
SQL Server 2017
Query Performance
Tuning

Troubleshoot and Optimize Query
Performance
—
Fifth Edition
—
Grant Fritchey

www.EBooksWorld.ir

SQL Server 2017 Query
Performance Tuning

Troubleshoot and Optimize Query
Performance

Fifth Edition

Grant Fritchey

www.EBooksWorld.ir

SQL Server 2017 Query Performance Tuning

ISBN-13 (pbk): 978-1-4842-3887-5 ISBN-13 (electronic): 978-1-4842-3888-2
https://doi.org/10.1007/978-1-4842-3888-2

Library of Congress Control Number: 2018955582

Copyright © 2018 by Grant Fritchey

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484238875. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Grant Fritchey
Grafton, Massachusetts, USA

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-3888-2

To my family. Thank you.

www.EBooksWorld.ir

v

About the Author ���xxv

About the Technical Reviewer ���xxvii

Acknowledgments ��xxix

Introduction ��xxxi

Table of Contents

Chapter 1: SQL Query Performance Tuning ��� 1

The Performance Tuning Process ��� 3

The Core Process ��� 3

Iterating the Process ��� 7

Performance vs� Price ��� 10

Performance Targets ��� 10

“Good Enough” Tuning ��� 11

Performance Baseline ��� 11

Where to Focus Efforts �� 13

SQL Server Performance Killers �� 15

Insufficient or Inaccurate Indexing �� 16

Inaccurate Statistics �� 17

Improper Query Design �� 17

Poorly Generated Execution Plans ��� 17

Excessive Blocking and Deadlocks ��� 18

Non-Set-Based Operations �� 19

Inappropriate Database Design ��� 19

Recompiling Execution Plans �� 20

Frequent Recompilation of Queries ��� 20

www.EBooksWorld.ir

vi

Improper Use of Cursors �� 21

Excessive Index Fragmentation ��� 21

Summary��� 21

Chapter 2: Memory Performance Analysis ��� 23

Performance Monitor Tool ��� 24

Dynamic Management Views �� 26

Hardware Resource Bottlenecks ��� 28

Identifying Bottlenecks �� 28

Bottleneck Resolution �� 29

Memory Bottleneck Analysis ��� 30

SQL Server Memory Management��� 30

Available Bytes �� 36

Pages/Sec and Page Faults/Sec �� 36

Paging File %Usage and Page File %Usage �� 37

Buffer Cache Hit Ratio ��� 38

Page Life Expectancy �� 38

Checkpoint Pages/Sec ��� 39

Lazy Writes/Sec ��� 39

Memory Grants Pending �� 39

Target Server Memory (KB) and Total Server Memory (KB) ��� 40

Additional Memory Monitoring Tools ��� 40

DBCC MEMORYSTATUS �� 41

Dynamic Management Views �� 42

Monitoring Memory in Linux �� 45

Memory Bottleneck Resolutions ��� 45

Optimizing Application Workload ��� 47

Allocating More Memory to SQL Server �� 47

Moving In-Memory Tables Back to Standard Storage ��� 48

Increasing System Memory ��� 48

Changing from a 32-Bit to a 64-Bit Processor��� 48

Compressing Data ��� 49

Table of ConTenTs

www.EBooksWorld.ir

vii

Enabling 3GB of Process Address Space ��� 49

Addressing Fragmentation �� 50

Summary��� 50

Chapter 3: Disk Performance Analysis ��� 51

Disk Bottleneck Analysis ��� 51

Disk Counters �� 52

Disk Transfers/Sec ��� 54

Disk Bytes/Sec �� 54

Avg� Disk Sec/Read and Avg� Disk Sec/Write �� 55

Buffer Manager Page Reads/Writes �� 55

Additional I/O Monitoring Tools ��� 55

Sys�dm_io_virtual_file_stats ��� 55

Sys�dm_os_wait_stats �� 56

Monitoring Linux I/0��� 57

Disk Bottleneck Resolutions ��� 57

Optimizing Application Workload ��� 57

Using a Faster I/O Path �� 58

Using a RAID Array ��� 58

Using a SAN System �� 61

Using Solid-State Drives �� 62

Aligning Disks Properly�� 62

Adding System Memory �� 62

Creating Multiple Files and Filegroups �� 63

Moving the Log Files to a Separate Physical Disk ��� 66

Using Partitioned Tables �� 67

Summary��� 68

Chapter 4: CPU Performance Analysis �� 69

Processor Bottleneck Analysis �� 69

% Processor Time �� 71

% Privileged Time �� 72

Processor Queue Length ��� 72

Table of ConTenTs

www.EBooksWorld.ir

viii

Context Switches/Sec �� 72

Batch Requests/Sec �� 73

SQL Compilations/Sec ��� 73

SQL Recompilations/Sec ��� 73

Other Tools for Measuring CPU Performance �� 74

Sys�dm_os_wait_stats �� 74

Sys�dm_os_workers and Sys�dm_os_schedulers ��� 74

Query Store �� 74

Measure CPU Behavior in Linux ��� 75

Processor Bottleneck Resolutions �� 75

Optimizing Application Workload ��� 75

Eliminating Excessive Compiles/Recompiles �� 76

Using More or Faster Processors �� 76

Not Running Unnecessary Software �� 76

Network Bottleneck Analysis �� 77

Bytes Total/Sec �� 77

% Net Utilization �� 78

Network Bottleneck Resolutions ��� 78

Optimizing Application Workload ��� 79

SQL Server Overall Performance �� 79

Missing Indexes ��� 80

Database Concurrency �� 82

Nonreusable Execution Plans �� 83

General Behavior ��� 84

User Connections��� 84

Batch Requests/Sec �� 84

Summary��� 85

Chapter 5: Creating a Baseline ��� 87

Considerations for Monitoring Virtual and Hosted Machines �� 87

Creating a Baseline ��� 89

Creating a Reusable List of Performance Counters ��� 89

Table of ConTenTs

www.EBooksWorld.ir

ix

Creating a Counter Log Using the List of Performance Counters �� 92

Performance Monitor Considerations �� 97

System Behavior Analysis Against Baseline �� 99

Baseline for Azure SQL Database�� 102

Summary��� 102

Chapter 6: Query Performance Metrics �� 103

Extended Events ��� 103

Extended Events Sessions ��� 104

Global Fields �� 111

Event Filters ��� 113

Event Fields ��� 116

Data Storage �� 117

Finishing the Session �� 119

The Built-in system_health Session �� 121

Extended Events Automation �� 123

Creating a Session Script Using the GUI �� 123

Defining a Session Using T-SQL ��� 124

Using Causality Tracking ��� 126

Extended Events Recommendations ��� 127

Set Max File Size Appropriately ��� 127

Be Cautious with Debug Events ��� 128

Avoid Use of No_Event_Loss ��� 128

Other Methods for Query Performance Metrics �� 128

Summary��� 130

Chapter 7: Analyzing Query Performance ��� 131

Costly Queries ��� 131

Identifying Costly Queries �� 133

Costly Queries with a Single Execution ��� 135

Costly Queries with Multiple Executions ��� 137

Identifying Slow-Running Queries ��� 141

Table of ConTenTs

www.EBooksWorld.ir

x

Execution Plans ��� 142

Analyzing a Query Execution Plan ��� 144

Identifying the Costly Steps in an Execution Plan ��� 148

Analyzing Index Effectiveness ��� 150

Analyzing Join Effectiveness ��� 153

Actual vs� Estimated Execution Plans �� 161

Plan Cache ��� 164

Execution Plan Tooling ��� 164

Query Resource Cost ��� 176

Client Statistics�� 176

Execution Time �� 178

STATISTICS IO �� 179

Actual Execution Plans �� 181

Summary��� 182

Chapter 8: Index Architecture and Behavior �� 185

What Is an Index? �� 185

The Benefit of Indexes ��� 188

Index Overhead �� 191

Index Design Recommendations ��� 194

Examine the WHERE Clause and JOIN Criteria Columns ��� 195

Use Narrow Indexes �� 197

Examine Column Uniqueness �� 200

Examine the Column Data Type ��� 204

Consider Index Column Order �� 205

Consider the Type of Index �� 208

Clustered Indexes ��� 209

Heap Tables ��� 209

Relationship with Nonclustered Indexes ��� 209

Clustered Index Recommendations ��� 213

When to Use a Clustered Index �� 217

Poor Design Practices for a Clustered Index ��� 219

Table of ConTenTs

www.EBooksWorld.ir

xi

Nonclustered Indexes ��� 221

Nonclustered Index Maintenance �� 221

Defining the Lookup Operation �� 222

Nonclustered Index Recommendations ��� 223

Clustered vs� Nonclustered Indexes �� 224

Benefits of a Clustered Index over a Nonclustered Index �� 224

Benefits of a Nonclustered Index over a Clustered Index �� 227

Summary��� 230

Chapter 9: Index Analysis ��� 231

Advanced Indexing Techniques ��� 231

Covering Indexes ��� 232

A Pseudoclustered Index ��� 234

Recommendations ��� 235

Index Intersections �� 235

Index Joins �� 238

Filtered Indexes ��� 242

Indexed Views �� 246

Index Compression �� 253

Columnstore Indexes �� 256

Columnstore Index Storage ��� 257

Columnstore Index Behavior �� 258

Recommendations ��� 266

Special Index Types ��� 266

Full-Text ��� 267

Spatial ��� 267

XML�� 268

Additional Characteristics of Indexes �� 268

Different Column Sort Order �� 268

Index on Computed Columns ��� 268

Index on BIT Data Type Columns ��� 269

Table of ConTenTs

www.EBooksWorld.ir

xii

CREATE INDEX Statement Processed As a Query �� 269

Parallel Index Creation ��� 270

Online Index Creation �� 270

Considering the Database Engine Tuning Advisor ��� 271

Summary��� 271

Chapter 10: Database Engine Tuning Advisor ��� 273

Database Engine Tuning Advisor Mechanisms �� 273

Database Engine Tuning Advisor Examples��� 279

Tuning a Query ��� 279

Tuning a Trace Workload�� 285

Tuning from the Procedure Cache ��� 288

Tuning from the Query Store ��� 289

Database Engine Tuning Advisor Limitations �� 290

Summary��� 291

Chapter 11: Query Store ��� 293

Query Store Function and Design ��� 293

Query Store Behavior ��� 294

Information Query Store Collects��� 297

Controlling the Query Store ��� 306

Query Store Reporting ��� 309

Plan Forcing �� 313

Query Store for Upgrades ��� 316

Summary��� 317

Chapter 12: Key Lookups and Solutions ��� 319

Purpose of Lookups �� 319

Drawbacks of Lookups �� 322

Analyzing the Cause of a Lookup �� 323

Resolving Lookups �� 326

Using a Clustered Index ��� 326

Table of ConTenTs

www.EBooksWorld.ir

xiii

Using a Covering Index �� 327

Using an Index Join ��� 333

Summary��� 335

Chapter 13: Statistics, Data Distribution, and Cardinality ������������������������������������ 337

The Role of Statistics in Query Optimization ��� 338

Statistics on an Indexed Column ��� 338

Benefits of Updated Statistics ��� 339

Drawbacks of Outdated Statistics ��� 345

Statistics on a Nonindexed Column �� 347

Benefits of Statistics on a Nonindexed Column ��� 348

Drawback of Missing Statistics on a Nonindexed Column �� 355

Analyzing Statistics ��� 359

Density ��� 363

Statistics on a Multicolumn Index ��� 364

Statistics on a Filtered Index ��� 367

Cardinality ��� 370

Statistics DMOs ��� 379

Statistics Maintenance ��� 380

Automatic Maintenance ��� 381

Auto Create Statistics �� 381

Auto Update Statistics ��� 382

Auto Update Statistics Asynchronously ��� 385

Manual Maintenance ��� 385

Manage Statistics Settings �� 387

Generate Statistics �� 388

Statistics Maintenance Status �� 390

Status of Auto Create Statistics ��� 390

Analyzing the Effectiveness of Statistics for a Query ��� 391

Resolving a Missing Statistics Issue ��� 392

Resolving an Outdated Statistics Issue ��� 396

Table of ConTenTs

www.EBooksWorld.ir

xiv

Recommendations �� 400

Backward Compatibility of Statistics ��� 400

Auto Create Statistics �� 401

Auto Update Statistics ��� 401

Automatic Update Statistics Asynchronously �� 401

Amount of Sampling to Collect Statistics �� 402

Summary��� 402

Chapter 14: Index Fragmentation ��� 403

Discussion on Fragmentation ��� 404

Causes of Fragmentation �� 405

Data Modification and the Rowstore Indexes �� 405

Data Modification and the Columnstore Indexes ��� 415

Fragmentation Overhead �� 418

Rowstore Overhead ��� 418

Columnstore Overhead �� 421

Analyzing the Amount of Fragmentation ��� 423

Analyzing the Fragmentation of a Small Table �� 428

Fragmentation Resolutions ��� 430

Dropping and Re-creating the Index �� 431

Re-creating the Index with the DROP_EXISTING Clause �� 432

Executing the ALTER INDEX REBUILD Statement ��� 433

Executing the ALTER INDEX REORGANIZE Statement �� 437

Defragmentation and Partitions ��� 444

Significance of the Fill Factor ��� 445

Automatic Maintenance �� 449

Summary��� 450

Chapter 15: Execution Plan Generation �� 451

Execution Plan Generation �� 451

Parser �� 454

Binding �� 454

Table of ConTenTs

www.EBooksWorld.ir

xv

Optimization �� 457

Execution Plan Caching ��� 468

Components of the Execution Plan ��� 468

Query Plan ��� 468

Execution Context �� 469

Aging of the Execution Plan �� 469

Summary��� 470

Chapter 16: Execution Plan Cache Behavior ��� 471

Analyzing the Execution Plan Cache ��� 471

Execution Plan Reuse �� 473

Ad Hoc Workload ��� 474

Prepared Workload �� 475

Plan Reusability of an Ad Hoc Workload �� 476

Plan Reusability of a Prepared Workload ��� 488

Query Plan Hash and Query Hash ��� 499

Execution Plan Cache Recommendations ��� 504

Explicitly Parameterize Variable Parts of a Query �� 504

Create Stored Procedures to Implement Business Functionality �� 505

Code with sp_executesql to Avoid Stored Procedure Deployment �������������������������������������� 505

Implement the Prepare/Execute Model to Avoid Resending a Query String ������������������������ 506

Avoid Ad Hoc Queries �� 506

Prefer sp_executesql Over EXECUTE for Dynamic Queries ��� 506

Parameterize Variable Parts of Queries with Care ��� 508

Do Not Allow Implicit Resolution of Objects in Queries ��� 508

Summary��� 509

Chapter 17: Parameter Sniffing �� 511

Parameter Sniffing �� 511

Bad Parameter Sniffing ��� 515

Identifying Bad Parameter Sniffing ��� 518

Mitigating Bad Parameter Sniffing �� 521

Summary��� 528

Table of ConTenTs

www.EBooksWorld.ir

xvi

Chapter 18: Query Recompilation ��� 529

Benefits and Drawbacks of Recompilation ��� 529

Identifying the Statement Causing Recompilation �� 533

Analyzing Causes of Recompilation �� 535

Schema or Bindings Changes �� 536

Statistics Changes ��� 536

Deferred Object Resolution �� 540

SET Options Changes �� 544

Execution Plan Aging ��� 545

Explicit Call to sp_recompile ��� 545

Explicit Use of RECOMPILE �� 547

Avoiding Recompilations ��� 550

Don’t Interleave DDL and DML Statements ��� 551

Avoiding Recompilations Caused by Statistics Change ��� 553

Using the KEEPFIXED PLAN Option �� 554

Disable Auto Update Statistics on the Table �� 556

Using Table Variables ��� 556

Avoiding Changing SET Options Within a Stored Procedure �� 558

Using OPTIMIZE FOR Query Hint �� 559

Using Plan Guides �� 561

Use Query Store to Force a Plan �� 567

Summary��� 567

Chapter 19: Query Design Analysis �� 569

Query Design Recommendations �� 569

Operating on Small Result Sets �� 570

Limit the Number of Columns in select_list �� 571

Use Highly Selective WHERE Clauses �� 572

Using Indexes Effectively �� 573

Avoid Nonsargable Search Conditions ��� 573

Avoid Arithmetic Operators on the WHERE Clause Column ��� 580

Avoid Functions on the WHERE Clause Column ��� 582

Table of ConTenTs

www.EBooksWorld.ir

xvii

Minimize Optimizer Hints �� 589

JOIN Hint �� 590

INDEX Hints �� 595

Using Domain and Referential Integrity �� 597

NOT NULL Constraint ��� 597

Declarative Referential Integrity �� 600

Summary��� 605

Chapter 20: Reduce Query Resource Use ��� 607

Avoiding Resource-Intensive Queries ��� 607

Avoid Data Type Conversion �� 608

Use EXISTS over COUNT(*) to Verify Data Existence �� 611

Use UNION ALL Instead of UNION �� 612

Use Indexes for Aggregate and Sort Conditions �� 614

Be Cautious with Local Variables in a Batch Query ��� 616

Be Careful When Naming Stored Procedures �� 621

Reducing the Number of Network Round-Trips �� 623

Execute Multiple Queries Together �� 624

Use SET NOCOUNT ��� 624

Reducing the Transaction Cost ��� 624

Reduce Logging Overhead ��� 625

Reduce Lock Overhead �� 627

Summary��� 629

Chapter 21: Blocking and Blocked Processes �� 631

Blocking Fundamentals �� 632

Understanding Blocking �� 633

Atomicity ��� 633

Consistency ��� 637

Isolation ��� 638

Durability ��� 639

Table of ConTenTs

www.EBooksWorld.ir

xviii

Locks ��� 641

Lock Granularity �� 641

Row-Level Lock ��� 642

Key-Level Lock �� 643

Page-Level Lock �� 645

Extent-Level Lock �� 645

Heap or B-tree Lock �� 645

Table-Level Lock �� 646

Database-Level Lock ��� 647

Lock Operations and Modes �� 647

Lock Escalation ��� 647

Lock Modes ��� 648

Exclusive (X) Mode �� 656

Intent Shared (IS), Intent Exclusive (IX), and Shared with Intent Exclusive (SIX) Modes ����� 657

Schema Modification (Sch-M) and Schema Stability (Sch- S) Modes ���������������������������������� 658

Bulk Update (BU) Mode �� 658

Key-Range Mode ��� 659

Lock Compatibility ��� 659

Isolation Levels ��� 659

Read Uncommitted �� 660

Read Committed �� 661

Repeatable Read ��� 663

Serializable �� 667

Snapshot ��� 674

Effect of Indexes on Locking ��� 675

Effect of a Nonclustered Index �� 676

Effect of a Clustered Index �� 678

Effect of Indexes on the Serializable Isolation Level ��� 679

Capturing Blocking Information �� 680

Capturing Blocking Information with SQL ��� 681

Extended Events and the blocked_process_report Event ��� 684

Table of ConTenTs

www.EBooksWorld.ir

xix

Blocking Resolutions ��� 688

Optimize the Queries ��� 688

Decrease the Isolation Level ��� 690

Partition the Contended Data �� 690

Recommendations to Reduce Blocking �� 692

Automation to Detect and Collect Blocking Information ��� 693

Summary��� 698

Chapter 22: Causes and Solutions for Deadlocks ��� 699

Deadlock Fundamentals ��� 699

Choosing the Deadlock Victim ��� 701

Using Error Handling to Catch a Deadlock ��� 702

Deadlock Analysis ��� 703

Collecting Deadlock Information ��� 703

Analyzing the Deadlock ��� 707

Avoiding Deadlocks ��� 715

Accessing Resources in the Same Physical Order �� 715

Decreasing the Number of Resources Accessed ��� 716

Minimizing Lock Contention �� 717

Summary��� 719

Chapter 23: Row-by-Row Processing ��� 721

Cursor Fundamentals �� 721

Cursor Location ��� 724

Cursor Concurrency ��� 725

Cursor Types �� 727

Cursor Cost Comparison ��� 731

Cost Comparison on Cursor Location �� 731

Cost Comparison on Cursor Concurrency �� 734

Cost Comparison on Cursor Type ��� 737

Table of ConTenTs

www.EBooksWorld.ir

xx

Default Result Set ��� 741

Benefits ��� 742

Multiple Active Result Sets �� 742

Drawbacks ��� 743

Cursor Overhead ��� 746

Analyzing Overhead with T-SQL Cursors ��� 746

Cursor Recommendations ��� 751

Summary��� 752

Chapter 24: Memory-Optimized OLTP Tables and Procedures ������������������������������ 753

In-Memory OLTP Fundamentals �� 754

System Requirements ��� 755

Basic Setup ��� 756

Create Tables ��� 757

In-Memory Indexes �� 763

Natively Compiled Stored Procedures ��� 771

Recommendations �� 774

Baselines ��� 774

Correct Workload ��� 774

Memory Optimization Advisor �� 774

Native Compilation Advisor �� 779

Summary��� 781

Chapter 25: Automated Tuning in Azure SQL Database and SQL Server ��������������� 783

Automatic Plan Correction �� 784

Tuning Recommendations ��� 785

Enabling Automatic Tuning �� 792

Azure SQL Database Automatic Index Management ��� 799

Adaptive Query Processing ��� 810

Batch Mode Memory Grant Feedback ��� 810

Interleaved Execution �� 815

Summary��� 823

Table of ConTenTs

www.EBooksWorld.ir

xxi

Chapter 26: Database Performance Testing ��� 825

Database Performance Testing ��� 826

A Repeatable Process �� 827

Distributed Replay ��� 828

Capturing Data with the Server-Side Trace ��� 829

Distributed Replay for Database Testing ��� 833

Configuring the Client �� 835

Running the Distributed Tests �� 836

Conclusion �� 837

Chapter 27: Database Workload Optimization �� 839

Workload Optimization Fundamentals �� 840

Workload Optimization Steps �� 840

Sample Workload ��� 842

Capturing the Workload �� 847

Analyzing the Workload �� 848

Identifying the Costliest Query �� 851

Determining the Baseline Resource Use of the Costliest Query ��� 852

Overall Resource Use �� 853

Detailed Resource Use �� 854

Analyzing and Optimizing External Factors ��� 857

Analyzing the Connection Options Used by the Application �� 857

Analyzing the Effectiveness of Statistics ��� 858

Analyzing the Need for Defragmentation��� 861

Analyzing the Internal Behavior of the Costliest Query ��� 864

Analyzing the Query Execution Plan �� 864

Identifying the Costly Steps in the Execution Plan �� 866

Analyzing the Processing Strategy �� 867

Optimizing the Costliest Query �� 867

Modifying the Code �� 868

Fixing the Key Lookup Operation ��� 871

Table of ConTenTs

www.EBooksWorld.ir

xxii

Tuning the Second Query �� 872

Creating a Wrapper Procedure �� 874

Analyzing the Effect on Database Workload ��� 877

Iterating Through Optimization Phases ��� 878

Summary��� 881

Chapter 28: SQL Server Optimization Checklist�� 883

Database Design ��� 884

Use Entity-Integrity Constraints ��� 884

Maintain Domain and Referential Integrity Constraints ��� 887

Adopt Index-Design Best Practices ��� 890

Avoid the Use of the sp_Prefix for Stored Procedure Names �� 892

Minimize the Use of Triggers ��� 892

Put Tables into In-Memory Storage ��� 892

Use Columnstore Indexes �� 893

Configuration Settings �� 893

Memory Configuration Options �� 894

Cost Threshold for Parallelism ��� 894

Max Degree of Parallelism��� 894

Optimize for Ad Hoc Workloads ��� 895

Blocked Process Threshold ��� 895

Database File Layout ��� 895

Database Compression �� 896

Database Administration ��� 896

Keep the Statistics Up-to-Date �� 897

Maintain a Minimum Amount of Index Defragmentation ��� 898

Avoid Database Functions Such As AUTO_CLOSE or AUTO_SHRINK ����������������������������������� 898

Database Backup �� 899

Incremental and Transaction Log Backup Frequency �� 899

Backup Scheduling Distribution �� 900

Backup Compression ��� 901

Table of ConTenTs

www.EBooksWorld.ir

xxiii

Query Design ��� 901

Use the Command SET NOCOUNT ON �� 902

Explicitly Define the Owner of an Object ��� 902

Avoid Nonsargable Search Conditions ��� 902

Avoid Arithmetic Expressions on the WHERE Clause Column �� 903

Avoid Optimizer Hints �� 904

Stay Away from Nesting Views �� 905

Ensure No Implicit Data Type Conversions �� 905

Minimize Logging Overhead �� 905

Adopt Best Practices for Reusing Execution Plans �� 906

Adopt Best Practices for Database Transactions ��� 907

Eliminate or Reduce the Overhead of Database Cursors ��� 908

Use Natively Compile Stored Procedures �� 909

Take Advantage of Query Store for Analytical Queries �� 909

Summary��� 909

 Index ��� 911

Table of ConTenTs

www.EBooksWorld.ir

xxv

About the Author

Grant Fritchey, Microsoft Data Platform MVP, has more than 20 years of experience

in IT. That time was spent in technical support, development, and database

administration. He currently works as a product evangelist at Red Gate Software.

Grant writes articles for publication at SQL Server Central and Simple-Talk. He has

published books, including SQL Server Execution Plans and SQL Server 2012 Query

Performance Tuning (Apress). He has written chapters for Beginning SQL Server 2012

Administration (Apress), SQL Server Team-based Development, SQL Server MVP Deep

Dives Volume 2, Pro SQL Server 2012 Practices (Apress), and Expert Performance Indexing

in SQL Server (Apress). Grant currently serves as the president on the board of directors

of the PASS organization, the leading source of educational content and training on the

Microsoft data platform.

www.EBooksWorld.ir

xxvii

About the Technical Reviewer

Joseph Sack is a principal program manager at Microsoft,

focusing on query processing for Azure SQL Database and

SQL Server. He has worked as a SQL Server professional

since 1997 and has supported and developed for SQL

Server environments in financial services, IT consulting,

manufacturing, retail, and the real estate industry.

Joe joined Microsoft in 2006 and was a SQL Server

premier field engineer for large retail customers in

Minneapolis, Minnesota. He was responsible for

providing deep SQL Server advisory services, training,

troubleshooting, and ongoing solutions guidance. In 2006

Joe earned the Microsoft Certified Master: SQL Server 2005

certification, and in 2008 he earned the Microsoft Certified

Master: SQL Server 2008 certification. In 2009 he took over

responsibility for the entire SQL Server Microsoft Certified Master program and held that

post until 2011.

He left Microsoft in late 2011 to join SQLskills, working as a principal consultant.

During that time, he co-instructed for various training events and was a consultant

for customer performance tuning engagements. He recorded 13 Pluralsight courses,

including SQL Server: Troubleshooting Query Plan Quality Issues, SQL Server: Transact-

SQL Basic Data Retrieval, and SQL Server: Common Query Tuning Problems and

Solutions. He returned to Microsoft in 2015.

Over the years Joe has published and edited several SQL Server books and

white papers. His first book, SQL Server 2000 Fast Answers for DBAs and Developers,

was published in 2003. He also started and maintained the T-SQL Recipe series,

including SQL Server 2005 T-SQL Recipes and SQL Server 2008 Transact-SQL Recipes.

His most popular white papers include “Optimizing Your Query Plans with the SQL

Server 2014 Cardinality Estimator” and “AlwaysOn Architecture Guide: Building a High

Availability and Disaster Recovery Solution by Using Failover Cluster Instances and

www.EBooksWorld.ir

xxviii

Availability Groups.” Currently he writes (along with his colleagues) on the SQL Server

Engine Blog. His classic posts can still be found at https://www.sqlskills.com/blogs/

joe/ and https://blogs.msdn.microsoft.com/joesack/.

His Twitter handle is @JoeSackMSFT, and you can find Joe speaking at most major

SQL Server conferences. He spends half his time between Minneapolis and Seattle,

meaning that he is either cold or wet at any given point in time.

abouT The TeChniCal RevieweR

www.EBooksWorld.ir

https://www.sqlskills.com/blogs/joe/
https://www.sqlskills.com/blogs/joe/
https://blogs.msdn.microsoft.com/joesack/

xxix

Acknowledgments

The poor editors at Apress have to put up with me and my bad scheduling, so first and

foremost, thanks to Jill Balzano and Jonathan Gennick. To say I couldn’t have done it

without you doesn’t begin to cover it. I’ve said it before and I’ll say it again here, publicly

and forever in print, Joe Sack is my hero. Thanks for everything, Joe.

www.EBooksWorld.ir

xxxi

Introduction

Technology is changing all the time, faster and faster. New functionality is introduced

in Azure SQL Database on an almost weekly schedule, and SQL Server itself has gone

through two releases since the last edition of this book was published. New styles of

databases are introduced all the time. With all this change, the question immediately in

front of you should be, do we still need to do query tuning?

The answer is a very short and resounding, yes.

With all the functionality and capability built into SQL Server and the Azure Data

Platform, not only is query tuning still an important skill, it actually becomes a way to

save your organization money. Knowing how to make a query run faster so that fewer

resources are needed literally becomes a way to reduce costs within a platform-as-a-

service offering such as Azure SQL Database.

However, it’s not just about money. The code generated by object-relational mapping

tools such as Entity Framework can be fantastic, until it isn’t. Then, you’ll be working on

creating custom scripts and generating data structures and indexes and all the rest of

traditional query performance tuning.

While technology has certainly moved fast and far, there is still a fundamental need

to get queries to run faster and do more with less overhead on your servers. That’s where

this book comes into play. This is a resource that you can use to ensure that you’re using

all the tools in your hands to ensure that the databases you build, develop, and maintain

will continue to run faster.

 Who Is This Book For?
If you write or generate T-SQL, you’re going to need to make it run faster. So, this book is

for data analysts, developers, coders, database designers, database developers, and that

last bastion of protection for the company’s information, the database administrator.

You’ll all need at one point or another to understand how indexes work, where to track

down performance metrics, and methods and mechanisms to ensure that your queries

run as fast as they can.

The code for the book is available from Apress.com. If you have questions, want

suggestions, or just need a little help, you can get in touch with me at grant@scarydba.com.

www.EBooksWorld.ir

1
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_1

CHAPTER 1

SQL Query Performance
Tuning
Query performance tuning continues to be a fundamental aspect of modern database

maintenance and development. Yes, hardware performance is constantly improving.

Upgrades to SQL Server—especially to the optimizer, which helps determine how a

query is executed, and the query engine, which executes the query—lead to better

performance all on their own. Further, automation within SQL Server will do some

aspects of query tuning for you. At the same time, SQL Server instances are being put on

virtual machines, either locally or in hosted environments, where the hardware behavior

is not guaranteed. Databases are going to platform-as-a-service systems such as Amazon

RDS and Azure SQL Database. Object-relational mapping software such as Entity

Framework will generate most queries for you. Despite all this, you still have to deal

with fundamental database design and code generation. In short, query performance

tuning remains a vital mechanism for improving the performance of your database

management systems. The beauty of query performance tuning is that, in many cases, a

small change to an index or a SQL query can result in a far more efficient application at

a very low cost. In those cases, the increase in performance can be orders of magnitude

better than that offered by an incrementally faster CPU or a slightly better optimizer.

There are, however, many pitfalls for the unwary. As a result, a proven process is

required to ensure that you correctly identify and resolve performance bottlenecks. To

whet your appetite for the types of topics essential to honing your query optimization

skills, the following is a quick list of the query optimization aspects I cover in this book:

• Identifying problematic SQL queries

• Analyzing a query execution plan

• Evaluating the effectiveness of the current indexes

www.EBooksWorld.ir

2

• Taking advantage of the Query Store to monitor and fix queries

• Evaluating the effectiveness of the current statistics

• Understanding parameter sniffing and fixing it when it breaks

• Optimizing execution plan caching

• Analyzing and minimizing statement recompilation

• Minimizing blocking and deadlocks

• Taking advantage of the storage mechanism Columnstore

• Applying in-memory table storage and procedure execution

• Applying performance-tuning processes, tools, and optimization

techniques to optimize SQL workloads

Before jumping straight into these topics, let’s first examine why we go about

performance tuning the way we do. In this chapter, I discuss the basic concepts of

performance tuning for a SQL Server database system. It’s important to have a process

you follow to be able to find and identify performance problems, fix those problems, and

document the improvements you’ve made. Without a well-structured process, you’re

going to be stabbing in the dark, hoping to hit a target. I detail the main performance

bottlenecks and show just how important it is to design a database-friendly application,

which is the consumer of the data, as well as how to optimize the database. Specifically,

I cover the following topics:

• The performance tuning process

• Performance versus price

• The performance baseline

• Where to focus efforts in tuning

• The top 13 SQL Server performance killers

What I don’t cover within these pages could fill a number of other books. The focus

of this book is on T-SQL query performance tuning, as the title says. But, just so you’re

clear, there will be no coverage of the following:

• Hardware choices

• Application coding methodologies

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

3

• Server configuration (except where it impacts query tuning)

• SQL Server Integration Services

• SQL Server Analysis Services

• SQL Server Reporting Services

• PowerShell

• Virtual machines, whether in Azure or local

• Details of SQL Server on Linux (although a small amount of

information is provided)

 The Performance Tuning Process
The performance tuning process consists of identifying performance bottlenecks,

prioritizing the identified issues, troubleshooting their causes, applying different

resolutions, and quantifying performance improvements—and then repeating the whole

process again and again. It is necessary to be a little creative since most of the time there

is no one silver bullet to improve performance. The challenge is to narrow down the list

of possible causes and evaluate the effects of different resolutions. You may even undo

previous modifications as you iterate through the tuning process.

 The Core Process
During the tuning process, you must examine various hardware and software factors

that can affect the performance of a SQL Server–based application. You should be asking

yourself the following general questions during the performance analysis:

• Is any other resource-intensive application running on the same

server?

• Is the capacity of the hardware subsystem capable of withstanding

the maximum workload?

• Is SQL Server configured properly?

• Does the SQL Server environment, whether physical server, VM,

or platform, have adequate resources, or am I dealing with a

configuration issue or even resource contention from other services?

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

4

• Is the network connection between SQL Server and the application

adequate?

• Does the database design support the fastest data retrieval (and

modification for an updatable database)?

• Is the user workload, consisting of SQL queries, optimized to reduce

the load on SQL Server?

• What processes are causing the system to slow down as reflected in

the measurement of various wait states, performance counters, and

other measurement sources?

• Does the workload support the required level of concurrency?

If any of these factors is not configured properly, then the overall system

performance may suffer. Let’s briefly examine these factors.

Having another resource-intensive application on the same server can limit the

resources available to SQL Server. Even an application running as a service can consume

a good part of the system resources and limit the resources available to SQL Server.

When SQL Server has to wait on resources from the other service, then your queries will

also be waiting on those resources before you can retrieve or update your data.

Improperly configuring the hardware can prevent SQL Server from gaining the

maximum benefit from the available resources. The main hardware resources to be

considered are processor, memory, disk, and network. If the capacity of a particular

hardware resource is small, then it can soon become a performance bottleneck for SQL

Server. While I’m not covering hardware choices, as a part of tuning queries, you do need

to understand how and where you may see performance bottlenecks because of the

hardware you have. Chapters 2, 3, and 4 cover some of these hardware bottlenecks

in detail.

You should also look at the configuration of SQL Server since proper configuration is

essential for an optimized application. There is a long list of SQL Server configurations

that defines the generic behavior of a SQL Server installation. These configurations can

be viewed and modified using a system stored procedure, sp_configure, and viewed

directly through a system view, sys.configurations. Many of these configurations can

also be managed interactively through SQL Server Management Studio.

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

5

Since the SQL Server configurations are applicable for the complete SQL Server

installation, a standard configuration is usually preferred. The good news is that,

generally, you need not modify the majority of these configurations; the default settings

work best for most situations. In fact, the general recommendation is to keep most

SQL Server configurations at the default values. I discuss some of the configuration

parameters in detail throughout this book and make some recommendations for

changing a few of them.

The same thing applies to database options. The default settings on the model

database are adequate for most systems. You should probably adjust autogrowth settings

from the defaults, but many of the other properties, such as autoclose or autoshrink,

should be left off, while others, such as the automatic creation of statistics, should be left

on in most circumstances.

If you’re running inside of some hosted environment, you might be sharing a

server with a number of other virtual machines or databases. In some cases, you

can work with the vendor or your local administrators to adjust the settings of these

virtual environments to help your SQL Server instance perform better. But, in many

circumstances, you’ll have little to no control over the behavior of the systems at all.

You’ll need to work with the individual platform to determine when you’re hitting limits

on that platform that could also be causing performance issues.

Poor connectivity between SQL Server and the database application can hurt

application performance. One of the questions you should ask yourself is, how good

is the network connection? For example, the query executed by the application may

be highly optimized, but the network connection used to submit this query may add

considerable overhead to the overall performance. Ensuring that you have an optimal

network configuration with appropriate bandwidth will be a fundamental part of your

system setup. This is especially true if you’re hosting your environments on the cloud.

The design of the database should also be analyzed while troubleshooting

performance. This helps you understand not only the entity-relationship model of the

database but also why a query may be written in a certain way. Although it may not

always be possible to modify an in-use database design because of wider implications on

the database application, a good understanding of the database design helps you focus

in the right direction and understand the impact of a resolution. This is especially true of

the primary and foreign keys and the clustered indexes used in the tables.

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

6

The application may be slow because of poorly built queries, the queries might not

be able to use the indexes, or perhaps even the indexes themselves are inefficient or

missing. If any of the queries are not optimized sufficiently, they can seriously impact

other queries’ performance. I cover index optimization in depth in Chapters 8, 9, 12, 13,

and 14. The next question at this stage should be, is a query slow because it is resource

intensive or because of concurrency issues with other queries? You can find in-depth

information on blocking analysis in Chapter 21.

When processes run on a server, even one with multiple processors, at times

one process will be waiting on another to complete. You can get a fundamental

understanding of the root cause of slowdowns by identifying what is waiting and what is

causing it to wait. You can realize this through operating system counters that you access

through dynamic management views within SQL Server and through Performance

Monitor. I cover this information in Chapters 2–4 and in Chapter 21.

The challenge is to find out which factor is causing the performance bottleneck. For

example, with slow-running SQL queries and high pressure on the hardware resources,

you may find that both poor database design and a nonoptimized query workload are

to blame. In such a case, you must diagnose the symptoms further and correlate the

findings with possible causes. Because performance tuning can be time-consuming

and costly, you should ideally take a preventive approach by designing the system for

optimum performance from the outset.

To strengthen the preventive approach, every lesson that you learn during the

optimization of poor performance should be considered an optimization guideline

when implementing new database applications. There are also proven best practices

that you should consider while implementing database applications. I present these best

practices in detail throughout the book, and Chapter 27 is dedicated to outlining many of

the optimization best practices.

Please ensure that you take the performance optimization techniques into

consideration at the early stages of your database application development. Doing so

will help you roll out your database projects without big surprises later.

Unfortunately, we rarely live up to this ideal and often find database applications

needing performance tuning. Therefore, it is important to understand not only how to

improve the performance of a SQL Server–based application but also how to diagnose

the causes of poor performance.

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

7

 Iterating the Process
Performance tuning is an iterative process where you identify major bottlenecks,

attempt to resolve them, measure the impact of your changes, and return to the first step

until performance is acceptable. When applying your solutions, you should follow the

golden rule of making only one change at a time where possible. Any change usually

affects other parts of the system, so you must reevaluate the effect of each change on the

performance of the overall system.

As an example, adding an index may fix the performance of a specific query, but

it could cause other queries to run more slowly, as explained in Chapters 8 and 9.

Consequently, it is preferable to conduct a performance analysis in a test environment to

shield users from your diagnosis attempts and intermediate optimization steps. In such a

case, evaluating one change at a time also helps in prioritizing the implementation order

of the changes on the production server based on their relative contributions. Chapter 26

explains how to automate testing your database and query performance to help with this

process.

You can keep on chipping away at the performance bottlenecks you’ve determined

are the most painful and thus improve the system performance gradually. Initially, you

will be able to resolve big performance bottlenecks and achieve significant performance

improvements, but as you proceed through the iterations, your returns will gradually

diminish. Therefore, to use your time efficiently, it is worthwhile to quantify the

performance objectives first (for example, an 80 percent reduction in the time taken for a

certain query, with no adverse effect anywhere else on the server) and then work toward

them.

The performance of a SQL Server application is highly dependent on the amount

and distribution of user activity (or workload) and data. Both the amount and

distribution of workload and data usually change over time, and differing data can cause

SQL Server to execute SQL queries differently. The performance resolution applicable

for a certain workload and data may lose its effectiveness over a period of time.

Therefore, to ensure optimum system performance on a continuing basis, you need to

analyze system and application performance at regular intervals. Performance tuning is

a never-ending process, as shown in Figure 1-1.

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

8

You can see that the steps to optimize the costliest query make for a complex

process, which also requires multiple iterations to troubleshoot the performance issues

within the query and apply one change at a time. Figure 1-2 shows the steps involved in

the optimization of the costliest query.

Set performance target for application

Analyze application performance

Poor performance? Performance and data
may change over time

Identify resource bottlenecks

Ensure proper configuration for hardware,
OS, platform, SQL Server, and database

Identify costliest query
associated with bottleneck

Optimize query

Performance acceptable?

No

No

Yes

Yes

Figure 1-1. Performance tuning process

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

9

As you can see from this process, there is quite a lot to do to ensure that you correctly

tune the performance of a given query. It is important to use a solid process like this in

performance tuning to focus on the main identified issues.

Having said this, it also helps to keep a broader perspective about the problem as a

whole since you may believe one aspect is causing the performance bottleneck when in

reality something else is causing the problem. At times you may have to go back to the

business to identify potential changes in the requirements to find a way to make things

run faster.

Baseline performance and
resource use of costliest query

Set performance target for query

Opportunities for
query tuning?

Analyze query for common problems

Modify query

Analyze query execution plan

Analyze and prioritize operators
to identify bottlenecks

Analyze and optimize factors (such as
statistics) that influence query execution

Opportunities for
query tuning?

Opportunities for
index changes?

Measure performance and resource use

Query performance
improved?

Modify index

Query performance
acceptable?

Query optimized

Yes

No

Yes

Yes

Undo changes

No

No

No

Yes

Yes

Figure 1-2. Optimization of the costliest query

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

10

 Performance vs. Price
One of the points I touched on earlier is that to gain increasingly small performance

increments, you need to spend increasingly large amounts of time and money.

Therefore, to ensure the best return on your investment, you should be objective while

optimizing performance. Always consider the following two aspects:

• What is the acceptable performance for your application?

• Is the investment worth the performance gain?

 Performance Targets
To derive maximum efficiency, you must realistically estimate your performance

requirements. You can follow many best practices to improve performance. For example,

you can have your database files on the most high-performance disk subsystem.

However, before applying a best practice, you should consider how much you may

gain from it and whether the gain will be worth the investment. Those performance

requirements are usually set by someone else, either the application developers or the

business consumers of the data. A fundamental part of query tuning will involve talking

to these parties to determine a good enough and realistic set of requirements.

Sometimes it is really difficult to estimate the performance gain without actually

making the enhancement. That makes properly identifying the source of your performance

bottlenecks even more important. Are you CPU, memory, or disk bound? Is the cause

code, data structure, or indexing, or are you simply at the limit of your hardware? Do you

have a bad router, a poorly configured I/O path, or an improperly applied patch causing

the network to perform slowly? Is your service tier on your platform set to the appropriate

level? Be sure you can make these possibly costly decisions from a known point rather

than guessing. One practical approach is to increase a resource in increments and

analyze the application’s scalability with the added resource. A scalable application will

proportionately benefit from an incremental increase of the resource, if the resource was

truly causing the scalability bottleneck. If the results appear to be satisfactory, then you can

commit to the full enhancement. Experience also plays an important role here.

However, sometimes you’re in pain from a performance perspective, and you need to

do whatever you can to alleviate that pain. It’s possible that a full root-cause analysis just

won’t always be possible. It’s still the preferred path to provide the most protection for your

production systems, but it’s acknowledged that you won’t always be able to do it.

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

11

 “Good Enough” Tuning
Instead of tuning a system to the theoretical maximum performance, the goal should

be to tune until the system performance is “good enough.” This is a commonly adopted

performance tuning approach. The cost investment after such a point usually increases

exponentially in comparison to the performance gain. The 80:20 rule works very

well: by investing 20 percent of your resources, you may get 80 percent of the possible

performance enhancement, but for the remaining 20 percent possible performance gain,

you may have to invest an additional 80 percent of resources. It is therefore important

to be realistic when setting your performance objectives. Just remember that “good

enough” is defined by you, your customers, and the businesspeople you’re working with.

There is no standard to which everyone adheres.

A business benefits not by considering pure performance but by considering

the price of performance. However, if the target is to find the scalability limit of

your application (for various reasons, including marketing the product against its

competitors), then it may be worthwhile to invest as much as you can. Even in such

cases, using a third-party stress test lab may be a better investment decision.

While there is a need in some cases to drill down to find every possible microsecond

of performance enhancement, for most of us, most of the time, it’s just not necessary.

Instead, focusing on ensuring that we’re doing the standard best practices appropriately

will get us where we need to be. You may find yourself in an exceptional situation, but

generally, this won’t be the case. Focus first on the right standards.

 Performance Baseline
One of the main objectives of performance analysis is to understand the underlying

level of system use or pressure on different hardware and software subsystems. This

knowledge helps you in the following ways:

• Allows you to analyze resource bottlenecks.

• Enables you to troubleshoot by comparing system utilization patterns

with a preestablished baseline.

• Assists you in making accurate estimates in capacity planning and

scheduling hardware upgrades.

• Aids you in identifying low-utilization periods when the database

administrative activities can best be executed.

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

12

• Helps you estimate the nature of possible hardware downsizing or

server consolidation. Why would a company downsize? Well, the

company may have leased a very high-end system expecting strong

growth, but because of poor growth, they now want to downsize their

systems. And consolidation? Companies sometimes buy too many

servers or realize that the maintenance and licensing costs are too

high. This would make using fewer servers very attractive.

• Some metrics make sense only when compared to previously

recorded values. Without that previous measure you won’t be able to

make sense of the information.

Therefore, to better understand your application’s resource requirements, you

should create a baseline for your application’s hardware and software usage. A baseline

serves as a statistic of your system’s current usage pattern and as a reference with which

to compare future statistics. Baseline analysis helps you understand your application’s

behavior during a stable period, how hardware resources are used during such periods,

and the characteristics of the software. With a baseline in place, you can do the

following:

• Measure current performance and express your application’s

performance goals.

• Compare other hardware and software combinations, or compare

platform service tiers against the baseline.

• Measure how the workload and/or data changes over time. This

includes know about business cycles such as annual renewals or a

sales event.

• Ensure that you understand what “normal” is on your server so that

an arbitrary number isn’t misinterpreted as an issue.

• Evaluate the peak and nonpeak usage pattern of the application.

This information can be used to effectively distribute database

administration activities, such as full database backup and database

defragmentation during nonpeak hours.

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

13

You can use the Performance Monitor that is built into Windows to create a baseline

for SQL Server’s hardware and software resource utilization. You can also get snapshots

of this information by using dynamic management views and dynamic management

functions. Similarly, you may baseline the SQL Server query workload using Extended

Events, which can help you understand the average resource utilization and execution

time of SQL queries when conditions are stable. You will learn in detail how to use these

tools and queries in Chapters 2–5. A platform system may have different measures such

as the Database Transaction Unit (DTU) of the Azure SQL Database.

Another option is to take advantage of one of the many tools that can generate an

artificial load on a given server or database. Numerous third-party tools are available.

Microsoft offers Distributed Replay, which is covered at length in Chapter 25.

 Where to Focus Efforts
When you tune a particular system, pay special attention to the data access layer (the

database queries and stored procedures executed by your code or through your object-

relational mapping engine that are used to access the database). You will usually find

that you can positively affect performance in the data access layer far more than if

you spend an equal amount of time figuring out how to tune the hardware, operating

system, or SQL Server configuration. Although a proper configuration of the hardware,

operating system, and SQL Server instance is essential for the best performance of

a database application, these areas of expertise have standardized so much that you

usually need to spend only a limited amount of time configuring the systems properly

for performance. Application design issues such as query design and indexing strategies,

on the other hand, are unique to your code and data set. Consequently, there is usually

more to optimize in the data access layer than in the hardware, operating system, SQL

Server configuration, or platform. Figure 1-3 shows the results of a survey of 346 data

professionals (with permission from Paul Randal: http://bit.ly/1gRANRy).

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

http://bit.ly/1gRANRy

14

As you can see, the two most common issues are T-SQL code and poor indexing.

Four of the six most common issues are all directly related to the T-SQL, indexes, code,

and data structure. My experience matches that of the other respondents. You can

obtain the greatest improvement in database application performance by looking first

at the area of data access, including logical/physical database design, query design,

and index design.

Sure, if you concentrate on hardware configuration and upgrades, you may obtain

a satisfactory performance gain. However, a bad SQL query sent by the application

can consume all the hardware resources available, no matter how much you have.

Therefore, a poor application design can make hardware upgrade requirements

very high, even beyond your cost limits. In the presence of a heavy SQL workload,

concentrating on hardware configurations and upgrades usually produces a poor

return on investment.

Figure 1-3. Root causes of performance problems

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

15

You should analyze the stress created by an application on a SQL Server database at

two levels.

• High level: Analyze how much stress the database application is

creating on individual hardware resources and the overall behavior

of the SQL Server installation. The best measures for this are the

various wait states and the DTUs of a platform like Azure. This

information can help you in two ways. First, it helps you identify

the area to concentrate on within a SQL Server application where

there is poor performance. Second, it helps you identify any lack of

proper configuration at the higher levels. You can then decide which

hardware resource may be upgraded.

• Low level: Identify the exact culprits within the application—in other

words, the SQL queries that are creating most of the pressure visible

at the overall higher level. This can be done using the Extended

Events tool and various dynamic management views, as explained in

Chapter 6.

 SQL Server Performance Killers
Let’s now consider the major problem areas that can degrade SQL Server performance.

By being aware of the main performance killers in SQL Server in advance, you will be

able to focus your tuning efforts on the likely causes.

Once you have optimized the hardware, operating system, and SQL Server settings,

the main performance killers in SQL Server are as follows, in a rough order (with the

worst appearing first):

• Insufficient or inaccurate indexing

• Inaccurate statistics

• Improper query design

• Poorly generated execution plans

• Excessive blocking and deadlocks

• Non-set-based operations, usually T-SQL cursors

• Inappropriate database design

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

16

• Recompiling execution plans

• Frequent recompilation of queries

• Improper use of cursors

• Excessive index fragmentation

Let’s take a quick look at each of these issues.

 Insufficient or Inaccurate Indexing
Insufficient indexing is usually one of the biggest performance killers in SQL Server.

As bad, and sometimes worse, is having the wrong indexes. In the absence of proper

indexing for a query, SQL Server has to retrieve and process much more data while

executing the query. This causes high amounts of stress on the disk, memory, and

CPU, increasing the query execution time significantly. Increased query execution time

then can lead to excessive blocking and deadlocks in SQL Server. You will learn how to

determine indexing strategies and resolve indexing problems in Chapters 8–12.

Generally, indexes are considered to be the responsibility of the database

administrator (DBA). However, the DBA can’t proactively define how to use the

indexes since the use of indexes is determined by the database queries and stored

procedures written by the developers. Therefore, defining the indexes must be a shared

responsibility since the developers usually have more knowledge of the data to be

retrieved and the DBAs have a better understanding of how indexes work. Indexes

created without the knowledge of the queries serve little purpose.

Too many or just the wrong indexes cause just as many problems. Lots of indexes

will slow down data manipulation through INSERTs, UPDATEs, and DELETEs since the

indexes have to be maintained. Slower performance leads to excessive blocking and

once again deadlocks. Incorrect indexes just aren’t used by the optimizer but still must

be maintained, paying that cost in processing power, disk storage, and memory.

Note Because indexes created without the knowledge of the queries serve little
purpose, database developers need to understand indexes at least as well as they
know t-SQL.

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

17

 Inaccurate Statistics
SQL Server relies heavily on cost-based optimization, so accurate data distribution

statistics are extremely important for the effective use of indexes. Without accurate

statistics, SQL Server’s query optimizer can’t accurately estimate the number of rows

affected by a query. Because the amount of data to be retrieved from a table is highly

important in deciding how to optimize the query execution, the query optimizer is much

less effective if the data distribution statistics are not maintained accurately. Statistics

can age without being updated. You can also see issues around data being distributed in

a skewed fashion hurting statistics. Statistics on columns that auto-increment a value,

such as a date, can be out-of-date as new data gets added. You will look at how to analyze

statistics in Chapter 13.

 Improper Query Design
The effectiveness of indexes depends in large part on the way you write SQL queries.

Retrieving excessively large numbers of rows from a table or specifying a filter criterion

that returns a larger result set from a table than is required can render the indexes

ineffective. To improve performance, you must ensure that the SQL queries are written

to make the best use of new or existing indexes. Failing to write cost-effective SQL

queries may prevent the optimizer from choosing proper indexes, which increases query

execution time and database blocking. Chapter 19 covers how to write effective queries

in specific detail.

Query design covers not only single queries but also sets of queries often used to

implement database functionalities such as a queue management among queue readers

and writers. Even when the performance of individual queries used in the design is

fine, the overall performance of the database can be very poor. Resolving this kind of

bottleneck requires a broad understanding of different characteristics of SQL Server,

which can affect the performance of database functionalities. You will see how to design

effective database functionality using SQL queries throughout the book.

 Poorly Generated Execution Plans
The same mechanisms that allow SQL Server to establish an efficient execution plan and

reuse that plan again and again instead of recompiling can, in some cases, work against

you. A bad execution plan can be a real performance killer. Inaccurate and poorly

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

18

performing plans are frequently caused when a process called parameter sniffing goes

bad. Parameter sniffing is a process that comes from the mechanisms that the query

optimizer uses to determine the best plan based on sampled or specific values from the

statistics. It’s important to understand how statistics and parameters combine to create

execution plans and what you can do to control them. Statistics are covered in Chapter 13,

and execution plan analysis is covered in Chapters 15 and 16. Chapter 17 focuses only on

bad parameter sniffing and how best to deal with it (along with some of the details from

Chapter 11 on the Query Store and Plan Forcing).

 Excessive Blocking and Deadlocks
Because SQL Server is fully atomicity, consistency, isolation, and durability (ACID)

compliant, the database engine ensures that modifications made by concurrent

transactions are properly isolated from one another. By default, a transaction sees the

data either in the state before another concurrent transaction modified the data or after

the other transaction completed—it does not see an intermediate state.

Because of this isolation, when multiple transactions try to access a common

resource concurrently in a noncompatible way, blocking occurs in the database. Two

processes can’t update the same piece of data the same time. Further, since all the

updates within SQL Server are founded on a page of data, 8KB worth of rows, you can see

blocking occurring even when two processes aren’t updating the same row. Blocking is

a good thing in terms of ensuring proper data storage and retrieval, but too much of it in

the wrong place can slow you down.

Related to blocking but actually a separate issue, a deadlock occurs when two

resources attempt to escalate or expand locked resources and conflict with one another.

The query engine determines which process is the least costly to roll back and chooses

it as the deadlock victim. This requires that the database request be resubmitted for

successful execution. Deadlocks are a fundamental performance problem even though

many people think of them as a structural issue. The execution time of a query is

adversely affected by the amount of blocking and deadlocks, if any, it faces.

For scalable performance of a multiuser database application, properly controlling

the isolation levels and transaction scopes of the queries to minimize blocking

and deadlocks is critical; otherwise, the execution time of the queries will increase

significantly, even though the hardware resources may be highly underutilized. I cover

this problem in depth in Chapters 21 and 22.

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

19

 Non-Set-Based Operations
Transact-SQL is a set-based language, which means it operates on sets of data. This

forces you to think in terms of columns rather than in terms of rows. Non-set-based

thinking leads to excessive use of cursors and loops rather than exploring more efficient

joins and subqueries. The T-SQL language offers rich mechanisms for manipulating

sets of data. For performance to shine, you need to take advantage of these mechanisms

rather than force a row-by-row approach to your code, which will kill performance.

Examples of how to do this are available throughout the book; also, I address T-SQL best

practices in Chapter 19 and cursors in Chapter 23.

 Inappropriate Database Design
A database should be adequately normalized to increase the performance of data

retrieval and reduce blocking. For example, if you have an undernormalized database

with customer and order information in the same table, then the customer information

will be repeated in all the order rows of the customer. This repetition of information in

every row will increase the number of page reads required to fetch all the orders placed

by a customer. At the same time, a data writer working on a customer’s order will reserve

all the rows that include the customer information and thus could block all other data

writers/data readers trying to access the customer profile.

Overnormalization of a database can be as bad as undernormalization.

Overnormalization increases the number and complexity of joins required to retrieve

data. An overnormalized database contains a large number of tables with a small

number of columns. Overnormalization is not a problem I’ve run into a lot, but when

I’ve seen it, it seriously impacts performance. It’s much more common to be dealing with

undernormalization or improper normalization of your structures.

Having too many joins in a query may also be because database entities have not

been partitioned distinctly or the query is serving a complex set of requirements that

could perhaps be better served by creating a new stored procedure.

Another issue with database design is actually implementing primary keys, unique

constraints, and enforced foreign keys. Not only do these mechanisms ensure data

consistency and accuracy, but the query optimizer can take advantage of them when making

decisions about how to resolve a particular query. All too often though people ignore creating

a primary key or disable their foreign keys, either directly or through the use of WITH NO_

CHECK. Without these tools, the optimizer has no choice but to create suboptimal plans.

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

20

Database design is a large subject. I will provide a few pointers in Chapter 19 and

throughout the rest of the book. Because of the size of the topic, I won’t be able to treat

it in the complete manner it requires. However, if you want to read a book on database

design with an emphasis on introducing the subject, I recommend reading Pro SQL

Server 2012 Relational Database Design and Implementation by Louis Davidson et al.

(Apress, 2012).

 Recompiling Execution Plans
To execute a query in an efficient way, SQL Server’s query optimizer spends a fair

amount of CPU cycles creating a cost-effective execution plan. The good news is that

the plan is cached in memory, so you can reuse it once created. However, if the plan

is designed so that you can’t plug parameter values into it, SQL Server creates a new

execution plan every time the same query is resubmitted with different values. So, for

better performance, it is extremely important to submit SQL queries in forms that help

SQL Server cache and reuse the execution plans. I will also address topics such as plan

freezing, forcing query plans, and using “optimize for ad hoc workloads.” You will see in

detail how to improve the reusability of execution plans in Chapter 16.

 Frequent Recompilation of Queries
One of the standard ways of ensuring a reusable execution plan, independent of values

used in a query, is to use a stored procedure or a parameterized query. Using a stored

procedure to execute a set of SQL queries allows SQL Server to create a parameterized

execution plan.

A parameterized execution plan is independent of the parameter values supplied

during the execution of the stored procedure or parameterized query, and it is

consequently highly reusable. Frequent recompilation of queries increases pressure on

the CPU and the query execution time. I will discuss in detail the various causes and

resolutions of stored procedure, and statement, recompilation in Chapter 18.

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

21

 Improper Use of Cursors
By preferring a cursor-based (row-at-a-time) result set—or as Jeff Moden has so aptly

termed it, Row By Agonizing Row (RBAR; pronounced “ree-bar”)—instead of a regular

set-based SQL query, you add a large amount of overhead to SQL Server. Use set-based

queries whenever possible, but if you are forced to deal with cursors, be sure to use

efficient cursor types such as fast-forward only. Excessive use of inefficient cursors

increases stress on SQL Server resources, slowing down system performance. I discuss

how to work with cursors properly, if you must, in Chapter 23.

 Excessive Index Fragmentation
While analyzing data retrieval operations, you can usually assume that the data is

organized in an orderly way, as indicated by the index used by the data retrieval

operation. However, if the pages containing the data are fragmented in a nonorderly

fashion or if they contain a small amount of data because of frequent page splits, then

the number of read operations required by the data retrieval operation will be much

higher than might otherwise be required. The increase in the number of read operations

caused by fragmentation hurts query performance. In Chapter 14, you will learn how to

analyze and remove fragmentation. However, it doesn’t hurt to mention that there is a

lot of new thought around index fragmentation that it may not be a problem at all. You’ll

need to evaluate your system to check whether this is a problem.

 Summary
In this introductory chapter, you saw that SQL Server performance tuning is an

iterative process, consisting of identifying performance bottlenecks, troubleshooting

their cause, applying different resolutions, quantifying performance improvements,

and then repeating these steps until your required performance level is reached.

To assist in this process, you should create a system baseline to compare with your

modifications. Throughout the performance tuning process, you need to be objective

about the amount of tuning you want to perform—you can always make a query run

a little bit faster, but is the effort worth the cost? Finally, since performance depends

on the pattern of user activity and data, you must reevaluate the database server

performance on a regular basis.

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

22

To derive the optimal performance from a SQL Server database system, it is

extremely important that you understand the stresses on the server created by the

database application. In the next three chapters, I discuss how to analyze these stresses,

both at a higher system level and at a lower SQL Server activities level. Then I show how

to combine the two.

In the rest of the book, you will examine in depth the biggest SQL Server

performance killers, as mentioned earlier in the chapter. You will learn how these

individual factors can affect performance if used incorrectly and how to resolve or avoid

these traps.

Chapter 1 SQL Query performanCe tuning

www.EBooksWorld.ir

23
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_2

CHAPTER 2

Memory Performance
Analysis
A system can directly impact SQL Server and the queries running on it in three primary

places: memory, disk, and CPU. You’re going to explore each of these in turn starting, in

this chapter, with memory. Queries retrieving data in SQL Server must first load that data

into memory. Any changes to data are first loaded into memory where the modifications

are made, prior to writing them to disk. Many other operations take advantage of the

speed of memory in the system, such as sorting data using an ORDER BY clause in

a query, performing calculations to create hash tables when joining two tables, and

putting the tables in memory through the in-memory OLTP table functions. Because

all this work is being done within the memory of the system, it’s important that you

understand how memory is being managed.

In this chapter, I cover the following topics:

• The basics of the Performance Monitor tool

• Some of the dynamic management objects used to observe system

behavior

• How and why hardware resources can be bottlenecks

• Methods of observing and measuring memory use within SQL Server

and Windows

• Methods of observing and measuring memory use in Linux

• Possible resolutions to memory bottlenecks

www.EBooksWorld.ir

24

 Performance Monitor Tool
Windows Server 2016 provides a tool called Performance Monitor, which collects

detailed information about the utilization of operating system resources. It allows you

to track nearly every aspect of system performance, including memory, disk, processor,

and the network. In addition, SQL Server 2017 provides extensions to the Performance

Monitor tool that track a variety of functional areas within SQL Server.

Performance Monitor tracks resource behavior by capturing performance data

generated by hardware and software components of the system, such as a processor, a

process, a thread, and so on. The performance data generated by a system component

is represented by a performance object. The performance object provides counters that

represent specific aspects of a component, such as % Processor Time for a Processor

object. Just remember, when running these counters within a virtual machine (VM), the

performance measured for the counters in many instances, depending on the type of

counter, is for the VM, not the physical server. That means some values collected on a

VM are not going to accurately reflect physical reality.

There can be multiple instances of a system component. For instance, the Processor

object in a computer with two processors will have two instances, represented as

instances 0 and 1. Performance objects with multiple instances may also have an

instance called Total to represent the total value for all the instances. For example,

the processor usage of a computer with two processors can be determined using the

following performance object, counter, and instance (as shown in Figure 2-1):

• Performance object: Processor

• Counter: % Processor Time

• Instance: _Total

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

25

System behavior can be either tracked in real time in the form of graphs or captured

as a file (called a data collector set) for offline analysis. The preferred mechanism on

production servers is to use the file. You’ll want to collect the information in a file to store

it and transmit it as needed over time. Plus, writing the collection to a file takes up fewer

resources than collecting it on the screen in active memory.

To run the Performance Monitor tool, execute perfmon from a command prompt,

which will open the Performance Monitor suite. You can also right-click the Computer

icon on the desktop or the Start menu, expand Diagnostics, and then expand the

Performance Monitor. You can also go to the Start screen and start typing Performance
Monitor; you’ll see the icon for launching the application. Any of these methods will

allow you to open the Performance Monitor utility.

You will learn how to set up the individual counters in Chapter 5. Now that I’ve

introduced the concept of the Performance Monitor, I’ll introduce another metric-

gathering interface, dynamic management views.

Figure 2-1. Adding a Performance Monitor counter

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

26

 Dynamic Management Views
To get an immediate snapshot of a large amount of data that was formerly available

only in Performance Monitor, SQL Server offers some of the same data, plus a lot of

different information, internally through a set of dynamic management views (DMVs)

and dynamic management functions (DMFs), collectively referred to as dynamic

management views (documentation used to refer to objects, but that has changed). These

are extremely useful mechanisms for capturing a snapshot of the current performance of

your system. I’ll introduce several DMVs throughout the book, but for now I’ll focus on a

few that are the most important for monitoring server performance and for establishing

a baseline.

The sys.dm_os_performance_counters view displays the SQL Server counters

within a query, allowing you to apply the full strength of T-SQL to the data immediately.

For example, this simple query will return the current value for Logins/sec:

SELECT dopc.cntr_value,

 dopc.cntr_type

FROM sys.dm_os_performance_counters AS dopc

WHERE dopc.object_name = 'SQLServer:General Statistics'

 AND dopc.counter_name = 'Logins/sec';

This returns the value of 46 for my test server. For your server, you’ll need to

substitute the appropriate server name in the object_name comparison if you have

a named instance, for example MSSQL$SQL1-General Statistics. Worth noting is

the cntr_type column. This column tells you what type of counter you’re reading

(documented by Microsoft at http://bit.ly/1mmcRaN). For example, the previous

counter returns the value 272696576, which means that this counter is an average value.

There are values that are moments-in-time snapshots, accumulations since the server

started, and others. Knowing what the measure represents is an important part of

understanding these metrics.

There are a large number of DMVs that can be used to gather information about the

server. I’ll introduce one more here that you will find yourself accessing on a regular

basis, sys.dm_os_wait_stats. This DMV shows aggregated wait times within SQL Server

on various resources, collected since the last time SQL Server was started, the last time

it failed over, or the counters were reset. The wait times are recorded after the work is

completed, so these numbers don’t reflect any active threads. Identifying the types of

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

http://bit.ly/1mmcRaN

27

waits that are occurring within your system is one of the easiest mechanisms to begin

identifying the source of your bottlenecks. You can sort the data in various ways; this first

example looks at the waits that have the longest current count using this simple query:

SELECT TOP(10)

 dows.*

FROM sys.dm_os_wait_stats AS dows

ORDER BY dows.wait_time_ms DESC;

Figure 2-2 displays the output.

Figure 2-2. Output from sys.dm_os_wait_stats

You can see not only the cumulative time that particular waits have accumulated

but also a count of how often they have occurred and the maximum time that

something had to wait. From here, you can identify the wait type and begin

troubleshooting. One of the most common types of waits is I/O. If you see ASYNC_IO_

C0MPLETI0N, IO_C0MPLETION, LOGMGR, WRITELOG, or PAGEIOLATCH in your

top ten wait types, you may be experiencing I/O contention, and you now know where

to start working. The previous list includes quite a few waits that basically qualify as

noise. A common practice is to eliminate them. However, there are a lot of them. The

easiest method for dealing with that is to lean on Paul Randals scripts from this article:

“Wait statistics, or please tell me where it hurts” (http://bit.ly/2wsQHQE). Also,

you can now see aggregated wait statistics for individual queries in the information

captured by the Query Store, which we’ll cover in Chapter 11. You can always find

information about more obscure wait types by going directly to Microsoft through

MSDN support (http://bit.ly/2vAWAfP). Finally, Paul Randal also maintains a

library of wait types (collected at http://bit.ly/2ePzYO2).

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

http://bit.ly/2wsQHQE
http://bit.ly/2vAWAfP
http://bit.ly/2ePzYO2

28

 Hardware Resource Bottlenecks
Typically, SQL Server database performance is affected by stress on the following

hardware resources:

• Memory

• Disk I/O

• Processor

• Network

Stress beyond the capacity of a hardware resource forms a bottleneck. To address the

overall performance of a system, you need to identify these bottlenecks because they form

the limit on overall system performance. Further, when you clear one bottleneck, you may

find that you have others since one set of bad behaviors masks or limits other sets.

 Identifying Bottlenecks
There is usually a relationship between resource bottlenecks. For example, a processor

bottleneck may be a symptom of excessive paging (memory bottleneck) or a slow disk

(disk bottleneck) caused by bad execution plans. If a system is low on memory, causing

excessive paging, and has a slow disk, then one of the end results will be a processor with

high utilization since the processor has to spend a significant number of CPU cycles to

swap pages in and out of the memory and to manage the resultant high number of I/O

requests. Replacing the processors with faster ones may help a little, but it is not the best

overall solution. In a case like this, increasing memory is a more appropriate solution

because it will decrease pressure on the disk and processor. In fact, upgrading the

disk is probably a better solution than upgrading the processor. If you can, decreasing

the workload could also help, and, of course, tuning the queries to ensure maximum

efficiency is also an option.

One of the best ways of locating a bottleneck is to identify resources that are waiting

for some other resource to complete its operation. You can use Performance Monitor

counters or DMVs such as sys.dm_os_wait_stats to gather that information. The

response time of a request served by a resource includes the time the request had to

wait in the resource queue as well as the time taken to execute the request, so end user

response time is directly proportional to the amount of queuing in a system.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

29

Another way to identify a bottleneck is to reference the response time and capacity

of the system. The amount of throughput, for example, to your disks should normally be

something approaching what the vendor suggests the disk is capable of. So, measuring

information such as disk sec/transfer will indicate when disks are slowing down because

of excessive load.

Not all resources have specific counters that show queuing levels, but most resources

have some counters that represent an overcommittal of that resource. For example,

memory has no such counter, but a large number of hard page faults represents the

overcommittal of physical memory (hard page faults are explained later in the chapter

in the section “Pages/Sec and Page Faults/Sec”). Other resources, such as the processor

and disk, have specific counters to indicate the level of queuing. For example, the

counter Page Life Expectancy indicates how long a page will stay in the buffer pool

without being referenced. This indicates how well SQL Server is able to manage

its memory since a longer life means that a piece of data in the buffer will be there,

available, waiting for the next reference. However, a shorter life means that SQL Server is

moving pages in and out of the buffer quickly, possibly suggesting a memory bottleneck.

You will see which counters to use in analyzing each type of bottleneck shortly.

 Bottleneck Resolution
Once you have identified bottlenecks, you can resolve them in two ways.

• You can increase resource capacity.

• You can decrease the arrival rate of requests to the resource.

Increasing the capacity usually requires extra resources such as memory, disks,

processors, or network adapters. You can decrease the arrival rate by being more

selective about the requests to a resource. For example, when you have a disk subsystem

bottleneck, you can either increase the capacity of the disk subsystem or decrease the

number of I/O requests.

Increasing the capacity means adding more disks or upgrading to faster disks.

Decreasing the arrival rate means identifying the cause of high I/O requests to the

disk subsystem and applying resolutions to decrease their number. You may be able to

decrease the I/O requests, for example, by adding appropriate indexes on a table to limit

the amount of data accessed or by writing the T-SQL statement to include more or better

filters in the WHERE clause.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

30

 Memory Bottleneck Analysis
Memory can be a problematic bottleneck because a bottleneck in memory will manifest

on other resources, too. This is particularly true for a system running SQL Server. When

SQL Server runs out of cache (or memory), a process within SQL Server (called lazy

writer) has to work extensively to maintain enough free internal memory pages within

SQL Server. This consumes extra CPU cycles and performs additional physical disk I/O

to write memory pages back to disk.

 SQL Server Memory Management
SQL Server manages memory for databases, including memory requirements for data

and query execution plans, in a large pool of memory called the buffer pool. The memory

pool used to consist of a collection of 8KB buffers to manage memory. Now there are

multiple page allocations for data pages and plan cache pages, free pages, and so

forth. The buffer pool is usually the largest portion of SQL Server memory. SQL Server

manages memory by growing or shrinking its memory pool size dynamically.

You can configure SQL Server for dynamic memory management in SQL Server

Management Studio (SSMS). Go to the Memory folder of the Server Properties dialog

box, as shown in Figure 2-3.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

31

The dynamic memory range is controlled through two configuration properties:

Minimum(MB) and Maximum(MB).

• Minimum(MB), also known as min server memory, works as a floor

value for the memory pool. Once the memory pool reaches the same

size as the floor value, SQL Server can continue committing pages in

the memory pool, but it can’t be shrunk to less than the floor value.

Note that SQL Server does not start with the min server memory

configuration value but commits memory dynamically, as needed.

Figure 2-3. SQL Server memory configuration

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

32

• Maximum(MB), also known as max server memory, serves as a

ceiling value to limit the maximum growth of the memory pool.

These configuration settings take effect immediately and do not

require a restart. In SQL Server 2017 the lowest maximum memory is

512MB for Express Edition and 1GB for all others when running on

Windows. The memory requirement on Linux is 3.5GB.

Microsoft recommends that you use dynamic memory configuration for SQL Server,

where min server memory is 0 and max server memory is set to allow some memory

for the operating system, assuming a single instance on the machine. The amount of

memory for the operating system depends first on the type of OS and then on the size of

the server being configured.

In Windows, for small systems with 8GB to 16GB of memory, you should leave about

2GB to 4GB for the OS. As the amount of memory in your server increases, you’ll need

to allocate more memory for the OS. A common recommendation is 4GB for every 16GB

beyond 32GB of total system memory. You’ll need to adjust this depending on your own

system’s needs and memory allocations. You should not run other memory-intensive

applications on the same server as SQL Server, but if you must, I recommend you first

get estimates on how much memory is needed by other applications and then configure

SQL Server with a max server memory value set to prevent the other applications

from starving SQL Server of memory. On a server with multiple SQL Server instances,

you’ll need to adjust these memory settings to ensure each instance has an adequate

value. Just make sure you’ve left enough memory for the operating system and external

processes.

In Linux, the general guidance is to leave about 20 percent of memory on the system

for the operating system. The same types of processing needs are going to apply as the

OS needs memory to manage its various resources in support of SQL Server.

Memory within SQL Server, regardless of the OS, can be roughly divided into buffer

pool memory, which represents data pages and free pages, and nonbuffer memory,

which consists of threads, DLLs, linked servers, and others. Most of the memory used

by SQL Server goes into the buffer pool. But you can get allocations beyond the buffer

pool, known as private bytes, which can cause memory pressure not evident in the

normal process of monitoring the buffer pool. Check Process: sqlservr: Private Bytes in

comparison to SQL Server: Buffer Manager: Total pages if you suspect this issue on

your system.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

33

You can also manage the configuration values for min server memory and max

server memory by using the sp_configure system stored procedure. To see the

configuration values for these parameters, execute the sp_configure stored procedure

as follows:

EXEC sp_configure 'show advanced options', 1;

GO

RECONFIGURE;

GO

EXEC sp_configure 'min server memory';

EXEC sp_configure 'max server memory';

Figure 2-4 shows the result of running these commands.

Figure 2-4. SQL Server memory configuration properties

Note that the default value for the min server memory setting is 0MB and for the max

server memory setting is 2147483647MB.

You can also modify these configuration values using the sp_configure stored

procedure. For example, to set max server memory to 10GB and min server memory to

5GB, execute the following set of statements (setmemory.sql in the download):

USE master;

EXEC sp_configure 'show advanced option', 1;

RECONFIGURE;

exec sp_configure 'min server memory (MB)', 5120;

exec sp_configure 'max server memory (MB)', 10240;

RECONFIGURE WITH OVERRIDE;

The min server memory and max server memory configurations are classified as

advanced options. By default, the sp_configure stored procedure does not affect/

display the advanced options. Setting show advanced option to 1 as shown previously

enables the sp_configure stored procedure to affect/display the advanced options.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

34

The RECONFIGURE statement updates the memory configuration values set by

sp_configure. Since ad hoc updates to the system catalog containing the memory

configuration values are not recommended, the OVERRIDE flag is used with the

RECONFIGURE statement to force the memory configuration. If you do the memory

configuration through Management Studio, Management Studio automatically executes

the RECONFIGURE WITH OVERRIDE statement after the configuration setting.

Another way to see the settings but not to manipulate them is to use the sys.

configurations system view. You can select from sys.configurations using standard

T-SQL rather than having to execute a command.

You may need to allow for SQL Server sharing a system’s memory. To elaborate,

consider a computer with SQL Server and SharePoint running on it. Both servers are

heavy users of memory and thus keep pushing each other for memory. The dynamic

memory behavior of SQL Server allows it to release memory to SharePoint at one

instance and grab it back as SharePoint releases it. You can avoid this dynamic memory

management overhead by configuring SQL Server for a fixed memory size. However,

please keep in mind that since SQL Server is an extremely resource-intensive process, it

is highly recommended that you have a dedicated SQL Server production machine.

Now that you understand SQL Server memory management at a very high level, let’s

consider the performance counters you can use to analyze stress on memory, as shown

in Table 2-1.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

35

Table 2-1. Performance Monitor Counters to Analyze Memory Pressure

Object(Instance
[,InstanceN])

Counter Description Values

Memory available Bytes free physical memory system dependent

pages/sec rate of hard page faults Compare with baseline

page faults/sec rate of total page faults Compare with its baseline

value for trend analysis

pages input/sec rate of input page faults

pages output/sec rate of output page faults

paging file

%Usage peak

peak values in the memory

paging file

paging file:

%Usage

rate of usage of the memory

paging file

sQlserver:

Buffer Manager

Buffer cache

hit ratio

percentage of requests served

out of buffer cache

Compare with its baseline

value for trend analysis

page life

expectancy

time page spends in

buffer cache

Compare with its baseline

value for trend analysis

Checkpoint

pages/sec

pages written to disk by

checkpoint

Compare with baseline

lazy writes/sec Dirty aged pages flushed

from buffer

Compare with baseline

sQlserver:

Memory Manager

Memory Grants

pending

number of processes waiting

for memory grant

average value = 0

target server

Memory (KB)

Maximum physical memory sQl

server can have on the box

Close to size of physical

memory

total server

Memory (KB)

physical memory currently

assigned to sQl

Close to target server

memory (KB)

process private Bytes size, in bytes, of memory that

this process has allocated that

can’t be shared with other

processes

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

36

Memory and disk I/O are closely related. Even if you think you have a problem that

is directly memory related, you should also gather I/O metrics to understand how the

system is behaving between the two resources. I’ll now walk you through these counters

to give you a better idea of possible uses.

 Available Bytes
The Available Bytes counter represents free physical memory in the system. You can also

look at Available Kbytes and Available Mbytes for the same data but with less granularity.

For good performance, this counter value should not be too low. If SQL Server is

configured for dynamic memory usage, then this value will be controlled by calls to

a Windows API that determines when and how much memory to release. Extended

periods of time with this value very low and SQL Server memory not changing indicates

that the server is under severe memory stress.

 Pages/Sec and Page Faults/Sec
To understand the importance of the Pages/sec and Page Faults/sec counters, you first

need to learn about page faults. A page fault occurs when a process requires code or data

that is not in its working set (its space in physical memory). It may lead to a soft page

fault or a hard page fault. If the faulted page is found elsewhere in physical memory, then

it is called a soft page fault. A hard page fault occurs when a process requires code or

data that is not in its working set or elsewhere in physical memory and must be retrieved

from disk.

The speed of a disk access is in the order of milliseconds for mechanical drives or as

low as .1 milliseconds for a solid-state drive (SSD), whereas a memory access is in the

order of nanoseconds. This huge difference in the speed between a disk access and a

memory access makes the effect of hard page faults significant compared to that of soft

page faults.

The Pages/sec counter represents the number of pages read from or written to

disk per second to resolve hard page faults. The Page Faults/sec performance counter

indicates the total page faults per second—soft page faults plus hard page faults—

handled by the system. These are primarily measures of load and are not direct

indicators of performance issues.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

37

Hard page faults, indicated by Pages/sec, should not be consistently higher than

normal. There are no hard-and-fast numbers for what indicates a problem because these

numbers will vary widely between systems based on the amount and type of memory as

well as the speed of disk access on the system.

If the Pages/sec counter is high, you can break it up into Pages Input/sec and Pages

Output/sec.

• Pages Input/sec: An application will wait only on an input page, not

on an output page.

• Pages Output/sec: Page output will stress the system, but an

application usually does not see this stress. Pages output are usually

represented by the application’s dirty pages that need to be backed

out to the disk. Pages Output/sec is an issue only when disk load

become an issue.

Also, check Process:Page Faults/sec to find out which process is causing excessive

paging in case of high Pages/sec. The Process object is the system component that

provides performance data for the processes running on the system, which are

individually represented by their corresponding instance name.

For example, the SQL Server process is represented by the sqlservr instance of the

Process object. High numbers for this counter usually do not mean much unless Pages/

sec is high. Page Faults/sec can range all over the spectrum with normal application

behavior, with values from 0 to 1,000 per second being acceptable. This entire data set

means a baseline is essential to determine the expected normal behavior.

 Paging File %Usage and Page File %Usage
All memory in the Windows system is not the physical memory of the physical machine.

Windows will swap memory that isn’t immediately active in and out of the physical

memory space to a paging file. These counters are used to understand how often this is

occurring on your system. As a general measure of system performance, these counters

are applicable only to the Windows OS and not to SQL Server. However, the impact

of not enough virtual memory will affect SQL Server. These counters are collected to

understand whether the memory pressures on SQL Server are internal or external. If they

are external memory pressures, you will need to go into the Windows OS to determine

what the problems might be.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

38

 Buffer Cache Hit Ratio
The buffer cache is the pool of buffer pages into which data pages are read, and it is often

the biggest part of the SQL Server memory pool. This counter value should be as high

as possible, especially for OLTP systems that should have fairly regimented data access,

unlike a warehouse or reporting system. It is extremely common to find this counter

value as 99 percent or more for most production servers. A low Buffer cache hit ratio

value indicates that few requests could be served out of the buffer cache, with the rest of

the requests being served from disk.

