditional applications, we have always relied on relational databases to persist user
data. Relational databases are not new to us. They emerged in the seventies as the way
to store persistent information in a structured way that would allow you to make queries
and perform data maintenance.

In today's world of microservices, modern applications need to be scaled at
the hyperscale stage. We are not recommending here that you abandon the usage of
relational databases in any sense. They still have their valid use cases. However, when
we mix read and write operations in a single database, complications arise when we
need to have increased scalability. Relational databases enforce relationships and
ensure consistency of data. Relational databases work on the well-known ACID model.
So, in relational databases, we use the same data model for both read and write
operations.

However, the needs of read and write operations are quite different. In most cases, read
operations usually have to be quicker than write operations. Read operations can also
be done using different filter criteria, returning a single row or a result set. In most write
operations, there is a single row or column involved, and usually, write operations take
a bit longer duration of time as compared to read operations. So either we can optimize
and serve reads or optimize and serve writes in the same data model.

How about we split the fundamental data model into two halves: one for all the read
operations and the other for all the write operations? Now things become far simpler,
and it is easy to optimize both the data models with different strategies. The impact of it
on our microservices is that they, in turn, become highly scalable for both kinds of
operations.

This particular architecture is known as Common Query Responsibility Segregation
(CQRS). As a natural consequence, CQRS also gets extended in terms of our
programming model. Now the database-object relationship between our programming
models has become much simpler and scalable.

With this comes our next fundamental element in scaling a microservice implementation:
caching of data.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Caching mechanism
Caching is the simplest way to increase the application's throughput. The principle is
very easy. Once the data is read from data storage, it is kept as close as possible to the
processing server. In future requests, the data is served directly from the data storage or
cache. The essence of caching is minimizing the amount of work that a server has to do.
HTTP has a built-in cache mechanism embedded in the protocol itself. This is the
reason it scales so well.

With respect to microservices, we can cache at three levels, namely client side, proxy,
and at server side. Let's look at each of them.

First we have client-side caching. With client side caching, clients store cached results.
So the client is responsible for doing the cache invalidation. Usually, the server
provides guidance, using mechanisms such as cache-control and expiry headers, about
how far it can keep the data and when it can request fresh data. With browsers
supporting HTML5 standards, there are more mechanisms available, such as local
storage, an application cache, or a Web SQL database, in which the client can store
more data.

Next, we move onto the proxy side. Many reverse proxy solutions, such as squid,
HAProxy, and Nginx, can act as cache servers as well.

Now let's discuss server-side caching in detail. In server-side caching, we have the
following two types:

0. Response caching: This is an important kind of caching mechanism for a web
application UI, and honestly, it is simple and easy to implement as well. In
response caching, cache-related headers get added to the responses served from
microservices. It can drastically improve the performance of your microservice. In
ASP.NET Core, you can implement response caching using
the Microsoft.AspNetCore.ResponseCaching package.

1. Distributed caching for persisted data: A distributed cache enhances microservice
throughput due to the fact that cache will not cost an I/O trip to any external
resource. This has the following advantages:

Microservice clients get the exact same results.
Distributed cache is backed up by a persistence store and runs as different
remote processes. So even if the app server restarts or has any problem, it in

www.EBooksWorld.ir

no way affects the cache.
The source's data store has fewer requests made to it.

You can use distributed providers, such as Redis or memcache, in clustered mode for
scaling your microservice implementation.

www.EBooksWorld.ir

www.EBooksWorld.ir

Redundancy and fault tolerance
We understand that a system's ability to deal with failures and recover from those
failures are not the same as that offered by scalability. However, we cannot also deny
that they are closely related abilities of the system. Unless we address the concerns of
availability and fault tolerance, it will be challenging to build highly scalable systems.
In a general sense, we achieve availability through making redundant copies available
to different parts/components of the system. So, in this section, we will shortly touch
base upon two such concepts.

www.EBooksWorld.ir

www.EBooksWorld.ir

Circuit breakers
A circuit breaker is a safety feature in an electronic device that, in the event of a short
circuit, breaks the electricity flow and protects the device or prevents any further
damage to the surroundings. This exact idea can be applied to software design. When a
dependent service is not available or not in a healthy state, a circuit breaker prevents
calls from going to that dependent service and redirects the flow to an alternate path for
a configured period of time.

In his famous book, Release It! Design and Deploy Production-Ready
Software, Michael T. Nygard gives details about the circuit breaker. A typical circuit
breaker pattern is shown in the following diagram:

As shown in the diagram, the circuit breaker acts as a state machine with three states.

Closed state

This is the initial state of the circuit, which depicts a normal flow of control. In this
state, there is a failure counter. If OperationFailedException occurs in this flow, the

www.EBooksWorld.ir

failure counter is increased by one. If the failure counter keeps increasing, meaning the
circuit encounters more exception, and reaches the failure threshold set, the circuit
breaker transitions to an Open State. But if the calls succeed without any exception or
failure, the failure count is reset.

Open state

In the Open state, a circuit has already tripped and a timeout counter has started. If a
timeout is reached and a circuit still keeps on failing, the flow of code enters into
the Half-Open state.

Half-Open state

In the Half-Open state, the state machine/circuit breaker component resets the timeout
counter and again tries to open the circuit, reinitiating the state change to Open state.
However, before doing so, it tries to perform regular operations, say, a call to the
dependency; if it succeeds, then instead of the Open state, the circuit breaker component
changes the state to Closed. This is so that the normal flow of operation can happen and
the circuit is closed again.

For .NET-based microservices, if you want to implement the circuit
breaker and a couple of fault-tolerant patterns, there is a good library
named Polly available in the form of a NuGet package. It comes with
extensive documentation and code samples, and moreover, has a fluent
interface. You can add Polly from http://www.thepollyproject.org/ or by just
issuing the install--Package Polly command from the package manager
console in Visual Studio.

www.EBooksWorld.ir

http://www.thepollyproject.org/

www.EBooksWorld.ir

Service discovery
For a small implementation, how can you determine the address of a microservice? For
any .NET developer, the answer is that we simply put the IP address and port of service
in the configuration file and we are good. However, when you deal with hundreds or
thousands of them dynamically configured at runtime, we understand we have a service
location problem.

Now if you peek a bit deeper, we are trying to solve two parts of the problem:

1. Service registration: This is nothing but the process of registration within
the central registry of some kind where all the service-level metadata, hosts' list,
ports, and secrets are stored.

2. Service discovery: Establishing communication at runtime with a dependency
through a centralized registry component is nothing but service discovery.

Any service registration and discovery solution needs to have the following
characteristics to make it considerable as a solution for the microservice services
discovery problem and they are:

The centralized registry itself should be highly available
Once a specific microservice is up, it should receive the requests automatically
Intelligent and dynamic load balancing capabilities should exist in the solution
The solution should be able to monitor the capability over service health status and
the load it is subjected to
The service discovery mechanism should be capable of diverting the traffic to
other nodes or services from unhealthy nodes without any downtime or without any
impact on its consumers
If there is a change in the service location or metadata, the service discovery
solution should be able to apply the changes without impacting the existing traffic
or service instances

Some of the service discovery mechanisms are available within the open source
community. They are as follows:

Zookeeper: Zookeeper (http://zookeeper.apache.org/) is a centralized service for
maintaining configuration information, naming, providing distributed
synchronization, and providing group services. It's written in Java, is strongly

www.EBooksWorld.ir

http://zookeeper.apache.org/

consistent (CP), and uses the Zab
(http://www.stanford.edu/class/cs347/reading/zab.pdf) protocol to coordinate changes across the
ensemble (cluster).
Consul: Consul makes it simple for services to register themselves and discover
other services via a DNS or HTTP interface. It registers external services, such as
SaaS providers, as well. It also acts as a centralized configuration store in the form
of key values. It also has failure detection properties. It is based on the peer-to-
peer gossip protocol.
Etcd: Etcd is a highly available key-value store for shared configuration and
service discovery. It was inspired by Zookeeper and Doozer. It's written in go,and
uses Raft (https://ramcloud.stanford.edu/wiki/download/attachments/11370504/raft.pdf) for consensus,
and has an HTTP- plus JSON-based API.

www.EBooksWorld.ir

http://www.stanford.edu/class/cs347/reading/zab.pdf
https://ramcloud.stanford.edu/wiki/download/attachments/11370504/raft.pdf

www.EBooksWorld.ir

Summary
Scalability is one of the critical advantages of pursuing the microservice architectural
style. We saw the characteristics of microservice scalability. We discussed the Scale
Cube model of scalability and how microservices can scale on the y-axis by functional
decomposition of the system. Then we approached the scaling problem with the scaling
infrastructure. In the infrastructure segment, we saw strong capability of Azure Cloud to
scale, utilizing the Azure scale sets and container orchestration solutions, such as
Docker swarm, DC/OS, and kubernates.