When this happens, either SQL Server is still warming up or the memory

requirement of the buffer cache is more than the maximum memory available for

its growth. If the cache hit ratio is consistently low, you might consider getting more

memory for the system or reducing memory requirements through the use of good

indexes and other query tuning mechanisms, that is, unless you’re dealing with

reporting systems with lots of ad hoc queries. It’s possible when working with reporting

systems to consistently see the cache hit ratio become extremely low.

This makes the buffer cache hit ratio an interesting number for understanding

aspects of system behavior, but it is not a value that would suggest, by itself, potential

performance problems. While this number represents an interesting behavior within

the system, it’s not a great measure for precise problems but instead shows a type of

behavior. For more details on this topic, please read the “Great SQL Server Debates:

Buffer Cache Hit Ratio” article on Simple-Talk (https://bit.ly/2rzWJv0).

 Page Life Expectancy
Page Life Expectancy indicates how long a page will stay in the buffer pool without

being referenced. Generally, a low number for this counter means that pages are

being removed from the buffer, lowering the efficiency of the cache and indicating the

possibility of memory pressure. On reporting systems, as opposed to OLTP systems, this

number may remain at a lower value since more data is accessed from reporting systems.

It’s also common to see Page Life Expectancy fall to very low levels during nightly loads.

Since this is dependent on the amount of memory you have available and the types of

queries running on your system, there are no hard-and-fast numbers that will satisfy

a wide audience. Therefore, you will need to establish a baseline for your system and

monitor it over time.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

https://bit.ly/2rzWJv0

39

If you are on a machine with nonuniform memory access (NUMA) , you need to

know that the standard Page Life Expectancy counter is an average. To see specific

measures, you’ll need to use the Buffer Node:Page Life Expectancy counter.

 Checkpoint Pages/Sec
The Checkpoint Pages/sec counter represents the number of pages that are moved to disk

by a checkpoint operation. These numbers should be relatively low, for example, less than

30 per second for most systems. A higher number means more pages are being marked as

dirty in the cache. A dirty page is one that is modified while in the buffer. When it’s modified,

it’s marked as dirty and will get written back to the disk during the next checkpoint. Higher

values on this counter indicate a larger number of writes occurring within the system,

possibly indicative of I/O problems. But, if you are taking advantage of indirect checkpoints,

which allow you to control when checkpoints occur in order to reduce recovery intervals,

you might see different numbers here. Take that into account when monitoring databases

with the indirect checkpoint configured. For more information about checkpoints on SQL

Server 2016 and better, I suggest you read the “Changes in SQL Server 2016 Checkpoint

Behavior” article on MSDN (https://bit.ly/2pdggk3).

 Lazy Writes/Sec
The Lazy writes/sec counter records the number of buffers written each second by the

buffer manager’s lazy write process. This process is where the dirty, aged buffers are

removed from the buffer by a system process that frees up the memory for other uses.

A dirty, aged buffer is one that has changes and needs to be written to the disk. Higher

values on this counter possibly indicate I/O issues or even memory problems. The Lazy

writes/sec values should consistently be less than 20 for the average system. However, as

with all other counters, you must compare your values to a baseline measure.

 Memory Grants Pending
The Memory Grants Pending counter represents the number of processes pending

for a memory grant within SQL Server memory. If this counter value is high, then SQL

Server is short of buffer memory, which can be caused not simply by a lack of memory

but by issues such as oversized memory grants caused by incorrect row counts because

your statistics are out-of-date. Under normal conditions, this counter value should

consistently be 0 for most production servers.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

https://bit.ly/2pdggk3

40

Another way to retrieve this value, on the fly, is to run queries against the DMV

sys.dm_exec_query_memory_grants. A null value in the column grant_time indicates

that the process is still waiting for a memory grant. This is one method you can use

to troubleshoot query timeouts by identifying that a query (or queries) is waiting on

memory in order to execute.

 Target Server Memory (KB) and Total Server Memory (KB)
Target Server Memory (KB) indicates the total amount of dynamic memory SQL Server

is willing to consume. Total Server Memory (KB) indicates the amount of memory

currently assigned to SQL Server. The Total Server Memory (KB) counter value can be

very high if the system is dedicated to SQL Server. If Total Server Memory (KB) is much

less than Target Server Memory (KB), then either the SQL Server memory requirement

is low, the max server memory configuration parameter of SQL Server is set at too low

a value, or the system is in warm-up phase. The warm-up phase is the period after SQL

Server is started when the database server is in the process of expanding its memory

allocation dynamically as more data sets are accessed, bringing more data pages

into memory.

You can confirm a low memory requirement from SQL Server by the presence of a

large number of free pages, usually 5,000 or more. Also, you can directly check the status

of memory by querying the DMV sys.dm_os_ring_buffers, which returns information

about memory allocation within SQL Server. I cover sys.dm_os_ring_buffers in more

detail in the following section.

 Additional Memory Monitoring Tools
While you can get the basis for the behavior of memory within SQL Server from the

Performance Monitor counters, once you know that you need to spend time looking

at your memory usage, you’ll need to take advantage of other tools and tool sets. The

following are some of the commonly used reference points for identifying memory

issues on a SQL Server system. A few of these tools are only of use for in-memory OLTP

management. Some of these tools, while actively used by large numbers of the SQL

Server community, are not documented within SQL Server Books Online. This means

they are absolutely subject to change or removal.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

41

 DBCC MEMORYSTATUS
This command goes into the SQL Server memory and reads out the current allocations.

It’s a moment-in-time measurement, a snapshot. It gives you a set of measures of where

memory is currently allocated. The results from running the command come back as two

basic result sets, as you can see in Figure 2-5.

Figure 2-5. Output of DBCC MEMORYSTATUS

The first data set shows basic allocations of memory and counts of occurrences.

For example, Available Physical Memory is a measure of the memory available on

the system, whereas Page Faults is just a count of the number of page faults that have

occurred.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

42

The second data set shows different memory managers within SQL Server and

the amount of memory they have consumed at the moment that the MEMORYSTATUS

command was called.

Each of these can be used to understand where memory allocation is occurring

within the system. For example, in most systems, most of the time the primary consumer

of memory is the buffer pool. You can compare the Target Committed value to the

Current Committed value to understand if you’re seeing pressure on the buffer pool.

When Target Committed is higher than Current Committed, you might be seeing buffer

cache problems and need to figure out which process within your currently executing

SQL Server processes is using the most memory. This can be done using a dynamic

management object, sys.dm_os_performance_counters.

The remaining data sets are various memory managers, memory clerks, and other

memory stores from the full dump of memory that DBCC MEMORYSTATUS produces.

They’re only going to be interesting in narrow circumstances when dealing with

particular aspects of SQL Server management, and they fall far outside the scope of this

book to document them all. You can read more in the MSDN article “How to use the

DBCC MEMORYSTATUS command” (http://bit.ly/1eJ2M2f).

 Dynamic Management Views
There are a large number of memory-related DMVs within SQL Server. Several of

them have been updated with SQL Server 2017, and some new ones have been added.

Reviewing all of them is outside the scope of this book. There are three that are the most

frequently used when determining whether you have memory bottlenecks within SQL

Server. There are also another two that are useful when you need to monitor your in-

memory OLTP memory usage.

 Sys.dm_os_memory_brokers

While most of the memory within SQL Server is allocated to the buffer cache, there are a

number of processes within SQL Server that also can, and will, consume memory. These

processes expose their memory allocations through this DMV. You can use this to see

what processes might be taking resources away from the buffer cache in the event you

have other indications of a memory bottleneck.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

http://bit.ly/1eJ2M2f

43

 Sys.dm_os_memory_clerks

A memory clerk is the process that allocates memory within SQL Server. Looking at what

these processes are up to allows you to understand whether there are internal memory

allocation issues going on within SQL Server that might rob the procedure cache of

needed memory. If the Performance Monitor counter for Private Bytes is high, you can

determine which parts of the system are being consumed through the DMV.

If you have a database using in-memory OLTP storage, you can use sys.dm_db_xtp_

table_memory_stats to look at the individual database objects. But if you want to look

at the allocations of these objects across the entire instance, you’ll need to use sys.

dm_os_memory_clerks.

 Sys.dm_os_ring_buffers

This DMV is not documented within Books Online, so it is subject to change or removal.

It changed between SQL Server 2008R2 and SQL Server 2012. The queries I normally run

against it still seem to work for SQL Server 2017, but you can’t count on that. This DMV

outputs as XML. You can usually read the output by eye, but you may need to implement

XQuery to get really sophisticated reads from the ring buffers.

A ring buffer is nothing more than a recorded response to a notification. Ring

buffers are kept within this DMV, and accessing sys.dm_os_ring_buffers allows you

to see things changing within your memory. Table 2-2 describes the main ring buffers

associated with memory.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

44

There are other ring buffers available, but they are not applicable to memory

allocation issues.

 Sys.dm_db_xtp_table_memory_stats

To see the memory in use by the tables and indexes that you created in-memory, you

can query this DMV. The output measures the memory allocated and memory used for

the tables and indexes. It outputs only the object_id, so you’ll need to also query the

system view sys.objects to get the names of tables or indexes. This DMV outputs for the

database you are currently connected to when querying.

 Sys.dm_xtp_system_memory_consumers

This DMV shows system structures that are used to manage the internals of the in-

memory engine. It’s not something you should normally have to deal with, but when

troubleshooting memory issues, it’s good to understand if you’re dealing directly with

something occurring within the system or just the amount of data that you’ve loaded

into memory. The principal measures you’d be looking for here are the allocated and

used bytes shown for each of the management structures.

Table 2-2. Main Ring Buffers Associated with Memory

Ring Buffer Ring_buffer_type Use

resource

Monitor

rinG_BUffer_

resoUrCe_

Monitor

as memory allocation changes, notifications of this change are

recorded here. this information can be useful for identifying

external memory pressure.

out of

Memory

rinG_BUffer_

ooM

When you get out-of-memory issues, they are recorded here so

you can tell what kind of memory action failed.

Memory

Broker

rinG_BUffer_

MeMory_BroKer

as the memory internal to sQl server drops, a low memory

notification will force processes to release memory for the

buffer. these notifications are recorded here, making this a

useful measure for when internal memory pressure occurs.

Buffer pool rinG_BUffer_

BUffer_pool

notifications of when the buffer pool itself is running out of

memory are recorded here. this is just a general indication of

memory pressure.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

45

 Monitoring Memory in Linux
You won’t have Perfmon within the Linux operating system. However, this doesn’t

mean you can’t observe memory behavior on the server to understand how the system

is behaving. You can query the DMVs sys.dm_os_performance_counters and sys.dm_

os_wait_stats within a SQL Server 2017 instance running on Linux to observe memory

behavior in that way.

Additional monitoring of the Linux OS can be done through native Linux tools.

There are a large number of them, but a commonly used one is Grafana. It’s open source

with lots of documentation available online. The SQL Server Customer Advisory

Team has a documented method for monitoring Linux that I can recommend:

http://bit.ly/2wi73bA.

 Memory Bottleneck Resolutions
When there is high stress on memory, indicated by a large number of hard page faults,

you can resolve a memory bottleneck using the flowchart shown in Figure 2-6.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

http://bit.ly/2wi73bA

46

A few of the common resolutions for memory bottlenecks are as follows:

• Optimizing application workload

• Allocating more memory to SQL Server

Figure 2-6. Memory bottleneck resolution chart

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

47

• Moving in-memory tables back to standard storage

• Increasing system memory

• Changing from a 32-bit to a 64-bit processor

• Enabling 3GB of process space

• Compressing data

• Addressing fragmentation

Of course, fixing any of the query issues that can lead to excessive memory use is

always an option. Let’s take a look at each of these in turn.

 Optimizing Application Workload
Optimizing application workload is the most effective resolution most of the time,

but because of the complexity and challenges involved in this process, it is usually

considered last. To identify the memory-intensive queries, capture all the SQL queries

using Extended Events (which you will learn how to use in Chapter 6) or use Query Store

(which we’ll cover in Chapter 11) and then group the output on the Reads column. The

queries with the highest number of logical reads contribute most often to memory stress,

but there is not a linear correlation between the two. You can also use sys.dm_exec_

query_stats, a DMV that collects query metrics for queries that are actively in cache to

identify the same thing. But, since this DMV is based on cache, it may not be as accurate

as capturing metrics using Extended Events, although it will be quicker and easier. You

will see how to optimize those queries in more detail throughout this book.

 Allocating More Memory to SQL Server
As you learned in the “SQL Server Memory Management” section, the max server

memory configuration can limit the maximum size of the SQL Server buffer memory

pool. If the memory requirement of SQL Server is more than the max server memory

value, which you can tell through the number of hard page faults, then increasing the

value will allow the memory pool to grow. To benefit from increasing the max server

memory value, ensure that enough physical memory is available in the system.

If you are using in-memory OLTP storage, you may need to adjust the memory

percentages allocated to the resource pools you have defined for your in-memory

objects. But, that will take memory from other parts of your SQL Server instance.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

48

 Moving In-Memory Tables Back to Standard Storage
Introduced in SQL Server 2014, a new table type was introduced called the in-memory

table. This moves the storage of tables from the disk to memory, radically improving the

performance. But, not all tables or all workloads will benefit from this new functionality.

You need to keep an eye on your general query performance metrics for in-memory

tables and take advantage of the specific DMVs that let you monitor the in-memory

tables. I’ll be covering all this in detail in Chapter 24. If your workload doesn’t work well

with in-memory tables or you just don’t have enough memory in the system, you may

need to move those in-memory tables back to disk storage.

 Increasing System Memory
The memory requirement of SQL Server depends on the total amount of data processed

by SQL activities. It is not directly correlated to the size of the database or the number of

incoming SQL queries. For example, if a memory-intensive query performs a cross join

between two small tables without any filter criteria to narrow down the result set, it can

cause high stress on the system memory.

One of the easiest and quickest resolutions is to simply increase system memory

by purchasing and installing more. However, it is still important to find out what is

consuming the physical memory because if the application workload is extremely

memory intensive, you could soon be limited by the maximum amount of memory a

system can access. To identify which queries are using more memory, query the sys.

dm_exec_query_memory_grants DMV and collect metrics on queries and their I/O

use. Just be careful when running queries against this DMV using a JOIN or ORDER BY

statement; if your system is already under memory stress, these actions can lead to your

query needing its own memory grant.

 Changing from a 32-Bit to a 64-Bit Processor
Switching the physical server from a 32-bit processor to a 64-bit processor (and

the attendant Windows Server software upgrade) radically changes the memory

management capabilities of SQL Server. The limitations on SQL Server for memory go

from 3GB to a limit of up to 24TB depending on the version of the operating system and

the specific processor type.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

49

Prior to SQL Server 2012, it was possible to add up to 64GB of data cache to a SQL

Server instance through the use of Address Windowing Extensions. These were removed

from SQL Server 2012, so a 32-bit instance of SQL Server is limited to accessing only 3GB

of memory. Only small systems should be running 32-bit versions of SQL Server prior to

2017 because of this limitation.

SQL Server 2017 does not support the x86 chip set. You must move on to a 64-bit

processor to use 2017.

 Compressing Data
Data compression has a number of excellent benefits for storing and retrieving

information. It has an added benefit that many people aren’t aware of: while compressed

information is stored in memory, it remains compressed. This means more information

can be moved while using less system memory, increasing your overall memory

throughput. All this does come at some cost to the CPU, so you’ll need to keep an eye

on that to be sure you’re not just transferring stress. Sometimes you may not see much

compression because of the nature of your data.

 Enabling 3GB of Process Address Space
Standard 32-bit addresses can map a maximum of 4GB of memory. The standard

address spaces of 32-bit Windows operating system processes are therefore limited

to 4GB. Out of this 4GB process space, by default the upper 2GB is reserved for the

operating system, and the lower 2GB is made available to the application. If you specify a

/3GB switch in the boot.ini file of the 32-bit OS, the operating system reserves only 1GB

of the address space, and the application can access up to 3GB. This is also called 4-gig

tuning (4GT). No new APIs are required for this purpose.

Therefore, on a machine with 4GB of physical memory and the default Windows

configuration, you will find available memory of about 2GB or more. To let SQL Server

use up to 3GB of the available memory, you can add the /3GB switch in the boot.ini

file as follows:

[boot loader]

timeout=30

default=multi(o)disk(o)rdisk(o)partition(l)\WINNT

[operating systems]

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

50

multi(o)disk(o)rdisk(o)partition(l)\WINNT=

"Microsoft Windows Server 2016 Advanced Server"

/fastdetect /3GB

The /3GB switch should not be used for systems with more than 16GB of physical

memory, as explained in the following section, or for systems that require a higher

amount of kernel memory.

SQL Server 2017 on 64-bit systems can support up to 24TB on an x64 platform. It

no longer makes much sense to put production systems, especially enterprise-level

production systems, on 32-bit architecture, and you can’t with SQL Server 2017.

 Addressing Fragmentation
While fragmentation of storage may not sound like a performance issue because of how

SQL Server retrieves information from disk and into memory, a page of information

is accessed. If you have a high level of fragmentation, that will translate itself straight

to your memory management since you have to store the pages retrieved from disk in

memory as they are, empty space and all. So, while fragmentation may affect storage, it

also can affect memory. I address fragmentation in Chapter 17.

 Summary
In this chapter, you were introduced to the Performance Monitor and DMVs. You

explored different methods of gathering metrics on memory and memory behavior

within SQL Server. Understanding how memory behaves will help you understand how

your system is performing. You also saw a number of possible resolutions to memory

issues, other than simply buying more memory. SQL Server will make use of as much

memory as you can supply it, so manage this resource well.

In the next chapter, you will be introduced to the next system bottleneck, the disk

and the disk subsystems.

Chapter 2 MeMory perforManCe analysis

www.EBooksWorld.ir

51
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_3

CHAPTER 3

Disk Performance
Analysis
The disks and the disk subsystem, which includes the controllers and connectors and

management software, are one of the single slowest parts of any computing system.

Over the years, memory has become faster and faster. The same can be said of CPUs.

But disks, except for some of the radical improvements we’ve seen recently with

technologies such as solid-state disks (SSDs), have not changed that much; disks are

still one of the slowest parts of most systems. This means you’re going to want to be

able to monitor your disks to understand their behavior. In this chapter, you’ll explore

areas such as the following:

• Using system counters to gather disk performance metrics

• Using other mechanisms of gathering disk behavior

• Resolving disk performance issues

• Differences when dealing with Linux OS and disk I/O

 Disk Bottleneck Analysis
SQL Server can have demanding I/O requirements, and since disk speeds are

comparatively much slower than memory and processor speeds, a contention in I/O

resources can significantly degrade SQL Server performance. Analysis and resolution

of any I/O path bottleneck can improve SQL Server performance significantly. As with

any performance metrics, taking a single counter or a single measure and basing your

determination of good or bad performance based on that measure will lead to problems.

This is even more true when it comes to modern disk and I/O management systems

between old-school RAID systems and modern disk virtualization because measuring

www.EBooksWorld.ir

52

I/O is a complex topic. Plan on using multiple metrics to understand how the I/O

subsystem within your environment is behaving. With all the information here, this

chapter covers only the basics.

There are other mechanisms in modern systems that are also going to make measuring

I/O more difficult. A lot more systems are running virtually and sharing resources including

disks. This will lead to a lot more random I/O, so you’ll have to take that into account when

looking at the measures throughout this chapter. Antivirus programs are a frequent problem

when it comes to I/O, so be sure you validate if you’re dealing with that prior to using the I/O

metrics we’re getting ready to talk about. You may also see issues with filter drivers acting as a

bottleneck in your I/O paths, so this is another thing to look at.

One thing you need to know about before we talk about metrics and resolutions is how

the checkpoint process works. When SQL Server writes data, it first writes it all to memory

(and we’ll talk about memory issues in Chapter 4). Any pages in memory that have changes

in them are known as dirty pages. The checkpoint process occurs periodically based on

internal measures and your recovery interval settings. The checkpoint process writes the

dirty pages to disk and records all the changes to the transaction log. The checkpoint process

is the primary driver of the write I/O activity you’ll see within SQL Server.

Let’s see how we can measure the behavior of the I/O subsystem.

 Disk Counters
To analyze disk performance, you can use the counters shown in Table 3-1.

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

53

Table 3-1. Performance Monitor Counters to Analyze I/O Pressure

Object
(lnstance[,lnstanceN])

Counter Description Value

physicalDisk

(Data-disk, log- disk)

Disk transfers/

sec

rate of read/write

operations on disk

maximum value dependent

on i/o subsystem

Disk Bytes/sec amount of data transfer to/

from per disk per second

maximum value dependent

on i/o subsystem

avg. Disk sec/

read

average time in ms

to read from disk

average value < 10 ms,

but compare to baseline

avg. Disk sec/

Write

average time in ms

to write to disk

average value < 10 ms,

but compare to baseline

sQlserver:

Buffer manager

page reads/sec number of pages being

read into the buffer manager

Compare to baseline

page writes/sec number of pages being

written out of the buffer

manager

Compare to baseline

The PhysicalDisk counters represent the activities on a physical disk. LogicalDisk

counters represent logical subunits (or partitions) created on a physical disk. If you

create two partitions, say R: and S:, on a physical disk, then you can monitor the disk

activities of the individual logical disks using logical disk counters. However, because a

disk bottleneck ultimately occurs on the physical disk, not on the logical disk, it is usually

preferable to use the PhysicalDisk counters.

Note that for a hardware redundant array of independent disks (RAID) subsystem

(see the “Using a RAID Array” section for more on RAID), the counters treat the

array as a single physical disk. For example, even if you have ten disks in a RAID

configuration, they will all be represented as one physical disk to the operating system,

and subsequently you will have only one set of PhysicalDisk counters for that RAID

subsystem. The same point applies to storage area network (SAN) disks (see the “Using a

SAN System” section for specifics). You’ll also see this in many of the more modern disk

systems and virtual disks. Because of this, some of the numbers represented in Table 3-1

may be radically lower (or higher) than what your system can support.

Take all these numbers as general guidelines for monitoring your disks and adjust

the numbers to account for the fact that technology is constantly shifting, and you

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

54

may see different performance as the hardware improves. We’re moving into more

and more solid-state drives and even SSD arrays that make disk I/O operations orders

of magnitude faster. Where we’re not moving in SSD, we’re taking advantage of iSCSI

interfaces. As you work with these types of hardware, keep in mind that these numbers

are more in line with platter-style disk drives and that those are fast becoming obsolete.

 Disk Transfers/Sec
Disk Transfers/sec monitors the rate of read and write operations on the disk. A typical

hard disk drive today can do about 180 disk transfers per second for sequential I/O

(IOPS) and 100 disk transfers per second for random I/O. In the case of random I/O, Disk

Transfers/sec is lower because more disk arm and head movements are involved. OLTP

workloads, which are workloads for doing mainly singleton operations, small operations,

and random access, are typically constrained by disk transfers per second. So, in the case

of an OLTP workload, you are more constrained by the fact that a disk can do only 100

disk transfers per second than by its throughput specification of 1000MB per second.

Note an ssD can be anywhere from around 5,000 iops to as much as 500,000
iops for some high-end ssD systems. your monitoring of Disk transfers/sec will
need to scale accordingly. see your vendor for details on this measure.

Because of the inherent slowness of a disk, it is recommended that you keep disk

transfers per second as low as possible.

 Disk Bytes/Sec
The Disk Bytes/sec counter monitors the rate at which bytes are transferred to or

from the disk during read or write operations. A typical disk spinning at 7200RPM can

transfer about 1000MB per second. Generally, OLTP applications are not constrained

by the disk transfer capacity of the disk subsystem since the OLTP applications access

small amounts of data in individual database requests. If the amount of data transfer

exceeds the capacity of the disk subsystem, then a backlog starts developing on the disk

subsystem, as reflected by the Disk Queue Length counters.

Again, these numbers may be much higher for SSD access since it’s largely limited

only by the latency caused by the drive to host interface.

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

55

 Avg. Disk Sec/Read and Avg. Disk Sec/Write
Avg. Disk Sec/Read and Avg. Disk Sec/Write track the average amount of time it takes in

milliseconds to read from or write to a disk. Having an understanding of just how well

the disks are handling the writes and reads that they receive can be a strong indicator

of where problems are. If it’s taking more than about 10ms to move the data from or

to your disk, you may need to take a look at the hardware and configuration to be sure

everything is working correctly. You’ll need to get even better response times for the

transaction log to perform well.

In terms of measuring performance of your I/O system, these are the single best

measure. Sec/Read or Write may not tell you which query or queries are causing

problems. These measures will tell you absolutely how your I/O system is behaving, so I

would include them along with any other set of metrics you gather.

 Buffer Manager Page Reads/Writes
While measuring the I/O system is important, as mentioned earlier, you need to have

more than one measure to show how the I/O system is behaving. Knowing the pages

being moved into and out of your buffer manager gives you a great indication as to

whether the I/O you are seeing is within SQL Server. It’s one of the measures you’ll want

to add to any others when trying to demonstrate an I/O issue.

 Additional I/O Monitoring Tools
Just like with all the other tools, you’ll need to supplement the information you gather

from Performance Monitor with data available in other sources. The really good

information for I/O and disk issues are all in DMOs.

 Sys.dm_io_virtual_file_stats
This is a function that returns information about the files that make up a database. You

call it something like the following:

SELECT *

FROM sys.dm_io_virtual_file_stats(DB_ID('AdventureWorks2017'), 2) AS

divfs;

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

56

It returns several interesting columns of information about the file. The most

interesting things are the stall data, which is the time that users are waiting on different

I/O operations. First, io_stall_read_ms represents the amount of time in milliseconds

that users are waiting for reads. Then there is io_stall_write_ms, which shows you the

amount of time that write operations have had to wait on this file within the database.

You can also look at the general number, io_stall, which represents all waits on I/O for

the file. To make these numbers meaningful, you get one more value, sample_ms, which

shows the amount of time measured. You can compare this value to the others to get a

sense of the degree that I/O issues are holding up your system. Further, you can narrow

this down to a particular file so you know what’s slowing things down in the log or in a

particular data file. This is an extremely useful measure for determining the existence

of an I/O bottleneck. It doesn’t help that much to identify the particular bottleneck.

Combine this with wait statistics and the Perfmon metrics mentioned earlier.

 Sys.dm_os_wait_stats
This is a useful DMO that shows aggregate information about waits on the system. To

determine whether you have an I/O bottleneck, you can take advantage of this DMO by

querying it like this:

SELECT *

FROM sys.dm_os_wait_stats AS dows

WHERE wait_type LIKE 'PAGEIOLATCH%';

What you’re looking at are the various I/O latch operations that are causing waits

to occur. Like with sys.dm_io_virtual_status, you don’t get a specific query from

this DMO, but it does identify whether you have a bottleneck in I/O. Like many of the

performance counters, you can’t simply look for a value here. You need to compare the

current values to a baseline value to arrive at your current situation.

The WHERE clause shown earlier uses PAGEIOLATCH%, but you should also look

for waits related to other I/O processes such as WRITELOG, LOGBUFFER, and ASYNC_

IO_COMPLETION.

When you run this query, you get a count of the waits that have occurred as well

as an aggregation of the total wait time. You also get a max value for these waits so you

know what the longest one was since it’s possible that a single wait could have caused

the majority of the wait time.

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

57

Don’t forget that you can see wait statistics in the Query Store. We’ll cover those in

detail in Chapter 11.

 Monitoring Linux I/0
For I/O monitoring, you’ll be limited either to SQL Server internals or to taking

advantage of Linux-specific monitoring tools such as were mentioned in Chapter 2. The

fundamentals of input and output within the Linux system are not very different from

those within the Windows OS. The principal difference is just in how you capture disk

behavior at the OS level.

 Disk Bottleneck Resolutions
A few of the common disk bottleneck resolutions are as follows:

• Optimizing application workload

• Using a faster I/O path

• Using a RAID array

• Using a SAN system

• Using solid-state drives

• Aligning disks properly

• Adding system memory

• Creating multiple files and filegroups

• Moving the log files to a separate physical drive

• Using partitioned tables

I’ll now walk you through each of these resolutions in turn.

 Optimizing Application Workload
I cannot stress enough how important it is to optimize an application’s workload in

resolving a performance issue. The queries with the highest number of reads or writes

will be the ones that cause a great deal of disk I/O. I’ll cover the strategies for optimizing

those queries in more detail throughout the rest of this book.

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

58

 Using a Faster I/O Path
One of the most efficient resolutions, and one that you will adopt any time you can, is

to use drives, controllers, and other architecture with faster disk transfers per second.

However, you should not just upgrade disk drives without further investigation; you need

to find out what is causing the stress on the disk.

 Using a RAID Array
One way of obtaining disk I/O parallelism is to create a single pool of drives to serve all

SQL Server database files, excluding transaction log files. The pool can be a single RAID

array, which is represented in Windows Server 2016 as a single physical disk drive. The

effectiveness of a drive pool depends on the configuration of the RAID disks.

Out of all available RAID configurations, the most commonly used RAID

configurations are the following (also shown in Figure 3-1):

• RAID 0: Striping with no fault tolerance

• RAID 1: Mirroring

• RAID 5: Striping with parity

• RAID 1+0: Striping with mirroring

Figure 3-1. RAID configurations

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

59

 RAID 0

Since this RAID configuration has no fault tolerance, you can use it only in situations

where the reliability of data is not a concern. The failure of any disk in the array will

cause complete data loss in the disk subsystem. Therefore, you shouldn’t use it for any

data file or transaction log file that constitutes a database, except, possibly, for the system

temporary database called tempdb. The number of I/Os per disk in RAID 0 is represented

by the following equation:

I/Os per disk = (Reads + Writes) / Number of disks in the array

In this equation, Reads is the number of read requests to the disk subsystem, and

Writes is the number of write requests to the disk subsystem.

 RAID 1

RAID 1 provides high fault tolerance for critical data by mirroring the data disk onto a

separate disk. It can be used where the complete data can be accommodated in one disk

only. Database transaction log files for user databases, operating system files, and SQL

Server system databases (master and msdb) are usually small enough to use RAID 1.

The number of I/Os per disk in RAID 1 is represented by the following equation:

I/Os per disk =(Reads + 2 X Writes) / 2

 RAID 5

RAID 5 is an acceptable option in many cases. It provides reasonable fault tolerance

by effectively using only one extra disk to save the computed parity of the data in other

disks, as shown in Figure 3-1. When there is a disk failure in RAID 5 configuration, I/O

performance becomes terrible, although the system does remain usable while operating

with the failed drive.

Any data where writes make up more than 10 percent of the total disk requests is not

a good candidate for RAID 5. Thus, use RAID 5 on read-only volumes or volumes with a

low percentage of disk writes.

The number of I/Os per disk in RAID 5 is represented by the following equation:

I/Os per disk = (Reads + 4 X Writes) / Number of disks in the array

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

60

As shown in this equation, the write operations on the RAID 5 disk subsystem

are magnified four times. For each incoming write request, the following are the four

corresponding I/O requests on the disk subsystem:

• One read I/O to read existing data from the data disk whose content

is to be modified

• One read I/O to read existing parity information from the

corresponding parity disk

• One write I/O to write the new data to the data disk whose content is

to be modified

• One write I/O to write the new parity information to the

corresponding parity disk

Therefore, the four I/Os for each write request consist of two read I/Os and two

write I/Os.

In an OLTP database, all the data modifications are immediately written to the

transaction log file as part of the database transaction, but the data in the data file itself is

synchronized with the transaction log file content asynchronously in batch operations. This

operation is managed by the internal process of SQL Server called the checkpoint process.

The frequency of this operation can be controlled by using the recovery interval (min)

configuration parameter of SQL Server. Just remember that the timing of checkpoints can be

controlled through the use of indirect checkpoints introduced in SQL Server 2012.

Because of the continuous write operation in the transaction log file for a highly

transactional OLTP database, placing transaction log files on a RAID 5 array will

degrade the array’s performance. Although, where possible, you should not place the

transactional log files on a RAID 5 array, the data files may be placed on RAID 5 since the

write operations to the data files are intermittent and batched together to improve the

efficiency of the write operation.

 RAID 6

RAID 6 is an added layer on top of RAID 5. An extra parity block is added to the storage

of RAID 5. This doesn’t negatively affect reads in any way. This means that, for reads,

performance is the same as RAID 5. There is an added overhead for the additional

write, but it’s not that large. This extra parity block was added because RAID arrays are

becoming so large these days that data loss is inevitable. The extra parity block acts as a

check against this to better ensure that your data is safe.

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

61

 RAID 1+0 (RAID 10)

RAID 1+0 (also referred to RAID 10) configuration offers a high degree of fault tolerance

by mirroring every data disk in the array. It is a much more expensive solution than RAID

5, since double the number of data disks are required to provide fault tolerance. This

RAID configuration should be used where a large volume is required to save data and

more than 10 percent of disk requests are writes. Since RAID 1+0 supports split seeks (the

ability to distribute the read operations onto the data disk and the mirror disk and then

converge the two data streams), read performance is also very good. Thus, use RAID 1+0

wherever performance is critical.

The number of I/Os per disk in RAID 1+0 is represented by the following equation:

I/Os per disk = (Reads + 2 X Writes) / Number of disks in the array

 Using a SAN System
SANs remain largely the domain of large-scale enterprise systems, although the cost

has dropped. A SAN can be used to increase the performance of a storage subsystem

by simply providing more spindles and disk drives to read from and write to. Because

of their size, complexity, and cost, SANs are not necessarily a good solution in all cases.

Also, depending on the amount of data, direct-attached storage (DAS) can be configured

to run faster. The principal strength of SAN systems is not reflected in performance but

rather in the areas of scalability, availability, and maintenance.

Another area where SANs are growing are SAN devices that use Internet Small

Computing System Interface (iSCSI) to connect a device to the network. Because of how

the iSCSI interface works, you can make a network device appear to be locally attached

storage. In fact, it can work nearly as fast as locally attached storage, but you get to

consolidate your storage systems.

Conversely, you may achieve performance gains by going to local disks and getting

rid of the SAN. SAN systems are extremely redundant by design. But, that redundancy

adds a lot of overhead to disk operations, especially the type typically performed by SQL

Server: lots of small writes done rapidly. While moving from a single local disk to a SAN

can be an improvement, depending on your systems and the disk subsystem you put

together, you could achieve even better performance outside the SAN.

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

62

 Using Solid-State Drives
Solid-state drives are taking the disk performance world by storm. These drives use

memory instead of spinning disks to store information. They’re quiet, lower power,

and supremely fast. However, they’re also quite expensive when compared to hard disk

drives (HDDs). At this writing, it costs approximately $.03/GB for an HDD and

$.90/GB for an SSD. But that cost is offset by an increase in speed from approximately

100 operations per second to 5,000 operations per second and up. You can also put SSDs

into arrays through a SAN or RAID, further increasing the performance benefits. There

are a limited number of write operations possible on an SSD drive, but the failure rate is

no higher than that from HDDs so far. There are also hybrid solutions with varying price

points and performance metrics. For a hardware-only solution, implementing SSDs is

probably the best operation you can do for a system that is I/O bound.

 Aligning Disks Properly
Windows Server 2016 aligns disks as part of the install process, so modern servers

should not be running into this issue. However, if you have an older server, this can

still be a concern. You’ll also need to worry about this if you’re moving volumes from

a pre-Windows Server 2008 system. You will need to reformat these in order to get the

alignment set appropriately. The way data is stored on a disk is in a series of sectors (also

referred to as blocks) that are stored on tracks. A disk is out of alignment when the size

of the track, determined by the vendor, consists of a number of sectors different from

the default size you’re writing to. This means that one sector will be written correctly,

but the next one will have to cross two tracks. This can more than double the amount of

I/O required to write or read from the disk. The key is to align the partition so that you’re

storing the correct number of sectors for the track.

 Adding System Memory
When physical memory is scarce, the system starts writing the contents of memory

back to disk and reading smaller blocks of data more frequently, or reading large blocks,

both of which cause a lot of paging. The less memory the system has, the more the

disk subsystem is used. This can be resolved using the memory bottleneck resolutions

enumerated in the previous section.

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

63

 Creating Multiple Files and Filegroups
In SQL Server, each user database consists of one or more data files and usually one

transaction log file. The data files belonging to a database can be grouped together in

one or more filegroups for administrative and data allocation/placement purposes.

For example, if a data file is placed in a separate filegroup, then write access to all the

tables in the filegroup can be controlled collectively by making the filegroup read-only

(transaction log files do not belong to any filegroup).

You can create a filegroup for a database from SQL Server Management Studio, as

shown in Figure 3-2. The filegroups of a database are presented in the Filegroups pane of

the Database Properties dialog box.

Figure 3-2. Filegroups configuration

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

64

In Figure 3-2, you can see that there are three filegroups defined for the

WideWorldImporters database. You can add multiple files to multiple filegroups

distributed across multiple I/O paths so that work can be done in parallel across the

groups and distributed storage after you also move your database objects into those

different groups, literally putting multiple spindles and multiple I/O paths to work. But,

simply throwing lots of files, even on different disks, through a single disk controller may

result in worse performance, not better.

You can add a data file to a filegroup in the Database Properties dialog box in the

Files window by selecting from the drop-down list, as shown in Figure 3-3.

Figure 3-3. Data files configuration

You can also do this programmatically, as follows:

ALTER DATABASE WideWorldImporters

ADD FILEGROUP Indexes;

ALTER DATABASE WideWorldImporters

ADD FILE

 (

 NAME = AdventureWorks2017_Data2,

 FILENAME = 'c:\DATA\WWI_Index.ndf',

 SIZE = 20GB,

 FILEGROWTH = 10%

)

TO FILEGROUP Indexes;

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

65

By separating tables that are frequently joined into separate filegroups and then

putting files within the filegroups on separate disks or LUNS, the separated I/O paths

can result in improved performance, assuming of course the paths to those disks are

properly configured and not overloaded (do not mistake more disks for automatically

more I/O; it just doesn’t work that way). For example, consider the following query:

SELECT si.StockItemName,

 s.SupplierName

FROM Warehouse.StockItems AS si

JOIN Purchasing.Suppliers AS s

 ON si.SupplierID = s.SupplierID;

If the tables Warehouse.StockItems and Purchasing.Suppliers are placed in

separate filegroups containing one file each, the disks can be read from multiple I/O

paths, increasing performance.

It is recommended for performance and recovery purposes that, if multiple

filegroups are to be used, the primary filegroup should be used only for system objects,

and secondary filegroups should be used only for user objects. This approach improves

the ability to recover from corruption. The recoverability of a database is higher if the

primary data file and the log files are intact. Use the primary filegroup for system objects

only, and store all user-related objects on one or more secondary filegroups.

Spreading a database into multiple files, even on the same drive, makes it easy to

move the database files onto separate drives, making future disk upgrades easier. For

example, to move a user database file (WWI_Index.ndf) to a new disk subsystem (F:), you

can follow these steps:

 1. Detach the user database as follows:

USE master;

GO

EXEC sp_detach_db 'WideWorldImporters';

GO

 2. Copy the data file WWI_Index.ndf to a folder F:\Data\ on the new

disk subsystem.

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

66

 3. Reattach the user database by referring files at appropriate

locations, as shown here:

USE master;

GO

sp_attach_db 'WideWorldImporters',

 'R:\DATA\WWI_Primary.mdf',

’R:\DATA\WWI_UserData.ndf’,

 'F:\DATA\WWI_Indexes.ndf',

’R:\DATA\WWI_InMemory.ndf’,

 'S:\LOG\WWI_Log.1df ';

GO

 4. To verify the files belonging to a database, execute the following

commands:

USE WideWorldImporters;

GO

SELECT * FROM sys.database_files;

GO

 Moving the Log Files to a Separate Physical Disk
SQL Server transaction log files should always, when possible, be located on a separate

hard disk drive from all other SQL Server database files. Transaction log activity

primarily consists of sequential write I/O, unlike the nonsequential (or random) I/O

required for the data files. Separating transaction log activity from other nonsequential

disk I/O activity can result in I/O performance improvements because it allows the hard

disk drives containing log files to concentrate on sequential I/O. But, remember, there

are random transaction log reads, and the data reads and writes can be sequential as

much as the transaction log. There is just a strong tendency of transaction log writes to

be sequential.

However, creating a single disk for all your log files just brings you back to random

I/O again. If this particular log file is mission critical, it may need its own storage and

path to maximize performance.

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

67

The major portion of time required to access data from a hard disk is spent on the

physical movement of the disk spindle head to locate the data. Once the data is located,

the data is read electronically, which is much faster than the physical movement of the

head. With only sequential I/O operations on the log disk, the spindle head of the log

disk can write to the log disk with a minimum of physical movement. If the same disk is

used for data files, however, the spindle head has to move to the correct location before

writing to the log file. This increases the time required to write to the log file and thereby

hurts performance.

Even with an SSD disk, isolating the data from the transaction log means the work

will be distributed to multiple locations, improving the performance.

Furthermore, for SQL Server with multiple OLTP databases, the transaction log files

should be physically separated from each other on different physical drives to improve

performance. An exception to this requirement is a read-only database or a database

with few database changes. Since no online changes are made to the read-only database,

no write operations are performed on the log file. Therefore, having the log file on a

separate disk is not required for read-only databases.

As a general rule of thumb, you should try, where possible, to isolate files with the

highest I/O from other files with high I/O. This will reduce contention on the disks and

possibly improve performance. To identify those files using the most I/O, reference

sys.dm_io_virtual_file_stats.

 Using Partitioned Tables
In addition to simply adding files to filegroups and letting SQL Server distribute the data

between them, it’s possible to define a horizontal segmentation of data called a partition

so that data is divided between multiple files by the partition. A filtered set of data is

a segment; for example, if the partition is by month, the segment of data is any given

month. Creating a partition moves the segment of data to a particular filegroup and only

that filegroup. While partitioning is primarily a tool for making data management easier,

you can see an increase in speed in some situations because when querying against

well-defined partitions, only the files with the partitions of data you’re interested in will

be accessed during a given query through a process called partition elimination. If you

assume for a moment that data is partitioned by month, then each month’s data file

can be set to read-only as each month ends. That read-only status means you’ll recover

the system faster, and you can compress the storage resulting in some performance

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

68

improvements. Just remember that partitions are primarily a manageability feature.

While you can see some performance benefits from them in certain situations, it

shouldn’t be counted on as part of partitioning the data. SQL Server 2017 supports up to

15,000 partitions (just remember, that’s a limit, not a goal). Let me repeat, partitioning is

absolutely not a performance enhancement tool.

 Summary
This chapter focused on gathering and interpreting metrics about the behavior of your

disks. Just remember that every set of hardware can be fundamentally different, so

applying any hard-and-fast set of metrics around behavior can be problematic. You now

have the tools to gather disk performance metrics using Performance Monitor and some

T-SQL commands. The resolutions for disk bottlenecks are varied but must be explored if

you are dealing with bottlenecks related to disk behavior.

The next chapter completes the examination of system bottlenecks with a discussion

of the CPU.

Chapter 3 Disk performanCe analysis

www.EBooksWorld.ir

69
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_4

CHAPTER 4

CPU Performance
Analysis
This chapter concludes the book’s exploration of the system, with a discussion about

CPU, network, and general SQL Server metrics. The CPU is the work engine of a system

and keeps everything running. All the different calculations required for gathering and

delivering data, maintaining the system, and ordering access are performed by the

CPU. Getting bottlenecked on the CPU can be a difficult process to work out of. Unlike

memory, which you can sometimes easily install more of, or disks, which you can

sometimes easily add more of or upgrade, CPUs are an integral part of the system you’re

running on and can frequently be upgraded only by buying newer machines. So, you’ll

want to keep an eye on CPU usage. Networks are seldom a major bottleneck for SQL

Server, except of course when dealing with Azure SQL Database, but it’s good to keep an

eye on them too. Finally, there are some SQL Server internal processes that you’ll need to

gather metrics on. This chapter covers the following topics:

• How to gather metrics on the processor

• Additional metrics available through T-SQL queries

• Methods for resolving processor bottlenecks

 Processor Bottleneck Analysis
SQL Server makes heavy use of any processor resource available. You’re more likely to

be bottlenecked on I/O or memory, but you can hit issues with your CPUs as well. The

measures we’re covering here are focused on the operating systems and SQL Server.

However, in a virtualized environment, the measures we’re looking at for CPU are much

less likely to reflect reality. You’ll need to deal with whatever hypervisor or system you’re

www.EBooksWorld.ir

70

using for virtualization to understand exactly how some of the OS-level CPU measures

are actually reflecting reality. You may be experiencing external pressure or even external

throttling, none of which will be visible with the counters outlined here.

You can use the Performance Monitor counters in Table 4-1 to analyze pressure on

the processor resource.

Table 4-1. Performance Monitor Counters to Analyze CPU Pressure

Object
(Instance[,InstanceN])

Counter Description Value

Processor(_Total)% Processor Time Percentage of time

processor was busy

Average value < 80%,

but compare to baseline

% Privileged Percentage of processor

time spent in privileged

mode

Average value < 10%,

but compare to baseline

System Processor Queue

Length

Number of requests

outstanding on the

processor

Average value < 2, but

compare to baseline

Context

Switches/sec

Rate at which processor

is switched per

processor from one

thread to another

Average value < 5,000,

but compare to baseline

SQL Server:SQL Statistics Batch

Requests/sec

SQL command batches

received per second

Based on your standard

workload

SQL

Compilations/sec

Number of times SQL is

compiled

Based on your standard

workload

SQL

Recompilations/sec

Number of recompiles

Let’s discuss these counters in more detail.

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

71

 % Processor Time
% Processor Time should not be consistently high (greater than 80 percent). The effect of

any sustained processor time greater than 90 percent is effectively the same as that of 100

percent. If % Processor Time is consistently high and disk and network counter values

are low, your first priority must be to reduce the stress on the processor. Just remember

that the numbers here are simply suggestions; people can disagree with these numbers

for valid reasons. Use them as a starting point for evaluating your system, not as a

specific recommendation.

For example, if % Processor Time is 85 percent and you are seeing excessive disk

use by monitoring I/O counters, it is quite likely that a major part of the processor

time is spent on managing the disk activities. This will be reflected in the % Privileged

Time counter of the processor, as explained in the next section. In that case, it will be

advantageous to optimize the disk bottleneck first. Further, remember that the disk

bottleneck in turn can be because of a memory bottleneck, as explained earlier in the

chapter.

You can track processor time as an aggregate of all the processors on the machine, or

you can track the percentage utilization individually to particular processors. This allows

you to segregate the data collection in the event that SQL Server runs on three processors

of a four-processor machine. Remember, you might be seeing one processor maxed out

while another processor has little load. The average value wouldn’t reflect reality in that

case. Use the average value as just an indicator and the individual values as more of a

measure of actual load and processing on the system.

In a virtualized environment, the CPUs may be virtualized so that what you’re

seeing isn’t accurate. So, for example, in a VMware system, if you install the VMware

Tools, you’ll be able to look at a VM Processor counter to see the processor usage of the

host machine. Using this measure you can tell whether the CPU usage you’re seeing in

your OS is reflected in the hosting machine or whether you’re actually just maxing out

your virtual CPUs. On the other hand, running HyperV, you’d need to look to \Hyper-V

Hypervisor Logical Processor(_Total)\% Total Run Time for the same measure. You’ll

have other measures depending on the hypervisor you’re using.

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

72

 % Privileged Time
Processing on a Windows server is done in two modes: user mode and privileged (or

kernel) mode. All system-level activities, including disk access, are done in privileged

mode. If you find that % Privileged Time on a dedicated SQL Server system is 20 to 25

percent or more, then the system is probably doing a lot of external processing. It could

be I/O, a filter driver such as encryption services, defective I/O components, or even out-

of- date drivers. The % Privileged Time counter on a dedicated SQL Server system should

be at most 5 to 10 percent, but use your baseline to establish what looks like normal

behavior on your systems.

 Processor Queue Length
Processor Queue Length is the number of threads in the processor queue. (There is a

single processor queue, even on computers with multiple processors.) Unlike the disk

counters, the Processor Queue Length counter does not read threads that are already

running. On systems with lower CPU utilization, the Processor Queue Length counter is

typically 0 or 1.

A sustained Processor Queue Length counter of greater than 2 generally indicates

processor congestion. Because of multiple processors, you may need to take into account

the number of schedulers dealing with the processor queue length. A processor queue

length more than two times the number of schedulers (usually 1:1 with processors)

can also indicate a processor bottleneck. Although a high % Processor Time counter

indicates a busy processor, a sustained high Processor Queue Length counter is a more

certain indicator. If the recommended value is exceeded, this generally indicates that

there are more threads ready to run than the current number of processors can service in

an optimal way.

 Context Switches/Sec
The Context Switches/sec counter monitors the combined rate at which all processors on

the computer are switched from one thread to another. A context switch occurs when a

running thread voluntarily relinquishes the processor, is preempted by a higher- priority

ready thread, or switches between user mode and privileged mode to use an executive or

subsystem service. It is the sum of Thread:Context Switches/sec for all threads running on

all processors in the computer, and it is measured in numbers of switches.

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

73

High numbers are largely dictated by the speed of your CPUs, so measure

performance over time and compare this number to your baseline to understand when

you may be deviating.

 Batch Requests/Sec
Batch Requests/sec gives you a good indicator of just how much load is being placed

on the system, which has a direct correlation to how much load is being placed on the

processor. Since you could see a lot of low-cost queries on your system or a few high-cost

queries, you can’t look at this number by itself but must reference the other counters

defined in this section; 10,000 requests in a second would be considered a busy system.

Greater values may be cause for concern, completely depending on what is normal for

your system. The best way to know which value has meaning within your own systems is

to establish a baseline and then monitor from there. Just remember that a high number

here is not necessarily cause for concern. If all your other resources are in hand and

you’re sustaining a high number of batch requests/sec, it just means your server is busy.

 SQL Compilations/Sec
The SQL Compilations/sec counter shows both batch compiles and statement

recompiles as part of its aggregation. This number can be extremely high when a server

is first turned on (or after a failover or any other startup type event), but it will stabilize

over time. Once stable, significant or sustained spikes in compilations different from a

baseline measure is cause for concern and will certainly manifest as problems in the

processor since query compilation is an expensive operation. If you are working with

some type of object-relational mapping engine, such as nHibernate or Entity Framework,

a high number of compilations might be normal, though no less costly. Chapter 14

covers SQL compilation in detail.

 SQL Recompilations/Sec
SQL Recompilations/sec is a measure of the recompiles of both batches and statements.

A high number of recompiles can lead to processor stress. Because statement recompiles

are part of this count, it can be much higher than in versions of SQL Server prior to 2005.

Chapter 17 covers query recompilation in detail.

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

74

 Other Tools for Measuring CPU Performance
You can use the DMOs to capture information about your CPU as well. The information

in these DMOs will have to be captured by running the query and then keeping the

information as part of your baseline measurement.

 Sys.dm_os_wait_stats
Wait statistics are a good way to understand whether there are bottlenecks on the

system. You can’t simply say something greater than x is a bad number, though. You

need to gather metrics over time in order to understand what represents normal on your

system. The deviations from that are interesting. Queries against this DMO that look for

signal wait time can indicate CPU bottlenecks.

In the past, CXPACKET waits were considered a waste of time for measuring CPU

performance. However, with SQL Server 2016 SP2 and SQL Server 2017 CU3, a new

split on wait statistics has occurred. There is now a CXPACKET wait, which we care

about, and a CXCONSUMER wait, which is not important. If you’re running an Azure

SQL Database, you’ll see this same split. The core of the split is to cover consumers

and producers of parallelism, a major cause of CPU bottlenecks on some systems.

Consumers of parallelism, the operations receiving the data, generally have negligible

but measurable waits, in other words, CXCONSUMER waits. Now, CXPACKET measures

producers, or the operators that push the data. That changes things. CXPACKET is now a

wait that indicates real load on the system that is affecting your CPU.

 Sys.dm_os_workers and Sys.dm_os_schedulers
These DMOs display the worker and scheduler threads within the Windows operating

system. Running queries against these regularly will allow you to get counts of the

number of processes that are in a runnable state. This is an excellent indication of

processor load.

 Query Store
The Query Store isn’t specifically a measure of CPU, but the information it captures does

include both the CPU usage, aggregated, of the query in question and the wait statistics

for those queries, including any related to CPU.

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

75

 Measure CPU Behavior in Linux
You can still use sys.dm_os_wait_stats when running on Linux. This will give you

wait statistics that can indicate a CPU load. Otherwise, you’ll need to go the Linux

system itself. The generally recommended method for looking at CPU is to use the top

command. The output from that tool is documented here: https://bit.ly/2KbZmuZ.

 Processor Bottleneck Resolutions
A few of the common processor bottleneck resolutions are as follows:

• Optimizing application workload

• Eliminating or reducing excessive compiles/recompiles

• Using more or faster processors

• Not running unnecessary software

Let’s consider each of these resolutions in turn.

 Optimizing Application Workload
To identify the processor-intensive queries, capture all the SQL queries using Extended

Events sessions (which I will discuss in the next chapter) and then group the output on

the CPU column. Another method is to take advantage of the Query Store (discussed in

Chapter 11). You can retrieve information from sys.query_store_runtime_stats to see

multiple, aggregated, CPU metrics on a per-query basis. The queries with the highest

amount of CPU time contribute the most to the CPU stress. You should then analyze and

optimize those queries to reduce stress on the CPU. Frequently, the cause for CPU stress

is not extensive calculations within the queries but actually contention within logical

I/O. Addressing I/O issues can often help you resolve CPU issues as well. You can also

query directly against the sys.dm_exec_query_stats or sys.dm_exec_procedure_stats

dynamic management view to see immediate issues in real time. Finally, using both

a query hash and a query plan hash, you can identify and tune common queries or

common execution plans (this is discussed in detail in Chapter 14). Most of the rest of

the chapters in this book are concerned with optimizing application workload.

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

https://bit.ly/2KbZmuZ

76

 Eliminating Excessive Compiles/Recompiles
A certain number of query compiles and recompiles is simply to be expected, especially,

as already noted, when working with ORM tools. It’s when there is a large number

of these over-sustained periods that a problem exists. It’s also worth noting the ratio

between them. Having a high number of compiles and a low number of recompiles

means that few queries are being reused within the system (query reuse is covered

in detail in Chapter 9). A high number of recompiles will cause high processor use.

Methods for addressing recompiles are covered in Chapter 17.

 Using More or Faster Processors
One of the easiest resolutions, and one that you will adopt most of the time, is to

increase system processing power. However, because of the high cost involved in a

processor upgrade, you should first optimize CPU-intensive operations as much

as possible.

The system’s processing power can be increased by increasing the power of

individual processors or by adding more processors. When you have a high % Processor

Time counter and a low Processor Queue Length counter, it makes sense to increase the

power of individual processors. In the case of both a high % Processor Time counter and

a high Processor Queue Length counter, you should consider adding more processors.

Increasing the number of processors allows the system to execute more requests

simultaneously.

 Not Running Unnecessary Software
Corporate policy frequently requires virus checking software be installed on the server.

You can also have other products running on the server. When possible, no unnecessary

software should be running on the same server as SQL Server. Exterior applications that

have nothing to do with maintaining the Windows Server or SQL Server are best placed

on a different machine.

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

77

 Network Bottleneck Analysis
In SQL Server OLTP production environments, you will find few performance issues

that are because of problems with the network. Most of the network issues you face in

an OLTP environment are in fact hardware or driver limitations or issues with switches

or routers. Most of these issues can be best diagnosed with the Network Monitor tool.

However, Performance Monitor also provides objects that collect data on network

activity, as shown in Table 4-2.

Table 4-2. Performance Monitor Counters to Analyze Network Pressure

Object
(Instance[,InstanceN])

Counter Description Value

Network interface

(Network card)

Bytes Total/sec Rate at which bytes are

transferred on the NiC

Average value < 50% of

NiC capacity, but compare

with baseline

Network Segment % Net Utilization Percentage of network

bandwidth in use on a

network segment

Average value < 80% of

network bandwidth, but

compare with baseline

 Bytes Total/Sec
You can use the Bytes Total/sec counter to determine how the network interface card

(NIC) or network adapter is performing. The Bytes Total/sec counter should report high

values to indicate a large number of successful transmissions. Compare this value with

that reported by the Network Interface\Current Bandwidth performance counter, which

reflects each adapter’s bandwidth.

To allow headroom for spikes in traffic, you should usually average no more than

50 percent of capacity. If this number is close to the capacity of the connection and

if processor and memory use are moderate, then the connection may well be

a problem.

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

78

 % Net Utilization
The % Net Utilization counter represents the percentage of network bandwidth in use on

a network segment. The threshold for this counter depends on the type of network. For

Ethernet networks, for example, 30 percent is the recommended threshold when SQL

Server is on a shared network hub. For SQL Server on a dedicated full-duplex network,

even though near 100 percent usage of the network is acceptable, it is advantageous to

keep the network utilization below an acceptable threshold to keep room for the spikes

in the load.

Note you must install the Network monitor Driver to collect performance data
using the Network Segment object counters.

In Windows Server 2012 R2, you can install the Network Monitor Driver from the

local area connection properties for the network adapter. The Network Monitor Driver is

available in the network protocol list of network components for the network adapter.

You can also look at the wait statistics in sys.dm_os_wait_stats for network-related

waits. But, one that frequently comes up is ASYNC_NETWORK_IO. While this can be an

indication of network-related waits, it’s much more common to reflect waits caused by

poor programming code that is not consuming a result set efficiently.

 Network Bottleneck Resolutions
A few of the common network bottleneck resolutions are as follows:

• Optimizing application workload

• Adding network adapters

• Moderating and avoiding interruptions

Let’s consider these resolutions in more detail.

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

79

 Optimizing Application Workload
To optimize network traffic between a database application and a database server, make

the following design changes in the application:

• Instead of sending a long SQL string, create a stored procedure for

the SQL query. Then, you just need to send over the network the

name of the stored procedure and its parameters.

• Group multiple database requests into one stored procedure. Then,

only one database request is required across the network for the set

of SQL queries implemented in the stored procedure. This becomes

extremely important when talking about Azure SQL Database.

• Request a small data set. Do not request table columns that are not

used in the application logic.

• Move data-intensive business logic into the database as stored

procedures or database triggers to reduce network round-trips.

• If data doesn’t change frequently, try caching the information on the

application instead of frequently calling the database for information

that is going to be exactly the same as the last call.

• Minimize network calls, such as returning multiple result sets that are

not consumed. A common issue is caused by a result set returned by

SQL Server that includes each statement’s row count. You can disable

this by using SET NOCOUNT ON at the top of your query.

 SQL Server Overall Performance
To analyze the overall performance of a SQL Server instance, besides examining

hardware resource utilization, you should examine some general aspects of SQL Server.

You can use the performance counters presented in Table 4-3.

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

80

Let’s break these down into different areas of concern to show the counters within

the context where they would be more useful.

 Missing Indexes
To analyze the possibility of missing indexes causing table scans or large data set

retrievals, you can use the counter in Table 4-4.

Table 4-4. Performance Monitor Counter to Analyze

Excessive Data Scans

Object(Instance[,InstanceN]) Counter

SQLServer:Access methods full Scans/sec

Table 4-3. Performance Monitor Counters to Analyze Generic SQL Pressure

Object(Instance[,InstanceN]) Counter

SQLServer:Access methods freeSpace Scans/sec full Scans/sec Table Lock escalations/sec

Worktables Created/sec

SQLServer:Latches Total Latch Wait Time (ms)

SQLServer:Locks(_Total) Lock Timeouts/sec Lock Wait Time (ms) Number of

Deadlocks/sec

SQLServer:SQL Statistics Batch Requests/sec SQL Re-Compilations/sec

SQLServer:General Statistics Processes Blocked User ConnectionsTemp Tables Creation

RateTemp Tables for Destruction

 Full Scans/Sec

This counter monitors the number of unrestricted full scans on base tables or indexes.

Scans are not necessarily a bad thing. But they do represent a broader access of data, so

they are likely to indicate a problem. A few of the main causes of a high Full Scans/sec

value are as follows:

• Missing indexes

• Too many rows requested

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

81

• Not selective enough a predicate

• Improper T-SQL

• Data distribution or quantity doesn’t support a seek

To further investigate queries producing these problems, use Extended Events to

identify the queries (I will cover this tool in the next chapter). You can also retrieve this

information from the Query Store (Chapter 11). Queries with missing indexes, too many

rows requested, or badly formed T-SQL will have a large number of logical reads, caused

by scanning the entire table or entire index and an increased CPU time.

Be aware that full scans may be performed for the temporary tables used in a stored

procedure because most of the time you will not have indexes (or you will not need

indexes) on temporary tables. Still, adding this counter to the baseline helps identify the

possible increase in the use of temporary tables, which, when used inappropriately, can

be bad for performance.

 Dynamic Management Objects

Another way to check for missing indexes is to query the dynamic management view

sys.dm_db_missing_index_details. This management view returns information that

can suggest candidates for indexes based on the execution plans of the queries being run

against the database. The view sys.dm_db_missing_index_details is part of a series of

DMVs collectively referred to as the missing indexes feature. These DMVs are based on

data generated from execution plans stored in the cache. You can query directly against

this view to gather data to decide whether you want to build indexes based on the

information available from within the view. Missing indexes will also be shown within

the XML execution plan for a given query, but I’ll cover that more in the next chapter.

While these views are useful for suggesting possible indexes, since they can’t be linked

to a particular query, it can be unclear which of these indexes is most useful. You’ll be

better off using the techniques I show in the next chapter to associate a missing index

with a particular query. For all the missing index suggestions, you must test them prior to

implementing any suggestion on your systems.

The opposite problem to a missing index is one that is never used. The DMV

sys.dm_db_index_usage_stats shows which indexes have been used, at least since

the last restart of the SQL Server instance. Unfortunately, there are a number of ways

that counters within this DMV get reset or removed, so you can’t completely rely on it

for a 100 percent accurate view of index use. You can also view the indexes in use with

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

82

a lower-level DMV, sys.dm_db_index_operational_stats. It will help to show where

indexes are slowing down because of contention or I/O. I’ll cover these both in more

detail in Chapter 20. You may also find that the suggestions from the Database Tuning

Advisor (covered in Chapter 10) may be able to help you with specific indexes for

specific queries.

 Database Concurrency
To analyze the impact of database blocking on the performance of SQL Server, you can

use the counters shown in Table 4-5.

Table 4-5. Performance Monitor Counters to Analyze SQL Server Locking

Object(lnstance[,lnstanceN]) Counter

SQLServer:Latches Total Latch Wait Time (ms)

SQLServer:Locks(_Total) Lock Timeouts/sec

Lock Wait Time (ms)

Number of Deadlocks/sec

 Total Latch Wait Time (Ms)

Latches are used internally by SQL Server to protect the integrity of internal structures,

such as a table row, and are not directly controlled by users. This counter monitors total

latch wait time (in milliseconds) for latch requests that had to wait in the last second.

A high value for this counter can indicate that SQL Server is spending too much time

waiting on its internal synchronization mechanism. For a detailed discussion, see the

(older, but still relevant) white paper from Microsoft at https://bit.ly/2wx4gAJ.

 Lock Timeouts/Sec and Lock Wait Time (Ms)

You should expect Lock Timeouts/sec to be 0 and Lock Wait Time (ms) to be very low.

A nonzero value for Lock Timeouts/sec and a high value for Lock Wait Time (ms)

indicate that excessive blocking is occurring in the database. Three approaches can be

adopted in this case.

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

https://bit.ly/2wx4gAJ

83

• You can identify the costly queries currently in cache using data from

SQL Profiler or by querying sys.dm_exec_query_stats, and then you

can optimize the queries appropriately.

• You can use blocking analysis to diagnose the cause of excessive

blocking. It is usually advantageous to concentrate on optimizing the

costly queries first because this, in turn, reduces blocking for others.

In Chapter 20, you will learn how to analyze and resolve blocking.

• Extended Events supplies a blocking event called blocked_process_

report that you can enable and set a threshold to capture blocking

information. Extended Events will be covered in Chapter 6, and

blocked_process_report will be addressed in Chapter 20.

Just remember that some degree of locks is a necessary part of the system. You’ll

want to establish a baseline to track thoroughly whether a given value is cause for

concern.

 Number of Deadlocks/Sec

You should expect to see a 0 value for this counter. If you find a nonzero value, then

you should identify the victimized request and either resubmit the database request

automatically or suggest that the user do so. More important, an attempt should be made

to troubleshoot and resolve the deadlock. Chapter 21 shows how to do this.

 Nonreusable Execution Plans
Since generating an execution plan for a stored procedure query requires CPU cycles,

you can reduce the stress on the CPU by reusing the execution plan. To analyze the

number of stored procedures that are recompiling, you can look at the counter

in Table 4-6.

Table 4-6. Performance Monitor Counter to Analyze

Execution Plan Reusability

Object(lnstance[,lnstanceN]) Counter

SQLServer:SoL Statistics SoL Re-Compilations/sec

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

84

Recompilations of stored procedures add overhead on the processor. You want to see

a value as close to 0 as possible for the SOL Re-Compilations/sec counter, but you won’t

ever see that. If you consistently see values that deviate from your baseline measures

or that spike wildly, then you should use Extended Events to further investigate the

stored procedures undergoing recompilations. Once you identify the relevant stored

procedures, you should attempt to analyze and resolve the cause of recompilations. In

Chapter 17, you will learn how to analyze and resolve various causes of recompilation.

 General Behavior
SQL Server provides additional performance counters to track some general aspects of a

SQL Server system. Table 4-7 lists a couple of the most commonly used counters.

Table 4-7. Performance Monitor Counters to

Analyze Volume of Incoming Requests

Object(Instance[,InstanceN]) Counter

SQLServer:General Statistics User Connections

SQLServer:SQL Statistics Batch Requests/sec

 User Connections
Multiple read-only SQL Server instances can work together in a load-balancing

environment (where SQL Server is spread over several machines) to support a large

number of database requests. In such cases, it is better to monitor the User Connections

counter to evaluate the distribution of user connections across multiple SQL Server

instances. User Connections can range all over the spectrum with normal application

behavior. This is where a baseline is essential to determine the expected behavior. You

will see how you can establish this baseline shortly.

 Batch Requests/Sec
This counter is a good indicator of the load on SQL Server. Based on the level of system

resource utilization and Batch Requests/sec, you can estimate the number of users

SQL Server may be able to take without developing resource bottlenecks. This counter

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

85

value, at different load cycles, helps you understand its relationship with the number

of database connections. This also helps you understand SQL Server’s relationship

with Web Request/sec, that is, Active Server Pages.Requests/sec for web applications

using Microsoft Internet Information Services (IIS) and Active Server Pages (ASP). All

this analysis helps you better understand and predict system behavior as the user load

changes.

The value of this counter can range over a wide spectrum with normal application

behavior. A normal baseline is essential to determine the expected behavior.

 Summary
In this chapter, you learned how to gather metrics on the CPU, the network, and SQL

Server in general. All this information feeds into your ability to understand what’s

happening on your system before you delve into attempting to tune queries. Remember

that the CPU is affected by the other resources since it’s the thing that has to manage

those resources, so some situations that can look like a CPU problem are better

explained as a disk or memory issue. Networks are seldom a major bottleneck for SQL

Server. You have a number of methods of observing SQL Server internals behavior

through Performance Monitor counters, just like the other parts of the system. This

concludes the discussion of the various system metrics. Next, you’ll learn how to put all

that together to create a baseline.

ChAPTeR 4 CPU PeRfoRmANCe ANALySiS

www.EBooksWorld.ir

87
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_5

CHAPTER 5

Creating a Baseline
In the previous three chapters, you learned a lot about various possible system

bottlenecks caused by memory, the disk, and the CPU. I also introduced a number of

Performance Monitor metrics for gathering data on these parts of the system. Within the

descriptions of most of the counters, I referred to comparing your metric to a baseline.

This chapter will cover how to gather your metrics so that you have that baseline for

later comparison. I’ll go over how to configure an automated method of gathering this

information. A baseline is a fundamental part of understanding system behavior, so you

should always have one available. This chapter covers the following topics:

• Considerations for monitoring virtual and hosted machines

• How to set up an automated collection of Performance

Monitor metrics

• Considerations to avoid issues when using Performance Monitor

• Baselines for Azure SQL Database

• Creating a baseline

 Considerations for Monitoring Virtual and Hosted
Machines
Before you start creating the baseline, I will talk about virtual machines (VMs). More

and more SQL Server instances are running on VMs. When you are working with VMs

or you are hosting VMs in remote environments such as Amazon or Microsoft Azure,

many of the standard performance counters will no longer display accurate information.

If you monitor these counters within the VM, your numbers may not be helpful from

a troubleshooting perspective. If you monitor these counters on the physical box,

assuming you have access to it, which doubtless is shared by multiple different VMs, you

www.EBooksWorld.ir

88

will be unable to identify specific SQL Server instance resource bottlenecks. Because of

this, additional information must be monitored when working with a VM. Most of the

information that you can gather on disk and network performance is still applicable

within a VM setting. All query metric information will be accurate for those queries.

How long a query runs and how many reads it has are exactly that, the length of time and

volume of reads. Primarily you’ll find the memory and CPU metrics that are completely

different and quite unreliable.

This is because CPU and memory are shared between machines within a virtualized

server environment. You may start a process on one CPU and finish it on another one

entirely. Some virtual environments can actually change the memory allocated to a

machine as that machine’s demands for memory go up and down. With these kinds of

changes, traditional monitoring just isn’t applicable. The good news is that the major VM

vendors provide you with guidance on how to monitor their systems and how to use SQL

Server within their systems. You can largely rely on these third-party documents for the

specifics of monitoring a VM. Taking the two most common hypervisors, VMware and

HyperV, here is a document from each:

• VMware Monitoring Virtual Machine Performance

(http://bit.ly/1f37tEh)

• Measuring Performance on HyperV (http://bit.ly/2y2U6Iw)

The queues counters, such as processor queue length, are still applicable when

monitoring within a VM. These indicate that the VM itself is starved for resources,

starving your SQL Server instance so that it has to wait for access to the virtual CPU. The

important thing to remember is that CPU and memory are going to be potentially

slower on a VM because the management of the VM is getting in the way of the system

resources. You may also see slower I/O on a hosted VM because of the shared nature of

hosted resources.

There’s also a built-in, automated, baseline mechanism within Azure SQL Database

and any instance of SQL Server 2016 or greater, known as the Query Store. We’ll cover

the Query Store in detail in Chapter 11.

Another mechanism available for understanding how the system is behaving are

the DMVs. It’s hard to consider them the same thing as a baseline since they change so

much depending the cache, reboots, failovers, and other mechanisms. However, they do

provide a way to see an aggregated view of query performance. We’ll cover them more in

Chapter 6 and throughout the rest of the book.

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

http://bit.ly/1f37tEh
http://bit.ly/2y2U6Iw

89

 Creating a Baseline
Now that you have looked at a few of the main performance counters, let’s see how to bring

these counters together to create a system baseline. These are the steps you need to follow:

 1. Create a reusable list of performance counters.

 2. Create a counter log using your list of performance counters.

 3. Minimize Performance Monitor overhead.

 Creating a Reusable List of Performance Counters
Run the Performance Monitor tool on a Windows Server 2016 machine connected to

the same network as that of the SQL Server system. Add performance counters to the

View Chart display of the Performance Monitor through the Properties ➤ Data ➤ Add

Counters dialog box, as shown in Figure 5-1.

Figure 5-1. Adding Performance Monitor counters

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

90

For example, to add the performance counter SQLServer:Latches:Total Latch Wait

Time(ms), follow these steps:

 1. Select the option Select Counters from Computer and specify the

computer name running SQL Server in the corresponding entry

field, or, when running Performance Monitor locally, you’ll see

“<Local Computer>” like in Figure 5-1.

 2. Click the arrow next to the performance object

SQLServer:Latches.

 3. Choose the Total Latch Wait Time(ms) counter from the list of

performance counters.

 4. Click the Add button to add this performance counter to the list of

counters to be added.

 5. Continue as needed with other counters. When finished, click the

OK button.

When creating a reusable list for your baseline, you can repeat the preceding steps to

add all the performance counters listed in Table 5-1.

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

91

Once you have added all the performance counters, close the Add Counters dialog

box by clicking OK. To save the list of counters as an .htm file, right-click anywhere in the

right frame of Performance Monitor and select the Save Settings As menu item.

The .htm file lists all the performance counters that can be used as a base set of

counters to create a counter log or to view Performance Monitor graphs interactively for

the same SQL Server machine. To use this list of counters for other SQL Server machines,

open the .htm file in an editor such as Notepad and replace all instances of

\\SQLServerMachineName with nothing (just a blank string) .

A shortcut to all this is outlined by Erin Stellato in the article “Customizing the

Default Counters for Performance Monitor” (http://bit.ly/1brQKeZ). There’s also an

easier way to deal with some of this data using a tool supplied by Microsoft, Performance

Analysis of Logs (PAL), available at https://bit.ly/2KeJJmy.

Table 5-1. Performance Monitor Counters to Analyze SQL Server Performance

Object(lnstance[,lnstanceN]) Counter

Memory available MBytes pages/sec

physicalDisk(Data-disk, log-

disk)

% Disk timeCurrent Disk Queue length Disk transfers/sec Disk

Bytes/sec

processor(_total) % processor time % privileged time

system processor Queue length Context switches/sec

network interface(network card) Bytes total/sec

network segment % net Utilization

sQlserver:access Methods Freespace scans/sec Full scans/sec

sQlserver:Buffer Manager Buffer cache hit ratio

sQlserver:latches total latch Wait time (ms)

sQlserver:locks(_total) lock timeouts/sec lock Wait time (ms) number of Deadlocks/sec

sQlserver:Memory Manager Memory grants pending target server Memory (KB) total server

Memory (KB)

sQlserver:sQl statistics Batch requests/sec sQl re-Compilations/sec

sQlserver:general statistics User Connections

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

http://bit.ly/1brQKeZ
https://bit.ly/2KeJJmy

92

You can also use this counter list file to view Performance Monitor graphs

interactively in an Internet browser, as shown in Figure 5-2.

Figure 5-2. Performance Monitor in Internet browser

 Creating a Counter Log Using the List of Performance
Counters
Performance Monitor provides a counter log facility to save the performance data

of multiple counters over a period of time. You can view the saved counter log using

Performance Monitor to analyze the performance data. It is usually convenient to create

a counter log from a defined list of performance counters. Simply collecting the data

rather than viewing it through the GUI is the preferred method of automation to prepare

for troubleshooting your server’s performance or establishing a baseline.

Within Performance Monitor, expand Data Collector Sets ➤ User Defined. Right- click and

select New ➤ Data Collector Set. Define the name of the set and make this a manual creation

by clicking the appropriate radio button; then click Next just like I configured Figure 5-3.

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

93

You’ll have to define what type of data you’re collecting. In this case, select the check

box Performance Counters under the Create Data Logs radio button and then click Next,

as shown in Figure 5-4.

Figure 5-3. Naming the data collector set

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

94

Here you can define the performance objects you want to collect using the same Add

Counters dialog box shown earlier in Figure 5-1. Clicking Next allows you to define the

destination folder. Click Next, then select the radio button Open Properties for This Data

Collector Set, and click Finish. You can schedule the counter log to automatically start at

a specific time and stop after a certain time period or at a specific time. You can configure

these settings through the Schedule pane. You can see an example in Figure 5- 5.

Figure 5-4. Selecting data logs and performance counters for the data collector set

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

95

Figure 5-6 summarizes which counters have been selected as well as the frequency

with which the counters will be collected.

Figure 5-5. A schedule defined in the properties of the data collector set

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

96

Note i’ll offer additional suggestions for these settings in the section that follows.

For additional information on how to create counter logs using Performance

Monitor, please refer to the Microsoft Knowledge Base article “Performance Tuning

Guidelines for Windows Server 2016” (http://bit.ly/1icVvgn).

Figure 5-6. Defining a Performance Monitor counter log

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

http://bit.ly/1icVvgn

97

 Performance Monitor Considerations
The Performance Monitor tool is designed to add as little overhead as possible, if used

correctly. To minimize the impact of using this tool on a system, consider the following

suggestions:

• Limit the number of counters, specifically performance objects.

• Use counter logs instead of viewing Performance Monitor graphs

interactively.

• Run Performance Monitor remotely while viewing graphs

interactively.

• Save the counter log file to a different local disk.

• Increase the sampling interval.

Let’s consider each of these points in more detail.

 Limit the Number of Counters

Monitoring large numbers of performance counters with small sampling intervals

could incur some amount of overhead on the system. The bulk of this overhead comes

from the number of performance objects you are monitoring, so selecting them wisely

is important. The number of counters for the selected performance objects does not

add much overhead because it gives only an attribute of the object itself. Therefore, it is

important to know what objects you want to monitor and why.

 Prefer Counter Logs

Use counter logs instead of viewing a Performance Monitor graph interactively because

Performance Monitor graphing is more costly in terms of overhead. Monitoring

current activities should be limited to short-term viewing of data, troubleshooting, and

diagnosis. Performance data reported via a counter log is sampled, meaning that data

is collected periodically rather than traced, whereas the Performance Monitor graph is

updated in real time as events occur. Using counter logs will reduce that overhead.

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

98

 View Performance Monitor Graphs Remotely

Since viewing the live performance data using Performance Monitor graphs creates a

fair amount of overhead on the system, run the tool remotely on a different machine

and connect to the SQL Server system through the tool. To remotely connect to the

SQL Server machine, run the Performance Monitor tool on a machine connected to the

network to which the SQL Server machine is also connected.

Type the computer name (or IP address) of the SQL Server machine in the Select

Counters from Computer box. Be aware that if you connect to the production server

through a Windows Server 2016 terminal service session, the major part of the tool will

still run on the server.

However, I still encourage you to avoid using the Performance Monitor graphs for

viewing live data. You can use the graphs to look at the files collected through counter

logs and should have a bias toward using those logs.

 Save Counter Log Locally

Collecting the performance data for the counter log does not incur the overhead of

displaying any graph. So, while using counter log mode, it is more efficient to log counter

values locally on the SQL Server system instead of transferring the performance data

across the network. Put the counter log file on a local disk other than the ones that are

monitored, meaning your SQL Server data and log files.

Then, after you collect the data, copy that counter log to your local machine to

analyze it. That way, you’re working only on a copy, and you’re not adding I/O overhead

to your storage location.

 Increase the Sampling Interval

Because you are mainly interested in the resource utilization pattern during baseline

monitoring, you can easily increase the performance data sampling interval to 60

seconds or more to decrease the log file size and reduce demand on disk I/Os. You can

use a short sampling interval to detect and diagnose timing issues. Even while viewing

Performance Monitor graphs interactively, increase the sampling interval from the

default value of one second per sample. Just remember, changing the sampling size up

or down can affect the granularity of the data as well as the quantity. You have to weigh

these choices carefully.

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

99

 System Behavior Analysis Against Baseline
The default behavior of a database application changes over time because of various

factors such as the following:

• Data volume and distribution changes

• Increased user base

• Change in usage pattern of the application

• Additions to or changes in the application’s behavior

• Installation of new service packs or software upgrades

• Changes to hardware

Because of these changes, the baseline created for the database server slowly loses

its significance. It may not always be accurate to compare the current behavior of the

system with an old baseline. Therefore, it is important to keep the baseline current

by creating a new baseline at regular time intervals. It is also beneficial to archive the

previous baseline logs so that they can be referred to later, if required. So while, yes, older

baselines are not applicable to day-to-day operations, they do help you in establishing

patterns and long-term trends.

The counter log for the baseline or the current behavior of the system can be

analyzed using the Performance Monitor tool by following these steps:

 1. Open the counter log. Use Performance Monitor’s toolbar item

View Log File Data and select the log file’s name.

 2. Add all the performance counters to analyze the performance

data. Note that only the performance objects, counters, and

instances selected during the counter log creation are shown in

the selection lists.

 3. Analyze the system behavior at different parts of the day by

adjusting the time range accordingly, as shown in Figure 5-7.

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

100

During a performance review, you can analyze the system-level behavior of

the database by comparing the current value of performance counters with the

latest baseline. Take the following considerations into account while comparing the

performance data:

• Use the same set of performance counters in both cases.

• Compare the minimum, maximum, and average values of the

counters as applicable for the individual counters. I explained the

specific values for the counters earlier.

Figure 5-7. Defining time range for log analysis

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

101

• Some counters have an absolute good/bad value, as mentioned

previously. The current value of these counters need not be

compared with the baseline values. For example, if the current

average value of the Deadlocks/min counter is 10, it indicates that

the system is suffering from a large number of deadlocks. Even

though it does not require a comparison with the baseline, it is still

advantageous to review the corresponding baseline value because

your deadlock issues might have existed for a long time. Having the

archived baseline logs helps detect the evolving occurrence of the

deadlock.

• Some counters do not have a definitive good/bad value. Because

their value depends on the application, a relative comparison with

the corresponding baseline counters is a must. For example, the

current value of the User Connections counter for SQL Server does

not signify anything good or bad with the application. But comparing

it with the corresponding baseline value may reveal a big increase

in the number of user connections, indicating an increase in the

workload.

• Compare a range of values for the counters from the current and the

baseline counter logs. The fluctuation in the individual values of the

counters will be normalized by the range of values.

• Compare logs from the same part of the day. For most applications,

the usage pattern varies during different parts of the day. To obtain

the minimum, maximum, and average values of the counters for a

specific time, adjust the time range of the counter logs, as shown

previously.

Once the system-level bottleneck is identified, the internal behavior of the application

should be analyzed to determine the cause of the bottleneck. Identifying and optimizing

the source of the bottleneck will help use the system resources efficiently.

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

102

 Baseline for Azure SQL Database
Just as you want to have a baseline for your SQL Server instances running on physical

boxes and VMs, you need to have a baseline for the performance of Azure SQL

Databases. You can’t capture Performance Monitor metrics for this. Also, Azure SQL

Database is not represented as a virtual machine or physical server. It’s a database as a

service. As such, you don’t measure CPU or disk usage. Instead, Microsoft has defined a

unit of performance measure known as the Database Transaction Unit (DTU). You can

observe the DTU behavior of your database over time.

The DTU is defined as a blended measure of I/O, CPU, and memory. It does not

represent literal transactions as the name might imply but is instead a measure of the

performance of a database within the service. You can query sys.resource_stats as

a way to see CPU usage and the storage data. It retains a 14-day running history and

aggregates the data over five-minute intervals.

While the Azure Portal provides a mechanism for observing the DTU use, it doesn’t

provide you with a mechanism for establishing a baseline. Instead, you should use the

Azure SQL Database–specific DMV sys.dm_db_resource_stats. This DMV maintains

information about the DTU usage of a given Azure SQL Database. It contains one hour

of information in 15-minute aggregates. To establish a baseline as with a SQL Server

instance, you would need to capture this data over time. Collecting the information

displayed within sys.dm_db_resource_stats into a table would be how you could

establish a baseline for the performance metrics of your Azure SQL Database.

Azure SQL Database has the Query Store enabled by default, so you can use that to

understand what’s happening on the system.

 Summary
In this chapter, you learned how to use the Performance Monitor tool to analyze the

overall behavior of SQL Server as well as the effect of a slow-performing database

application on system resources. You also learned about the establishment of baselines

as part of your monitoring of the servers and databases. With these tools you’ll be able

to understand when you’re experiencing deviations from that standard behavior. You’ll

want to collect a baseline on a regular basis so that the data doesn’t get stale.

In the next chapter, you will learn how to analyze the workload of a database

application for performance tuning.

Chapter 5 Creating a Baseline

www.EBooksWorld.ir

103
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_6

CHAPTER 6

Query Performance
Metrics
A common cause of slow SQL Server performance is a heavy database application

workload—the nature and quantity of the queries themselves. Thus, to analyze the cause

of a system bottleneck, it is important to examine the database application workload and

identify the SQL queries causing the most stress on system resources. To do this, you can

use Extended Events and other Management Studio tools.

In this chapter, I cover the following topics:

• The basics of Extended Events

• How to analyze SQL Server workload and identify costly SQL queries

using Extended Events

• How to track query performance through dynamic management objects

 Extended Events
Extended Events was introduced in SQL Server 2008, but with no GUI in place and a

reasonably complex set of code to set it up, Extended Events wasn’t used much to capture

performance metrics. With SQL Server 2012, a GUI for managing Extended Events was

introduced, taking away the final issue preventing Extended Events from becoming the

preferred mechanism for gathering query performance metrics as well as other metrics

and measures. Trace events, previously the best mechanism for gathering these metrics,

are in deprecation and are not actively under development. No new trace events have been

added for years. Profiler, the GUI for generating and consuming trace events, can even

create performance problems if you run it inappropriately against a production instance.

As a result, the examples in the book will be using Extended Events primarily and the

Query Store as a secondary mechanism (Query Store is covered in Chapter 11).

www.EBooksWorld.ir

104

Extended Events allows you to do the following:

• Graphically monitor SQL Server queries

• Collect query information in the background

• Analyze performance

• Diagnose problems such as deadlocks

• Debug a Transact-SQL (T-SQL) statement

You can also use Extended Events to capture other sorts of activities performed on

a SQL Server instance. You can set up Extended Events from the graphical front end

or through direct T-SQL calls to the procedures. The most efficient way to define an

Extended Events session is through the T-SQL commands, but a good place to start

learning about sessions is through the GUI.

 Extended Events Sessions
You will find the Extended Events tooling in the Management Studio GUI. You can

navigate using the Object Explorer to the Management folder on a given instance to find

the Extended Events folder. From there you can look at sessions that have already been

built on the system. To start setting up your own sessions, just right-click the Sessions

folder and select New Session. There is a wizard available for setting up sessions, but it

doesn’t do anything the regular GUI doesn’t do, and the regular GUI is easy to use.

A window opens to the first page, called General, as shown in Figure 6-1.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

105

You will have to supply a session name. I strongly suggest giving it a clear name so

you know what the session is doing when you check it later. You also have the choice

of using a template. Templates are predefined sessions that you can put to work with

minimal effort. There are five templates immediately associated with query tuning,

under the Query Execution category:

• Query Batch Sampling: This template will capture queries and

procedure calls for 20 percent of all active sessions on the server.

• Query Batch Tracking: This template captures all queries and

procedures for all sessions on the server.

• Query Detail Sampling: This template contains a set of events that will

capture every statement in queries and procedures for 20 percent of

all active sessions on the server.

Figure 6-1. Extended Events New Session window, General page

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

106

• Query Detail Tracking: This template is the same as Query Batch

Tracking, but for every single statement in the system as well. This

generates a large amount of data.

• Query Wait Statistic: This template captures wait statistics for each

statement of every query and procedure for 20 percent of all active

sessions.

Further, there are templates that emulate the ones you’re used to having from

Profiler. Also, introduced in SQL Server 2017, there is one additional method for quickly

looking at query performance with minimal effort. At the bottom of the Object Explorer

pane is a new folder, XE Profiler. Expanding the folder you’ll find two Extended Events

sessions that define query monitoring similar to what you would normally see within

Profiler. I’ll cover the Live Data window, which these options open, later in the chapter.

Instead of launching into this, you’ll skip the templates and the XE Profiler reports to set

up your own events so you can see how it’s done.

Note nothing is free or without risk. extended events is a much more efficient
mechanism for gathering information about the system than the old trace events.
extended events is not without cost and risk. Depending on the events you define
and, even more, on some of the global fields that i discuss in more detail later in
the chapter, you may see an impact on your system by implementing extended
events. exercise caution when using these events on your production system to
ensure you don’t cause a negative impact. the Query store can provide a lot of
information for less impact, and you get even less impact using the Dmos (detailed
later in this chapter). those alternatives can work in some situations.

Looking at the first page of the New Session window, in addition to naming the

session, there are a number of other options. You must decide whether you want the

session to start when the server starts. Collecting performance metrics over a long period

of time generates lots of data that you’ll have to deal with. You can also decide whether

you’d like to start this session immediately after you create it and whether you want to

watch live data. Finally, the last option is to determine whether you want to track event

causality. We’ll address this later in the chapter.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

107

As you can see, the New Session window is actually pretty close to already being

a wizard. It just lacks a Next button. Once you’ve provided a name and made the other

choices here, click the next page on the left of the window, Events, as shown

in Figure 6- 2.

Figure 6-2. Extended Events New Session window, Events page

An event represents various activities performed in SQL Server and, in some cases,

the underlying operating system. There’s an entire architecture around event targets,

event packages, and event sessions, but the use of the GUI means you don’t have to

worry about all those details. I will cover some of the architecture when showing how to

script a session later in this chapter.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

108

For performance analysis, you are mainly interested in the events that help you judge

levels of resource stress for various activities performed on SQL Server. By resource stress,

I mean things such as the following:

• What kind of CPU utilization was involved for the T-SQL activity?

• How much memory was used?

• How much I/O was involved?

• How long did the SQL activity take to execute?

• How frequently was a particular query executed?

• What kind of errors and warnings were faced by the queries?

You can calculate the resource stress of a SQL activity after the completion of an

event, so the main events you use for performance analysis are those that represent the

completion of a SQL activity. Table 6-1 describes these events.

Table 6-1. Events to Monitor Query Completion

Event Category Event Description

execution rpc_completed a remote procedure call completion event

sp_statement_completed a sQL statement completion event within a

stored procedure

sql_batch_completed a t-sQL batch completion event

sql_statement_completed a t-sQL statement completion event

An RPC event indicates that the stored procedure was executed using the Remote

Procedure Call (RPC) mechanism through an OLEDB command. If a database

application executes a stored procedure using the T-SQL EXECUTE statement, then that

stored procedure is resolved as a SQL batch rather than as an RPC.

A T-SQL batch is a set of SQL queries that are submitted together to SQL Server.

A T-SQL batch is usually terminated by a GO command. The GO command is not a

T-SQL statement. Instead, the GO command is recognized by the sqlcmd utility, as well

as by Management Studio, and it signals the end of a batch. Each SQL query in the

batch is considered a T-SQL statement. Thus, a T-SQL batch consists of one or more

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

109

T-SQL statements. Statements or T-SQL statements are also the individual, discrete

commands within a stored procedure. Capturing individual statements with the sp_

statement_completed or sql_statement_completed event can be a more expensive

operation, depending on the number of individual statements within your queries.

Assume for a moment that each stored procedure within your system contains one, and

only one, T-SQL statement. In this case, the cost of collecting completed statements is

very low, both for impact on the behavior of the system while collecting the data and

on the amount of storage you need to collect the data. Now assume you have multiple

statements within your procedures and that some of those procedures are calls to other

procedures with other statements. Collecting all this extra data now becomes a more

noticeable load on the system. The impact of capturing statements completely depends

on the size and number of statements you are capturing. Statement completion events

should be collected judiciously, especially on a production system. You should apply

filters to limit the returns from these events. Filters are covered later in this chapter.

To add an event to the session, find the event in the Event library. This is simple;

you can just type the name. In Figure 6-2 you can see sql_batch typed into the search

box and that part of the event name highlighted. Once you have an event, use the arrow

buttons to move the event from the library to the Selected Events list. To remove events

not required, click the arrow to move it back out of the list and into the library.

Although the events listed in Table 6-1 represent the most common events used

for determining query performance, you can sometimes use a number of additional

events to diagnose the same thing. For example, as mentioned in Chapter 1, repeated

recompilation of a stored procedure adds processing overhead, which hurts the

performance of the database request. The execution category in the Event library

includes an event, sql_statement_recompile, to indicate the recompilation of a

statement (this event is explained in depth in Chapter 12). The Event library contains

additional events to indicate other performance-related issues with a database

workload. Table 6-2 shows a few of these events.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

110

Table 6-2. Events for Query Performance

Event Category Event Description

session login

logout

Keeps track of database connections when users

connect to and disconnect from sQL server.

existing_

connection

represents all the users connected to sQL server before

the session was started.

errors attention represents the intermediate termination of a request

caused by actions such as query cancellation by a client

or a broken database connection including timeouts.

error_reported occurs when an error is reported.

execution_

warning

indicates a wait for a memory grant for a statement has

lasted longer than a second or a memory grant for a

statement has failed.

hash_warning indicates the occurrence of insufficient memory in

a hashing operation. Combine this with capturing

execution plans to understand which operation had the

error.

Warnings missing_column_

statistics

indicates that the statistics of a column, which

are statistics required by the optimizer to decide a

processing strategy, are missing.

missing_join_

predicate

indicates that a query is executed with no joining

predicate between two tables.

sort_warnings indicates that a sort operation performed in a query such

as SELECT did not fit into memory.

Lock lock_deadlock occurs when a process is chosen as a deadlock victim.

lock_deadlock_

chain

shows a trace of the chain of queries creating the

deadlock.

lock_timeout signifies that the lock has exceeded the timeout

parameter, which is set by set LoCK_timeout

timeout_period(ms).

(continued)

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

111

 Global Fields
Once you’ve selected the events that are of interest on the Events page, you may need to

configure some settings, such as global fields. On the Events screen, click the Configure

button. This will change the view of the Events screen, as shown in Figure 6-3.

Table 6-2. (continued)

Event Category Event Description

execution sql_statement_

recompile

indicates that an execution plan for a query statement

had to be recompiled because one did not exist, a

recompilation was forced, or the existing execution plan

could not be reused. this is at the statement level, not

the batch level, regardless of whether the batch is an ad

hoc query stored procedure or prepared statements.

rpc_starting represents the starting of a stored procedure. this is

useful to identify procedures that started but could not

finish because of an operation that caused an attention

event.

Query_post_

compilation_

showplan

shows the execution plan after a sQL statement has

been compiled.

Query_post_

execution_

showplan

shows the execution plan after the sQL statement

has been executed that includes execution statistics.

note, this event can be quite costly, so use it extremely

sparingly and for short periods of time with good filters

in place.

transactions sql_transaction provides information about a database transaction,

including information such as when a transaction starts,

completes, and rolls back.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

112

The global fields, called actions in T-SQL, represent different attributes of an

event, such as the user involved with the event, the execution plan for the event, some

additional resource costs of the event, and the source of the event. These are additional

pieces of information that can be collected with an event. They add overhead to the

collection of the event. Each event has a set of data it collects, which I’ll talk about later

in the chapter, but this is your chance to add more. Most of the time, when I can, I avoid

this overhead for most data collection. But sometimes, there is information here you’ll

want to collect.

To add an action, just click the check box in the list provided on the Global Fields

page shown in Figure 6-3. You can use additional data columns from time to time to

diagnose the cause of poor performance. For example, in the case of a stored procedure

Figure 6-3. Global Fields selection in the Configure part of the Events page

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

113

recompilation, the event indicates the cause of the recompile through the recompile_

cause event field. (This field is explained in depth in Chapter 18.) A few of the commonly

used additional actions are as follows:

• plan_handle

• query_hash

• query_plan_hash

• database_id

• client_app_name

• transaction_id

• session_id

Other information is available as part of the event fields. For example, the binary_

data and integer_data event fields provide specific information about a given SQL

Server activity. For instance, in the case of a cursor, they specify the type of cursor

requested and the type of cursor created. Although the names of these additional fields

indicate their purpose to a great extent, I will explain the usefulness of these global fields

in later chapters as you use them.

 Event Filters
In addition to defining events and actions for an Extended Events session, you can define

various filter criteria. These help keep the session output small, which is usually a good

idea. You can add filters for event fields or global fields. You also get to choose whether

you want each filter to be an OR or an AND to further control the methods of filtering.

You can decide on the comparison operator, such as less than, equal to, and so on.

Finally, you set a value for the comparison. All this will act to filter the events captured,

reducing the amount of data you’re dealing with and, possibly, the load on your system.

Table 6-3 describes the filter criteria that you may commonly use during performance

analysis.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

114

Figure 6-4 shows a snippet of the preceding filter criteria selection in the Session

window.

Table 6-3. SQL Trace Filters

Events Filter Criteria
Example

Use

sqlserver.

username

= <some value> this captures events only for a single user or login.

 sqlserver.

database_id

= <iD of the database

to monitor>

this filters out events generated by other databases. you

can determine the iD of a database from its name as

follows: SELECT DB_ID('AdventureWorks20012').

 duration >= 200 for performance analysis, you will often capture a

trace for a large workload. in a large trace, there will

be many event logs with a duration that is less than

what you’re interested in. filter out these event logs

because there is hardly any scope for optimizing

these sQL activities.

physical_reads >= 2 this is similar to the criterion on the duration filter.

 sqlserver.

session_id

= <Database users

to monitor>

this troubleshoots queries sent by a specific server

session.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

115

If you look at the Field value in Figure 6-4, you’ll note that it says sqlserver.

session_id. This is because different sets of data are available to you, and they are

qualified by the type of data being referenced. In this case, I’m talking specifically about

a sqlserver.session_id. But I could be referring to something from SQL OS or even the

Extended Events package itself.

Figure 6-4. Filters applied in the Session window

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

116

 Event Fields
The standard event fields are included automatically with the event type. Table 6-4

shows some of the common actions that you use for performance analysis.

Table 6-4. Actions Commands for Query Analysis

Data Column Description

Statement the sQL text from the rpc_completed event.

 Batch_text the sQL text from the sql_batch_completed event.

 cpu_time the Cpu cost of an event in microseconds (mc). for example, Cpu = 100

for a SELECT statement indicates that the statement took 100mc

to execute.

 logical_reads the number of logical reads performed for an event. for example,

logical_reads = 800 for a SELECT statement indicates that the statement

required a total of 800 page reads.

 Physical_reads the number of physical reads performed for an event. this can differ from

the logical_reads value because of access to the disk subsystem.

 writes the number of logical writes performed for an event.

 duration the execution time of an event in ms.

Each logical read and write consists of an 8KB page activity in memory, which may

require zero or more physical I/O operations. You can see the fields for any given event

by clicking the Event Fields tab on display in Figure 6-5.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

117

Some of the event fields are optional, but most of them are automatically included

with the event. You can decide whether you want to include the optional fields. In

Figure 6-5 you could exclude the batch_text field by clicking the check box next to it.

 Data Storage
The next page in the new Session window, Data Storage in the “Select a page” pane, is

for determining how you’re going to deal with the data generated by the session. The

output mechanism is referred to as the target. You have two basic choices: output the

information to a file or simply use the buffer to capture the events. There are seven

different types of output, but most of them are out of scope for the book. For the

purposes of collecting performance information, you’re going to use either event_file

or ring_buffer. You should use only small data sets with the buffer because it will

consume memory. Because it works with memory within the system, the buffer is built

Figure 6-5. New Session window with the Event Fields tab in Configure on display

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

118

so that, rather than overwhelm the system memory, it will drop events, so you’re more

likely to lose information using the buffer. In most circumstances for monitoring query

performance, you should capture the output of the session to a file.

You have to select your target, as shown in Figure 6-6.

Figure 6-6. Data Storage window in the New Session window

You should specify an appropriate storage location on your system. You can also

decide whether you’re using more than one file, how many, and whether those files

roll over. All of those are management decisions that you’ll have to deal with as part

of working with your environment and your SQL query monitoring. You can run this

24/7, but you have to be prepared to deal with large amounts of data depending on how

stringent the filters you’ve created are.

In addition to the buffer or the file, you have other output options, but they’re

usually reserved for special types of monitoring and not usually necessary for query

performance tuning.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

119

 Finishing the Session
Once you’ve defined the storage, you’ve set everything needed for the session. There is

an Advanced page as well, but you really shouldn’t need to modify this from the defaults

on most systems. When you click OK, the session will get created. If you instructed on

the first tab that the session start after creation, it will start immediately, but whether

it starts or not, it will be stored on the server. One of the beauties of Extended Events

sessions is that they’re stored on the server, so you can turn them on and off as needed

with no need to re-create the session. The sessions are stored permanently until you

remove them and will even survive a reboot, although, depending on how you’ve

configured the session, you may have to restart them as necessary.

Assuming you either didn’t automatically start the session or selected the option

to watch the data live, you can do both to the session you just created. Right-click the

session, and you’ll see a menu of actions including Start Session, Stop Session, and

Watch Live Data. If you start the session and you chose to observe the output, you should

see a new window appear in Management Studio showing the events you’re capturing.

These events are coming off the same buffer as the one that is writing out to disk, so you

can watch events in real time. Take a look at Figure 6-7 to see this in action.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

120

Figure 6-7. Live output of the Extended Events session created by the wizard

You can see the events at the top of the window showing the type of event and the

date and time of the event. Clicking the event at the top will open the fields that were

captured with the event on the bottom of the screen. As you can see, all the information

I’ve been talking about is available to you. Also, if you’re unhappy with having a divided

output, you can right-click a column and select Show Column in Table from the context

menu. This will move it up into the top part of the screen, displaying all the information

in a single location, as shown in Figure 6-8.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

121

You can also open the files you’ve collected through this interface and use it to

browse the data. You can search within a column on the collected data, sort by them,

and group by fields. One of the great ways to see an aggregate of all calls to a particular

query is to use query_hash, a global field that you can add to your data collection. The

GUI offers a lot of ways to manipulate the information you’ve collected.

Watching this information through the GUI and browsing through files is fine, but

you’re going to want to automate the creation of these sessions. That’s what the next

section covers.

 The Built-in system_health Session
Built in to SQL Server and automatically running by default, there is an Extended Event

session called system_health. It’s primarily meant as a mechanism for observing the

overall health of the system and collecting errors and diagnostics about internals.

However, it also automatically captures some information that is useful when we’re

talking about query performance tuning.

By default, out of the box, it collects the full information on deadlocks as they occur.

Deadlocks are absolutely a performance issue and are covered in Chapter 22. The

system_health Extended Events session means we don’t have to do any other work to

begin diagnosing deadlock situations.

Figure 6-8. The statement column has been added to the table.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

122

The system_health session captures the sql_text and session_id for any processes

that have waited on latches for longer than 15 seconds. That information is useful for

immediately identifying queries that may need tuning. You also get the sql_text and

session_id for any queries that waited longer than 30 seconds for a lock. Again, this is

a way to identify immediately, with no other work than searching the system_health

information, which queries may need tuning.

Because this is just another session, you have full control over it and can even

remove it from your system, although I certainly don’t recommend that. It collects its

information in a 5MB file and keeps a rolling set of four files. You won’t be able to go

back to the beginning of your server install with this information, but it should have all

the recent behavior of your server. The files are located by default with your other log

files. You can find the location like this:

SELECT path

FROM sys.dm_os_server_diagnostics_log_configurations;

With that location you can query the session or open it in the Live Data explorer

window, as shown in Figure 6-9.

Figure 6-9. Wait_info event in the system_health Extended Event session

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

123

The event on display in Figure 6-9 is the wait_info event, which shows that I had a

process waiting to obtain a lock for more than 30 seconds. The sql_text field will show

the query in question. As you can see, from a performance tuning standpoint, this is

invaluable information. Best of all, it’s available on your systems right now. You don’t

have to do anything to set it up.

 Extended Events Automation
The ability to use the GUI to build a session and define the events you want to capture

does make things simple, but, unfortunately, it’s not a model that will scale. If you need

to manage multiple servers where you’re going to create sessions for capturing key query

performance metrics, you’re not going to want to connect to each one and go through

the GUI to select the events, the output, and so on. This is especially true if you take into

account the chance of a mistake. Instead, it’s much better to learn how to work with

sessions directly from T-SQL. This will enable you to build a session that can be run on a

number of servers in your system. Even better, you’re going to find that building sessions

directly is easier in some ways than using the GUI, and you’re going to be much more

knowledgeable about how these processes work.

 Creating a Session Script Using the GUI
You can create a scripted trace in one of two ways, manually or with the GUI. Until

you get comfortable with all the requirements of the scripts, the easy way is to use the

Extended Events GUI. These are the steps you’ll need to perform:

 1. Define a session.

 2. Right-click the session, and select Script Sessions As, CREATE To,

and File to output straight to a file. Or, use the Script button at the

top of the New Session window to create a T-SQL command in the

Query window.

These steps will generate the script you need to create a session and output it to a file.

To manually create this new trace, use Management Studio as follows:

 1. Open the script file or navigate to the Query window.

 2. Modify the path and file location for the server you’re creating this session on.

 3. Execute the script.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

124

Once the session is created, you can use the following command to start it:

ALTER EVENT SESSION QueryMetrics

ON SERVER

STATE = START;

You may want to automate the execution of the last step through the SQL Agent,

or you can even run the script from the command line using the sqlcmd.exe utility.

Whatever method you use, the final step will start the session. To stop the session,

just run the same script with the STATE set to stop. I’ll show how to do that in the next

section.

 Defining a Session Using T-SQL
If you followed the steps from the previous section to create a script, you would see

something like this in your Query Editor window:

CREATE EVENT SESSION [QueryMetrics]

ON SERVER

 ADD EVENT sqlserver.sql_batch_completed

 (SET collect_batch_text = (1)

 WHERE ([sqlserver].[database_name] = N'AdventureWorks2017')

)

 ADD TARGET package0.event_file

 (SET filename = N'q:\PerfData\QueryMetrics')

WITH

(

 MAX_MEMORY = 4096KB,

 EVENT_RETENTION_MODE = ALLOW_SINGLE_EVENT_LOSS,

 MAX_DISPATCH_LATENCY = 30 SECONDS,

 MAX_EVENT_SIZE = 0KB,

 MEMORY_PARTITION_MODE = NONE,

 TRACK_CAUSALITY = OFF,

 STARTUP_STATE = OFF

);

GO

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

125

Figure 6-10. Output of sys.dm_xe_sessions

To create an Extended Events session, a single command defines the session, CREATE

EVENT SESSION. You then just use ADD EVENT within that command to define the session.

The filters are simply a WHERE clause added to each event definition. Finally, you add a

target defining where the data captured should be stored. The WITH clause is actually just

the default values from the Advanced page in the GUI. You can leave off the WITH clause

and those values, and they’ll still be set for the session.

Once the session has been defined, you can activate it using ALTER EVENT, as shown

earlier.

Once a session is started on the server, you don’t have to keep Management Studio

or the Query Editor open anymore. You can identify the active sessions by using the

dynamic management view sys.dm_xe_sessions, as shown in the following query:

SELECT dxs.name,

 dxs.create_time

FROM sys.dm_xe_sessions AS dxs;

Figure 6-10 shows the output of the view.

The number of rows returned indicates the number of sessions active on SQL Server.

I have four other sessions, all system defaults, running in addition to the one I created

in this chapter. You can stop a specific session by executing the stored procedure ALTER

EVENT SESSION.

ALTER EVENT SESSION QueryMetrics

ON SERVER

STATE = STOP;

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

126

To verify that the session is stopped successfully, reexecute the query against the

catalog view sys.dm_xe_sessions, and ensure that the output of the view doesn’t

contain the named session.

Using a script to create your sessions allows you to automate across a large number

of servers. Using the scripts to start and stop the sessions means you can control them

through scheduled events such as through SQL Agent. In Chapter 20, you will learn how

to control the schedule of a session while capturing the activities of a SQL workload over

an extended period of time.

Note the time captured through a session defined as illustrated in this section is
stored in microseconds, not milliseconds. this difference between units can cause
confusion if not taken into account. you must filter based on microseconds.

 Using Causality Tracking
Defining sessions through either the GUI or T-SQL is fairly simple. Consuming the

information is also pretty easy. However, you’ll quickly find that you don’t simply want

to observe single batch statements or single procedure calls. You’re going to want to see

all the statements within a procedure as well as the procedure call. You’re going to want

to see statement-level recompiles, waits, and all sorts of other events and have them all

directly tied together back to an individual stored procedure or statement. That’s where

causality tracking comes in.

You can enable causality tracking as noted earlier through the GUI, or you can include

it in an SQL command. The following script captures the start and stop of remote

procedure calls and all the statements within those calls. I’ve also enabled causality

tracking.

CREATE EVENT SESSION ProcedureMetrics

ON SERVER

 ADD EVENT sqlserver.rpc_completed

 (WHERE (sqlserver.database_name = N'AdventureWorks2017')),

 ADD EVENT sqlserver.rpc_starting

 (WHERE (sqlserver.database_name = N'AdventureWorks2017')),

 ADD EVENT sqlserver.sp_statement_completed

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

127

 (SET collect_object_name = (1))

 ADD TARGET package0.event_file

 (SET filename = N'C:\PerfData\ProcedureMetrics.xel')

WITH

(

 TRACK_CAUSALITY = ON

);

 Extended Events Recommendations
Extended Events is such a game-changer in the way that information is collected that

many of the problematic areas that used to come up when using trace events have been

largely eliminated. You have a much reduced need to worry as much about severely

limiting the number of events collected or the number of fields returned. But, as was

noted earlier, you can still negatively impact the system by overloading the events being

collected. There are still a few specific areas you need to watch out for.

• Set the max file size appropriately.

• Be cautious with debug events.

• Avoid use of No_Event_Loss.

I’ll go over these in a little more detail in the following sections.

 Set Max File Size Appropriately
The default value for files is 1GB. That’s actually very small when you consider the

amount of information that can be gathered with Extended Events. It’s a good idea to set

this number much higher, somewhere in the 50GB to100GB range to ensure you have

adequate space to capture information and you’re not waiting on the file subsystem to

create files for you while your buffer fills. This can lead to event loss. But, it does depend

on your system. If you have a good grasp of the level of output you can expect, set the file

size more appropriate to your individual environment.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

128

 Be Cautious with Debug Events
Not only does Extended Events provide you with a mechanism for observing the

behavior of SQL Server and its internals in a way that far exceeds what was possible

under trace events, but Microsoft uses the same functionality as part of troubleshooting

SQL Server. A number of events are related to debugging SQL Server. These are not

available by default through the wizard, but you do have access to them through the

T-SQL command, and there’s a way to enable them through the channel selection in the

Session editor window.

Without direct guidance from Microsoft, do not use them. They are subject to change

and are meant for Microsoft internal use only. If you do feel the need to experiment, you

need to pay close attention to any of the events that include a break action. This means

that should the event fire, it will stop SQL Server at the exact line of code that caused the

event to fire. This means your server will be completely offline and in an unknown state.

This could lead to a major outage if you were to do it in a production system. It could

lead to loss of data and corruption of your database.

However, not all of them lead to break actions, and some are even recommended

for use. One example is the query_thread_profile event. Running this enables you the

ability to capture live execution plan events in a light-weight fashion. We’ll cover this in

more detail in Chapter 15 when we talk about execution plans.

 Avoid Use of No_Event_Loss
Extended Events is set up such that some events will be lost. It’s extremely likely, by

design. But, you can use a setting, No_Event_Loss, when configuring your session. If

you do this on systems that are already under load, you may see a significant additional

load placed on the system since you’re effectively telling it to retain information in the

buffer regardless of consequences. For small and focused sessions that are targeting a

particular behavior, this approach can be acceptable.

 Other Methods for Query Performance Metrics
Setting up an Extended Events session allows you to collect a lot of data for later use, but

the collection can be a little bit expensive. In addition, you have to wait on the results,

and then you have a lot of data to deal with. Another mechanism that comes with a

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

129

smaller overall cost is the Query Store. We’ll cover that in detail in Chapter 11. If you

need to immediately capture performance metrics about your system, especially as they

pertain to query performance, then the dynamic management views sys.dm_exec_

query_stats for queries and sys.dm_exec_procedure_stats for stored procedures are

what you need. If you still need a historical tracking of when queries were run and their

individual costs, an Extended Events session is still the best tool. But if you just need to

know, at this moment, the longest-running queries or the most physical reads, then you

can get that information from these two dynamic management objects. But, the data in

these objects is dependent on the query plan remaining in the cache. If the plan ages

out of cache, this data just goes away. The sys.dm_exec_query_stats DMO will return

results for all queries, including stored procedures, but the sys.dm_exec_procedure_

stats will return information only for stored procedures.

Since both these DMOs are just views, you can simply query against them and get

information about the statistics of queries in the plan cache on the server. Table 6-5

shows some of the data returned from the sys.dm_exec_query_stats DMO.

Table 6-5 is just a sampling. For complete details, see Books Online.

Table 6-5. sys.dm_exec_query_stats Output

Column Description

Plan_handle pointer that refers to the execution plan

Creation_time time that the plan was created

Last_execution time Last time the plan was used by a query

Execution_count number of times the plan has been used

Total_worker_time total Cpu time used by the plan since it was created

Total_logical_reads total number of reads used since the plan was created

Total_logical_writes total number of writes used since the plan was created

Query_hash a binary hash that can be used to identify queries with similar logic

Query_plan_hash a binary hash that can be used to identify plans with similar logic

Max_dop the max degree of parallelism that was used by the query

Max_columnstore_

segment_skips

the number of segments that have been skipped over during a

query

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

130

To filter the information returned from sys.dm_exec_query_stats, you'll need to

join it with other dynamic management functions such as sys.dm_exec_sql_text,

which shows the query text associated with the plan, or sys.dm_query_plan, which has

the execution plan for the query. Once joined to these other DMOs, you can filter on

the database or procedure that you want to see. These other DMOs are covered in detail

in other chapters of the book. I’ll show examples of using sys.dm_exec_query_stats

and the others, in combination, throughout the rest of the book. Just remember that

these queries are cache dependent. As a given execution plan ages out of the cache, this

information will be lost.

 Summary
In this chapter, you saw that you can use Extended Events to identify the queries causing a

high amount of stress on the system resources in a SQL workload. Collecting the session

data can, and should be, automated using system stored procedures. For immediate

access to statistics about running queries, use the DMV sys.dm_exec_query_stats.

Now that you have a mechanism for gathering metrics on queries that have

been running against your system, in the next chapter you’ll explore how to gather

information about a query as it runs so that you don’t have to resort to these

measurement tools each time you run a query.

Chapter 6 Query performanCe metriCs

www.EBooksWorld.ir

131
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_7

CHAPTER 7

Analyzing Query
Performance
The previous chapter showed how to gather query performance metrics. This chapter

will show how to consume those metrics to identify long-running or frequently

called queries. Then I’ll go over the tools built into Management Studio so you can

understand how a given query is performing. I’ll also spend a lot of time talking about

using execution plans, which are your best view into the decisions made by the query

optimizer.

In this chapter, I cover the following topics:

• How to analyze the processing strategy of a costly SQL query using

Management Studio

• How to analyze methods used by the query optimizer for a SQL query

• How to measure the cost of a SQL query using T-SQL commands

 Costly Queries
Now that you have seen two different ways of collecting query performance metrics, let’s

look at what the data represents: the costly queries themselves. When the performance

of SQL Server goes bad, a few things are most likely happening.

• First, certain queries create high stress on system resources. These

queries affect the performance of the overall system because the

server becomes incapable of serving other SQL queries fast enough.

www.EBooksWorld.ir

132

• Additionally, the costly queries block all other queries requesting the

same database resources, further degrading the performance of those

queries. Optimizing the costly queries improves not only their own

performance but also the performance of other queries by reducing

database blocking and pressure on SQL Server resources.

• It’s possible that changes in data or the values passed to queries

results in changes in the behavior of the query, degrading its

performance.

• Finally, a query that by itself is not terribly costly could be called

thousands of times a minute, which, by the simple accumulation of

less than optimal code, can lead to major resource bottlenecks.

To begin to determine which queries you need to spend time working with, you’re

going to use the resources that I’ve talked about so far. For example, assuming the

queries are in cache, you will be able to use the DMOs to pull together meaningful data

to determine the most costly queries. Alternatively, because you’ve captured the queries

using Extended Events, you can access that data as a means to identify the costliest

queries. One other option is also possible, introduced with SQL Server 2016; you can use

the Query Store to capture and examine query performance metrics. We’ll examine that

mechanism in detail in Chapter 11.

Here we’re going to start with Extended Events. The single easiest and most

immediate way to capture query metrics is through the DMOs against the queries

currently in cache. Unfortunately, this is aggregated data and completely dependent on

what is currently in cache (we’ll talk about the cache more in Chapter 16), so you don’t

have a historical record, and you don’t get individual measurements and individual

parameter values on stored procedures. The second easiest and equally immediate

method for looking at query metrics is through the Query Store. It’s a more complete

record than the DMOs supply, but the data there is aggregated as well. We’ll explore all

three, but for precision, we’ll start with Extended Events.

One small note on the Extended Events data: if it’s going to be collected to a file,

you’ll then need to load the data into a table or just query it directly. You can read

directly from the Extended Events file by querying it using this system function:

SELECT module_guid,

 package_guid,

 object_name,

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

133

 event_data,

 file_name,

 file_offset,

 timestamp_utc

FROM sys.fn_xe_file_target_read_file('C:\Sessions\QueryPerformanceMetrics*.

xel',

 NULL,

 NULL,

 NULL);

The parameters required are first the path, which I supplied. You can use * as I did

to deal with the fact that there are multiple rollover files. The second parameter is a

holdover from SQL Server 2008R2 and can be ignored. The third parameter will let you

pick an initial file name; otherwise, if you do what I did, it’ll read all the files from the

path. Finally, the last parameter lets you specify an offset so that you can, if you like, skip

past certain events. It’s only a number, so you can’t really filter beyond events; just count

to the one you want to start with.

The query returns each event as a single row. The data about the event is stored in an

XML column, event_data. You’ll need to use XQuery to read the data directly, but once

you do, you can search, sort, and aggregate the data captured. I’ll walk you through a full

example of this mechanism in the next section.

 Identifying Costly Queries
The goal of SQL Server is to return result sets to the user in the shortest time. To do

this, SQL Server has a built-in, cost-based optimizer called the query optimizer, which

generates a cost-effective strategy called a query execution plan. The query optimizer

weighs many factors, including (but not limited to) the usage of CPU, memory, and disk

I/O required to execute a query, all derived from the various sources such as statistics

about the data maintained by indexes or generated on the fly, constraints on the data,

and some knowledge of the system the queries are running such as the number of

CPUs and the amount of memory. From all that the optimizer creates a cost-effective

execution plan.

In the data returned from a session, the cpu_time and logical_reads or physical_

reads fields also show where a query costs you. The cpu_time field represents the CPU

time used to execute the query. The two reads fields represent the number of pages

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

134

(8KB in size) a query operated on and thereby indicate the amount of memory or I/O

stress caused by the query. They also indicate disk stress since memory pages have to

be backed up in the case of action queries, populated during first-time data access, and

displaced to disk during memory bottlenecks. The higher the number of logical reads

for a query, the higher the possible stress on the disk could be. An excessive number of

logical pages also increases load on the CPU in managing those pages. This is not an

automatic correlation. You can’t always count on the query with the highest number of

reads being the poorest performer. But it is a general metric and a good starting point.

Although minimizing the number of I/Os is not a requirement for a cost-effective plan,

you will often find that the least costly plan generally has the fewest I/Os because I/O

operations are expensive.

The queries that cause a large number of logical reads usually acquire locks on a

correspondingly large set of data. Even reading (as opposed to writing) may require

shared locks on all the data, depending on the isolation level. These queries block all

other queries requesting this data (or part of the data) for the purposes of modifying it,

not for reading it. Since these queries are inherently costly and require a long time to

execute, they block other queries for an extended period of time. The blocked queries

then cause blocks on further queries, introducing a chain of blocking in the database.

(Chapter 13 covers lock modes.)

As a result, it makes sense to identify the costly queries and optimize them first,

thereby doing the following:

• Improving the performance of the costly queries themselves

• Reducing the overall stress on system resources

• Reducing database blocking

The costly queries can be categorized into the following two types:

• Single execution: An individual execution of the query is costly.

• Multiple executions: A query itself may not be costly, but the repeated

execution of the query causes pressure on the system resources.

You can identify these two types of costly queries using different approaches, as

explained in the following sections.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

135

 Costly Queries with a Single Execution
You can identify the costly queries by analyzing a session output file, by using the Query

Store, or by querying sys.dm_exec_query_stats. For this example, we’ll start with

identifying queries that perform a large number of logical reads, so you should sort

the session output on the logical_reads data column. You can change that around to

sort on duration or CPU or even combine them in interesting ways. You can access the

session information by following these steps:

 1. Capture a session that contains a typical workload.

 2. Save the session output to a file.

 3. Open the file by using File ➤ Open and select a .xel file to use the

data browser window. Sort the information there.

 4. Alternatively, you can query the trace file for analysis sorting by

the logical_reads field.

WITH xEvents

 AS (SELECT object_name AS xEventName,

 CAST (event_data AS XML) AS xEventData

 FROM sys.fn_xe_file_target_read_file('C:\Sessions\

QueryPerformanceMetrics*.xel',

 NULL, NULL, NULL)

)

 SELECT xEventName,

 xEventData.value('(/event/data[@name="duration"]/value)[1]',

 'bigint') Duration,

 xEventData.value('(/event/data[@name="physical_reads"]

/value)[1]', 'bigint') PhysicalReads,

 xEventData.value('(/event/data[@name="logical_reads"]

/value)[1]',

 'bigint') LogicalReads,

 xEventData.value('(/event/data[@name="cpu_time"]/value)[1]',

 'bigint') CpuTime,

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

136

 CASE xEventName

 WHEN 'sql_batch_completed'

 THEN xEventData.value('(/event/data[@name="batch_text"]/

value)[1]',

 'varchar(max)')

 WHEN 'rpc_completed'

 THEN xEventData.value('(/event/data[@name="statement"]/value)[1]',

 'varchar(max)')

 END AS SQLText,

 xEventData.value('(/event/data[@name="query_hash"]/value)[1]',

 'binary(8)') QueryHash

 INTO Session_Table

 FROM xEvents;

SELECT st.xEventName,

 st.Duration,

 st.PhysicalReads,

 st.LogicalReads,

 st.CpuTime,

 st.SQLText,

 st.QueryHash

FROM Session_Table AS st

ORDER BY st.LogicalReads DESC;

Let’s break down this query a little. First, I’m creating a common table expression

(CTE) called xEvents. I’m doing that just because it makes the code a little easier to

read. It doesn’t fundamentally change any behavior. I prefer it when I have to both read

from a file and convert the data type. Then my XML queries in the following statement

make a little more sense. Note that I’m using a wildcard when reading from the file,

QueryPerformanceMetrics*.xel. This makes it possible for me to read in all rollover

files created by the Extended Events session (for more details, see Chapter 6).

Depending on the amount of data collected and the size of your files, running

queries directly against the files you’ve collected from Extended Events may be

excessively slow. In that case, use the same basic function, sys.fn_xe_file_target_

read_file, to load the data into a table instead of querying it directly. Once that’s done,

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

137

you can apply indexing to the table to speed up the queries. I used the previous script to

put the data into a table and then queried that table for my output. This will work fine for

testing, but for a more permanent solution you’d want to have a database dedicated to

storing this type of data with tables having the appropriate structures rather than using a

shortcut like INTO as I did here.

In some cases, you may have identified a large stress on the CPU from the System

Monitor output. The pressure on the CPU may be because of a large number of CPU-

intensive operations, such as stored procedure recompilations, aggregate functions, data

sorting, hash joins, and so on. In such cases, you should sort the session output on the

cpu_time field to identify the queries taking up a large number of processor cycles.

 Costly Queries with Multiple Executions
As I mentioned earlier, sometimes a query may not be costly by itself, but the cumulative

effect of multiple executions of the same query might put pressure on the system

resources. In this situation, sorting on the logical_reads field won’t help you identify

this type of costly query. You instead want to know the total number of reads, the total

CPU time, or just the accumulated duration performed by multiple executions of the

query.

• Query the session output and group on some of the values you’re

interested in.

• Query the information within the Query Store.

• Access the sys.dm_exec_query_stats DMO to retrieve the

information from the production server. This assumes you’re dealing

with an issue that is either recent or not dependent on a known

history because this data is only what is currently in the procedure

cache.

If you’re looking for an accurate historical view of the data, you can go to the metrics

you’ve collected with Extended Events or to the information with the Query Store,

depending on how often you purge that data (more on this in Chapter 11). The Query

Store has aggregated data that you can use for this type of investigation. However, it has

only aggregated information. If you also want detailed, individual call, you will be back

to using Extended Events.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

138

Once the session data is imported into a database table, execute a SELECT statement

to find the total number of reads performed by the multiple executions of the same

query, as follows:

SELECT COUNT(*) AS TotalExecutions,

 st.xEventName,

 st.SQLText,

 SUM(st.Duration) AS DurationTotal,

 SUM(st.CpuTime) AS CpuTotal,

 SUM(st.LogicalReads) AS LogicalReadTotal,

 SUM(st.PhysicalReads) AS PhysicalReadTotal

FROM Session_Table AS st

GROUP BY st.xEventName, st.SQLText

ORDER BY LogicalReadTotal DESC;

The TotalExecutions column in the preceding script indicates the number of times

a query was executed. The LogicalReadTotal column indicates the total number of

logical reads performed by the multiple executions of the query.

The costly queries identified by this approach are a better indication of load than the

costly queries with single execution identified by a session. For example, a query that

requires 50 reads might be executed 1,000 times. The query itself may be considered

cheap enough, but the total number of reads performed by the query turns out to be

50,000 (= 50 × 1,000), which cannot be considered cheap. Optimizing this query to

reduce the reads by even 10 for individual execution reduces the total number of reads

by 10,000 (= 10 × 1,000), which can be more beneficial than optimizing a single query

with 5,000 reads.

The problem with this approach is that most queries will have a varying set of

criteria in the WHERE clause or that procedure calls will have different values passed

in. That makes the simple grouping by the query or procedure with parameters just

impossible. You can take care of this problem with a number of approaches. Because

you have Extended Events, you can actually put it to work for you. For example, the

rpc_completed event captures the procedure name as a field. You can simply group on

that field. For batches, you can add the query_hash field and then group on that. Another

way is to clean the data, removing the parameter values, as outlined on the Microsoft

Developers Network at http://bit.ly/1e1I38f. Although it was written originally for

SQL Server 2005, the concepts will work fine with other versions of SQL Server up to

SQL Server 2017.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

http://bit.ly/1e1I38f

139

Getting the same information out of the sys.dm_exec_query_stats view simply

requires a query against the DMV.

SELECT s.TotalExecutionCount,

 t.text,

 s.TotalExecutionCount,

 s.TotalElapsedTime,

 s.TotalLogicalReads,

 s.TotalPhysicalReads

FROM

(

 SELECT deqs.plan_handle,

 SUM(deqs.execution_count) AS TotalExecutionCount,

 SUM(deqs.total_elapsed_time) AS TotalElapsedTime,

 SUM(deqs.total_logical_reads) AS TotalLogicalReads,

 SUM(deqs.total_physical_reads) AS TotalPhysicalReads

 FROM sys.dm_exec_query_stats AS deqs

 GROUP BY deqs.plan_handle

) AS s

 CROSS APPLY sys.dm_exec_sql_text(s.plan_handle) AS t

ORDER BY s.TotalLogicalReads DESC;

Another way to take advantage of the data available from the execution DMOs is to

use query_hash and query_plan_hash as aggregation mechanisms. While a given stored

procedure or parameterized query might have different values passed to it, changing

query_hash and query_plan_hash for these will be identical (most of the time). This

means you can aggregate against the hash values to identify common plans or common

query patterns that you wouldn’t be able to see otherwise. The following is just a slight

modification from the previous query:

SELECT s.TotalExecutionCount,

 t.text,

 s.TotalExecutionCount,

 s.TotalElapsedTime,

 s.TotalLogicalReads,

 s.TotalPhysicalReads

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

140

FROM

(

 SELECT deqs.query_plan_hash,

 SUM(deqs.execution_count) AS TotalExecutionCount,

 SUM(deqs.total_elapsed_time) AS TotalElapsedTime,

 SUM(deqs.total_logical_reads) AS TotalLogicalReads,

 SUM(deqs.total_physical_reads) AS TotalPhysicalReads

 FROM sys.dm_exec_query_stats AS deqs

 GROUP BY deqs.query_plan_hash

) AS s

 CROSS APPLY

(

 SELECT plan_handle

 FROM sys.dm_exec_query_stats AS deqs

 WHERE s.query_plan_hash = deqs.query_plan_hash

) AS p

 CROSS APPLY sys.dm_exec_sql_text(p.plan_handle) AS t

ORDER BY TotalLogicalReads DESC;

This is so much easier than all the work required to gather session data that it makes

you wonder why you would ever use Extended Events at all. The main reason is, as I

wrote at the start of this chapter, precision. The sys.dm_exec_ query_stats view is

a running aggregate for the time that a given plan has been in memory. An Extended

Events session, on the other hand, is a historical track for whatever time frame you ran

it in. You can even add session results from Extended Events to a database. With a list

of data, you can generate totals about the events in a more precise manner rather than

simply relying on a given moment in time. However, please understand that a lot of

troubleshooting of performance problems is focused on what has happened recently on

the server, and since sys.dm_exec_query_stats is based in the cache, the DMV usually

represents a recent picture of the system, so sys.dm_exec_query_stats is extremely

important. But, if you’re dealing with that much more tactical situation of what the heck

is running slow right now, you would use sys.dm_exec_requests.

You’ll find that the Query Store is the same as the DMOs for ease of use. However,

since the information within it is not cache dependent, it can be more useful than the

DMO data. Just like the DMOs, though, the Query Store doesn’t have the detailed record

of an Extended Events session.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

141

 Identifying Slow-Running Queries
Because a user’s experience is highly influenced by the response time of their requests,

you should regularly monitor the execution time of incoming SQL queries and find out

the response time of slow-running queries, creating a query performance baseline. If the

response time (or duration) of slow-running queries becomes unacceptable, then you

should analyze the cause of performance degradation. Not every slow-performing query

is caused by resource issues, though. Other concerns such as blocking can also lead to

slow query performance. Blocking is covered in detail in Chapter 12.

To identify slow-running queries, just change the queries against your session data to

change what you’re ordering by, like this:

WITH xEvents

AS (SELECT object_name AS xEventName,

 CAST(event_data AS XML) AS xEventData

 FROM sys.fn_xe_file_target_read_file('Q:\Sessions\

QueryPerformanceMetrics*.xel', NULL, NULL, NULL)

)

SELECT xEventName,

 xEventData.value('(/event/data[@name="duration"]/value)[1]',

'bigint') Duration,

 xEventData.value('(/event/data[@name="physical_reads"]/value)[1]',

'bigint') PhysicalReads,

 xEventData.value('(/event/data[@name="logical_reads"]/value)[1]',

'bigint') LogicalReads,

 xEventData.value('(/event/data[@name="cpu_time"]/value)[1]',

'bigint') CpuTime,

 xEventData.value('(/event/data[@name="batch_text"]/value)[1]',

'varchar(max)') BatchText,

 xEventData.value('(/event/data[@name="statement"]/value)[1]',

'varchar(max)') StatementText,

 xEventData.value('(/event/data[@name="query_plan_hash"]/value)[1]',

'binary(8)') QueryPlanHash

FROM xEvents

ORDER BY Duration DESC;

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

142

For a slow-running system, you should note the duration of slow-running queries

before and after the optimization process. After you apply optimization techniques,

you should then work out the overall effect on the system. It is possible that your

optimization steps may have adversely affected other queries, making them slower.

 Execution Plans
Once you have identified a costly query, you need to find out why it is so costly. You can

identify the costly procedure from Extended Events, the Query Store, or sys.dm_exec_

procedure_stats; rerun it in Management Studio; and look at the execution plan used

by the query optimizer. An execution plan shows the processing strategy (including

multiple intermediate steps) used by the query optimizer to execute a query.

To create an execution plan, the query optimizer evaluates various permutations of

indexes, statistics, constraints, and join strategies. Because of the possibility of a large

number of potential plans, this optimization process may take a long time to generate

the most cost-effective execution plan. To prevent the overoptimization of an execution

plan, the optimization process is broken into multiple phases. Each phase is a set of

transformation rules that evaluate various database objects and settings directly related

to the optimization process, ultimately attempting to find a good enough plan, not a

perfect plan. It’s that difference between good enough and perfect that can lead to poor

performance because of inadequately optimized execution plans. The query optimizer

will attempt only a limited number of optimizations before it simply goes with the least

costly plan it has currently (this is known as a timeout).

After going through a phase, the query optimizer examines the estimated cost of the

resulting plan. If the query optimizer determines that the plan is cheap enough, it will

use the plan without going through the remaining optimization phases. However, if the

plan is not cheap enough, the optimizer will go through the next optimization phase.

I will cover execution plan generation in more depth in Chapter 15.

SQL Server displays a query execution plan in various forms and from two different

types. The most commonly used forms in SQL Server 2017 are the graphical execution

plan and the XML execution plan. Actually, the graphical execution plan is simply an

XML execution plan parsed for the screen. The two types of execution plan are the

estimated plan and the actual plan. The estimated plan represents the results coming

from the query optimizer, and the actual plan is that same plan plus some runtime

metrics. The beauty of the estimated plan is that it doesn’t require the query to be

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

143

executed. The plans generated by these types can differ, but only if a statement-level

recompile occurs during execution. Most of the time the two types of plans will be the

same. The primary difference is the inclusion of some execution statistics in the actual

plan that are not present in the estimated plan.

The graphical execution plan uses icons to represent the processing strategy of a

query. To obtain a graphical estimated execution plan, select Query ➤ Display Estimated

Execution Plan. An XML execution plan contains the same data available through the

graphical plan but in a more programmatically accessible format. Further, with the

XQuery capabilities of SQL Server, XML execution plans can be queried as if they were

tables. An XML execution plan is produced by the statement SET SHOWPLAN_XML for

an estimated plan and by the statement SET STATISTICS XML for the actual execution

plan. You can also right-click a graphical execution plan and select Showplan XML. You

can also pull plans directly out of the plan cache using a DMO, sys.dm_exec_query_

plan. The plans stored in cache have no runtime information, so they are technically

estimated plans. The same goes for the plans stored in the Query Store.

Note you should make sure your database is set to Compatibility mode 140 so
that it accurately reflects updates to SQl Server 2017.

You can obtain the estimated XML execution plan for the costliest query identified

previously using the SET SHOWPLAN_XML command as follows:

USE AdventureWorks2017;

GO

SET SHOWPLAN_XML ON;

GO

SELECT soh.AccountNumber,

 sod.LineTotal,

 sod.OrderQty,

 sod.UnitPrice,

 p.Name

FROM Sales.SalesOrderHeader soh

 JOIN Sales.SalesOrderDetail sod

 ON soh.SalesOrderID = sod.SalesOrderID

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

144

 JOIN Production.Product p

 ON sod.ProductID = p.ProductID

WHERE sod.LineTotal > 20000;

GO

SET SHOWPLAN_XML OFF;

GO

Running this query results in a link to an execution plan, not an execution plan or any

data. Clicking the link will open an execution plan. Although the plan will be displayed

as a graphical plan, right-clicking the plan and selecting Show Execution Plan XML will

display the XML data. Figure 7-1 shows a portion of the XML execution plan output.

Figure 7-1. XML execution plan output

 Analyzing a Query Execution Plan
Let’s start with the costly query identified in the previous section. Copy it (minus the

SET SHOWPLAN_XML statements) into Management Studio into a query window. We can

immediately capture an execution plan by selecting the Display Estimated Execution

Plan button or hitting Ctrl+L. You’ll see the execution plan in Figure 7-2.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

145

Execution plans show two different flows of information. Reading from the left side,

you can see the logical flow, starting with the SELECT operator and proceeding through

each of the execution steps. Starting from the right side and reading the other way is the

physical flow of information, pulling data from the Clustered Index Scan operator first

and then proceeding to each subsequent step. Most of the time, reading in the direction

of the physical flow of data is more applicable to understanding what’s happening with

the execution plan, but not always. Sometimes the only way to understand what is

happening in an execution plan is to read it in the logical processing order, left to right.

Each step represents an operation performed to get the final output of the query.

An important aspect of execution plans are the values displayed in them. There are

a number that we’ll be using throughout the book, but the one that is most immediately

apparent is Cost, which shows the estimated cost percentage. You can see it in Figure 7-2.

The SELECT operator on the left has a Cost value of 0%, and the Clustered Index Scan

operation on the right has a Cost value of 60%. These costs must be thought of as

simply cost units. They are not a literal measure of performance of any kind. They are

values assigned by or calculated by the query optimizer. Nominally they represent a

mathematical construct of I/O and CPU use. However, they do not represent literal I/O

and CPU use. These values are always estimated values, and the units are simply cost

units. That’s a vital aspect of understanding that we need to establish up front.

Some of the aspects of a query execution represented by an execution plan are as

follows:

• If a query consists of a batch of multiple queries, the execution plan

for each query will be displayed in the order of execution. Each

execution plan in the batch will have a relative estimated cost, with

the total cost of the whole batch being 100 percent.

Figure 7-2. Query execution plan

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

146

• Every icon in an execution plan represents an operator. They will

each have a relative estimated cost, with the total cost of all the nodes

in an execution plan being 100 percent. (Although inaccuracies in

statistics, or even bugs in SQL Server, can lead to situations where

you see costs more than 100 percent, these are mostly seen in older

versions of SQL Server.)

• Usually the first physical operator in an execution represents a data

retrieval mechanism from a database object (a table or an index). For

example, in the execution plan in Figure 7-2, the three starting points

represent retrievals from the SalesOrderHeader, SalesOrderDetail,

and Product tables.

• Data retrieval will usually be either a table operation or an index

operation. For example, in the execution plan in Figure 7-2, all three

data retrieval steps are index operations.

• Data retrieval on an index will be either an index scan or an index

seek. For example, you can see a clustered index scan, a clustered

index seek, and an index scan in Figure 7-2.

• The naming convention for a data retrieval operation on an index is

[Table Name].[Index Name].

• The logical flow of the plan is from left to right, just like reading a

book in English. The data flows from right to left between operators

and is indicated by a connecting arrow between the operators.

• The thickness of a connecting arrow between operators represents a

graphical representation of the number of rows transferred.

• The joining mechanism between two operators in the same column

will be a nested loop join, a hash match join, a merge join, or an

adaptive join (added to SQL Server 2017 and Azure SQL Database).

For example, in the execution plan shown in Figure 7-2, there is one

hash and one loop join. (Join mechanisms are covered in more detail

later.)

• Running the mouse over a node in an execution plan shows a pop-up

window with some details. The tooltips are not very useful most of

the time. Figure 7-3 shows an example.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

147

• A complete set of details about an operator is available in the

Properties window, as shown in Figure 7-4, which you can open

by right-clicking the operator and selecting Properties from the

context menu.

• An operator detail shows both physical and logical operation types

at the top. Physical operations represent those actually used by the

storage engine, while the logical operations are the constructs used

by the optimizer to build the estimated execution plan. If logical and

physical operations are the same, then only the physical operation is

shown. It also displays other useful information, such as row count,

I/O cost, CPU cost, and so on.

• Reading through the properties on many of the operators can be

necessary to understand how a query is being executed within

SQL Server to better know how to tune that query.

Figure 7-3. Tooltip sheet from an execution plan operator

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

148

It’s worth noting that in actual execution plans produced in SQL Server 2017

Management Studio, you can also see the execution time statistics for the query as

part of the query plan. They’re visible in Figure 7-4 in the section QueryTimeStats. This

provides an additional mechanism for measuring query performance. You can also see

wait statistics within the execution plan when those statistics exceed 1ms. Any waits less

than that won’t show up in an execution plan.

 Identifying the Costly Steps in an Execution Plan
The most immediate approach in the execution plan is to find out which steps are

relatively costly. These steps are the starting point for your query optimization. You can

choose the starting steps by adopting the following techniques:

Figure 7-4. Select operator properties

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

149

• Each node in an execution plan shows its relative estimated cost in

the complete execution plan, with the total cost of the whole plan

being 100 percent. Therefore, focus attention on the nodes with the

highest relative cost. For example, the execution plan in Figure 7-2

has one step with 59 percent estimated cost.

• An execution plan may be from a batch of statements, so you may also

need to find the most costly estimated statement. In Figure 7- 2 you

can see at the top of the plan the text “Query 1.” In a batch situation,

there will be multiple plans, and they will be numbered in the order

they occurred within the batch.

• Observe the thickness of the connecting arrows between nodes.

A thick connecting arrow indicates a large number of rows being

transferred between the corresponding nodes. Analyze the node

to the left of the arrow to understand why it requires so many

rows. Check the properties of the arrows too. You may see that the

estimated rows and the actual rows are different. This can be caused

by out-of-date statistics, among other things. If you see thick arrows

through much of the plan and then a thin arrow at the end, it might

be possible to modify the query or indexes to get the filtering done

earlier in the plan.

• Look for hash join operations. For small result sets, a nested loop join

is usually the preferred join technique. You will learn more about

hash joins compared to nested loop joins later in this chapter. Just

remember that hash joins are not necessarily bad, and loop joins are

not necessarily good. It does depend on the amounts of data being

returned by the query.

• Look for key lookup operations. A lookup operation for a large

result set can cause a large number of random reads. I will cover key

lookups in more detail in Chapter 11.

• There may be warnings, indicated by an exclamation point on one

of the operators, which are areas of immediate concern. These can

be caused by a variety of issues, including a join without join criteria

or an index or a table with missing statistics. Usually resolving the

warning situation will help performance.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

150

• Look for steps performing a sort operation. This indicates that the

data was not retrieved in the correct sort order. Again, this may not

be an issue, but it is an indicator of potential problems, possibly a

missing or incorrect index. Ensuring that data is sorted in a specified

manner using ORDER BY is not problematic, but sorts can lead to

reduced performance.

• Watch for operators that may be placing additional load on the

system such as table spools. They may be necessary for the operation

of the query, or they may indicate an improperly written query or

badly designed indexes.

• The default cost threshold for parallel query execution is an

estimated cost of 5, and that’s very low. Watch for parallel operations

where they are not warranted. Just remember that the estimated

costs are numbers assigned by the query optimizer representing a

mathematical model of CPU and I/O but are not actual measures.

 Analyzing Index Effectiveness
To examine a costly step in an execution plan further, you should analyze the data

retrieval mechanism for the relevant table or index. First, you should check whether an

index operation is a seek or a scan. Usually, for best performance, you should retrieve

as few rows as possible from a table, and an index seek is frequently the most efficient

way of accessing a small number of rows. A scan operation usually indicates that a larger

number of rows have been accessed. Therefore, it is generally preferable to seek rather

than scan. However, this is not saying that seeks are inherently good and scans are

inherently bad. The mechanisms of data retrieval need to accurately reflect the needs

of the query. A query retrieving all rows from a table will benefit from a scan where a

seek for the same query would lead to poor performance. The key here is understanding

the details of the operations through examination of the properties of the operators to

understand why the optimizer made the choices that it did.

Next, you want to ensure that the indexing mechanism is properly set up. The query

optimizer evaluates the available indexes to discover which index will retrieve data from

the table in the most efficient way. If a desired index is not available, the optimizer uses

the next best index. For best performance, you should always ensure that the best index is

used in a data retrieval operation. You can judge the index effectiveness (whether the best

index is used or not) by analyzing the Argument section of a node detail for the following:

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

151

• A data retrieval operation

• A join operation

Let’s look at the data retrieval mechanism for the SalesOrderHeader table in the

estimated execution plan. Figure 7-5 shows the operator properties.

Figure 7-5. Data retrieval mechanism for the SalesOrderHeader table

In the operator properties for the SalesOrderHeader table, the Object property

specifies the index used, PK_SalesOrderHeader_SalesOrderID. It uses the following

naming convention: [Database].[Owner].[Table Name].[Index Name]. The Seek

Predicates property specifies the column, or columns, used to find keys in the

index. The SalesOrderHeader table is joined with the SalesOrderDetail table on the

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

152

SalesOrderld column. The SEEK works on the fact that the join criteria, SalesOrderld, is

the leading edge of the clustered index and primary key, PK_SalesOrderHeader.

Sometimes you may have a different data retrieval mechanism. Instead of the

Seek Predicates property you saw in Figure 7-5, Figure 7-6 shows a simple predicate,

indicating a totally different mechanism for retrieving the data.

Figure 7-6. A variation of the data retrieval mechanism, a scan

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

153

In the properties in Figure 7-6, there is no seek predicate. Because of the function

being performed on the column, the ISNULL, and the CONVERT_IMPLICIT, the entire table

must be checked for the existence of the Predicate value.

isnull(CONVERT_IMPLICIT(numeric(19,4),[AdventureWorks2017].[Sales].

[SalesOrderDetail].[UnitPrice] as [sod].[UnitPrice],0)*((1.0)-CONVERT_IM

PLICIT(numeric(19,4),[AdventureWorks2017].[Sales].[SalesOrderDetail].

[UnitPriceDiscount] as [sod].[UnitPriceDiscount],0))*CONVERT_IMPLICIT(nu

meric(5,0),[AdventureWorks2017].[Sales].[SalesOrderDetail].[OrderQty] as

[sod].[OrderQty],0),(0.000000))>(20000.000000)

Because a calculation is being performed on the data, the index doesn’t store the

results of the calculation, so instead of simply looking information up on the index, you

have to scan all the data, perform the calculation, and then check that the data matches

the values that we’re looking for.

 Analyzing Join Effectiveness
In addition to analyzing the indexes used, you should examine the effectiveness of join

strategies decided by the optimizer. SQL Server uses four types of joins.

• Hash joins

• Merge joins

• Nested loop joins

• Adaptive joins

In many simple queries affecting a small set of rows, nested loop joins are far

superior to both hash and merge joins. As joins get more complicated, the other join

types are used where appropriate. None of the join types is by definition bad or wrong.

You’re primarily looking for places where the optimizer may have chosen a type not

compatible with the data in hand. This is usually caused by discrepancies in the statistics

available to the optimizer when it’s deciding which of the types to use.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

154

 Hash Join

To understand SQL Server’s hash join strategy, consider the following simple query:

SELECT p.Name AS ProductName,

 pc.Name AS ProductCategoryName

FROM Production.Product p

 JOIN Production.ProductCategory pc

 ON p.ProductSubcategoryID = pc.ProductCategoryID;

Table 7-1 shows the two tables’ indexes and number of rows.

Table 7-1. Indexes and Number of Rows of the Products and ProductCategory

Tables

Table Indexes Number of Rows

Product Clustered index on ProductID 504

ProductCategory Clustered index on ProductCategoryld 4

Figure 7-7. Execution plan with a hash join

Figure 7-7 shows the execution plan for the preceding query.

You can see that the optimizer used a hash join between the two tables.

A hash join uses the two join inputs as a build input and a probe input. The build

input is represented by the top input in the execution plan, and the probe input is the

bottom input. Usually the smaller of the two inputs serves as the build input because

it’s going to be stored on the system, so the optimizer attempts to minimize the memory

used.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

155

The hash join performs its operation in two phases: the build phase and the probe

phase. In the most commonly used form of hash join, the in-memory hash join, the entire

build input is scanned or computed, and then a hash table is built in memory. Each

row from the outer input is inserted into a hash bucket depending on the hash value

computed for the hash key (the set of columns in the equality predicate). A hash is just

a mathematical construct run against the values in question and used for comparison

purposes.

This build phase is followed by the probe phase. The entire probe input is scanned or

computed one row at a time, and for each probe row, a hash key value is computed. The

corresponding hash bucket is scanned for the hash key value from the probe input, and

the matches are produced. Figure 7-8 illustrates the process of an in-memory hash join.

Figure 7-8. Workflow for an in-memory hash join

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

156

The query optimizer uses hash joins to process large, unsorted, nonindexed inputs

efficiently. Let’s now look at the next type of join: the merge join.

 Merge Join

In the previous case, input from the Product table is larger, and the table is not indexed

on the joining column (ProductCategorylD). Using the following simple query, you can

see different behavior:

SELECT pm.Name AS ProductModelName,

 pmpd.CultureID

FROM Production.ProductModel pm

 JOIN Production.ProductModelProductDescriptionCulture pmpd

 ON pm.ProductModelID = pmpd.ProductModelID;

Figure 7-9 shows the resultant execution plan for this query.

Figure 7-9. Execution plan with a merge join

For this query, the optimizer used a merge join between the two tables. A merge

join requires both join inputs to be sorted on the merge columns, as defined by the

join criterion. If indexes are available on both joining columns, then the join inputs are

sorted by the index. Since each join input is sorted, the merge join gets a row from each

input and compares them for equality. A matching row is produced if they are equal.

This process is repeated until all rows are processed.

In situations where the data is ordered by an index, a merge join can be one of the

fastest join operations, but if the data is not ordered and the optimizer still chooses to

perform a merge join, then the data has to be ordered by an extra operation, a sort. This

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

157

can make the merge join slower and more costly in terms of memory and I/O resources.

This can be made even worse if the memory allocation is inaccurate and the sort spills to

the disk in tempdb.

In this case, the query optimizer found that the join inputs were both sorted (or

indexed) on their joining columns. You can see this in the properties of the Index Scan

operators, as shown in Figure 7-10.

Figure 7-10. Properties of Clustered Index Scan showing that the data is ordered

As a result of the data being ordered by the indexes in use, the merge join was chosen

as a faster join strategy than any other join in this situation.

 Nested Loop Join

The next type of join I’ll cover here is the nested loop join. For better performance,

you should always strive to access a limited number of rows from individual tables. To

understand the effect of using a smaller result set, decrease the join inputs in your query

as follows:

SELECT pm.Name AS ProductName,

 pmpd.CultureID

FROM Production.ProductModel pm

 JOIN Production.ProductModelProductDescriptionCulture pmpd

 ON pm.ProductModelID = pmpd.ProductModelID

WHERE pm.Name = 'HL Mountain Front Wheel';

Figure 7-11 shows the resultant execution plan of the new query.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

158

As you can see, the optimizer used a nested loop join between the two tables.

A nested loop join uses one join input as the outer input table and the other as the

inner input table. The outer input table is shown as the top input in the execution plan,

and the inner input table is shown as the bottom input table. The outer loop consumes

the outer input table row by row. The inner loop, executed for each outer row, searches

for matching rows in the inner input table.

Nested loop joins are highly effective if the outer input is quite small and the inner

input is larger but indexed. In many simple queries affecting a small set of rows, nested

loop joins are far superior to both hash and merge joins. Joins operate by gaining speed

through other sacrifices. A loop join can be fast because it uses memory to take a small

set of data and compare it quickly to a second set of data. A merge join similarly uses

memory and a bit of tempdb to do its ordered comparisons. A hash join uses memory

and tempdb to build out the hash tables for the join. Although a loop join can be faster

at small data sets, it can slow down as the data sets get larger or there aren’t indexes to

support the retrieval of the data. That’s why SQL Server has different join mechanisms.

Even for small join inputs, such as in the previous query, it’s important to have an

index on the joining columns. As you saw in the preceding execution plan, for a small

set of rows, indexes on joining columns allow the query optimizer to consider a nested

loop join strategy. A missing index on the joining column of an input will force the query

optimizer to use a hash join instead.

Table 7-2 summarizes the use of the three join types.

Figure 7-11. Execution plan with a nested loop join

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

159

Table 7-2. Characteristics of the Three Join Types

Join Type Index on Joining Columns Usual Size of Joining Tables Presorted Join Clause

hash inner table: not indexed

outer table: optional

optimal condition: Small

outer table, large inner table

any no equi-join

merge Both tables: must

optimal condition: Clustered

or covering index on both

large yes equi-join

nested

loop

inner table: must

outer table: preferable

Small optional all

Note the outer table is usually the smaller of the two joining tables in the hash
and loop joins.

I will cover index types, including clustered and covering indexes, in Chapter 8.

 Adaptive Join

The adaptive join was introduced in Azure SQL Database and in SQL Server 2017. It’s

a new join type that can choose between either a nested loop join or a hash join on the

fly. As of this writing, it’s applicable only to columnstore indexes, but that may change in

the future. To see this in action, I’m going to create a table with a clustered columnstore

index.

SELECT *

INTO dbo.TransactionHistory

FROM Production.TransactionHistory AS th;

CREATE CLUSTERED COLUMNSTORE INDEX ClusteredColumnStoreTest

ON dbo.TransactionHistory;

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

160

With this table and index in place and our compatibility mode set correctly, we can

run a simple query that takes advantage of the clustered columnstore index.

SELECT p.Name,

 th.Quantity

FROM dbo.TransactionHistory AS th

 JOIN Production.Product AS p

 ON p.ProductID = th.ProductID

WHERE th.Quantity > 550;

Capturing an actual execution plan from the query, we’ll see Figure 7-12.

Figure 7-12. Execution plan with an adaptive join

The hash join or nested loops join used by the adaptive join function exactly as

defined earlier. The difference is that the adaptive join can make a determination as to

which join type will be more efficient in a given situation. The way it works is that it starts

out building an adaptive buffer, which is hidden. If the row threshold is exceeded, rows

flow into a regular hash table. The remaining rows are loaded to the hash table, ready for

the probe process, just as described. If all the rows are loaded into the adaptive buffer

and that number falls below the row threshold, then that buffer is used as the outer

reference of a nested loops join.

Each join is shown as a separate branch below the Adaptive Join operator, as you

can see in Figure 7-12. The first branch below the Adaptive Join is for the hash join. In

this case, an Index Scan operator and a Filter operator satisfy the needs of the query

should a hash join be used. The second branch below the adaptive join is for the

nested loops join. Here that would be the Clustered Index Seek operation.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

161

The plan is generated and stored in cache, with both possible branches. Then the

query engine will determine which of the branches to work down depending on the

result set in question. You can see the choice that was made by looking to the properties

of the Adaptive Join operator, as shown in Figure 7-13.

Figure 7-13. Properties of the Adaptive Join operator showing the actual
join type

The threshold at which this join switches between hash match and nested loops is

calculated at the time the plan is compiled. That is stored with the plan in the properties

as AdaptiveThresholdRows. As a query executes and it is determined that it has either

met, exceeded, or not met the threshold, processing continues down the correct branch

of the adaptive join. No plan recompile is needed for this to happen. Recompiles are

discussed further in Chapter 16.

Adaptive joins enhance performance fairly radically when the data set is such

that a nested loop would drastically outperform the hash match. While there is a

cost associated with building and then not using the hash match, this is offset by the

enhanced performance of the nested loops join for smaller data sets. When the data set

is large, this process doesn’t negatively affect the hash join operation in any way.

While technically this does not represent a fundamentally new type of join, the

behavior of dynamically switching between the two core types, nested loops and hash

match, in my opinion, makes this effectively a new join type. Add to that the fact that you

now have a new operator, the Adaptive Join operator, and neither the nested loops nor

the hash match is visible, and it certainly looks like a new join type.

 Actual vs. Estimated Execution Plans
There are estimated and actual execution plans. To a degree, they are interchangeable.

But, the actual plan carries with it information from the execution of the query,

specifically the row counts affected and some other information, that is not available in

the estimated plans. This information can be extremely useful, especially when trying to

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

162

understand statistic estimations. For that reason, actual execution plans are preferred

when tuning queries.

Unfortunately, you won’t always be able to access them. You may not be able to

execute a query, say in a production environment. You may have access only to the plan

from cache, which contains no runtime information. So, there are situations where the

estimated plan is what you will have to work with. However, it’s usually preferable to get

the actual plans because of the runtime metrics gathered there.

There are other situations where the estimated plans will not work at all. Consider

the following stored procedure:

CREATE OR ALTER PROC p1

AS

CREATE TABLE t1 (c1 INT);

INSERT INTO t1

SELECT ProductID

FROM Production.Product;

SELECT *

FROM t1;

DROP TABLE t1;

GO

You may try to use SHOWPLAN_XML to obtain the estimated XML execution plan for the

query as follows:

SET SHOWPLAN_XML ON;

GO

EXEC p1 ;

GO

SET SHOWPLAN_XML OFF;

GO

But this fails with the following error:

Msg 208, Level 16, State 1, Procedure p1, Line 249

Invalid object name 't1'.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

163

Since SHOWPLAN_XML doesn’t actually execute the query, the query optimizer can’t

generate an execution plan for INSERT and SELECT statements on the table (t1) because

it doesn’t exist until the query is executed. Instead, you can use STATISTICS XML as

follows:

SET STATISTICS XML ON;

GO

EXEC p1;

GO

SET STATISTICS XML OFF;

GO

Since STATISTICS XML executes the query, the table is created and accessed within

the query, which is all captured by the execution plan. Figure 7-14 shows the results of

the query and the two plans for the two statements within the procedure provided by

STATISTICS XML.

Figure 7-14. STATISTICS PROFILE output

Tip remember to switch Query ➤ Show execution plan off in management
Studio, or you will see the graphical, rather than textual, execution plan.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

164

 Plan Cache
Another place to access execution plans is to read them directly from the memory space

where they are stored, the plan cache. Dynamic management views and functions are

provided from SQL Server to access this data. All plans stored in the cache are estimated

plans. To see a listing of execution plans in cache, run the following query:

SELECT p.query_plan,

 t.text

FROM sys.dm_exec_cached_plans r

 CROSS APPLY sys.dm_exec_query_plan(r.plan_handle) p

 CROSS APPLY sys.dm_exec_sql_text(r.plan_handle) t;

The query returns a list of XML execution plan links. Opening any of them will show

the execution plan. These execution plans are the compiled plans, but they contain

no execution metrics. Working further with columns available through the dynamic

management views will allow you to search for specific procedures or execution plans.

While not having the runtime data is somewhat limiting, having access to execution

plans, even as the query is executing, is an invaluable resource for someone working on

performance tuning. As mentioned earlier, you might not be able to execute a query in a

production environment, so getting any plan at all is useful.

Covered in Chapter 11, you can also retrieve plans from the Query Store. Like the

plans stored in cache, these are all estimated plans.

 Execution Plan Tooling
While you’ve just started to see execution plans in action, you’ve only seen part of

what’s available to you to understand how these plans work. In addition to the XML

information presented in the plans within SSMS as the graphical plans and their

inherent properties, Management Studio offers some additional plan functionality that

is worth knowing about in your quest to understand what any given execution plan is

showing you about query performance.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

165

 Find Node

First, you can actually search within the operators of a plan to find particular values

within the properties. Let’s take the original query that we started the chapter with and

generate a plan for it. Here is the query:

SELECT soh.AccountNumber,

 sod.LineTotal,

 sod.OrderQty,

 sod.UnitPrice,

 p.Name

FROM Sales.SalesOrderHeader soh

 JOIN Sales.SalesOrderDetail sod

 ON soh.SalesOrderID = sod.SalesOrderID

 JOIN Production.Product p

 ON sod.ProductID = p.ProductID

WHERE sod.LineTotal > 20000;

After we generate the execution plan, using any means you prefer, right-click within

the execution plan. A context menu comes up with lots of interesting resources for

controlling the plan, as shown in Figure 7-15.

Figure 7-15. Execution plan context menu

If we select the Find Node menu choice, a new interface appears in the upper-right

corner of the execution plan, similar to Figure 7-16.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

166

On the left side are all the properties for all the operators. You can pick any property

you want to search for. You can then choose an operator. The default shown in Figure 7- 16

is the equal operator. There is also a Contains operator. Finally you type in a value. Clicking

the left or right arrow will find the operator that matches your criteria. Clicking again will

move to the next operator, if any, allowing you to work your way through an execution plan

that is large and complex without having to visually search the properties of each operator

on your own.

For example, we can look for any of the operators that reference the schema Product,

as shown in Figure 7-17.

Figure 7-16. Find Node interface

Figure 7-17. Looking for any operators that have a Schema value that contains
Product

Clicking the right arrow will take you to the first operator that references the Product

schema. In the example, it would first go to the SELECT operator, then the Adaptive Join

operator, the Filter operator, and then both the Index Scan and the Index Seek operators.

The only operator it would not select is Columnstore Index Scan because it’s in the

TransactionHistory schema.

 Compare Plans

Sometimes you may be wondering what the difference is between two execution plans

when it’s not easily visible within the graphical plans. If we were to run the following

queries, the plans would essentially look identical:

SELECT p.Name,

 th.Quantity

FROM dbo.TransactionHistory AS th

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

167

 JOIN Production.Product AS p

 ON p.ProductID = th.ProductID

WHERE th.Quantity > 550;

SELECT p.Name,

 th.Quantity

FROM dbo.TransactionHistory AS th

 JOIN Production.Product AS p

 ON p.ProductID = th.ProductID

WHERE th.Quantity > 35000;

There actually are some distinct differences in these plans, but they also look similar.

Determining exactly what the differences are just using your eyes to compare them could

lead to a lot of mistakes. Instead, we’ll right-click in one of the plans and bring up the

context menu from Figure 7-15. Use the top option to save one of the plans to a file. This

is necessary. Then, right-click within the other plan to get the context menu again. Select

the choice Compare Showplan. This will open a new window within SSMS that will look

a lot like Figure 7-18.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

168

Figure 7-18. Execution plan comparison within SSMS

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

169

What you’re seeing are plans that are similar but with distinct differences. The area

highlighted in pink are the similarities. Areas of the plan that are not highlighted, the

SELECT operator in this case, are the larger differences. You can control the highlighting

using the Statement options at the bottom of the screen.

Further, you can explore the properties of the operators. Right-clicking one and

selecting the Properties menu choice will open a window like Figure 7-19.

Figure 7-19. SELECT operator property differences between two plans

You can see that properties that don’t match have that bright yellow “does not equal”

symbol on them. This allows you to easily find and see the differences between two

execution plans.

 Scenarios

Finally, one additional new tool is the ability of Management Studio to analyze your

execution plans and point out possible issues with the plan. These are referred to as

scenarios and are listed on the bottom of the screen shown in Figure 7-18. To see this

functionality in action, Figure 7-20 shows the tab selected and one of the operators selected.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

170

Currently Microsoft offers only a single scenario, but more may be available by

the time you read this book. The scenario I have currently highlighted is Different

Estimated Rows. This is directly related to common problems with missing, incorrect,

or out-of-date statistics on columns and indexes. It’s a common problem and one that

we’ll address in several of the chapters in the book, especially Chapter 13. Suffice to say

that when there is a disparity between estimated and actual row counts, it can cause

performance problems because the plans generated may be incorrect for the actual data.

On the left side of the screen are the operators that may have a disparity between

estimated and actual rows. On the right are descriptions about why this disparity has

been highlighted. We’ll be exploring this in more detail later in the book.

You can also get to the Analysis screen when you capture a plan using XML

STATISTICS or when you simply open a file containing a plan. Currently, you can’t

capture a plan within SSMS and get to the Showplan Analysis screen directly.

 Live Execution Plans

The official name is Live Query Statistics, but what you’ll actually see is a live execution

plan. Introduced in SQL Server 2014, the DMV sys.dm_exec_query_profiles actually

allows you to see execution plan operations live, observing the number of rows processed

by each operation in real time. However, in SQL Server 2014, and by default in other

versions, you must be capturing an actual execution plan for this to work. Further, the

query has to be somewhat long-running to see this in action. So, this is a query without

JOIN criteria that creates Cartesian products, so it will take a little while to complete:

SELECT *

FROM sys.columns AS c,

 sys.syscolumns AS s;

Figure 7-20. Different Estimated Rows scenario in Showplan Analysis window

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

171

Put that into one query window and execute it while capturing an actual execution

plan. While it’s executing, in a second query window, run this query:

SELECT deqp.physical_operator_name,

 deqp.node_id,

 deqp.thread_id,

 deqp.row_count,

 deqp.rewind_count,

 deqp.rebind_count

FROM sys.dm_exec_query_profiles AS deqp;

You’ll see data similar to Figure 7-21.

Figure 7-21. Operator row counts from actively executing query

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

172

Run the query against the sys.dm_exec_query_profiles over and over while

the problematic query executes. You’ll see that the various row counts continue to

increment. With this approach, you can gather metrics on actively executing queries.

There is an easier way to see this in action starting with SQL Server Management

Studio 2016. Instead of querying the DMV, you can simply click the Include Live Query

Statistics button in the query window containing the problematic query. Then, when

you execute the query, the view will change to an execution plan, but it will be actively

showing you the row counts as they’re moving between operators. Figure 7-22 shows a

section of a plan.

Figure 7-22. Live execution plan showing rows moving between operators

Instead of the usual arrows showing the data flow between operators, you get moving

dashed lines (obviously, not visible in a book). As operations complete, the dashed lines

change to solid lines just as they behave in a regular execution plan.

This is a useful device for understanding what’s happening with a long-running

query, but the requirement to capture a live execution plan is not convenient if the query

is already executing, say on a production server. Further, capturing live execution plans,

although useful, is not cost free. So, introduced in SQL Server 2016 SP1 and available in all

other versions of SQL Server, a new traceflag was introduced, 7412. Setting that traceflag

enables a way to view live query statistics (a live execution plan) on demand. You can

also create an Extended Events session and use the query_thread_profile event (more

on that in the next section). While that is running or the traceflag is enabled, you can get

information from sys.dm_exec_query_profiles or watch a live execution plan on any

query at any time. To see this in action, let’s first enable the traceflag on our system.