In later stages of the chapter, we focused on scaling with a service design and discussed
how our data model should be designed; we also discussed considerations, such as
having a split CQRS style model, while designing the data model for high scalability.
We also briefly touched on caching, especially distributed caching, and how it improves
the throughput of the system. In the last section, to make our microservices highly
scalable, we discussed the circuit breaker pattern and service discovery mechanism,
which are essential for the scalability of our microservice architecture.

In the next chapter, we will see the reactive nature of microservices and the
characteristics of reactive microservices.

www.EBooksWorld.ir

www.EBooksWorld.ir

Reactive Microservices
We have now gained a clear understanding of a microservice-based architecture and
how to harness its power. Until now, we've discussed various aspects of this
architecture, such as communication, deployment, and security, in detail. We also saw
how microservices collaborate among themselves when required. Now let's take the
effectiveness of microservices to the next level by introducing the reactive programming
aspect within them. We will cover the following topics:

Understanding reactive microservices
Mapping processes
Communication in reactive microservices
Handling security
Managing data
The microservice ecosystem

www.EBooksWorld.ir

www.EBooksWorld.ir

What are reactive microservices?
Before we dive into reactive microservices, let's see what the word reactive means.
There are certain fundamental attributes that a piece of software must possess in order
to be considered reactive. These attributes are responsiveness, resilience, elasticity,
and above all, being message-driven. We'll discuss these attributes in detail and see
how they can make microservices a stronger candidate for most enterprise requirements.

www.EBooksWorld.ir

www.EBooksWorld.ir

Responsiveness
It wasn't long ago when one of the key requirements of business sponsors, discussed in
requirement gathering sessions, was a guaranteed response time of a few seconds. For
example, a t-shirt custom print e-shop where you could upload images and then have it
rendered on the chosen piece of apparel. Move forward a few years and I can vouch for
this myself; I will close the browser window if any web page takes longer than a couple
of seconds to load.

Users today expect near instantaneous response. But this is not possible unless the code
that you write follows certain standards to deliver the expected performance. There
would always be so many different components cooperating and coordinating together
to solve some business problem. The time that each component is expected to return the
results in has therefore reduced to milliseconds today. Also, the system has to exhibit
consistency along with performance when it comes to response time. If you have a
service that exhibits variable response times over a defined period, then it is a sign of
an impending problem in your system. You will have to sooner or later deal with this
baggage. And there is no doubt that in most cases, you will manage to solve it.

However, the challenge is much bigger than what is visible from the surface. Any such
trait needs to be probed for a possibility of an issue in the design. It could be some kind
of dependency on another service, too many functions performing at the same time
within the service, or synchronous communication blocking the workflow at some point.

www.EBooksWorld.ir

www.EBooksWorld.ir

Resilience
With all the buzz around distributed computing, what does a user expect from such a
system in the event of a failure of one or more components? Does a single failure result
in a catastrophic domino effect resulting in the failure of the entire system? Or, does the
system bounce back from such an event with grace and within expected timelines? The
end user shouldn't be affected at all in such scenarios, or the system should at least
minimize the impact to an extent ensuring that user experience is not affected.

Reactive microservices take the concept of microservices to the next level. As the
number of microservices grows, so does the need for communication across them. It
won't be very long before the task of tracking a list of a dozen other services,
orchestrating a cascading transaction between them, or just the requirement of
generating a notification across a set of services becomes a challenge. For the scope of
this chapter, the concept of cascading is more important than the transaction itself.
Instead of the transaction, it could very well be just the need of notifying some external
system based upon some filtering criteria.

The challenge arises as an enterprise-level microservice-based system would always
extend far beyond a handful of microservices. The sheer size and complexity of this
cannot be pictured fully here in a chapter. In such a scenario, the need to track a set of
microservices and communicate with them can quickly become a nightmarish scenario.

What if we could take away the responsibility of communicating an event to other
microservices from individual microservices? The other aspect of this could very well
be freedom for the services from tracking others in the ecosystem for a possible trigger.
To do this, you will have to keep track of their whereabouts. Just add authentication to
this and you could very easily be tangled in the mess you never signed up for.

The solution lies in a design change where the responsibility of tracking microservices
for an event or communicating an event to others is taken away from individual
microservices.

While transitioning from a monolithic application to a microservice-styled architecture,
we saw how they are isolated. Through seam identification, we isolated modules into
independent sets of services that own their data and don't allow other
microservices/processes to access them directly. We achieved autonomy by catering to
a single business functionality and taking care of aspects such as its data and

www.EBooksWorld.ir

encapsulated business functionality. Asynchronous was another characteristic that we
achieved for our microservices in order to make non-blocking calls to it.

www.EBooksWorld.ir

www.EBooksWorld.ir

Autonomous
All along, we have been strongly advocating the correct isolation of microservices.
Seam identification was a concept we briefly touched upon in Chapter 2, Building
Microservices. There were numerous benefits that we derived while successfully
implementing the microservice-styled architecture. We can safely state that isolation is
one of the fundamental requirements here. However, the benefits of successful
implementation of isolation go much beyond it.

It is very important for microservices to be autonomous, else our work will be
incomplete. Even after implementing the microservice architecture, if one microservice
failure results in delay for other services or a domino effect, it means we missed
something in our design. However, if microservice isolation is done right along with
the right breakdown of the functionality to be performed by this particular microservice,
it would mean that the rest of the design would fall into place itself to handle any kind of
resolution conflict, communication, or coordination.

The information required to perform such an orchestration would depend primarily on
the well-defined behavior of the service itself. So the consumer of a microservice that
is well-defined doesn't need to worry about the microservice failing or throwing an
exception. In case there is no response within the stipulated period of time, just try
again.

www.EBooksWorld.ir

www.EBooksWorld.ir

Being message-driven
Being message-driven is the core of reactive microservices. All reactive microservices
define, as part of their behavior, any event that they might be generating. These events
may or may not have additional information payload with them, depending upon the
design of the individual event. The microservice that is the generator of this event
would not be bothered about whether the event generated was acted upon or not. Within
the scope of this specific service, there is no behavioral definition for the action beyond
the generation of this event. For it, the scope ends there. It is now for the rest of the
system comprising other microservices to act upon this information, based upon their
individual scope.

The difference here is that all these events being generated could be captured
asynchronously by listening to them. No other service is waiting in blocking mode for
any of these services. Anyone listening to these events is called a subscriber, and the
action of listening for the events is called subscribing. The services that subscribe to
these events are called observers, and the source service of the events generated is
termed Observable. This pattern is termed the Observer Design Pattern.

However, the very exercise of having a concrete implementation on each of the
observers is somewhat inconsistent with our motto of designing loosely coupled
microservices. If this is what you are thinking, then you have the right thinking cap on
and we are on the right track. In a short while from now, while mapping our processes
as reactive microservices, we will see how we can achieve this purpose in the world of
reactive microservices.