DBCC TRACEON(7412);

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

173

With it enabled, we’ll again run our problematic query. A tool that I don’t use often

but one that becomes much more attractive with this addition is the Activity Monitor. It’s

a way to look at activity on your system. You access it by right-clicking the server in the

Object Explorer window and selecting Activity Monitor from the context menu. With the

traceflag enabled and executing the problematic query, Activity Monitor on my system

looks like Figure 7-23.

Figure 7-23. Activity Monitor showing Active Expensive Queries

You’ll have to click Active Expensive Queries to see the query running. You can then

right-click the query, and you can select Show Live Execution Plan if the query is actively

executing.

Unfortunately, the naming on all this is somewhat inconsistent. The original DMV

refers to query profiles, while the query window in SSMS uses query statistics, the DMV

uses thread profiles, and then Activity Monitor talks about live execution plans. They all

basically mean the same thing: a way to observe the behavior of operations within an

actively executing query. With the new ability to immediately access this information

without having to first be actively capturing an execution plan, what was something of

an interesting novelty has become an extremely useful tool. You can see precisely which

operations are slowing down a long-running query.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

174

 Query Thread Profiles

Mentioned earlier, the new Extended Events event query_thread_profile adds new

functionality to the system. This event is a debug event. As mentioned in Chapter 6, the

debug events should be used sparingly. However, Microsoft does advocate for the use

of this event. Running it will allow you to watch live execution plans on long-running

queries. However, it does more than that. It also captures row and thread counts for all

operators within an execution plan at the end of the execution of that plan. It’s very low

cost and an easy way to capture those metrics, especially on queries that run fast where

you could never really see their active row counts in a live execution plan. This is data

that you get with an execution plan, but this is much more low cost than capturing a

plan. This is the script for creating a session that captures the query thread profiles as

well as the core query metrics:

CREATE EVENT SESSION QueryThreadProfile

ON SERVER

 ADD EVENT sqlserver.query_thread_profile

 (WHERE (sqlserver.database_name = N'AdventureWorks2017')),

 ADD EVENT sqlserver.sql_batch_completed

 (WHERE (sqlserver.database_name = N'AdventureWorks2017'))

WITH (TRACK_CAUSALITY = ON)

GO

With this session running, if you run a small query, such as the one we used at the

start of the “Execution Plan Tooling” section, the output looks like Figure 7-24.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

175

You can see the details of the event including estimated rows, actual rows, and a lot

of the other information we frequently go to execution plans for as part of evaluating

statistics and index use among other things. You can now capture this information on the

fly for your queries without having to go through the much costlier process of capturing

execution plans. Just remember, this is not a zero-cost operation. It’s just a lower-cost

operation. It’s also not going to replace all the uses of an execution plan because the

plans show so much more than threads, duration, and row counts.

Figure 7-24. Extended Events session showing query_thread_profile
information

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

176

 Query Resource Cost
Even though the execution plan for a query provides a detailed processing strategy and

the estimated relative costs of the individual steps involved, if it’s an estimated plan,

it doesn’t provide the actual cost of the query in terms of CPU usage, reads/writes to

disk, or query duration. While optimizing a query, you may add an index to reduce the

relative cost of a step. This may adversely affect a dependent step in the execution plan,

or sometimes it may even modify the execution plan itself. Thus, if you look only at the

estimated execution plan, you can’t be sure that your query optimization benefits the

query as a whole, as opposed to that one step in the execution plan. You can analyze the

overall cost of a query in different ways.

You should monitor the overall cost of a query while optimizing it. As explained

previously, you can use Extended Events to monitor the duration, cpu, reads, and

writes information for the query. Extended Events is an extremely efficient mechanism

for gathering metrics. You should plan on taking advantage of this fact and use this

mechanism to gather your query performance metrics. Just understand that collecting

this information leads to large amounts of data that you will have to find a place to

maintain within your system.

There are other ways to collect performance data that are more immediate and easily

accessible than Extended Events. In addition to the ones I detail next, don’t forget that

we have the DMOs, such as sys.dm_exec_query_stats and sys.dm_exec_procedure_

stats, and the Query Store system views and reports, sys.query_store_runtime_stats

and sys.query_store_wait_stats.

 Client Statistics
Client statistics capture execution information from the perspective of your machine

as a client of the server. This means that any times recorded include the time it takes

to transfer data across the network, not merely the time involved on the SQL Server

machine. To use them, simply select Query ➤ Include Client Statistics. Now, each

time you run a query, a limited set of data is collected including the execution time,

the number of rows affected, the round-trips to the server, and more. Further, each

execution of the query is displayed separately on the Client Statistics tab, and a column

aggregating the multiple executions shows the averages for the data collected. The

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

177

statistics will also show whether a time or count has changed from one run to the next,

showing up as arrows, as shown in Figure 7-13. For example, consider this query:

SELECT TOP 100

 p.Name,

 p.ProductNumber

FROM Production.Product p;

The client statistics information for the query should look something like those

shown in Figure 7-25.

Figure 7-25. Client statistics

Although capturing client statistics can be a useful way to gather data, it’s a limited

set of data, and there is no way to show how one execution is different from another.

You could even run a completely different query, and its data would be mixed in with

the others, making the averages useless. If you need to, you can reset the client statistics.

Select the Query menu and then the Reset Client Statistics menu item.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

178

 Execution Time
Both Duration and CPU represent the time factor of a query. To obtain detailed

information on the amount of time (in milliseconds) required to parse, compile, and

execute a query, use SET STATISTICS TIME as follows:

SET STATISTICS TIME ON;

GO

SELECT soh.AccountNumber,

 sod.LineTotal,

 sod.OrderQty,

 sod.UnitPrice,

 p.Name

FROM Sales.SalesOrderHeader soh

 JOIN Sales.SalesOrderDetail sod

 ON soh.SalesOrderID = sod.SalesOrderID

 JOIN Production.Product p

 ON sod.ProductID = p.ProductID

WHERE sod.LineTotal > 1000;

GO

SET STATISTICS TIME OFF;

GO

The output of STATISTICS TIME for the preceding SELECT statement is shown here:

SQL Server parse and compile time:

 CPU time = 0 ms, elapsed time = 9 ms.

(32101 row(s) affected)

 SQL Server Execution Times:

 CPU time = 156 ms, elapsed time = 400 ms.

SQL Server parse and compile time:

 CPU time = 0 ms, elapsed time = 0 ms.

The CPU time = 156 ms part of the execution times represents the CPU value

provided by Extended Events. Similarly, the corresponding Elapsed time = 400 ms

represents the Duration value provided by the other mechanisms.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

179

A 0 ms parse and 9 ms compile time signifies that the optimizer has to parse the

query first for syntax and then compile it to produce the execution plan.

 STATISTICS IO
As discussed in the “Identifying Costly Queries” section earlier in the chapter, the

number of reads in the Reads column is frequently the most significant cost factor

among duration, cpu, reads, and writes. The total number of reads performed by a

query consists of the sum of the number of reads performed on all tables involved in the

query. The reads performed on the individual tables may vary significantly, depending

on the size of the result set requested from the individual table and the indexes available.

To reduce the total number of reads, it will be useful to find all the tables accessed in

the query and their corresponding number of reads. This detailed information helps you

concentrate on optimizing data access on the tables with a large number of reads. The

number of reads per table also helps you evaluate the impact of the optimization step

(implemented for one table) on the other tables referred to in the query.

In a simple query, you determine the individual tables accessed by taking a close

look at the query. This becomes increasingly difficult the more complex the query

becomes. In the case of stored procedures, database views, or functions, it becomes

more difficult to identify all the tables actually accessed by the optimizer. You can use

STATISTICS IO to get this information, irrespective of query complexity.

To turn STATISTICS IO on, navigate to Query ➤ Query Options ➤ Advanced ➤ Set

Statistics IO in Management Studio. You may also get this information programmatically

as follows:

SET STATISTICS IO ON;

GO

SELECT soh.AccountNumber,

 sod.LineTotal,

 sod.OrderQty,

 sod.UnitPrice,

 p.Name

FROM Sales.SalesOrderHeader soh

 JOIN Sales.SalesOrderDetail sod

 ON soh.SalesOrderID = sod.SalesOrderID

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

180

 JOIN Production.Product p

 ON sod.ProductID = p.ProductID

WHERE sod.SalesOrderID = 71856;

GO

SET STATISTICS IO OFF;

GO

If you run this query and look at the execution plan, it consists of three clustered

index seeks with two loop joins. If you remove the WHERE clause and run the query again,

you get a set of scans and some hash joins. That’s an interesting fact—but you don’t

know how it affects the query I/O usage! You can use SET STATISTICS IO as shown

previously to compare the cost of the query (in terms of logical reads) between the two

processing strategies used by the optimizer.

You get following STATISTICS IO output when the query uses the hash join:

(121317 row(s) affected)

Table 'Workfile'. Scan count 0, logical reads 0...

Table 'Worktable'. Scan count 0, logical reads 0...

Table 'SalesOrderDetail'. Scan count 1, logical reads 1248...

Table 'SalesOrderHeader'. Scan count 1, logical reads 689...

Table 'Product'. Scan count 1, logical reads 6...

(1 row(s) affected)

Now when you add back in the WHERE clause to appropriately filter the data, the

resultant STATISTICS IO output turns out to be this:

(2 row(s) affected)

Table 'Product'. Scan count 0, logical reads 4...

Table 'SalesOrderDetail'. Scan count 1, logical reads 3...

Table 'SalesOrderHeader'. Scan count 0, logical reads 3...

(1 row(s) affected)

Logical reads for the SalesOrderDetail table have been cut from 1,248 to 3 because

of the index seek and the loop join. It also hasn’t significantly affected the data retrieval

cost of the Product table.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

181

While interpreting the output of STATISTICS IO, you mostly refer to the number of

logical reads. The number of physical reads and read-ahead reads will be nonzero when

the data is not found in the memory, but once the data is populated in memory, the

physical reads and read-ahead reads will tend to be zero.

There is another advantage to knowing all the tables used and their corresponding

reads for a query. Both the duration and CPU values may fluctuate significantly when

reexecuting the same query with no change in table schema (including indexes) or data

because the essential services and background applications running on the SQL Server

machine can affect the processing time of the query under observation. But, don’t forget

that logical reads are not always the most accurate measure. Duration and CPU are

absolutely useful and an important part of any query tuning.

During optimization steps, you need a nonfluctuating cost figure as a reference. The

reads (or logical reads) don’t vary between multiple executions of a query with a fixed

table schema and data. For example, if you execute the previous SELECT statement ten

times, you will probably get ten different figures for duration and CPU, but Reads will

remain the same each time. Therefore, during optimization, you can refer to the number

of reads for an individual table to ensure that you really have reduced the data access

cost of the table. Just never assume that is your only measure or even the primary one.

It’s just a constant measure and therefore useful.

Even though the number of logical reads can also be obtained from Extended Events,

you get another benefit when using STATISTICS IO. The number of logical reads for a

query shown by Profiler or the Server Trace option increases as you use different SET

statements (mentioned previously) along with the query. But the number of logical reads

shown by STATISTICS IO doesn’t include the additional pages that are accessed because

SET statements are used with a query. Thus, STATISTICS IO provides a consistent figure

for the number of logical reads.

 Actual Execution Plans
As mentioned earlier in the chapter, actual execution plans now capture and display

some query performance metrics within the execution plan itself along with the

traditional metrics. If we open the SELECT operator for the previous query and plan,

the one without the WHERE clause, Figure 7-26 shows both the QueryTimeStats and

WaitStats values.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

182

You can now see the CpuTime and ElapsedTime for the query directly within the

execution plan, as long as you’re capturing an actual execution plan. These values are

measured in milliseconds. You can also see the top wait or waits for a query. In the

Figure 7-26 example it’s ASYNC_NETWORK_IO, probably explained by the fact that we’re

returning 121,000 rows across the network. The wait statistics show up only if they are

longer than 1ms. This does lead to the waits shown within an execution being not as

accurate as the other mechanisms for capturing waits. However, this is a handy tool to

help evaluate the behavior of the query within the execution plan.

This gives you yet another quick and easy way to see query performance. If you look at

one of the other operators, you can also see the I/O for that operator, measured in pages.

 Summary
In this chapter, you saw that you can use Extended Events to identify the queries

causing a high amount of stress on the system resources in a SQL workload. Collecting

the session data can, and should be, automated using system stored procedures. For

immediate access to statistics about running queries, use the DMV sys.dm_exec_query_

stats. You can further analyze these queries with Management Studio to find the costly

steps in the processing strategy of the query. For better performance, it is important to

consider both the index and join mechanisms used in an execution plan while analyzing

a query. The number of data retrievals (or reads) for the individual tables provided by

Figure 7-26. QueryTimeStats and WaitStats within an actual execution plan

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

183

SET STATISTICS IO helps concentrate on the data access mechanism of the tables with

the most reads. You also should focus on the CPU cost and overall time of the most costly

queries.

Once you identify a costly query and finish the initial analysis, the next step

should be to optimize the query for performance. Because indexing is one of the most

commonly used performance-tuning techniques, in the next chapter. I will discuss in

depth the various indexing mechanisms available in SQL Server.

Chapter 7 analyzing Query performanCe

www.EBooksWorld.ir

185
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_8

CHAPTER 8

Index Architecture
and Behavior
The right index on the right column, or columns, is the basis on which query tuning

begins. A missing index or an index placed on the wrong column, or columns, can be the

basis for all performance problems starting with basic data access, continuing through

joins, and ending in filtering clauses. For these reasons, it is extremely important for

everyone—not just a DBA—to understand the different indexing techniques that can be

used to optimize the database design.

In this chapter, I cover the following topics:

• What an index is

• The benefits and overhead of an index

• General recommendations for index design

• Clustered and nonclustered index behavior and comparisons

• Recommendations for clustered and nonclustered indexes

 What Is an Index?
One of the best ways to reduce disk I/O is to use an index. An index allows SQL Server to

find data in a table without scanning the entire table. An index in a database is analogous

to an index in a book. Say, for example, that you wanted to look up the phrase table scan

in this book. In the paper version, without the index at the back of the book, you would

have to peruse the entire book to find the text you needed. With the index, you know

exactly where the information you want is stored.

www.EBooksWorld.ir

186

While tuning a database for performance, you create indexes on the different

columns used in a query to help SQL Server find data quickly. For example, the following

query against the Production.Product table results in the data shown in Figure 8-1

(the first 10 of 500+ rows):

SELECT TOP 10

 p.ProductID,

 p.[Name],

 p.StandardCost,

 p.[Weight],

 ROW_NUMBER() OVER (ORDER BY p.Name DESC) AS RowNumber

FROM Production.Product p

ORDER BY p.Name DESC;

Figure 8-1. Sample Production.Product table

The preceding query scanned the entire table since there was no WHERE clause.

If you need to add a filter through the WHERE clause to retrieve all the products where

StandardCost is greater than 150, without an index the table will still have to be scanned,

checking the value of StandardCost at each row to determine which rows contain a value

greater than 150. An index on the StandardCost column could speed up this process by

providing a mechanism that allows a structured search against the data rather than a

row-by-row check. You can take two different, and fundamental, approaches for creating

this index.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

187

• Like a dictionary: A dictionary is a distinct listing of words in

alphabetical order. An index can be stored in a similar fashion. The

data is ordered, although it will still have duplicates. The first ten

rows, ordered by StandardCost DESC instead of by Name, would look

like the data shown in Figure 8-2. Notice the RowNumber column

shows the original placement of the row when ordering by Name.

Figure 8-2. Product table sorted on StandardCost

So, now if you wanted to find all the data in the rows where StandardCost is greater

than 150, the index would allow you to find them immediately by moving down to the

first value greater than 150. An index that applies order to the data stored based on the

index key order is known as a clustered index. Because of how SQL Server stores data,

this is one of the most important indexes in your database design. I explain this in detail

later in the chapter.

• Like a book’s index architecture: An ordered list can be created

without altering the layout of the table, similar to the way the

index of a book is created. Just like the keyword index of a book

lists the keywords in a separate section with a page number to

refer to the main content of the book, the list of StandardCost

values is created as a separate structure and refers to the

corresponding row in the Product table through a pointer. For the

example, I’ll use RowNumber as the pointer. Table 8-1 shows the

structure of the manufacturer index.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

188

SQL Server can scan the manufacturer index to find rows where StandardCost is

greater than 150. Since the StandardCost values are arranged in a sorted order,

SQL Server can stop scanning as soon as it encounters the row with a value of 150 or

less. This type of index is called a nonclustered index, and I explain it in detail later in

the chapter.

In either case, SQL Server will be able to find all the products where StandardCost is

greater than 150 more quickly than without an index under most circumstances.

You can create indexes on either a single column (as described previously) or a

combination of columns in a table. SQL Server also automatically creates indexes for

certain types of constraints (for example, PRIMARY KEY and UNIQUE constraints).

 The Benefit of Indexes
SQL Server has to be able to find data, even when no index is present on a table. When

no clustered index is present to establish a storage order for the data, the storage engine

will simply read through the entire table to find what it needs. A table without a clustered

index is called a heap table. A heap is just an unordered stack of data with a row identifier

as a pointer to the storage location. This data is not ordered or searchable except by

walking through the data, row by row, in a process called a scan. When a clustered

index is placed on a table, the key values of the index establish an order for the data.

Further, with a clustered index, the data is stored with the index so that the data itself is

now ordered. When a clustered index is present, the pointer on the nonclustered index

consists of the values that define the clustered index key. This is a big part of what makes

clustered indexes so important.

Table 8-1. Structure of the Manufacturer Index

StandardCost RowNumber

2171.2942 125

2171.2942 126

2171.2942 127

2171.2942

2171.2942

128

129

1912.1544 170

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

189

Data within SQL Server is stored on a page, which is 8KB in size. A page is the

minimum amount of information that moves off the disk and into memory, so how

much you can store on a page becomes important. Since a page has a limited amount

of space, it can store a larger number of rows if the rows contain a fewer number of

columns or the columns are of smaller size. The nonclustered index usually doesn’t (and

shouldn’t) contain all the columns of the table; it usually contains only a limited number

of the columns. Therefore, a page will be able to store more rows of a nonclustered index

than rows of the table itself, which contains all the columns. Consequently, SQL Server

will be able to read more values for a column from a page representing a nonclustered

index on the column than from a page representing the table that contains the column.

Another benefit of a nonclustered index is that because it is in a separate structure

from the data table, it can be put in a different filegroup, with a different I/O path,

as explained in Chapter 3. This means SQL Server can access the index and table

concurrently, making searches even faster.

Indexes store their information in a balanced tree, referred to as a B-tree, structure,

so the number of reads required to find a particular row is minimized. The following

example shows the benefit of a B-tree structure.

Consider a single-column table with 27 rows in a random order and only 3 rows per

leaf page. Suppose the layout of the rows in the pages is as shown in Figure 8-3.

Figure 8-3. Initial layout of 27 rows

To search the row (or rows) for the column value of 5, SQL Server has to scan all the

rows and the pages since even the last row in the last page may have the value 5. Because

the number of reads depends on the number of pages accessed, nine read operations

(retrieving pages from the disk and transferring them to memory) have to be performed

without an index on the column. This content can be ordered by creating an index on the

column, with the resultant layout of the rows and pages shown in Figure 8-4.

Figure 8-4. Ordered layout of 27 rows

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

190

Indexing the column arranges the content in a sorted fashion. This allows SQL Server

to determine the possible value for a row position in the column with respect to the value

of another row position in the column. For example, in Figure 8-4, when SQL Server finds

the first row with the column value 6, it can be sure that there are no more rows with the

column value 5. Thus, only two read operations are required to fetch the rows with the

value 5 when the content is indexed. However, what happens if you want to search for

the column value 25? This will require nine read operations! This problem is solved by

implementing indexes using the B-tree structure (as shown in Figure 8-5).

Figure 8-5. B-tree layout of 27 rows

A B-tree consists of a starting node (or page) called a root node with branch nodes

(or pages) growing out of it (or linked to it). All keys are stored in the leaves. Contained

in each interior node (above the leaf nodes) are pointers to its branch nodes and values

representing the smallest value found in the branch node. Keys are kept in sorted order

within each node. B-trees use a balanced tree structure for efficient record retrieval—a

B-tree is balanced when the leaf nodes are all at the same level from the root node. For

example, creating an index on the preceding content will generate the balanced B-tree

structure shown in Figure 8-5. At the bottom level, all the leaf nodes are connected to each

other through a doubly linked list, meaning each page points to the page that follows it, and

the page that follows it points back to the preceding page. This prevents having to go back

up the chain when pages are traversed beyond the definitions of the intermediate pages.

The B-tree algorithm minimizes the number of pages to be accessed to locate a desired

key, thereby speeding up the data access process. For example, in Figure 8-5, the search

for the key value 5 starts at the top root node. Since the key value is between 1 and 10, the

search process follows the left branch to the next node. As the key value 5 falls between

the values 4 and 7, the search process follows the middle branch to the next node with the

starting key value of 4. The search process retrieves the key value 5 from this leaf page. If

the key value 5 doesn’t exist in this page, the search process will stop since it’s the leaf page.

Similarly, the key value 25 can also be searched using the same number of reads.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

191

 Index Overhead
The performance benefit of indexes does come at a cost. Tables with indexes require

more storage and memory space for the index pages in addition to the data pages of the

table. Data manipulation queries (INSERT, UPDATE, and DELETE statements, or the CUD

part of Create, Read, Update, Delete [CRUD]) can take longer, and more processing time

is required to maintain the indexes of constantly changing tables. This is because, unlike

a SELECT statement, data manipulation queries modify the data content of a table. If

an INSERT statement adds a row to the table, then it also has to add a row in the index

structure. If the index is a clustered index, the overhead is greater still because the row

has to be added to the data pages themselves in the right order, which may require other

data rows to be repositioned below the entry position of the new row. The UPDATE and

DELETE data manipulation queries change the index pages in a similar manner.

When designing indexes, you’ll be operating from two different points of view: the

existing system, already in production, where you need to measure the overall impact of

an index, and the tactical approach where all you worry about is the immediate benefits

of an index, usually when initially designing a system. When you have to deal with the

existing system, you should ensure that the performance benefits of an index outweigh the

extra cost in processing resources. You can do this by using Extended Events (explained in

Chapter 3) to do an overall workload optimization (explained in Chapter 27). When you’re

focused exclusively on the immediate benefits of an index, SQL Server supplies a series

of dynamic management views that provide detailed information about the performance

of indexes, sys.dm_db_index_operational_stats or sys.dm_db_index_usage_stats.

The view sys.dm_db_index_operational_stats shows the low-level activity, such as

locks and I/O, on an index that is in use. The view sys.dm_db_index_usage_stats returns

statistical counts of the various index operations that have occurred to an index over time.

Both of these will be used more extensively in Chapter 21 when I discuss blocking.

Note In some parts of the book, I use the STATISTICS IO and STATISTICS
TIME measurements against the queries that I’m running. You can add SET
commands to the code, or you can change the connection settings for the query
window. I suggest just changing the connection settings. however, there should
also be a warning here. using STATISTICS IO and STATISTICS TIME together
can sometimes cause problems. the time it takes to retrieve the I/o information

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

192

is added to the STATISTICS TIME information, thus skewing the results. If
you don’t need table-level I/o, it’s better to capture the execution metrics using
extended events. You also can get CpuTime and ElapsedTime from actual
execution plans if you’re capturing one for a query.

To understand the overhead cost of an index on data manipulation queries, consider

the following example. First, create a test table with 10,000 rows.

DROP TABLE IF EXISTS dbo.Test1;

GO

CREATE TABLE dbo.Test1

(

 C1 INT,

 C2 INT,

 C3 VARCHAR(50)

);

WITH Nums

AS (SELECT TOP (10000)

 ROW_NUMBER() OVER (ORDER BY (SELECT 1)) AS n

 FROM master.sys.all_columns ac1

 CROSS JOIN master.sys.all_columns ac2

)

INSERT INTO dbo.Test1

(

 C1,

 C2,

 C3

)

SELECT n,

 n,

 'C3'

FROM Nums;

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

193

Run an UPDATE statement, like so:

UPDATE dbo.Test1

SET C1 = 1,

 C2 = 1

WHERE C2 = 1;

Then the number of logical reads reported by SET STATISTICS I0 is as follows:

Table 'Test1'. Scan count 1, logical reads 29

Add an index on column cl, like so:

CREATE CLUSTERED INDEX iTest

ON dbo.Test1(C1);

Then the resultant number of logical reads for the same UPDATE statement increases

from 29 to 38 but also has added a worktable with an additional 5 reads, for a total of 43.

Table 'Test1'. Scan count 1, logical reads 38

Table 'Worktable'. Scan count 1, logical reads 5

The number of reads goes up because it was necessary to rearrange the data in order

to store it in the correct order within the clustered index, increasing the number of reads

beyond what was necessary for a heap table to just add the data to the end of the existing

storage.

Note a worktable is a temporary table used internally by SQL Server to process
the intermediate results of a query. Worktables are created in the tempdb database
and are dropped automatically after query execution.

Even though it is true that the amount of overhead required to maintain indexes

increases for data manipulation queries, be aware that SQL Server must first find a row

before it can update or delete it; therefore, indexes can be helpful for UPDATE and DELETE

statements with necessary WHERE clauses. The increased efficiency in using the index

to locate a row usually offsets the extra overhead needed to update the indexes, unless

the table has a lot of indexes or lots of updates. Further, the vast majority of systems are

read heavy, meaning they have a lot more data being retrieved than is being inserted or

modified.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

194

To understand how an index can benefit even data modification queries, let’s build

on the example. Create another index on table Test1. This time, create the index on

column C2 referred to in the WHERE clause of the UPDATE statement.

CREATE NONCLUSTERED INDEX iTest2

ON dbo.Test1(C2);

After adding this new index, run the UPDATE command again.

UPDATE dbo.Test1

SET C1 = 1,

 C2 = 1

WHERE C2 = 1;

The total number of logical reads for this UPDATE statement decreases from 43 to 20

(= 15 + 5).

Table 'Test1'. Scan count 1, logical reads 15

Table 'Worktable'. Scan count 1, logical reads 5

The examples in this section have demonstrated that although having an index adds

some overhead cost to action queries, the overall result can be a decrease in cost because

of the beneficial effect of indexes on searching, even during updates.

 Index Design Recommendations
The main recommendations for index design are as follows:

• Examine the WHERE clause and JOIN criteria columns.

• Use narrow indexes.

• Examine column uniqueness and selectivity.

• Examine the column data type.

• Consider column order.

• Consider the type of index (clustered versus nonclustered).

Let’s consider each of these recommendations in turn.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

195

 Examine the WHERE Clause and JOIN Criteria Columns
When a query is submitted to SQL Server, the query optimizer tries to find the best data

access mechanism for every table referred to in the query. Here is how it does this:

 1. The optimizer identifies the columns included in the WHERE clause

and the JOIN criteria. Predicates are a logical condition that

evaluate to true, false, or unknown. They include things like IN or

BETWEEN.

 2. The optimizer then examines indexes on those columns.

 3. The optimizer assesses the usefulness of each index by

determining the selectivity of the clause (that is, how many rows

will be returned) from statistics maintained on the index.

 4. Constraints such as primary keys and foreign keys are also

assessed and used by the optimizer to determine the selectivity of

the objects in use in the query.

 5. Finally, the optimizer estimates the least costly method of

retrieving the qualifying rows, based on the information gathered

in the previous steps.

Note Chapter 13 covers statistics in more depth.

To understand the significance of a WHERE clause column in a query, let’s consider

an example. Let’s return to the original code listing that helped you understand what an

index is; the query consisted of a SELECT statement without any WHERE clause, as follows:

SELECT p.ProductID,

 p.Name,

 p.StandardCost,

 p.Weight

FROM Production.Product p;

The query optimizer performs a clustered index scan, the equivalent of a table

scan against a heap on a table that has a clustered index, to read the rows as shown in

Figure 8-6 (switch on the Include Actual Execution Plan option by pressing Ctrl+M inside

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

196

a query window, as well as the Set Statistics I0 option by right-clicking, selecting Query

Options, and then selecting the appropriate check box on the Advanced tab).

Figure 8-6. Execution plan with no WHERE clause

The number of logical reads reported by SET STATISTICS I0 for the SELECT

statement is as follows:

Table 'Product'. Scan count 1, logical reads 15

Note Capturing an execution plan can affect any time metrics you gather using
almost any method. So, when measuring the time really counts, remember to turn
off the execution plan capture.

To understand the effect of a WHERE clause column on the query optimizer’s

decisions, let’s add a WHERE clause to retrieve a single row.

SELECT p.ProductID,

 p.Name,

 p.StandardCost,

 p.Weight

FROM Production.Product AS p

WHERE p.ProductID = 738;

With the WHERE clause in place, the query optimizer examines the WHERE clause

column ProductID, identifies the availability of the index PK_Product_ProductId on

column Productld, assesses a high selectivity (that is, only one row will be returned) for

the WHERE clause from the statistics on index PK_Product_Productld, and decides to use

that index to retrieve the data, as shown in Figure 8-7.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

197

The resultant number of logical reads is as follows:

Table 'Product'. Scan count 0, logical reads 2

The behavior of the query optimizer shows that the WHERE clause column helps the

optimizer choose an optimal indexing operation for a query. This is also applicable for a

column used in the JOIN criteria between two tables. The optimizer looks for the indexes

on the WHERE clause column or the JOIN criterion column and, if available, considers

using the index to retrieve the rows from the table. The query optimizer considers

indexes on the WHERE clause columns and the JOIN criteria columns while executing a

query. Therefore, having indexes on the frequently used columns in the WHERE clause, the

HAVING clause, and the JOIN criteria of a SQL query helps the optimizer avoid scanning a

base table.

When the amount of data inside a table is so small that it fits onto a single page

(8KB), a table scan may work better than an index seek. If you have a good index in place

but you’re still getting a scan, consider this effect.

 Use Narrow Indexes
For best performance, you should use as narrow a data type as is practical when creating

indexes. Narrow in this context means as small a data type as you realistically can. You

should also avoid very wide data type columns in an index. Columns with string data

types (CHAR, VARCHAR, NCHAR, and NVARCHAR) sometimes can be quite wide, as can binary

and globally unique identifiers (GUIDs). Unless they are absolutely necessary, minimize

the use of wide data type columns with large sizes in an index. You can create indexes on

a combination of columns in a table. For the best performance, use as few columns in an

index as necessary. However, use the columns you need to use to define a useful key for

the index.

Figure 8-7. Execution plan with a WHERE clause

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

198

A narrow index can accommodate more rows in an 8KB index page than a wide

index. This has the following effects:

• Reduces I/O (by having to read fewer 8KB pages)

• Makes database caching more effective because SQL Server can

cache fewer index pages, consequently reducing the logical reads

required for the index pages in the memory

• Reduces the storage space for the database

To understand how a narrow index can reduce the number of logical reads, create a

test table with 20 rows and an index.

DROP TABLE IF EXISTS dbo.Test1;

GO

CREATE TABLE dbo.Test1 (C1 INT, C2 INT);

WITH Nums

 AS (SELECT 1 AS n

 UNION ALL

 SELECT n + 1

 FROM Nums

 WHERE n < 20

)

 INSERT INTO dbo.Test1

 (C1, C2)

 SELECT n,

 2

 FROM Nums;

CREATE INDEX iTest ON dbo.Test1(C1);

Since the indexed column is narrow (the INT data type is 4 bytes), all the index rows

can be accommodated in one 8KB index page. As shown in Figure 8-8, you can confirm

this in the dynamic management views associated with indexes. You may get an error if

your database ID resolves to NULL.

SELECT i.name,

 i.type_desc,

 ddips.page_count,

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

199

 ddips.record_count,

 ddips.index_level

FROM sys.indexes i

 JOIN sys.dm_db_index_physical_stats(DB_ID(N'AdventureWorks2017'),

 OBJECT_ID(N'dbo.Test1'),

 NULL,

 NULL,

 'DETAILED'

) AS ddips

 ON i.index_id = ddips.index_id

WHERE i.object_id = OBJECT_ID(N'dbo.Test1');

Figure 8-8. Number of pages for a narrow, nonclustered index

The sys.indexes system table is stored in each database and contains the basic

information on every index in the database. The dynamic management function

sys.dm_db_index_physical_stats contains the more detailed information about

the statistics on the index (you’ll learn more about this DMV in Chapter 14). To

understand the disadvantage of a wide index key, modify the data type of the indexed

column c1 from INT to CHAR(500) (narrow_ alter.sql in the download).

DROP INDEX dbo.Test1.iTest;

ALTER TABLE dbo.Test1 ALTER COLUMN C1 CHAR(500);

CREATE INDEX iTest ON dbo.Test1(C1);

The width of a column with the INT data type is 4 bytes, and the width of a column

with the CHAR(500) data type is 500 bytes. Because of the large width of the indexed

column, two index pages are required to contain all 20 index rows. You can confirm this

in the sys.dm_db_index_physical_stats dynamic management function by running

the query against it again (see Figure 8-9).

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

200

A large index key size increases the number of index pages, thereby increasing the

amount of memory and disk activities required for the index. It is always recommended

that the index key size be as narrow as you can make it.

Drop the test table before continuing.

DROP TABLE dbo.Test1;

 Examine Column Uniqueness
Creating an index on columns with a very low range of possible unique values (such

as MaritalStatus) will not benefit performance because the query optimizer will not

be able to use the index to effectively narrow down the rows to be returned. Consider a

MaritalStatus column with only two unique values: M and S. When you execute a query

with the MaritalStatus column in the WHERE clause, you end up with a large number of

rows from the table (assuming the distribution of M and S is relatively even), resulting in a

costly table or clustered index scan. It is always preferable to have columns in the WHERE

clause with lots of unique rows (or high selectivity) to limit the number of rows accessed.

You should create an index on those columns to help the optimizer access a small result set.

Furthermore, while creating an index on multiple columns, which is also referred

to as a composite index, column order matters. In many cases, using the most selective

column first will help filter the index rows more efficiently.

Note the importance of column order in a composite index is explained later in
the chapter in the “Consider Column order” section.

Figure 8-9. Number of pages for a wide, nonclustered index

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

201

From this, you can see that it is important to know the selectivity of a column

before creating an index on it. You can find this by executing a query like this one; just

substitute the table and column name:

SELECT COUNT(DISTINCT e.MaritalStatus) AS DistinctColValues,

 COUNT(e.MaritalStatus) AS NumberOfRows,

 (CAST(COUNT(DISTINCT e.MaritalStatus) AS DECIMAL)

 / CAST(COUNT(e.MaritalStatus) AS DECIMAL)) AS Selectivity,

 (1.0 / (COUNT(DISTINCT e.MaritalStatus))) AS Density

FROM HumanResources.Employee AS e;

Of course, you won’t need to run this kind of query on every column or every index.

This query is showing how some of the statistics that SQL Server uses are put together.

You can see the statistics directly by using DBCC SHOW_STATISTICS or by querying the

DMFs, sys.dm_db_stats_histogram and sys.dm_db_stats_properties. We’ll cover all

these in detail in Chapter 13.

The column with the highest number of unique values (or selectivity) can be the best

candidate for indexing when referred to in a WHERE clause or a join criterion. You may

also have the exceptional data where you have hundreds of rows of common data with

only a few that are unique. The few will also benefit from an index. You can make this

even more beneficial by using filtered indexes (discussed in more detail in Chapter 9).

To understand how the selectivity of an index key column affects the use of the

index, take a look at the MaritalStatus column in the HumanResources.Employee

table. If you run the previous query, you’ll see that it contains only two distinct values

in 290 rows, which is a selectivity of .0069 and a density of .5. A query to look for a

MaritalStatus of M, as well as a particular BirthDate value, would look like this:

SELECT e.MaritalStatus,

 e.BirthDate

FROM HumanResources.Employee AS e

WHERE e.MaritalStatus = 'M'

 AND e.BirthDate = '1982-02-11';

This results in the execution plan in Figure 8-10 and the following I/O and elapsed time:

Table 'Employee'. Scan count 1, logical reads 9

 CPU time = 0 ms, elapsed time = 2 ms.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

202

The data is returned by scanning the clustered index (where the data is stored) to

find the appropriate values where MaritalStatus = 'M'. If you were to place an index

on the column, like so, and run the query again, the execution plan remains the same:

CREATE INDEX IX_Employee_Test ON HumanResources.Employee (MaritalStatus);

The data is just not selective enough for the index to be used, let alone be useful.

If instead you use a composite index that looks like this:

CREATE INDEX IX_Employee_Test

ON HumanResources.Employee

(

 BirthDate,

 MaritalStatus

)

WITH (DROP_EXISTING = ON);

then, when you rerun the query, a completely different execution plan is generated.

You can see it in Figure 8-11 along with the performance results.

Table 'Employee'. Scan count 1, logical reads 2

CPU time = 0 ms, elapsed time = 2 ms.

Figure 8-10. Execution plan with no index

Figure 8-11. Execution plan with a composite index

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

203

Now you’re doing better than you were with the clustered index scan. A nice clean

Index Seek operation takes less than half the time to gather the data.

Although none of the columns in question would probably be selective enough on

their own to make a decent index, except possibly the BirthDate column, together they

provide enough selectivity for the optimizer to take advantage of the index offered.

It is possible to attempt to force the query to use the first test index you created. If

you drop the compound index, create the original again, and then modify the query as

follows by using a query hint to force the use of the original Index architecture:

CREATE INDEX IX_Employee_Test

ON HumanResources.Employee

(

 MaritalStatus

)

WITH (DROP_EXISTING = ON);

SELECT e.MaritalStatus,

 e.BirthDate

FROM HumanResources.Employee AS e WITH (INDEX(IX_Employee_Test))

WHERE e.MaritalStatus = 'M'

 AND e.BirthDate = '1982-02-11';

then the results and execution plan shown in Figure 8-12, while similar, are not the same.

Table 'Employee'. Scan count 1, logical reads 294

CPU time = 0 ms, elapsed time = 47 ms.

Figure 8-12. Execution plan when the index is chosen with a query hint

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

204

You see the same index seek, but the number of reads has increased radically,

and the execution plan itself has changed. You now have a Nested Loops join and a

Key Lookup operator added to the plan. Although forcing the optimizer to choose an

index is possible, it clearly isn’t always an optimal approach. A query hint takes away

the optimizer’s choices and forces it down paths that are frequently suboptimal. Hints

don’t consider changes in structure such as a new index that the optimizer could use

to better effect. Hints also force the optimizer to ignore data changes that could result

in better plans.

Note You will learn about key lookups in Chapter 12.

Another way to force a different behavior since SQL Server 2012 is the FORCESEEK

query hint. FORCESEEK makes it so the optimizer will choose only Index Seek operations.

If the query were rewritten like this:

SELECT e.MaritalStatus,

 e.BirthDate

FROM HumanResources.Employee AS e WITH (FORCESEEK)

WHERE e.MaritalStatus = 'M'

 AND e.BirthDate = '1982-02-11';

this query results in the same execution plan as Figure 8-12 and equally poor performance.

Limiting the options of the optimizer and forcing behaviors can in some situations

help, but frequently, as shown with the results here, an increase in execution time and

the number of reads is not helpful.

Before moving on, be sure to drop the test index from the table.

DROP INDEX HumanResources.Employee.IX_Employee_Test;

 Examine the Column Data Type
The data type of an index matters. For example, an index search on integer keys is fast

because of the small size and easy arithmetic manipulation of the INTEGER (or INT)

data type. You can also use other variations of integer data types (BIGINT, SMALLINT,

and TINYINT) for index columns, whereas string data types (CHAR, VARCHAR, NCHAR, and

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

205

NVARCHAR) require a string match operation, which is usually costlier than an integer

match operation.

Suppose you want to create an index on one column and you have two candidate

columns—one with an INTEGER data type and the other with a CHAR(4) data type. Even

though the size of both data types is 4 bytes in SQL Server 2017 and Azure SQL Database,

you should still prefer the INTEGER data type index. Look at arithmetic operations as an

example. The value 1 in the CHAR(4) data type is actually stored as 1 followed by three

spaces, a combination of the following four bytes: 0x35, 0x20, 0x20, and 0x20. The CPU

doesn’t understand how to perform arithmetic operations on this data, and therefore it

converts to an integer data type before the arithmetic operations, whereas the value 1

in an integer data type is saved as 0x00000001. The CPU can easily perform arithmetic

operations on this data.

Of course, most of the time, you won’t have the simple choice between identically

sized data types, allowing you to choose the more optimal type. Keep this information in

mind when designing and building your indexes.

 Consider Index Column Order
An index key is sorted on the first column of the index and then subsorted on the next

column within each value of the previous column. The first column in a compound

index is frequently referred to as the leading edge of the index. For example, consider

Table 8-2.

Table 8-2. Sample Table

c1 c2

1 1

2 1

3 1

1 2

2 2

3 2

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

206

If a composite index is created on the columns (c1, c2), then the index will be

ordered as shown in Table 8-3.

Table 8-3. Composite Index on

Columns (c1, c2)

c1 c2

1 1

1 2

2 1

2 2

3 1

3 2

As shown in Table 8-3, the data is sorted on the first column (c1) in the composite

index. Within each value of the first column, the data is further sorted on the second

column (c2).

Therefore, the column order in a composite index is an important factor in the

effectiveness of the index. You can see this by considering the following:

• Column uniqueness

• Column width

• Column data type

For example, suppose most of your queries on table t1 are similar to the following:

SELECT p.ProductID FROM Production.Product AS p

WHERE p.ProductSubcategoryID = 1;

SELECT p.ProductID FROM Production.Product AS p

WHERE p.ProductSubcategoryID = 1

AND p.ProductModelID = 19;

An index on (ProductSubcategoryID, ProductModelID) will benefit both the queries.

But an index on (ProductModelID, ProductSubCategoryID) will not be helpful to both

queries because it will sort the data initially on column ProductModelID, whereas the

first SELECT statement needs the data to be sorted on column ProductSubCategoryID.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

207

To understand the importance of column ordering in an index, consider the

following example. In the Person.Address table, there is a column for City and another

for PostalCode. Create an index on the table like this:

CREATE INDEX IX_Test ON Person.Address (City, PostalCode);

A simple SELECT statement run against the table that will use this new index will look

something like this:

SELECT a.City,

 a.PostalCode

FROM Person.Address AS a

WHERE a.City = 'Dresden';

The I/O and execution time for the query is as follows:

Table 'Address'. Scan count 1, logical reads 2

CPU time = 0 ms, elapsed time = 0 ms. (or 164 microseconds in Extended

Events)

The execution plan in Figure 8-13 shows the use of the index.

Figure 8-13. Execution plan for query against leading edge of index

So, this query is taking advantage of the leading edge of the index to perform a Seek

operation to retrieve the data. If, instead of querying using the leading edge, you use

another column in the index like the following query:

SELECT a.City,

 a.PostalCode

FROM Person.Address AS a

WHERE a.PostalCode = ' 01071';

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

208

The results are as follows:

Table 'Address'. Scan count 1, logical reads 108

CPU time = 0 ms, elapsed time = 2 ms.

The execution plan is clearly different, as you can see in Figure 8-14.

Figure 8-14. Execution plan for query against inner columns

Both queries return 31 rows from the same table, but the number of reads jumped

from 2 to 108. You begin to see the difference between the Index Seek operation in

Figure 8-13 and the Index Scan operation in Figure 8-14. The radical changes in I/O and

time represents another advantage of a compound index, the covering index. This is

covered in detail in Chapter 9.

When finished, drop the index.

DROP INDEX Person.Address.IX_Test;

 Consider the Type of Index
In SQL Server, from all the different types of indexes available to you, most of the time

you’ll be working with the two main index types: clustered and nonclustered. Both types

have a B-tree structure. The main difference between the two types is that the leaf pages

in a clustered index are the data pages of the table and are therefore in the same order as

the data to which they point. This means the clustered index is the table. As you proceed,

you will see that the difference at the leaf level between the two index types becomes

important when determining the type of index to use.

There are a number of other index types, and we’ll cover them in more detail in

Chapter 9.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

209

 Clustered Indexes
The leaf pages of a clustered index and the data pages of the table the index is on are one

and the same. Because of this, table rows are physically sorted on the clustered index

column, and since there can be only one physical order of the table data, a table can

have only one clustered index.

Tip When you create a primary key constraint, SQL Server automatically creates
it as a unique clustered index on the primary key if one does not already exist and
if it is not explicitly specified that the index should be a unique nonclustered index.
this is not a requirement; it’s just default behavior. You can change the definition of
the primary key prior to creating it on the table.

 Heap Tables
As mentioned earlier in the chapter, a table with no clustered index is called a heap

table. The data rows of a heap table are not stored in any particular order or linked to

the adjacent pages in the table. This unorganized structure of the heap table usually

increases the overhead of accessing a large heap table when compared to accessing a

large nonheap table (a table with a clustered index).

 Relationship with Nonclustered Indexes
There is an interesting relationship between a clustered index and the nonclustered

indexes in SQL Server. An index row of a nonclustered index contains a pointer to the

corresponding data row of the table. This pointer is called a row locator. The value of the

row locator depends on whether the data pages are stored in a heap or on a clustered

index. For a nonclustered index, the row locator is a pointer to the row identifier (RID)

for the data row in a heap. For a table with a clustered index, the row locator is the

clustered index key value.

For example, say you have a heap table with no clustered index, as shown in Table 8- 4.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

210

A nonclustered index on column c1 in a heap will cause the row locator for the index

rows to contain a pointer to the corresponding data row in the database table, as shown

in Table 8-5.

Table 8-4. Data Page for a Sample Table

RowID (Not a Real Column) c1 c2 c3

1 a1 a2 a3

2 B1 B2 B3

Table 8-5. Nonclustered Index

Page with No Clustered Index

c1 Row Locator

a1 pointer to RID = 1

B1 pointer to RID = 2

Table 8-6. Nonclustered Index Page

with a Clustered Index on c2

c1 Row Locator

a1 a2

B1 B2

On creating a clustered index on column c2, the row locator values of the

nonclustered index rows are changed. The new value of the row locator will contain the

clustered index key value, as shown in Table 8-6.

To verify this dependency between a clustered and a nonclustered index, let’s

consider an example. In the AdventureWorks2017 database, the table dbo.DatabaseLog

contains no clustered index, just a nonclustered primary key. If a query is run against it

like the following, then the execution will look like Figure 8-15:

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

211

SELECT dl.DatabaseLogID,

 dl.PostTime

FROM dbo.DatabaseLog AS dl

WHERE dl.DatabaseLogID = 115;

Figure 8-15. Execution plan against a heap

As you can see, the index was used in a Seek operation. But because the data is

stored separately from the nonclustered index and that index doesn’t contain all the

columns needed to satisfy the query, an additional operation, the RID Lookup operation,

is required to retrieve the data. The data from the two sources, the heap and the

nonclustered index, are then joined through a Nested Loop operation. This is a classic

example of what is known as a lookup, in this case an RID lookup, which is explained

in more detail in the “Defining the Lookup” section. A similar query run against a table

with a clustered index in place will look like this:

SELECT d.DepartmentID,

 d.ModifiedDate

FROM HumanResources.Department AS d

WHERE d.DepartmentID = 10;

Figure 8-16 shows this execution plan returned.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

212

Although the primary key is used in the same way as the previous query, this time it’s

against a clustered index. This means the data is stored with the index, so the additional

column doesn’t require a lookup operation to get the data. Everything is returned by the

simple Clustered Index Seek operation.

To navigate from a nonclustered index row to a data row, this relationship between

the two index types requires an additional indirection for navigating the B-tree structure

of the clustered index. Without the clustered index, the row locator of the nonclustered

index would be able to navigate directly from the nonclustered index row to the data

row in the base table. The presence of the clustered index causes the navigation from

the nonclustered index row to the data row to go through the B-tree structure of the

clustered index, since the new row locator value points to the clustered index key.

On the other hand, consider inserting an intermediate row in the clustered index key

order or expanding the content of an intermediate row. For example, imagine a clustered

index table containing four rows per page, with clustered index column values of 1, 2, 4,

and 5. Adding a new row in the table with the clustered index value 3 will require space

in the page between values 2 and 4. If enough space is not available in that position, a

page split will occur on the data page (or clustered index leaf page). Even though the

data page split will cause relocation of the data rows, the nonclustered index row locator

values need not be updated. These row locators continue to point to the same logical key

values of the clustered index key, even though the data rows have physically moved to

a different location. In the case of a data page split, the row locators of the nonclustered

indexes need not be updated. This is an important point since tables often have a large

number of nonclustered indexes.

Things don’t work the same way for heap tables. Page splits in a heap are not a

common occurrence, and when heaps do split, they don’t rearrange locations in the same

way as clustered indexes. However, you can have rows move in a heap, usually because of

updates causing the heap to not fit on its current page. Anything that causes the location

Figure 8-16. Execution plan with a clustered index

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

213

of rows to be moved in a heap results in a forwarding record being placed into the original

location pointing to that new location, necessitating even more I/O activity.

Note page splits and their effect on performance are explained in more detail in
Chapter 14.

 Clustered Index Recommendations
The relationship between a clustered index and a nonclustered index imposes some

considerations on the clustered index, which are explained in the sections that follow.

 Create the Clustered Index First

Since all nonclustered indexes hold clustered index keys within their index rows, the

order of creation for nonclustered and clustered indexes is important. For example,

if the nonclustered indexes are built before the clustered index is created, then the

nonclustered index row locator will contain a pointer to the corresponding RID of the

table. Creating the clustered index later will modify all the nonclustered indexes to

contain clustered index keys as the new row locator value. This effectively rebuilds all the

nonclustered indexes.

For the best performance, I recommend you create the clustered index before you

create any nonclustered index. This allows the nonclustered indexes to have their row

locator set to the clustered index keys at the time of creation. This does not have any

effect on the final performance, but rebuilding the indexes may be quite a large job.

As part of creating the clustered index first, I also suggest you design the tables in

your OLTP database around the clustered index. It should be the first index created

because you should be storing your data as a clustered index by default.

For analysis and warehouse data, another option for data storage is available, the

clustered columnstore index. We’ll address that index in Chapter 9.

 Keep Clustered Indexes Narrow

Since all nonclustered indexes hold the clustered keys as their row locator, for the best

performance, keep the overall byte size of the clustered index as small as possible. If you

create a wide clustered index, say CHAR(500), in addition to having fewer rows per page

in the cluster, this will add 500 bytes to every nonclustered index. Thus, keep the number

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

214

of columns in the clustered index to a minimum, and carefully consider the byte size of

each column to be included in the clustered index. A column of the integer data type

often makes a good candidate for a clustered index, whereas a string data type column

will be a less-than-optimal choice. Conversely, choose the right key values for the

clustered index, even if it means the key is wider. A wide key can hurt performance, but

the wrong cluster key can hurt performance even more.

To understand the effect of a wide clustered index on a nonclustered index, consider

this example. Create a small test table with a clustered index and a nonclustered index.

DROP TABLE IF EXISTS dbo.Test1;

GO

CREATE TABLE dbo.Test1 (

 C1 INT,

 C2 INT);

WITH Nums

AS (SELECT TOP (20)

 ROW_NUMBER() OVER (ORDER BY (SELECT 1)) AS n

 FROM master.sys.all_columns ac1

 CROSS JOIN master.sys.all_columns ac2)

INSERT INTO dbo.Test1 (

 C1,

 C2)

SELECT n,

 n + 1

FROM Nums;

CREATE CLUSTERED INDEX iClustered ON dbo.Test1 (C2);

CREATE NONCLUSTERED INDEX iNonClustered ON dbo.Test1 (C1);

Since the table has a clustered index, the row locator of the nonclustered index

contains the clustered index key value. Therefore:

Width of the nonclustered index row = width of the nonclustered

index column + width of the clustered index column = size of INT

data type + size of INT data type

= 4 bytes + 4 bytes = 8 bytes

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

215

With this small size of a nonclustered index row, all the rows can be stored in one

index page. You can confirm this by querying against the index statistics, as shown in

Figure 8-17.

SELECT i.name,

 i.type_desc,

 s.page_count,

 s.record_count,

 s.index_level

FROM sys.indexes i

 JOIN sys.dm_db_index_physical_stats(DB_ID(N'AdventureWorks2017'),

 OBJECT_ID(N'dbo.Test1'),

 NULL,

 NULL,

 'DETAILED') AS s

 ON i.index_id = s.index_id

WHERE i.object_id = OBJECT_ID(N'dbo.Test1');

Figure 8-17. Number of index pages for a narrow index

To understand the effect of a wide clustered index on a nonclustered index, modify

the data type of the clustered indexed column c2 from INT to CHAR(500).

DROP INDEX dbo.Test1.iClustered;

ALTER TABLE dbo.Test1 ALTER COLUMN C2 CHAR(500);

CREATE CLUSTERED INDEX iClustered ON dbo.Test1(C2);

Running the query against sys.dm_db_index_physical_stats again returns the

result in Figure 8-18.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

216

You can see that a wide clustered index increases the width of the nonclustered index

row size. Because of the large width of the nonclustered index row, one 8KB index page

can’t accommodate all the index rows. Instead, two index pages will be required to store

all 20 index rows. In the case of a large table, an expansion in the size of the nonclustered

indexes because of a large clustered index key size can significantly increase the number

of pages of the nonclustered indexes.

Therefore, a large clustered index key size not only affects its own width but also

widens all nonclustered indexes on the table. This increases the number of index pages

for all the indexes on the table, increasing the logical reads and disk I/Os required for the

indexes.

 Rebuild the Clustered Index in a Single Step

Because of the dependency of nonclustered indexes on the clustered index, rebuilding

the clustered index as separate DROP INDEX and CREATE INDEX statements causes all the

nonclustered indexes to be rebuilt twice. To avoid this, use the DROP_EXISTING clause

of the CREATE INDEX statement to rebuild the clustered index in a single atomic step.

Similarly, you can also use the DROP_EXISTING clause with a nonclustered index.

It’s worth noting that in SQL Server 2005 and newer, when you perform a straight

rebuild of a clustered index, you won’t see the nonclustered indexes rebuilt as well.

 Where Possible, Make the Clustered Index Unique

Because the clustered index is used to store the data, you must be able to find each row.

While the clustered index doesn’t have to be unique purely in terms of its definition and

storage, if the key values are not unique, SQL Server would be unable to find the rows

unless there was a way to make the cluster uniquely identify the location of each discrete

row of data. So, SQL Server will add a value to a nonunique clustered index to make

it unique. This value is called a uniqueifier. It adds to the size of your clustered index

as well as all nonclustered indexes, as noted earlier. It also means a little bit of added

Figure 8-18. Number of index pages for a wide index

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

217

processing to get the unique value as each row gets inserted. For all these reasons, it

makes sense to make the clustered index unique where you can. This is a big reason why

the default behavior for primary keys is to make them a clustered index.

You don’t have to make the clustered index unique. But you do need to take the

uniquifier into account when you’re defining your storage and indexes. Further, it’s

worth noting, since the uniquifier uses an integer data type, it limits the number of

duplicate key values you can have to 2.1 billion duplicates for any one key (or keys)

value. This shouldn’t ever be a problem, but it is a possibility.

 When to Use a Clustered Index
In certain situations, using a clustered index is helpful. I discuss these situations in the

sections that follow.

 Accessing the Data Directly

With all the data stored on the leaf pages of a clustered index, any time you access the

cluster, the data is immediately available. One use for a clustered index is to support the

most commonly used access path to the data. Any access of the clustered index does not

require any additional reads to retrieve the data, which means seeks or scans against the

clustered index do not require any additional reads to retrieve that data. This is another

likely reason that Microsoft has made the primary key a clustered index by default. Since

the primary key is frequently the most likely means of accessing data in a table, it serves

well as a clustered index.

Just remember that the primary key being the clustered index is a default behavior

but not necessarily the most common access path to the data. This could be through

foreign key constraints, alternate keys in the table, or other columns. Plan and design the

cluster with storage and access in mind, and you should be fine.

The clustered index works well as the primary path to the data only if you’re

accessing a considerable portion of the data within a table. If, on the other hand,

you’re accessing small subsets of the data, you might be better off with a nonclustered

covering index. Also, you have to consider the number and types of columns that define

the access path to the data. Since the key of a clustered index becomes the pointer for

nonclustered indexes, excessively wide clustered keys can seriously impact performance

and storage for nonclustered indexes.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

218

As mentioned previously, if the majority of your queries are of the analysis

variety with lots of aggregates, you may be better off storing the data with a clustered

columnstore (covered in detail in Chapter 9).

 Retrieving Presorted Data

Clustered indexes are particularly efficient when the data retrieval needs to be sorted (a

covering nonclustered index is also useful for this). If you create a clustered index on the

column or columns that you may need to sort by, then the rows will be physically stored

in that order, eliminating the overhead of sorting the data after it is retrieved.

Let’s see this in action. Create a test table as follows:

DROP TABLE IF EXISTS dbo.od;

GO

SELECT pod.*

INTO dbo.od

FROM Purchasing.PurchaseOrderDetail AS pod;

The new table od is created with data only. It doesn’t have any indexes. You can verify

the indexes on the table by executing the following, which returns nothing:

EXEC sp_helpindex 'dbo.od';

To understand the use of a clustered index, fetch a large range of rows ordered on a

certain column.

SELECT od.*

FROM dbo.od

WHERE od.ProductID

BETWEEN 500 AND 510

ORDER BY od.ProductID;

You can obtain the cost of executing this query (without any indexes) from the

STATISTICS IO output.

Table 'od'. Scan count 1, logical reads 78

CPU time = 0 ms, elapsed time = 173 ms.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

219

To improve the performance of this query, you should create an index on the WHERE

clause column. This query requires both a range of rows and a sorted output. The

result set requirement of this query meets the recommendations for a clustered index.

Therefore, create a clustered index as follows and reexamine the cost of the query:

CREATE CLUSTERED INDEX i1 ON od(ProductID);

When you run the query again, the resultant cost of the query (with a clustered

index) is as follows:

Table 'od'. Scan count 1, logical reads 8

CPU time = 0 ms, elapsed time = 121 ms.

Creating the clustered index reduced the number of logical reads and therefore

should contribute to the query performance improvement.

On the other hand, if you create a nonclustered index (instead of a clustered index)

on the candidate column, then the query performance may be affected adversely. Let’s

verify the effect of a nonclustered index in this case.

DROP INDEX od.i1;

CREATE NONCLUSTERED INDEX i1 on dbo.od(ProductID);

The resultant cost of the query (with a nonclustered index) is as follows:

Table 'od'. Scan count 1, logical reads 87

CPU time = 0 ms, elapsed time = 163 ms.

The nonclustered index isn’t even used directly in the resulting execution plan.

Instead, you get a table scan, but the estimated costs for sorting the data in this new plan

are different from the original table scan because of the added selectivity that the index

provides the optimizer to estimate costs, even though the index isn’t used. Drop the test

table when you’re done.

DROP TABLE dbo.od;

 Poor Design Practices for a Clustered Index
In certain situations, you are better off not using a clustered index. I discuss these in the

sections that follow.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

220

 Frequently Updatable Columns

If the clustered index columns are frequently updated, this will cause the row locator of

all the nonclustered indexes to be updated accordingly, significantly increasing the cost

of the relevant action queries. This also affects database concurrency by blocking all

other queries referring to the same part of the table and the nonclustered indexes during

that period. Therefore, avoid creating a clustered index on columns that are highly

updatable.

Note Chapter 22 covers blocking in more depth.

To understand how the cost of an UPDATE statement that modifies only a clustered

key column is increased by the presence of nonclustered indexes on the table, consider

the following example. The Sales.SpecialOfferProduct table has a composite clustered

index on the primary key, which is also the foreign key from two different tables; this is

a classic many-to-many join. In this example, I update one of the two columns using the

following statement (note the use of the transaction to keep the test data intact):

BEGIN TRAN;

SET STATISTICS IO ON;

UPDATE Sales.SpecialOfferProduct

SET ProductID = 345

WHERE SpecialOfferID = 1

 AND ProductID = 720;

SET STATISTICS IO OFF;

ROLLBACK TRAN;

The STATISTICS IO output shows the reads necessary.

Table 'Product'. Scan count 0, logical reads 2

Table 'SalesOrderDetail'. Scan count 1, logical reads 1248

Table 'SpecialOfferProduct'. Scan count 0, logical reads 10

If you added a nonclustered index to the table, you would see the reads increase, as

shown here:

CREATE NONCLUSTERED INDEX ixTest

ON Sales.SpecialOfferProduct (ModifiedDate);

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

221

When you run the same query again, the output of STATISTICS IO changes for the

SpecialOfferProduct table.

Table 'Product'. Scan count 0, logical reads 2

Table 'SalesOrderDetail'. Scan count 1, logical reads 1248

Table 'SpecialOfferProduct'. Scan count 0, logical reads 19

The number of reads caused by the update of the clustered index is increased with

the addition of the nonclustered index. Be sure to drop the index.

DROP INDEX Sales.SpecialOfferProduct.ixTest;

 Wide Keys

Since all nonclustered indexes hold the clustered keys as their row locator, for

performance reasons you should avoid creating a clustered index on a very wide column

(or columns) or on too many columns. As explained in the preceding section, a clustered

index must be as narrow as is practical.

 Nonclustered Indexes
A nonclustered index does not affect the order of the data in the table pages because

the leaf pages of a nonclustered index and the data pages of the table are separate.

A pointer (the row locator) is required to navigate from an index row in the nonclustered

index to the data row, whether stored on a cluster or in a heap. As you learned in the

earlier “Clustered Indexes” section, the structure of the row locator depends on whether

the data pages are stored in a heap or a clustered index. For a heap, the row locator is a

pointer to the RID for the data row; for a table with a clustered index, the row locator is

the clustered index key; for a table with a clustered columnstore, the row locator is an

8-byte value consisting of the columnstore’s row_group_id and tuple_id.

 Nonclustered Index Maintenance
The row locator value of the nonclustered indexes continues to have the same clustered

index value, even when the clustered index rows are physically relocated.

In a table that is a heap, where there is no clustered index, to optimize this

maintenance cost, SQL Server adds a pointer to the old data page to point to the new

data page after a page split, instead of updating the row locator of all the relevant

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

222

nonclustered indexes. Although this reduces the maintenance cost of the nonclustered

indexes, it increases the navigation cost from the nonclustered index row to the data row

within the heap since an extra link is added between the old data page and the new data

page. Therefore, having a clustered index as the row locator decreases this overhead

associated with the nonclustered index.

When a table is a clustered columnstore index, the storage values of exactly what

is stored where changes as the index is rebuilt and data moves from the delta store

into compressed storage. This would lead to all sorts of issues except a new bit of

functionality within the clustered columnstore index allows for a mapping between

where the nonclustered index thought the value was and where it actually is. Funny

enough, this is called the mapping index. Values are added to it as the locations of data

change within the clustered columnstore. It can slightly slow nonclustered index usage

when the table data is contained in a clustered columnstore.

 Defining the Lookup Operation
When a query requests columns that are not part of the nonclustered index chosen

by the optimizer, a lookup is required. This may be a key lookup when going against a

clustered index, columnstore or not, or an RID lookup when performed against a heap.

In the past, the common term for these lookups came from the old definition name,

bookmark lookup. That term is being used less and less since people haven’t seen that

phrase in execution plans since SQL Server 2000. Now you just refer to it as a lookup

and then define the type, key, or RID. The lookup fetches the corresponding data row

from the table by following the row locator value from the index row, requiring a logical

read on the data page besides the logical read on the index page and a join operation to

put the data together in a common output. However, if all the columns required by the

query are available in the index itself, then access to the data page is not required. This is

known as a covering index.

These lookups are the reason that large result sets are better served with a clustered

index. A clustered index doesn’t require a lookup since the leaf pages and data pages for

a clustered index are the same.

Note Chapter 12 covers lookup operations in more detail.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

223

 Nonclustered Index Recommendations
Since a table can have only one clustered index, you can use the flexibility of multiple

nonclustered indexes to help improve performance. I explain the factors that decide the

use of a nonclustered index in the following sections.

 When to Use a Nonclustered Index

A nonclustered index is most useful when all you want to do is retrieve a small number

of rows and columns from a large table. As the number of columns to be retrieved

increases, the ability to have a covering index decreases. Then, if you’re also retrieving a

large number of rows, the overhead cost of any lookup rises proportionately. To retrieve

a small number of rows from a table, the indexed column should have a high selectivity.

Furthermore, there will be indexing requirements that won’t be suitable for a

clustered index, as explained in the “Clustered Indexes” section.

• Frequently updatable columns

• Wide keys

In these cases, you can use a nonclustered index since, unlike a clustered index, it

doesn’t affect other indexes in the table. A nonclustered index on a frequently updatable

column isn’t as costly as having a clustered index on that column. The UPDATE operation

on a nonclustered index is limited to the base table and the nonclustered index. It

doesn’t affect any other nonclustered indexes on the table. Similarly, a nonclustered

index on a wide column (or set of columns) doesn’t increase the size of any other index,

unlike that with a clustered index. However, remain cautious, even while creating a

nonclustered index on a highly updatable column or a wide column (or set of columns)

since this can increase the cost of action queries, as explained earlier in the chapter.

Tip a nonclustered index can also help resolve blocking and deadlock issues.
I cover this in more depth in Chapters 21 and 22.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

224

 When Not to Use a Nonclustered Index

Nonclustered indexes are not suitable for queries that retrieve a large number of

rows, unless they’re covering indexes. Such queries are better served with a clustered

index, which doesn’t require a separate lookup to retrieve a data row. Since a lookup

requires additional logical reads to get to the data page besides the logical read on

the nonclustered index page, the cost of a query using a nonclustered index increases

significantly for a large number of rows, such as when in a loop join that requires one

lookup after another. The SQL Server query optimizer takes this cost into effect and

accordingly can discard the nonclustered index when retrieving a large result set.

Nonclustered indexes are also not as useful as columnstore indexes for analytics-style

queries with more aggregates.

If your requirement is to retrieve a large result set from a table, then having a

nonclustered index on the filter criterion (or the join criterion) column will probably not

be useful unless you use a special type of nonclustered index called a covering index.

I describe this index type in detail in Chapter 9.

 Clustered vs. Nonclustered Indexes
The main considerations in choosing between a clustered and a nonclustered index are

as follows:

• Number of rows to be retrieved

• Data-ordering requirement

• Index key width

• Column update frequency

• Lookup cost

• Any disk hot spots

 Benefits of a Clustered Index over a Nonclustered Index
When deciding upon a type of index on a table with no indexes, the clustered index is

usually the preferred choice. Because the index page and the data pages are the same,

the clustered index doesn’t have to jump from the index row to the base row as is

required in the case of a noncovering nonclustered index.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

225

To understand how a clustered index can outperform a nonclustered index in these

circumstances, even in retrieving a small number of rows, create a test table with a high

selectivity for one column.

DROP TABLE IF EXISTS dbo.Test1;

CREATE TABLE dbo.Test1 (

 C1 INT,

 C2 INT);

WITH Nums

AS (SELECT TOP (10000)

 ROW_NUMBER() OVER (ORDER BY (SELECT 1)) AS n

 FROM master.sys.all_columns AS ac1

 CROSS JOIN master.sys.all_columns AS ac2)

INSERT INTO dbo.Test1 (

 C1,

 C2)

SELECT n,

 2

FROM Nums;

The following SELECT statement fetches only 1 out of 10,000 rows from the table:

SELECT t.C1,

 t.C2

FROM dbo.Test1 AS t

WHERE C1 = 1000;

This query results in the graphical execution plan shown in Figure 8-19 and the

output of SET STATISTICS IO and STATISTICS TIME as follows:

Table 'Test1'. Scan count 1, logical reads 22

CPU time = 0 ms, elapsed time = 0 ms.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

226

Considering the small size of the result set retrieved by the preceding SELECT

statement, a nonclustered column on c1 can be a good choice.

CREATE NONCLUSTERED INDEX incl ON dbo.Test1(C1);

You can run the same SELECT command again. Since retrieving a small number of

rows through a nonclustered index is more economical than a table scan, the optimizer

used the nonclustered index on column c1, as shown in Figure 8-20. The number of

logical reads reported by STATISTICS IO is as follows:

Table 'Test1'. Scan count 1, logical reads 3

CPU time = 0 ms, elapsed time = 0 ms.

Figure 8-19. Execution plan with no index

Figure 8-20. Execution plan with a nonclustered index

Even though retrieving a small result set using a column with high selectivity is a

good pointer toward creating a nonclustered index on the column, a clustered index on

the same column can be equally beneficial or even better. To evaluate how the clustered

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

227

index can be more beneficial than the nonclustered index, create a clustered index on

the same column.

CREATE CLUSTERED INDEX icl ON dbo.Test1(C1);

Run the same SELECT command again. From the resultant execution plan (shown

later in Figure 8-22) of the preceding SELECT statement, you can see that the optimizer

used the clustered index (instead of the nonclustered index) even for a small result

set. The number of logical reads for the SELECT statement decreased from three to two

(Figure 8-21). You get this change in behavior because the clustered index is inherently a

covering index, containing all the columns of the table.

Table 't1'. Scan count 1, logical reads 2

CPU time = 0 ms, elapsed time = 0 ms.

Note Because a table can have only one clustered index and that index is where
the data is stored, I would generally reserve the clustered index for the most
frequently used access path to the data.

 Benefits of a Nonclustered Index over a Clustered Index
As you learned in the previous section, a nonclustered index is preferred over a clustered

index in the following situations:

• When the index key size is large.

• To help avoid blocking by having a database reader work on the

pages of a nonclustered index, while a database writer modifies other

columns (not included in the nonclustered index) in the data page;

Figure 8-21. Execution plan with a clustered index

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

228

in this case, the writer working on the data page won’t block a reader

that can get all the required column values from the nonclustered

index without hitting the base table. I’ll explain this in detail in

Chapter 13.

• When all the columns (from a table) referred to by a query can be

safely accommodated in the nonclustered index itself, as explained in

this section.

• When you’re doing a point or limited range query against a clustered

columnstore index. The clustered columnstore index supports

analytical style queries very well, but it doesn’t do point lookups

well at all. That’s why you add a nonclustered index just for the point

lookup.

As already established, the data-retrieval performance when using a nonclustered

index is generally poorer than that when using a clustered index because of the cost

associated with jumping from the nonclustered index rows to the data rows in the base

table. In cases where the jump to the data rows is not required, the performance of a

nonclustered index should be just as good as—or even better than—a clustered index.

This is possible if the nonclustered index, the key plus any included columns at the page

level, includes all the columns required from the table.

To understand the situation in which a nonclustered index can outperform a

clustered index, consider the following example. Assume for these purposes that you

need to examine the credit cards that are expiring between the months of June 2008 and

September 2008. You may have a query that returns a large number of rows and looks

like this:

SELECT cc.CreditCardID,

 cc.CardNumber,

 cc.ExpMonth,

 cc.ExpYear

FROM Sales.CreditCard cc

WHERE cc.ExpMonth

 BETWEEN 6 AND 9

 AND cc.ExpYear = 2008

ORDER BY cc.ExpMonth;

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

229

The following are the I/O and time results. Figure 8-22 shows the execution plan.

Table 'CreditCard'. Scan count 1, logical reads 189

CPU time = 0 ms, elapsed time = 176 ms.

Figure 8-22. Execution plan scanning the clustered index

The clustered index is on the primary key, and although most access against the

table may be through that key, making the index useful, the clustered index in this

instance is just not performing in the way you need. Although you could expand

the definition of the index to include all the other columns in the query, they’re not

really needed to make the clustered index function, and they would interfere with the

operation of the primary key. Instead, you can use the INCLUDE operation to store the

columns defined within it at the leaf level of the index. They don’t affect the key structure

of the index in any way but provide the ability, through the sacrifice of some additional

disk space, to make a nonclustered index covering (covered in more detail later). In this

instance, creating a different index is in order.

CREATE NONCLUSTERED INDEX ixTest

ON Sales.CreditCard

(

 ExpYear,

 ExpMonth)

INCLUDE

(

 CardNumber);

Now when the query is run again, this is the result:

Table 'CreditCard'. Scan count 1, logical reads 12

CPU time = 0 ms, elapsed time = 152 ms.

Figure 8-23 shows the corresponding execution plan.

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

230

In this case, the SELECT statement doesn’t include any column that requires a jump

from the nonclustered index page to the data page of the table, which is what usually

makes a nonclustered index costlier than a clustered index for a large result set and/or

sorted output. This kind of nonclustered index is called a covering index.

It’s also worth noting that I experimented with which column to put into the leading

edge of the index, ExpMonth or ExpYear. After testing each, the reads associated with

having ExpMonth first were 37 as compared to the 12 with ExpYear. That results from

having to look through fewer pages with the year filtering first rather than the month.

Remember to validate your choices when creating indexes with thorough testing.

Clean up the index after the testing is done.

DROP INDEX Sales.CreditCard.ixTest;

 Summary
In this chapter, you learned that indexing is an effective method for reducing the number

of logical reads and disk I/O for a query. Although an index may add overhead to action

queries, even action queries such as UPDATE and DELETE can benefit from an index.

To decide the index key columns for a particular query, evaluate the WHERE clause

and the join criteria of the query. Factors such as column selectivity, width, data type,

and column order are important in deciding the columns in an index key. Since an

index is mainly useful in retrieving a small number of rows, the selectivity of an indexed

column should be very high. It is important to note that nonclustered indexes contain

the value of a clustered index key as their row locator because this behavior greatly

influences the selection of an index type.

In the next chapter, you will learn more about other functionality and other types of

indexes available to help you tune your queries.

Figure 8-23. Execution plan with a nonclustered index

Chapter 8 Index arChIteCture and BehavIor

www.EBooksWorld.ir

231
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_9

CHAPTER 9

Index Analysis
In the previous chapter I introduced the concepts surrounding B-tree indexes. This

chapter takes that information and adds more functionality and more indexes. There’s a

lot of interesting interaction between indexes that you can take advantage of. There are

also a number of settings that affect the behavior of indexes that I didn’t address in the

preceding chapter. I’ll show you methods to squeeze even more performance out of your

system. Most importantly, we dig into the details of the columnstore indexes and the

radical improvement in performance that they can provide for analytical queries.

In this chapter, I cover the following topics:

• Advanced indexing techniques

• Columnstore indexes

• Special index types

• Additional characteristics of indexes

 Advanced Indexing Techniques
Here are a few of the more advanced indexing techniques that you can consider:

• Covering indexes: These were introduced in Chapter 8.

• Index intersections: Use multiple nonclustered indexes to satisfy all

the column requirements (from a table) for a query.

• Index joins: Use the index intersection and covering index techniques

to avoid hitting the base table.

• Filtered indexes: To be able to index fields with odd data distributions

or sparse columns, you can apply a filter to an index so that it indexes

only some data.

www.EBooksWorld.ir

232

• Indexed views: These materialize the output of a view on disk.

• Index compression: The storage of indexes can be compressed

through SQL Server, putting more rows of data on a page and

improving performance.

I cover these topics in more detail in the following sections.

 Covering Indexes
A covering index is a nonclustered index built upon all the columns required to satisfy

a SQL query without going to the heap or the clustered index. If a query encounters an

index and does not need to refer to the underlying structures at all, then the index can be

considered a covering index.

For example, in the following SELECT statement, irrespective of where the columns

are used within the statement, all the columns (StateProvinceld and PostalCode)

should be included in the nonclustered index to cover the query fully:

SELECT a.PostalCode

FROM Person.Address AS a

WHERE a.StateProvinceID = 42;

Then all the required data for the query can be obtained from the nonclustered index

page, without accessing the data page. This helps SQL Server save logical and physical

reads. If you run the query, you’ll get the following I/O and execution time as well as the

execution plan in Figure 9-1:

Table 'Address'. Scan count 1, logical reads 19

CPU time = 0 ms, elapsed time = 0 ms.

Figure 9-1. Query without a covering index

Chapter 9 Index analysIs

www.EBooksWorld.ir

233

Here you have a classic lookup with the Key Lookup operator pulling the PostalCode

data from the clustered index and joining it with the Index Seek operator against the

IX_Address_StateProvinceId index.

Although you can re-create the index with both key columns, another way to make

an index a covering index is to use the new INCLUDE operator. This stores data with the

index without changing the structure of the index. I’ll cover the details of why to use the

INCLUDE operator a little later. Use the following to re-create the index:

CREATE NONCLUSTERED INDEX IX_Address_StateProvinceID

ON Person.Address

(

 StateProvinceID ASC

)

INCLUDE

(

 PostalCode

)

WITH (DROP_EXISTING = ON);

If you rerun the query, the execution plan (Figure 9-2), I/O, and execution time

change. (Also, it’s worth noting, 0ms is not the correct execution time. Using an Extended

Events session, which records execution time in microseconds (μs), it’s 177μs.

Table 'Address'. Scan count 1, logical reads 2

CPU time = 0 ms, elapsed time = 0 ms.

Figure 9-2. Query with a covering index

Chapter 9 Index analysIs

www.EBooksWorld.ir

234

The reads have dropped from 19 to 2, and the execution plan is just about as simple

as possible; it’s a single Index Seek operation against the new and improved index,

which is now covering. A covering index is a useful technique for reducing the number

of logical reads of a query. Adding columns using the INCLUDE statement makes this

functionality easier to achieve without adding to the number of columns in an index or

the size of the index key since the included columns are stored only at the leaf level of

the index.

The INCLUDE is best used in the following cases:

• You don’t want to increase the size of the index keys, but you still

want to make the index a covering index.

• You have a data type that cannot be an index key column but can be

added to the nonclustered index through the INCLUDE command.

• You’ve already exceeded the maximum number of key columns for

an index (although this is a problem best avoided).

Before continuing, put the index back into its original format.

CREATE NONCLUSTERED INDEX IX_Address_StateProvinceID

ON Person.Address

(

 StateProvinceID ASC

)

WITH (DROP_EXISTING = ON);

 A Pseudoclustered Index
The covering index physically organizes the data of all the indexed columns in a

sequential order. Thus, from a disk I/O perspective, a covering index that doesn’t use

included columns becomes a clustered index for all queries satisfied completely by the

columns in the covering index. If the result set of a query requires a sorted output, then

the covering index can be used to physically maintain the column data in the same order

as required by the result set—it can then be used in the same way as a clustered index

for sorted output. As shown in the previous example, covering indexes can give better

performance than clustered indexes for queries requesting a range of rows and/or sorted

output. The included columns are not part of the key and therefore wouldn’t offer the

same benefits for ordering as the key columns of the index.

Chapter 9 Index analysIs

www.EBooksWorld.ir

235

 Recommendations
To take advantage of covering indexes, be careful with the column list in SELECT

statements to move only the data you need to (thus the standard prohibition against

SELECT *). It’s also a good idea to use as few columns as possible to keep the index key

size small for the covering indexes. Add columns using the INCLUDE statement in places

where it makes sense. Since a covering index includes all the columns used in a query, it

has a tendency to be very wide, increasing the maintenance cost of the covering indexes.

You must balance the maintenance cost with the performance gain that the covering

index brings. If the number of bytes from all the columns in the index is small compared

to the number of bytes in a single data row of that table and you are certain the query

taking advantage of the covered index will be executed frequently, then it may be

beneficial to use a covering index.

Tip Covering indexes can also help resolve blocking and deadlocks, as you will
see in Chapters 20 and 21.

Before building a lot of covering indexes, consider how SQL Server can effectively

and automatically create covering indexes for queries on the fly using index intersection.

 Index Intersections
If a table has multiple indexes, then SQL Server can use multiple indexes to execute a

query. SQL Server can take advantage of multiple indexes, selecting small subsets of

data based on each index and then performing an intersection of the two subsets (that

is, returning only those rows that meet all the criteria). SQL Server can exploit multiple

indexes on a table and then employ a join algorithm to obtain the index intersection

between the two subsets.

In the following SELECT statement, for the WHERE clause columns, the table has a

nonclustered index on the SalesPersonID column, but it has no index on the OrderDate

column:

--SELECT * is intentionally used in this query

SELECT soh.*

FROM Sales.SalesOrderHeader AS soh

Chapter 9 Index analysIs

www.EBooksWorld.ir

236

WHERE soh.SalesPersonID = 276

 AND soh.OrderDate

 BETWEEN '4/1/2005' AND '7/1/2005';

Figure 9-3 shows the execution plan for this query.

Figure 9-3. Execution plan with no index on the OrderDate column

As you can see, the optimizer didn’t use the nonclustered index on the

SalesPersonID column. Since the value of the OrderDate column is also required, the

optimizer chose the clustered index to fetch the value of all the referred columns. The

I/O and time for retrieving this data was as follows:

Table 'SalesOrderHeader'. Scan count 1, logical reads 689

CPU time = 0 ms, elapsed time = 3 ms.

To improve the performance of the query, the OrderDate column can be added

to the nonclustered index on the SalesPersonId column or defined as an included

column on the same index. But in this real-world scenario, you may have to consider the

following while modifying an existing index:

• It may not be permissible to modify an existing index for various

reasons.

• The existing nonclustered index key may be already quite wide.

• The cost of other queries using the existing index will be affected by

the modification.

In such cases, you can create a new nonclustered index on the OrderDate column.

CREATE NONCLUSTERED INDEX IX_Test

ON Sales.SalesOrderHeader (OrderDate);

Run your SELECT command again.

Figure 9-4 shows the resultant execution plan of the SELECT statement.

Chapter 9 Index analysIs

www.EBooksWorld.ir

237

As you can see, SQL Server exploited both the nonclustered indexes as index seeks

(rather than scans) and then employed an intersection algorithm to obtain the index

intersection of the two subsets. This is represented by the Hash Join. It then did a

Key Lookup from the resulting data set to retrieve the rest of the data not included

in the indexes. But, the complexity of the plan suggests that performance might be

worse. Checking the statistics I/O and time, you can see that in fact you did get a good

performance improvement:

Table 'SalesOrderHeader'. Scan count 2, logical reads 10

Table 'Workfile'. Scan count 0, logical reads 0,

Table 'Worktable'. Scan count 0, logical reads 0

CPU time = 0 ms, elapsed time = 2 ms.

The reads dropped from 689 to 10 even though the plan used three different access

points within the table and had to create storage for processing the Hash Join. The

execution time also dropped (3,333μs to 2,279μs in Extended Events). You can also see

there are additional operations occurring within the plan, such as the Key Lookup, that

you might be able to eliminate with further adjustments to the indexes. However, it’s

worth noting, since you’re returning all the columns through the SELECT * command,

that you can’t effectively eliminate the Key Lookup by using INCLUDE columns, so you

may also need to adjust the query.