Before we go on with mapping our processes, it is important that we briefly discuss the
pattern with respect to our topic here. In order to act upon a message, you first need to
show your intent to watch the message of that type. At the same time, it is required that
the originator of the message has an intent to publish such a message to the interested
observers. So there would be at least one observable to be observed by one or more
observers. To add some spice to it, the observable can publish more than one type of
message, and the observers can observe one or more of the messages they intend to act
upon.

The pattern doesn't restrict observers from unsubscribing when they want to stop
listening for these messages. So it sounds pretty, but is it as easily implemented? Let's
move ahead and see this for ourselves.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Making it reactive
Let's examine our application and see how it would look with the reactive style of
programming. The following image depicts the flow of the application that is reactive in
nature and is completely event-driven. In this image, services are depicted by hexagons,
and events are represented by square boxes. Here's the entire flow in detail:

The flow depicted in the image describes the scenario of a customer placing an order
after having searched for the items he/she is looking for. The Place order event is
raised to Order service. In response to this event, our service analyzes arguments, such
as order item and quantity, and raises the Item availability event to Product service.
From here on, there are two possible outcomes: either the requested product is
available and has the required quantity or it is not available or doesn't have the required
quantity. If the items are available, Product service raises an event called Generate
invoice to Invoice service. Since raising the invoice means confirming the order, the
items in the invoice would no longer be available in stock; we need to take care of this
and update the stock accordingly. To handle this, our invoice service further raises an
event called Update Product Quantity to Product service and takes care of this
requirement. For the sake of simplicity, we will not go into the details of who will
handle the event of Mail Invoice.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Event communication
The preceding discussion may have left you thinking about how the event being raised
maps the call of the respective microservice perfectly; let's discuss this in further detail.
Think of all the events being raised as being stored in an event store. The event stored
has an associated delegate function that is called to cater to the respective event.
Although it is shown that the store has just two columns, it stores much more
information, such as details of the publisher, subscriber, and so on. Each event contains
the complete information that is required to trigger the corresponding service. So event
delegation might be a service to be called or a function within the application itself. It
doesn't matter to this architecture.

www.EBooksWorld.ir

www.EBooksWorld.ir

Security
There are numerous ways in which security can be handled while implementing reactive
microservices. However, given the limited time and scope that we have here, we will
restrict our discussion to one type only. Let's go on and discuss message-level security
here and see how it is done.

www.EBooksWorld.ir

www.EBooksWorld.ir

Message-level security
Message-level security is the most fundamental way available to secure your individual
request messages. After the initial authentication is performed, the request message
itself could contain the OAuth bearer token or the JWTs, based on the implementation.
This way, each and every request is authenticated, and the information related to the
user could be embedded within these tokens. The information could be as simple as a
username along with an expiration timestamp indicating token validity. After all, we
don't want to allow a token to be utilized beyond a certain extent of time.

However, it is important to note here that you are free to implement it in such a manner
that a lot more information could be embedded and utilized for different uses.

www.EBooksWorld.ir

www.EBooksWorld.ir

Scalability
There is another aspect you need to consider here as well. Within this token, we could
also embed authorization information apart from authentication information. Although,
note that having all of this information within a token that is being passed around
frequently could soon become an overhead. We can make the necessary changes to
ensure that the information pertaining to the authorization is a one-time activity and is
later persisted with the services as required.

When we decide to persist authorization-related information with individual services,
we make them elastic in a way. The task of persisting authorization information with
individual services will do away with the requirement of reaching out to the
authentication service each time for authorization-related data. This means we can scale
our services quite easily.

www.EBooksWorld.ir

www.EBooksWorld.ir

Communication resilience
What would happen if the authentication service that contains all the user authentication
data and authorization data become unavailable? Does this mean that the entire
microservice ecosystem would come down to its knees, as all the actions or a big
percentage of them would need to be authorized for the user attempting the action? This
does not fit the domain of the microservice architecture. Let's see how we could deal
with this.

One way could be to replicate user authorization data within each service that requires
it. When the authorization data is already available with the respective services, it will
reduce the data being transferred through the JWTs being moved around. What this
would achieve is that in the event our Auth service becomes unavailable, the users who
are authenticated and have accessed the system would not be affected. With all of the
authorization data already available within the individual services that need to verify it,
the business can continue as usual without any hindrances.

However, this approach comes with a price of its own. It will become a challenge to
maintain this data as it is updated all the time with all the services. The replication
required for each service would be an exercise in itself. There is a way out of this
specific challenge as well, though.

Instead of making this data available in all the microservices, we could simply store it
in a central store and have the services validate/access authorization-related data from
this central store. This would enable us to build resilience beyond the authentication
service.

www.EBooksWorld.ir

www.EBooksWorld.ir

Managing data
Tracking a single order being placed is easy. However, multiply that number with the
million orders being placed and canceled every hour; it could quickly become a
challenge in the reactive microservices domain. The challenge is how you would
perform a transaction across multiple services. Not only is it difficult to track such a
transaction, it poses other challenges, such as persisting such a transaction that spans the
database and message broker. The task of reversing such an operation in the likelihood
of the transaction breaking somewhere in the middle due to a service failure could be
even more daunting.

In such a scenario, we can utilize the event sourcing pattern. This is a strong candidate,
especially since we are not looking for a two-phase commit, generally referred to as
2PC. Instead of storing a transaction, we persist all the state-changing events of our
entities. In other words, we store all the events that change their states in the form of
entities, such as order and product. When a client places an order, then under regular
circumstances, we would persist the order to the order table as a row. However, here
we will persist the entire sequence of events, reaching up to the final stage of the order
being accepted or rejected.

Refer to the preceding image where we analyzed the sequence of events that are
generated while creating an order. See how those events will be stored in this pattern
and how a transaction would be deduced from that set of events. First, let's see how the
data will be stored. As seen in the following image, individual records are saved as
rows. Data consistency is confirmed post the transaction.

www.EBooksWorld.ir

As seen in the following image, the Product service can subscribe to the order events
and update itself accordingly. There are numerous benefits to be derived from this
approach, such as:

Since the events are being persisted, the challenge of recognizing a transaction is
separated from the task of maintaining database integrity
It is possible to find the exact state of the system at any given point in time
It is easier to migrate a monolith with this approach
It is possible to move back in time to a specific set of events and identify any
possible problems

Apart from all the benefits, it has some drawbacks as well. The most important one is
how to query the event store. To reconstruct the state of a given business entity at a
given point in time would require some level of complex queries. Apart from this, there
would be a learning curve involved to grasp the concept of an event store replacing the
database and then deducing the state for an entity. Query complexity can be handled with
the help of the CQRS pattern easily. However, this will be outside the scope of this
chapter. It will be worthwhile to note that the event sourcing pattern and CQRS deserve
separate chapters in the wake of reactive microservices.

www.EBooksWorld.ir

www.EBooksWorld.ir

The microservice ecosystem
As discussed in the initial chapters, we need to get ready for big changes when
embracing microservices. The discussions we've had on deployment, security, and
testing so far would have had you thinking by now about accepting this fact. Unlike
monoliths, adoption of microservices requires you to prepare beforehand and in a way
that you start building the infrastructure along with it and not after it. In a way,
microservices thrive in the complete ecosystem where everything is worked out, from
deployment to testing and security to monitoring. The returns associated with embracing
such a change are huge. There is definitely a cost involved to make all these changes.
However, instead of having a product that doesn't get on the market, it is better to incur
some costs and design and develop something that thrives and does not die out after the
first few rollouts.

www.EBooksWorld.ir

www.EBooksWorld.ir

Reactive microservices - coding it down
Now, let's try to sum up everything and see how it actually looks in the code. We will
use Visual Studio 2015 for this. The first step would be to create a reactive
microservice, then we will move on to creating a client for consuming the service
created by us.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating the project
We will now go ahead and create our reactive microservice example. In order to do
this, we need to create a project of the ASP.NET web application type. Just follow
these steps and you should be able to see your first reactive microservice in action:

1. Start Visual Studio.
2. Create a new project by navigating to File | New | Project.
3. From the installed templates, select Web and ASP.NET Web Application.
4. Name it FlixOne.BookStore.ProductService.Tests and click on OK.
5. Next, select Empty from the template screen and check the WebAPI option for

adding folders and core references. Then click on OK:

6. Add folders' persistence and context to the project:
7. Add the following NuGet packages to the project:

Reactive.Core.

EntityFramework.

8. Add the Product.cs model to the Models folder:

 using System;

 namespace FlixOne.BookStore.ProductService.Models
 {
 public class Product
 {
 public Guid Id { get; set; }
 public string Name { get; set; }

www.EBooksWorld.ir

 public string Description { get; set; }
 public string Image { get; set; }
 public decimal Price { get; set; }
 public Guid CategoryId { get; set; }

 public virtual Category Category { get; set; }
 }
 }

9. Add the Category.cs model to the Models folder:

 using System;
 using System.Collections.Generic;

 namespace FlixOne.BookStore.ProductService.Models
 {
 public class Category
 {
 public Category()
 {
 Products = new List<Product>();
 }

 public Guid Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public IEnumerable<Product> Products { get; set; }
 }
 }

We have created our models. Our next step would be to add the code for interacting
with the database. These models help us project data from a data source into our
models.

Let's create a context, namely ProductContext, while deriving it from DbContext. In one of the
preceding steps, we created a folder named Context. Add the ProductContext.cs file to it.
The class named ProductContext would house our context. The Entity Framework context
helps query the database. Also, it helps us collate all the changes that we perform on our
data and execute them on the database in one go. The following is the code for DbContext.
We will not go into detail about Entity Framework or the contexts because they are not
part of the scope here:

 using System.Data.Entity;
 using FlixOne.BookStore.ProductService.Models;

 namespace FlixOne.BookStore.ProductService.Contexts
 {
 public class ProductContext : DbContext
 {
 public ProductContext()
 : base("name=ProductDBConnectionString")
 {
 }
 public DbSet<Product> Products { get; set; }

 public DbSet<Category> Categories { get; set; }

www.EBooksWorld.ir

 }
 }

This context would pick the connection string from the web.config file in the
connectionString section--a key named ProductDBConnectionString. You could name it anything,
but remember to use the same name in the constructor of the context, shown in the
preceding class:

 <connectionStrings>
 <add name="ProductDBConnectionString" connectionString="Data
 Source=KANWARS\SQLEXPRESS;Initial Catalog=ProductDB;Integrated
 Security=true"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>

With our context in place and taking care of the communication between our application
and the database, let's go ahead and add a repository for facilitating interaction between
our data models and our database. The following is the code for our repository:

 using System;
 using System.Collections.Generic;
 using System.Data.Entity;
 using System.Linq;
 using System.Reactive;
 using System.Reactive.Concurrency;
 using System.Reactive.Linq;
 using FlixOne.BookStore.ProductService.Contexts;
 using FlixOne.BookStore.ProductService.Models;

 namespace FlixOne.BookStore.ProductService.Persistence
 {
 public class ProductRepository : IProductRepository
 {
 private readonly ProductContext _context;

 public ProductRepository(ProductContext context)
 {
 _context = context;
 }

 public IObservable<IEnumerable<Product>> GetAll()
 {
 return Observable.Return(GetProducts());
 }

 public IObservable<IEnumerable<Product>> GetAll(IScheduler scheduler)
 {
 return Observable.Return(GetProducts(), scheduler);
 }

 public IObservable<Unit> Remove(Guid productId)
 {
 return Remove(productId, null);
 }

 public IObservable<Unit> Remove(Guid productId, IScheduler
 scheduler)
 {
 DeleteProduct(productId);

www.EBooksWorld.ir

 return scheduler != null
 ? Observable.Return(new Unit(), scheduler)
 : Observable.Return(new Unit());
 }

 private IEnumerable<Product> GetProducts()
 {
 var products = (from p in
 _context.Products.Include("Category")
 orderby p.Name
 select p).ToList();
 return products;
 }

 private Product GetBy(Guid id)
 {
 return GetProducts().FirstOrDefault(x => x.Id == id);
 }

 private void DeleteProduct(Guid productId)
 {
 var product = GetBy(productId);
 _context.Entry(product).State = EntityState.Deleted;
 _context.SaveChanges();
 }
 }
 }

Marking our result from GetAll as IObservable adds that reactive functionality we are
looking for. Also, pay special attention to the return statement.

With this observable model, it becomes possible for us to handle streams of
asynchronous events with the same ease we are used to while handling other simpler
collections:

 return Observable.Return(GetProducts());

We are now ready to expose the functionality through our controllers. Add a file
named ProductController while deriving the class from ApiController to the Controllers folder.
Here is what our controller would look like:

 using System;
 using System.Collections.Generic;
 using System.Reactive.Linq;
 using System.Threading.Tasks;
 using System.Web.Http;
 using FlixOne.BookStore.ProductService.Contexts;
 using FlixOne.BookStore.ProductService.Models;
 using FlixOne.BookStore.ProductService.Persistence;

 namespace FlixOne.BookStore.ProductService.Controllers
 {
 public class ProductController : ApiController
 {
 private readonly IProductRepository _productRepository;

 public ProductController()

www.EBooksWorld.ir

 {
 _productRepository = new ProductRepository(new
 ProductContext());
 }
 public ProductController(IProductRepository productRepository)
 {
 _productRepository = productRepository;
 }
 [HttpGet]
 public async Task<IEnumerable<Product>> Get()
 {
 var observable = _productRepository.GetAll();
 var arrayResult = observable.SelectMany(p => p).ToArray();
 return await arrayResult;
 }
 }
 }

The final structure looks similar to the following image in the Solution Explorer:

To create the database, you can refer to the EF Core migrations section in Chapter 2,
Building Microservices, or simply call the Get API of our newly deployed service.
When the service finds out that the database doesn't exist, the entity framework code's
first approach in this case will be to ensure that the database is created.

We can now go ahead and deploy this service for our client. With our reactive
microservice deployed, we now need a client to call it.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Client - coding it down
We will create a web client for consuming our newly deployed reactive microservice
with the help of AutoRest. Let's create a console application for it and add Nuget
packages: Reactive.Core, WebApi.Client, Microsoft.Rest.ClientRuntimeand Newtonsoft.Json.

1. AutoRest would add a folder named Models to the main project and create copies of
the model's product and category, as in the service that we just created. It will have
necessary deserialization support built into in.

2. ProductOperations.cs and ProductServiceClient.cs contain the main plumbing
required for all the calling.

3. In the Main function of the Program.cs file, change the Main function as follows:

 static void Main(string[] args)
 {
 var client = new ProductServiceClient {BaseUri =
 new Uri("http://localhost:22651/")};
 var products = client.Product.Get();
 Console.WriteLine($"Total count {products.Count}");
 foreach (var product in products)
 {
 Console.WriteLine($"ProductId:{product.Id},Name:
 {product.Name}");
 }
 Console.Write("Press any key to continue");
 Console.ReadLine();
 }

At this point, if the database is not created, then it will be created as required by the
Entity Framework.

We need to know how is this list, which is returned from our microservice, different
from the regular list. The answer is that if this were a non-reactive scenario and you
were to make any changes in the list, it would not be reflected on the server. In the case
of reactive microservices, changes that are made to such a list would be persisted to the
server without having to go through the process of tracking and updating the change
manually.