To improve the performance of a query, SQL Server can use multiple indexes on a

table, although it is somewhat rare since it requires good statistics and precise indexes

for the specific query. Generally, I try to use smaller, narrower keys on my indexes

instead of wide keys. SQL Server can use indexes together frequently, and even when

it doesn’t, performance is better with narrow indexes. While creating a covering index,

identify the existing nonclustered indexes that include most of the columns required by

the covering index. You may already have two existing nonclustered indexes that jointly

Figure 9-4. Execution plan with an index on the OrderDate column

Chapter 9 Index analysIs

www.EBooksWorld.ir

238

serve all the columns required by the covering index. If it is possible, rearrange the

column order of the existing nonclustered indexes appropriately, allowing the optimizer

to consider an index intersection between the two nonclustered indexes.

At times, it is possible that you may have to create a separate nonclustered index for

the following reasons:

• Reordering the columns in one of the existing indexes is not allowed.

• Some of the columns required by the covering index may not be

included in the existing nonclustered indexes.

• The total number of columns in the existing nonclustered indexes

may be more than the number of columns required by the covering

index.

In such cases, you can create a nonclustered index on the remaining columns. If the

combined column order of the new index and an existing nonclustered index meets the

requirement of the covering index, the optimizer may be able to use index intersection.

While identifying the columns and their order for the new index, try to maximize their

benefit by keeping an eye on other queries, too.

Don’t count on frequently getting index intersection to work. It’s dependent on the

choices made internally by the optimizer. However, there’s nothing wrong with striving

in this direction when creating your indexes.

Drop the index that was created for the tests.

DROP INDEX Sales.SalesOrderHeader.IX_Test;

 Index Joins
The index join is a variation of index intersection, where the covering index technique is

applied to the index intersection. If no single index covers a query but multiple indexes

together can cover the query, SQL Server can use an index join to satisfy the query fully

without going to the base table.

Let’s look at this indexing technique at work. Make a slight modification to the query

from the “Index Intersections” section like this:

SELECT soh.SalesPersonID,

 soh.OrderDate

FROM Sales.SalesOrderHeader AS soh

Chapter 9 Index analysIs

www.EBooksWorld.ir

239

WHERE soh.SalesPersonID = 276

 AND soh.OrderDate

 BETWEEN '4/1/2013' AND '7/1/2013';

The execution plan for this query is shown in Figure 9-5, and the reads are as follows:

Table 'SalesOrderHeader'. Scan count 1, logical reads 689

CPU time = 0 ms, elapsed time = 2 ms. (2345 us)

Figure 9-5. Execution plan with no index join

As shown in Figure 9-5, the optimizer didn’t use the existing nonclustered index on

the SalesPersonID column. Since the query requires the value of the OrderDate column

also, the optimizer selected the clustered index to retrieve values for all the columns

referred to in the query. If an index is created on the OrderDate column like this:

CREATE NONCLUSTERED INDEX IX_Test

ON Sales.SalesOrderHeader (OrderDate ASC);

and the query is rerun, then Figure 9-6 shows the result, and you can see the reads here:

Table 'Workfile'. Scan count 0, logical reads 0

Table 'Worktable'. Scan count 0, logical reads 0

Table 'SalesOrderHeader'. Scan count 2, logical reads 10

CPU time = 0 ms, elapsed time = 1 ms (1657 us).

Chapter 9 Index analysIs

www.EBooksWorld.ir

240

The combination of the two indexes acts like a covering index, reducing the reads

against the table from 689 to 10 because it’s using two Index Seek operations joined

together instead of a clustered index scan.

But what if the WHERE clause didn’t result in both indexes being used? Instead, you

know that both indexes exist and that a seek against each would work like the previous

query, so you choose to use an index hint.

SELECT soh.SalesPersonID,

 soh.OrderDate

FROM Sales.SalesOrderHeader AS soh

 WITH (INDEX(IX_Test, IX_SalesOrderHeader_SalesPersonID))

WHERE soh.OrderDate

BETWEEN '4/1/2013' AND '7/1/2013';

The results of this new query are shown in Figure 9-7, and the I/O is as follows:

Table 'Workfile'. Scan count 0, logical reads 0

Table 'Worktable'. Scan count 0, logical reads 0

Table 'SalesOrderHeader'. Scan count 2, logical reads 64

CPU time = 0 ms, elapsed time = 68 ms.

Figure 9-6. Execution plan with an index join

Chapter 9 Index analysIs

www.EBooksWorld.ir

241

The reads have clearly increased as has the execution time. Most of the time, the

optimizer makes good choices when it comes to indexes and execution plans. Although

query hints are available to allow you to take control from the optimizer, this control

can cause as many problems as it solves. In attempting to force an index join as a

performance benefit, instead the forced selection of indexes slowed down the execution

of the query.

Remove the test index before continuing.

DROP INDEX Sales.SalesOrderHeader.IX_Test;

Note While generating a query execution plan, the sQl server optimizer goes
through the optimization phases not only to determine the type of index and join
strategy to be used but also to evaluate the advanced indexing techniques such
as index intersection and index join. therefore, in some cases, instead of creating
wide covering indexes, consider creating multiple narrow indexes. sQl server
can use them together to serve as a covering index yet use them separately
where required. But you will need to test to be sure which works better in your
situation—wider indexes or index intersections and joins.

Figure 9-7. Execution plan with index join through a hint

Chapter 9 Index analysIs

www.EBooksWorld.ir

242

 Filtered Indexes
A filtered index is a nonclustered index that uses a filter, basically a WHERE clause, to

ideally create a highly selective set of keys against a column or columns that may not

have good selectivity otherwise. For example, a column with a large number of NULL

values may be stored as a sparse column to reduce the overhead of those NULL values.

Adding a filtered index using the column will allow you to have an index available on the

data that is not NULL. The best way to understand this is to see it in action.

The Sales.SalesOrderHeader table has more than 30,000 rows. Of those rows,

27,000+ have a null value in the PurchaseOrderNumber column and the SalesPersonId

column. If you wanted to get a simple list of purchase order numbers, the query might

look like this:

SELECT soh.PurchaseOrderNumber,

 soh.OrderDate,

 soh.ShipDate,

 soh.SalesPersonID

FROM Sales.SalesOrderHeader AS soh

WHERE PurchaseOrderNumber LIKE 'PO5%'

 AND soh.SalesPersonID IS NOT NULL;

Running the query results in, as you might expect, a clustered index scan, and the

following I/O and execution time, as shown in Figure 9-8:

Table 'SalesOrderHeader'. Scan count 1, logical reads 689

CPU time = 0 ms, elapsed time = 52 ms.

Figure 9-8. Execution plan without an index

Chapter 9 Index analysIs

www.EBooksWorld.ir

243

To fix this, it is possible to create an index and include some of the columns from the

query to make this a covering index.

CREATE NONCLUSTERED INDEX IX_Test

ON Sales.SalesOrderHeader

(

 PurchaseOrderNumber,

 SalesPersonID

)

INCLUDE

(

 OrderDate,

 ShipDate

);

When you rerun the query, the performance improvement is fairly radical (see

Figure 9-9 and the I/O and time in the following result).

Table 'SalesOrderHeader'. Scan count 1, logical reads 5

CPU time = 0 ms, elapsed time = 40 ms.

Figure 9-9. Execution plan with a covering index

As you can see, the covering index dropped the reads from 689 to 5 and the time

from 52ms to 40ms. Normally, this would be considered a decent improvement and

may be adequate for the system. Assume for a moment that this query has to be called

frequently. Now, every bit of speed you can wring from it will pay dividends. Knowing

that so much of the data in the indexed columns is null, you can adjust the index so that

it filters out the null values, which aren’t used by the index anyway, reducing the size of

the tree and therefore the amount of searching required.

Chapter 9 Index analysIs

www.EBooksWorld.ir

244

CREATE NONCLUSTERED INDEX IX_Test

ON Sales.SalesOrderHeader

(

 PurchaseOrderNumber,

 SalesPersonID

)

INCLUDE

(

 OrderDate,

 ShipDate

)

WHERE PurchaseOrderNumber IS NOT NULL

 AND SalesPersonID IS NOT NULL

WITH (DROP_EXISTING = ON);

The final run of the query resulted in the following performance metrics:

Table 'SalesOrderHeader'. Scan count 1, logical reads 4

CPU time = 0 ms, elapsed time = 38 ms.

The execution plan is going to look identical, with an Index Seek. To see the

differences between the plan for the covering index and the plan for the filtered,

covering index, we can use SSMS to compare the plans. Save the first plan as a file

(right-click the plan and select Save Execution Plan As), and then, from the second

plan, right-click inside the plan and select Compare Plan. You’ll then see something

similar to Figure 9- 10.

Chapter 9 Index analysIs

www.EBooksWorld.ir

245

There are almost no direct indicators of differences in the execution plans. In the

properties to the right, I’ve highlighted the one big difference. While the queries were

identical, because of the index that filters out all null values, the predicate gets changed

to remove IS NOT NULL because it’s no longer needed. This is part of a process within the

optimizer called simplification.

Although in terms of sheer numbers reducing the reads from 5 to 4 isn’t much, it

is a 20 percent reduction in the I/O cost of the query, and if this query were running

hundreds or even thousands of times in a minute, like some queries do, that 20 percent

reduction would be a great payoff indeed. Another visible evidence of the payoff is in the

execution time, which dropped again from 40ms to 38ms.

Filtered indexes improve performance in many ways.

• Improving the efficiency of queries by reducing the size of the index

• Reducing storage costs by making smaller indexes

• Cutting down on the costs of index maintenance because of the

reduced size

Figure 9-10. Comparison of the two plans

Chapter 9 Index analysIs

www.EBooksWorld.ir

246

But, everything does come with a cost. You may see issues with parameterized

queries not matching the filtered index, therefore preventing its use. Statistics are not

updated based on the filtering criteria but rather on the entire table just like a regular

index. Like with any of the suggestions in this book, test in your environment to ensure

that filtered indexes are helpful.

One of the first places suggested for their use is just like the previous example,

eliminating NULL values from the index. You can also isolate frequently accessed sets of

data with a special index so that the queries against that data perform much faster. You

can use the WHERE clause to filter data in a fashion similar to creating an indexed view

(covered in more detail in the “Indexed Views” section) without the data maintenance

headaches associated with indexed views by creating a filtered index that is a covering

index, just like the earlier example.

Filtered indexes require a specific set of ANSI settings when they are accessed or

created.

• ON: ANSI_NULLS, ANSI_PADDING, ANSI_WARNINGS, ARITHABORT, CONCAT_

NULL_YIELDS_NULL, QUOTED_IDENTIFIER

• OFF: NUMERIC_R0UNDAB0RT

When completed, drop the testing index.

DROP INDEX Sales.SalesOrderHeader.IX_Test;

 Indexed Views
A database view in SQL Server does not store any data. A view is simply a SELECT

statement that is stored. You create a view using the CREATE VIEW statement. You can

write queries against a view exactly as if it were a table. When a view gets queried, the

optimizer receives the full definition of the SELECT statement and uses that as the basis

for optimizing the query against the view. Through the optimization process, some or

all of the definition of the SELECT statement may be used to satisfy the query against the

view. What degree of simplification occurs here is determined by a combination of the

SELECT statement itself and the query against that SELECT statement.

A database view can be materialized on the disk by creating a unique clustered

index on the view. Such a view is referred to as an indexed view or a materialized view.

After a unique clustered index is created on the view, the view’s result set is materialized

immediately and persisted in physical storage in the database, saving the overhead of

Chapter 9 Index analysIs

www.EBooksWorld.ir

247

performing costly operations during query execution. After the view is materialized,

multiple nonclustered indexes can be created on the indexed view. Effectively, this turns

a view (again, just a query) into a real table with defined storage.

 Benefit

You can use an indexed view to increase the performance of a query in the following ways:

• Aggregations can be precomputed and stored in the indexed view to

minimize expensive computations during query execution.

• Tables can be prejoined, and the resulting data set can be

materialized.

• Combinations of joins or aggregations can be materialized.

 Overhead

Indexed views can produce major overhead on an OLTP database. Some of the

overheads of indexed views are as follows:

• Any change in the base tables has to be reflected in the indexed view

by executing the view’s SELECT statement.

• Any changes to a base table on which an indexed view is defined

may initiate one or more changes in the nonclustered indexes of the

indexed view. The clustered index will also have to be changed if the

clustering key is updated.

• The indexed view adds to the ongoing maintenance overhead of the

database.

• Additional storage is required in the database.

The restrictions on creating an indexed view include the following:

• The first index on the view must be a unique clustered index.

• Nonclustered indexes on an indexed view can be created only after

the unique clustered index is created.

• The view definition must be deterministic—that is, it is able to return

only one possible result for a given query. (A list of deterministic and

nondeterministic functions is provided in SQL Server Books Online.)

Chapter 9 Index analysIs

www.EBooksWorld.ir

248

• The indexed view must reference only base tables in the same

database, not other views.

• The indexed view may contain float columns. However, such columns

cannot be included in the clustered index key.

• The indexed view must be schema bound to the tables referred to in

the view to prevent modifications of the table schema (frequently a

major problem).

• There are several restrictions on the syntax of the view definition. (A

list of the syntax limitations on the view definition is provided in SQL

Server Books Online.)

• The list of SET options that must be fixed are as follows:

• ON: ARITHABORT, CONCAT_NULL_YIELDS_NULL, QUOTED_IDENTIFIER,

ANSI_NULLS, ANSI_ PADDING, and ANSI_WARNING

• OFF: NUMERIC_ROUNDABORT

Note If the query connection settings don’t match these ansI standard settings,
you may see errors on the insert/update/delete of tables that are used within the
indexed view.

 Usage Scenarios

Reporting systems benefit the most from indexed views. OLTP systems with frequent

writes may not be able to take advantage of the indexed views because of the increased

maintenance cost associated with updating both the view and the underlying base tables

within a single transaction. The net performance improvement provided by an indexed

view is the difference between the total query execution savings offered by the view and

the cost of storing and maintaining the view.

If you are using the Enterprise edition of SQL Server, an indexed view need not

be referenced explicitly in the query for the query optimizer to use it during query

execution. This allows existing applications to benefit from the newly created indexed

views without changing those applications. Otherwise, you would need to directly

reference it within your T-SQL code on editions of SQL Server other than Enterprise. The

Chapter 9 Index analysIs

www.EBooksWorld.ir

249

query optimizer considers indexed views only for queries with nontrivial cost. You may

also find that the new columnstore index will work better for you than indexed views,

especially when you’re running aggregation or analysis queries against the data. I’ll

cover the columnstore index later in this chapter.

Let’s see how indexed views work with the following example. Consider the following

three queries:

SELECT p.[Name] AS ProductName,

 SUM(pod.OrderQty) AS OrderOty,

 SUM(pod.ReceivedQty) AS ReceivedOty,

 SUM(pod.RejectedQty) AS RejectedOty

FROM Purchasing.PurchaseOrderDetail AS pod

 JOIN Production.Product AS p

 ON p.ProductID = pod.ProductID

GROUP BY p.[Name];

SELECT p.[Name] AS ProductName,

 SUM(pod.OrderQty) AS OrderOty,

 SUM(pod.ReceivedQty) AS ReceivedOty,

 SUM(pod.RejectedQty) AS RejectedOty

FROM Purchasing.PurchaseOrderDetail AS pod

 JOIN Production.Product AS p

 ON p.ProductID = pod.ProductID

GROUP BY p.[Name]

HAVING (SUM(pod.RejectedQty) / SUM(pod.ReceivedQty)) > .08;

SELECT p.[Name] AS ProductName,

 SUM(pod.OrderQty) AS OrderQty,

 SUM(pod.ReceivedQty) AS ReceivedQty,

 SUM(pod.RejectedQty) AS RejectedQty

FROM Purchasing.PurchaseOrderDetail AS pod

 JOIN Production.Product AS p

 ON p.ProductID = pod.ProductID

WHERE p.[Name] LIKE 'Chain%'

GROUP BY p.[Name];

Chapter 9 Index analysIs

www.EBooksWorld.ir

250

All three queries use the aggregation function SUM on columns of the

PurchaseOrderDetail table. Therefore, you can create an indexed view to precompute

these aggregations and minimize the cost of these complex computations during query

execution.

Here are the number of logical reads performed by these queries to access the

appropriate tables:

Table 'Workfile'. Scan count 0, logical reads 0

Table 'Worktable'. Scan count 0, logical reads 0

Table 'Product'. Scan count 1, logical reads 6

Table 'PurchaseOrderDetail'. Scan count 1, logical reads 66

CPU time = 0 ms, elapsed time = 31 ms.

Table 'Workfile'. Scan count 0, logical reads 0

Table 'Worktable'. Scan count 0, logical reads 0

Table 'Product'. Scan count 1, logical reads 6

Table 'PurchaseOrderDetail'. Scan count 1, logical reads 66

CPU time = 0 ms, elapsed time = 16 ms.

Table 'PurchaseOrderDetail'. Scan count 5, logical reads 894

Table 'Product'. Scan count 1, logical reads 2

CPU time = 0 ms, elapsed time = 1 ms.

I’ll use the following script to create an indexed view to precompute the costly

computations and join the tables:

CREATE OR ALTER VIEW Purchasing.IndexedView

WITH SCHEMABINDING

AS

SELECT pod.ProductID,

 SUM(pod.OrderQty) AS OrderQty,

 SUM(pod.ReceivedQty) AS ReceivedQty,

 SUM(pod.RejectedQty) AS RejectedQty,

 COUNT_BIG(*) AS Count

FROM Purchasing.PurchaseOrderDetail AS pod

GROUP BY pod.ProductID;

GO

Chapter 9 Index analysIs

www.EBooksWorld.ir

251

CREATE UNIQUE CLUSTERED INDEX iv

ON Purchasing.IndexedView (ProductID);

GO

Certain constructs such as AVG are disallowed. (For the complete list of disallowed

constructs, refer to SQL Server Books Online.) If aggregates are included in the view, like

in this one, you must include COUNT_BIG by default.

The indexed view materializes the output of the aggregate functions on the disk. This

eliminates the need for computing the aggregate functions during the execution of a

query interested in the aggregate outputs. For example, the third query requests the sum

of ReceivedQty and RejectedQty for certain products from the PurchaseOrderDetail

table. Because these values are materialized in the indexed view for every product in

the PurchaseOrderDetail table, you can fetch these preaggregated values using the

following SELECT statement on the indexed view:

SELECT iv.ProductID,

 iv.ReceivedQty,

 iv.RejectedQty

FROM Purchasing.IndexedView AS iv;

As shown in the execution plan in Figure 9-11, the SELECT statement retrieves

the values directly from the indexed view without accessing the base table

(PurchaseOrderDetail).

Figure 9-11. Execution plan with an indexed view

Chapter 9 Index analysIs

www.EBooksWorld.ir

252

The indexed view benefits not only the queries based on the view directly but also

other queries that may be interested in the materialized data. For example, with the

indexed view in place, the three queries on PurchaseOrderDetail benefit without being

rewritten (see the execution plan in Figure 9-12 for the execution plan from the first

query), and the number of logical reads decreases, as shown here:

Table 'Product'. Scan count 1, logical reads 13

Table 'IndexedView'. Scan count 1, logical reads 4

CPU time = 0 ms, elapsed time = 53 ms.

Table 'Product'. Scan count 1, logical reads 13

Table 'IndexedView'. Scan count 1, logical reads 4

CPU time = 0 ms, elapsed time = 1 ms.

Table 'IndexedView'. Scan count 0, logical reads 10

Table 'Product'. Scan count 1, logical reads 2

CPU time = 0 ms, elapsed time = 0 ms. (214 us)

Figure 9-12. Execution plan with the indexed view automatically used

Even though the queries are not modified to refer to the new indexed view, the

optimizer still uses the indexed view to improve performance. Thus, even existing

queries in the database application can benefit from new indexed views without any

modifications to the queries. If you do need different aggregations than what the indexed

view offers, you’ll be out of luck. Here again the columnstore index shines.

Make sure to clean up.

DROP VIEW Purchasing.IndexedView;

Chapter 9 Index analysIs

www.EBooksWorld.ir

253

 Index Compression
Data and index compression were introduced in SQL Server 2008 (available in the

Enterprise and Developer editions, currently in all editions). Compressing an index

means getting more key information onto a single page. This can lead to significant

performance improvements because fewer pages and fewer index levels are needed

to store the index. There will be overhead in the CPU as the key values in the index are

compressed and decompressed, so this may not be a solution for all indexes. Memory

benefits also because the compressed pages are stored in memory in a compressed state.

By default, an index will be not be compressed. You have to explicitly call for the

index to be compressed when you create the index. There are two types of compression:

row- and page-level compression. Row-level compression identifies columns that can

be compressed (for details, look in Books Online) and compresses the storage of that

column and does this for every row. Page-level compression is actually using row-

level compression and then adding additional compression on top to reduce storage

size for the nonrow elements stored on a page. Nonleaf pages in an index receive no

compression under the page type. To see index compression in action, consider the

following index:

CREATE NONCLUSTERED INDEX IX_Test

ON Person.Address

(

 City ASC,

 PostalCode ASC

);

This index was created earlier in the chapter. If you were to re-create it as defined

here, this creates a row type of compression on an index with the same two columns as

the first test index IX_Test.

CREATE NONCLUSTERED INDEX IX_Comp_Test

ON Person.Address

(

 City,

 PostalCode

)

WITH (DATA_COMPRESSION = ROW);

Chapter 9 Index analysIs

www.EBooksWorld.ir

254

Create one more index.

CREATE NONCLUSTERED INDEX IX_Comp_Page_Test

ON Person.Address

(

 City,

 PostalCode

)

WITH (DATA_COMPRESSION = PAGE);

To examine the indexes being stored, modify the original query against sys.dm_db_

index_physical_stats to add another column, compressed_page_count.

SELECT i.name,

 i.type_desc,

 s.page_count,

 s.record_count,

 s.index_level,

 s.compressed_page_count

FROM sys.indexes AS i

 JOIN sys.dm_db_index_physical_stats(DB_ID(N'AdventureWorks2017'),

 OBJECT_ID(N'Person.Address'),

 NULL,

 NULL,

 'DETAILED') AS s

 ON i.index_id = s.index_id

WHERE i.object_id = OBJECT_ID(N'Person.Address');

Running the query, you get the results in Figure 9-13.

Figure 9-13. sys.dm_db_index_physical_stats output about compressed indexes

Chapter 9 Index analysIs

www.EBooksWorld.ir

255

For this index, you can see that the page compression was able to move the index

from 106 pages to 25, of which 25 were compressed. The row type compression in this

instance made a difference in the number of pages in the index but was not nearly as

dramatic as that of the page compression.

To see that compression works for you without any modification to code, run the

following query:

SELECT a.City,

 a.PostalCode

FROM Person.Address AS a

WHERE a.City = 'Newton'

 AND a.PostalCode = 'V2M1N7';

The optimizer chose, on my system, to use the IX_Comp_Page_Test index. Even if I

forced it to use the IXTest index thusly, the performance was identical, although one

extra page was read in the second query:

SELECT a.City,

 a.PostalCode

FROM Person.Address AS a WITH (INDEX = IX_Test)

WHERE a.City = 'Newton'

 AND a.PostalCode = 'V2M1N7';

So, although one index is taking up radically less room on approximately one-

quarter as many pages, it’s done at no cost in performance.

Compression has a series of impacts on other processes within SQL Server, so

further understanding of the possible impacts as well as the possible benefits should

be explored thoroughly prior to implementation. In most cases, the cost to the CPU is

completely outweighed by the benefits everywhere else, but you should test and monitor

your system.

Clean up the indexes after you finish testing.

DROP INDEX Person.Address.IX_Test;

DROP INDEX Person.Address.IX_Comp_Test;

DROP INDEX Person.Address.IX_Comp_Page_Test;

Chapter 9 Index analysIs

www.EBooksWorld.ir

256

 Columnstore Indexes
Introduced in SQL Server 2012, the columnstore index is used to index information

by columns rather than by rows. This is especially useful when working within data

warehousing systems where large amounts of data have to be aggregated and accessed

quickly. The information stored within a columnstore index is grouped on each column,

and these groupings are stored individually. This makes aggregations on different sets

of columns extremely fast since the columnstore index can be accessed rather than

accessing large numbers of rows in order to aggregate the information. Further, you

get more speed because the storage is column oriented, so you’ll be touching storage

only for the columns you’re interested in, not the entire row of columns. Finally, you’ll

see some performance enhancements from columnstore because the columnar data is

stored compressed. The columnstore comes in two types, similar to regular indexes: a

clustered columnstore and a nonclustered columnstore. Prior to SQL Server 2016, the

nonclustered column store cannot be updated. You must drop it and then re-create it

(or, if you’re using partitioning, you can switch in and out different partitions). From SQL

Server 2016 onward, you can use a nonclustered columnstore inside your transactional

database to enable real-time analytic queries. A clustered column store was introduced

in SQL Server 2014 and is available there and only in the Enterprise version for

production machines. In SQL Server 2016 and SQL Server 2017, the columnstore is

available in all editions. There are a number of limits on using columnstore indexes.

You can’t use certain data types such as binary, text, varchar(max) (supported in

SQL Server 2017), uniqueidentifier (in SQL Server 2012, this data type works in SQL

Server 2014 and greater), clr data types, or xml.

• You can’t create a columnstore index on a sparse column.

• A table on which you want to create a clustered columnstore can’t

have any constraints including primary key or foreign key constraints.

For the complete list of restrictions, refer to SQL Server Books Online.

Columnstores are primarily meant for use within data warehouses and therefore

work best when dealing with the associated styles of storage such as star schemas.

Because of how the data is stored within the columnstore index, you’ll see columnstores

used frequently when dealing with partitioned data. The way a columnstore index is

designed, it functions optimally when dealing with large data sets of at least 100,000

rows. In the AdventureWorks2017 database, none of the tables as configured is

Chapter 9 Index analysIs

www.EBooksWorld.ir

257

sufficiently large to really put the columnstore to work. To have enough data, I’m going to

use Adam Machanic’s script, make_big_adventure.sql, to create a couple of large tables,

dbo.bigTransactionHistory and dbo.bigProduct. The script can be downloaded at

http://bit.ly/2mNBIhg.

 Columnstore Index Storage
The real beauty of the columnstore indexes is that with a clustered columnstore and a

nonclustered columnstore, you can tailor the behavior of the storage within your system

to the purposes of that system without sacrificing other query behavior. If your system is

a data warehouse with large fact tables, you can use the clustered columnstore to define

your data storage since the vast majority of the queries will benefit from that clustered

columnstore. However, if you have an OLTP system on which you occasionally need to

run analysis style queries, you can use the nonclustered columnstore in addition to your

regular clustered and nonclustered indexes, also called rowstore indexes.

The following are the benefits of the columnstore index:

• Enhanced performance in data warehouse and analytic work loads

• Excellent data compression

• Reduced I/O

• Mode data that fits in memory

To understand the columnstore more completely, I should define a few terms.

• Rowgroup: A group of rows compressed and stored in a column-wise

fashion.

• Segment: Also called a column segment, a column of data

compressed and stored on disk. Each rowgroup has a column

segment for every column in the table.

• Dictionary: Encoding for some data types that defines the segment.

These can be global, for all segments, or local, used for one segment.

The columnstore data is not stored in a B-tree as the rowstore indexes are. Instead,

the data is pivoted and aggregated on each column within the table. The information

is also broken into subsets called rowgroups. Each rowgroup consists of up to 1,048,576

rows. When the data is loaded in a batch into a columnstore, it is automatically

broken into rowgroups if the number of rows exceeds 100,000. As data gets updated in

Chapter 9 Index analysIs

www.EBooksWorld.ir

http://bit.ly/2mNBIhg

258

columnstore indexes, changes are stored in what is called the deltastore. This is actually

a B-tree index controlled behind the scenes by the SQL Server engine. Added rows are

accumulated in the deltastore until there are 102,400 of them, and then they will be

pivoted and compressed into the rowgroups. The process that does this is called the

tuple mover. Deletes of rows from columnstores depend on where the row is at. A row in

the deltastore is simply removed. A row that is already compressed into a rowgroup goes

through a logical delete. Another B-tree index, again controlled out of sight, manages a

list of identifiers for the rows removed. An update works similarly, consisting of a delete

(logical or actual, depending on location) and an insert into the deltastore.

If you’re doing your loading in small batches, with lots of updates, you will be dealing

with the deltastore. This is extremely likely in the event that you’re using a nonclustered

columnstore index on a rowstore table. By and large the deltastore manages itself.

However, it’s not a bad idea to, when possible, rebuild the columnstore index to clear

out the logically deleted rows and get compressed rowgroups. You can do this using the

ALTER INDEX REORGANIZE command. We’ll cover that in detail in Chapter 14.

The pivoted, grouped, and compressed storage of the columnstore lends itself to

incredible performance enhancements when dealing with grouped data. However, it’s

much slower and more problematic when doing the kind of single-row or range lookups

that are needed for OLTP-style queries.

The behavior of the clustered and nonclustered columnstore indexes is basically the

same. The difference is that the clustered columnstore, like the clustered rowstore index,

is storing the data. The nonclustered columnstore, on the other hand, must have the data

stored and managed elsewhere in a rowstore index.

 Columnstore Index Behavior
Take this query as an example:

SELECT bp.Name AS ProductName,

 COUNT(bth.ProductID),

 SUM(bth.Quantity),

 AVG(bth.ActualCost)

FROM dbo.bigProduct AS bp

 JOIN dbo.bigTransactionHistory AS bth

 ON bth.ProductID = bp.ProductID

GROUP BY bp.Name;

Chapter 9 Index analysIs

www.EBooksWorld.ir

259

If you run this query against the tables as they are currently configured, you’ll see an

execution plan that looks like Figure 9-14.

Figure 9-14. Multiple aggregations for a GROUP BY query

The reads and execution time for the query are as follows:

Table 'Worktable'. Scan count 0, logical reads 0

Table 'bigTransactionHistory'. Scan count 1, logical reads 131819

Table 'bigProduct'. Scan count 1, logical reads 601

CPU time = 16 ms, elapsed time = 13356 ms.

There are a large number of reads, and this query uses quite a bit of CPU and is not

terribly fast to execute. We have two types of columnstore indexes to choose from. If

you want to just add a nonclustered columnstore index to an existing table, it’s possible.

We could migrate the data here to a clustered columnstore, but the behavior of the

query is the same. For simplicity in the example then, we’ll just use the nonclustered

columnstore. When you create the nonclustered columnstore index, you can pick the

columns to avoid any that might not be supported by the columnstore index.

CREATE NONCLUSTERED COLUMNSTORE INDEX ix_csTest

ON dbo.bigTransactionHistory

(

 ProductID,

 Quantity,

 ActualCost

);

With the nonclustered columnstore index in place, the optimizer now has the option

of using that index to satisfy the previous query. Just like all other indexes available to

the optimizer, costs are associated with the columnstore index, so it may or may not be

chosen to satisfy the requirements for any given query against the table. In this case, if

Chapter 9 Index analysIs

www.EBooksWorld.ir

260

you rerun the original aggregate query, you can see that the optimizer determined that

the costs associated with using the columnstore index were beneficial to the query. The

execution plan now looks like Figure 9-15.

Figure 9-15. The columnstore index is used instead of the clustered index

As you can see, there are a number of differences in the plan. There’s a lot to unpack

here, but before we do, let’s take a look at the reads and execution time. The results

are identical: 24,975 rows on my system. The real differences are seen in the reads and

execution times for the query.

Table 'bigTransactionHistory'. Scan count 4, logical reads 0

Table 'bigTransactionHistory'. Segment reads 31, segment skipped 0.

Table 'bigProduct'. Scan count 3, logical reads 620

Table 'Worktable'. Scan count 0, logical reads 0

Table 'Worktable'. Scan count 0, logical reads 0

CPU time = 1922 ms, elapsed time = 1554 ms.

The radical reduction in the number of reads required to retrieve the data and the

marginal increase in speed are all the result of being able to reference information that

is indexed by column instead of by row. We went from 13.3 seconds to 1.5 seconds on

the execution time. That’s the kind of massive performance enhancements you can look

forward to.

Let’s unpack the execution plan a little because this is the first really complex plan

we’ve seen. The first thing to note is that the optimizer chose to make this a parallel

plan. You can see that in the operators that have a yellow symbol attached like the

Columnstore Index Scan operator in Figure 9-16.

Chapter 9 Index analysIs

www.EBooksWorld.ir

261

There’s a new processing method for dealing with data called batch mode.

Currently, only queries that contain columnstore indexes have batch mode processing,

but Microsoft has already announced that this will change. Batch mode deals with

rows in batches within the operations of a plan. This is a huge advantage. Row mode

processing means that each row goes through a negotiation process as it moves between

operators in the plan: 10,000 rows, 10,000 negotiations. That is very intensive. Batch

mode moves rows in batches instead of individually. The batches are approximately

evenly distributed up to 1,000 rows per batch (although this varies). That means instead

of 10,000 negotiations, there are only 10 to move the 10,000 rows. That is a gigantic

performance benefit. Further, batch mode takes advantage of multiple processors to

help speed up execution. To determine the execution mode of the operators in a plan,

look to the properties of that operator. Figure 9-17 shows the appropriate property for the

Columnstore Index Scan.

Figure 9-17. Actual execution mode

Figure 9-16. A Columnstore Index Scan operator in parallel execution

Batch mode processing is the preferred method when dealing with columnstore

indexes because it is generally much faster than the alternative, row mode. Prior to SQL

Server 2017, it generally required a parallel execution plan before a query would enter

batch mode processing. However, SQL Server 2017 allows for batch mode processing in

nonparallel execution plans.

There is a limited set of operations, documented in SQL Server Books Online, that

result in batch mode processing, but when working with those operations on a system

with enough processors, you will see yet another substantial performance enhancement.

Chapter 9 Index analysIs

www.EBooksWorld.ir

262

Columnstore indexes don’t require you to have the columns in a particular order,

unlike clustered and nonclustered indexes. Also, unlike these other indexes, you should

place multiple columns within a columnstore index so that you get benefits across those

columns. Put another way, if you anticipate that you’ll need to query the column at some

point, add it proactively to the columnstore index definition. But if you’re retrieving

large numbers of columns from a columnstore index, you might see some performance

degradation.

Another aspect of columnstore indexes that enhances performance is segment

elimination. Each segment shows the minimum and maximum values within the

segment (either with actual values or with a reference to a dictionary). If a segment won’t

contain a given value, it’s just skipped. This becomes especially relevant when you’re

combining partitioning with columnstore indexes. Then, even if you don’t get partition

elimination, the segment elimination will effectively skip a partition if none of the data in

segments contained in that partition matches the criteria we’re filtering on.

There’s an additional behavior of columnstore indexes visible in the execution plan

in Figure 9-15. Introduced in SQL Server 2017 and in Azure SQL Database is the batch

mode adaptive join. Let’s look at an expanded view of a subset of the plan in Figure 9-18.

Figure 9-18. Adaptive join and its attendant behavior

Chapter 9 Index analysIs

www.EBooksWorld.ir

263

Because selecting the wrong join type can so severely hurt performance, a new style

of join has been added, the adaptive join. The adaptive join will create two possible

branches for a given execution plan. You can see the two branches in Figure 9-18 as

Clustered Index Scan and Clustered IndexSeek, both against the pk_bigProduct

index. The adaptive join can decide, while executing, to use either a hash join or a nested

loop join. It does this by loading data into an adaptive buffer, managed internally; we

can’t see it. If the row threshold is not reached, that buffer becomes the outer row driver

for the loops join. Otherwise, a hash table gets built to do a normal hash join. Once the

table is created, though, it can determine based on row counts which join type is better.

After the adaptive join picks the type of join it intends to use, it will then go down one

of the two branches. The top branch is for the hash match join, and the bottom is for a

loops join. The information for the determination of a given join type is stored with the

execution plan within the properties, as shown in Figure 9-19.

Figure 9-19. A subset of the adaptive join properties

Chapter 9 Index analysIs

www.EBooksWorld.ir

264

About midway down the properties shown in Figure 9-19 is the Adaptive Threshold

Rows property. When the number of rows in the hash table is at or below this value, the

adaptive join will use the loops join. Above the same value, the adaptive join will use the

hash match join. You can also see properties for the estimated and actual join type used, so

you can see how the behavior of a given query changes as the data it accesses also changes.

You can also see from this join that you can mix and match querying between

columnstore and row store tables at will. The same basic rules always apply.

There are a number of DMOs you can use to look at the status of your columnstore

indexes. One that’s immediately useful is sys.dm_db_column_store_row_group_

physical_stats. It shows the status of the row groups, and it’s easy to query it.

SELECT ddcsrgps.row_group_id,

 ddcsrgps.state_desc,

 ddcsrgps.total_rows,

 ddcsrgps.trim_reason_desc,

 ddcsrgps.transition_to_compressed_state_desc

FROM sys.dm_db_column_store_row_group_physical_stats AS ddcsrgps

WHERE ddcsrgps.object_id = OBJECT_ID('dbo.bigTransactionHistory')

ORDER BY ddcsrgps.row_group_id DESC;

The output of the columnstore index from dbo.bigTransationHistory looks like

Figure 9-20.

Chapter 9 Index analysIs

www.EBooksWorld.ir

265

You can now see how the rows were loaded and grouped in the index, whether or not

there is compression and how the rows were moved by looking at the transition_to_

compressed_state_desc.

I’m going to leave the tables and the columnstore index in place for later examples in

the book.

Figure 9-20. Output of sys.dm_db_column_store_row_group_physical_stats

Chapter 9 Index analysIs

www.EBooksWorld.ir

266

 Recommendations
First, you should always focus on picking the correct clustered index for the data in

question. Generally, an OLTP system will benefit the most from rowstore, B-tree indexes.

Equally generally, a data warehouse, reporting, or analysis system will benefit the most

from columnstore indexes. There are likely to be exceptions in either direction, but that

should be the essential guide.

Because you can add rowstore indexes to a clustered columnstore and you can add

a nonclustered columnstore to rowstore tables, you can deal with exceptional behavior

in either situation. A columnstore is ideal for tables with large numbers of rows. Smaller

tables may still gain some benefits but may not. Test on your system to know for sure.

When dealing with columnstore indexes, you should generally follow these rules:

• Load the data into the columnstore in either a single transaction, if

possible, or, if not, in batches that are greater than 102,400 to take

advantage of the compressed rowgroups.

• Minimize small-scale updates to data within a clustered columnstore

to avoid the overhead of dealing with the deltastore.

• Plan to have an index rebuild periodically based on data movement

for both clustered and nonclustered columnstores to eliminate

deleted data completely from the rowgroups and to move modified

data from the deltastore into the rowgroups.

• Maintain the statistics on your columnstore indexes similar to how

you do the same on your rowstore indexes. While they are not visible

in the same way as rowstore indexes, they still must be maintained.

 Special Index Types
As special data types and storage mechanisms are introduced to SQL Server by

Microsoft, methods for indexing these special storage types are also developed.

Explaining all the details possible for each of these special index types is outside the

scope of the book. In the following sections, I introduce the basic concepts of each index

type to facilitate the possibility of their use in tuning your queries.

Chapter 9 Index analysIs

www.EBooksWorld.ir

267

 Full-Text
You can store large amounts of text in SQL Server by using the MAX value in the VARCHAR,

NVARCHAR, CHAR, and NCHAR fields. A normal clustered or nonclustered index against these

large fields would be unsupportable because a single value can far exceed the page size

within an index. So, a different mechanism of indexing text is to use the full-text engine,

which must be running to work with full-text indexes. You can also build a full-text index

on VARBINARY data.

You need to have one column on the table that is unique. The best candidates for

performance are integers: INT or BIGINT. This column is then used along with the word

to identify which row within the table it belongs to, as well as its location within the field.

SQL Server allows for incremental changes, either change tracking or time-based, to the

full-text indexes as well as complete rebuilds.

SQL Server 2012 introduced another method for working with text called semantic

search. It uses phrases from documents to identify relationships between different sets of

text stored within the database.

 Spatial
Introduced in SQL Server 2008 is the ability to store spatial data. This data can be either

a geometry type or the very complex geographical type, literally identifying a point on

the earth. To say the least, indexing this type of data is complicated. SQL Server stores

these indexes in a flat B-tree, similar to regular indexes, except that it is also a hierarchy

of four grids linked together. Each of the grids can be given a density of low, medium, or

high, outlining how big each grid is. There are mechanisms to support indexing of the

spatial data types so that different types of queries, such as finding when one object is

within the boundaries or near another object, can benefit from performance increases

inherent in indexing.

A spatial index can be created only against a column of type geometry or geography.

It has to be on a base table, it must have no indexed views, and the table must have a

primary key. You can create up to 249 spatial indexes on any given column on a table.

Different indexes are used to define different types of index behavior. More information is

available in the book Pro Spatial with SQL Server 2012 by Alastair Aitchison (Apress, 2012).

Chapter 9 Index analysIs

www.EBooksWorld.ir

268

 XML
Introduced as a data type in SQL Server 2005, XML can be stored not as text but as well-

formed XML data within SQL Server. This data can be queried using the XQuery language

as supported by SQL Server. To enhance the performance capabilities, a special set of

indexes has been defined. An XML column can have one primary and several secondary

indexes. The primary XML shreds the properties, attributes, and elements of the XML

data and stores it as an internal table. There must be a primary key on the table, and that

primary key must be clustered in order to create an XML index. After the XML index is

created, the secondary indexes can be created. These indexes have types Path, Value,

and Property, depending on how you query the XML. For more details, check out Expert

Performance Indexing in SQL Server by Jason Strate and Grant Fritchey (Apress, 2015).

 Additional Characteristics of Indexes
Other index properties can affect performance, positively and negatively. A few of these

behaviors are explored here.

 Different Column Sort Order
SQL Server supports creating a composite index with a different sort order for the

different columns of the index. Suppose you want an index with the first column sorted

in ascending order and the second column sorted in descending order to eliminate a

sort operation, which can be quite costly. You could achieve this as follows:

CREATE NONCLUSTERED INDEX i1 ON t1(c1 ASC, c2 DESC);

 Index on Computed Columns
You can create an index on a computed column, as long as the expression defined for

the computed column meets certain restrictions, such as that it references columns only

from the table containing the computed column and it is deterministic.

Chapter 9 Index analysIs

www.EBooksWorld.ir

269

 Index on BIT Data Type Columns
SQL Server allows you to create an index on columns with the BIT data type. The ability

to create an index on a BIT data type column by itself is not a big advantage since such

a column can have only two unique values, except for the rare circumstance where the

vast majority of the data is one value and only a few rows are the other. As mentioned

previously, columns with such low selectivity (number of unique values) are not usually

good candidates for indexing. However, this feature comes into its own when you

consider covering indexes. Because covering indexes require including all the columns

in the index, the ability to add the BIT data type column to an index key allows covering

indexes to have such a column, if required (outside of the columns that would be part of

the INCLUDE operator).

 CREATE INDEX Statement Processed As a Query
The CREATE INDEX operation is integrated into the query processor. The optimizer can

use existing indexes to reduce scan cost and sort while creating an index.

Take, for example, the Person.Address table. A nonclustered index exists on

a number of columns: AddressLine1, AddressLine2, City, StateProvinceld, and

PostalCode. If you needed to run queries against the City column with the existing

index, you’ll get a scan of that index. Now create a new index like this:

CREATE NONCLUSTERED INDEX IX_Test

ON Person.Address(City);

You can see in Figure 9-21 that, instead of scanning the table, the optimizer chose

to scan the index to create the new index because the column needed for the new index

was contained within the other nonclustered index.

Figure 9-21. Execution plan for CREATE INDEX

Be sure to drop the index when you’re done.

DROP INDEX IX_Test ON Person.Address;

Chapter 9 Index analysIs

www.EBooksWorld.ir

270

 Parallel Index Creation
SQL Server supports parallel plans for a CREATE INDEX statement, as supported in

other SQL queries. On a multiprocessor machine, index creation won’t be restricted

to a single processor but will benefit from the multiple processors. You can control the

number of processors to be used in a CREATE INDEX statement with the max degree of

parallelism configuration parameter of SQL Server. The default value for this parameter

is 0, as you can see by executing the sp_configure stored procedure (after setting show

advanced options).

EXEC sp_configure

 'max degree of parallelism' ;

The default value of 0 means that SQL Server can use all the available CPUs in the

system for the parallel execution of a T-SQL statement. On a system with four processors,

the maximum degree of parallelism can be set to 2 by executing spconfigure.

EXEC sp_configure

 'max degree of parallelism',

 2 ;

RECONFIGURE WITH OVERRIDE ;

This allows SQL Server to use up to two CPUs for the parallel execution of a T-SQL

statement. This configuration setting takes effect immediately, without a server restart.

The query hint MAXDOP can be used for the CREATE INDEX statement. Also, be aware

that the parallel CREATE INDEX feature is available only in SQL Server Enterprise editions.

 Online Index Creation
The default creation of an index is done as an offline operation. This means exclusive

locks are placed on the table, restricting user access while the index is created. It is

possible to create the indexes as an online operation. This allows users to continue to

access the data while the index is being created. This comes at the cost of increasing the

amount of time and resources it takes to create the index. Introduced in SQL Server 2012,

indexes with varchar(MAX), nvarchar(MAX), and nbinary(MAX) can actually be rebuilt

online. Online index operations are available only in SQL Server Enterprise editions.

Chapter 9 Index analysIs

www.EBooksWorld.ir

271

 Considering the Database Engine Tuning Advisor
A simple approach to indexing is to use the Database Engine Tuning Advisor tool

provided by SQL Server. This tool is a usage-based tool that looks at a particular

workload and works with the query optimizer to determine the costs associated with

various index combinations. Based on the tool’s analysis, you can add or drop indexes as

appropriate.

Note I will cover the database engine tuning advisor tool in more depth in
Chapter 10.

 Summary
In this chapter, you learned that there are a number of additional functions in and

around indexes that expand on the behavior defined the preceding chapter.

In the next chapter, you will learn more about the Database Engine Tuning Advisor,

the SQL Server–provided tool that can help you determine the correct indexes in a

database for a given SQL workload.

Chapter 9 Index analysIs

www.EBooksWorld.ir

273
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_10

CHAPTER 10

Database Engine Tuning
Advisor
SQL Server’s performance frequently depends upon having the proper indexes on the

database tables. However, as the workload and data change over time, the existing

indexes may not be entirely appropriate, and new indexes may be required. The task of

deciding upon the correct indexes is complicated by the fact that an index change that

benefits one set of queries may be detrimental to another set of queries.

To help you through this process, SQL Server provides a tool called the Database

Engine Tuning Advisor. This tool can help identify an optimal set of indexes and statistics

for a given workload without requiring an expert understanding of the database schema,

workload, or SQL Server internals. It can also recommend tuning options for a small set

of problem queries. In addition to the tool’s benefits, I cover its limitations in this chapter

because it is a tool that can cause more harm than good if used without deliberate intent.

In this chapter, I cover the following topics:

• How the Database Engine Tuning Advisor works

• How to use the Database Engine Tuning Advisor on a set of

problematic queries for index recommendations, including how to

define traces

• The limitations of the Database Engine Tuning Advisor

 Database Engine Tuning Advisor Mechanisms
You can run the Database Engine Tuning Advisor directly by selecting Microsoft SQL

Server 2017 ➤ SQL Server 2017 Database Engine Tuning Advisor. You can also run it

from the command prompt (dta.exe), from SQL Profiler (Tools ➤ Database Engine

www.EBooksWorld.ir

274

Tuning Advisor), from a query in Management Studio (highlight the required query

and select Query ➤ Analyze Query in the Database Engine Tuning Advisor), or from

Management Studio (select Tools ➤ Database Engine Tuning Advisor). Once the tool

is open and you’re connected to a server, you should see a window like the one in

Figure 10-1. I’ll run through the options to define and run an analysis in this section and

then follow up in the next section with some detailed examples.

Figure 10-1. Selecting the server and database in the Database Engine Tuning
Advisor

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

275

The Database Engine Tuning Advisor is already connected to a server. From here,

you begin to outline the workload and the objects you want to tune. Creating a session

name is necessary to label the session for documentation purposes. Then you need

to pick a workload. The workload can come from a trace file or a table, from queries

that exist in the plan cache, or from queries in the Query Store (the Query Store will be

covered in detail in Chapter 11). Finally, you need to browse to the appropriate location.

The workload is defined depending on how you launched the Database Engine Tuning

Advisor. If you launched it from a query window, you would see a Query radio button,

and the File and Table radio buttons would be disabled. You also have to define the

Database for Workload Analysis setting and finally select a database to tune.

When you select a database, you can also select individual tables to be tuned by

clicking the drop-down box on the right side of the screen; you’ll see a list of tables like

those in Figure 10-2.

Figure 10-2. Clicking the boxes defines individual tables for tuning in the
Database Engine Tuning Advisor

Once you define the workload, you need to select the Tuning Options tab, which is

shown in Figure 10-3.

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

276

You define the length of time you want the Database Engine Tuning Advisor to run by

selecting Limit Tuning Time and then defining a date and time for the tuning to stop. The

longer the Database Engine Tuning Advisor runs, the better recommendations it should

make. You pick the type of physical design structures to be considered for creation by the

Database Engine Tuning Advisor, and you can also set the partitioning strategy so that

the Tuning Advisor knows whether it should consider partitioning the tables and indexes

as part of the analysis. Just remember, partitioning is foremost a data management tool,

not a performance tuning mechanism. Partitioning may not necessarily be a desirable

outcome if your data and structures don’t warrant it. Finally, you can define the physical

design structures that you want left alone within the database. Changing these options

will narrow or widen the choices that the Database Engine Tuning Advisor can make

to improve performance. You can optionally include filtered indexes, and the Database

Engine Tuning Advisor can recommend columnstore indexes.

Figure 10-3. Defining options in the Database Engine Tuning Advisor

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

277

You can click the Advanced Options button to see even more options, as shown in

Figure 10-4.

Figure 10-4. Advanced Tuning Options dialog box

This dialog box allows you to limit the space of the recommendations and the number

of columns that can be included in an index. You decide whether you want to include plan

cache events from every database on the system. Finally, you can define whether the new

indexes or changes in indexes are done as an online or offline index operation.

Once you’ve appropriately defined all of these settings, you can start the Database

Engine Tuning Advisor by clicking the Start Analysis button. The sessions created are

kept in the msdb database for any server instance that you run the Database Engine

Tuning Advisor against. It displays details about what is being analyzed and the progress

that was made, which you can see in Figure 10-5.

Figure 10-5. Tuning progress

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

278

You’ll see more detailed examples of the progress displayed in the example analysis

in the next session.

After the analysis completes, you’ll get a list of recommendations (visible in Figure 10-6),

and a number of reports become available. Table 10-1 describes the reports.

Table 10-1. Database Engine Tuning Advisor Reports

Report Name Report Description

Column access Lists the columns and tables referenced in the workload

Database access Lists each database referenced in the workload and percentage of workload

statements for each database

event Frequency Lists all events in the workload ordered by frequency of occurrence

index Detail (Current) Defines indexes and their properties referenced by the workload

index Detail

(recommended)

is the same as the index Detail (Current) report but shows the information

about the indexes recommended by the Database engine tuning advisor

index usage (Current) Lists the indexes and the percentage of their use referenced by the workload

index usage

(recommended)

is the same as the index usage (Current) report but from the recommended

indexes

statement Cost Lists the performance improvements for each statement if the

recommendations are implemented

statement Cost

range

breaks down the cost improvements by percentiles to show how much

benefit you can achieve for any given set of changes; these costs are

estimated values provided by the optimizer

statement Detail Lists the statements in the workload, their cost, and the reduced cost if the

recommendations are implemented

statement-to-index

relationship

Lists the indexes referenced by individual statements; current and

recommended versions of the report are available

table access Lists the tables referenced by the workload

view-to-table

relationship

Lists the tables referenced by materialized views

Workload analysis gives details about the workload, including the number of statements, the

number of statements whose cost is decreased, and the number where the

cost remains the same

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

279

 Database Engine Tuning Advisor Examples
The best way to learn how to use the Database Engine Tuning Advisor is to use it. It’s not

a terribly difficult tool to master, so I recommend opening it and getting started.

 Tuning a Query
You can use the Database Engine Tuning Advisor to recommend indexes for a complete

database by using a workload that fairly represents all SQL activities. You can also use it

to recommend indexes for a set of problematic queries.

To learn how you can use the Database Engine Tuning Advisor to get index

recommendations on a set of problematic queries, say you have a simple query that

is called rather frequently. Because of the frequency, you want a quick turnaround for

some tuning. This is the query:

SELECT soh.DueDate,

 soh.CustomerID,

 soh.Status

FROM Sales.SalesOrderHeader AS soh

WHERE soh.DueDate

BETWEEN '1/1/2008' AND '2/1/2008';

To analyze the query, right-click it in the query window and select Analyze Query in

the Database Engine Tuning Advisor. The advisor opens with a window where you can

change the session name to something meaningful. In this case, I chose Report Query

Round 1 – 1/16/2014. The database and tables don’t need to be edited. The first tab,

General, will look like Figure 10-6 when you’re done.

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

280

Because this query is important and tuning it is extremely critical to the business,

I’m going to change some settings on the Tuning Options tab to try to maximize the

possible suggestions. For the purposes of the example, I’m going to let the Database

Engine Tuning Advisor run for the default of one hour, but for bigger loads or more

complex queries, you might want to consider giving the system more time. I’m going to

select the Include Filtered Indexes check box so that if a filtered index will help, it can be

considered. I’m also going to let it recommend columnstore indexes. Finally, I’m going

Figure 10-6. Query tuning general settings

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

281

to allow the Database Engine Tuning Advisor to come up with structural changes if it

can find any that will help by switching from Keep All Existing PDS to Do Not Keep Any

Existing PDS. Once completed, the Tuning Options tab will look like Figure 10-7.

Figure 10-7. Tuning Options tab adjusted

Notice that the description at the bottom of the screen changes as you change the

definitions in the selections made above. After starting the analysis, the progress screen

should appear. Although the settings were for one hour of evaluations, it took only about

a minute for the DTA to evaluate this query. The initial recommendations were not a

good set of choices. As you can see in Figure 10-8, the Database Engine Tuning Advisor

has recommended dropping a huge swath of indexes in the database. This is not the type

of recommendation you want when running the tool.

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

282

the Database engine tuning advisor assumes that the load being tested is the full
load of the database. For every test, every time. if the test you are running is not your
representative workload, you could have serious issues with the suggested changes.

If there are indexes not being used, then they should be removed. This is a best

practice and one that should be implemented on any database. However, in this case,

this is a single query, not a full load of the system. To see whether the advisor can come

up with a more meaningful set of recommendations, you must start a new session.

This time, I’ll adjust the options so that the Database Engine Tuning Advisor will not

be able to drop any of the existing structure. This is set on the Tuning Options tab (shown

earlier in Figure 10-7). There I’ll change the Physical Design Structure (PDS) to Keep in

Database setting from Do Not Keep Any Existing PDS to Keep All Existing PDS. I’ll keep

Figure 10-8. Query tuning initial recommendations

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

283

the running time the same because the evaluation worked well within the time frame.

After running the Database Engine Tuning Advisor again, it finishes in less than a minute

and displays the recommendations shown in Figure 10-9.

Figure 10-9. Query tuning recommendations

The first time through, the Database Engine Tuning Advisor suggested dropping

most of the indexes on the tables being tested and a bunch of the related tables. This

time it suggests creating a covering index on the columns referenced in the query. As

outlined in Chapter 9, a covering index can be one of the best-performing methods of

retrieving data. The Database Engine Tuning Advisor was able to recognize that an index

with all the columns referenced by the query, a covering index, would perform best.

Once you’ve received a recommendation, you should closely examine the proposed

T-SQL command. The suggestions are not always helpful, so you need to evaluate

and test them to be sure. Assuming the examined recommendation looks good,

you’ll want to apply it. Select Actions ➤ Evaluate Recommendations. This opens a

new Database Engine Tuning Advisor session and allows you to evaluate whether the

recommendations will work using the same measures that made the recommendations

in the first place. All of this is to validate that the original recommendation has the effect

that it claims it will have. The new session looks just like a regular evaluation report. If

you’re still happy with the recommendations, select Actions ➤ Apply Recommendation.

This opens a dialog box that allows you to apply the recommendation immediately or

schedule the application (see Figure 10-10).

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

284

If you click the OK button, the Database Engine Tuning Advisor will apply the index

to the database where you’ve been testing queries (see Figure 10-11).

Figure 10-10. Apply Recommendations dialog box

Figure 10-11. A successful tuning session applied

After you generate recommendations, you may want to, instead of applying them

on the spot, save the T-SQL statements to a file and accumulate a series of changes for

release to your production environment during scheduled deployment windows. Also,

just taking the defaults, you’ll end up with a lot of indexes named something like this:

_dta_index_SalesOrderHeader_5_1266103551__K4_6_11. That’s not terribly clear, so

saving the changes to T-SQL will also allow you to make your changes more human

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

285

readable. Remember that applying indexes to tables, especially large tables, can cause

a performance impact to processes actively running on the system while the index is

being created.

Although getting index suggestions one at a time is nice, it would be better to be

able to get large swaths of the database checked all at once. That’s where tuning a trace

workload comes in.

 Tuning a Trace Workload
Capturing a trace from the real-world queries that are running against a production

server is a way to feed meaningful data to the Database Engine Tuning Advisor.

(Capturing traces will be covered in Chapter 18.) The easiest way to define a trace for

use in the Database Engine Tuning Advisor is to implement the trace using the Tuning

template. Start the trace on the system you need to tune. I generated an artificial load

by running queries in a loop from the PowerShell sqlps.exe command prompt. This

is the PowerShell command prompt with the SQL Server configuration settings. It gets

installed with SQL Server.

To find something interesting, I’m going to create one stored procedure with an

obvious tuning issue.

CREATE PROCEDURE dbo.uspProductSize

AS

SELECT p.ProductID,

 p.Size

FROM Production.Product AS p

WHERE p.Size = '62';

Here is the simple PowerShell script I used. You’ll need to adjust the connection

string for your environment. After you have downloaded the file to a location, you’ll

be able to run it by simply referencing the file and the full path through the command

prompt. You may run into security issues since this is an unsigned, raw script. Follow the

help guidance provided in that error message if you need to (queryload.ps1).

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

286

$SqlConnection = New-Object System.Data.SqlClient.SqlConnection

$SqlConnection.ConnectionString = 'Server=WIN-8A2LQANSO51;Database=Adventur

eWorks2017;trusted_connection=true'

Load Product data

$ProdCmd = New-Object System.Data.SqlClient.SqlCommand

$ProdCmd.CommandText = "SELECT ProductID FROM Production.Product"

$ProdCmd.Connection = $SqlConnection

$SqlAdapter = New-Object System.Data.SqlClient.SqlDataAdapter

$SqlAdapter.SelectCommand = $ProdCmd

$ProdDataSet = New-Object System.Data.DataSet

$SqlAdapter.Fill($ProdDataSet)

Set up the procedure to be run

$WhereCmd = New-Object System.Data.SqlClient.SqlCommand

$WhereCmd.CommandText = "dbo.uspGetWhereUsedProductID @StartProductID = @

ProductId, @CheckDate=NULL"

$WhereCmd.Parameters.Add("@ProductID",[System.Data.SqlDbType]"Int")

$WhereCmd.Connection = $SqlConnection

And another one

$BomCmd = New-Object System.Data.SqlClient.SqlCommand

$BomCmd.CommandText = "dbo.uspGetBillOfMaterials @StartProductID = @

ProductId, @CheckDate=NULL"

$BomCmd.Parameters.Add("@ProductID",[System.Data.SqlDbType]"Int")

$BomCmd.Connection = $SqlConnection

Bad Query

$BadQuerycmd = New-Object System.Data.SqlClient.SqlCommand

$BadQuerycmd.CommandText = "dbo.uspProductSize"

$BadQuerycmd.Connection = $SqlConnection

while(1 -ne 0)

{

 $RefID = $row[0]

 $SqlConnection.Open()

 $BadQuerycmd.ExecuteNonQuery() | Out-Null

 $SqlConnection.Close()

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

287

 foreach($row in $ProdDataSet.Tables[0])

 {

 $SqlConnection.Open()

 $BomCmd.Parameters["@ProductID"].Value = $ProductId

 $BomCmd.ExecuteNonQuery() | Out-Null

 $SqlConnection.Close()

 $SqlConnection.Open()

 $ProductId = $row[0]

 $WhereCmd.Parameters["@ProductID"].Value = $ProductId

 $WhereCmd.ExecuteNonQuery() | Out-Null

 $SqlConnection.Close()

 }

}

Note For more information on powershell, check out PowerShell in a Month of
Lunches by Don Jones and Jeffrey hicks (Manning, 2016).

Once you’ve created the trace file, open the Database Engine Tuning Advisor. It

defaults to a file type under the Workload section, so you’ll only have to browse to the

trace file location. As before, you’ll want to select the AdventureWorks2017 database as

the database for workload analysis from the drop-down list. To limit the suggestions, also

select AdventureWorks2012 from the list of databases at the bottom of the screen. Set

the appropriate tuning options and start the analysis. This time, it will take more than a

minute to run (see Figure 10-12).

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

288

The processing runs for about 15 minutes on my machine. Then it generates output,

shown in Figure 10-13.

Figure 10-13. Recommendation for a manual statistic

Figure 10-12. Database tuning engine in progress

After running all the queries through the Database Engine Tuning Advisor, the

advisor came up with a suggestion for a new index for the Product table that would

improve the performance the query. Now I just need to save that to a T-SQL file so that I

can edit the name prior to applying it to my database.

 Tuning from the Procedure Cache
You can take advantage of the query plans that are stored in the cache as a source

for tuning recommendations. The process is simple. There’s a choice on the General

page that lets you choose the plan cache as a source for the tuning effort, as shown in

Figure 10-14.

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

289

All other options behave exactly the same way as previously outlined in this chapter.

The processing time is radically less than when the advisor processes a workload. It has

only the queries in cache to process so, depending on the amount of memory in your

system, may be a short list. The results from processing my cache suggested several

indexes and some individual statistics, as you can see in Figure 10-15.

Figure 10-14. Selecting Plan Cache as the source for the DTA

Figure 10-15. Recommendations from the plan cache

This gives you one more mechanism to try to tune your system in an automated

fashion. But it is limited to the queries that are currently in cache. Depending on the

volatility of your cache (the speed at which plans age out or are replaced by new plans),

this may or may not prove useful.

 Tuning from the Query Store
We’re going to cover the Query Store in Chapter 11. However, we can take advantage

of the information that the Query Store gathers in an attempt to get tuning suggestions

from the Tuning Advisor. You select the Query Store workload from the list shown in

Figure 10-14. Then you have to select a database because the Query Store is turned on

only for individual databases. However, from there, the tuning options and behavior are

the same. From my system there were several more suggestions than what were pulled

from the plan cache, as shown in Figure 10-16.

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

290

The reason there were even more suggestions is because the Query Store contains

more plans than those that are simply in the plan cache or those that are captured during

an individual trace run. That improved data makes the Query Store an excellent resource

to use for tuning recommendations.

 Database Engine Tuning Advisor Limitations
The Database Engine Tuning Advisor recommendations are based on the input

workload. If the input workload is not a true representation of the actual workload, then

the recommended indexes may sometimes have a negative effect on some queries that

are missing in the workload. But most important, in many cases, the Database Engine

Tuning Advisor may not recognize possible tuning opportunities. It has a sophisticated

testing engine, but in some scenarios, its capabilities are limited.

For a production server, you should ensure that the SQL trace includes a complete

representation of the database workload. For most database applications, capturing a

trace for a complete day usually includes most of the queries executed on the database,

although there are exceptions to this such as weekly, monthly, or year-end processing. Be

sure you understand your load and what’s needed to capture it appropriately. A few of the

other considerations/limitations with the Database Engine Tuning Advisor are as follows:

• Trace input using the SQL: BatchCompleted event: As mentioned

earlier, the SQL trace input to the Database Engine Tuning Advisor

must include the SOL:BatchCompleted event; otherwise, the wizard

won’t be able to identify the queries in the workload.

• Query distribution in the workload: In a workload, a query may be

executed multiple times with the same parameter value. Even a small

performance improvement to the most common query can make

a bigger contribution to the performance of the overall workload,

compared to a large improvement in the performance of a query that

is executed only once.

Figure 10-16. Recommendations from the Query Store

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

291

• Index hints: Index hints in a SQL query can prevent the Database

Engine Tuning Advisor from choosing a better execution plan. The

wizard includes all index hints used in a SQL query as part of its

recommendations. Because these indexes may not be optimal for

the table, remove all index hints from queries before submitting the

workload to the wizard, bearing in mind that you need to add them

back in to see whether they do actually improve performance.

Remember that the Tuning Advisor’s recommendations are just that,

recommendations. The suggestions it offers may not work as suggested by the advisor,

and you may already have indexes in place that would serve just as well as the suggested

indexes. Test and validate all suggestions prior to implementation.

 Summary
As you learned in this chapter, the Database Engine Tuning Advisor can be a useful

tool for analyzing the effectiveness of existing indexes and recommending new indexes

for a SQL workload. As the SQL workload changes over time, you can use this tool to

determine which existing indexes are no longer in use and which new indexes are

required to improve performance. It can be a good idea to run the wizard occasionally

just to check that your existing indexes really are the best fit for your current workload.

This assumes you’re not capturing metrics and evaluating them yourself. The Database

Engine Tuning Advisor also provides many useful reports for analyzing the SQL

workload and the effectiveness of its own recommendations. Just remember that the

limitations of the tool prevent it from spotting all tuning opportunities. Also remember

that the suggestions provided by the DTA are only as good as the input you provide

to it. If your database is in bad shape, this tool can give you a quick leg up. If you’re

already monitoring and tuning your queries regularly, you may see no benefit from the

recommendations of the Database Engine Tuning Advisor.

Capturing query metrics and execution plans used to be a lot of work to automate

and maintain. However, capturing that information is vital in your query tuning efforts.

Starting with SQL Server 2016, the Query Store provides a wonderful mechanism for

capturing query metrics and so much more. The next chapter will give you a thorough

understanding of all the functionality that the Query Store offers.

Chapter 10 Database engine tuning aDvisor

www.EBooksWorld.ir

293
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_11

CHAPTER 11

Query Store
The Query Store was introduced originally in Azure SQL Database in 2015 and was first

introduced to SQL Server in version 2016. The Query Store provides three pieces of

functionality that you’re going to want to take advantage of. First, you get query metrics

and execution plans, stored permanently in the database in structures that are easy to

access so that you have good, flexible information about the performance of the queries

on your system. Second, the Query Store creates a mechanism for directly controlling

execution plan behavior in a way we’ve never had before. Finally, the Query Store acts as

a safety and reporting mechanism for database upgrades that will enable you to protect

your systems in new ways.

In this chapter, I cover the following topics:

• How the Query Store works and the information it collects

• Reports and mechanisms exposed through Management Studio for

Query Store behavior

• Plan forcing, a method for controlling which execution plans are used

by SQL Server and Azure SQL Database

• An upgrade method that helps you protect your system behavior

While Extended Events sessions are your go-to measure for precision, for most

systems, the Query Store should be the principal means of monitoring your query

performance.

 Query Store Function and Design
The Query Store is probably the most lightweight mechanism in terms of impact on

the system. It provides the core of what you need to properly understand the query

performance of your system. Plus, because all the work around the Query Store is

done with system views, you get to use T-SQL to work with it, so using it becomes

www.EBooksWorld.ir

294

incredibly easy. Using the DMOs, trace events, and even, to a degree, Extended Events as

mechanisms for monitoring query metrics really can be considered old school with the

introduction of the Query Store.

 Query Store Behavior
The Query Store collects two pieces of information. First, it collects an aggregate of each

query’s behavior on your system. Second, the Query Store captures, by default, every

execution plan created on your system, up to the maximum number of plans per query

(200 by default). You can turn the Query Store on and off on a database-by-database

basis. When it’s on, the Query Store functions as shown in Figure 11-1.

Figure 11-1. Behavior of the Query Store in collecting data

The query optimization process occurs as normal. When a query is submitted to the

system, an execution plan is created (covered in detail in Chapter 15) and stored in the

plan cache (which will be explained in Chapter 16). After these processes are complete,

an asynchronous process runs for the Query Store to capture execution plans from the

plan cache. Initially it writes these plans to a separate piece of memory for temporary

storage. Another asynchronous process will then write these execution plans to the

Query Store in the database. All these are asynchronous processes to ensure that there

is minimal, although not zero, impact on other processes within the system. The only

exception to the flow of this process is plan forcing, which we’ll cover later in the chapter.

Chapter 11 Query Store

www.EBooksWorld.ir

295

The query execution then occurs just as with any other query. Once the query

execution is complete, query runtime metrics, such as the number of reads, the number

of writes, the duration of the query, and wait statistics, are written to a separate memory

space, again, asynchronously. At a later point, another asynchronous process will

write that information to disk. The information that is gathered and written to disk is

aggregated. The default aggregation time is 60-minute intervals.

All the information stored within the Query Store system tables is written

permanently to the database on which the Query Store is enabled. The query metrics

and the execution plans for the queries are kept with the database. They get backed up

with the database, and they get restored with the database. In the event of your system

going offline or failing over, it is possible to lose some of the Query Store information

that was still in memory and not yet written to disk. The default interval for writing to

the disk is 15 minutes. Considering this is aggregate data, that’s not a bad interval for the

possibility of some Query Store data loss for what should not be considered production-

level data.

When you query the information from the Query Store, it combines both the in-

memory data and the data written to disk. You don’t have to do anything extra to access

that information.

Before continuing with the rest of the chapter, if you want to follow along with

some of the code and processing, you’ll need to enable the Query Store on one of the

databases. This command will make it happen:

ALTER DATABASE AdventureWorks2017 SET QUERY_STORE = ON;

To ensure you have queries in the Query Store as you follow along, let’s use this

stored procedure:

CREATE OR ALTER PROC dbo.ProductTransactionHistoryByReference (

 @ReferenceOrderID int

)

AS

BEGIN

 SELECT p.Name,

 p.ProductNumber,

 th.ReferenceOrderID

Chapter 11 Query Store

www.EBooksWorld.ir

296

 FROM Production.Product AS p

 JOIN Production.TransactionHistory AS th

 ON th.ProductID = p.ProductID

 WHERE th.ReferenceOrderID = @ReferenceOrderID;

END

If you execute the stored procedure with these three values, removing it from cache

each time, you’ll actually get three different execution plans.

DECLARE @Planhandle VARBINARY(64);

EXEC dbo.ProductTransactionHistoryByReference @ReferenceOrderID = 0;

SELECT @Planhandle = deps.plan_handle

FROM sys.dm_exec_procedure_stats AS deps

WHERE deps.object_id = OBJECT_ID('dbo.ProductTransactionHistoryByReference');

IF @Planhandle IS NOT NULL

BEGIN

 DBCC FREEPROCCACHE(@Planhandle);

END

EXEC dbo.ProductTransactionHistoryByReference @ReferenceOrderID = 53465;

SELECT @Planhandle = deps.plan_handle

FROM sys.dm_exec_procedure_stats AS deps

WHERE deps.object_id = OBJECT_ID('dbo.ProductTransactionHistoryByReference');

IF @Planhandle IS NOT NULL

BEGIN

 DBCC FREEPROCCACHE(@Planhandle);

END

EXEC dbo.ProductTransactionHistoryByReference @ReferenceOrderID = 3849;

With this, you can be sure that you’ll have information in the Query Store.

Chapter 11 Query Store

www.EBooksWorld.ir

297

 Information Query Store Collects
The Query Store collects a fairly narrow but extremely rich set of data. Figure 11-2

represents the system tables and their relationships.

Figure 11-2. System views of the Query Store

The information stored within the Query Store breaks down into two basic sets.

There is the information about the query itself, including the query text, the execution

plan, and the query context settings. Then there is the runtime information that consists

of the runtime intervals, the wait statistics, and the query runtime statistics. We’ll

approach each section of information separately, starting with the information about the

query.

 Query Information

The core piece of data to the Query Store is the query itself. The query is independent

from, though it may be part of, stored procedures or batches. It comes down to the

fundamental query text and the query_hash value (a hash of the query text) that lets you

identify any given query. This data is then combined with the query plans and the actual

query text. Figure 11-3 shows the basic structure and some of the data.

Chapter 11 Query Store

www.EBooksWorld.ir

298

These are system tables stored in the Primary file group of any database that has the

Query Store enabled. While there are good reports built into the Management Studio

interface, you can write your own queries to access the information from the Query

Store. For example, this query could retrieve all the query statements for a given stored

procedure along with the execution plan:

SELECT qsq.query_id,

 qsq.object_id,

 qsqt.query_sql_text,

 CAST(qsp.query_plan AS XML) AS QueryPlan

FROM sys.query_store_query AS qsq

 JOIN sys.query_store_query_text AS qsqt

 ON qsq.query_text_id = qsqt.query_text_id

 JOIN sys.query_store_plan AS qsp

 ON qsp.query_id = qsq.query_id

WHERE qsq.object_id = OBJECT_ID('dbo.ProductTransactionHistoryByReference');

While each individual query statement is stored within the Query Store, you also

get the object_id, so you can use functions such as OBJECT_ID() as I did to retrieve the

information. Note that I also had to use the CAST command on the query_plan column.

This is because the Query Store rightly stores this column as text, not as XML. The XML

data type in SQL Server has a nesting limit that would require two columns, XML for

those that meet the requirement and NVARCHAR(MAX) for those that don’t. When building

Figure 11-3. Query information stored within the Query Store

Chapter 11 Query Store

www.EBooksWorld.ir

299

the Query Store, they addressed that issue by design. If you want to be able to click the

results, similar to Figure 11-4, to see the execution plan, you’ll need to use CAST as I did

earlier.

Figure 11-4. Information retrieved from the Query Store using T-SQL

In this instance, for a single query, query_id = 75, which is a one-statement stored

procedure, I have three distinct execution plans as identified by the three different plan_

id values. We’ll be looking at these plans a little later.

Another thing to note from the results of the Query Store is how the text is stored.

Since this statement is part of a stored procedure with parameters, the parameter values

that are used in the T-SQL text are defined. This is what the statement looks like within

the Query Store (formatting left as is):

(@ReferenceOrderID int)SELECT p.Name, p.ProductNumber,

 th.ReferenceOrderID FROM Production.Product

AS p JOIN Production.TransactionHistory AS

th ON th.ProductID = p.ProductID WHERE

th.ReferenceOrderID = @ReferenceOrderID

Note the parameter definition at the start of the statement. Just a reminder from

earlier, this is what the actual stored procedure definition looks like:

CREATE OR ALTER PROC dbo.ProductTransactionHistoryByReference (

 @ReferenceOrderID int

)

AS

BEGIN

 SELECT p.Name,

 p.ProductNumber,

 th.ReferenceOrderID

 FROM Production.Product AS p

 JOIN Production.TransactionHistory AS th

Chapter 11 Query Store

www.EBooksWorld.ir

300

 ON th.ProductID = p.ProductID

 WHERE th.ReferenceOrderID = @ReferenceOrderID;

END

The statements within the procedure and statement as stored in the Query Store are

different. This can lead to some issues when attempting to find a particular query within

the Query Store. Let’s look at a different example, shown here:

SELECT a.AddressID,

 a.AddressLine1

FROM Person.Address AS a

WHERE a.AddressID = 72;

This is a batch instead of a stored procedure. Executing this for the first time will

load it into the Query Store using the process outlined earlier. If we run some T-SQL to

retrieve information on this statement as follows, there will be nothing returned:

SELECT qsq.query_id,

 qsq.query_hash,

 qsqt.query_sql_text

FROM sys.query_store_query AS qsq

 JOIN sys.query_store_query_text AS qsqt

 ON qsqt.query_text_id = qsq.query_text_id

WHERE qsqt.query_sql_text = 'SELECT a.AddressID,

 a.AddressLine1

FROM Person.Address AS a

WHERE a.AddressID = 72;';

Because this statement was so simple, the optimizer was able to perform a process

called simple parameterization on it. Luckily, the Query Store has a function for dealing

with automatic parameterization, sys.fn_stmt_sql_handle_from_sql_stmt. That

function allows you to find the information from the query as follows:

SELECT qsq.query_id,

 qsq.query_hash,

 qsqt.query_sql_text,

 qsq.query_parameterization_type

FROM sys.query_store_query_text AS qsqt

Chapter 11 Query Store

www.EBooksWorld.ir

301

 JOIN sys.query_store_query AS qsq

 ON qsq.query_text_id = qsqt.query_text_id

 JOIN sys.fn_stmt_sql_handle_from_sql_stmt(

 'SELECT a.AddressID,

 a.AddressLine1

FROM Person.Address AS a

WHERE a.AddressID = 72;',

 2) AS fsshfss

 ON fsshfss.statement_sql_handle = qsqt.statement_sql_handle;

The formatting and the white space all have to be the same in order for this to work.

The hard-coded value can change, but all the rest has to be the same. Running the query

results in what you see in Figure 11-5.

Figure 11-5. Results showing simple parameterization

You can see in the query_sql_text column where the parameter value for the simple

parameterization has been added to the text just as it was for the stored procedure.

The bad news is sy.fn_stmt_sql_handl_from_sql_stmt currently works only with

automatic parameterization. It won’t help you locate parameterized statements from any

other source. To retrieve that information, you will be forced to use the LIKE command

to search through the text or, as I did earlier, use the object_id for queries in stored

procedures.

 Query Runtime Data

After you retrieve information about the query and the plan, the next thing you’re going

to want is to see runtime metrics. There are two keys to understanding the runtime

metrics. First, the metrics connect back to the plan, not to the query. Since each plan

could behave differently, with different operations against different indexes with

different join types and all the rest, capturing runtime data and wait statistics means

tying back to the plan. Second, the runtime and wait statistics are aggregated, but they

are aggregated by the runtime interval. The default value for the runtime interval is 60

minutes. This means you’ll have a different set of metrics for each plan for each runtime

interval.

Chapter 11 Query Store

www.EBooksWorld.ir

302

All this information is available as shown in Figure 11-6.

Figure 11-6. System tables containing runtime and wait statistics

When you begin to query the runtime metrics, you can easily combine them with

the information on the query itself. You will have to deal with the intervals, and the best

way to deal with them may be to group them and aggregate them, taking averages of

the averages, and so on. That may seem like a pain, but you need to understand why

the information is broken up that way. When you’re looking at query performance,

you need several numbers, such as current performance, hoped-for performance, and

future performance after we make changes. Without these numbers to compare, you

can’t know whether something is slow or whether you have improved it. The same thing

goes for the information in the Query Store. By breaking everything apart into intervals,

you can compare today to yesterday, one moment in time to another. That’s how you

can know that performance truly did degrade (or improve), that it ran faster/slower

yesterday, and so on. If you have only averages and not averages over time, then you

won’t see how the behavior changes over time. With the time intervals, you get some of

the granularity of capturing the metrics yourself using Extended Events combined with

the ease of use of querying the cache.

Chapter 11 Query Store

www.EBooksWorld.ir

303

A query that retrieves performance metrics for a given moment in time can be

written just like this:

DECLARE @CompareTime DATETIME = '2017-11-28 21:37';

SELECT CAST(qsp.query_plan AS XML),

 qsrs.count_executions,

 qsrs.avg_duration,

 qsrs.stdev_duration,

 qsws.wait_category_desc,

 qsws.avg_query_wait_time_ms,

 qsws.stdev_query_wait_time_ms

FROM sys.query_store_plan AS qsp

 JOIN sys.query_store_runtime_stats AS qsrs

 ON qsrs.plan_id = qsp.plan_id

 JOIN sys.query_store_runtime_stats_interval AS qsrsi

 ON qsrsi.runtime_stats_interval_id = qsrs.runtime_stats_interval_id

 JOIN sys.query_store_wait_stats AS qsws

 ON qsws.plan_id = qsrs.plan_id

 AND qsws.execution_type = qsrs.execution_type

 AND qsws.runtime_stats_interval_id = qsrs.runtime_stats_

interval_id

WHERE qsq.object_id = OBJECT_ID('dbo.ProductTransactionHistoryByReference')

 AND @CompareTime BETWEEN qsrsi.start_time

 AND qsrsi.end_time;

Let’s break this down. You can see that we’re starting off with a query plan just like

in the earlier queries, from sys.query_store_plan. Then we’re combining this with

the table that has all the runtime metrics like average duration and standard deviation

of the duration, sys.query_store_runtime_stats. Because I intend to filter based on

a particular time, I want to be sure to join to the sys.query_store_runtime_stats_

interval table where that data is stored. Then, I’m joining to the sys.query_store_

wait_stats. There I have to use the compound key that directly links the waits and the

runtime stats, the plan_id, the execution_type, and the runtime_stats_interval_id.

I’m using a plan_id from earlier in the chapter, and I’m setting the data to return a

particular time range. Figure 11-7 shows the resulting data.

Chapter 11 Query Store

www.EBooksWorld.ir

304

It’s important to understand how the information in query_store_wait_stats

and query_store_runtime_stats gets aggregated. It’s not simply by runtime_stats_

interval_id and plan_id. The execution_type also determines the aggregation

because a given query may have an error or it could be canceled. This affects how the

query behaves and the data is collected so it’s included in the performance metrics to

differentiate one set of behaviors from another. Let’s see this by running the following

script:

SELECT *

FROM sys.columns AS c,

 sys.syscolumns AS s;

That script results in a Cartesian join and takes about two minutes to run on my

system. If we cancel the query while it’s running once and let it complete once, we can

then see what’s in the Query Store.

SELECT qsqt.query_sql_text,

 qsrs.execution_type,

 qsrs.avg_duration

FROM sys.query_store_query AS qsq

 JOIN sys.query_store_query_text AS qsqt

 ON qsqt.query_text_id = qsq.query_text_id

 JOIN sys.query_store_plan AS qsp

 ON qsp.query_id = qsq.query_id

 JOIN sys.query_store_runtime_stats AS qsrs

 ON qsrs.plan_id = qsp.plan_id

WHERE qsqt.query_sql_text like '%FROM sys.columns AS c%';

You can see the results in Figure 11-8.

Figure 11-7. Runtime metrics and wait statistics for one query in one time interval

Figure 11-8. Aborted execution shown as different execution type

Chapter 11 Query Store

www.EBooksWorld.ir

305

You’ll see aborted queries and queries that had errors showing different types. Also,

their durations, waits, and so on, within the runtime metrics are stored separately. To

get a proper set of waits and duration measures from the two respective tables, you must

include the execution_type.

If you were interested in all the query metrics for a given query, you could retrieve

the information from the Query Store with something like this:

WITH QSAggregate

AS (SELECT qsrs.plan_id,

 SUM(qsrs.count_executions) AS CountExecutions,

 AVG(qsrs.avg_duration) AS AvgDuration,

 AVG(qsrs.stdev_duration) AS StdDevDuration,

 qsws.wait_category_desc,

 AVG(qsws.avg_query_wait_time_ms) AS AvgWaitTime,

 AVG(qsws.stdev_query_wait_time_ms) AS StDevWaitTime

 FROM sys.query_store_runtime_stats AS qsrs

 JOIN sys.query_store_wait_stats AS qsws

 ON qsws.plan_id = qsrs.plan_id

 AND qsws.runtime_stats_interval_id = qsrs.runtime_stats_

interval_id

 GROUP BY qsrs.plan_id,

 qsws.wait_category_desc)

SELECT CAST(qsp.query_plan AS XML),

 qsa.*

FROM sys.query_store_plan AS qsp

 JOIN QSAggregate AS qsa

 ON qsa.plan_id = qsp.plan_id

WHERE qsq.object_id = OBJECT_ID('dbo.

ProductTransactionHistoryByReference');

The results of this query will be all the information currently contained within the

Query Store for the plan_id specified. You can combine the information within the Query

Store in any way you need going forward. Next, let’s take control of the Query Store.

Chapter 11 Query Store

www.EBooksWorld.ir

306

 Controlling the Query Store
You’ve already see how to enable the Query Store for a database. To disable the Query

Store, similar actions will work.

ALTER DATABASE AdventureWorks2017 SET QUERY_STORE = OFF;

This command will disable the Query Store, but it won’t remove the Query Store

information. That data collected and managed by the Query Store will persist through

reboots, failovers, backups, and the database going offline. It will even persist beyond

disabling the Query Store. To remove the Query Store data, you have to take direct

control like this:

ALTER DATABASE AdventureWorks2017 SET QUERY_STORE CLEAR;

That will remove all data from the Query Store. You can get more selective if you

want. You can simply remove a given query.

EXEC sys.sp_query_store_remove_query

 @query_id = @queryid;

You can remove a query plan.

EXEC sys.sp_query_store_remove_plan @plan_id = @PlanID;

You can also reset the performance metrics.

EXEC sys.sp_query_store_reset_exec_stats

 @plan_id = @PlanID;

All these simply require that you track down the plan or query in which you’re

interested in taking control of, and then you can do so. You may also find that you want

to preserve the data in the Query Store that has been written to cache but not yet written

to disk. You can force a flush of the cache.

EXEC sys.sp_query_store_flush_db;

Finally, you can change the default settings within the Query Store. First, it’s a good

idea to know where to go to get that information. You retrieve the current settings on the

Query Store on a per-database basis by running the following:

SELECT * FROM sys.database_query_store_options AS dqso;

Chapter 11 Query Store

www.EBooksWorld.ir

307

As with so many other aspects of the Query Store, these settings are controlled on a

per-database level. This enables you to, for example, change the statistics aggregation

time interval on one database and not another. Controlling the various aspects of the

Query Store settings is simply a matter of running this query:

ALTER DATABASE AdventureWorks2017 SET QUERY_STORE (MAX_STORAGE_SIZE_MB = 200);

That command changes the default storage size of the Query Store from 100MB to

200MB, allowing for more space in the database that was altered. When making these

changes, no reboots of the server are required. You also won’t affect the behavior of

plans in the plan cache or any other part of the query processing within the database

you are modifying. The default settings should be adequate for most people in most

situations. Depending on your circumstances, you may want to modify the manner in

which the Query Store behaves. Be sure that you monitor your servers when you make

these changes to ensure that you haven’t negatively impacted the server.

The only setting that I suggest you consider changing out of the box is the Query

Store Capture Mode. By default, it captures all queries and all query plans, regardless of

how often they are called, how long they run, or any other settings. For many of us, this

behavior is adequate. However, if you have changed your system settings to use Optimize

for Ad Hoc, you’ve done this because you get a lot of ad hoc queries and you’re trying

to manage memory use (more on this in Chapter 16). That setting means you’re less

interested in capturing every single plan. You may also be in the situation where because

of the volume of transactions, you simply don’t want to capture every single query or

plan. These situations may lead you to change the Query Store Capture Mode setting.

The other options are None and Auto. None will stop the Query Store from capturing

queries and metrics but still allow for plan forcing if you set that for any queries (you’ll

find details on plan forcing later in this chapter). Auto will only capture queries that

run for a certain length of time, consume a certain amount of resources, or get called

a certain number of times. These values are all subject to change from Microsoft and

are controlled internally within the Query Store. You can’t control the values here, only

whether they get used. On most systems, just to help reduce the noise and overhead,

I recommend changing from All to Auto. However, this is absolutely an individual

decision, and your situation may dictate otherwise.

You have the ability to take control of the Query Store using the SQL Server

Management Studio GUI as well. Right-click any database in the Object Explorer window

and from the context menu select Properties. When the Properties window opens, you

can click the pane for Query Store and should see something similar to Figure 11-9.

Chapter 11 Query Store

www.EBooksWorld.ir

308

Immediately you can see some of the settings that we’ve already covered in our

exploration of the Query Store within this chapter. You also get to see just how much data

the Query Store is using and how much room is left in the allocated space. As with using

the T-SQL command shown earlier, any changes made here are immediately reflected in

the Query Store behavior and will not require any sort of reboot of the system.

Figure 11-9. SSMS GUI for controlling the Query Store

Chapter 11 Query Store

www.EBooksWorld.ir

309

 Query Store Reporting
For some of your work, using T-SQL to take direct control over the Query Store and using

the system tables to retrieve data about the Query Store is going to be the preferred

approach. However, for a healthy percentage of the work, we can take advantage of the

built-in reports and their behavior when working with the Query Store.

To see these reports, you just have to expand the database within the Object Explorer

window in Management Studio. For any database with the Query Store enabled, there

will be a new folder with the reports visible, as shown in Figure 11-10.

Figure 11-10. Query Store reports within the AdventureWorks2017 database

The reports are as follows:

• Regressed Queries: You’ll see queries that have changed their

performance in a negative way over time.

• Overall Resource Consumption: This report shows the resource

consumption by various queries across a defined time frame. The

default is the last month.

• Top Resource Consuming Queries: Here you find the queries that are

using the most resources, without regard to a timeframe.

• Query With Forced Plans: Any queries that you have defined to have a

forced plan will be visible in this report.

Chapter 11 Query Store

www.EBooksWorld.ir

310

• Queries With High Variation: This report displays queries that have

a high degree of variation in their runtime statistics, frequently with

more than one execution plan.

• Tracked Queries: With the Query Store, you can define a query as

being of interest and instead of having to attempt to track it down in

the other reports, you can mark the query and find it here.

Each of these reports is unique, and each one is useful for differing purposes, but

we don’t have the time and space to explore them all in detail. Instead, I’ll focus on the

behavior of one, Top Resource Consuming Queries, because it generally represents the

behavior of all the others and because it’s one that you’re likely to use fairly frequently.

Opening the report, you’ll see something similar to Figure 11-11.

Figure 11-11. Top 25 Resource Consumers report for the Query Store

Chapter 11 Query Store

www.EBooksWorld.ir

311

There are three windows in the report. The first in the upper left shows queries,

aggregated by the query_id value. The second window on the right shows the various

query behaviors over time as well as the different plans for those queries. You can see

that the number-one query, highlighted in the first pane, has three different execution

plans. Clicking any one of those plans opens that plan in the third window on the bottom

of the screen.

You’re not limited to the default behavior. The first window, showing the queries

aggregated by Duration by default, drives the other two. You have a drop-down at the top

of the screen that gives you 13 choices currently, as shown in Figure 11-12.

Figure 11-12. Different aggregations for the Top 25 Resource Consumers report

Selecting any one of them will change the values being aggregated for the report.

You can also change how the report is aggregated using another drop-down. This list

includes, average, minimum, maximum, total, and standard deviation. Additional

functionality for the first window includes the ability to change to a grid format, mark a

query for tracking later (in the Tracked Queries report), refresh the report, and look at

the query text. All this is useful in attempting to identify the query to spend time with

when you are working to determine performance issues.

Chapter 11 Query Store

www.EBooksWorld.ir

312

The next window shows the performance metrics from those selected in the first

window. Each dot represents both a moment in time and a particular execution plan.

The information in Figure 11-13 illustrates how query performance varied from 8:45 a.m.

to 9:45 a.m. and how the query’s performance and execution plans changed over that

time frame.

Figure 11-13. Different performance behaviors and different execution plans for
one query

The size of each of the dots corresponds to the number of executions of the given

plan within the given time frame. If you hover over any given dot, it will show you

additional information about that moment in time. Figure 11-14 shows the information

about the dot at the top of the screen, plan_id = 76, at the 9:45 a.m. time frame.

Chapter 11 Query Store

www.EBooksWorld.ir

313

You can see the number of executions and other metrics about that particular plan

for the query in question. Whichever dot you click, you’ll see the execution plan for that

dot in the final window. The execution plans shown function like any other graphical

plan within Management Studio, so I won’t detail the behavior here. One additional

piece of functionality that is on display here is the ability to force a plan. You’ll see two

buttons in the upper right of the execution plan window, as shown in Figure 11-15.

Figure 11-14. Details of the information on display for a given plan

Figure 11-15. Forcing and unforcing plans from the reports

You have the ability to force, or unforce, a plan directly from the report. I’ll cover plan

forcing in detail in the next section.

 Plan Forcing
While the majority of the functionality around the Query Store is all about collecting and

observing the behavior of the queries and the query plans, one piece of functionality

changes all that, plan forcing. Plan forcing is where you mark a particular plan as being

the plan you would like SQL Server to use. Since everything within the Query Store is

Chapter 11 Query Store

www.EBooksWorld.ir

314

written to the database and so survives reboots, backups, and so on, this means you can

ensure that a given plan will always be used. This process does change somewhat how

the Query Store interacts with the optimization process and the plan cache, as illustrated

in Figure 11-16.

Figure 11-16. The query optimization process with plan forcing added

What happens now is that if a plan has been marked as being forced, when the

optimizer completes its process, before it stores the plan in cache for use with the query,

it first checks with the plans in the Query Store. If this query has a forced plan, that plan

will always be used instead. The only exception to this is if something has changed

internally in the system to make that plan an invalid plan for the query.

The function of plan forcing is actually quite simple. You have to supply a plan_id

and a query_id, and you can force a plan. For example, my system has three possible

plans for the query whose syntax, query hash, and query settings match the query_id

value of 75. Note, while I’m using the query_id to mark a query, that’s an artificial key.

The identifying factors of a query are the text, the hash, and the context settings. The

query to force a plan is then extremely simple.

EXEC sys.sp_query_store_force_plan 75,82;

Chapter 11 Query Store

www.EBooksWorld.ir

315

That is all that is required. From this point forward, no matter if a query is

recompiled or removed from cache, when the optimization process is complete, the plan

that corresponds to the plan_id of 82 will be used. With this in place, we can look at the

Queries with Forced Plans report to see what gets displayed, as shown in Figure 11-17.

Figure 11-17. Queries with Forced Plans report

You can see that while overall this report is the same as the Top Resource Consuming

Queries report, there are differences. The listing of queries in the first window is just that,

a listing of the queries. The second window corresponds almost exactly with the previous

window on display in Figures 11-11 and 11-13. However, the difference is, the plan that

has been marked as being forced has a check mark in place. The final window is the

same with one minor difference. At the top, instead of Force Plan being enabled, Unforce

Plan is. You can easily unforce the plan from here by clicking that button. You can also

unforce a plan with a single command.

EXEC sys.sp_query_store_unforce_plan 214,248;

Just as with clicking the button, this will stop the plan forcing. From this point

forward, the optimization process goes back to normal. I’m going to save a full

demonstration of plan forcing until we get to Chapter 17 when we talk about parameter

Chapter 11 Query Store

www.EBooksWorld.ir

316

sniffing. Suffice to say that plan forcing becomes extremely useful when dealing with

bad parameter sniffing. It also is handy when dealing with regressions, situations where

the changes to SQL Server cause previously well-behaving queries to suddenly generate

badly performing execution plans. This most often occurs during an upgrade when the

compatibility mode gets changed without testing.

 Query Store for Upgrades
While general query performance monitoring and tuning may be a day-to-day common

use for the Query Store, one of the most powerful purposes behind the tool is its use as a

safety net for upgrading SQL Server.

Let’s assume you are planning to migrate from SQL Server 2012 to SQL Server

2017. Traditionally you would upgrade your database on a test instance somewhere

and then run a battery of tests to ensure that things are going to work well. If you catch

and document all the issues, great. Unfortunately, it might require some code rewrites

because of some of the changes to the optimizer or the cardinality estimator. That

could cause delays to the upgrade, or the business might even decide to try to avoid it

altogether (a frequent, if poor, choice). That assumes you catch the issues. It’s entirely

possible to miss that a particular query has suddenly started behaving poorly because of

changes in estimated row counts or something else.

This is where the Query Store becomes your safety net for upgrades. First, you should

do all the testing and attempt to address issues using standard methods. That shouldn’t

change. However, the Query Store adds additional functionality to the standard

methods. Here are the steps to follow:

 1. Restore your database to the new SQL Server instance or upgrade

your instance. This assumes the production machine, but you can

do this with a test machine as well.

 2. Leave the database in the older compatibility mode. Do not

change it to the new mode because you will enable both the new

optimizer and the new cardinality estimator before you capture

data.

 3. Enable the Query Store. It can gather metrics running in the old

compatibility mode.

Chapter 11 Query Store

www.EBooksWorld.ir

317

 4. Run your tests or run your system for a period of time that ensures

you have covered the majority of queries within the system. This

time will vary depending on your needs.

 5. Change the compatibility mode.

 6. Run the report Regressed Queries. This report will find queries

that have suddenly started running slower than they had

previously.

 7. Investigate those queries. If it’s obvious that the query plan has

changed and is the cause of the change in performance, then pick

a plan from prior to the change and use plan forcing to make that

plan the one used by SQL Server.

 8. Where necessary, take the time to rewrite the queries or

restructure the system to ensure that the query can, on its own,

compile a plan that performs well with the system.

This approach won’t prevent all problems. You still must test your system.

However, using the Query Store will provide you with mechanisms for dealing with

internal changes within SQL Server that affect your query plans and subsequently your

performance. You can use similar processes for applying a Cumulative Update or Service

Pack too. You can also deal with regressions by using the Database Scoped Configuration

settings, available in SQL Server 2016 SP1 and up, to enable the LEGACY_CARDINALITY_

ESTIMATION, or you can add that as a hint. These are options in addition to, or instead of,

using plan forcing. You can also just revert to the old compatibility mode, but that takes

away a lot of functionality.

 Summary
The Query Store adds to your abilities to identify poorly performing queries. While

the functionality of the Query Store is wonderful, it’s not going to completely replace

any of the tools most people are already comfortable with using. It’s not as granular

as Extended Events. It doesn’t have some of the immediacy of querying the plan

cache. That said, the Query Store adds to both these methods by including additional

information such as the standard deviation for values and holding all execution plans,

even the ones that have been removed or replaced in cache. Further, the Query Store

Chapter 11 Query Store

www.EBooksWorld.ir

318

adds the ability to perform extremely simple plan forcing that can help not only with

issues around parameters or other behaviors but with plan regressions caused by

upgrades from Microsoft. All of this combines to make the Query Store an incredibly

useful addition to the query tuning toolkit.

Frequently, you will rely on nonclustered indexes to improve the performance of a

SQL workload. This assumes you’ve already assigned a clustered index to your tables.

Because the performance of a nonclustered index is highly dependent on the cost of

the bookmark lookup associated with the nonclustered index, you will see in the next

chapter how to analyze and resolve a lookup.

Chapter 11 Query Store

www.EBooksWorld.ir

319
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_12

CHAPTER 12

Key Lookups and Solutions
To maximize the benefit from nonclustered indexes, you must minimize the cost of

the data retrieval as much as possible. A major overhead associated with nonclustered

indexes is the cost of excessive lookups, formerly known as bookmark lookups, which

are a mechanism to navigate from a nonclustered index row to the corresponding data

row in the clustered index or the heap. Therefore, it makes sense to look at the cause of

lookups and to evaluate how to avoid this cost.

In this chapter, I cover the following topics:

• The purpose of lookups

• The drawbacks of using lookups

• Analysis of the cause of lookups

• Techniques to resolve lookups

 Purpose of Lookups
When an application requests information through a query, the optimizer can use a

nonclustered index, if available, on the columns in the WHERE, JOIN, or HAVING clauses to

navigate to the data. Of course, it could also scan a heap or a clustered index, but we’re

assuming here that the predicate values and the key values of the nonclustered index are

lined up. If the query refers to columns that are not part of the nonclustered index (either

the key columns or the INCLUDE list) being used to retrieve the data, then navigation is

required from the index row to the corresponding data row in the table to access these

remaining columns.

www.EBooksWorld.ir

320

For example, in the following SELECT statement, if the nonclustered index used

by the optimizer doesn’t include all the columns, navigation will be required from a

nonclustered index row to the data row in the clustered index or heap to retrieve the

value of those columns.

SELECT p.Name,

 AVG(sod.LineTotal)

FROM Sales.SalesOrderDetail AS sod

 JOIN Production.Product AS p

 ON sod.ProductID = p.ProductID

WHERE sod.ProductID = 776

GROUP BY sod.CarrierTrackingNumber,

 p.Name

HAVING MAX(sod.OrderQty) > 1

ORDER BY MIN(sod.LineTotal);

The SalesOrderDetail table has a nonclustered index on the ProductID column.

The optimizer can use the index to filter the rows from the table. The table has a

clustered index on SalesOrderID and SalesOrderDetailID, so they would be included

in the nonclustered index. But since they’re not referenced in the query, they won’t help

the query at all. The other columns (LineTotal, CarrierTrackingNumber, OrderQty,

and LineTotal) referred to by the query are not available in the nonclustered index. To

fetch the values for those columns, navigation from the nonclustered index row to the

corresponding data row through the clustered index is required, and this operation is a

key lookup. You can see this in action in Figure 12-1.

Figure 12-1. Key lookup in part of a more complicated execution plan

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

321

To better understand how a nonclustered index can cause a lookup, consider the

following SELECT statement, which requests only a few rows but all columns because of

the wildcard * from the SalesOrderDetail table by using a filter criterion on column

ProductID:

SELECT *

FROM Sales.SalesOrderDetail AS sod

WHERE sod.ProductID = 776 ;

The optimizer evaluates the WHERE clause and finds that the column ProductID

included in the WHERE clause has a nonclustered index on it that filters the number of

rows down. Since only a few rows, 228, are requested, retrieving the data through the

nonclustered index will be cheaper than scanning the clustered index (containing

more than 120,000 rows) to identify the matching rows. The nonclustered index on

the column ProductID will help identify the matching rows quickly. The nonclustered

index includes the column ProductID and the clustered index columns SalesOrderID

and SalesOrderDetailID; all the other columns being requested are not included.

Therefore, as you may have guessed, to retrieve the rest of the columns while using the

nonclustered index, you require a lookup.

This is shown in the following Extended Events metrics and in the execution plan in

Figure 12-2. Look for the Key Lookup (Clustered) operator. That is the lookup in action.

Duration: 176ms

Reads: 755

Figure 12-2. Execution plan with a bookmark lookup

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

322

 Drawbacks of Lookups
A lookup requires data page access in addition to index page access. Accessing two sets

of pages increases the number of logical reads for the query. Additionally, if the pages

are not available in memory, a lookup will probably require a random (or nonsequential)

I/O operation on the disk to jump from the index page to the data page as well as

requiring the necessary CPU power to marshal this data and perform the necessary

operations. This is because, for a large table, the index page and the corresponding data

page usually won’t be directly next to each other on the disk.

The increased logical reads and costly physical reads (if required) make the data

retrieval operation of the lookup quite costly. In addition, you’ll have processing for

combining the data retrieved from the index with the data retrieved through the lookup

operation, usually through one of the JOIN operators. The cost factor of lookups is the

reason that nonclustered indexes are better suited for queries that return a small set of

rows from the table. As the number of rows retrieved by a query increases, the overhead

cost of a lookup becomes unacceptable. Also, if the optimizer has poor statistics and

underestimates the number of rows being returned, lookups quickly become much more

expensive than a scan.

To understand how a lookup makes a nonclustered index ineffective as the number

of rows retrieved increases, let’s look at a different example. The query that produced the

execution plan in Figure 12-2 returned just a few rows from the SalesOrderDetail table.

Leaving the query the same but changing the filter to a different value will, of course,

change the number of rows returned. If you change the parameter value to look like this:

SELECT *

FROM Sales.SalesOrderDetail AS sod

WHERE sod.ProductID = 793;

then running the query returns more than 700 rows, with different performance metrics

and a completely different execution plan (Figure 12-3).

Duration: 195ms

Reads: 1,262

Figure 12-3. A different execution plan for a query returning more rows

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

323

To determine how costly it will be to use the nonclustered index, consider the

number of logical reads (1,262) performed by the query during the table scan. If you

force the optimizer to use the nonclustered index by using an index hint, like this:

SELECT *

FROM Sales.SalesOrderDetail AS sod WITH (INDEX (IX_SalesOrderDetail_

ProductID))

WHERE sod.ProductID = 793 ;

then the number of logical reads increases from 1,262 to 2,292.

Duration: 1,114ms

Reads: 2,292

Figure 12-4 shows the corresponding execution plan.

Figure 12-4. Execution plan for fetching more rows with an index hint

To benefit from nonclustered indexes, queries should request a relatively well-

defined set of data. Application design plays an important role for the requirements that

handle large result sets. For example, search engines on the Web mostly return a limited

number of articles at a time, even if the search criterion returns thousands of matching

articles. If the queries request a large number of rows, then the increased overhead cost

of a lookup can make the nonclustered index unsuitable; subsequently, you have to

consider the possibilities of avoiding the lookup operation.

 Analyzing the Cause of a Lookup
Since a lookup can be a costly operation, you should analyze what causes a query plan to

choose a lookup step in an execution plan. You may find that you are able to avoid the lookup

by including the missing columns in the nonclustered index key or as INCLUDE columns at

the index page level and thereby avoid the cost overhead associated with the lookup.

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

324

To learn how to identify the columns not included in the nonclustered index,

consider the following query, which pulls information from the HumanResources.

Employee table based on NationalIDNumber:

SELECT NationalIDNumber,

 JobTitle,

 HireDate

FROM HumanResources.Employee AS e

WHERE e.NationalIDNumber = '693168613';

This produces the following performance metrics and execution plan (see Figure 12- 5):

Duration: 169 mc

Reads: 4

Figure 12-5. Execution plan with a lookup

As shown in the execution plan, you have a key lookup. The SELECT statement

refers to columns NationalIDNumber, JobTitle, and HireDate. The nonclustered

index on column NationalIDNumber doesn’t provide values for columns JobTitle and

HireDate, so a lookup operation was required to retrieve those columns from the data

storage location. It’s a Key Lookup because it’s retrieving the data through the use of the

clustered key stored with the nonclustered index. If the table were a heap, it would be

an RID lookup. However, in the real world, it usually won’t be this easy to identify all the

columns used by a query. Remember that a lookup operation will be caused if all the

columns referred to in any part of the query (not just the selection list) aren’t part of the

nonclustered index used.

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

325

In the case of a complex query based on views and user-defined functions, it may

be too difficult to find all the columns referred to by the query. As a result, you need a

standard mechanism to find the columns returned by the lookup that are not included in

the nonclustered index.

If you look at the properties on the Key Lookup (Clustered) operation, you can see

the output list for the operation. This shows you the columns being output by the lookup.

To get the list of output columns quickly and easily and be able to copy them, right-click

the operator, which in this case is Key Lookup (Clustered). Then select the Properties

menu item. Scroll down to the Output List property in the Properties window that opens

(Figure 12-6). This property has an expansion arrow, which allows you to expand the

column list, and has further expansion arrows next to each column, which allow you to

expand the properties of the column.

Figure 12-6. Key lookup Properties window

To get the list of columns directly from the Properties window, click the ellipsis on

the right side of the Output List property. This opens the output list in a text window

from which you can copy the data for use when modifying your index (Figure 12-7).

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

326

Using that method does retrieve the data, but as you can see when comparing the

information between Figures 12-6 and 12-7, there’s a lot more information available if

you drill in to the properties.

 Resolving Lookups
Since the relative cost of a lookup can be high, you should, wherever possible, try to get

rid of lookup operations. In the preceding section, you needed to obtain the values of

columns JobTitle and HireDate without navigating from the index row to the data row.

You can do this in three different ways, as explained in the following sections.

 Using a Clustered Index
For a clustered index, the leaf page of the index is the same as the data page of the table.

Therefore, when reading the values of the clustered index key columns, the database

engine can also read the values of other columns without any navigation from the index

row. In the previous example, if you convert the nonclustered index to a clustered index

for a particular row, SQL Server can retrieve values of all the columns from the same page.

Simply saying that you want to convert the nonclustered index to a clustered index

is easy to do. However, in this case, and in most cases you’re likely to encounter, it isn’t

possible to do so since the table already has a clustered index in place. The clustered

index on this table also happens to be the primary key. You would have to drop all

foreign key constraints, drop and re-create the primary key as a nonclustered index, and

then re-create the index against NationallDNumber. Not only do you need to take into

Figure 12-7. The required columns that were not available in the nonclustered index

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

327

account the work involved, but you may seriously affect other queries that are dependent

on the existing clustered index.

Note remember that a table can have only one clustered index.

 Using a Covering Index
In Chapter 8, you learned that a covering index is like a pseudoclustered index for the

queries since it can return results without recourse to the table data. So, you can also use

a covering index to avoid a lookup.

To understand how you can use a covering index to avoid a lookup, examine the

query against the HumanResources.Employee table again.

SELECT NationalIDNumber,

 JobTitle,

 HireDate

FROM HumanResources.Employee AS e

WHERE e.NationalIDNumber = '693168613';

To avoid this bookmark, you can add the columns referred to in the query, JobTitle

and HireDate, directly to the nonclustered index key. This will make the nonclustered

index a covering index for this query because all columns can be retrieved from the

index without having to go to the heap or clustered index.

CREATE UNIQUE NONCLUSTERED INDEX AK_Employee_NationalIDNumber

ON HumanResources.Employee

(

 NationalIDNumber ASC,

 JobTitle ASC,

 HireDate ASC

)

WITH DROP_EXISTING;

Now when the query gets run, you’ll see the following metrics and a different

execution plan (Figure 12-8):

Duration: 164mc

Reads: 2

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

328

There are a couple of caveats to creating a covering index by changing the key,

however. If you add too many columns to a nonclustered index, it becomes wider. The

index maintenance cost associated with the action queries can increase, as discussed in

Chapter 8. Therefore, evaluate closely whether adding a key value will provide benefits

to the general use of the index. If a key value is not going to be used for searches within

the index, then it doesn’t make sense to add it to the key. Also evaluate the number

of columns (for size and data type) to be added to the nonclustered index key. If the

total width of the additional columns is not too large (best determined through testing

and measuring the resultant index size), then those columns can be added in the

nonclustered index key to be used as a covering index. Also, if you add columns to the

index key, depending on the index, of course, you may be affecting other queries in a

negative fashion. They may have expected to see the index key columns in a particular

order or may not refer to some of the columns in the key, causing the index to not be

used by the optimizer. Modify the index by adding keys only if it makes sense based on

these evaluations, especially because you have an alternative to modifying the key.

Another way to arrive at the covering index, without reshaping the index by adding

key columns, is to use the INCLUDE columns. Change the index to look like this:

CREATE UNIQUE NONCLUSTERED INDEX AK_Employee_NationalIDNumber

ON HumanResources.Employee

(

 NationalIDNumber ASC

)

INCLUDE

(

 JobTitle,

 HireDate

)

WITH DROP_EXISTING;

Figure 12-8. Execution plan with a covering index

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

329

Now when the query is run, you get the following metrics and execution plan

(Figure 12-9):

Duration: 152mc

Reads: 2

Figure 12-9. Execution plan with INCLUDE columns

The size of the index is, in this case, just a little bit smaller because of how the

INCLUDE stores data on only the leaf pages instead of on every page. The index is still

covering exactly as it was in the execution plan displayed in Figure 12-8. Because the

data is stored at the leaf level of the index, when the index is used to retrieve the key

values, the rest of the columns in the INCLUDE statement are available for use, almost like

they were part of the key. Refer to Figure 12-10.

Figure 12-10. Index storage using the INCLUDE keyword

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

330

Another way to get a covering index is to take advantage of the structures within

SQL Server. If the previous query were modified slightly to retrieve a different set of data

instead of a particular NationallDNumber and its associated JobTitle and HireDate,

this time the query would retrieve the NationallDNumber as an alternate key and the

BusinessEntitylD, the primary key for the table, over a range of values.

SELECT NationalIDNumber,

 BusinessEntityID

FROM HumanResources.Employee AS e

WHERE e.NationalIDNumber BETWEEN '693168613'

 AND '7000000000';

The original index, which we’ll re-create now, on the table doesn’t reference the

BusinessEntitylD column in any way.

CREATE UNIQUE NONCLUSTERED INDEX AK_Employee_NationalIDNumber

ON HumanResources.Employee

(

 NationalIDNumber ASC

)

WITH DROP_EXISTING;

When the query is run against the table, you can see the results shown in Figure 12- 11.

Figure 12-11. Unexpected covering index

How did the optimizer arrive at a covering index for this query based on the index

provided? It’s aware that on a table with a clustered index the clustered index key, in

this case the BusinessEntitylD column, is stored as a pointer to the data with the

nonclustered index. That means any query that incorporates a clustered index and a set

of columns from a nonclustered index as part of the filtering mechanisms of the query,

the WHERE clause, or the join criteria can take advantage of the covering index.

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

331

To see how these three different indexes are reflected in storage, you can look at

the statistics of the indexes themselves using DBCC SHOWSTATISTICS. When you run the

following query against the index, you can see the output in Figure 12-12:

DBCC SHOW_STATISTICS('HumanResources.Employee', AK_Employee_NationalIDNumber);

Figure 12-12. DBCC SHOW_STATISTICS output for original index

As you can see in the density graph of the statistics, the NationalIDNumber is listed

first. The primary key for the table is included as part of the index, so a second row that

includes the BusinessEntityID column is also part of the density graph. It makes the

average length of the key about 22 bytes. This is how indexes that refer to the primary key

values as well as the index key values can function as covering indexes.

If you run the same DBCC SHOW_STATISTICS on the first alternate index you tried,

with all three columns included in the key, like so, you will see a different set of statistics

(Figure 12-13):

CREATE UNIQUE NONCLUSTERED INDEX AK_Employee_NationalIDNumber

ON HumanResources.Employee

(

 NationalIDNumber ASC,

 JobTitle ASC,

 HireDate ASC

)

WITH DROP_EXISTING;

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

332

You now see the columns added up, all three of the index key columns, and finally

the primary key added on. Instead of a width of 22 bytes, it’s grown to 74. That reflects the

addition of the JobTitle column, a VARCHAR(50) as well as the 6-byte-wide datetime field.

Finally, looking at the statistics for the second alternate index, with the included

columns you’ll see the output in Figure 12-14.

CREATE UNIQUE NONCLUSTERED INDEX AK_Employee_NationalIDNumber

ON HumanResources.Employee

(

 NationalIDNumber ASC

)

INCLUDE

(

 JobTitle,

 HireDate

)

WITH DROP_EXISTING;

Figure 12-13. DBCC SHOW_STATISTICS output for a wide key covering index

Figure 12-14. DBCC SHOW_STATISTICS output for a covering index using
INCLUDE

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

333

Now the key width is back to the original size because the columns in the INCLUDE

statement are stored not with the key but at the leaf level of the index.

There is more interesting information to be gleaned from the data stored about

statistics, but I’ll cover that in Chapter 13.

 Using an Index Join
If the covering index becomes very wide, then you might consider a narrower index.

As explained in Chapter 9, the optimizer can, if circumstances are just right, use an index

intersection between two or more indexes to cover a query fully. Since an index join

requires access to more than one index, it has to perform logical reads on all the indexes

used in the index join. Consequently, it requires a higher number of logical reads than

the covering index. But since the multiple narrow indexes used for the index join can

serve more queries than a wide covering index (as explained in Chapter 9), you can

certainly test your queries with multiple, narrow indexes to see whether you can get an

index join to avoid lookups.

Note it is possible to get an index join, but they can be somewhat difficult to get
the optimizer to recognize. you do need accurate statistics to assist the optimizer in
this choice.

To better understand how an index join can be used to avoid lookups, run the

following query against the PurchaseOrderHeader table to retrieve a PurchaseOrderID

for a particular vendor on a particular date:

SELECT poh.PurchaseOrderID,

 poh.VendorID,

 poh.OrderDate

FROM Purchasing.PurchaseOrderHeader AS poh

WHERE VendorID = 1636

 AND poh.OrderDate = '2014/6/24';

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

334

When run, this query results in a Key Lookup operation (Figure 12-15) and the

following I/O:

Duration: 251 mc

Reads: 10

Figure 12-15. A Key Lookup operation

The lookup is caused since all the columns referred to by the SELECT statement and

WHERE clause are not included in the nonclustered index on column VendorID. Using the

nonclustered index is still better than not using it since that would require a scan on the

table (in this case, a clustered index scan) with a larger number of logical reads.

To avoid the lookup, you can consider a covering index on the column OrderDate, as

explained in the previous section. But in addition to the covering index solution, you can

consider an index join. As you learned, an index join requires narrower indexes than the

covering index and thereby provides the following two benefits:

• Multiple narrow indexes can serve a larger number of queries than

the wide covering index.

• Narrow indexes require less maintenance overhead than the wide

covering index.

To avoid the lookup using an index join, create a narrow nonclustered index on

column OrderDate that is not included in the existing nonclustered index.

CREATE NONCLUSTERED INDEX IX_TEST

ON Purchasing.PurchaseOrderHeader

(

 OrderDate

);

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

335

If you run the SELECT statement again, the following output and the execution plan

shown in Figure 12-16 are returned:

Duration: 219 mc

Reads: 4

Figure 12-16. Execution plan without a lookup

From the preceding execution plan, you can see that the optimizer used the

nonclustered index, IX_PurchaseOrder_VendorID, on column VendorlD and the new

nonclustered index, IX_TEST, on column OrderlD to serve the query fully without hitting

the storage location of the rest of the data. This index join operation avoided the lookup

and consequently decreased the number of logical reads from 10 to 4.

It is true that a covering index on columns VendorlD and OrderlD could reduce

the number of logical reads further. But it may not always be possible to use covering

indexes since they can be wide and have their associated overhead. In such cases, an

index join can be a good alternative.

 Summary
As demonstrated in this chapter, the lookup step associated with a nonclustered index

can make data retrieval through a nonclustered index very costly. The SQL Server

optimizer takes this into account when generating an execution plan, and if it finds

the overhead cost of using a nonclustered index to be high, it discards the index and

performs a table scan (or a clustered index scan if the table is stored as a clustered

index). Therefore, to improve the effectiveness of a nonclustered index, it makes sense

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

336

to analyze the cause of a lookup and consider whether you can avoid it completely by

adding fields to the index key or to the INCLUDE column (or index join) and creating a

covering index.

Up to this point, you have concentrated on indexing techniques and presumed

that the SQL Server optimizer would be able to determine the effectiveness of an index

for a query. In the next chapter, you will see the importance of statistics in helping the

optimizer determine the effectiveness of an index.

Chapter 12 Key LooKups and soLutions

www.EBooksWorld.ir

337
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_13

CHAPTER 13

Statistics, Data Distribution,
and Cardinality
By now, you should have a good understanding of the importance of indexes. But, the

index alone is not what the optimizer uses to determine how it’s going to access data.

It also takes advantage of enforced referential constraint and other table structures.

Finally, and possibly most important, the optimizer must have information about the

data that defines an index or a column. That information is referred to as a statistic.

Statistics define both the distribution of data and the uniqueness or selectivity of the

data. Statistics are maintained both on indexes and on columns within the system. You

can even define statistics manually yourself.

In this chapter, you’ll learn the importance of statistics in query optimization.

Specifically, I will cover the following topics:

• The role of statistics in query optimization

• The importance of statistics on columns with indexes

• The importance of statistics on nonindexed columns used in join and

filter criteria

• Analysis of single-column and multicolumn statistics, including the

computation of selectivity of a column for indexing

• Statistics maintenance

• Effective evaluation of statistics used in query execution

www.EBooksWorld.ir

338

 The Role of Statistics in Query Optimization
SQL Server’s query optimizer is a cost-based optimizer; it decides on the best data access

mechanism and join strategy by identifying the selectivity, how unique the data is, and

which columns are used in filtering the data (meaning via the WHERE, HAVING, or JOIN

clause). Statistics are automatically created with an index, but they also exist on columns

without an index that are used as part of a predicate. As you learned in Chapter 7, a

nonclustered index is a great way to retrieve data that is covered by the index, whereas

with queries that need columns outside the key, a clustered index can work better. With

a large result set, going to the clustered index or table directly is usually more beneficial.

Up-to-date information on data distribution in the columns referenced as predicates

helps the optimizer determine the query strategy to use. In SQL Server, this information

is maintained in the form of statistics, which are essential for the cost-based optimizer

to create an effective query execution plan. Through the statistics, the optimizer can

make reasonably accurate estimates about how long it will take to return a result set

or an intermediate result set and therefore determine the most effective operations to

use to efficiently retrieve or modify the data as defined by the T-SQL statement. As long

as you ensure that the default statistical settings for the database are set, the optimizer

will be able to do its best to determine effective processing strategies dynamically. Also,

as a safety measure while troubleshooting performance, you should ensure that the

automatic statistics maintenance routine is doing its job as desired. Where necessary,

you may even have to take manual control over the creation and/or maintenance of

statistics. (I cover this in the “Manual Maintenance” section, and I cover the precise

nature of the functions and shape of statistics in the “Analyzing Statistics” section.) In

the following section, I show you why statistics are important to indexed columns and

nonindexed columns functioning as predicates.

 Statistics on an Indexed Column
The usefulness of an index is largely dependent on the statistics of the indexed columns;

without statistics, SQL Server’s cost-based query optimizer can’t decide upon the most

effective way of using an index. To meet this requirement, SQL Server automatically

creates the statistics of an index key whenever the index is created. It isn’t possible to

turn this feature off. This occurs for both rowstore and columnstore indexes.

As data changes, the data retrieval mechanism required to keep the cost of a query low

may also change. For example, if a table has only one matching row for a certain column

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

339

value, then it makes sense to retrieve the matching rows from the table by going through

the nonclustered index on the column. But if the data in the table changes so that a large

number of rows are added with the same column value, then using the nonclustered index

may no longer make sense. To be able to have SQL Server decide this change in processing

strategy as the data changes over time, it is vital to have up-to-date statistics.

SQL Server can keep the statistics on an index updated as the contents of the indexed

column are modified. By default, this feature is turned on and is configurable through

the Properties ➤ Options ➤ Auto Update Statistics setting of a database. Updating

statistics consumes extra CPU cycles and associated I/O. To optimize the update process,

SQL Server uses an efficient algorithm detailed in the “Automatic Maintenance” section.

This built-in intelligence keeps the CPU utilization by each process low. It’s also

possible to update the statistics asynchronously. This means when a query would

normally cause statistics to be updated, instead that query proceeds with the old

statistics, and the statistics are updated offline. This can speed up the response time

of some queries, such as when the database is large or when you have a short timeout

period. It may also slow performance if the changes in statistics are enough to warrant a

radical change in the plan.

You can manually disable (or enable) the auto update statistics and the auto

update statistics asynchronously features by using the ALTER DATABASE command. By

default, the auto update statistics feature and the auto creation feature are enabled,

and it is strongly recommended that you keep them enabled. The auto update statistics

asynchronously feature is disabled by default. Turn this feature on only if you’ve

determined it will help with timeouts or waits caused by statistics updates.

Note i explain ALTER DATABASE later in this chapter in the “Manual
Maintenance” section.

 Benefits of Updated Statistics
The benefits of performing an auto update usually outweigh its cost on the system

resources for the majority of systems. If you have large tables (and I mean hundreds of

gigabytes for a single table), you may be in a situation where letting the statistics update

automatically is less beneficial. In this case, you may want to try using the sliding scale

supplied through trace flag 2371, or you may be in a situation where automatic statistics

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

340

maintenance doesn’t work well. However, this is an extreme edge case, and even here,

you may find that an auto update of the statistics doesn’t negatively impact your system.

To more directly control the behavior of the data, instead of using the tables in

AdventureWorks2017 for this set of examples, you will create one manually. Specifically,

create a test table with only three rows and a nonclustered index.

DROP TABLE IF EXISTS dbo.Test1;

GO

CREATE TABLE dbo.Test1 (C1 INT,

 C2 INT IDENTITY);

SELECT TOP 1500

 IDENTITY(INT, 1, 1) AS n

INTO #Nums

FROM master.dbo.syscolumns AS sC1,

 master.dbo.syscolumns AS sC2;

INSERT INTO dbo.Test1 (C1)

SELECT n

FROM #Nums;

DROP TABLE #Nums;

CREATE NONCLUSTERED INDEX i1 ON dbo.Test1 (C1);

If you execute a SELECT statement with a selective filter criterion on the indexed

column to retrieve only one row, as shown in the following line of code, then the

optimizer uses a nonclustered index seek, as shown in the execution plan in Figure 13-1:

SELECT *

FROM dbo.Test1

WHERE C1 = 2;

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

341

To understand the effect of small data modifications on a statistics update, create a

session using Extended Events. In the session, add the event auto_stats, which captures

statistics update and create events, and add sql_batch_completed. Here’s the script to

create and start an Extended Events session:

CREATE EVENT SESSION [Statistics]

ON SERVER

 ADD EVENT sqlserver.auto_stats

 (ACTION (sqlserver.sql_text)

 WHERE (sqlserver.database_name = N'AdventureWorks2017')),

 ADD EVENT sqlserver.sql_batch_completed

 (WHERE (sqlserver.database_name = N'AdventureWorks2017'));

GO

ALTER EVENT SESSION [Statistics] ON SERVER STATE = START;

GO

Add only one row to the table.

INSERT INTO dbo.Test1

 (C1)

VALUES (2);

Figure 13-1. Execution plan for a small result set

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

342

When you reexecute the preceding SELECT statement, you get the same execution plan

as shown in Figure 13-1. Figure 13-2 shows the events generated by the SELECT query.

Figure 13-2. Session output after the addition of a small number of rows

The session output doesn’t contain any activity representing a statistics update

because the number of changes fell below the threshold where any table that has more

than 500 rows must have 20 percent of the number of rows be added, modified, or

removed, or, using the newer behavior, doesn’t reflect adequate scaled changes.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

343

To understand the effect of large data modification on statistics update, add 1,500

rows to the table.

SELECT TOP 1500

 IDENTITY(INT, 1, 1) AS n

INTO #Nums

FROM master.dbo.syscolumns AS scl,

 master.dbo.syscolumns AS sC2;

INSERT INTO dbo.Test1 (C1)

SELECT 2

FROM #Nums;

DROP TABLE #Nums;

Now, if you reexecute the SELECT statement, like so, a large result set (1,502 rows out

of 3,001 rows) will be retrieved:

SELECT *

FROM dbo.Test1

WHERE C1 = 2;

Since a large result set is requested, scanning the base table directly is preferable to

going through the nonclustered index to the base table 1,502 times. Accessing the base

table directly will prevent the overhead cost of bookmark lookups associated with the

nonclustered index. This is represented in the resultant execution plan (see Figure 13-3).

Figure 13-3. Execution plan for a large result set

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

344

Figure 13-4 shows the resultant session output.

Figure 13-4. Session output after the addition of a large number of rows

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

345

The session output includes multiple auto_stats events since the threshold was

exceeded by the large-scale update this time. You can tell what each of the events

is doing by looking at the details. Figure 13-4 shows the job_type value, in this

case StatsUpdate. You’ll also see the statistics that are being updated listed in the

statistics_list column. Another point of interest is the Status column, which can

tell you more about what part of the statistics update process is occurring, in this case

“Loading and update stats.” The second auto_stats event visible in Figure 13-4 shows

a statistics_list value of “Updated: dbo.Test1.i1” indicating that the update process

was complete. You can then see immediately following that auto_stats event the

sql_batch_completed event of the query itself. These activities consume some

extra CPU cycles to get the stats up-to-date. However, by doing this, the optimizer

determines a better data-processing strategy and keeps the overall cost of the query

low. The resulting change to a more efficient execution plan, the Table Scan operation

of Figure 13- 3, is why automatic update of statistics is so desirable. This also illustrates

how an asynchronous update of statistics could potentially cause problems because the

query would have executed with the old, less efficient execution plan.

 Drawbacks of Outdated Statistics
As explained in the preceding section, the auto update statistics feature allows the

optimizer to decide on an efficient processing strategy for a query as the data changes.

If the statistics become outdated, however, then the processing strategies decided on by

the optimizer may not be applicable for the current data set and thereby will degrade

performance.

To understand the detrimental effect of having outdated statistics, follow these steps:

 1. Re-create the preceding test table with 1,500 rows only and the

corresponding nonclustered index.

 2. Prevent SQL Server from updating statistics automatically as the

data changes. To do so, disable the auto update statistics feature

by executing the following SQL statement:

ALTER DATABASE AdventureWorks2017 SET AUTO_UPDATE_

STATISTICS OFF;

 3. Add 1,500 rows to the table like before.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

346

Now, reexecute the SELECT statement to understand the effect of the outdated

statistics on the query optimizer. The query is repeated here for clarity:

SELECT *

FROM dbo.Test1

WHERE C1 = 2;

Figure 13-5 and Figure 13-6 show the resultant execution plan and the session output

for this query, respectively.

Figure 13-5. Execution plan with AUTO_UPDATE_STATISTICS OFF

Figure 13-6. Session output details with AUTO_UPDATE_STATISTICS OFF

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

347

With the auto update statistics feature switched off, the query optimizer has

selected a different execution plan from the one it selected with this feature on. Based

on the outdated statistics, which have only one row for the filter criterion (C1 = 2), the

optimizer decided to use a nonclustered index seek. The optimizer couldn’t make its

decision based on the current data distribution in the column. For performance reasons,

it would have been better to access the base table directly instead of going through the

nonclustered index since a large result set (1,501 rows out of 3,000 rows) is requested.

You can see that turning off the auto update statistics feature has a negative effect on

performance by comparing the cost of this query with and without updated statistics.

Table 13-1 shows the difference in the cost of this query.

Table 13-1. Cost of the Query with and Without Updated Statistics

Statistics Update Status Figure Cost

Duration (ms) number of reads

updated Figure 13-4 171 9

not updated Figure 13-6 678 1510

The number of reads and the duration are significantly higher when the statistics are

out-of-date, even though the data returned is identical and the query was precisely the

same. Therefore, it is recommended that you keep the auto update statistics feature on.

The benefits of keeping statistics updated usually outweigh the costs of performing the

update. Before you leave this section, turn AUTO_UPDATE_STATISTICS back on (although

you can also manually update statistics if you choose).

ALTER DATABASE AdventureWorks2017 SET AUTO_UPDATE_STATISTICS ON;

 Statistics on a Nonindexed Column
Sometimes you may have columns in join or filter criteria without any index. Even for

such nonindexed columns, the query optimizer is more likely to make a better choice if

it knows the cardinality and data distribution, the statistics, of those columns. Cardinality

is the number of objects in a set, in this case rows. Data distribution would be how

unique the overall set of data we’re working with is.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

348

In addition to statistics on indexes, SQL Server can build statistics on columns with

no indexes. The information on data distribution, or the likelihood of a particular value

occurring in a nonindexed column, can help the query optimizer determine an optimal

processing strategy. This benefits the query optimizer even if it can’t use an index to

actually locate the values. SQL Server automatically builds statistics on nonindexed

columns if it deems this information valuable in creating a better plan, usually when

the columns are used in a predicate. By default, this feature is turned on, and it’s

configurable through the Properties ➤ Options ➤ Auto Create Statistics setting of a

database. You can override this setting programmatically by using the ALTER DATABASE

command. However, for better performance, it is strongly recommended that you keep

this feature on.

One of the scenarios in which you may consider disabling this feature is while

executing a series of ad hoc T-SQL activities that you will never execute again. Another is

when you determine that a static, stable, but possibly not adequate set of statistics works

better than the best possible set of statistics, but they may lead to uneven performance

because of changing data distribution. Even in such a case, you should test whether

you’re better off paying the cost of automatic statistics creation to get a better plan in this

one case as compared to affecting the performance of other SQL Server activities. For

most systems, you should keep this feature on and not be concerned about it unless you

see clear evidence of statistics creation causing performance issues.

 Benefits of Statistics on a Nonindexed Column
To understand the benefit of having statistics on a column with no index, create two test

tables with disproportionate data distributions, as shown in the following code. Both

tables contain 10,001 rows. Table Test1 contains only one row for a value of the second

column (Test1_C2) equal to 1, and the remaining 10,000 rows contain this column value

as 2. Table Test2 contains exactly the opposite data distribution.

IF (SELECT OBJECT_ID('dbo.Test1')) IS NOT NULL

 DROP TABLE dbo.Test1;

GO

CREATE TABLE dbo.Test1 (Test1_C1 INT IDENTITY,

 Test1_C2 INT);

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

349

INSERT INTO dbo.Test1 (Test1_C2)

VALUES (1);

SELECT TOP 10000

 IDENTITY(INT, 1, 1) AS n

INTO #Nums

FROM master.dbo.syscolumns AS scl,

 master.dbo.syscolumns AS sC2;

INSERT INTO dbo.Test1 (Test1_C2)

SELECT 2

FROM #Nums

GO

CREATE CLUSTERED INDEX i1 ON dbo.Test1 (Test1_C1)

--Create second table with 10001 rows, -- but opposite data distribution

IF (SELECT OBJECT_ID('dbo.Test2')) IS NOT NULL

 DROP TABLE dbo.Test2;

GO

CREATE TABLE dbo.Test2 (Test2_C1 INT IDENTITY,

 Test2_C2 INT);

INSERT INTO dbo.Test2 (Test2_C2)

VALUES (2);

INSERT INTO dbo.Test2 (Test2_C2)

SELECT 1

FROM #Nums;

DROP TABLE #Nums;

GO

CREATE CLUSTERED INDEX il ON dbo.Test2 (Test2_C1);

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

350

Table 13-2 illustrates how the tables will look.

Table 13-2. Sample Tables

Table Test1 Table Test2

Column Test1_c1 Test1_C2 Test2_c1 Test2_C2

Row1 1 1 1 2

Row2 2 2 2 1

RowN n 2 n 1

Rowl000l 10001 2 10001 1

To understand the importance of statistics on a nonindexed column, use the default

setting for the auto create statistics feature. By default, this feature is on. You can verify

this using the DATABASEPROPERTYEX function (although you can also query the sys.

databases view).

SELECT DATABASEPROPERTYEX('AdventureWorks2017',

 'IsAutoCreateStatistics');

Note you can find a detailed description of configuring the auto create statistics
feature later in this chapter.

Use the following SELECT statement to access a large result set from table Test1 and

a small result set from table Test2. Table Test1 has 10,000 rows for the column value of

Test1_C2 = 2, and table Test2 has 1 row for Test2_C2 = 2. Note that these columns

used in the join and filter criteria have no index on either table.

SELECT t1.Test1_C2,

 t2.Test2_C2

FROM dbo.Test1 AS t1

 JOIN dbo.Test2 AS t2

 ON t1.Test1_C2 = t2.Test2_C2

WHERE t1.Test1_C2 = 2;

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

351

Figure 13-7. Execution plan with AUTO_CREATE_STATISTICS ON

Figure 13-7 shows the actual execution plan for this query.

Figure 13-8 shows the session output of the auto_stats event caused by this query.

You can use this to evaluate some of the added costs for a given query.

Figure 13-8. Extended Events session output with AUTO_CREATE_STATISTICS ON

The session output shown in Figure 13-8 includes four auto_stats events

creating statistics on the nonindexed columns referred to in the JOIN and WHERE clauses,

Test2_C2 and Test1_C2, and then loading those statistics for use inside the optimizer.

This activity consumes a few extra CPU cycles (since no statistics could be detected) and

took about 20,000 microseconds (mc), or 20ms. However, by consuming these extra CPU

cycles, the optimizer decides upon a better processing strategy for keeping the overall

cost of the query low.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

352

To verify the statistics automatically created by SQL Server on the nonindexed

columns of each table, run this SELECT statement against the sys.stats table.

SELECT s.name,

 s.auto_created,

 s.user_created

FROM sys.stats AS s

WHERE object_id = OBJECT_ID('Test1');

Figure 13-9 shows the automatic statistics created for table Test1.

Figure 13-9. Automatic statistics for table Test1

The statistics named _WA_SYS* are system-generated column statistics. You can tell

this both by the name of the statistic and by the auto_created value, which, in this case,

is equal to 1, whereas that same value for the index, i1, is 0. This is interesting since

statistics created for indexes are also automatically created, but they’re not considered

part of the AUTO_CREATE_STATISTICS process since statistics on indexes will always be

created.

To verify how a different result set size from the two tables influences the decision of

the query optimizer, modify the filter criteria of the query to access an opposite result set

size from the two tables (small from Test1 and large from Test2). Instead of filtering on

Test1.Test1_C2 = 2, change it to filter on 1.

SELECT t1.Test1_C2,

 t2.Test2_C2

FROM dbo.Test1 AS t1

 JOIN dbo.Test2 AS t2

 ON t1.Test1_C2 = t2.Test2_C2

WHERE t1.Test1_C2 = 1;

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

353

Figure 13-10 shows the resultant execution plan, and Figure 13-11 shows the

Extended Events session output of this query.

Figure 13-10. Execution plan for a different result set

The resultant session output doesn’t perform any additional SQL activities to

manage statistics. The statistics on the nonindexed columns (Test1.Test1_C2 and

Test2.Test2_C2) had already been created when the indexes themselves were created

and updated as the data changed.

For effective cost optimization, in each case the query optimizer selected

different processing strategies, depending upon the statistics on the nonindexed

Figure 13-11. Extended Events output for a different result set

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

354

columns (Test1.Test1_C2 and Test2.Test2_C2). You can see this from the previous

two execution plans. In the first, table Test1Test1 is the outer table for the nested loop

join, whereas in the latest one, table Test2 is the outer table. By having statistics on the

nonindexed columns (Test1.Test1_C2 and Test2.Test2_C2), the query optimizer can

create a cost-effective plan suitable for each case.

An even better solution would be to have an index on the column. This would not

only create the statistics on the column but also allow fast data retrieval through an

Index Seek operation, while retrieving a small result set. However, in the case of a

database application with queries referring to nonindexed columns in the WHERE clause,

keeping the auto create statistics feature on still allows the optimizer to determine the

best processing strategy for the existing data distribution in the column.

If you need to know which column or columns might be covered by a given statistic,

you need to look into the sys.stats_columns system table. You can query it in the same

way as you did the sys.stats table.

SELECT *

FROM sys.stats_columns

WHERE object_id = OBJECT_ID('Test1');

This will show the column being referenced by the automatically created statistics.

You can use this information to help you if you decide you need to create an index to

replace the statistics because you will need to know which columns to create the index

on. The column listed here is the ordinal position of the column within the table. To see

the column name, you’d need to modify the query.

SELECT c.name,

 sc.object_id,

 sc.stats_column_id,

 sc.stats_id

FROM sys.stats_columns AS sc

 JOIN sys.columns AS c

 ON c.object_id = sc.object_id

 AND c.column_id = sc.column_id

WHERE sc.object_id = OBJECT_ID('Test1');

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

355

 Drawback of Missing Statistics on a Nonindexed Column
To understand the detrimental effect of not having statistics on nonindexed columns,

drop the statistics automatically created by SQL Server and prevent SQL Server from

automatically creating statistics on columns with no index by following these steps:

 1. Drop the automatic statistics created on column Test1.Test1_C2

using the following SQL command, substituting the system name

automatically given the statistics for the phrase StatisticsName:

DROP STATISTICS [Test1].StatisticsName;

 2. Similarly, drop the corresponding statistics on column

Test2.Test2_C2.

 3. Disable the auto create statistics feature by deselecting the Auto

Create Statistics check box for the corresponding database or by

executing the following SQL command:

ALTER DATABASE AdventureWorks2017 SET AUTO_CREATE_

STATISTICS OFF;

Now reexecute the SELECT statement --nonindexed_select.

SELECT Test1.Test1_C2,

 Test2.Test2_C2

FROM dbo.Test1

 JOIN dbo.Test2

 ON Test1.Test1_C2 = Test2.Test2_C2

WHERE Test1.Test1_C2 = 2;

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

356

Figure 13-12 and Figure 13-13 show the resultant execution plan and Extended

Events output, respectively.

Figure 13-12. Execution plan with AUTO_CREATE_STATISTICS OFF

With the auto create statistics feature off, the query optimizer selected a different

execution plan compared to the one it selected with the auto create statistics feature

on. On not finding statistics on the relevant columns, the optimizer chose the first

table (Test1) in the FROM clause as the outer table of the nested loop join operation.

The optimizer couldn’t make its decision based on the actual data distribution in

the column. You can see the warning, an exclamation point, in the execution plan,

Figure 13-13. Trace output with AUTO_CREATE_STATISTICS OFF

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

357

indicating the missing statistics information on the data access operators, the clustered

index scans. If you modify the query to reference table Test2 as the first table in the FROM

clause, then the optimizer selects table Test2 as the outer table of the nested loop join

operation. Figure 13-14 shows the execution plan.

SELECT Test1.Test1_C2,

 Test2.Test2_C2

FROM dbo.Test2

JOIN dbo.Test1

 ON Test1.Test1_C2 = Test2.Test2_C2

WHERE Test1.Test1_C2 = 2;

Figure 13-14. Execution plan with AUTO_CREATE_STATISTICS OFF (a variation)

You can see that turning off the auto create statistics feature has a negative effect

on performance by comparing the cost of this query with and without statistics on a

nonindexed column. Table 13-3 shows the difference in the cost of this query.

Table 13-3. Cost Comparison of a Query with and Without Statistics on a

Nonindexed Column

Statistics on Nonindexed Column Figure Cost

avg. Duration (ms) number of reads

With statistics Figure 13-11 98 48

Without statistics Figure 13-13 262 20273

The number of logical reads and the CPU utilization are higher with no statistics

on the nonindexed columns. Without these statistics, the optimizer can’t create a cost-

effective plan because it effectively has to guess at the selectivity through a set of built-in

heuristic calculations.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

358

A query execution plan highlights the missing statistics by placing an exclamation

point on the operator that would have used the statistics. You can see this in the clustered

index scan operators in the previous execution plans (Figures 13-12 and 13- 14), as well

as in the detailed description in the Warnings section in the properties of a node in a

graphical execution plan, as shown in Figure 13-15 for table Test1.

Figure 13-15. Missing statistics indication in a graphical plan

Note in a database application, there is always the possibility of queries using
columns with no indexes. therefore, in most systems, for performance reasons,
leaving the auto create statistics feature of SQl Server databases on is strongly
recommended.

You can query the plans in cache to identify those plans that may have missing

statistics.

SELECT dest.text AS query,

 deqs.execution_count,

 deqp.query_plan

FROM sys.dm_exec_query_stats AS deqs

 CROSS APPLY sys.dm_exec_text_query_plan(deqs.plan_handle,

 deqs.statement_start_offset,

 deqs.statement_end_offset) AS

detqp

 CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp

 CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest

WHERE detqp.query_plan LIKE '%ColumnsWithNoStatistics%';

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

359

This query cheats just a little bit. I’m using a wildcard on both sides of a variable

with the LIKE operator, which is actually a common code issue (addressed in more

detail in Chapter 20), but the alternative in this case is to run an XQuery, which requires

loading the XML parser. Depending on the amount of memory available to your system,

this approach, the wildcard search, can work a lot faster than querying the XML of

the execution plan directly. Query tuning isn’t just about using a single method but

understanding how they all fit together.

If you are in a situation where you need to disable the automatic creation of statistics,

you may still want to track where statistics may have been useful to your queries. You can

use the Extended Events missing_column_statistics event to capture that information.

For the previous examples, you can see an example of the output of this event in

Figure 13-16.

column_list NO STATS:([AdventureWorks2017].[dbo].[Test2].[Test2_C2].[AdventureWorks2017].[dbo].[Test1].[Test_C2])

Figure 13-16. Output from missing_column_statistics Extended Events event

The column_list will show which columns did not have statistics. You can then

decide whether you want to create your own statistics to benefit the query in question.

Before proceeding, be sure to turn the automatic creation of statistics back on.

ALTER DATABASE AdventureWorks2017 SET AUTO_CREATE_STATISTICS ON;

 Analyzing Statistics
Statistics are collections of information defined within three sets of data: the header,

the density graph, and the histograms. One of the most commonly used of these data

sets is the histogram. A histogram is a statistical construct that shows how often data

falls into varying categories called steps. The histogram stored by SQL Server consists

of a sampling of data distribution for a column or an index key (or the first column of a

multicolumn index key) of up to 200 rows. The information on the range of index key

values between two consecutive samples is one step. These steps consist of varying size

intervals between the 200 values stored. A step provides the following information:

• The top value of a given step (RANGE_HI_KEY)

• The number of rows equal to RANGE_HI_KEY (EQ_ROWS)

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

360

• The number of rows between the previous top value and the

current top value, without counting either of these boundary points

(RANGE_ROWS)

• The number of distinct values in the range (DISTINCT_RANGE_ROWS);

if all values in the range are unique, then RANGE_ROWS equals

DISTINCT_RANGE_ROWS

• The average number of rows equal to any potential key value within a

range (AVG_RANGE_ROWS)

For example, when referencing an index, the value of AVG_RANGE_ROWS for a key value

within a step in the histogram helps the optimizer decide how (and whether) to use the

index when the indexed column is referred to in a WHERE clause. Because the optimizer

can perform a SEEK or SCAN operation to retrieve rows from a table, the optimizer can

decide which operation to perform based on the number of potential matching rows for

the index key value. This can be even more precise when referencing the RANGE_HI_KEY

since the optimizer can know that it should find a fairly precise number of rows from that

value (assuming the statistics are up-to-date).

To understand how the optimizer’s data retrieval strategy depends on the number

of matching rows, create a test table with different data distributions on an indexed

column.

IF (SELECT OBJECT_ID('dbo.Test1')

) IS NOT NULL

 DROP TABLE dbo.Test1 ;

GO

CREATE TABLE dbo.Test1 (C1 INT, C2 INT IDENTITY) ;

INSERT INTO dbo.Test1

 (C1)

VALUES (1) ;

SELECT TOP 10000

 IDENTITY(INT,1,1) AS n

INTO #Nums

FROM Master.dbo.SysColumns sc1,

 Master.dbo.SysColumns sc2 ;

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

361

INSERT INTO dbo.Test1

 (C1)

 SELECT 2

 FROM #Nums ;

DROP TABLE #Nums;

CREATE NONCLUSTERED INDEX FirstIndex ON dbo.Test1 (C1) ;

When the preceding nonclustered index is created, SQL Server automatically

creates statistics on the index key. You can obtain statistics for this nonclustered index

(FirstIndex) by executing the DBCC SHOW_STATISTICS command.

DBCC SHOW_STATISTICS(Test1, FirstIndex);

Figure 13-17 shows the statistics output.

Figure 13-17. Statistics on index FirstIndex

Now, to understand how effectively the optimizer decides upon different data

retrieval strategies based on statistics, execute the following two queries requesting a

different number of rows:

--Retrieve 1 row;

SELECT *

FROM dbo.Test1

WHERE C1 = 1;

--Retrieve 10000 rows;

SELECT *

FROM dbo.Test1

WHERE C1 = 2;

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

362

Figure 13-18 shows execution plans of these queries.

Figure 13-18. Execution plans of small and large result set queries

From the statistics, the optimizer can find the number of rows needed for the

preceding two queries. Understanding that there is only one row to be retrieved for the

first query, the optimizer chose an Index Seek operation, followed by the necessary RID

Lookup to retrieve the data not stored with the clustered index. For the second query, the

optimizer knows that a large number of rows (10,000 rows) will be affected and therefore

avoided the index to attempt to improve performance. (Chapter 8 explains indexing

strategies in detail.)

Besides the information contained in the histogram, the header has other useful

information including the following:

• The time statistics were last updated

• The number of rows in the table

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

363

• The average index key length

• The number of rows sampled for the histogram

• Densities for combinations of columns

Information on the time of the last update can help you decide whether you should

manually update the statistics. The average key length represents the average size of the

data in the index key columns. It helps you understand the width of the index key, which

is an important measure in determining the effectiveness of the index. As explained

in Chapter 6, a wide index might be costly to maintain and requires more disk space

and memory pages but, as explained in the next section, can make an index extremely

selective.

 Density
When creating an execution plan, the query optimizer analyzes the statistics of the

columns used in the filter and JOIN clauses. A filter criterion with high selectivity limits

the number of rows from a table to a small result set and helps the optimizer keep the

query cost low. A column with a unique index will have a high selectivity since it can

limit the number of matching rows to one.

On the other hand, a filter criterion with low selectivity will return a large result set

from the table. A filter criterion with low selectivity can make a nonclustered index on

the column ineffective. Navigating through a nonclustered index to the base table for

a large result set is usually costlier than scanning the base table (or clustered index)

directly because of the cost overhead of lookups associated with the nonclustered index.

You can observe this behavior in the first execution plan in Figure 13-18.

Statistics track the selectivity of a column in the form of a density ratio. A column

with high selectivity (or uniqueness) will have low density. A column with low density

(that is, high selectivity) is suitable for a filtering criteria because it can help the

optimizer retrieve a small number of rows very fast. This is also the principle on which

filtered indexes operate since the filter’s goal is to increase the selectivity, or density, of

the index.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

364

Density can be expressed as follows:

Density = 1 / Number of distinct values for a column

Density will always come out as a number somewhere between 0 and 1. The lower

the column density, the more suitable it is for use as an index key. You can perform your

own calculations to determine the density of columns within your own indexes and

statistics. For example, to calculate the density of column C1 from the test table built by

the previous script, use the following (results in Figure 13-19):

SELECT 1.0 / COUNT(DISTINCT C1)

FROM dbo.Test1;

Figure 13-19. Results of density calculation for column C1

You can see this as actual data in the All density column in the output from DBCC

SHOW_ STATISTICS. This high-density value for the column makes it a less suitable

candidate for an index, even a filtered index. However, the statistics of the index key

values maintained in the steps help the query optimizer use the index for the predicate

C1 = 1, as shown in the previous execution plan.

 Statistics on a Multicolumn Index
In the case of an index with one column, statistics consist of a histogram and a density

value for that column. Statistics for a composite index with multiple columns consist

of one histogram for the first column only and multiple density values. This is one

reason why it’s generally a good practice to put the more selective column, the one

with the lowest density, first when building a compound index or compound statistics.

The density values include the density for the first column and for each additional

combination of the index key columns. Multiple density values help the optimizer

find the selectivity of the composite index when multiple columns are referred to by

predicates in the WHERE, HAVING, and JOIN clauses. Although the first column can help

determine the histogram, the final density of the column itself would be the same

regardless of column order.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

365

Multicolumn density graphs can come through multiple columns in the key of an

index or from manually created statistics. But, you’ll never see a multicolumn statistic,

and subsequently a density graph, created by the automatic statistics creation process.

Let’s look at a quick example. Here’s a query that could easily benefit from a set of

statistics with two columns:

SELECT p.Name,

 p.Class

FROM Production.Product AS p

WHERE p.Color = 'Red' AND

 p.DaysToManufacture > 15;

An index on the columns p.Color and p.DaysToManufacture would have a

multicolumn density value. Before running this, here’s a query that will let you just look

at the basic construction of statistics on a given table:

SELECT s.name,

 s.auto_created,

 s.user_created,

 s.filter_definition,

 sc.column_id,

 c.name AS ColumnName

FROM sys.stats AS s

 JOIN sys.stats_columns AS sc

 ON sc.stats_id = s.stats_id

 AND sc.object_id = s.object_id

 JOIN sys.columns AS c

 ON c.column_id = sc.column_id

 AND c.object_id = s.object_id

WHERE s.object_id = OBJECT_ID('Production.Product');

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

366

Running this query against the Production.Product table results in Figure 13-20.

You can see the indexes on the table, and each one consists of a single column. Now

I’ll run the query that could benefit from a multicolumn density graph. But, rather than

trying to track down the statistics information through SHOWSTATISTICS, I’ll just query

the system tables again. The results are in Figure 13-21.

Figure 13-20. List of statistics for the Product table

Figure 13-21. Two new statistics have been added to the Product table

As you can see, instead of adding a single statistic with multiple columns, two new

statistics were created. You will get a multicolumn statistic only in a multicolumn index

key or with manually created statistics.

To better understand the density values maintained for a multicolumn index, you

can modify the nonclustered index used earlier to include two columns.

CREATE NONCLUSTERED INDEX FirstIndex

ON dbo.Test1

(

 C1,

 C2

)

WITH (DROP_EXISTING = ON);

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

367

Figure 13-22 shows the resultant statistics provided by DBCC SHOWSTATISTICS.

Figure 13-22. Statistics on the multicolumn index FirstIndex

As you can see, there are two density values under the All density column.

• The density of the first column

• The density of the (first + second) columns

For a multicolumn index with three columns, the statistics for the index would also

contain the density value of the (first + second + third) columns. The histogram won’t

contain selectivity values for any other combination of columns. Therefore, this index

(FirstIndex) won’t be very useful for filtering rows only on the second column (C2)

because that value of the second column (C2) alone isn’t maintained in the histogram

and, by itself, isn’t part of the density graph.

You can compute the second density value (0.000099990000) shown in

Figure 13-19 through the following steps. This is the number of distinct values for a

column combination of (C1, C2).

SELECT 1.0 / COUNT(*)

FROM

(SELECT DISTINCT C1, C2 FROM dbo.Test1) AS DistinctRows;

 Statistics on a Filtered Index
The purpose of a filtered index is to limit the data that makes up the index and therefore

change the density and histogram to make the index perform better. Instead of a test

table, this example will use a table from the AdventureWorks2017 database. Create an

index on the Sales.PurchaseOrderHeader table on the PurchaseOrderNumber column.

CREATE INDEX IX_Test ON Sales.SalesOrderHeader (PurchaseOrderNumber);

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

368

Figure 13-23 shows the header and the density of the output from DBCC

SHOWSTATISTICS run against this new index.

DBCC SHOW_STATISTICS('Sales.SalesOrderHeader',IX_Test);

Figure 13-23. Statistics header of an unfiltered index

If the same index is re-created to deal with values of the column that are not null, it

would look something like this:

CREATE INDEX IX_Test

ON Sales.SalesOrderHeader

(

 PurchaseOrderNumber

)

WHERE PurchaseOrderNumber IS NOT NULL

WITH (DROP_EXISTING = ON);

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

369

And now, in Figure 13-24, take a look at the statistics information.

Figure 13-24. Statistics header for a filtered index

First you can see that the number of rows that compose the statistics has radically

dropped in the filtered index because there is a filter in place, from 31465 to 3806. Notice

also that the average key length has increased since you’re no longer dealing with zero-

length strings. A filter expression has been defined rather than the NULL value visible in

Figure 13-23. But the unfiltered rows of both sets of data are the same.

The density measurements are interesting. Notice that the density is close to the

same for both values, but the filtered density is slightly lower, meaning fewer unique

values. This is because the filtered data, while marginally less selective, is actually more

accurate, eliminating all the empty values that won’t contribute to a search. And the

density of the second value, which represents the clustered index pointer, is identical

with the value of the density of the PurchaseOrderNumber alone because each represents

the same amount of unique data. The density of the additional clustered index in

the previous column is a much smaller number because of all the unique values of

SalesOrderld that are not included in the filtered data because of the elimination of the

NULL values. You can also see the first column of the histogram shows a NULL value in

Figure 13-23 but has a value in Figure 13-24.

One other option open to you is to create filtered statistics. This allows you to create

even more fine-tuned histograms. This can be especially useful on partitioned tables.

This is necessary because statistics are not automatically created on partitioned tables

and you can’t create your own using CREATE STATISTICS. You can create filtered indexes

by partition and get statistics or create filtered statistics specifically by partition.

Before going on, clean the indexes created, if any.

DROP INDEX Sales.SalesOrderHeader.IX_Test;

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

370

 Cardinality
The statistics, consisting of the histogram and density, are used by the query optimizer

to calculate how many rows are to be expected by each operation within the execution

of the query. This calculation to determine the number of rows returned is called the

cardinality estimate. Cardinality represents the number of rows in a set of data, which

means it’s directly related to the density measures in SQL Server. Starting in SQL

Server 2014, a different cardinality estimator is at work. This is the first change to the

core cardinality estimation process since SQL Server 7.0. The changes to some areas

of the estimator means that the optimizer reads from the statistics in the same way

as previously, but the optimizer makes different kinds of calculations to determine

the number of rows that are going to go through each operation in the execution plan

depending on the cardinality calculations that have been modified.

Before we discuss the details, let’s see this in action. First, we’ll change the cardinality

estimation for the database to use the old estimator.

ALTER DATABASE SCOPED CONFIGURATION SET LEGACY_CARDINALITY_ESTIMATION = ON;

With that in place, I want to run a simple query.

SELECT a.AddressID,

 a.AddressLine1,

 a.AddressLine2

FROM Person.Address AS a

WHERE a.AddressLine1 = '5980 Icicle Circle'

 AND AddressLine2 = 'Unit H';

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

371

There’s no need to explore the entire execution plan here. Instead, I want to look at

the Estimated Row Count value on the SELECT operator, as shown in Figure 13-25.

You can see that the Estimated Number of Rows is equal to 1. Now, let’s turn the

legacy cardinality estimation back off.

ALTER DATABASE SCOPED CONFIGURATION SET LEGACY_CARDINALITY_ESTIMATION = OFF;

If we rerun the queries and take a look at the SELECT operator again, things have

changed (see Figure 13-26).

Figure 13-25. Row counts with the old cardinality estimation engine

Figure 13-26. Row counts with the modern cardinality estimation engine

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

372

You can see that the estimated number of rows has changed from 1 to 1.43095. This is

a direct reflection of the newer cardinality estimator.

Most of the time the data used to drive execution plans is pulled from the histogram.

In the case of a single predicate, the values simply use the selectivity defined by the

histogram. But, when multiple columns are used for filtering, the cardinality calculation

has to take into account the potential selectivity of each column. Prior to SQL Server

2014, there were a couple of simple calculations used to determine cardinality. For an

AND combination, the calculation was based on multiplying the selectivity of the first

column by the selectivity of the second, something like this:

Selectivity1 * Selectivity2 * Selectivity3 ...

An OR calculation between two columns was more complex. The new AND calculation

looks like this:

Selectivity1 * Power(Selectivity2,1/2) * Power(Selectivity3,1/4) ...

In short, instead of simply multiplying the selectivity of each column to make the

overall selectivity more and more selective, a different calculation is supplied, going from

the least selective to the most selective data but arriving at a softer, less skewed estimate

by getting the power of one-half the selectivity, then one-quarter, and then

one- eighth, and so on, depending on how many columns of data are involved. The

working assumption is that data isn’t one set of columns with no relation to the next set;

instead, there is a correlation between the data, making a certain degree of duplication

possible. This new calculation won’t change all execution plans generated, but the

potentially more accurate estimates could change them in some locations. When an

OR clause is used, the calculations have again changed to suggest the possibility of

correlation between columns.

In the previous example, we did see exactly that. There were three rows returned,

and the 1.4 row estimate is closer than the 1 row estimate to that value of 3.

Starting in SQL Server 2014 with a compatibility level of 120, even more new

calculations are taking place. This means that for most queries, on average, you may

see performance enhancements if your statistics are up-to-date because having more

accurate cardinality calculations means the optimizer will make better choices. But,

you may also see performance degradation with some queries because of the changes

in the way cardinality is calculated. This is to be expected because of the wide variety of

workloads, schemas, and data distributions that you may encounter.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

373

Another new cardinality estimation assumption changed in SQL Server 2014. In

SQL Server 2012 and earlier, when a value in an index that consisted of an increasing or

decreasing increment, such as an identity column or a datetime value, introduced a new

row that fell outside the existing histogram, the optimizer would fall back on its default

estimate for data without statistics, which was one row. This could lead to seriously

inaccurate query plans, causing poor performance. Now, there are all new calculations.

First, if you have created statistics using a FULLSCAN, explained in detail in the

“Statistics Maintenance” section, and there have been no modifications to the data, then

the cardinality estimation works the same as it did before. But, if the statistics have been

created with a default sampling or data has been modified, then the cardinality estimator

works off the average number of rows returned within that set of statistics and assumes

that value instead of a single row. This can make for much more accurate execution

plans, but assuming only a reasonably consistent distribution of data. An uneven

distribution, referred to as skewed data, can lead to bad cardinality estimations that can

result in behavior similar to bad parameter sniffing, covered in detail in Chapter 18.

You can now observe cardinality estimations in action using Extended Events with the

event query_optimizer_estimate_cardinality. I won’t go into all the details of every

possible output from the events, but I do want to show how you can observe optimizer

behavior and correlate it between execution plans and the cardinality estimations. For

the vast majority of query tuning, this won’t be all that helpful, but if you’re unsure of how

the optimizer is making the estimates that it does or if those estimates seem inaccurate,

you can use this method to further investigate the information.

Note the query_optimizer_estimate_cardinality event is in the Debug
package within extended events. the debug events are primarily for internal use
at Microsoft. the events contained within Debug, including query_optimizer_
estimate_cardinality, are subject to change or removal without notice.

First, you should set up an Extended Events session with the query_optimizer_

estimate_cardinality event. I’ve created an example including the auto_stats and

sql_batch_complete events. Then, I ran a query.

SELECT so.Description,

 p.Name AS ProductName,

 p.ListPrice,

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

374

 p.Size,

 pv.AverageLeadTime,

 pv.MaxOrderQty,

 v.Name AS VendorName

FROM Sales.SpecialOffer AS so

JOIN Sales.SpecialOfferProduct AS sop

ON sop.SpecialOfferID = so.SpecialOfferID

JOIN Production.Product AS p

ON p.ProductID = sop.ProductID

JOIN Purchasing.ProductVendor AS pv

ON pv.ProductID = p.ProductID

JOIN Purchasing.Vendor AS v

ON v.BusinessEntityID = pv.BusinessEntityID

WHERE so.DiscountPct > .15;

I chose a query that’s a little complex so that there are plenty of operators in the

execution plan. When I run the query, I can then see the output of the Extended Events

session, as shown in Figure 13-27.

Figure 13-27. Session showing output from the query_optimizer_estimate_
cardinality event

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

375

The first two events visible in Figure 13-27 show the auto_stats event firing where

it loaded the statistics for two columns; Sales.SpecialOffer.PK_SpecailOffer_

SpecialOfferID and Sales.SpecialOfferProduct.PK_SpecialOfferProduct_

SpecialOfferID_ProductID. This means the statistics were readied prior to the

cardinality estimation calculation firing. The information on the Details tab is the output

from the cardinality estimation calculation. The detailed information is contained as

JSON in the calculator, input_relation, and stats_collection fields. These will show

the types of calculations and the values used in those calculations. For example, here is

the output from the calculator field in Figure 13-27:

<CalculatorList>

 <JoinCalculator CalculatorName="CSelCalcExpre

ssionComparedToExpression" Selectivity="0.067"

SelectivityBeforeAdjustmentForOverPopulatedDimension="0.063" />

</CalculatorList>

While the calculations themselves are not always clear, you can see the values that

are being used by the calculation and where they are coming from. In this case, the

calculation is comparing two values and arriving at a new selectivity based on that

calculation.

At the bottom of Figure 13-27 you can see the stats_collection_id value, which,

in this case, is 7. You can use this value to track down some of the calculations within an

execution plan to understand both what the calculation is doing and how it is used.

We’re going to first capture the execution plan. Even if you are retrieving the plan

from the Query Store or some other source, the stats_collection_id values are stored

with the plan. Once you have a plan, we can take advantage of new functionality within

SSMS 2017. Right-clicking within a graphical plan will open a context menu, as shown in

Figure 13-28.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

376

Figure 13-29. The Find Node interface within a graphical execution plan

Figure 13-28. Execution plan context menu showing the Find Node menu selection

What we want to do is use the Find Node command to search through the execution

plan. Clicking that menu choice will open a small window at the top of the execution

plan, which I’ve filled out in Figure 13-29.

I’ve selected the execution plan property that I’m interested in, StatsCollectionId,

and provided the value from the extended event shown in Figure 13-27. When I then

click the arrows, this will take me directly to the node that has a matching value for this

property and select it. With this, I can combine the information gathered by the extended

event with the information within the execution plan to arrive a better understanding of

how the optimizer is consuming the statistics.

Finally, in SQL Server Management Studio 2017, you can also get a listing of the

statistics that were specifically used by the optimizer to put together the execution plan.

In the first operator, in this case a SELECT operator, within the properties, you can get a

complete listing of all statistics similar to what you can see in Figure 13-30.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

377

 Enabling and Disabling the Cardinality Estimator

If you create a database in SQL Server 2014 or greater, it’s going to automatically come

with the compatibility level set to 120, or greater, which is the correct version for the

latest SQL Server. But, if you restore or attach a database from a previous version of SQL

Server, the compatibility level will be set to that version, 110 or before. That database

will then use the SQL Server 7 cardinality estimator. You can tell this by looking at the

execution plan in the first operator (SELECT/INSERT/UPDATE/DELETE) at the properties for

the CardinalityEstimationModelVersion, as shown in Figure 13-31.