You would have noticed that we had to do very little or no work at all when it came to
messy callbacks. This helps keep our code clean and easier to maintain. With
observable, it is the producer that pushes the values when they are available. Also,
there is a difference here that the client is not aware of: whether your implementation is
blocking or non-blocking. To the client, it all seems like asynchronous.

www.EBooksWorld.ir

You are left alone to focus more on important tasks than to figure out what call to be
made next or which one you missed altogether.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In this chapter, we added the aspect of reactive programming to our microservice-based
architecture. There are trade-offs with this message-driven approach to microservices
communicating with each other. However, at the same time, this approach tends to solve
some of the fundamental problems when we advance our microservice architecture
further. The event sourcing pattern comes to our rescue and lets us get past the limitation
of an ACID transaction or a two-phase commit option. This topic requires a separate
book altogether and restricting it to a single chapter does not do justice to it. We used
our sample application to understand how to restructure our initial microservice in a
reactive way.

In the next chapter, we would have the entire application ready for us to explore and we
will put together everything that we have discussed so far in this book.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating a Complete Microservice
Solution
On our journey down the lane of understanding microservices and their evolution, we
 continued through various phases. We explored what led to the advent of microservices
and the various advantages of utilizing them. We also discussed various integration
techniques and testing strategies. Let's recap all that we have talked about thus far:

Testing microservices
Security
Monitoring
Scaling
Reactive microservices

www.EBooksWorld.ir

www.EBooksWorld.ir

Architectures before microservices
Microservices were never designed from the ground up to be in the present form.
Instead, there has been a gradual transition from other forms of prevalent architecture
styles to microservices. Prior to microservices, we had the monolithic architecture and
service-oriented architecture that reigned over the world of enterprise development.

Let's delve into these two before doing a quick recap of microservices and their various
attributes and advantages.

www.EBooksWorld.ir

www.EBooksWorld.ir

The monolithic architecture
The monolithic architecture has been around for quite some time and it results in self-
contained software with a single .NET assembly. It consists of the following
components:

User interface
Business logic
Database access

The cost paid for being self-contained was that all the components were interconnected
and interdependent. A minor change in any module had the capability to impact the
entire piece of software. With all the components so tightly coupled in this manner, it
made testing the entire application necessary. Also, another repercussion of being so
tightly coupled was that the entire application had to be deployed once again. Let's sum
up all the challenges we faced as a result of adopting this style of architecture:

Large interdependent code
Code complexity
Scalability
System deployment
Adoption of a new technology

www.EBooksWorld.ir

www.EBooksWorld.ir

Challenges in standardizing the .NET
stack
Technology adoption is not easy when it comes to monolithics. It poses certain
challenges. Security, response time, throughput rate, and technology adoption are some
of them. It is not that this style of architecture does not fight back with solutions. The
challenge is that in monolithics, code reusability is really low or absent, which makes
any exercise an expensive affair to implement.

www.EBooksWorld.ir

www.EBooksWorld.ir

Scaling
We also discussed how scaling is a viable option but with diminishing returns and
increasing expenses. Both vertical and horizontal scaling have their own pros and cons.
Vertical scaling is seemingly easier to begin with: investing in IT infrastructures, such
as RAM upgrades and disk drives. However, the return plateaus out very quickly. The
disadvantage of the downtime required for vertical scaling doesn't exist in horizontal
scaling. However, beyond a point, the cost of horizontal returns becomes too high.

www.EBooksWorld.ir

www.EBooksWorld.ir

Service-oriented architecture
Another widely used architecture in the industry was a service-oriented architecture
(SOA). This architecture was a move away from the monolithic architecture and was
involved in resolving some of its challenges, mentioned in the preceding section. To
begin with, it was based on a collection of services. Providing service was the core
concept of SOA.

A service is a piece of code, program, or software that provides some functionality to
other system components. This piece of code was able to interact directly with
the database or indirectly through other services. It was self-contained to the extent that
it allowed services to be consumed easily by both desktop or mobile applications.

Some of the definite advantages that SOA provided over monolithic were:

Reusability
Stateless
Scalability
Contract-based
Ability to upgrade

www.EBooksWorld.ir

www.EBooksWorld.ir

Microservice-styled architecture
Apart from some of the definite advantages of SOA, microservices provide certain
additional differentiating factors that makes it a clear winner. At the core, microservices
were defined to be completely independent of other services in the system and run in
their process. The attribute of being independent required certain discipline and strategy
in the application design. Some of the benefits it provides are:

Clear code boundaries: This resulted in easier code changes. It has independent
modules provided an isolated functionality that led to a change in one microservice
has little impact on others.
Easy deployment: It is possible to deploy one microservice at a time if required.
Technology adaptation: The preceding attributes led to the gain of this much
sought after benefit. This allows us to adopt different technologies in different
modules.
Affordable scalability: This allows us to scale only chosen components/modules
instead of the whole application.
Distributed system: This comes implied, but a word of caution is necessary here.
Make sure that your asynchronous calls are used well and the synchronous ones
don't block the whole flow of information. Use data partitioning well. We will
come to this a little later, so don't worry for now.
Quick market response: In a competitive world, this is a definite advantage as
users tend to quickly lose interest if you are slow to respond to new feature
requests or adopt a new technology within your system.

www.EBooksWorld.ir

www.EBooksWorld.ir

Messaging in microservices
This is another important area that needs its share of discussion. There are primarily
two main types of messaging utilized in microservices:

Synchronous
Asynchronous

www.EBooksWorld.ir

www.EBooksWorld.ir

Monolith transitioning
As part of our exercise, we decided to transition our existing monolithic application
FlixOne to a microservice-styled architecture. We saw how to identify decomposition
candidates within a monolith, based on the following parameters:

Code complexity
Technology adoption
Resource requirement
Human dependency

There are definite advantages it provides in regard to cost, security, and scalability
apart from technology independence. This also aligns the application more with the
business goals rather than the current or possible technical boundaries.

The entire process of transitioning requires you to identify seams that act like
boundaries of your microservices along which you can start the separation. You have to
be careful about picking up seams on the right parameters. We have talked about how
module interdependency, team structure, database, and technology are a few probable
candidates. Special care is required to handle master data. It is more a choice whether
you want to handle master data through a separate service or through configurations.
You will be the best judge based as per your scenario. The fundamental requirement of a
microservice having its own database is that you remove many of the existing foreign
key relationships. This would bring forth the need to intelligently pick your transaction-
handling strategy to preserve data integrity.

www.EBooksWorld.ir

www.EBooksWorld.ir

Integration techniques
We have already explored synchronous and asynchronous ways of communication
between microservices and discussed the collaboration style of the services. These
styles were Request/Response and event-based. Though Request/Response seems to be
synchronous in nature, the truth is that it is the implementation that decides the outcome
of this style of integration. Event-based style, on the other hand, is purely asynchronous.

When dealing with a large number of microservices, it is important that we utilize an
integration pattern in order to facilitate complex interaction among microservices. We
explored the API Gateway along with an event-driven pattern.

API Gateway provides you with a plethora of services; some of which are as follows:

Routing an API call
Verifying API keys, JWT tokens, and certificates
Enforcing usage quotas and rate limits
Transforming APIs on the fly without code modifications
Setting up caching backend responses
Logging call metadata for analytics purposes

The event-driven pattern works by some services publishing their events and some
subscribing to those available events. The subscribing services simply react
independently of the event-publishing services, based on the event and its metadata. The
publisher is unaware of the business logic that the subscribers would be executing.

www.EBooksWorld.ir

www.EBooksWorld.ir

Deployment
Monolith deployments for enterprise applications can be challenging for more than one
reason. Having a central database, which is difficult to break down, only increases the
overall challenge along with time to market.

For microservices, the scenario is much different. The benefits don't just come by virtue
of the architecture being microservices. Instead, it is the planning from the initial stages
itself. You can't expect an enterprise-scale microservice to be managed without
continuous delivery (CD) and continuous integration (CI). So strong is the
requirement for CI and CD right from the early stages that without it, the production
stage may never see the light of the day.

Tools such as CFEngine, chef, puppet, ansible, and powershell DSC help you represent
an infrastructure with code and let you easily make different environments exactly the
same. Azure could be an ally here. The rapid and repeated provisioning required here
could easily be met with it.