Figure 13-30. Statistics in use within the execution plan generated for a query

Figure 13-31. Property in the first operator showing the cardinality estimator in use

The value shown for SQL Server 2014–2017 will correspond to the version, 120, 130,

140. That’s how you can tell what version of the cardinality estimator is in use. This is

important because since the estimates can lead to changes in execution plans, it’s really

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

378

important that you understand how to troubleshoot the issues in the event that you get a

degradation in performance caused by the new cardinality estimations.

If you suspect that you are experiencing problems from the upgrade, you should

absolutely compare your actual rows returned to the estimated rows returned in the

operations within the execution plan. That’s always a great way to determine whether

statistics or cardinality estimations are causing you issues. You should be using the

Query Store for both testing your upgrades and as part of the upgrade process (as

outlined in Chapter 11). The Query Store is the best way to capture before and after the

change in the cardinality estimation engine and the best way to deal with the individual

queries that may go wrong.

You have the option of disabling the new cardinality estimation functionality by

setting the compatibility level to 110, but that also disables other newer SQL Server

functionality, so it might not be a good choice. You can run a trace flag against the restore

of the database using OPTION (QUERYTRACEON 9481); you’ll target just the cardinality

estimator for that database. If you determine in a given query that you’re having issues

with the new cardinality estimator, you can take advantage of trace flags in the query in

the same way.

SELECT p.Name,

 p.Class

FROM Production.Product AS p

WHERE p.Color = 'Red'

 AND p.DaysToManufacture > 15

OPTION (QUERYTRACEON 9481);

Conversely, if you have turned off the cardinality estimator using the trace flag

or compatibility level, you can selectively turn it on for a given query using the same

functionality as earlier but substituting 2312 for the trace flag value.

Finally, a new function was introduced in SQL Server 2016, Database Scoped

Configuration. Among other settings (which we’ll discuss in appropriate places

throughout the book), you can disable just the cardinality estimation engine without

disabling all the modern functionality. The new syntax looks like this:

ALTER DATABASE SCOPED CONFIGURATION SET LEGACY_CARDINALITY_ESTIMATION = ON;

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

379

Using this command, you can change the behavior of the database without

changing all other behaviors. You can also use the same command to turn off the legacy

cardinality estimator. You also have the option of a USE hint on individual queries. Setting

FORCE_LEGACY_CARDINALITY_ESTIMATION inside a query hint will make that query use

the old cardinality estimation, and only that one query. This is probably the single safest

option, although it does involve code changes.

 Statistics DMOs
Prior to SQL Server 2016, the only way to get information on statistics was to use DBCC

SHOW_STATISTICS. However, a couple of new DMFs have been introduced that can be

useful. The sys.dm_db_stats_properties function returns the header information of a

set of statistics. This means you quickly pull information out of the header. For example,

use this query to retrieve when the statistics were last updated:

SELECT ddsp.object_id,

 ddsp.stats_id,

 ddsp.last_updated

FROM sys.dm_db_stats_properties(OBJECT_ID('HumanResources.Employee'),

 2) AS ddsp;

The function requires that you pass the object_id that you’re interested in and the

statistics_id for that object. In this example we look at the column statistics on the

HumanResources.Employee table.

The other function is sys.dm_db_stats_histogram. It works much the same way,

allowing us to treat the histogram of statistics as a queryable object. For example,

suppose we wanted to find a particular set of values within the histogram. Normally, you

look for the range_hi_key value and then see whether the value you’re looking for is less

than one range_high_key but greater than another. It’s entirely possible to automate this

now.

WITH histo

AS (SELECT ddsh.step_number,

 ddsh.range_high_key,

 ddsh.range_rows,

 ddsh.equal_rows,

 ddsh.average_range_rows

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

380

 FROM sys.dm_db_stats_histogram(OBJECT_ID('HumanResources.Employee'),

 1) AS ddsh),

 histojoin

AS (SELECT h1.step_number,

 h1.range_high_key,

 h2.range_high_key AS range_high_key_step1,

 h1.range_rows,

 h1.equal_rows,

 h1.average_range_rows

 FROM histo AS h1

 LEFT JOIN histo AS h2

 ON h1.step_number = h2.step_number + 1)

SELECT hj.range_high_key,

 hj.equal_rows,

 hj.average_range_rows

FROM histojoin AS hj

WHERE hj.range_high_key >= 17

 AND (hj.range_high_key_step1 < 17

 OR hj.range_high_key_step1 IS NULL);

This query will look through the statistics in question on the HumanResources.

Employee table and will find which row in the histogram would contain the value of 17.

 Statistics Maintenance
SQL Server allows a user to manually override the maintenance of statistics in an

individual database. The four main configurations controlling the automatic statistics

maintenance behavior of SQL Server are as follows:

• New statistics on columns with no index (auto create statistics)

• Updating existing statistics (auto update statistics)

• The degree of sampling used to generate statistics

• Asynchronous updating of existing statistics (auto update

statistics async)

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

381

You can control the preceding configurations at the levels of a database (all indexes

and statistics on all tables) or on a case-by-case basis on individual indexes or statistics.

The auto create statistics setting is applicable for nonindexed columns only because

SQL Server always creates statistics for an index key when the index is created. The auto

update statistics setting, and the asynchronous version, is applicable for statistics on

both indexes and statistics on columns with no index.

 Automatic Maintenance
By default, SQL Server automatically takes care of statistics. Both the auto create statistics

and auto update statistics settings are on by default. As explained previously, it is usually

better to keep these settings on. The auto update statistics async setting is off by default.

When you rebuild an index (if you choose to rebuild an index), it will create all new

statistics for that index, based on a full scan of the data (more on that coming up). This

means the rebuild process results in a very high-quality set of statistics, yet another way

Microsoft helps you maintain your statistics automatically.

However, situations arise where creating and maintaining your statistics manually

works better. For many of us, ensuring that our statistics are more up-to-date than the

automated processes makes them means a higher degree of workload predictability. We

know when and how we’re maintaining the statistics because they are under our control.

You also get to stop statistics maintenance from occurring randomly and control exactly

when they occur, as well as control the recompiles that they lead to. This helps focus the

load on your production system to nonpeak hours.

 Auto Create Statistics
The auto create statistics feature automatically creates statistics on nonindexed

columns when referred to in the WHERE clause of a query. For example, when this SELECT

statement is run against the Sales.SalesOrderHeader table on a column with no index,

statistics for the column are created:

SELECT cc.CardNumber,

 cc.ExpMonth,

 cc.ExpYear

FROM Sales.CreditCard AS cc

WHERE cc.CardType = 'Vista';

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

382

Then the auto create statistics feature (make sure it is turned back on if you have

turned it off) automatically creates statistics on column CardType. You can see this in the

Extended Events session output in Figure 13-32.

Figure 13-32. Session output with AUTO_CREATE_STATISTICS ON

The auto_stats event fires to create the new set of statistics. You can see the details

of what is happening in the statistics_list field Created: CardType. This is followed

by the loading process of the new column statistic and a statistic on one of the indexes

on the table and, finally, by the execution of the query.

 Auto Update Statistics
The auto update statistics feature automatically updates existing statistics on the indexes

and columns of a permanent table when the table is referred to in a query, provided the

statistics have been marked as out-of-date. The types of changes are action statements,

such as INSERT, UPDATE, and DELETE. The default threshold for the number of changes

depends on the number of rows in the table. It’s a fairly simple calculation.

Sqrt(1000*NumberOfRows)

This means if you had 500,000 rows in a table, then plugging that into the calculation

results in 22,360.68. You would need to add, edit, or delete that many rows in your

500,000-row table before an automatic statistics update would occur.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

383

For SQL Server 2014 and earlier, when not running under trace flag 2371, statistics

are maintained as shown in Table 13-4.

Table 13-4. Update Statistics Threshold for Number of Changes

Number of Rows Threshold for Number of Changes

0 > 1 insert

<500 > 500 changes

>500 20 percent of row changes

Row changes are counted as the number of inserts, updates, or deletes in the table.

Using a threshold reduces the frequency of the automatic update of statistics. For

example, consider the following table:

IF (SELECT OBJECT_ID('dbo.Test1')) IS NOT NULL

 DROP TABLE dbo.Test1;

CREATE TABLE dbo.Test1 (C1 INT);

CREATE INDEX ixl ON dbo.Test1 (C1);

INSERT INTO dbo.Test1 (C1)

VALUES (0);

After the nonclustered index is created, a single row is added to the table. This

outdates the existing statistics on the nonclustered index. If the following SELECT

statement is executed with a reference to the indexed column in the WHERE clause,

like so, then the auto update statistics feature automatically updates statistics on the

nonclustered index, as shown in the session output in Figure 13-33:

SELECT C1

FROM dbo.Test1

WHERE C1 = 0;

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

384

Once the statistics are updated, the change-tracking mechanisms for the

corresponding tables are set to 0. This way, SQL Server keeps track of the number of

changes to the tables and manages the frequency of automatic updates of statistics.

The new functionality of SQL Server 2016 and newer means that for larger tables,

you will get more frequent statistics updates. You’ll need to take advantage of trace flag

2371 on older versions of SQL Server to arrive at the same functionality. If automatic

updates are not occurring frequently enough, you can take direct control, discussed in

the “Manual Maintenance” section later in this chapter.

Figure 13-33. Session output with AUTO_UPDATE_STATISTICS ON

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

385

 Auto Update Statistics Asynchronously
If auto update statistics asynchronously is set to on, the basic behavior of statistics in

SQL Server isn’t changed radically. When a set of statistics is marked as out-of-date and

a query is then run against those statistics, the statistics update does not interrupt the

execution of the query, like normally happens. Instead, the query finishes execution

using the older set of statistics. Once the query completes, the statistics are updated.

The reason this may be attractive is that when statistics are updated, query plans in the

procedure cache are removed, and the query being run must be recompiled. This causes

a delay in the execution of the query. So, rather than make a query wait for both the

update of the statistics and a recompile of the procedure, the query completes its run.

The next time the same query is called, it will have updated statistics waiting for it, and it

will have to recompile only.

Although this functionality does make the steps needed to update statistics and

recompile the procedure somewhat faster, it can also cause queries that could benefit

immediately from updated statistics and a new execution plan to work with the old

execution plan. Careful testing is required before turning this functionality on to ensure

it doesn’t cause more harm than good.

Note if you are attempting to update statistics asynchronously, you must also
have AUTO_UPDATE_STATISTICS set to ON.

 Manual Maintenance
The following are situations in which you need to interfere with or assist the automatic

maintenance of statistics:

• When experimenting with statistics: Just a friendly suggestion—please

spare your production servers from experiments such as the ones you

are doing in this book.

• After upgrading from a previous version to SQL Server 2017: In earlier

versions of this book I suggested updating statistics immediately on

an upgrade to a new version of SQL Server. This was because of the

changes in statistics introduced in SQL Server 2014. It made sense to

immediately update the statistics so that you were seeing the effects

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

386

of the new cardinality estimator. With the addition of the Query Store,

I can no longer make this recommendation in the same way. Instead,

I’ll suggest that you consider it if upgrading from SQL Server 2014 to a

newer version, but even then, I wouldn’t suggest manually updating

the statistics by default. I would test it first to understand how a given

upgrade will behave.

• While executing a series of ad hoc SQL activities that you won’t execute

again: In such cases, you must decide whether you want to pay

the cost of automatic statistics maintenance to get a better plan for

that one case while affecting the performance of other SQL Server

activities. So, in general, you might not need to be concerned with

such singular events. This is mainly applicable to larger databases,

but you can test it in your environment if you think it may apply.

• When you come upon an issue with the automatic statistics

maintenance and the only workaround for the time being is to keep the

automatic statistics maintenance feature off: Even in these cases, you

can turn the feature off for the specific table that faces the problem

instead of disabling it for the complete database. Issues like this can

be found in large data sets where the data is updated a lot but not

enough to trigger the threshold update. Also, it can be used in cases

where the sampling level of the automatic updates is not adequate for

some data distributions.

• While analyzing the performance of a query, you realize that the

statistics are missing for a few of the database objects referred to by the

query: This can be evaluated from the graphical and XML execution

plans, as explained earlier in the chapter.

• While analyzing the effectiveness of statistics, you realize that they are

inaccurate: This can be determined when poor execution plans are

being created from what should be good sets of statistics.

SQL Server allows a user to control many of its automatic statistics maintenance

features. You can enable (or disable) the automatic statistics creation and update

features by using the auto create statistics and auto update statistics settings,

respectively, and then you can get your hands dirty.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

387

 Manage Statistics Settings
You can control the auto create statistics setting at a database level. To disable this

setting, use the ALTER DATABASE command.

ALTER DATABASE AdventureWorks2017 SET AUTO_CREATE_STATISTICS OFF;

You can control the auto update statistics setting at different levels of a database,

including all indexes and statistics on a table, or at the individual index or statistics level.

To disable auto update statistics at the database level, use the ALTER DATABASE command.

ALTER DATABASE AdventureWorks2017 SET AUTO_UPDATE_STATISTICS OFF;

Disabling this setting at the database level overrides individual settings at lower

levels. Auto update statistics asynchronously requires that the auto update statistics be

on first. Then you can enable the asynchronous update.

ALTER DATABASE AdventureWorks2017 SET AUTO_UPDATE_STATISTICS_ASYNC ON;

To configure auto update statistics for all indexes and statistics on a table in the

current database, use the sp_autostats system stored procedure.

USE AdventureWorks2017;

EXEC sp_autostats

 'HumanResources.Department',

 'OFF';

You can also use the same stored procedure to configure this setting for individual

indexes or statistics. To disable this setting for the AK_Department_Name index on Advent

ureWorks2017.HumanResources.Department, execute the following statements:

EXEC sp_autostats

 'HumanResources.Department',

 'OFF',

 AK_Department_Name;

You can also use the UPDATE STATISTICS command’s WITH NORECOMPUTE option to

disable this setting for all or individual indexes and statistics on a table in the current

database. The sp_createstats stored procedure also has the NORECOMPUTE option. The

NORECOMPUTE option will not disable automatic update of statistics for the database, but it

will for a given set of statistics.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

388

Avoid disabling the automatic statistics features, unless you have confirmed through

testing that this brings a performance benefit. If the automatic statistics features are

disabled, then you are responsible for manually identifying and creating missing

statistics on the columns that are not indexed and then keeping the existing statistics

up- to- date. In general, you’re only going to want to disable the automatic statistics

features for very large tables and only after you’ve carefully measured the blocking and

locking so that you know that changing statistics behavior will help.

If you want to check the status of whether a table has its automatic statistics turned

off, you can use this:

EXEC sp_autostats 'HumanResources.Department';

Reset the automatic maintenance of the index so that it is on where it has been

turned off.

EXEC sp_autostats

 'HumanResources.Department',

 'ON';

EXEC sp_autostats

 'HumanResources.Department',

 'ON',

 AK_Department_Name;

 Generate Statistics
To create statistics manually, use one of the following options:

• CREATE STATISTICS: You can use this option to create statistics on single

or multiple columns of a table or an indexed view. Unlike the CREATE

INDEX command, CREATE STATISTICS uses sampling by default.

• sys.sp_createstats: Use this stored procedure to create

single- column statistics for all eligible columns for all user tables in

the current database. This includes all columns except computed

columns; columns with the NTEXT, TEXT, GEOMETRY, GEOGRAPHY, or

IMAGE data type; sparse columns; and columns that already have

statistics or are the first column of an index. This function is meant

for backward compatibility, and I don’t recommend using it.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

389

While a statistics object is created for a columnstore index, the values inside that

index are null. Individual columns on a columnstore index can have the regular

system- generated statistics created against them. When dealing with a columnstore

index, if you find that you’re still referencing the individual columns, you may find, in

some situations, that creating a multicolumn statistic is useful. An example would look

like this:

CREATE STATISTICS MultiColumnExample

ON dbo.bigProduct (ProductNumber,

 Name);

With the exception of the individual column statistics and any that you create, there is

no need to worry about the automatically created index statistic on a columnstore index.

If you partition a columnstore index (partitioning is not a performance enhancement

tool, it’s a data management tool), you’ll need to change your statistics to be incremental

using the following command to ensure that statistics updates are only by partition:

UPDATE STATISTICS dbo.bigProduct WITH RESAMPLE, INCREMENTAL=ON;

To update statistics manually, use one of the following options:

• UPDATE STATISTICS: You can use this option to update the statistics

of individual or all index keys and nonindexed columns of a table or

an indexed view.

• sys.sp_updatestats: Use this stored procedure to update statistics of

all user tables in the current database. However, note that it can only

sample the statistics, not use FULLSCAN, and it will update statistics

when only a single action has been performed on that statistics. In

short, this is a rather blunt instrument for maintaining statistics.

You may find that allowing the automatic updating of statistics is not quite adequate

for your system. Scheduling UPDATE STATISTICS for the database during off-hours is an

acceptable way to deal with this issue. UPDATE STATISTICS is the preferred mechanism

because it offers a greater degree of flexibility and control. It’s possible, because of

the types of data inserted, that the sampling method for gathering the statistics, used

because it’s faster, may not gather the appropriate data. In these cases, you can force

a FULLSCAN so that all the data is used to update the statistics just like what happens

when the statistics are initially created. This can be a costly operation, so it’s best to be

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

390

selective about which indexes receive this treatment and when it is run. In addition, if

you do set sampling rates for your statistics rebuilds, including FULLSCAN, you should use

PERSIST_SAMPLE_PERCENT to ensure that any automated processes that fire will use the

same sampling rate.

Note in general, you should always use the default settings for automatic
statistics. Consider modifying these settings only after identifying that the default
settings appear to detract from performance.

 Statistics Maintenance Status
You can verify the current settings for the autostats feature using the following:

• sys.databases

• DATABASEPROPERTYEX

• sp_autostats

 Status of Auto Create Statistics
You can verify the current setting for auto create statistics by running a query against the

sys.databases system table.

SELECT is_auto_create_stats_on

FROM sys.databases

WHERE [name] = 'AdventureWorks2017';

A return value of 1 means enabled, and a value of 0 means disabled.

You can also verify the status of specific indexes using the sp_autostats system

stored procedure, as shown in the following code. Supplying any table name to the

stored procedure will provide the configuration value of auto create statistics for the

current database under the Output section of the global statistics settings.

USE AdventureWorks2017;

EXEC sys.sp_autostats 'HumanResources.Department';

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

391

Figure 13-34 shows an excerpt of the preceding sp_autostats statement’s output.

A return value of ON means enabled, and a value of OFF means disabled. This stored

procedure is more useful when verifying the status of auto update statistics, as explained

earlier in this chapter.

You can also verify the current setting for auto update statistics, and auto update

statistics asynchronously, in a similar manner to auto create statistics. Here’s how to do it

using the function DATABASEPROPERTYEX:

SELECT DATABASEPROPERTYEX('AdventureWorks2017', 'IsAutoUpdateStatistics');

Here’s how to do it using sp_autostats:

USE AdventureWorks2017;

EXEC sp_autostats

 'Sales.SalesOrderDetail';

 Analyzing the Effectiveness of Statistics for a Query
For performance reasons, it is extremely important to maintain proper statistics on your

database objects. Issues with statistics can be fairly common. You need to keep your eyes

open to the possibility of problems with statistics while analyzing the performance of a

query. If an issue with statistics does arise, then it can really take you for a ride. In fact,

checking that the statistics are up-to-date at the beginning of a query-tuning session

eliminates an easily fixed problem. In this section, you’ll see what you can do should you

find statistics to be missing or out-of-date.

Figure 13-34. sp_autostats output

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

392

While analyzing an execution plan for a query, look for the following points to ensure

a cost-effective processing strategy:

• Indexes are available on the columns referred to in the filter and

join criteria.

• In the case of a missing index, statistics should be available on the

columns with no index. It may be preferable to have the index itself.

• Since outdated statistics are of no use and can even be misleading,

it is important that the estimates used by the optimizer from the

statistics are up-to-date.

You analyzed the use of a proper index in Chapter 9. In this section, you will analyze

the effectiveness of statistics for a query.

 Resolving a Missing Statistics Issue
To see how to identify and resolve a missing statistics issue, consider the following

example. To more directly control the data, I’ll use a test table instead of one of the

AdventureWorks2017 tables. First disable both auto create statistics and auto update

statistics using the ALTER DATABASE command.

ALTER DATABASE AdventureWorks2017 SET AUTO_CREATE_STATISTICS OFF;

ALTER DATABASE AdventureWorks2017 SET AUTO_UPDATE_STATISTICS OFF;

Create a test table with a large number of rows and a nonclustered index.

IF EXISTS (SELECT *

 FROM sys.objects

 WHERE object_id = OBJECT_ID(N'dbo.Test1'))

 DROP TABLE dbo.Test1;

GO

CREATE TABLE dbo.Test1 (C1 INT,

 C2 INT,

 C3 CHAR(50));

INSERT INTO dbo.Test1 (C1,

 C2,

 C3)

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

393

VALUES (51, 1, 'C3'),

 (52, 1, 'C3');

CREATE NONCLUSTERED INDEX iFirstIndex ON dbo.Test1 (C1, C2);

SELECT TOP 10000

 IDENTITY(INT, 1, 1) AS n

INTO #Nums

FROM master.dbo.syscolumns AS scl,

 master.dbo.syscolumns AS sC2;

INSERT INTO dbo.Test1 (C1,

 C2,

 C3)

SELECT n % 50,

 n,

 'C3'

FROM #Nums;

DROP TABLE #Nums;

Since the index is created on (C1, C2), the statistics on the index contain a histogram

for the first column, C1, and density values for the prefixed column combinations (C1 and

C1 * C2). There are no histograms or density values alone for column C2.

To understand how to identify missing statistics on a column with no index,

execute the following SELECT statement. Since the auto create statistics feature is off, the

optimizer won’t be able to find the data distribution for the column C2 used in the WHERE

clause. Before executing the query, ensure you have enabled Include Actual Execution

Plan by clicking the query toolbar or hitting Ctrl+M.

SELECT *

FROM dbo.Test1

WHERE C2 = 1;

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

394

The information on missing statistics is also provided by the graphical execution

plan, as shown in Figure 13-35.

The graphical execution plan shows an operator with the yellow exclamation point.

This indicates some problem with the operator in question. You can obtain a detailed

description of the warning by right-clicking the Table Scan operator and then selecting

Properties from the context menu. There’s a warning section in the properties page that

you can drill into, as shown in Figure 13-36.

Figure 13-35. Missing statistics indication in a graphical plan

Figure 13-36. Property values from the warning in the Index Scan operator

Figure 13-36 shows that the statistics for the column are missing. This may prevent

the optimizer from selecting the best processing strategy. The current cost of this query,

as recorded by Extended Events is 100 reads and 850mc on average.

To resolve this missing statistics issue, you can create the statistics on column

Test1.C2 by using the CREATE STATISTICS statement.

CREATE STATISTICS Stats1 ON Test1(C2);

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

395

Before rerunning the query, be sure to clean out the procedure cache because this

query will benefit from simple parameterization.

DECLARE @Planhandle VARBINARY(64);

SELECT @Planhandle = deqs.plan_handle

FROM sys.dm_exec_query_stats AS deqs

 CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest

WHERE dest.text LIKE '%SELECT *

FROM dbo.Test1

WHERE C2 = 1;%'

IF @Planhandle IS NOT NULL

BEGIN

 DBCC FREEPROCCACHE(@Planhandle);

END

GO

Caution When running the previous query on a production system, using the
LIKE '%...%' wildcards can be inefficient. looking for a specific string can be a
more accurate way to remove a single query from the plan cache.

Figure 13-37 shows the resultant execution plan with statistics created on column C2.

Reads: 34

Duration: 4.3 ms.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

396

The query optimizer uses statistics on a noninitial column in a composite index

to determine whether scanning the leaf level of the composite index to obtain the RID

lookup information will be a more efficient processing strategy than scanning the whole

table. In this case, creating statistics on column C2 allows the optimizer to determine

that instead of scanning the base table, it will be less costly to scan the composite

index on (C1, C2) and bookmark lookup to the base table for the few matching rows.

Consequently, the number of logical reads has decreased from 100 to 34, but the elapsed

time has increased significantly because of the extra processing needed to join the data

from two different operators.

 Resolving an Outdated Statistics Issue
Sometimes outdated or incorrect statistics can be more damaging than missing statistics.

Based on old statistics or a partial scan of changed data, the optimizer may decide upon

a particular indexing strategy, which may be highly inappropriate for the current data

distribution. Unfortunately, the execution plans don’t show the same glaring warnings

for outdated or incorrect statistics as they do for missing statistics. However, there is an

extended event called inaccurate_cardinality_estimate. This is a debug event, which

means its use could be somewhat problematic on a production system. I strongly caution

you in its use, only when properly filtered and only for short periods of time, but I want

to point it out. Instead, take advantage of Showplan Analysis detailed in Chapter 7.

Figure 13-37. Execution plan with statistics in place

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

397

The more traditional, and safer, approach to identify outdated statistics is to examine

how close the optimizer’s estimation of the number of rows affected is to the actual

number of rows affected.

The following example shows you how to identify and resolve an outdated statistics

issue. Figure 13-38 shows the statistics on the nonclustered index key on column C1

provided by DBCC SHOW_STATISTICS.

DBCC SHOW_STATISTICS (Test1, iFirstIndex);

Figure 13-38. Statistics on index FirstIndex

These results say that the density value for column C1 is 0.5. Now consider the

following SELECT statement:

SELECT *

FROM dbo.Test1

WHERE C1 = 51;

Since the total number of rows in the table is currently 10,002, the number of

matching rows for the filter criteria C1 = 51 can be estimated to be 5,001 (= 0.5 × 10,002).

This estimated number of rows (5,001) is way off the actual number of matching rows for

this column value. The table actually contains only one row for C1 = 51.

You can get the information on both the estimated and actual number of rows from

the execution plan. An estimated plan refers to and uses the statistics only, not the actual

data. This means it can be wildly different from the real data, as you’re seeing now. The

actual execution plan, on the other hand, has both the estimated and actual numbers of

rows available.

Executing the query results in the execution plan in Figure 13-39 and the following

performance:

Reads: 100

Duration: 681 mc

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

398

To see the estimated and actual rows, you can view the properties of the Table Scan

operator (Figure 13-40).

Figure 13-39. Execution plan with outdated statistics

Figure 13-40. Properties showing row count discrepancy

From the estimated rows value versus the actual rows value, it’s clear that the

optimizer made an incorrect estimation based on out-of-date statistics. If the difference

between the estimated rows and actual rows is more than a factor of 10, then it’s quite

possible that the processing strategy chosen may not be very cost-effective for the

current data distribution. An inaccurate estimation may misguide the optimizer in

deciding the processing strategy. Statistics can be off for a number of reasons. Table

variables and multistatement user-defined functions don’t have statistics at all, so all

estimates for these objects assume a single row, without regard to how many rows are

actually involved with the objects.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

399

We can also use the Showplan Analysis feature to see the Inaccurate Cardinality

Estimation report. Right-click an actual plan and select Analyze Actual Execution Plan

from the context menu. When the analysis window opens, select the Scenarios tab. For

the previous plan, you’ll see something like Figure 13-41.

Figure 13-41. Inaccurate Cardinality Estimation report showing the difference
between actual and estimated

To help the optimizer make an accurate estimation, you should update the statistics

on the nonclustered index key on column C1 (alternatively, of course, you can just leave

the auto update statistics feature on).

UPDATE STATISTICS Test1 iFirstIndex WITH FULLSCAN;

A FULLSCAN might not be needed here. The sampled method of statistics creation is

usually fairly accurate and is much faster. But, on systems that aren’t experiencing stress,

or during off-hours, I tend to favor using FULLSCAN because of the improved accuracy.

Either approach is valid as long as you’re getting the statistics you need.

If you run the query again, you’ll get the following statistics, and the resultant output

is as shown in Figure 13-42:

Reads: 4

Duration: 184mc

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

400

The optimizer accurately estimated the number of rows using updated statistics

and consequently was able to come up with a more efficient plan. Since the estimated

number of rows is 1, it makes sense to retrieve the row through the nonclustered index

on C1 instead of scanning the base table.

Updated, accurate statistics on the index key column help the optimizer

come to a better decision on the processing strategy and thereby reduce the number of

logical reads from 84 to 4 and reduce the execution time from 16ms to -0ms (there is a

-4ms lag time).

Before continuing, turn the statistics back on for the database.

ALTER DATABASE AdventureWorks2017 SET AUTO_CREATE_STATISTICS ON;

ALTER DATABASE AdventureWorks2017 SET AUTO_UPDATE_STATISTICS ON;

 Recommendations
Throughout this chapter, I covered various recommendations for statistics. For easy

reference, I’ve consolidated and expanded upon these recommendations in the sections

that follow.

 Backward Compatibility of Statistics
Statistical information in SQL Server 2014 and greater can be generated differently from

that in previous versions of SQL Server. SQL Server transfers the statistics during upgrade

and, by default, automatically updates these statistics over time as the data changes.

Figure 13-42. Actual and estimated number of rows with up-to-date statistics

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

401

The best approach is to follow the directions outlined in Chapter 10 on the Query Store

and let the statistics update over time.

 Auto Create Statistics
This feature should usually be left on. With the default setting, during the creation of an

execution plan, SQL Server determines whether statistics on a nonindexed column will

be useful. If this is deemed beneficial, SQL Server creates statistics on the nonindexed

column. However, if you plan to create statistics on nonindexed columns manually, then

you have to identify exactly for which nonindexed columns statistics will be beneficial.

 Auto Update Statistics
This feature should usually be left on, allowing SQL Server to decide on the appropriate

execution plan as the data distribution changes over time. Usually the performance

benefit provided by this feature outweighs the cost overhead. You will seldom need

to interfere with the automatic maintenance of statistics, and such requirements are

usually identified while troubleshooting or analyzing performance. To ensure that you

aren’t facing surprises from the automatic statistics features, it’s important to analyze the

effectiveness of statistics while diagnosing SQL Server issues.

Unfortunately, if you come across an issue with the auto update statistics feature

and have to turn it off, make sure to create a SQL Server job to update the statistics and

schedule it to run at regular intervals. For performance reasons, where possible, ensure

that the SQL job is scheduled to run during off-peak hours.

One of the best approaches to statistics maintenance is to run the scripts developed

and maintained by Ola Holengren (http://bit.ly/JijaNI).

 Automatic Update Statistics Asynchronously
Waiting for statistics to be updated before plan generation, which is the default behavior,

will be just fine in most cases. In the rare circumstances where the statistics update or

the execution plan recompiles resulting from that update are expensive (more expensive

than the cost of out-of-date statistics), then you can turn on the asynchronous update

of statistics. Just understand that it may mean that procedures that would benefit from

more up-to-date statistics will suffer until the next time they are run. Don’t forget—you

do need automatic update of statistics enabled to enable the asynchronous updates.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

http://bit.ly/JijaNI

402

 Amount of Sampling to Collect Statistics
It is generally recommended that you use the default sampling rate. This rate is decided

by an efficient algorithm based on the data size and number of modifications. Although

the default sampling rate turns out to be best in most cases, if for a particular query

you find that the statistics are not very accurate or missing critical data distributions,

then you can manually update them with FULLSCAN. You also have the option of setting

a specific sample percentage using the SAMPLE number. The number can be either a

percentage or a set number of rows.

If this is required repeatedly, then you can add a SQL Server job to take care of it. For

performance reasons, ensure that the SQL job is scheduled to run during off-peak hours.

To identify cases in which the default sampling rate doesn’t turn out to be the best,

analyze the statistics effectiveness for costly queries while troubleshooting the database

performance. Remember that FULLSCAN is expensive, so you should run it only on those

tables or indexes that you’ve determined will really benefit from it.

 Summary
As discussed in this chapter, SQL Server’s cost-based optimizer requires accurate

statistics on columns used in filter and join criteria to determine an efficient processing

strategy. Statistics on an index key are always created during the creation of the index,

and, by default, SQL Server also keeps the statistics on indexed and nonindexed columns

updated as the data changes. This enables it to determine the best processing strategies

applicable to the current data distribution.

Even though you can disable both the auto create statistics and auto update statistics

features, it is recommended that you leave these features on, since their benefit to the

optimizer is almost always more than their overhead cost. For a costly query, analyze

the statistics to ensure that the automatic statistics maintenance lives up to its promise.

The best news is that you can rest easy with a little vigilance since automatic statistics do

their job well most of the time. If manual statistics maintenance procedures are used,

then you can use SQL Server jobs to automate these procedures.

Even with proper indexes and statistics in place, a heavily fragmented database

can incur an increased data retrieval cost. In the next chapter, you will see how

fragmentation in an index can affect query performance, and you’ll learn how to analyze

and resolve fragmentation where needed.

Chapter 13 StatiStiCS, Data DiStribution, anD CarDinality

www.EBooksWorld.ir

403
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_14

CHAPTER 14

Index Fragmentation
As explained in Chapter 8, rowstore index column values are stored in the leaf pages of

an index’s B-tree structure. Columnstore indexes are also stored in pages, but not within

a B-tree structure. When you create an index (clustered or nonclustered) on a table, the

cost of data retrieval is reduced by properly ordering the leaf pages of the index and the

rows within the leaf pages, whereas a columnstore has the data pivoted into columns

and then compressed, again with the intent of assisting in data retrieval. In an OLTP

database, data changes continually, causing fragmentation of the indexes. As a result,

the number of reads required to return the same number of rows increases over time. A

similar situation occurs with the columnstore as data is moved from the deltastore to the

segmented storage areas. Both these situations can lead to performance degradation.

In this chapter, I cover the following topics:

• The causes of index fragmentation, including an analysis of page

splits caused by INSERT and UPDATE statements

• The causes of columnstore index fragmentation

• The overhead costs associated with fragmentation

• How to analyze the amount of fragmentation in rowstore and

columnstore indexes

• Techniques used to resolve fragmentation

• The significance of the fill factor in helping to control fragmentation

in the rowstore indexes

• How to automate the fragmentation analysis process

www.EBooksWorld.ir

404

 Discussion on Fragmentation
There is currently a lot of discussion in the data platform community as to the extent that

fragmentation is any kind of an issue at all. Before we get into the full discussion of what

fragmentation is, how it may affect your queries, and how you can deal with it if it does,

we should immediately address this question: should you defragment your indexes?

I have decided to put this discussion ahead of all the details of how fragmentation

works, so if that’s still a mystery, please skip this section and go straight to “Causes of

Fragmentation.”

When your indexes and tables are fragmented, they do take up more space, meaning

more pages. This spreads them across the disk in different ways depending on the type of

index. When dealing with a fragmented index and a point lookup, or a very limited range

scan, the fragmentation won’t affect performance at all. When dealing with a fragmented

index and large scans, having to move through more pages on the disk certainly impacts

performance. Taken from this point, you could simply defragment your indexes only if

you have lots of scans and large data movement.

However, there’s more to it. Defragmentation itself puts a load on the system,

causing blocking and additional work that affects the performance of the system. Then,

your indexes start the process of fragmenting again, including page splits and row

rearrangement, again causing performance headaches. A strong argument can be made

that allowing the system to find an equilibrium where the pages are empty enough that

the splits stop (or are radically reduced) will achieve better overall performance. This is

because instead of stressing the system to rebuild the indexes and then suffering through

all the page splits as the indexes shift again, you just reduce the page splits. You’re still

dealing with slower scans, but with modern disk subsystems, this is not as much of a

headache.

With all this in mind, I lean heavily toward the “stop defragmenting your indexes”

camp. As long as you set an appropriate fill factor, you should see radical reductions in

page split activity. However, your best bet is to use the tools outlined in this chapter to

monitor your system. Chances are high all of us are in a mixed mode where some tables

and indexes need to be defragmented and others should be left alone. It all comes down

to the behavior of your system.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

405

 Causes of Fragmentation
Fragmentation occurs when data is modified in a table. This is true of both rowstore and

columnstore indexes. When you add or remove data in a table (via INSERT or DELETE),

the table’s corresponding clustered indexes and the affected nonclustered indexes are

modified. The two types of indexes, rowstore and columnstore, vary a little from this

point. We’ll address them one at a time starting with the rowstore.

 Data Modification and the Rowstore Indexes
Modifying data through INSERT, UPDATE, or MERGE can cause an index leaf page split if

the modification to an index can’t be accommodated in the same page. Removing data

through DELETE simply leaves gaps in the existing pages. When a page split occurs, a

new leaf page will then be added that contains part of the original page and maintains

the logical order of the rows in the index key. Although the new leaf page maintains

the logical order of the data rows in the original page, this new page usually won’t be

physically adjacent to the original page on the disk. Put a slightly different way, the

logical key order of the index doesn’t match the physical order within the file.

For example, suppose an index has nine key values (or index rows) and the average

size of the index rows allows a maximum of four index rows in a leaf page. As explained

in Chapter 9, the 8KB leaf pages are connected to the previous and next leaf pages to

maintain the logical order of the index. Figure 14-1 illustrates the layout of the leaf pages

for the index.

Figure 14-1. Leaf pages layout

Since the index key values in the leaf pages are always sorted, a new index row with a

key value of 25 has to occupy a place between the existing key values 20 and 30. Because

the leaf page containing these existing index key values is full with the four index rows,

the new index row will cause the corresponding leaf page to split. A new leaf page will be

assigned to the index, and part of the first leaf page will be moved to this new leaf page so

that the new index key can be inserted in the correct logical order. The links between the

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

406

index pages will also be updated so that the pages are logically connected in the order

of the index. As shown in Figure 14-2, the new leaf page, even though linked to the other

pages in the correct logical order, can be physically out of order.

Figure 14-2. Out-of-order leaf pages

The pages are grouped together in bigger units called extents, which can contain

eight pages. SQL Server uses an extent as a physical unit of allocation on the disk. Ideally,

the physical order of the extents containing the leaf pages of an index should be the same

as the logical order of the index. This reduces the number of switches required between

extents when retrieving a range of index rows. However, page splits can physically

disorder the pages within the extents, and they can also physically disorder the extents

themselves. For example, suppose the first two leaf pages of the index are in extent 1,

and say the third leaf page is in extent 2. If extent 2 contains free space, then the new

leaf page allocated to the index because of the page split will be in extent 2, as shown in

Figure 14-3.

Figure 14-3. Out-of-order leaf pages distributed across extents

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

407

With the leaf pages distributed between two extents, ideally you expect to read a

range of index rows with a maximum of one switch between the two extents. However, the

disorganization of pages between the extents can cause more than one extent switch while

retrieving a range of index rows. For example, to retrieve a range of index rows between 25

and 90, you will need three extent switches between the two extents, as follows:

• First extent switch to retrieve the key value 30 after the key value 25

• Second extent switch to retrieve the key value 50 after the key value 40

• Third extent switch to retrieve the key value 90 after the key value 80

This type of fragmentation is called external fragmentation. External fragmentation

can be undesirable.

Fragmentation can also happen within an index page. If an INSERT or UPDATE

operation creates a page split, then free space will be left behind in the original leaf

page. Free space can also be caused by a DELETE operation. The net effect is to reduce

the number of rows included in a leaf page. For example, in Figure 14-3, the page split

caused by the INSERT operation has created an empty space within the first leaf page.

This is known as internal fragmentation.

For a highly transactional database, it is desirable to deliberately leave some free

space within your leaf pages so that you can add new rows, or change the size of existing

rows, without causing a page split. In Figure 14-3, the free space within the first leaf page

allows an index key value of 26 to be added to the leaf page without causing a page split.

Note note that this index fragmentation is different from disk fragmentation. the
index fragmentation cannot be fixed simply by running the disk defragmentation
tool because the order of pages within a SQL Server file is understood only by SQL
Server, not by the operating system.

Heap pages can become fragmented in the same way. Unfortunately, because of how

heaps are stored and how any nonclustered indexes use the physical data location for

retrieving data from the heap, defragmenting heaps is quite problematic. You can use the

REBUILD command of ALTER TABLE to perform a heap rebuild, but understand that you

will force a rebuild of any nonclustered indexes associated with that table.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

408

SQL Server 2017 exposes the leaf and nonleaf pages and other data through a

dynamic management view called sys.dm_db_index_physical_stats. It stores both the

index size and the fragmentation. I’ll cover it in more detail in the next section. The DMV

is much easier to work with than the old DBCC SHOWCONTIG.

Let’s now take a look at the mechanics of fragmentation.

 Page Split by an UPDATE Statement

To show what happens when a page split is caused by an UPDATE statement, I’ll use a

constructed table. This small test table will have a clustered index, which orders the rows

within one leaf (or data) page as follows:

USE AdventureWorks2017;

GO

DROP TABLE IF EXISTS dbo.Test1;

GO

CREATE TABLE dbo.Test1 (C1 INT,

 C2 CHAR(999),

 C3 VARCHAR(10))

INSERT INTO dbo.Test1

VALUES (100, 'C2', "),

 (200, 'C2', "),

 (300, 'C2', "),

 (400, 'C2', "),

 (500, 'C2', "),

 (600, 'C2', "),

 (700, 'C2', "),

 (800, 'C2', ");

CREATE CLUSTERED INDEX iClust ON dbo.Test1 (C1);

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

409

The average size of a row in the clustered index leaf page (excluding internal

overhead) is not just the sum of the average size of the clustered index columns; it’s the

sum of the average size of all the columns in the table since the leaf page of the clustered

index and the data page of the table are the same. Therefore, the average size of a row in

the clustered index based on the previous sample data is as follows:

= (Average size of [C1]) + (Average size of [C2]) + (Average size of [C3])

bytes = (Size of INT) + (Size of CHAR(999)) + (Average size of data in

[C3]) bytes

= 4 + 999 + 0 = 1,003 bytes

The maximum size of a row in SQL Server is 8,060 bytes. Therefore, if the internal

overhead is not very high, all eight rows can be accommodated in a single 8KB page.

To determine the number of leaf pages assigned to the iClust clustered index,

execute the SELECT statement against sys.dm_db_index_physical_stats.

SELECT ddips.avg_fragmentation_in_percent,

 ddips.fragment_count,

 ddips.page_count,

 ddips.avg_page_space_used_in_percent,

 ddips.record_count,

 ddips.avg_record_size_in_bytes

FROM sys.dm_db_index_physical_stats(DB_ID('AdventureWorks2017'),

 OBJECT_ID(N'dbo.Test1'),

 NULL,

 NULL,

 'Sampled') AS ddips;

You can see the results of this query in Figure 14-4.

Figure 14-4. Physical layout of index iClust

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

410

From the page_count column in this output, you can see that the number of pages

assigned to the clustered index is 1. You can also see the average space used, 100, in

the avg_ page_space_used_in_percent column. From this you can infer that the page

has no free space left to expand the content of C3, which is of type VARCHAR(10) and is

currently empty.

Note I’ll analyze more of the information provided by sys.dm_db_index_
physical_stats in the “analyzing the amount of Fragmentation” section later in
this chapter.

Therefore, if you attempt to expand the content of column C3 for one of the rows as

follows, it should cause a page split:

UPDATE dbo.Test1

SET C3 = 'Add data'

WHERE C1 = 200;

Selecting the data from sys.dm_db_index_physical_stats results in the information

in Figure 14-5.

Figure 14-5. i1 index after a data update

From the output in Figure 14-5, you can see that SQL Server has added a new page to

the index. On a page split, SQL Server generally moves half the total number of rows in

the original page to the new page. Therefore, the rows in the two pages are distributed as

shown in Figure 14-6.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

411

From the preceding tables, you can see that the page split caused by the UPDATE

statement results in an internal fragmentation of data in the leaf pages. If the new leaf

page can’t be written physically next to the original leaf page, there will be external

fragmentation as well. For a large table with a high amount of fragmentation, a larger

number of leaf pages will be required to hold all the index rows.

Another way to look at the distribution of pages is to use some less thoroughly

documented DBCC commands. First up, you can look at the pages in the table using DBCC IND.

DBCC IND(AdventureWorks2017, 'dbo.Test1', -1);

Figure 14-6. Page split caused by an UPDATE statement

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

412

This command lists the pages that make up a table. You get output like in Figure 14- 7.

Figure 14-7. Output from DBCC IND showing two pages

If you focus on the PageType, you can see that there are now two pages of

PageType = 1, which is a data page. There are other columns in the output that also

show how the pages are linked together.

To see the resultant distribution of rows shown in the previous pages, you can add a

trailing row to each page.

INSERT INTO dbo.Test1

VALUES (410, 'C4', "),

 (900, 'C4', ");

These new rows are accommodated in the existing two leaf pages without causing

a page split. You can confirm this by querying the other mechanism for looking at page

information, DBCC PAGE. To call this, you’ll need to get the PagePID from the output of

DBCC IND. This will enable you to pull back a full dump of everything on a page.

DBCC TRACEON(3604);

DBCC PAGE('AdventureWorks2017',1,24256,3);

The output from this is involved to interpret, but if you scroll down to the bottom,

you can see the output, as shown in Figure 14-8.

Figure 14-8. Pages after adding more rows

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

413

On the right side of the screen, you can see the output from the memory dump, a

value, C4. That was added by the previous data. Both rows were added to one page in my

tests. Getting into a full explanation of all possible permutations of these two DBCC calls

is far beyond the scope of this chapter. Know that you can determine which page data is

stored on for any given table.

 Page Split by an INSERT Statement

To understand how a page split can be caused by an INSERT statement, create the same

test table as you did previously, with the eight initial rows and the clustered index. Since

the single index leaf page is completely filled, any attempt to add an intermediate row as

follows should cause a page split in the leaf page:

INSERT INTO Test1

VALUES (110, 'C2', ");

You can verify this by examining the output of sys.dm_db_index_physical_stats

(Figure 14-9).

Figure 14-9. Pages after insert

As explained previously, half the rows from the original leaf page are moved to the

new page. Once space is cleared in the original leaf page, the new row is added in the

appropriate order to the original leaf page. Be aware that a row is associated with only

one page; it cannot span multiple pages. Figure 14-10 shows the resultant distribution of

rows in the two pages.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

414

From the previous index pages, you can see that the page split caused by the

INSERT statement spreads the rows sparsely across the leaf pages, causing internal

fragmentation. It often causes external fragmentation also, since the new leaf page may

not be physically adjacent to the original page. For a large table with a high amount

of fragmentation, the page splits caused by the INSERT statement will require a larger

number of leaf pages to accommodate all the index rows.

To demonstrate the row distribution shown in the index pages, you can run the script

to create dbo.Test1 again, adding more rows to the pages.

INSERT INTO dbo.Test1

VALUES (410, 'C4', "),

 (900, 'C4', ");

Figure 14-10. Page split caused by an INSERT statement

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

415

The result is the same as for the previous example: these new rows can be

accommodated in the two existing leaf pages without causing any page split. You can

validate that by calling DBCC IND and DBCC PAGE. Note that in the first page, new rows

are added in between the other rows in the page. This won’t cause a page split since free

space is available in the page.

What about when you have to add rows to the trailing end of an index? In this case,

even if a new page is required, it won’t split any existing page. For example, adding a new

row with C1 equal to 1,300 will require a new page, but it won’t cause a page split since

the row isn’t added in an intermediate position. Therefore, if new rows are added in

the order of the clustered index, then the index rows will be always added at the trailing

end of the index, preventing the page splits otherwise caused by the INSERT statements.

However, you’ll also get what is called a hot page in this scenario. A hot page is when

all the inserts are trying to write to a single page in the database leading to blocking.

Depending on your system and the load on it, this can be much more problematic

than page splits, so be sure to monitor your wait statistics to know how your system is

behaving.

 Data Modification and the Columnstore Indexes
Like the rowstore indexes, columnstore indexes can also suffer from fragmentation.

When a columnstore index is first loaded, assuming at least 102,400 rows, the data

is stored into the compressed column segments that make up a columnstore index.

Anything less than 102,400 rows is stored in the deltastore, which if you remember from

Chapter 9, is just a regular B-tree index. The data stored in the compressed column

segments is not fragmented. To avoid fragmentation over time, where possible, all the

changes are stored in the deltastore precisely to avoid fragmenting the compressed

column segments. All changes, updates, and deletes, until an index is reorganized or

rebuilt, are stored in the deltastore as logical changes. By logical changes I mean that

for a delete, the data is marked as deleted, but it is not removed. For an update, the old

values are marked as deleted and new values are added. While a columnstore doesn’t

fragment in the same way, as a page split, these logical deletes represent fragmentation

of the columnstore index. The more of them there are, the more logically fragmented

that index. Eventually, you’ll need to fix it.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

416

To see the fragmentation in action, I’m going to use the large columnstore tables

I created in Chapter 9. Here I’m going to modify one of the tables to make it into a

clustered columnstore index:

ALTER TABLE dbo.bigTransactionHistory

DROP CONSTRAINT pk_bigTransactionHistory

CREATE CLUSTERED COLUMNSTORE INDEX cci_bigTransactionHistory

ON dbo.bigTransactionHistory;

To see the logical fragmentation within a clustered columnstore index, we’re going to

look at the system view sys.column_store_row_groups in a query like this:

SELECT OBJECT_NAME(i.object_id) AS TableName,

 i.name AS IndexName,

 i.type_desc,

 csrg.partition_number,

 csrg.row_group_id,

 csrg.delta_store_hobt_id,

 csrg.state_description,

 csrg.total_rows,

 csrg.deleted_rows,

 100 * (total_rows - ISNULL(deleted_rows,

 0)) / total_rows AS PercentFull

FROM sys.indexes AS i

 JOIN sys.column_store_row_groups AS csrg

 ON i.object_id = csrg.object_id

 AND i.index_id = csrg.index_id

WHERE name = 'cci_bigTransactionHistory'

ORDER BY OBJECT_NAME(i.object_id),

 i.name,

 row_group_id;

With a new index on dbo.bigTransactionHistory, we can anticipate no logical

fragmentation caused by deleted rows. You can see this if you run the previous query.

It will show 31 row groups with zero rows deleted on any of them. You will see some

rowgroups that have less than the max value. It’s not a problem; it’s just an artifact of the

data load. Let’s delete a few rows.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

417

DELETE dbo.bigTransactionHistory

WHERE Quantity = 13;

Now when we run the previous query, we can see the logical fragmentation of the

columnstore index, as shown in Figure 14-11.

Figure 14-11. Fragmentation of a clustered columnstore index

You can see that all the rowgroups were affected by the DELETE operation and are

now fragmented between 98 percent and 99 percent.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

418

 Fragmentation Overhead
Fragmentation overhead primarily consists of the additional overhead caused by reading

more pages from disk. Reading more pages from disk means reading more pages into

memory. Both of these cause strain on the system because you’re using more and more

resources to deal with the fragmented storeage of the index. As I stated earlier in the

opening Discussion on Fragmentation, for some systems, this may not be an issue.

However, for some systems it is. We’ll discuss the details of exactly where the load comes

from in both rowstore and columnstore indexes in some detail.

 Rowstore Overhead
Both internal and external fragmentation adversely affect data retrieval performance.

External fragmentation causes a noncontiguous sequence of index pages on the disk,

with new leaf pages far from the original leaf pages and with their physical ordering

different from their logical ordering. Consequently, a range scan on an index will need

more switches between the corresponding extents than ideally required, as explained

earlier in the chapter. Also, a range scan on an index will be unable to benefit from read-

ahead operations performed on the disk. If the pages are arranged contiguously, then a

read-ahead operation can read pages in advance without much head movement.

For better performance, it is preferable to use sequential I/O, since this can read

a whole extent (eight 8KB pages together) in a single disk I/O operation. By contrast,

a noncontiguous layout of pages requires nonsequential or random I/O operations to

retrieve the index pages from the disk, and a random I/O operation can read only 8KB

of data in a single disk operation (this may be acceptable, however, if you are retrieving

only one row). The increasing speed of hard drives, especially SSDs, has reduced the

impact of this issue, but it’s still there in some situations.

In the case of internal fragmentation, rows are distributed sparsely across a large number

of pages, increasing the number of disk I/O operations required to read the index pages into

memory and increasing the number of logical reads required to retrieve multiple index rows

from memory. As mentioned earlier, even though it increases the cost of data retrieval, a little

internal fragmentation can be beneficial because it allows you to perform INSERT and UPDATE

queries without causing page splits. For queries that don’t have to traverse a series of pages

to retrieve the data, fragmentation can have minimal impact. Put another way, retrieving a

single value from the index won’t be impacted by the fragmentation; or, at most, it might have

an additional level in the B-tree that it has to travel down.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

419

To understand how fragmentation affects the performance of a query, create a test

table with a clustered index and insert a highly fragmented data set in the table. Since an

INSERT operation in between an ordered data set can cause a page split, you can easily

create the fragmented data set by adding rows in the following order:

DROP TABLE IF EXISTS dbo.Test1;

GO

CREATE TABLE dbo.Test1 (C1 INT,

 C2 INT,

 C3 INT,

 c4 CHAR(2000));

CREATE CLUSTERED INDEX i1 ON dbo.Test1 (C1);

WITH Nums

AS (SELECT TOP (10000)

 ROW_NUMBER() OVER (ORDER BY (SELECT 1)) AS n

 FROM master.sys.all_columns AS ac1

 CROSS JOIN master.sys.all_columns AS ac2)

INSERT INTO dbo.Test1 (C1,

 C2,

 C3,

 c4)

SELECT n,

 n,

 n,

 'a'

FROM Nums;

WITH Nums

AS (SELECT 1 AS n

 UNION ALL

 SELECT n + 1

 FROM Nums

 WHERE n < 10000)

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

420

INSERT INTO dbo.Test1 (C1,

 C2,

 C3,

 c4)

SELECT 10000 - n,

 n,

 n,

 'a'

FROM Nums

OPTION (MAXRECURSION 10000);

To determine the number of logical reads required to retrieve a small result set and a

large result set from this fragmented table, execute the following two SELECT statements

with an Extended Events session (in this case, sql_batch_completed is all that’s needed),

monitoring query performance:

--Reads 6 rows

SELECT *

FROM dbo.Test1

WHERE C1 BETWEEN 21

 AND 23;

--Reads all rows

SELECT *

FROM dbo.Test1

WHERE C1 BETWEEN 1

 AND 10000;

The number of logical reads performed by the individual queries is, respectively, as

follows:

6 rows

Reads:8

Duration:2.6ms

All rows

Reads:2542

Duration:475ms

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

421

To evaluate how the fragmented data set affects the number of logical reads,

rearrange the index leaf pages physically by rebuilding the clustered index.

ALTER INDEX i1 ON dbo.Test1 REBUILD;

With the index leaf pages rearranged in the proper order, rerun the query. The

number of logical reads required by the preceding two SELECT statements reduces to 5

and 13, respectively.

6 rows

Reads:6

Duration:1ms

All rows

Reads:2536

Duration:497ms

Performance improved for the smaller data set but didn’t change much for the larger

data set because just dropping a couple of pages isn’t likely to have that big of an impact.

The cost overhead because of fragmentation usually increases in line with the number of

rows retrieved because this involves reading a greater number of out-of-order pages. For

point queries (queries retrieving only one row), fragmentation doesn’t usually matter since

the row is retrieved from one leaf page only, but this isn’t always the case. Because of the

internal structure of the index, fragmentation may increase the cost of even a point query.

Note the lesson from this section is that, for better query performance, it is
important to analyze the amount of fragmentation in an index and rearrange it if
required.

 Columnstore Overhead
While you are not dealing with pages rearranged on disk with the logical fragmentation

of a columnstore index, you are still going to see a performance impact. The deleted

values are stored in a B-tree index associated with the row group. Any data retrieval must

go through an additional outer join against this data. You can’t see this in the execution

plan because it’s an internal process. You can, however, see it in the performance of the

queries against fragmented columnstore indexes.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

422

To demonstrate this, we’ll start with a query that takes advantage of the columnstore

index, shown here:

SELECT bth.Quantity,

 AVG(bth.ActualCost)

FROM dbo.bigTransactionHistory AS bth

WHERE bth.Quantity BETWEEN 8

 AND 15

GROUP BY bth.Quantity;

If you run this query, on average you get performance metrics as follows:

Reads:20932

Duration:70ms

If we were to fragment the index, specifically within the range of information upon

which we’re querying, as follows:

DELETE dbo.bigTransactionHistory

WHERE Quantity BETWEEN 9

 AND 12;

then the performance metrics change, as shown here:

Reads:20390

Duration:79ms

Note that the reads have dropped since a smaller amount of data overall will be

processed to arrive at the results. However, performance has degraded from 70ms to

79ms. This is because of the fragmentation of the index, which we can see has become

worse in Figure 14-12.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

423

 Analyzing the Amount of Fragmentation
You’ve already seen how to determine the fragmentation of a columnstore index. We

can do the same with rowstore indexes. You can analyze the fragmentation ratio of an

index by using the sys.dm_db_index_physical_stats dynamic management function.

For a table with a clustered index, the fragmentation of the clustered index is congruous

with the fragmentation of the data pages since the leaf pages of the clustered index and

data pages are the same. sys.dm_db_index_physical_stats also indicates the amount

of fragmentation in a heap table (or a table with no clustered index). Since a heap table

doesn’t require any row ordering, the logical order of the pages isn’t relevant for the

heap table.

Figure 14-12. Increased fragmentation of the clustered columnstore index

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

424

The output of sys.dm_db_index_physical_stats shows information on the pages

and extents of an index (or a table). A row is returned for each level of the B-tree in the

index. A single row for each allocation unit in a heap is returned. As explained earlier, in

SQL Server, eight contiguous 8KB pages are grouped together in an extent that is 64KB in

size. For small tables (much less than 64KB), the pages in an extent can belong to more

than one index or table—these are called mixed extents. If there are lots of small tables in

the database, mixed extents help SQL Server conserve disk space.

As a table (or an index) grows and requests more than eight pages, SQL Server

creates an extent dedicated to the table (or index) and assigns the pages from this extent.

Such an extent is called a uniform extent, and it serves up to eight page requests for the

same table (or index). Uniform extents help SQL Server lay out the pages of a table (or

an index) contiguously. They also reduce the number of page creation requests by an

eighth, since a set of eight pages is created in the form of an extent. Information stored

in a uniform extent can still be fragmented, but accessing an allocation of pages is going

to be much more efficient. If you have mixed extents, pages shared between multiple

objects, and fragmentation within those extents, accessing the information becomes

even more problematic. But there is no defragmenting done on mixed extents.

To analyze the fragmentation of an index, let’s re-create the table with the

fragmented data set used in the “Fragmentation Overhead” section. You can obtain the

fragmentation detail of the clustered index (Figure 14-13) by executing the query against

the sys.dm_db_index_physical_stats dynamic view used earlier.

SELECT ddips.avg_fragmentation_in_percent,

 ddips.fragment_count,

 ddips.page_count,

 ddips.avg_page_space_used_in_percent,

 ddips.record_count,

 ddips.avg_record_size_in_bytes

FROM sys.dm_db_index_physical_stats(DB_ID('AdventureWorks2017'),

 OBJECT_ID(N'dbo.Test1'),

 NULL,

 NULL,

 'Sampled') AS ddips;

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

425

The dynamic management function sys.dm_db_index_physical_stats scans the

pages of an index to return the data. You can control the level of the scan, which affects

the speed and the accuracy of the scan. To quickly check the fragmentation of an index,

use the Limited option. You can obtain an increased accuracy with only a moderate

decrease in speed by using the Sample option, as in the previous example, which scans

1 percent of the pages. For the most accuracy, use the Detailed scan, which hits all the

pages in an index. Just understand that the Detailed scan can have a major performance

impact depending on the size of the table and index in question. If the index has fewer

than 10,000 pages and you select the Sample mode, then the Detailed mode is used

instead. This means that despite the choice made in the earlier query, the Detailed scan

mode was used. The default mode is Limited.

By defining the different parameters, you can get fragmentation information on

different sets of data. By removing the OBJECT_ID function in the earlier query and

supplying a NULL value, the query would return information on all indexes within the

database. Don’t get surprised by this and accidentally run a Detailed scan on all indexes.

You can also specify the index you want information on or even the partition with a

partitioned index.

The output from sys.dm_db_index_physical_stats includes 24 different columns.

I selected the basic set of columns used to determine the fragmentation and size of an

index. This output represents the following:

• avg_fragmentation_in_percent: This number represents the logical

average fragmentation for indexes and heaps as a percentage. If the

table is a heap and the mode is Sampled, then this value will be NULL.

If average fragmentation is less than 10 to 20 percent and the table

isn’t massive, fragmentation is unlikely to be an issue. If the index

is between 20 and 40 percent, fragmentation might be an issue, but

it can generally be helped by defragmenting the index through an

index reorganization (more information on index reorganization

and index rebuild is available in the “Fragmentation Resolutions”

section). Large-scale fragmentation, usually greater than 40 percent,

may require an index rebuild. Your system may have different

requirements than these general numbers.

Figure 14-13. Fragmented statistics

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

426

• fragment_count: This number represents the number of fragments,

or separated groups of pages, that make up the index. It’s a useful

number to understand how the index is distributed, especially when

compared to the pagecount value. fragmentcount is NULL when the

sampling mode is Sampled. A large fragment count is an additional

indication of storage fragmentation.

• page_count: This number is a literal count of the number of index or

data pages that make up the statistic. This number is a measure of

size but can also help indicate fragmentation. If you know the size

of the data or index, you can calculate how many rows can fit on a

page. If you then correlate this to the number of rows in the table, you

should get a number close to the pagecount value. If the pagecount

value is considerably higher, you may be looking at a fragmentation

issue. Refer to the avg_fragmentation_in_percent value for a

precise measure.

• avg_page_space_used_in_percent: To get an idea of the amount of

space allocated within the pages of the index, use this number. This

value is NULL when the sampling mode is Limited.

• recordcount: Simply put, this is the number of records represented

by the statistics. For indexes, this is the number of records within the

current level of the B-tree as represented from the scanning mode.

(Detailed scans will show all levels of the B-tree, not simply the leaf

level.) For heaps, this number represents the records present, but

this number may not correlate precisely to the number of rows in the

table since a heap may have two records after an update and a page

split.

• avg_record_size_in_bytes: This number simply represents a useful

measure for the amount of data stored within the index or heap

record.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

427

Running sys.dm_db_index_physical_stats with a Detailed scan will return

multiple rows for a given index. That is, multiple rows are displayed if that index spans

more than one level. Multiple levels exist in an index when that index spans more than a

single page. To see what this looks like and to observe some of the other columns of data

present in the dynamic management function, run the query this way:

SELECT ddips.*

FROM sys.dm_db_index_physical_stats(DB_ID('AdventureWorks2017'),

 OBJECT_ID(N'dbo.Test1'),

 NULL,

 NULL,

 'Detailed') AS ddips;

To make the data readable, I’ve broken down the resulting data table into three

pieces in a single graphic; see Figure 14-14.

Figure 14-14. Detailed scan of fragmented index

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

428

As you can see, three rows were returned, representing the leaf level of the index

(index_ level = 0) and representing the first level of the B-tree (index_level = 1),

which is the second row and the third level of the B-tree (index_level = 2). You can

see the additional information offered by sys.dm_db_index_physical_stats that

can provide more detailed analysis of your indexes. For example, you can see the

minimum and maximum record sizes, as well as the index depth (the number of levels

in the B-tree) and how many records are on each level. A lot of this information will be

less useful for basic fragmentation analysis, which is why I chose to limit the number

of columns in the samples as well as use the Sampled scan mode. The columnstore

information you see is primarily nonclustered columnstore internals. No information

about clustered columnstore is returned by sys.dm_db_index_physical_stats. Instead,

as shown earlier, you would use sys.dm_db_column_store_row_group_physical_stats.

 Analyzing the Fragmentation of a Small Table
Don’t be overly concerned with the output of sys.dm_db_index_physical_stats for

small tables. For a small table or index with fewer than eight pages, SQL Server uses

mixed extents for the pages. For example, if a table (SmallTable1 or its clustered index)

contains only two pages, then SQL Server allocates the two pages from a mixed extent

instead of dedicating an extent to the table. The mixed extent may contain pages of other

small tables/indexes also, as shown in Figure 14-15.

Figure 14-15. Mixed extent

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

429

The distribution of pages across multiple mixed extents may lead you to believe that

there is a high amount of external fragmentation in the table or the index, when in fact

this is by design in SQL Server and is therefore perfectly acceptable.

To understand how the fragmentation information of a small table or index may

look, create a small table with a clustered index.

DROP TABLE IF EXISTS dbo.Test1;

GO

CREATE TABLE dbo.Test1 (C1 INT,

 C2 INT,

 C3 INT,

 C4 CHAR(2000));

DECLARE @n INT = 1;

WHILE @n <= 28

BEGIN

 INSERT INTO dbo.Test1

 VALUES (@n, @n, @n, 'a');

 SET @n = @n + 1;

END

CREATE CLUSTERED INDEX FirstIndex ON dbo.Test1 (C1);

In the preceding table, with each INT taking 4 bytes, the average row size is 2,012 (=4 +

4 + 4 + 2,000) bytes. Therefore, a default 8KB page can contain up to four rows. After all 28

rows are added to the table, a clustered index is created to physically arrange the rows and

reduce fragmentation to a minimum. With the minimum internal fragmentation, seven

(= 28 / 4) pages are required for the clustered index (or the base table). Since the number

of pages is not more than eight, SQL Server uses pages from mixed extents for the clustered

index (or the base table). If the mixed extents used for the clustered index are not side by

side, then the output of sys.dm_db_index_physical_stats may express a high amount

of external fragmentation. But as a SQL user, you can’t reduce the resultant external

fragmentation. Figure 14-16 shows the output of sys.dm_db_index_physical_stats.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

430

From the output of sys.dm_db_index_physical_stats, you can analyze the

fragmentation of the small clustered index (or the table) as follows:

• avg_fragmentation_in_percent: Although this index may cross to

multiple extents, the fragmentation shown here is not an indication

of external fragmentation because this index is being stored on mixed

extents.

• Avg_page_space_used_in_percent: This shows that all or most of the

data is stored well within the seven pages displayed in the pagecount

field. This eliminates the possibility of logical fragmentation.

• Fragment_count: This shows that the data is fragmented and stored

on more than one extent, but since it’s less than eight pages long, SQL

Server doesn’t have much choice about where it stores the data.

In spite of the preceding misleading values, a small table (or index) with fewer

than eight pages is simply unlikely to benefit from efforts to remove the fragmentation

because it will be stored on mixed extents.

Once you determine that fragmentation in an index (or a table) needs to be dealt

with, you need to decide which defragmentation technique to use. The factors affecting

this decision, and the different techniques, are explained in the following section.

 Fragmentation Resolutions
You can resolve fragmentation in an index by rearranging the index rows and pages so

that their physical and logical orders match. To reduce external fragmentation, you can

physically reorder the leaf pages of the index to follow the logical order of the index. On the

columnstore index you’re invoking the Tuple Mover, which will close the deltastores and put

them into compressed segments, or you’re doing that and forcing a reorganization of the

data to achieve the best compression. You achieve all this through the following techniques:

• Dropping and re-creating the index

• Re-creating the index with the DROP_EXISTING = ON clause

Figure 14-16. Fragmentation of a small clustered index

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

431

• Executing the ALTER INDEX REBUILD statement on the index

• Executing the ALTER INDEX REORGANIZE statement on the index

 Dropping and Re-creating the Index
One of the apparently easiest ways to remove fragmentation in an index is to drop the

index and then re-create it. Dropping and re-creating the index reduces fragmentation

the most since it allows SQL Server to use completely new pages for the index and

populate them appropriately with the existing data. This avoids both internal and

external fragmentation. Unfortunately, this method has a large number of serious

shortcomings.

• Blocking: This technique of defragmentation adds a high amount

of overhead on the system, and it causes blocking. Dropping and

re-creating the index blocks all other requests on the table (or on any

other index on the table). It can also be blocked by other requests

against the table.

• Missing index: With the index dropped, and possibly being blocked

and waiting to be re-created, queries against the table will not have

the index available for use. This can lead to the poor performance

that the index was intended to remedy.

• Nonclustered indexes: If the index being dropped is a clustered

index, then all the nonclustered indexes on the table have to be

rebuilt after the cluster is dropped. They then have to be rebuilt

again after the cluster is re-created. This leads to further blocking

and other problems such as statement recompiles (covered in detail

in Chapter 19).

• Unique constraints: Indexes that are used to define a primary key

or a unique constraint cannot be removed using the DROP INDEX

statement. Also, both unique constraints and primary keys can be

referred to by foreign key constraints. Prior to dropping the primary

key, all foreign keys that reference the primary key would have to

be removed first. Although this is possible, this is a risky and time-

consuming method for defragmenting an index.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

432

It is possible to use the ONLINE option for dropping a clustered index, which means

the index is still readable while it is being dropped, but that saves you only from the

previous blocking issue. For all these reasons, dropping and re-creating the index is not

a recommended technique for a production database, especially at anything outside off-

peak times.

 Re-creating the Index with the DROP_EXISTING Clause
To avoid the overhead of rebuilding the nonclustered indexes twice while rebuilding

a clustered index, use the DROP_EXISTING clause of the CREATE INDEX statement. This

re-creates the clustered index in one atomic step, avoiding re-creating the nonclustered

indexes since the clustered index key values used by the row locators remain the same.

To rebuild a clustered key in one atomic step using the DROP_EXISTING clause, execute

the CREATE INDEX statement as follows:

CREATE UNIQUE CLUSTERED INDEX FirstIndex

ON dbo.Test1

(

 C1

)

WITH (DROP_EXISTING = ON);

You can use the DROP_EXISTING clause for both clustered and nonclustered indexes

and even to convert a nonclustered index to a clustered index. However, you can’t use it

to convert a clustered index to a nonclustered index.

The drawbacks of this defragmentation technique are as follows:

• Blocking: Similar to the DROP and CREATE methods, this technique

also causes and faces blocking from other queries accessing the table

(or any index on the table).

• Index with constraints: Unlike the first method, the CREATE INDEX

statement with DROP_EXISTING can be used to re-create indexes with

constraints. If the constraint is a primary key or the unique constraint

is associated with a foreign key, then failing to include the UNIQUE

keyword in the CREATE statement will result in an error like this:

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

433

msg 1907, Level 16, State 1, Line 1 Cannot recreate index 'pK_name'. the new
index definition does not match the constraint being enforced by the existing index.

• Table with multiple fragmented indexes: As table data fragments, the

indexes often become fragmented as well. If this defragmentation

technique is used, then all the indexes on the table have to be

identified and rebuilt individually.

You can avoid the last two limitations associated with this technique by using ALTER

INDEX REBUILD, as explained next.

 Executing the ALTER INDEX REBUILD Statement
ALTER INDEX REBUILD rebuilds an index in one atomic step, just like CREATE INDEX

with the DROP_EXISTING clause. Since ALTER INDEX REBUILD also rebuilds the index

physically, it allows SQL Server to assign fresh pages to reduce both internal and external

fragmentation to a minimum. But unlike CREATE INDEX with the DROP_EXISTING clause,

it allows an index (supporting either the PRIMARY KEY or UNIQUE constraint) to be rebuilt

dynamically without dropping and re-creating the constraints.

In a columnstore index, the REBUILD statement will, in an offline fashion,

completely rebuild the columnstore, invoking the Tuple Mover to remove the deltastore

but also rearranging the data to ensure maximum effective compression. With rowstore

indexes, the preferred mechanism for dealing with index fragmentation is the REBUILD.

For columnstore indexes, the preferred method is the REORGANIZE statement, covered

in detail in the next section.

To understand the use of ALTER INDEX REBUILD to defragment a rowstore index,

consider the fragmented table used in the “Fragmentation Overhead” and “Analyzing the

Amount of Fragmentation” sections. This table is repeated here:

DROP TABLE IF EXISTS dbo.Test1;

GO

CREATE TABLE dbo.Test1 (C1 INT,

 C2 INT,

 C3 INT,

 c4 CHAR(2000));

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

434

CREATE CLUSTERED INDEX i1 ON dbo.Test1 (C1);

WITH Nums

AS (SELECT TOP (10000)

 ROW_NUMBER() OVER (ORDER BY (SELECT 1)) AS n

 FROM master.sys.all_columns AS ac1

 CROSS JOIN master.sys.all_columns AS ac2)

INSERT INTO dbo.Test1 (C1,

 C2,

 C3,

 c4)

SELECT n,

 n,

 n,

 'a'

FROM Nums;

WITH Nums

AS (SELECT 1 AS n

 UNION ALL

 SELECT n + 1

 FROM Nums

 WHERE n < 10000)

INSERT INTO dbo.Test1 (C1,

 C2,

 C3,

 c4)

SELECT 10000 - n,

 n,

 n,

 'a'

FROM Nums

OPTION (MAXRECURSION 10000);

If you take a look at the current fragmentation, you can see that it is both internally

and externally fragmented (Figure 14-17).

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

435

You can defragment the clustered index (or the table) by using the ALTER INDEX

REBUILD statement.

ALTER INDEX i1 ON dbo.Test1 REBUILD;

Figure 14-18 shows the resultant output of the standard SELECT statement against

sys.dm_db_index_physical_stats.

Figure 14-18. Fragmentation resolved by ALTER INDEX REBUILD

Figure 14-17. Internal and external fragmentation

Compare the preceding results of the query in Figure 14-18 with the earlier results

in Figure 14-18. You can see that both internal and external fragmentation have been

reduced efficiently. Here’s an analysis of the output:

• Internal fragmentation: The table has 20,000 rows with an average

row size (2,022.999 bytes) that allows a maximum of four rows per

page. If the rows are highly defragmented to reduce the internal

fragmentation to a minimum, then there should be about 6,000 data

pages in the table (or leaf pages in the clustered index). You can

observe the following in the preceding output:

• Number of leaf (or data) pages: pagecount = 6667

• Amount of information in a page: avg_page_space_used_in_

percent = 75.02 percent

• External fragmentation: A large number of extents are required to

hold the 6,667 pages. For a minimum of external fragmentation,

there should not be any gap between the extents, and all pages

should be physically arranged in the logical order of the index. The

preceding output illustrates the number of out-of-order pages =

avg_ fragmentation_in_percent = 0 percent. That is an effective

defragmentation of this index. With fewer extents aligned with each

other, access will be faster.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

436

Rebuilding an index in SQL Server 2005 and newer will also compact the large

object (LOB) pages. You can choose not to by setting a value of LOB_COMPACTION = OFF.

If you aren’t worried about storage but you are concerned about how long your index

reorganization is taking, this might be advisable to turn off.

When you use the PAD_INDEX setting while creating an index, it determines how

much free space to leave on the index intermediate pages, which can help you deal with

page splits. This is taken into account during the index rebuild, and the new pages will

be set back to the original values you determined at the index creation unless you specify

otherwise. I’ve almost never seen this make a major difference on most systems. You’ll

need to test on your system to determine whether it can help.

If you don’t specify otherwise, the default behavior is to defragment all indexes

across all partitions. If you want to control the process, you just need to specify which

partition you want to rebuild when.

As shown previously, the ALTER INDEX REBUILD technique effectively reduces

fragmentation. You can also use it to rebuild all the indexes of a table in one statement.

ALTER INDEX ALL ON dbo.Test1 REBUILD;

Although this is the most effective defragmentation technique, it does have some

overhead and limitations.

• Blocking: Similar to the previous two index-rebuilding techniques,

ALTER INDEX REBUILD introduces blocking in the system. It blocks

all other queries trying to access the table (or any index on the table).

It can also be blocked by those queries. You can reduce this using

ONLINE INDEX REBUILD.

• Transaction rollback: Since ALTER INDEX REBUILD is fully

atomic in action, if it is stopped before completion, then all the

defragmentation actions performed up to that time are lost. You can

run ALTER INDEX REBUILD using the ONLINE keyword, which will

reduce the locking mechanisms, but it will increase the time involved

in rebuilding the index.

Introduced in Azure SQL Database and available in SQL Server 2017, you now have

the capacity to restart an index rebuild operation. You can restart a failed index rebuild,

or you can pause the rebuild operation only to restart it later. To do this, you have to

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

437

be using the ONLINE rebuild option as well. The ONLINE option radically reduces the

blocking associated with the rebuild operation. To rebuild an index that is both ONLINE

and RESUMABLE, you must specify all this in the command.

ALTER INDEX i1 ON dbo.Test1 REBUILD WITH (ONLINE=ON, RESUMABLE=ON);

This will run the index rebuild operation until it is completed or until you issue the

following command:

ALTER INDEX i1 ON dbo.Test1 PAUSE;

This will pause the ONLINE rebuild operation, and the table and indexes in question

will remain accessible without any blocking. To restart the operation, use this:

ALTER INDEX i1 ON dbo.Test1 RESUME;

 Executing the ALTER INDEX REORGANIZE Statement
For a rowstore index, ALTER INDEX REORGANIZE reduces the fragmentation of an index

without rebuilding the index. It reduces external fragmentation by rearranging the

existing leaf pages of the index in the logical order of the index key. It compacts the rows

within the pages, reducing internal fragmentation, and discards the resultant empty

pages. This technique doesn’t use any new pages for defragmentation.

For a columnstore index, ALTER INDEX REORGANIZE will ensure that the deltastore

within the columnstore index gets cleaned out and that all the logical deletes are taken

care of. It does this while keeping the index online and accessible. This will ensure that

the index is defragmented. Further, you have the option of forcing the compression of

all the row groups. This will function similarly to running ALTER INDEX REBUILD, but it

continues to keep the index online during the operation, unlike the REBUILD process.

Because of this, ALTER INDEX REORGANIZE is preferred for columnstore indexes.

To avoid the blocking overhead associated with ALTER INDEX REBUILD, this

technique uses a nonatomic online approach. As it proceeds through its steps, it requests

a small number of locks for a short period. Once each step is done, it releases the locks

and proceeds to the next step. While trying to access a page, if it finds that the page is

being used, it skips that page and never returns to the page again. This allows other

queries to run on the table along with the ALTER INDEX REORGANIZE operation. Also, if

this operation is stopped intermediately, then all the defragmentation steps performed

up to then are preserved.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

438

For a rowstore index, since ALTER INDEX REORGANIZE doesn’t use any new pages to

reorder the index and it skips the locked pages, the amount of defragmentation provided

by this approach is usually less than that of ALTER INDEX REBUILD. To observe the

relative effectiveness of ALTER INDEX REORGANIZE compared to ALTER INDEX REBUILD,

rebuild the test table used in the previous section on ALTER INDEX REBUILD.

Rebuild the fragmented rowstore table using the script from before. To reduce the

fragmentation of the clustered rowstore index, use ALTER INDEX REORGANIZE as follows:

ALTER INDEX i1 ON dbo.Test1 REORGANIZE;

Figure 14-19 shows the resultant output from sys.dm_db_index_physical_stats.

Figure 14-19. Results of ALTER INDEX REORGANIZE

From the output, you can see that ALTER INDEX REORGANIZE doesn’t reduce

fragmentation as effectively as ALTER INDEX REBUILD, as shown in the previous section.

For a highly fragmented index, the ALTER INDEX REORGANIZE operation can take much

longer than rebuilding the index. Also, if an index spans multiple files, ALTER INDEX

REORGANIZE doesn’t migrate pages between the files. However, the main benefit of

using ALTER INDEX REORGANIZE is that it allows other queries to access the table (or the

indexes) simultaneously.

To see the results of defragmentation of a columnstore index, let’s use the already

fragmented columnstore index from the “Columnstore Overhead” section earlier in

the chapter.

ALTER INDEX ClusteredColumnStoreTest ON dbo.bigTransactionHistory

REORGANIZE;

The results of the REORGANIZE statement are visible in Figure 14-20.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

439

You’ll notice that most of the rowgroups are still somewhat fragmented. Two of the

row groups (29,30) haven’t been changed from COMPRESSED to TOMBSTONE. This means

those rowgroups will be removed in the background at some later date. In short, only a

few of the row groups were merged, and almost none of the deleted rows was dealt with.

This is because the REORGANIZE command will clean up the deleted data only when more

than 10 percent of the data in a rowgroup has been deleted. Let’s remove more data from

the table to bring some of the rowgroups to more than 10 percent deleted.

DELETE dbo.bigTransactionHistory

WHERE Quantity BETWEEN 8

 AND 17;

Figure 14-20. Results of REORGANIZE without compression on columnstore
index

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

440

Now when we look at the fragmentation results, we see a lot more activity, as shown

in Figure 14-21.

Figure 14-21. REORGANIZE without compression against a more fragmented index

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

441

You can see that many more rowgroups have been marked as TOMBSTONE and that

all the new pages have zero deleted rows. You’ll note that the row_group_id values have

been generated for the row groups that have been compressed. The old row_group_id

won’t be reused. If you look at the table after the cleanup is complete, you’ll see only the

COMPRESSED row groups, bringing the total down to 30 because of the removed data, but

you’ll see gaps.

If we were to rerun the REORGANIZE command but include the row group, the

command would look like this:

ALTER INDEX cci_bigTransactionHistory

ON dbo.bigTransactionHistory

REORGANIZE

WITH (COMPRESS_ALL_ROW_GROUPS = ON);

The command COMPRESS_ALL_ROW_GROUPS will ensure that any OPEN or CLOSED

rowgroups in the deltastore will get moved into the columnstore going through the

compression and everything else associated with a columnstore index.

Before running this, though, let’s delete a little more data to push the rowgroups that

are at 10 percent fragmentation over the top.

DELETE dbo.bigTransactionHistory

WHERE Quantity BETWEEN 6

 AND 8;

The results shown in Figure 14-22 include removing the TOMBSTONE, as well as

reorganizing the index completely.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

442

Figure 14-22. Compression and defragmentation for the columnstore index

Effectively, the order of the row groups doesn’t really matter. As they get

defragmented, they get moved from their original location within the index to a new

location later.

If you don’t want to deal with the 10 percent limitation, you can use the REBUILD

option on the columnstore index, but you will have to deal with the fact that you’re

taking the index offline during that process.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

443

Table 14-1 summarizes the characteristics of these four defragmentation techniques

on a rowstore index.

Table 14-1. Characteristics of Rowstore Defragmentation Techniques

Characteristics/
Issues

Drop and Create
Index

Create Index with
DROP_ EXISTING

ALTER INDEX

REBUILD

ALTER

INDEX

REORGANIZE

rebuild nonclustered

indexes on clustered

index fragmentation

twice no no no

missing indexes Yes no no no

defragment index

with constraints

highly complex moderately

complex

easy easy

defragment multiple

indexes together

no no Yes Yes

Concurrency with

others

Low Low medium, depending

on concurrent user

activity

high

Intermediate

cancellation

dangerous with

no transaction

progress lost progress lost progress

preserved

degree of

defragmentation

high high high moderate to

low

apply new fill factor Yes Yes Yes no

Statistics are updated Yes Yes Yes no

You can also reduce internal fragmentation by compressing more rows within a page,

reducing free spaces within the pages. The maximum amount of compression that can be

done within the leaf pages of an index is controlled by the fill factor, as you will see next.