Isolation requirement could be met with containers far more effectively than its closest
rival, virtual machines. We have already explored Docker as one of the popular
candidates for containerization and have seen how to deploy them.

www.EBooksWorld.ir

www.EBooksWorld.ir

Testing microservices
We all know the importance of unit testing and why every developer should be writing
these more often than not. Unit tests are a good means to verify the smallest of the
functionality that contributes toward building larger systems.

However, testing microservices is not a routine affair like testing a monolith since one
microservice might interact with a number of other microservices. In that case, should
we utilize the calls to the actual microservices to ensure that the complete workflow is
working fine? The answer is no, as this would make developing a microservice
dependent on another piece. If we do this, then the whole purpose of having a
microservice-based architecture is lost. In order to get around this, we will use the
mock and stub approach. This approach not only makes the testing independent of other
microservices, but also makes testing with databases much easier since we can mock
database interactions as well.

Testing a small isolated functionality with a unit test or testing a component by mocking
the response from an external microservice has its scope and it works well within that
scope. However, if you are already asking yourself the question about testing the larger
context, then you are not alone. Integration testing and contract testing are the next steps
in testing your microservices.

In integration testing, we're concerned about external microservices and communicate
with them as part of the process. For this purpose, we mock external services. We take
this further with contract testing, where we test each and every service call
independently and then verify the response as well. An important concept worth
spending time on is consumer-driven contracts. Refer to Chapter 4, Testing Strategies, for
studying this in detail.

www.EBooksWorld.ir

www.EBooksWorld.ir

Security
The traditional approach of having a single point of authentication and authorization
worked well in the monolithic architecture. However, in the case of microservices, you
would need to put efforts into doing this for each and every service. This would pose a
challenge of not only implementing the same but keeping it synchronized as well.

The OAuth 2.0 authorization framework and OpenID Connect 1.0 specifications
combined together can solve the problem for us. OAuth 2.0 describes all the roles
involved in the authorization process that suffices our needs pretty well. We just have to
make sure that the right kind of grant type is picked up; otherwise, the security will be
compromised. OpenID Connect authentication is built on top of the OAuth 2.0 protocol.

Azure Directory (Azure AD) is one of the providers of OAuth 2.0 and OpenID Connect
specifications. It is understood here that Azure AD scales very well with applications
and integrates well with any organizational Windows Server Active Directory.

As we have already discussed containers, it is important and interesting to understand
that containers are very close to the host operating system's kernel. Securing them as
well is another aspect that can't be overrated. Docker was the tool we considered, and it
provides the necessary security by means of the least privilege principle.

www.EBooksWorld.ir

www.EBooksWorld.ir

Monitoring
The monolith world had a few advantages of its own. Easier monitoring and logging is
one of those areas where things are easier compared to microservices. The sheer
number of microservices across which an enterprise system might be spread can be
mind-boggling.

As discussed in Chapter 1, What are Microservices, in the Prerequisites for
a microservice architecture section, an organization should be prepared for the
profound change. The monitoring framework was one of the key requirements for this.

Unlike a monolith architecture, monitoring is very much required from the very
beginning in a microservice-based architecture. There is a wide range of reasons
why monitoring can be categorized:

Health: We need to preemptively know when a service failure is imminent. Key
parameters, such as CPU and memory utilization, along with other metadata could
be a precursor to either the impending failure or just a flaw in the service that
needs to be fixed. Just imagine an insurance company's rate engine getting
overloaded and going out of service or even performing slow when a few hundred
field executives try to share the cost with the probable clients. Nobody likes to
wait these days.
Availability: There might a situation when the service may not perform extensive
calculations, but the bare availability of the service itself might be crucial to the
entire system. In such a scenario, I remember relying upon pings to listeners that
would wait for a few minutes before shooting out e-mails to the system
administrators. It worked for monoliths with one or two services to be monitored.
However, with microservices, much more metadata comes into the picture.
Performance: For platforms receiving high footfall, such as banking and e-
commerce, availability alone does not deliver the service required. Considering
the number of people converging at their platforms in very short spans, ranging
from a few minutes to even tens of seconds, performance is not a luxury anymore.
You need to know how the system is responding by means of data, such as
concurrent users being served, and compare that with the health parameters in the
background. This might provide an e-commerce platform with the ability to decide
whether upgrades are required before the upcoming holiday season. For more
sales, you need to serve a higher number of people.
Security: In any system, you can plan resilience only up to a specific level. No

www.EBooksWorld.ir

matter how well designed a system is, there would be thresholds beyond which the
systems will falter, which can result in a domino effect. However, having a
thoughtfully designed security system in place could easily avert DoS and SQL
Injection attacks. This would really matter from system to system when dealing
with microservices. So think ahead and think carefully when setting up trust levels
between your microservices. The default strategy that I have seen people utilizing
is securing the endpoints with microservices. However, covering this aspect
increases the depth of your system's security and is worthwhile spending some time
with.
Auditing: Domains such as healthcare, financing, and banking are a few domains
that have the most strict compliance standards around all associated services. And
it is pretty much the same world over. Depending upon the kind of compliance you
are dealing with, you might have a requirement to keep the data for a specific
period of time as a record, keep the data in a specific format to be shared with
regulatory authorities, or even sync with systems provided by the authority.
Taxation systems could be another example here. With a distributed architecture,
you don't want to risk losing the data record set related to even a single transaction
since that would amount to compliance failure.
Troubleshooting system failures: This, I bet, would be a favorite for a long time
to come to anybody who is getting started with microservices. I remember the
initial days when I use to try troubleshooting a scenario involving two Windows
services. I never thought of recommending a similar design again. But time has
changed and so has the technology today.

When providing a service to other clients, monitoring becomes all the more important.
As in today's competitive world, SLA would be part of any deal and has a cost
associated with it in the event of both success and failure. Ever wondered how easily
we assumed that the Microsoft Azure SLA would stand true come what may? I have
myself grown so used to it that the queries from the clients worried about cloud
resource availability are answered with a flat reply of 99.9 percent uptime without even
a blink of an eye.

So unless you can't be confident of agreeing on an SLA to your clients when providing a
service, they can't count on it to promise the same SLA forward. As a matter of fact, no
SLA might mean that your services are probably not stable enough to provide one.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Monitoring challenges
There could be multiple key points that need to be addressed before you could have a
successful monitoring system in place. These need to be identified and assigned a
solution to. Some of the key points are discussed next.

www.EBooksWorld.ir

www.EBooksWorld.ir

Scale
If you have a successfully running system with a few dozen microservices orchestrating
successful transactions in perfect harmony, then you have won the first battle.
Congratulations! However, you must plug in the necessary monitoring part if you haven't
done so already. Ideally, this should be part of step one itself.

www.EBooksWorld.ir

www.EBooksWorld.ir

Component lifespan
With the use of virtual machines and containers, we need to figure out what part is worth
monitoring. Some of these components would be already nonexistent by the time you
look at the data generated by monitoring them. So it becomes extremely important that
you choose the information to be monitored wisely.

www.EBooksWorld.ir

www.EBooksWorld.ir

Information visualization
There are tools available, such as AppDynamics and New Relic, that would allow you
to visualize the data for maybe up to 10-100 microservices. However, in real-world
applications, this is just a fraction number. There has to be clarity about the purpose of
this information and well-designed visualization around it. This is one area where we
can opt for reverse design. First, think about the report/visualization you want and then
see what and how it is to be monitored.

www.EBooksWorld.ir

www.EBooksWorld.ir

Monitoring strategies
To begin with monitoring, you could think of different commonly implemented strategies
as a solution to your problem. Some of the commonly implemented strategies are:

Application/system monitoring
Real user monitoring
Semantic monitoring and synthetic transactions
Profiling
Endpoint monitoring

Just bear in mind that each one of these strategies is focused on solving a specific
purpose only. While one could be helpful in analyzing transaction propagation, the other
could be suitable for testing purposes. So it is important for you to pick up a
combination of these when designing the whole system since just using a single strategy
won't suffice the needs.

www.EBooksWorld.ir

www.EBooksWorld.ir

Scalability
We have discussed in detail the scale-cube model of scalability and have found what
scaling at each axis means. Note that x-axis scaling is achieved through the use of load
balancers between multiple instances and the users of the microservices. We also saw
how z-axis scaling is based on the transaction origination suffered from some drawback.

Broadly, scaling in the microservice world can be categorized under two separate
heads:

1. Infrastructure
2. Service design

www.EBooksWorld.ir

www.EBooksWorld.ir

Infrastructure scaling
Virtual machines are an indispensable component of the microservice world. The
features available as part of the Microsoft Azure platform enable you to easily perform
this seemingly complex task without breaking a sweat.

Through the scale set feature, which is integrated with Azure autoscale, we can easily
manage a set of identical virtual machines.

Auto scaling lets you define thresholds for various supported parameters, such as CPU
usage. Once the threshold is breached, the scale set kicks in, based on whether the
parameters scale in or scale out.

This means that if the scale set predicts that it needs to add more virtual machines to
cater to the increased load, it will continue to do so until the thresholds are back to
normal. Similarly, if the demand for resource being governed falls, it will decide to
remove the virtual machine from the scale set. To me, this sounds like peace for the
networking team. The options around auto scaling can be explored further as it is
capable of taking care of complex scaling requirements, running into hundreds of virtual
machines while scaling in or scaling out.

www.EBooksWorld.ir

www.EBooksWorld.ir

Service design
In our microservices, we have already achieved the isolation of data for each
microservice. However, the model for reading and writing to the database is still the
same. With the underlying relational databases enforcing the ACID model, this can be a
costly affair. Or we can say that this approach can be slightly modified to implement the
database read and write operation in a different way.

We can employ the common query responsibility segregation, also referred to as CQRS,
for making effective design changes in our microservices to handle this. Once the
model-level separation is done, we will be free to optimize the read and write data
models using a different strategy.

www.EBooksWorld.ir

www.EBooksWorld.ir

Reactive microservices
We have progressed well while transitioning our monolithic application to the
microservice-styled architecture. We have also briefly touched upon the possibility of
introducing reactive traits to our services. We now know what are the key attributes of
reactive microservices are:

Responsiveness
Resilience
Autonomous
Being message-driven

We also saw the benefits of reactive microservices amounting to less work on our part
when it comes to managing communication across/between the microservices. This
benefit translates not just into reduced work but the capability to focus on the core job
of executing the business logic instead of trying to grapple with the complexities of
inter-service communication.

www.EBooksWorld.ir

www.EBooksWorld.ir

Greenfield application
Now let's go ahead and create the FlixOne bookstore from scratch. First, we will scope
out our microservices and their functionalities and identify inter-service interactions as
well.

Our FlixOne bookstore will have the following set of functionalities available:

Searching through the available books
Filtering books on the basis of categories
Adding books to the shopping cart
Making changes to the shopping cart
Placing an order from the shopping cart
User authentication

www.EBooksWorld.ir

www.EBooksWorld.ir

Scoping our services
In order to understand how these functionalities will map out as different microservices,
we need to first understand what it would take to support it and what can be clubbed
together as a microservice. We will see how the data store would start to look out of the
window of microservices themselves.

www.EBooksWorld.ir

www.EBooksWorld.ir

The book-listing microservice
Let's try to break down the first functionality of searching through books. In order to let
our users browse through the store for books, we need to maintain a list of books on
offer first. Here we have our first candidate being carved out as a microservice. The
book catalogue service would be responsible for not just searching through the
available books, but also maintaining the data store that would house all the information
pertaining to books. The microservice should be able to handle various updates
required for the available books in the system. We will call it the book catalog
microservice. And, it will have its own book data store.

www.EBooksWorld.ir

www.EBooksWorld.ir

The book-searching microservice
Examining the next functionality of filtering books seems to be coming under the
purview of the book catalog microservice itself. However, having said that, let's
confirm it by questioning our own understanding of the business domain here. The
question that comes to my mind is related to the impact of all the searches that our users
would perform, bringing down the service. So should the book search functionality be a
different service? Here the answer lies in the fact that the microservice should have its
own data store. Having the book catalog and the book catalog search function as
different services would require us to maintain a list of books in two different locations
with additional challenges, such as having to sync them. The solution is simple: have a
single microservice, and if required, scale up and load balance the book catalogue
microservice.

www.EBooksWorld.ir

www.EBooksWorld.ir

The shopping cart microservice
The next candidate is the one made famous by the online shopping revolution brought
around by the likes of Amazon and further fuelled by smartphones: the shopping cart
microservice. It should let us add or remove books to our cart before we finally decide
to check out and pay for them. There is no doubt whether this should be a separate
microservice or not. However, this brings forth an interesting question of whether it
deals with the product's data store or not; it would need to do this in order to receive
some fundamental details, such as availability in stock. Accessing the data store across
the service is out of question as that is one of the most fundamental prerequisite for
microservices. The answer to our question is inter-service communication. It is OK for
a microservice to use the service provided by another microservice. We will call this
our shopping cart microservice.

www.EBooksWorld.ir

www.EBooksWorld.ir

The order microservice
The business functionality of placing an order is next in line. When a user decides that
his shopping cart has just the right books as required, he/she decides to place an order.
At that moment in time, some information related to the order has to be
confirmed/conveyed to various other microservices. For example, before the order is
confirmed, we need to confirm from the book catalog that there is enough quantity
available in stock to fulfil the order. Post this confirmation, the right number of items are
supposed to be reduced from the book catalog. The shopping cart would also have to be
emptied post the successful confirmation of the order.

Although our order microservice sounds more pervasive and in contradiction to the
rules of non-sharing of data across microservices, it is not the case, as we will see
shortly. All the operations will be completed while maintaining clear boundaries, with
each microservice managing its own data store.

www.EBooksWorld.ir

www.EBooksWorld.ir

User authentication
Our last candidate is the user authentication microservice that would validate the user
credentials of customers who log into our book store. The sole purpose of this
microservice is to confirm whether or not the provided credentials are correct in order
to restrict unauthorized access. This seems pretty simple for a microservice; however,
we have to remember the fact that making this functionality a part of any other
microservice would impact more than one business functionality when you decide to
change your authentication mechanism. The change may come in form of using JWT
tokens being generated and validated based on the OAuth 2.0 authorization framework
and OpenID Connect 1.0 authentication.

The following is the final list of candidates for microservices:

1. The book catalog microservice
2. The shopping cart microservice
3. The order microservice

4. The user authentication microservice

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Synchronous versus asynchronous
Before we get started with a brief introduction of microservices, there is an important
point to consider here. Our microservices will be communicating with each other, and
there is a possibility that they will rely on a response to move further. This poses a
dilemma for us, having gone through all the pain of unlearning the beloved monolithic
and then getting into the same situation where a point of failure can be a cascading
collapse of the system.

www.EBooksWorld.ir

www.EBooksWorld.ir

The book catalog microservice
This microservice has six main functions exposed through an HTTP API component. It
is the responsibility of this HTTP API component to handle all the HTTP requests for
these functions. These functions are:

API resource description API resource description

GET /api/book Gets a list of the available books

GET /api/book{category} Gets a list of the books for a category

GET /api/book{name} Gets a list of the books by name

GET /api/book{isbn} Gets a book as per the ISBN number

GET /api/bookquantity{id} Gets the available stock for the intended book

PUT /api/bookquantity{id,
changecount}

Increase or decrease the available stock quantity for
a book

www.EBooksWorld.ir

www.EBooksWorld.ir

The shopping cart microservice
This microservice will have the following functions exposed as HTTP endpoints for
consumption:

API resource description API resource description

POST /api/book {customerid } Adds the specific book to the shopping cart of the customer

DELETE /api/book {customerid } Removes the book from the shopping cart of the customer

GET /api/book{customerid} Gets the list of books in the shopping cart of the customer

PUT /api/empty Removes all the books currently contained in the shopping cart.

www.EBooksWorld.ir

www.EBooksWorld.ir

The order microservice
This microservice will have the following functions exposed as HTTP endpoints for
consumption.

API resource
description API resource description

POST /api/order
{customerid }

Gets all the books in the shopping cart of the customer and
creates an order for the same

DELETE /api/order
{customerid }

Removes the book from the shopping cart of the customer

GET

/api/order{orderid} Gets all the books as part of the specific order

www.EBooksWorld.ir

www.EBooksWorld.ir

The user auth microservice
This microservice will have the following functions exposed as HTTP endpoints for
consumption.

API resource description API resource description

GET /api/verifyuser{customerid, password} Verifies the user

You can look at the application source code and analyze it as required.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
We hope that this book was able to get you initiated with the fundamental concepts of the
microservice-styled architecture and also helped you dive deeply into the fine aspects
of microservices with clear examples to associate the concepts with. The final
application is available for you to take a closer look and analyze what you have learned
so far at your pace. We wish you luck in utilizing the skills learned in this book and
apply them to your real-world challenges.

www.EBooksWorld.ir

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	What Are Microservices?
	Origin of microservices
	Discussing microservices
	Monolithic architecture
	Service-oriented architecture
	What is service?

	Understanding the microservice architecture
	Messaging in microservices
	Synchronous messaging
	Asynchronous messaging
	Message formats

	Why should we use microservices?
	How does the microservice architecture work?
	Advantages of microservices
	SOA versus microservices
	Prerequisites of the microservice architecture
	Understanding problems with the monolithic architecture style
	Challenges in standardizing a .NET stack
	Fault tolerance

	Scaling
	Vertical scaling or scale up
	Horizontal scaling or scale out
	Deployment challenges
	Organizational alignment
	Modularity
	Big database

	Prerequisites for microservices
	Functional overview of the application
	Solutions for current challenges
	Handling deployment problems
	Making much better monolithic applications
	Introducing dependency injections
	Database refactoring
	Database sharding and partitioning
	DevOps culture
	Automation
	Testing
	Versioning
	Deployment

	Identifying decomposition candidates within monolithic
	Important microservices advantages
	Technology independence
	Interdependency removal
	Alignment with business goals
	Cost benefits
	Easy scalability
	Security
	Data management
	Integrating monolithic

	Summary

	Building Microservices
	Size of microservices
	What makes a good service?
	DDD and its importance for microservices
	Domain model design
	Importance for microservices

	The concept of Seam
	Module interdependency
	Technology
	Team structure
	Database
	Master data
	Transaction

	Communication between microservices
	Benefits of the API gateway for microservices
	API gateway versus API management

	Revisiting the case study--Flix One
	Prerequisites
	Transitioning to our product service
	Migrations
	Code migration
	Creating our project
	Adding the model
	Adding a repository
	Registering the repositories
	Adding a product controller
	The ProductService API
	Adding EF core support
	EF Core DbContext
	EF Core migrations

	Database migration
	Revisiting repositories and the controller
	Introducing ViewModel
	Revisiting the product controller

	Summary

	Integration Techniques
	Communication between services
	Styles of collaborations

	Integration patterns
	The API gateway
	The event-driven pattern
	Event sourcing
	Eventual consistency
	Compensating Transaction
	Competing Consumers
	Azure Service Bus queues
	Implementation of an Azure Service Bus queue
	Prerequisites
	Sending messages to the queue
	Receiving messages from the queue

	Summary

	Testing Strategies
	How to test microservices
	Handling challenges

	Testing strategies (testing approach)
	Testing pyramid
	Types of microservice tests
	Unit testing
	Component (service) testing
	Integration testing
	Contract testing
	Consumer-driven contracts
	How to implement a consumer-driven test
	How Pact-net-core helps us achieve our goal

	Performance testing
	End-to-end (UI/functional) testing
	Sociable versus isolated unit tests
	Stubs and mocks

	Tests in action
	Getting ready with the test project
	Unit tests
	Integration tests

	Summary

	Deployment
	Monolithic application deployment challenges
	Understanding the deployment terminology
	Prerequisites for successful microservice deployments
	Isolation requirements for microservice deployment
	Need for a new deployment paradigm
	Containers
	What are containers?
	Suitability of containers over virtual machines
	Transformation of the operation team's mindset
	Containers are new binaries
	It works on your machine? Let's ship your machine!

	Docker quick introduction
	Microservice deployment with Docker overview
	Microservice deployment example using Docker
	Setting up Docker on your machine
	Creating an ASP.NET web application
	Adding Docker Support

	Summary

	Security
	Security in monolithic applications
	Security in microservices
	Why traditional .NET auth mechanism won't work?
	JSON Web Tokens
	What is OAuth 2.0?
	What is OpenID Connect?
	Azure Active Directory
	Microservice Auth example with OpenID Connect, OAuth 2.0, and Azure AD
	Step 1 – Registration of TodoListService and TodoListWebApp with Azure AD tenant
	Step 2 – Generation of AppKey for TodoListWebApp
	Step 3 – Configuring Visual Studio solution projects
	Step 4 – Generate client certificates on IIS Express
	Step 5 – Run both the applications

	Azure API management as an API gateway
	Container security
	Other security best practices

	Summary

	Monitoring
	Instrumentation and telemetry
	Instrumentation
	Telemetry

	The need for monitoring
	Health monitoring
	Availability monitoring
	Performance monitoring
	Security monitoring
	SLA monitoring
	Auditing sensitive data and critical business transactions
	End user monitoring
	Troubleshooting system failures

	Monitoring challenges
	Monitoring strategies

	Logging
	Logging challenges
	Logging strategies
	Centralized logging
	Use of a correlation ID in logging
	Semantic logging

	Monitoring in Azure Cloud
	Microsoft Azure Diagnostics
	Storing diagnostic data using Azure storage
	Using Azure portal
	Specifying a storage account
	Azure storage schema for diagnostic data

	Introduction of Application Insights

	Other microservice monitoring solutions
	A brief overview of the ELK stack
	Elasticsearch
	Logstash
	Kibana

	Splunk
	Alerting
	Reporting

	Summary

	Scaling
	Scalability overview
	Scaling infrastructure
	Vertical scaling (scaling up)
	Horizontal scaling (scaling out)

	Microservices scalability
	Scale Cube model of scalability
	X-axis scaling
	Z-axis scaling
	Y-axis scaling

	Characteristics of a scalable microservice

	Scaling the infrastructure
	Scaling virtual machines using scale sets
	Auto Scaling
	Container scaling using Docker swarm

	Scaling service design
	Data persistence model design
	Caching mechanism
	Redundancy and fault tolerance
	Circuit breakers
	Service discovery

	Summary

	Reactive Microservices
	What are reactive microservices?
	Responsiveness
	Resilience
	Autonomous
	Being message-driven

	Making it reactive
	Event communication
	Security
	Message-level security

	Scalability
	Communication resilience

	Managing data
	The microservice ecosystem
	Reactive microservices - coding it down
	Creating the project
	Client - coding it down

	Summary

	Creating a Complete Microservice Solution
	Architectures before microservices
	The monolithic architecture
	Challenges in standardizing the .NET stack
	Scaling
	Service-oriented architecture
	Microservice-styled architecture
	Messaging in microservices

	Monolith transitioning
	Integration techniques
	Deployment
	Testing microservices
	Security

	Monitoring
	Monitoring challenges
	Scale
	Component lifespan
	Information visualization

	Monitoring strategies
	Scalability
	Infrastructure scaling
	Service design

	Reactive microservices
	Greenfield application
	Scoping our services
	The book-listing microservice
	The book-searching microservice
	The shopping cart microservice
	The order microservice
	User authentication
	Synchronous versus asynchronous

	The book catalog microservice
	The shopping cart microservice
	The order microservice
	The user auth microservice

	Summary