When dealing with large databases and the indexes associated, it may become

necessary to split up the tables and the indexes across disks using partitioning. Indexes

on partitions can also become fragmented as the data within the partition changes.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

444

When dealing with a portioned index, you will need to determine whether you want to

either reorganize or rebuild (with REORGANIZE or REBUILD, respectively) one, some, or all

partitions as part of the ALTER INDEX command. Partitioned indexes cannot be rebuilt

online. Keep in mind that doing anything that affects all partitions is likely to be a costly

operation.

If compression is specified on an index, even on a partitioned index, you must be

sure to set the compression while performing the ALTER INDEX operation to what it was

before; if you don’t, it will be lost, and you’ll have to rebuild the index. This is especially

important for nonclustered indexes, which will not inherit the compression setting from

the table.

 Defragmentation and Partitions
If you have massive databases, a standard mechanism for effectively managing the

data is to break it up into partitions. While partitions can, in some rare cases, help with

performance, they are foremost for managing data. But, one of the issues with indexes

and partitions is that if you rebuild the index, it’s unavailable during the rebuild. This

means that with partitions, which are on massive indexes, you can expect to have a

major portion of your data offline during the rebuild. SQL Server 2012 introduced the

ability to do an online rebuild. If you had a partitioned index, it would look like this:

ALTER INDEX i1 ON dbo.Test1

REBUILD PARTITION = ALL

WITH (ONLINE = ON);

This can rebuild the entire partition and do it as an online operation, meaning it

keeps the index largely available while it does the rebuild. But, for some partitions, this

is a massive undertaking that will probably result in excessive load on the server and the

need for a lot more tempdb storage. SQL Server 2014 introduced new functionality that

lets you designate individual partitions.

ALTER INDEX i1 ON dbo.Test1

REBUILD PARTITION = 1

WITH (ONLINE = ON);

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

445

This reduces the overhead of the rebuild operation while still keeping the index

mostly available during the rebuild. I do emphasize that it is “mostly” online because

there is still some degree of locking and contention that will occur during the rebuild. It’s

not a completely free operation. It’s just radically improved over the alternative.

Talking about the locking involved with index rebuild operations in partitions, you

also have one other new piece of functionality introduced in SQL Server 2014. You can

now modify the lock priority used during the rebuild operation by again adjusting the

REBUILD command.

ALTER INDEX i1

ON dbo.Test1

REBUILD PARTITION = 1

WITH (ONLINE = ON (WAIT_AT_LOW_PRIORITY (MAX_DURATION = 20,

 ABORT_AFTER_WAIT = SELF)));

What this does is set the duration that the rebuild operation is willing to wait, in

minutes. Then, it allows you to determine which processes get aborted in order to clear the

system for the index rebuild. You can have it stop itself or the blocking process. The most

interesting thing is that the waiting process is set to low priority, so it’s not using a lot of

system resources, and any transactions that come in won’t be blocked by this process.

 Significance of the Fill Factor
On rowstore indexes, the internal fragmentation of an index is reduced by getting more

rows per leaf page in an index. Getting more rows within a leaf page reduces the total

number of pages required for the index and in turn decreases disk I/O and the logical

reads required to retrieve a range of index rows. On the other hand, if the index key

values are highly transactional, then having fully used index pages will cause page splits.

Therefore, for a transactional table, a good balance between maximizing the number of

rows in a page and avoiding page splits is required.

SQL Server allows you to control the amount of free space within the leaf pages of the

index by using the fill factor. If you know that there will be enough INSERT queries on the

table or UPDATE queries on the index key columns, then you can pre-add free space to the

index leaf page using the fill factor to minimize page splits. If the table is read- only, you

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

446

can create the index with a high fill factor to reduce the number of index pages. It’s a good

idea to have some free space, though, when dealing with inserts against an IDENTITY

column (or any index key that contains ordered data that will tend to create a hot page).

The default fill factor is 0, which means the leaf pages are packed to 100 percent,

although some free space is left in the branch nodes of the B-tree structure. The fill factor

for an index is applied only when the index is created. As keys are inserted and updated,

the density of rows in the index eventually stabilizes within a narrow range. As you saw

in the previous chapter’s sections on page splits caused by UPDATE and INSERT, when a

page split occurs, generally half the original page is moved to a new page, which happens

irrespective of the fill factor used during the index creation.

To understand the significance of the fill factor, let’s use a small test table with 24 rows.

DROP TABLE IF EXISTS dbo.Test1;

GO

CREATE TABLE dbo.Test1 (C1 INT,

 C2 CHAR(999));

WITH Nums

AS (SELECT 1 AS n

 UNION ALL

 SELECT n + 1

 FROM Nums

 WHERE n < 24)

INSERT INTO dbo.Test1 (C1,

 C2)

SELECT n * 100,

 'a'

FROM Nums;

Increase the maximum number of rows in the leaf (or data) page by creating a

clustered index with the default fill factor.

CREATE CLUSTERED INDEX FillIndex ON Test1(C1);

Since the average row size is 1,010 bytes, a clustered index leaf page (or table data

page) can contain a maximum of eight rows. Therefore, at least three leaf pages are

required for the 24 rows. You can confirm this in the sys.dm_db_index_physical_stats

output shown in Figure 14-23.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

447

Note that avg_page_space_used_in_percent is 100 percent since the default fill

factor allows the maximum number of rows to be compressed in a page. Since a page

cannot contain a part row to fill the page fully, avg_page_space_used_in_percent will be

often a little less than 100 percent, even with the default fill factor.

To reduce the initial frequency of page splits caused by INSERT and UPDATE

operations, create some free space within the leaf (or data) pages by re-creating the

clustered index with a fill factor as follows:

ALTER INDEX FillIndex ON dbo.Test1 REBUILD

WITH (FILLFACTOR= 75);

Because each page has a total space for eight rows, a fill factor of 75 percent will

allow six rows per page. Thus, for 24 rows, the number of leaf pages should increase to

four, as in the sys.dm_db_index_physical_stats output shown in Figure 14-24.

Figure 14-25. Fragmentation after new records

Figure 14-23. Fill factor set to default value of 0

Figure 14-24. Fill factor set to 75

Note that avg_page_space_used_in_percent is about 75 percent, as set by the fill

factor. This allows two more rows to be inserted in each page without causing a page

split. You can confirm this by adding two rows to the first set of six rows (C1 = 100 – 600,

contained in the first page).

INSERT INTO dbo.Test1

VALUES (110, 'a'), --25th row

 (120, 'a') ; --26th row

Figure 14-25 shows the current fragmentation.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

448

From the output, you can see that the addition of the two rows has not added any

pages to the index. Accordingly, avg_page_space_used_in_percent increased from

74.99 percent to 81.25 percent. With the addition of two rows to the set of the first six

rows, the first page should be completely full (eight rows). Any further addition of rows

within the range of the first eight rows should cause a page split and thereby increase the

number of index pages to five.

INSERT INTO dbo.Test1

VALUES (130, 'a') ; --27th row

Now sys.dm_db_index_physical_stats displays the difference in Figure 14-26.

Figure 14-26. Number of pages goes up

Note that even though the fill factor for the index is 75 percent, Avg. Page Density

(full) has decreased to 67.49 percent, which can be computed as follows:

Avg. Page Density (full)

= Average rows per page / Maximum rows per page

= (27 / 5) / 8

= 67.5%

From the preceding example, you can see that the fill factor is applied when the

index is created. But later, as the data is modified, it has no significance. Irrespective

of the fill factor, whenever a page splits, the rows of the original page are distributed

between two pages, and avg_page_space_used_in_percent settles accordingly.

Therefore, if you use a nondefault fill factor, you should ensure that the fill factor is

reapplied regularly to maintain its effect.

You can reapply a fill factor by re-creating the index or by using ALTER INDEX

REORGANIZE or ALTER INDEX REBUILD, as was shown. ALTER INDEX REORGANIZE takes the fill

factor specified during the index creation into account. ALTER INDEX REBUILD also takes the

original fill factor into account, but it allows a new fill factor to be specified, if required.

Without periodic maintenance of the fill factor, for both default and nondefault fill

factor settings, avg_page_space_used_in_percent for an index (or a table) eventually

settles within a narrow range.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

449

An argument can be made that rather than attempt to defragment indexes over and

over again, with all the overhead that implies, you could be better off settling on a fill

factor that allows for a fairly standard set of distribution across the pages in your indexes.

Some people do use this method, sacrificing some read performance and disk space

to avoid page splits and the associated issues in which they result. Testing on your own

systems to both find the right fill factor and determine whether that method works will

be necessary.

 Automatic Maintenance
In a database with a great deal of transactions, tables and indexes become fragmented

over time (assuming you’re not using the fill factor method just mentioned). Thus, to

improve performance, you should check the fragmentation of the tables and indexes

regularly, and you should defragment the ones with a high amount of fragmentation.

You also may need to take into account the workload and defragment indexes as dictated

by the load as well as the fragmentation level of the index. You can do this analysis for a

database by following these steps:

 1. Identify all user tables in the current database to analyze

fragmentation.

 2. Determine fragmentation of every user table and index.

 3. Determine user tables and indexes that require defragmentation

by taking into account the following considerations:

• A high level of fragmentation where avg_fragmentation_in_

percent is greater than 20 percent

• Not a very small table/index—that is, pagecount is greater than 8

 4. Defragment tables and indexes with high fragmentation.

For a fully functional script that includes a large degree of capability, I strongly

recommend using the Minion Reindex application located at http://bit.ly/2EGsmYU or

Ola Hollengren’s scripts at http://bit.ly/JijaNI.

In addition to those scripts, you can use the maintenance plans built into SQL Server.

However, I don’t recommend them because you surrender a lot of control for a little bit

of ease of use. You’ll be much happier with the results you get from one of the sets of

scripts recommended earlier.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

http://bit.ly/2EGsmYU
http://bit.ly/JijaNI

450

 Summary
As you learned in this chapter, in a highly transactional database, page splits caused by

INSERT and UPDATE statements may fragment the tables and indexes, increasing the cost

of data retrieval. You can avoid these page splits by maintaining free spaces within the

pages using the fill factor. Since the fill factor is applied only during index creation, you

should reapply it at regular intervals to maintain its effectiveness. Data manipulation

of columnstore indexes also leads to fragmentation and performance degradation. You

can determine the amount of fragmentation in an index (or a table) using sys.dm_db_

index_physical_stats for a rowstore index or using sys.column_store_row_groups for

a columnstore index. Upon determining a high amount of fragmentation, you can use

either ALTER INDEX REBUILD or ALTER INDEX REORGANIZE, depending on the required

amount of defragmentation, the database concurrency, and whether you are dealing

with a rowstore or columnstore index.

Defragmentation rearranges the data so that its physical order on the disk matches

its logical order in the table/index, thus improving the performance of queries. However,

unless the optimizer decides upon an effective execution plan for the query, query

performance even after defragmentation can remain poor. Therefore, it is important to

have the optimizer use efficient techniques to generate cost-effective execution plans.

In the next chapter, I explain execution plan generation and the techniques the

optimizer uses to decide upon an effective execution plan.

Chapter 14 Index FragmentatIon

www.EBooksWorld.ir

451
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_15

CHAPTER 15

Execution Plan Generation
The performance of any query depends on the effectiveness of the execution plan

decided upon by the optimizer, as you learned in previous chapters. Because the

overall time required to execute a query is the sum of the time required to generate the

execution plan plus the time required to execute the query based on this execution plan,

it is important that the cost of generating the execution plan itself is low or that a plan

gets reused from cache, avoiding that cost altogether. The cost incurred when generating

the execution plan depends on the process of generating the execution plan, the process

of caching the plan, and the reusability of the plan from the plan cache. In this chapter,

you will learn how an execution plan is generated.

In this chapter, I cover the following topics:

• Execution plan generation and caching

• The SQL Server components used to generate an execution plan

• Strategies to optimize the cost of execution plan generation

• Factors affecting parallel plan generation

 Execution Plan Generation
SQL Server uses a cost-based optimization technique to determine the processing strategy

of a query. The optimizer considers both the metadata of the database objects, such as

unique constraints or index size, and the current distribution statistics of the columns

referred to in the query when deciding which index and join strategies should be used.

The cost-based optimization allows a database developer to concentrate on

implementing a business rule, rather than on the exact syntax of the query. At the same

time, the process of determining the query-processing strategy remains quite complex

and can consume a fair amount of resources. SQL Server uses a number of techniques to

optimize resource consumption.

www.EBooksWorld.ir

452

• Syntax-based optimization of the query

• Trivial plan match to avoid in-depth query optimization for simple

queries

• Index and join strategies based on current distribution statistics

• Query optimization in stepped phases to control the cost of

optimization

• Execution plan caching to avoid the unnecessary regeneration of

query plans

The following techniques are performed in order, as shown in Figure 15-1.

 1. Parsing

 2. Binding

 3. Query optimization

 4. Execution plan generation, caching, and hash plan generation

 5. Query execution

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

453

Figure 15-1. SQL Server techniques to optimize query execution

Let’s take a look at these steps in more detail.

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

454

 Parser
When a query is submitted, SQL Server passes it to the algebrizer within the relational

engine. (This relational engine is one of the two main parts of SQL Server data retrieval

and manipulation, with the other being the storage engine, which is responsible for

data access, modifications, and caching.) The relational engine takes care of parsing,

name and type resolution, and optimization. It also executes a query as per the query

execution plan and requests data from the storage engine.

The first part of the algebrizer process is the parser. The parser checks an incoming

query, validating it for the correct syntax. The query is terminated if a syntax error is

detected. If multiple queries are submitted together as a batch as follows (note the error

in syntax), then the parser checks the complete batch together for syntax and cancels the

complete batch when it detects a syntax error. (Note that more than one syntax error may

appear in a batch, but the parser goes no further than the first one.)

CREATE TABLE dbo.Test1 (c1 INT);

INSERT INTO dbo.Test1

VALUES (1);

CEILEKT * FROM dbo.t1; --Error: I meant, SELECT * FROM t1

On validating a query for correct syntax, the parser generates an internal data

structure called a parse tree for the algebrizer. The parser and algebrizer taken together

are called query compilation.

 Binding
The parse tree generated by the parser is passed to the next part of the algebrizer for

processing. The algebrizer now resolves all the names of the different objects, meaning

the tables, the columns, and so on, that are being referenced in the T-SQL in a process

called binding. It also identifies all the various data types being processed. It even

checks for the location of aggregates (such as GROUP BY and MAX). The output of all these

verifications and resolutions is a binary set of data called a query processor tree.

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

455

To see this part of the algebrizer in action, if the following batch query is submitted,

then the first three statements before the error statement are executed, and the errant

statement and the one after it are cancelled.

IF (SELECT OBJECT_ID('dbo.Test1')) IS NOT NULL

 DROP TABLE dbo.Test1;

GO

CREATE TABLE dbo.Test1 (C1 INT);

INSERT INTO dbo.Test1

VALUES (1);

SELECT 'Before Error',

 C1

FROM dbo.Test1 AS t;

SELECT 'error',

 c1

FROM dbo.no_Test1;

--Error: Table doesn't exist

SELECT 'after error' AS c1

FROM dbo.Test1 AS t;

If a query contains an implicit data conversion, then the normalization process adds

an appropriate step to the query tree. The process also performs some syntax-based

transformation. For example, if the following query is submitted, then the syntax-based

optimization transforms the syntax of the query, as shown in the T-SQL in Figure 15- 2

taken from the SELECT operator properties in the execution plan, where BETWEEN becomes

>= and <=.

SELECT soh.AccountNumber,

 soh.OrderDate,

 soh.PurchaseOrderNumber,

 soh.SalesOrderNumber

FROM Sales.SalesOrderHeader AS soh

WHERE soh.SalesOrderID BETWEEN 62500

 AND 62550;

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

456

You can also see some evidence of parameterization, discussed in more detail later

in this chapter. The execution plan generated from the query looks like Figure 15-3.

Figure 15-2. Syntax-based optimization

Figure 15-3. Execution plan with a warning

You should also note the warning indicator on the SELECT operator. Looking at the

properties for this operator, you can see that SalesOrderID is actually getting converted

as part of the process and the optimizer is warning you.

Type conversion in expression (CONVERT(nvarchar(23),[soh].

[SalesOrderID],0)) may affect "CardinalityEstimate" in query plan choice

I left this example in, with the warning, to illustrate a couple of points. First,

warnings can be unclear. In this case, the warning is coming from the calculated column,

SalesOrderNumber. It’s doing a conversion of the SalesOrderID to a string and adding a

value to it. In the way it does it, the optimizer recognizes that this could be problematic,

so it gives you a warning. But, you’re not referencing the column in any kind of filtering

fashion such as the WHERE clause, JOINs, or HAVING. Because of that, you can safely ignore

the warning. I also left it in because it illustrates just fine that AdventureWorks is a good

example database because it has the same types of poor choices that are sometimes in

databases in the real world too.

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

457

For most Data Definition Language (DDL) statements (such as CREATE TABLE,

CREATE PROC, and so on), after passing through the algebrizer, the query is compiled

directly for execution, since the optimizer need not choose among multiple processing

strategies. For one DDL statement in particular, CREATE INDEX, the optimizer can

determine an efficient processing strategy based on other existing indexes on the table,

as explained in Chapter 8.

For this reason, you will never see any reference to CREATE TABLE in an execution

plan, although you will see reference to CREATE INDEX. If the normalized query is a Data

Manipulation Language (DML) statement (such as SELECT, INSERT, UPDATE, or DELETE),

then the query processor tree is passed to the optimizer to decide the processing strategy

for the query.

 Optimization
Based on the complexity of a query, including the number of tables referred to and the

indexes available, there may be several ways to execute the query contained in the query

processor tree. Exhaustively comparing the cost of all the ways of executing a query

can take a considerable amount of time, which may sometimes override the benefit of

finding the most optimized query. Figure 15-4 shows that to avoid a high optimization

overhead compared to the actual execution cost of the query, the optimizer adopts

different techniques, namely, the following:

• Simplification

• Trivial plan match

• Multiple optimization phases

• Parallel plan optimization

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

458

Figure 15-4. Query optimization steps

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

459

 Simplification

Before the optimizer begins to process your query, the logical engine has already

identified all the objects referenced in your database. When the optimizer begins to

construct your execution plan, it first ensures that all objects being referenced are

actually used and necessary to return your data accurately. If you were to write a query

with a three-table join but only two of the tables were actually referenced by either the

SELECT criteria or the WHERE clauses, the optimizer may choose to leave the other table

out of the processing. This is known as the simplification step. It’s actually part of a larger

set of processing that gathers statistics and starts the process of estimating the cardinality

of the data involved in your query. The optimizer also gathers the necessary information

about your constraints, especially the foreign key constraints, that will help it later make

decisions about the join order, which it can rearrange as needed to arrive at a good

enough plan. Also during the Simplification process subqueries get transformed into

joins. Other processes of simplification include the removal of redundant joins.

 Trivial Plan Match

Sometimes there might be only one way to execute a query. For example, a heap table

with no indexes can be accessed in only one way: via a table scan. To avoid the runtime

overhead of optimizing such queries, SQL Server maintains a list of patterns that define a

trivial plan. If the optimizer finds a match, then a similar plan is generated for the query

without any optimization. The generated plans are then stored in the procedure cache.

Eliminating the optimization phase means that the cost for generating a trivial plan is

very low. This is not to imply that trivial plans are desired or preferable to more complex

plans. Trivial plans are available only for extremely simple queries. Once the complexity

of the query rises, it must go through optimization.

 Multiple Optimization Phases

For a nontrivial query, the number of alternative processing strategies to be analyzed

can be high, and it may take a long time to evaluate each option. Therefore, the

optimizer goes through three different levels of optimizations. These are referred to as

search 0, search 1, and search 2. But it’s easier to think of them as transaction, quick

plan, and full optimization. Depending on the size and complexity of the query, these

different optimizations may be tried one at a time, or the optimizer might skip straight

to full optimization. Each of the optimizations takes into account using different join

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

460

techniques and different ways of accessing the data through scans, seeks, and other

operations.

The index variations consider different indexing aspects, such as single-column

index, composite index, index column order, column density, and so forth. Similarly,

the join variations consider the different join techniques available in SQL Server: nested

loop join, merge join, and hash join. (Chapter 4 covers these join techniques in detail.)

Constraints such as unique values and foreign key constraints are also part of the

optimization decision-making process.

The optimizer considers the statistics of the columns referred to in the WHERE, JOIN,

and HAVING clauses to evaluate the effectiveness of the index and the join strategies.

Based on the current statistics, it evaluates the cost of the configurations in multiple

optimization phases. The cost includes many factors, including (but not limited

to) usage of CPU, memory, and disk I/O (including random versus sequential I/O

estimation) required to execute the query. After each optimization phase, the optimizer

evaluates the cost of the processing strategy. This cost is an estimation only, not an

actual measure or prediction of behavior; it’s a mathematical construct based on the

statistics and the processes under consideration.

Note the cost estimates are just that, estimates. Further, any one set of
estimates represented by an execution plan may or may not in actuality be costlier
than another set of estimates, a different execution plan. Comparing the costs
between plans can be a dangerous approach.

If the cost is found to be cheap enough, then the optimizer stops further iteration

through the optimization phases and quits the optimization process. Otherwise, it keeps

iterating through the optimization phases to determine a cost-effective processing

strategy.

Sometimes a query can be so complex that the optimizer needs to extensively

progress through the optimization phases. While optimizing the query, if it finds that

the cost of the processing strategy is more than the cost threshold for parallelism, then it

evaluates the cost of processing the query using multiple CPUs. Otherwise, the optimizer

proceeds with the serial plan. You may also see that after the optimizer picks a parallel

plan, that plan’s cost may actually be less than the cost threshold for parallelism and less

than the cost of the serial plan.

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

461

You can find out some detail of what occurred during the multiple optimization

phases via two sources. Take, for example, this query:

SELECT soh.SalesOrderNumber,

 sod.OrderQty,

 sod.LineTotal,

 sod.UnitPrice,

 sod.UnitPriceDiscount,

 p.Name AS ProductName,

 p.ProductNumber,

 ps.Name AS ProductSubCategoryName,

 pc.Name AS ProductCategoryName

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

 JOIN Production.Product AS p

 ON sod.ProductID = p.ProductID

 JOIN Production.ProductModel AS pm

 ON p.ProductModelID = pm.ProductModelID

 JOIN Production.ProductSubcategory AS ps

 ON p.ProductSubcategoryID = ps.ProductSubcategoryID

 JOIN Production.ProductCategory AS pc

 ON ps.ProductCategoryID = pc.ProductCategoryID

WHERE soh.CustomerID = 29658;

When this query is run, the execution plan in Figure 15-5, a nontrivial plan for sure,

is returned.

Figure 15-5. Nontrivial execution plan

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

462

I realize that this execution plan is hard to read. The intent here is not to read

through this plan. The important point is that it involves quite a few tables, each with

indexes and statistics that all had to be taken into account to arrive at this execution

plan. The first place you can go to look for information about the optimizer’s work on this

execution plan is the property sheet of the first operator, in this case the T-SQL SELECT

operator, at the far left of the execution plan. Figure 15-6 shows the property sheet.

Figure 15-6. SELECT operator property sheet

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

463

Starting at the top, you can see information directly related to the creation and

optimization of this execution plan.

• The size of the cached plan, which is 72KB

• The number of CPU cycles used to compile the plan, which is 51ms

• The amount of memory used, which is 1329KB

• The compile time, which is 62ms

The Optimization Level property (StatementOptmLevel in the XML plan) shows

what type of processing occurred within the optimizer. In this case, FULL means that the

optimizer did a full optimization. This is further displayed in the property Reason for

Early Termination of Statement, which is Good Enough Plan Found. So, the optimizer

took 62ms to track down a plan that it deemed good enough in this situation. You can

also see the QueryPlanHash value, also known as the fingerprint, for the execution plan

(you can find more details on this in the section “Query Plan Hash and Query Hash”).

The properties of the SELECT (and the INSERT, UPDATE, and DELETE) operators are an

important first stopping point when evaluating any execution plan because of this

information.

Added in SQL Server 2017, you can also see the QueryTimeStats and WaitStats for

any actual execution plan that you capture. This can be a useful way to capture query

metrics.

The second source for optimizer information is the dynamic management view

sys.dm_exec_query_optimizer_info. This DMV is an aggregation of the optimization

events over time. It won’t show the individual optimizations for a given query, but it

will track the optimizations performed. This isn’t as immediately handy for tuning an

individual query, but if you are working on reducing the costs of a workload over time,

being able to track this information can help you determine whether your query tuning

is making a positive difference, at least in terms of optimization time. Some of the data

returned is for internal SQL Server use only. Figure 15-7 shows a truncated example of

the useful data returned in the results from the following query:

SELECT deqoi.counter,

 deqoi.occurrence,

 deqoi.value

FROM sys.dm_exec_query_optimizer_info AS deqoi;

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

464

Running this query before and after another query can show you the changes that

have occurred in the number and type of optimizations completed. However, if you can

isolate your queries on a test box, you can be more assured that you get before and after

differences that are directly related only to the query you’re attempting to measure.

 Parallel Plan Optimization

The optimizer considers various factors while evaluating the cost of processing a query

using a parallel plan. Some of these factors are as follows:

• Number of CPUs available to SQL Server

• SQL Server edition

• Available memory

• Cost threshold for parallelism

• Type of query being executed

• Number of rows to be processed in a given stream

• Number of active concurrent connections

Figure 15-7. Output from sys.dm_exec_query_optimizer_info

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

465

If only one CPU is available to SQL Server, then the optimizer won’t consider a

parallel plan. The number of CPUs available to SQL Server can be restricted using the

affinity setting of the SQL Server configuration. The affinity value is set either to specific

CPUs or to specific NUMA nodes. You can also set it to ranges. For example, to allow SQL

Server to use only CPUO to CPU3 in an eight-way box, execute these statements:

USE master;

EXEC sp_configure 'show advanced option','1';

RECONFIGURE;

ALTER SERVER CONFIGURATION SET PROCESS AFFINITY CPU = 0 TO 3;

GO

This configuration takes effect immediately. affinity is a special setting, and I

recommend you use it only in instances where taking control away from SQL Server

makes sense, such as when you have multiple instances of SQL Server running on the

same machine and you want to isolate them from each other.

Even if multiple CPUs are available to SQL Server, if an individual query is not allowed

to use more than one CPU for execution, then the optimizer discards the parallel plan

option. The maximum number of CPUs that can be used for a parallel query is governed

by the max degree of parallelism setting of the SQL Server configuration. The default

value is 0, which allows all the CPUs (availed by the affinity mask setting) to be used for

a parallel query. You can also control parallelism through the Resource Governor.

If you want to allow parallel queries to use no more than two CPUs out of CPUO to CPU3,

limited by the preceding affinity mask setting, execute the following statements:

USE master;

EXEC sp_configure 'show advanced option','1';

RECONFIGURE;

EXEC sp_configure 'max degree of parallelism',2;

RECONFIGURE;

This change takes effect immediately, without any restart. The max degree of

parallelism setting can also be controlled at a query level using the MAXD0P query hint.

SELECT *

FROM dbo.t1

WHERE C1 = 1

OPTION (MAXDOP 2);

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

466

Changing the max degree of parallelism setting is best determined by the

needs of your application and the workloads on it. I will usually leave the max degree

of parallelism set to the default value unless indications arise that suggest a change is

necessary. I will usually immediately adjust the cost threshold for parallelism up from

its default value of 5. However, it’s really important to understand that the cost threshold

is set for the server. Picking a single value that is optimal for all databases on the server

may be somewhat tricky.

Since parallel queries require more memory, the optimizer determines the amount

of memory available before choosing a parallel plan. The amount of memory required

increases with the degree of parallelism. If the memory requirement of the parallel plan

for a given degree of parallelism cannot be satisfied, then SQL Server decreases the

degree of parallelism automatically or completely abandons the parallel plan for the

query in the given workload context. You can see this part of the evaluation in the SELECT

properties of Figure 15-6.

Queries with a very high CPU overhead are the best candidates for a parallel plan.

Examples include joining large tables, performing substantial aggregations, and sorting

large result sets, all common operations on reporting systems (less so on OLTP systems).

For simple queries usually found in transaction-processing applications, the additional

coordination required to initialize, synchronize, and terminate a parallel plan outweighs

the potential performance benefit.

Whether a query is simple is determined by comparing the estimated execution

cost of the query with a cost threshold. This cost threshold is controlled by the cost

threshold for parallelism setting of the SQL Server configuration. By default, this

setting’s value is 5, which means that if the estimated execution cost (CPU and IO) of the

serial plan is more than 5, then the optimizer considers a parallel plan for the query. For

example, to modify the cost threshold to 35, execute the following statements:

USE master;

EXEC sp_configure 'show advanced option','1';

RECONFIGURE;

EXEC sp_configure 'cost threshold for parallelism',35;

RECONFIGURE;

This change takes effect immediately, without any restart. If only one CPU is

available to SQL Server, then this setting is ignored. I’ve found that OLTP systems suffer

when the cost threshold for parallelism is set this low. Usually increasing the value

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

467

to somewhere between 30 and 50 will be beneficial. A lower value can be better for

analytical queries. Be sure to test this suggestion against your system to ensure it works

well for you.

Another option is to simply look at the plans in your cache and then make an

estimate, based on the queries there and the type of workload they represent to arrive at

a specific number. You can separate your OLTP queries from your reporting queries and

then focus on the reporting queries most likely to benefit from parallel execution. Take

an average of those costs and set your cost threshold to that number.

The DML action queries (INSERT, UPDATE, and DELETE) are executed serially.

However, the SELECT portion of an INSERT statement and the WHERE clause of an UPDATE

or a DELETE statement can be executed in parallel. The actual data changes are applied

serially to the database. Also, if the optimizer determines that the estimated cost is too

low, it does not introduce parallel operators.

Note that, even at execution time, SQL Server determines whether the current

system workload and configuration information allow for parallel query execution.

If parallel query execution is allowed, SQL Server determines the optimal number of

threads and spreads the execution of the query across those threads. When a query

starts a parallel execution, it uses the same number of threads until completion.

SQL Server reexamines the optimal number of threads before executing the parallel

query the next time.

Once the processing strategy is finalized by using either a serial plan or a parallel

plan, the optimizer generates the execution plan for the query. The execution plan

contains the detailed processing strategy decided by the optimizer to execute the query.

This includes steps such as data retrieval, result set joins, result set ordering, and so on.

A detailed explanation of how to analyze the processing steps included in an execution

plan is presented in Chapter 4. The execution plan generated for the query is saved in

the plan cache for future reuse.

With all that then, we can summarize the process. The optimizer starts by simplifying

and normalizing the input tree. From there it generates possible logical trees that are the

equivalent of that simplified tree. Then the optimizer transforms the logical trees into

possible physical trees, costs them, and selects the cheapest tree. That’s the optimization

process in a nutshell.

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

468

 Execution Plan Caching
The execution plan of a query generated by the optimizer is saved in a special part of

SQL Server’s memory pool called the plan cache. Saving the plan in a cache allows SQL

Server to avoid running through the whole query optimization process again when the

same query is resubmitted. SQL Server supports different techniques such as plan cache

aging and plan cache types to increase the reusability of the cached plans. It also stores

two binary values called the query hash and the query plan hash.

Note i discuss the techniques supported by SQl Server for improving the
effectiveness of execution plan reuse in this Chapter 15.

 Components of the Execution Plan
The execution plan generated by the optimizer contains two components.

• Query plan: This represents the commands that specify all the

physical operations required to execute a query.

• Execution context: This maintains the variable parts of a query within

the context of a given user.

I will cover these components in more detail in the next sections.

 Query Plan
The query plan is a reentrant, read-only data structure, with commands that specify all

the physical operations required to execute the query. The reentrant property allows

the query plan to be accessed concurrently by multiple connections. The physical

operations include specifications on which tables and indexes to access, how and in

what order they should be accessed, the type of join operations to be performed between

multiple tables, and so forth. No user context is stored in the query plan.

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

469

 Execution Context
The execution context is another data structure that maintains the variable part of the

query. Although the server keeps track of the execution plans in the procedure cache,

these plans are context neutral. Therefore, each user executing the query will have a

separate execution context that holds data specific to their execution, such as parameter

values and connection details.

 Aging of the Execution Plan
The plan cache is part of SQL Server’s buffer cache, which also holds data pages. As new

execution plans are added to the plan cache, the size of the plan cache keeps growing,

affecting the retention of useful data pages in memory. To avoid this, SQL Server

dynamically controls the retention of the execution plans in the plan cache, retaining

the frequently used execution plans and discarding plans that are not used for a certain

period of time.

SQL Server keeps track of the frequency of an execution plan’s reuse by associating

an age field to it. When an execution plan is generated, the age field is populated with the

cost of generating the plan. A complex query requiring extensive optimization will have

an age field value higher than that for a simpler query.

At regular intervals, the current cost of all the execution plans in the plan cache is

examined by SQL Server’s lazy writer process (which manages most of the background

processes in SQL Server). If an execution plan is not reused for a long time, then the

current cost will eventually be reduced to 0. The cheaper the execution plan was to

generate, the sooner its cost will be reduced to 0. Once an execution plan’s cost reaches 0,

the plan becomes a candidate for removal from memory. SQL Server removes all plans

with a cost of 0 from the plan cache when memory pressure increases to such an extent

that there is no longer enough free memory to serve new requests. However, if a system

has enough memory and free memory pages are available to serve new requests,

execution plans with a cost of 0 can remain in the plan cache for a long time so that they

can be reused later, if required.

As well as changing the costs downward, execution plans can also find their costs

increased to the max cost of generating the plan every time the plan is reused (or to the

current cost of the plan for ad hoc plans). For example, suppose you have two execution

plans with generation costs equal to 100 and 10. Their starting cost values will therefore

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

470

be 100 and 10, respectively. If both execution plans are reused immediately, their age

fields will be set back to that maximum cost. With these cost values, the lazy writer will

bring down the cost of the second plan to 0 much earlier than that of the first one, unless

the second plan is reused more often. Therefore, even if a costly plan is reused less

frequently than a cheaper plan, because of the effect of the initial cost, the costly plan

can remain at a nonzero cost value for a longer period of time.

 Summary
SQL Server’s cost-based query optimizer decides upon an effective execution plan based

not on the exact syntax of the query but on evaluating the cost of executing the query

using different processing strategies. The cost evaluation of using different processing

strategies is done in multiple optimization phases to avoid spending too much time

optimizing a query. Then, the execution plans are cached to save the cost of execution

plan generation when the same queries are reexecuted.

In the next chapter, I will discuss how the plans get reused from the cache in different

ways depending on how they’re called.

Chapter 15 exeCution plan Generation

www.EBooksWorld.ir

471
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_16

CHAPTER 16

Execution Plan
Cache Behavior
Once all the processing necessary to generate an execution plan has been completed,

it would be crazy for SQL Server to throw away that work and do it all again each time

a query gets called. Instead, it saves the plans created in a memory space on the server

called the plan cache. This chapter will walk through how you can monitor the plan

cache to see how SQL Server reuses execution plans.

In this chapter, I cover the following topics:

• How to analyze execution plan caching

• Query plan hash and query hash as mechanisms for identifying

queries to tune

• Ways to improve the reusability of execution plan caching

• Interactions between the Query Store and the plan cache

 Analyzing the Execution Plan Cache
You can obtain a lot of information about the execution plans in the plan cache by

accessing various dynamic management objects. The initial DMO for working with

execution plans is sys.dm_exec_cached_plans.

SELECT decp.refcounts,

 decp.usecounts,

 decp.size_in_bytes,

 decp.cacheobjtype,

www.EBooksWorld.ir

472

 decp.objtype,

 decp.plan_handle

FROM sys.dm_exec_cached_plans AS decp;

Table 16-1 shows some of the useful information provided by

sys.dm_exec_cached_plans.

Table 16-1. sys.dm_exec_cached_plans

Column Name Description

refcounts This represents the number of other objects in the cache referencing this

plan.

usecounts This is the number of times this object has been used since it was added to

the cache.

size_in_bytes This is the size of the plan stored in the cache.

cacheobjtype This specifies what type of plan this is; there are several, but of particular

interest are these:

Compiled plan: A completed execution plan

Compiled plan stub: A marker used for ad hoc queries (you can find more

details in the “Ad Hoc Workload” section of this chapter)

Parse tree: A plan stored for accessing a view

Objtype This is the type of object that generated the plan. Again, there are several,

but these are of particular interest:

Proc

Prepared

Adhoc

View

Using the DMV sys.dm_exec_cached_plans all by itself gets you only a small part

of the information. DMOs are best used in combination with other DMOs and other

system views. For example, using the dynamic management function sys.dm_exec_

query_plan(plan_handle) in combination with sys.dm_exec_cached_plans will also

bring back the XML execution plan itself so that you can display it and work with it.

If you then bring in sys.dm_exec_sql_text(plan_handle), you can also retrieve the

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

473

original query text. This may not seem useful while you’re running known queries for

the examples here, but when you go to your production system and begin to pull in

execution plans from the cache, it might be handy to have the original query. To get

aggregate performance metrics about the cached plan, you can use sys.dm_exec_query_

stats for batches, sys.dm_exec_procedure_stats for procedures and in-line functions,

and sys.dm_exec_trigger_stats for returning that same data for triggers. Among other

pieces of data, the query hash and query plan hash are stored in this DMF. Finally, to find

your way to execution plans for queries that are currently executing, you can use sys.

dm_exec_requests.

In the following sections, I’ll explore how the plan cache works with actual queries of

these DMOs.

 Execution Plan Reuse
When a query is submitted, SQL Server checks the plan cache for a matching execution

plan. If one is not found, then SQL Server performs the query compilation and

optimization to generate a new execution plan. However, if the plan exists in the plan

cache, it is reused with the private execution context. This saves the CPU cycles that

otherwise would have been spent on the plan generation. In the event that a plan is not

in the cache but that plan is marked as forced in the Query Store, optimization proceeds

as normal, but the forced plan is used instead, assuming it’s still a valid plan.

Queries are often submitted to SQL Server with filter criteria to limit the size of the

result set. The same queries are often resubmitted with different values for the filter

criteria. For example, consider the following query:

SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID = 29690

 AND sod.ProductID = 711;

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

474

When this query is submitted, the optimizer creates an execution plan and saves it

in the plan cache to reuse in the future. If this query is resubmitted with a different filter

criterion value—for example, soh.CustomerlD = 29500—it will be beneficial to reuse

the existing execution plan for the previously supplied filter criterion value (unless this

is a bad parameter sniffing scenario). Whether the execution plan created for one filter

criterion value can be reused for another filter criterion value depends on how the query

is submitted to SQL Server.

The queries (or workload) submitted to SQL Server can be broadly classified into two

categories that determine whether the execution plan will be reusable as the value of the

variable parts of the query changes.

• Ad hoc

• Prepared

Tip To test the output of sys.dm_exec_cached_plans for this chapter, it will
be necessary to remove the plans from cache on occasion by executing DBCC
FREEPROCCACHE. Do not run this on your production server except when you
use the methods outlined here, passing a plan handle. otherwise, you will flush
the cache and will require all execution plans to be rebuilt as they are executed,
placing a serious strain on your production system for no good reason. You can
use DBCC FREEPROCCACHE(plan_handle) to target specific plans. retrieve
the plan_handle using the DMos i’ve already talked about and as demonstrated
later. You can also flush the cache for a single database using ALTER DATABASE
SCOPED CONFIGURATION CLEAR PROCEDURE CACHE. However, here again,
i do not recommend running this on a production server except when you have
intention of removing all plans for that database.

 Ad Hoc Workload
Queries can be submitted to SQL Server without explicitly isolating the variables from

the query. These types of queries executed without explicitly converting the variable

parts of the query into parameters are referred to as ad hoc workloads (or queries). Most

of the examples in the book so far are ad hoc queries, such as the previous listing.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

475

If the query is submitted as is, without explicitly converting either of the hard-coded

values to a parameter (that can be supplied to the query when executed), then the query

is an ad hoc query. Setting the values to local variables using the DECLARE statement is

not the same as parameters.

In this query, the filter criterion value is embedded in the query itself and is not

explicitly parameterized to isolate it from the query. This means you cannot reuse the

execution plan for this query unless you use the same values and all the spacing and

carriage returns are identical. However, the places where values are used in the queries

can be explicitly parameterized in three different ways that are jointly categorized as a

prepared workload.

 Prepared Workload
Prepared workloads (or queries) explicitly parameterize the variable parts of the query

so that the query plan isn’t tied to the value of the variable parts. In SQL Server, queries

can be submitted as prepared workloads using the following three methods:

• Stored procedures: Allows saving a collection of SQL statements that

can accept and return user-supplied parameters.

• sp_executesql: Allows executing a SQL statement or a SQL batch

that may contain user-supplied parameters, without saving the SQL

statement or batch.

• Prepare/execute model: Allows a SQL client to request the generation

of a query plan that can be reused during subsequent executions of

the query with different parameter values, without saving the SQL

statements in SQL Server. This is the most common practice for ORM

tools such as Entity Framework.

For example, the SELECT statement shown previously can be explicitly parameterized

using a stored procedure as follows:

CREATE OR ALTER PROC dbo.BasicSalesInfo

 @ProductID INT,

 @CustomerID INT

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

476

AS

SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID = @CustomerID

 AND sod.ProductID = @ProductID;

The plan of the SELECT statement included within the stored procedure will embed

the parameters (@ProductID and @Customerld), not variable values. I will cover these

methods in more detail shortly.

 Plan Reusability of an Ad Hoc Workload
When a query is submitted as an ad hoc workload, SQL Server generates an execution

plan and stores that plan in the cache, where it can be reused if the same ad hoc query

is resubmitted. Since there are no parameters, the hard-coded values are stored as part

of the plan. For a plan to be reused from the cache, the T-SQL must match exactly. This

includes all spaces and carriage returns plus any values supplied with the plan. If any of

these change, the plan cannot be reused.

To understand this, consider the ad hoc query you’ve used before, shown here:

SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID = 29690

 AND sod.ProductID = 711;

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

477

The execution plan generated for this ad hoc query is based on the exact text of the

query, which includes comments, case, trailing spaces, and hard returns. You’ll have to

use the exact text to pull the information out of sys.dm_exec_cached_plans.

SELECT c.usecounts

 ,c.cacheobjtype

 ,c.objtype

FROM sys.dm_exec_cached_plans c

 CROSS APPLY sys.dm_exec_sql_text(c.plan_handle) t

WHERE t.text = 'SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID = 29690

 AND sod.ProductID = 711;';

Figure 16-1 shows the output of sys.dm_exec_cached_plans.

Figure 16-1. sys.dm_exec_cached_plans output

You can see from Figure 16-1 that a compiled plan is generated and saved in the plan

cache for the preceding ad hoc query. To find the specific query, I used the query itself in

the WHERE clause. You can see that this plan has been used once up until now (usecounts

= 1). If this ad hoc query is reexecuted, SQL Server reuses the existing executable plan

from the plan cache, as shown in Figure 16-2.

Figure 16-2. Reusing the executable plan from the plan cache

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

478

In Figure 16-2, you can see that the usecounts value for the preceding query’s

executable plan has increased to 2, confirming that the existing plan for this query has

been reused. If this query is executed repeatedly, the existing plan will be reused every

time.

Since the plan generated for the preceding query includes the filter criterion

value, the reusability of the plan is limited to the use of the same filter criterion value.

Reexecute the query, but change son.CustomerlD to 29500.

SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID = 29500

 AND sod.ProductID = 711;

The existing plan can’t be reused, and if sys.dm_exec_cached_plans is rerun as is,

you’ll see that the execution count hasn’t increased (Figure 16-3).

Figure 16-3. sys.dm_exec_cached_plans shows that the existing plan is not reused

Instead, I’ll adjust the query against sys.dm_exec_cached_plans.

SELECT c.usecounts,

 c.cacheobjtype,

 c.objtype,

 t.text,

 c.plan_handle

FROM sys.dm_exec_cached_plans c

CROSS APPLY sys.dm_exec_sql_text(c.plan_handle) t

WHERE t.text LIKE 'SELECT soh.SalesOrderNumber,

 soh.OrderDate,

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

479

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID%';

You can see the output from this query in Figure 16-4.

Figure 16-4. sys.dm_exec_cached_plans showing that the existing plan can’t be
reused

From the sys.dm_exec_cached_plans output in Figure 16-4, you can see that the

previous plan for the query hasn’t been reused; the corresponding usecounts value

remained at the old value of 2. Instead of reusing the existing plan, a new plan is

generated for the query and is saved in the plan cache with a new plan_handle. If this ad

hoc query is reexecuted repeatedly with different filter criterion values, a new execution

plan will be generated every time. The inefficient reuse of the execution plan for this

ad hoc query increases the load on the CPU by consuming additional CPU cycles to

regenerate the plan.

To summarize, ad hoc plan caching uses statement-level caching and is limited to

an exact textual match. If an ad hoc query is not complex, SQL Server can implicitly

parameterize the query to increase plan reusability by using a feature called simple

parameterization. The definition of a query for simple parameterization is limited to

quite basic cases such as ad hoc queries with only one table. As shown in the previous

example, most queries requiring a join operation cannot be autoparameterized.

 Optimize for an Ad Hoc Workload

If your server is going to primarily support ad hoc queries, it is possible to achieve a

small degree of performance improvement. One server option is called optimize for

ad hoc workloads. Enabling this for the server changes the way the engine deals with ad

hoc queries. Instead of saving a full compiled plan for the query the first time it’s called,

a compiled plan stub is stored. The stub does not have a full execution plan associated,

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

480

saving the storage space required for it and the time saving it to the cache. This option

can be enabled without rebooting the server.

EXEC sp_configure 'show advanced option', '1';

GO

RECONFIGURE

GO

EXEC sp_configure 'optimize for ad hoc workloads', 1;

GO

RECONFIGURE;

After changing the option, flush the cache and then rerun the ad hoc query. Modify

the query against sys.dm_exec_cached_plans so that you include the size_in_bytes

column; then run it to see the results in Figure 16-5.

Figure 16-5. sys.dm_exec_cached_plans showing a compiled plan stub

Figure 16-5 shows in the cacheobjtype column that the new object in the cache is a

compiled plan stub. Stubs can be created for lots more queries with less impact on the

server than full compiled plans. But the next time an ad hoc query is executed, a fully

compiled plan is created. To see this in action, run the query one more time and check

the results in sys.dm_exec_cachedplans, as shown in Figure 16-6.

Figure 16-6. The compiled plan stub has become a compiled plan

Check the cacheobjtype value. It has changed from Compiled Plan Stub to

Compiled Plan. Finally, to see the real difference between a stub and a full plan, check

the sizeinbytes column in Figure 16-5 and Figure 16-6. The size changed from 424 in

the stub to 73728 in the full plan. This shows precisely the savings available when

working with lots of ad hoc queries. Before proceeding, be sure to disable optimize for

ad hoc workloads.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

481

EXEC sp_configure 'optimize for ad hoc workloads', 0;

GO

RECONFIGURE;

GO

EXEC sp_configure 'show advanced option', '0';

GO

RECONFIGURE;

Personally, I see little downside to implementing this on just about any system. Like

with all recommendations, you should test it to ensure your system isn’t exceptional.

However, the cost of writing the plan into memory when it’s called a second time is

extremely trivial to the savings in memory overall that you see by not storing plans

that are only ever going to be used once. In all my testing and experience, this is a pure

benefit with little downside. You can now use a database-scoped configuration setting to

enable this in your Azure SQL Database too:

ALTER DATABASE SCOPED CONFIGURATION SET OPTIMIZE_FOR_AD_HOC_WORKLOADS = ON;

 Simple Parameterization

When an ad hoc query is submitted, SQL Server analyzes the query to determine which

parts of the incoming text might be parameters. It looks at the variable parts of the ad

hoc query to determine whether it will be safe to parameterize them automatically and

use the parameters (instead of the variable parts) in the query so that the query plan

can be independent of the variable values. This feature of automatically converting

the variable part of a query into a parameter, even though not parameterized explicitly

(using a prepared workload technique), is called simple parameterization.

During simple parameterization, SQL Server ensures that if the ad hoc query is

converted to a parameterized template, the changes in the parameter values won’t

widely change the plan requirement. On determining the simple parameterization to

be safe, SQL Server creates a parameterized template for the ad hoc query and saves the

parameterized plan in the plan cache.

To understand the simple parameterization feature of SQL Server, consider the

following query:

SELECT *

FROM Person.Address AS a

WHERE a.AddressID = 42;

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

482

When this ad hoc query is submitted, SQL Server can treat this query as it is for plan

creation. However, before the query is executed, SQL Server tries to determine whether

it can be safely parameterized. On determining that the variable part of the query

can be parameterized without affecting the basic structure of the query, SQL Server

parameterizes the query and generates a plan for the parameterized query. You can

observe this from the sys.dm_exec_cached_plans output shown in Figure 16-7.

Figure 16-7. sys.dm_exec_cached_plans output showing an autoparameterized
plan

The usecounts of the executable plan for the parameterized query appropriately

represents the number of reuses as 1. Also, note that the objtype for the

autoparameterized executable plan is no longer Adhoc; it reflects the fact that the plan is

for a parameterized query, Prepared.

The original ad hoc query, even though not executed, gets compiled to create the

query tree required for the simple parameterization of the query. The compiled plan for

the ad hoc query will be saved in the plan cache. But before creating the executable plan

for the ad hoc query, SQL Server figured out that it was safe to autoparameterize and

thus autoparameterized the query for further processing.

The parameter values are based on the value of the ad hoc query. Let’s edit the

previous query to use a different AddressID value.

SELECT *

FROM Person.Address AS a

WHERE a.AddressID = 42000;

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

483

If we requery sys.dm_exec_cached_plans, we’ll see an additional plan has been

added, as shown in Figure 16-8.

Figure 16-8. An additional plan with simple parameterization

Figure 16-9. sys.dm_exec_cached_plans output showing reuse of the
autoparameterized plan

As you can see in Figure 16-8, a new plan with a parameter with a data type of int

has been created. You can see plans for smallint and bigint. This does add some

overhead to the cache but not as much as would be added by the large number of

additional plans necessary for the wide variety of values. Here’s the full query text from

the simple parameterization:

(@1 int)SELECT * FROM [Person].[Address] [a] WHERE [a].[AddressID]=@1

Since this ad hoc query has been autoparameterized, SQL Server will reuse the

existing execution plan if you reexecute the query with a different value for the variable

part.

SELECT *

FROM Person.Address AS a

WHERE a.AddressID = 52;

Figure 16-9 shows the output of sys.dm_exec_cached_plans.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

484

From Figure 16-9, you can see that although a new plan has been generated for this

ad hoc query, the ad hoc one using an Addressld value of 52, the existing prepared plan

is reused as indicated by the increase in the corresponding usecounts value to 2. The ad

hoc query can be reexecuted repeatedly with different filter criterion values, reusing the

existing execution plan—all this despite that the original text of the two queries does not

match. The parameterized query for both would be the same, so it was reused.

There is one more aspect to note in the parameterized query for which the execution

plan is cached. In Figure 16-7, observe that the body of the parameterized query doesn’t

exactly match with that of the ad hoc query submitted. For instance, in the ad hoc query,

there are no square brackets on any of the objects.

On realizing that the ad hoc query can be safely autoparameterized, SQL Server

picks a template that can be used instead of the exact text of the query.

To understand the significance of this, consider the following query:

SELECT a.*

FROM Person.Address AS a

WHERE a.AddressID BETWEEN 40 AND 60;

Figure 16-10 shows the output of sys.dm_exec_cached_plans.

Figure 16-10. sys.dm_exec_cached_plans output showing plan simple
parameterization using a template

From Figure 16-10, you can see that SQL Server put the query through the

simplification process and substituted a pair of >= and <= operators, which are

equivalent to the BETWEEN operator. Then the parameterization step modified the query

again. That means instead of resubmitting the preceding ad hoc query using the BETWEEN

clause, if a similar query using a pair of >= and <= is submitted, SQL Server will be able to

reuse the existing execution plan. To confirm this behavior, let’s modify the ad hoc query

as follows:

SELECT a.*

FROM Person.Address AS a

WHERE a.AddressID >= 40

 AND a.AddressID <= 60;

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

485

Figure 16-11 shows the output of sys.dm_exec_cached_plans.

Figure 16-11. sys.dm_exec_cached_plans output showing reuse of the
autoparameterized plan

From Figure 16-11, you can see that the existing plan is reused, even though the

query is syntactically different from the query executed earlier. The autoparameterized

plan generated by SQL Server allows the existing plan to be reused not only when the

query is resubmitted with different variable values but also for queries with the same

template form.

 Simple Parameterization Limits

SQL Server is highly conservative during simple parameterization because the cost of a

bad plan can far outweigh the cost of generating a new plan. The conservative approach

prevents SQL Server from creating an unsafe autoparameterized plan. Thus, simple

parameterization is limited to fairly simple cases, such as ad hoc queries with only one

table. An ad hoc query with a join operation between two (or more) tables (as shown in

the early part of the “Plan Reusability of an Ad Hoc Workload” section) is not considered

safe for simple parameterization.

In a scalable system, do not rely on simple parameterization for plan reusability. The

simple parameterization feature of SQL Server makes an educated guess as to which

variables and constants can be parameterized. Instead of relying on SQL Server for

simple parameterization, you should actually specify it programmatically while building

your application.

 Forced Parameterization

If the system you’re working on consists primarily of ad hoc queries, you may want to

attempt to increase the number of queries that accept parameterization. You can modify

a database to attempt to force, within certain restrictions, all queries to be parameterized

just like in simple parameterization.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

486

To do this, you have to change the database option PARAMETERIZATION to FORCED

using ALTER DATABASE like this:

ALTER DATABASE AdventureWorks2017 SET PARAMETERIZATION FORCED;

But, if you have a query that is in any way complicated, you won’t get simple

parameterization.

SELECT ea.EmailAddress,

 e.BirthDate,

 a.City

FROM Person.Person AS p

 JOIN HumanResources.Employee AS e

 ON p.BusinessEntityID = e.BusinessEntityID

 JOIN Person.BusinessEntityAddress AS bea

 ON e.BusinessEntityID = bea.BusinessEntityID

 JOIN Person.Address AS a

 ON bea.AddressID = a.AddressID

 JOIN Person.StateProvince AS sp

 ON a.StateProvinceID = sp.StateProvinceID

 JOIN Person.EmailAddress AS ea

 ON p.BusinessEntityID = ea.BusinessEntityID

WHERE ea.EmailAddress LIKE 'david%'

 AND sp.StateProvinceCode = 'WA';

When you run this query, simple parameterization is not applied, as you can see in

Figure 16-12.

Figure 16-12. A more complicated query doesn’t get parameterized

No prepared plans are visible in the output from sys.dm_exec_cached_plans. But if

we use the previous script to set PARAMETERIZATION to FORCED, we can rerun the query

after clearing the cache.

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

487

The output from sys.dm_exec_cached_plans changes so that the output looks

different, as shown in Figure 16-13.

Figure 16-13. Forced parameterization changes the plan

Now a prepared plan is visible in the third row. However, only a single parameter

was supplied, @0 varchar(8000). If you get the full text of the prepared plan out of sys.

dm_exec_querytext and format it, it looks like this:

(@0 varchar(8000))

SELECT ea.EmailAddress,

 e.BirthDate,

 a.City

FROM Person.Person AS p

JOIN HumanResources.Employee AS e

 ON p.BusinessEntityID = e.BusinessEntityID

JOIN Person.BusinessEntityAddress AS bea

 ON e.BusinessEntityID = bea.BusinessEntityID

JOIN Person.Address AS a

 ON bea.AddressID = a.AddressID

JOIN Person.StateProvince AS sp

 ON a.StateProvinceID = sp.StateProvinceID

JOIN Person.EmailAddress AS ea

 ON p.BusinessEntityID = ea.BusinessEntityID

WHERE ea.EmailAddress LIKE 'david%'

 AND sp.StateProvinceCode = @0

Because of its restrictions, forced parameterization was unable to substitute anything

for the string 'david%', but it was able to for the string 'WA'. Worth noting is that the

variable was declared as a full 8,000-length VARCHAR instead of the three-character NCHAR

like the actual column in the Person.StateProvince table. Even though the parameter

value here might be different than the actual column value in the database, this will not

lead to the loss of index use. The implicit data conversion for string length, such as from

VARCHAR(8000) to VARCHAR(8), won’t cause problems.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

488

Before you start using forced parameterization, the following list of restrictions may

give you information to help you decide whether forced parameterization will work in

your database. (This is a partial list; for the complete list, please consult Books Online.)

• INSERT ... EXECUTE queries

• Statements inside procedures, triggers, and user-defined functions

since they already have execution plans

• Client-side prepared statements (you’ll find more detail on these

later in this chapter)

• Queries with the query hint RECOMPILE

• Pattern and escape clause arguments used in a LIKE statement

(as shown earlier)

This gives you an idea of the types of restrictions placed on forced parameterization.

Forced parameterization is going to be potentially helpful only if you are suffering from

large amounts of compiles and recompiles because of ad hoc queries. Any other load

won’t benefit from the use of forced parameterization.

Before continuing, change the database back to SIMPLE PARAMETERIZATION.

ALTER DATABASE AdventureWorks2017 SET PARAMETERIZATION SIMPLE;

One other topic around parameterization that is worth mentioning is how Azure SQL

Database deals with the issue. If a query is being recompiled regularly but always getting

the same execution plan, you may see a tuning recommendation in Azure suggesting

that you turn on FORCED PARAMETERIZATION. It’s an aspect of the automated tuning

recommendations that I’ll cover in detail in Chapter 25.

 Plan Reusability of a Prepared Workload
Defining queries as a prepared workload allows the variable parts of the queries to

be explicitly parameterized. This enables SQL Server to generate a query plan that is

not tied to the variable parts of the query, and it keeps the variable parts separate in

an execution context. As you saw in the previous section, SQL Server supports three

techniques to submit a prepared workload.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

489

• Stored procedures

• sp_executesql

• Prepare/execute model

In the sections that follow, I cover each of these techniques in more depth and point

out where it’s possible for parameterized execution plans to cause problems.

 Stored Procedures

Using stored procedures is a standard technique for improving the effectiveness of plan

caching. When the stored procedure is compiled at execution time (this is different for

native compiled procedures, which are covered in Chapter 24), a plan is generated for

each of the SQL statements within the stored procedure. The execution plan generated

for the stored procedure can be reused whenever the stored procedure is reexecuted

with different parameter values.

In addition to checking sys.dm_exec_cached_plans, you can track the execution

plan caching for stored procedures using the Extended Events tool. Extended Events

provides the events listed in Table 16-2 to track the plan caching for stored procedures.

Table 16-2. Events to Analyze Plan Caching for the Stored Procedures Event Class

Event Description

sp_cache_hit The plan is found in the cache.

sp_cache_miss The plan is not found in the cache.

sp_cache_insert The event fires when a plan is added to cache.

sp_cache_remove The event fires when a plan gets removed from cache.

To track the stored procedure plan caching using trace events, you can use these

events along with the other stored procedure events. To understand how stored

procedures can improve plan caching, reexamine the procedure created earlier called

BasicSalesInfo. The procedure is repeated here for clarity:

CREATE OR ALTER PROC dbo.BasicSalesInfo

 @ProductID INT,

 @CustomerID INT

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

490

AS

SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID = @CustomerID

 AND sod.ProductID = @ProductID;

To retrieve a result set for soh.Customerld = 29690 and sod.ProductId=711, you

can execute the stored procedure like this:

EXEC dbo.BasicSalesInfo @CustomerID = 29690, @ProductID = 711;

Figure 16-14 shows the output of sys.dm_exec_cached_plans.

Figure 16-14. sys.dm_exec_cached_plans output showing stored procedure
plan caching

From Figure 16-14, you can see that a compiled plan of type Proc is generated and

cached for the stored procedure. The usecounts value of the executable plan is 1 since

the stored procedure is executed only once.

Figure 16-15 shows the Extended Events output for this stored procedure execution.

Figure 16-15. Extended Events output showing that the stored procedure plan
isn’t easily found in the cache

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

491

From the Extended Events output, you can see that the plan for the stored procedure

is not found in the cache. When the stored procedure is executed the first time, SQL

Server looks in the plan cache and fails to find any cache entry for the procedure

BasicSalesInfo, causing an sp_cache_miss event. On not finding a cached plan, SQL

Server makes arrangements to compile the stored procedure. Subsequently, SQL Server

generates and saves the plan and proceeds with the execution of the stored procedure.

You can see this in the sp_cache_insert event.

If this stored procedure is reexecuted to retrieve a result set for @Productld = 777,

then the existing plan is reused, as shown in the sys.dm_exec_cached_plans output in

Figure 16-16.

EXEC dbo.BasicSalesInfo @CustomerID = 29690, @ProductID = 777;

Figure 16-16. sys.dm_exec_cached_plans output showing reuse of the stored
procedure plan

You can also confirm the reuse of the execution plan from the Extended Events

output, as shown in Figure 16-17.

Figure 16-17. Profiler trace output showing reuse of the stored procedure plan

From the Extended Events output, you can see that the existing plan is found in the

plan cache. On searching the cache, SQL Server finds the executable plan for the stored

procedure BasicSalesInfo causing an sp_cache_hit event. Once the existing execution

plan is found, SQL reuses the plan to execute the stored procedure. One interesting

note is that there is an sp_cache_miss event just prior to the sp_cache_hit, which is

for the SQL batch calling the procedure. Because of the change to the parameter value,

that statement was not found in the cache, but the procedure’s execution plan was. This

apparently “extra” cache miss event can cause confusion.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

492

These other aspects of stored procedures are worth considering:

• Stored procedures are compiled on first execution.

• Stored procedures have other performance benefits, such as reducing

network traffic.

• Stored procedures have additional benefits, such as the isolation of

the data.

Stored Procedures Are Compiled on First Execution

The execution plan of a stored procedure is generated when it is executed the first time.

When the stored procedure is created, it is only parsed and saved in the database. No

normalization and optimization processes are performed during the stored procedure

creation. This allows a stored procedure to be created before creating all the objects

accessed by the stored procedure. For example, you can create the following stored

procedure, even when table NotHere referred to in the stored procedure does not exist:

CREATE OR ALTER PROCEDURE dbo.MyNewProc

AS

SELECT MyID

FROM dbo.NotHere; --Table dbo.NotHere doesn't exist

The stored procedure will be created successfully since the normalization process

to bind the referred object to the query tree (generated by the command parser during

the stored procedure execution) is not performed during the stored procedure creation.

The stored procedure will report the error when it is first executed (if table NotHere is not

created by then) since the stored procedure is compiled the first time it is executed.

Other Performance Benefits of Stored Procedures

Besides improving the performance through execution plan reusability, stored

procedures provide the following performance benefits:

• Business logic is close to the data: The parts of the business logic that

perform extensive operations on data stored in the database should

be put in stored procedures since SQL Server’s engine is extremely

powerful for relational and set theory operations.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

493

• Network traffic is reduced: The database application, across the

network, sends just the name of the stored procedure and the

parameter values. Only the processed result set is returned to the

application. The intermediate data doesn’t need to be passed back

and forth between the application and the database.

• The application is isolated from data structure changes: If all critical

data access is made through stored procedures, then when the

database schema changes, the stored procedures can be re-created

without affecting the application code that accesses the data through

the stored procedures. In fact, the application accessing the database

need not even be stopped.

• There is a single point of administration: All the business logic

implemented in stored procedures is maintained as part of the

database and can be managed centrally on the database itself. Of

course, this benefit is highly relative, depending on whom you ask. To

get a different opinion, ask a non-DBA!

• Security can be increased: User privileges on database tables can be

restricted and can be allowed only through the standard business

logic implemented in the stored procedure. For example, if you want

user UserOne to be restricted from physically deleting rows from table

RestrictedAccess and to be allowed to mark only the rows virtually

deleted through stored procedure MarkDeleted by setting the rows’

status as 'Deleted', then you can execute the DENY and GRANT

commands as follows:

DROP TABLE IF EXISTS dbo.RestrictedAccess;

GO

CREATE TABLE dbo.RestrictedAccess (ID INT,

 Status VARCHAR(7));

INSERT INTO dbo.RestrictedAccess

VALUES (1, 'New');

GO

IF (SELECT OBJECT_ID('dbo.MarkDeleted')) IS NOT NULL

 DROP PROCEDURE dbo.MarkDeleted;

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

494

GO

CREATE PROCEDURE dbo.MarkDeleted @ID INT

AS

UPDATE dbo.RestrictedAccess

SET Status = 'Deleted'

WHERE ID = @ID;

GO

--Prevent user u1 from deleting rows

DENY DELETE ON dbo.RestrictedAccess TO UserOne;

--Allow user u1 to mark a row as 'deleted'

GRANT EXECUTE ON dbo.MarkDeleted TO UserOne;

This assumes the existence of user UserOne. Note that if the query within the stored

procedure MarkDeleted is built dynamically as a string (@sql) as follows, then granting

permission to the stored procedure won’t grant any permission to the query since the

dynamic query isn’t treated as part of the stored procedure:

CREATE OR ALTER PROCEDURE dbo.MarkDeleted @ID INT

AS

DECLARE @SQL NVARCHAR(MAX);

SET @SQL = 'UPDATE dbo.RestrictedAccess

SET Status = "Deleted"

WHERE ID = ' + @ID;

EXEC sys.sp_executesql @SQL;

GO

GRANT EXECUTE ON dbo.MarkDeleted TO UserOne;

Consequently, user UserOne won’t be able to mark the row as 'Deleted' using the

stored procedure MarkDeleted. (I cover the aspects of using a dynamic query in the

stored procedure in the next chapter.) However, if that user had explicit privileges or a

role membership that granted that execution, this wouldn’t work.

Since stored procedures are saved as database objects, they add deployment and

management overhead to the database administration. Many times, you may need

to execute just one or a few queries from the application. If these singleton queries

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

495

are executed frequently, you should aim to reuse their execution plans to improve

performance. But creating stored procedures for these individual singleton queries

adds a large number of stored procedures to the database, increasing the database

administrative overhead significantly. To avoid the maintenance overhead of using

stored procedures and yet derive the benefit of plan reuse, submit the singleton queries

as a prepared workload using the sp_executesql system stored procedure.

 sp_executesql

sp_executesql is a system stored procedure that provides a mechanism to submit

one or more queries as a prepared workload. It allows the variable parts of the query

to be explicitly parameterized, and it can therefore provide execution plan reusability

as effective as a stored procedure. The SELECT statement from BasicSalesInfo can be

submitted through sp_ executesql as follows:

DECLARE @query NVARCHAR(MAX),

 @paramlist NVARCHAR(MAX);

SET @query

 = N'SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID = @CustomerID

 AND sod.ProductID = @ProductID';

SET @paramlist = N'@CustomerID INT, @ProductID INT';

EXEC sp_executesql @query,

 @paramlist,

 @CustomerID = 29690,

 @ProductID = 711;

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

496

Note that the strings passed to the sp_executesql stored procedure are declared as

NVARCHAR and that they are built with a prefix of N. This is required since sp_executesql

uses Unicode strings as the input parameters.

The output of sys.dm_exec_cached_plans is shown next (see Figure 16-18):

SELECT c.usecounts,

 c.cacheobjtype,

 c.objtype,

 t.text

FROM sys.dm_exec_cached_plans AS c

 CROSS APPLY sys.dm_exec_sql_text(c.plan_handle) AS t

WHERE text LIKE '(@CustomerID%';

Figure 16-18. sys.dm_exec_cached_plans output showing a parameterized plan
generated using sp_executesql

In Figure 16-18, you can see that the plan is generated for the parameterized part of

the query submitted through sp_executesql. Since the plan is not tied to the variable

part of the query, the existing execution plan can be reused if this query is resubmitted

with a different value for one of the parameters (d.ProductID=777), as follows:

EXEC sp_executesql @query,@paramlist,@CustomerID = 29690,@ProductID = 777;

Figure 16-19 shows the output of sys.dm_exec_cached_plans.

Figure 16-19. sys.dm_exec_cached_plans output showing reuse of the
parameterized plan generated using sp_executesql

From Figure 16-19, you can see that the existing plan is reused (usecounts is 2 on

the plan on line 2) when the query is resubmitted with a different variable value. If this

query is resubmitted many times with different values for the variable part, the existing

execution plan can be reused without regenerating new execution plans.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

497

The query for which the plan is created (the text column) matches the exact textual

string of the parameterized query submitted through sp_executesql. Therefore, if the

same query is submitted from different parts of the application, ensure that the same

textual string is used in all places. For example, if the same query is resubmitted with a

minor modification in the query string (say in lowercase instead of uppercase letters),

then the existing plan is not reused, and instead a new plan is created, as shown in the

sys.dm_exec_cached_plans output in Figure 16-20.

SET @query = N'SELECT soh.SalesOrderNumber ,soh.OrderDate ,sod.OrderQty

,sod.LineTotal FROM Sales.SalesOrderHeader AS soh JOIN Sales.

SalesOrderDetail AS sod ON soh.SalesOrderID = sod.SalesOrderID where

soh.CustomerID = @CustomerID AND sod.ProductID = @ProductID' ;

Figure 16-20. sys.dm_exec_cached_plans output showing sensitivity of the plan
generated using sp_executesql

Another way to see that there are two different plans created in the cache is to use

additional dynamic management objects to see the properties of the plans in the cache.

SELECT decp.usecounts,

 decp.cacheobjtype,

 decp.objtype,

 dest.text,

 deqs.creation_time,

 deqs.execution_count,

 deqs.query_hash,

 deqs.query_plan_hash

FROM sys.dm_exec_cached_plans AS decp

CROSS APPLY sys.dm_exec_sql_text(decp.plan_handle) AS dest

JOIN sys.dm_exec_query_stats AS deqs

 ON decp.plan_handle = deqs.plan_handle

WHERE dest.text LIKE '(@CustomerID INT, @ProductID INT)%' ;

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

498

Figure 16-21 shows the results from this query.

Figure 16-21. Additional output from sys.dm_exec_query_stats

The output from sys.dm_exec_query_stats shows that the two versions of the query

have different creation_time values. More interestingly, they have identical query_hash

values but different query_plan_hash values (more on the hash values in that section

later). All this shows that changing the case resulted in differing execution plans being

stored in the cache.

In general, use sp_executesql to explicitly parameterize queries to make their

execution plans reusable when the queries are resubmitted with different values for

the variable parts. This provides the performance benefit of reusable plans without

the overhead of managing any persistent object as required for stored procedures.

This feature is exposed by both ODBC and OLEDB through SQLExecDirect and

ICommandWithParameters, respectively. Like .NET developers or users of ADO.NET

(ADO 2.7 or newer), you can submit the preceding SELECT statement using ADO Command

and Parameters. If you set the ADO Command Prepared property to FALSE and use ADO

Command ('SELECT * FROM "Order Details" d, Orders o WHERE d.OrderID=o.

OrderID and d.ProductID=?') with ADO Parameters, ADO.NET will send the

SELECT statement using sp_executesql. Most object-to-relational mapping tools, such

as nHibernate or Entity Framework, also have mechanisms to allow for preparing

statements and using parameters.

Finally, if you do have to build queries through strings like we did earlier, be sure to

use parameters. When you pass in parameters, using any method, ensure that you’re

using strongly typed parameters and using those parameters as parameters within your

T-SQL statements. All this will help to avoid SQL injection attacks.

Along with the parameters, sp_executesql sends the entire query string across the

network every time the query is reexecuted. You can avoid this by using the prepare/

execute model of ODBC and OLEDB (or OLEDB .NET).

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

http://ado.net
http://ado.net

499

 Prepare/Execute Model

ODBC and OLEDB provide a prepare/execute model to submit queries as a prepared

workload. Like sp_executesql, this model allows the variable parts of the queries to be

parameterized explicitly. The prepare phase allows SQL Server to generate the execution

plan for the query and return a handle of the execution plan to the application. This

execution plan handle is used by the execute phase to execute the query with different

parameter values. This model can be used only to submit queries through ODBC or

OLEDB, and it can’t be used within SQL Server itself—queries within stored procedures

can’t be executed using this model.

The SQL Server ODBC driver provides the SOLPrepare and SOLExecute APIs to

support the prepare/execute model. The SQL Server OLEDB provider exposes this

model through the ICommandPrepare interface. The OLEDB .NET provider of ADO.NET

behaves similarly.

Note For a detailed description of how to use the prepare/execute model in a
database application, please refer to the MSDn article “SqlCommand.Prepare
Method” (http://bit.ly/2DBzN4b).

 Query Plan Hash and Query Hash
With SQL Server 2008, new functionality around execution plans and the cache was

introduced called the query plan hash and the query hash. These are binary objects

using an algorithm against the query or the query plan to generate the binary hash value.

These are useful for a common practice in developing known as copy and paste. You will

find that common patterns and practices will be repeated throughout your code. Under

the best circumstances, this is a good thing because you will see the best types of queries,

joins, set-based operations, and so on, copied from one procedure to another as needed.

But sometimes, you will see the worst possible practices repeated over and over again in

your code. This is where the query hash and the query plan hash come into play to help

you out.

You can retrieve the query plan hash and the query hash from sys.dm_exec_query_

stats or sys.dm_exec_requests. You can also get the hash values from the Query Store.

Although this is a mechanism for identifying queries and their plans, the hash values are

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

http://ado.net
http://bit.ly/2DBzN4b

500

not unique. Dissimilar plans can arrive at the same hash, so you can’t rely on this as an

alternate primary key.

To see the hash values in action, create two queries.

SELECT *

FROM Production.Product AS p

 JOIN Production.ProductSubcategory AS ps

 ON p.ProductSubcategoryID = ps.ProductSubcategoryID

 JOIN Production.ProductCategory AS pc

 ON ps.ProductCategoryID = pc.ProductCategoryID

WHERE pc.Name = 'Bikes'

 AND ps.Name = 'Touring Bikes';

SELECT *

FROM Production.Product AS p

 JOIN Production.ProductSubcategory AS ps

 ON p.ProductSubcategoryID = ps.ProductSubcategoryID

 JOIN Production.ProductCategory AS pc

 ON ps.ProductCategoryID = pc.ProductCategoryID

where pc.Name = 'Bikes'

 and ps.Name = 'Road Bikes';

Note that the only substantial difference between the two queries is that

ProductSubcategory.Name is different, with Touring Bikes in one and Road Bikes

in the other. However, also note that the WHERE and AND keywords in the second query

are lowercase. After you execute each of these queries, you can see the results of these

format changes from sys.dm_exec_query_stats in Figure 16-22 from the following

query:

SELECT deqs.execution_count,

 deqs.query_hash,

 deqs.query_plan_hash,

 dest.text

FROM sys.dm_exec_query_stats AS deqs

 CROSS APPLY sys.dm_exec_sql_text(deqs.plan_handle) AS dest

WHERE dest.text LIKE 'SELECT *

FROM Production.Product AS p%';

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

501

Two different plans were created because these are not parameterized queries;

they are too complex to be considered for simple parameterization, and forced

parameterization is off. These two plans have identical hash values because they varied

only in terms of the values passed. The differences in case did not matter to the query

hash or the query plan hash value. If, however, you changed the SELECT criteria, then the

values would be retrieved from sys.dm_exec_query_stats, as shown in Figure 16-23,

and the query would have changes.

SELECT p.ProductID

FROM Production.Product AS p

JOIN Production.ProductSubcategory AS ps

 ON p.ProductSubcategoryID = ps.ProductSubcategoryID

JOIN Production.ProductCategory AS pc

 ON ps.ProductCategoryID = pc.ProductCategoryID

WHERE pc.[Name] = 'Bikes'

 AND ps.[Name] = 'Touring Bikes';

Figure 16-22. sys.dm_exec_query_stats showing the plan hash values

Figure 16-23. sys.dm_exec_query_stats showing a different hash

Although the basic structure of the query is the same, the change in the columns

returned was enough to change the query hash value and the query plan hash value.

Because differences in data distribution and indexes can cause the same query to

come up with two different plans, the query_hash can be the same, and the query_plan_

hash can be different. To illustrate this, execute two new queries.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

502

SELECT p.Name,

 tha.TransactionDate,

 tha.TransactionType,

 tha.Quantity,

 tha.ActualCost

FROM Production.TransactionHistoryArchive AS tha

 JOIN Production.Product AS p

 ON tha.ProductID = p.ProductID

WHERE p.ProductID = 461;

SELECT p.Name,

 tha.TransactionDate,

 tha.TransactionType,

 tha.Quantity,

 tha.ActualCost

FROM Production.TransactionHistoryArchive AS tha

 JOIN Production.Product AS p

 ON tha.ProductID = p.ProductID

WHERE p.ProductID = 712;

Like the original queries used earlier, these queries vary only by the values

passed to the ProductID column. When both queries are run, you can select data from

sys.dm_exec_query_ stats to see the hash values (Figure 16-24).

Figure 16-24. Differences in the query_plan_hash

You can see the queryhash values are identical, but the query_plan_hash values

are different. This is because the execution plans created, based on the statistics for the

values passed in, are radically different, as you can see in Figure 16-25.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

503

The query plan hash and the query hash values can be useful tools for tracking

down common issues between disparate queries, but as you’ve seen, they’re not going

to retrieve an accurate set of information in every possibility. They do add yet another

useful tool in identifying other places where query performance could be poor. They can

also be used to track execution plans over time. You can capture the query_plan_hash

for a query after deploying it to production and then watch it over time to see whether

it changes because of data changes. With this you can also keep track of aggregated

query stats by plan, referencing sys.dm_exec_querystats, although remember that

the aggregated data is reset when the server is restarted or the plan cache is cleared in

any way. However, that same information within the Query Store is persisted through

backups, server restarts, clearing the plan cache, etc. Keep these tools in mind while

tuning your queries.

Figure 16-25. Different parameters result in radically different plans

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

504

 Execution Plan Cache Recommendations
The basic purpose of the plan cache is to improve performance by reusing execution

plans. Thus, it is important to ensure that your execution plans actually are reusable.

Since the plan reusability of ad hoc queries is inefficient, it is generally recommended

that you rely on prepared workload techniques as much as possible. To ensure efficient

use of the plan cache, follow these recommendations:

• Explicitly parameterize variable parts of a query.

• Use stored procedures to implement business functionality.

• Use sp_executesql to avoid stored procedure maintenance.

• Use the prepare/execute model to avoid resending a query string.

• Avoid ad hoc queries.

• Use sp_executesql over EXECUTE for dynamic queries.

• Parameterize variable parts of queries with care.

• Avoid modifying environment settings between connections.

• Avoid the implicit resolution of objects in queries.

Let’s take a closer look at these points.

 Explicitly Parameterize Variable Parts of a Query
A query is often run several times, with the only difference between each run being that

there are different values for the variable parts. Their plans can be reused, however, if

the static and variable parts of the query can be separated. Although SQL Server has a

simple parameterization feature and a forced parameterization feature, they have severe

limitations. Always perform parameterization explicitly using the standard prepared

workload techniques.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

505

 Create Stored Procedures to Implement Business
Functionality
If you have explicitly parameterized your query, then placing it in a stored procedure

brings the best reusability possible. Since only the parameters need to be sent along

with the stored procedure name, network traffic is reduced. Since stored procedures are

reused from the cache, they can run faster than ad hoc queries.

Like anything else, it is possible to have too much of a good thing. There are business

processes that belong in the database, but there are also business processes that should

never be placed within the database. For example, formatting data within stored

procedures is frequently better done with applications. Basically, your database and the

queries around it should be focused on direct data retrieval and data storage. Any other

processing should be done elsewhere.

 Code with sp_executesql to Avoid Stored Procedure
Deployment
If the object deployment required for the stored procedures becomes a consideration or

you are using queries generated on the client side, then use sp_executesql to submit

the queries as prepared workloads. Unlike the stored procedure model, sp_executesql

doesn’t create any persistent objects in the database. sp_executesql is suited to execute

a singleton query or a small batch query.

The complete business logic implemented in a stored procedure can also be

submitted with sp_executesql as a large query string. However, as the complexity of the

business logic increases, it becomes difficult to create and maintain a query string for the

complete logic.

Also, using sp_executesql and stored procedures with appropriate parameters

prevents SQL injection attacks on the server.

However, I still strongly recommend using stored procedures within your database

where possible.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

506

 Implement the Prepare/Execute Model to Avoid
Resending a Query String
sp_executesql requires the query string to be sent across the network every time the

query is reexecuted. It also requires the cost of a query string match at the server to

identify the corresponding execution plan in the plan cache. In the case of an ODBC or

OLEDB (or OLEDB .NET) application, you can use the prepare/execute model to avoid

resending the query string during multiple executions, since only the plan handle and

parameters need to be submitted. In the prepare/execute model, since a plan handle is

returned to the application, the plan can be reused by other user connections; it is not

limited to the user who created the plan.

 Avoid Ad Hoc Queries
Do not design new applications using ad hoc queries! The execution plan created for an

ad hoc query cannot be reused when the query is resubmitted with a different value for

the variable parts. Even though SQL Server has the simple parameterization and forced

parameterization features to isolate the variable parts of the query, because of the strict

conservativeness of SQL Server in parameterization, the feature is limited to simple

queries only. For better plan reusability, submit the queries as prepared workloads.

There are systems built upon the concept of nothing but ad hoc queries. This is

functional and can work within SQL Server, but, as you’ve seen, it carries with it large

amounts of additional overhead that you’ll need to plan for. Also, ad hoc queries are

generally how SQL injection gets introduced to a system.

 Prefer sp_executesql Over EXECUTE for Dynamic Queries
SQL query strings generated dynamically within stored procedures or a database

application should be executed using spexecutesql instead of the EXECUTE command.

The EXECUTE command doesn’t allow the variable parts of the query to be explicitly

parameterized.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

507

To understand the preceding comparison between sp_executesql and EXECUTE,

consider the dynamic SQL query string used to execute the SELECT statement in

adhocsproc.

DECLARE @n VARCHAR(3) = '776',

 @sql VARCHAR(MAX);

SET @sql

 = 'SELECT * FROM Sales.SalesOrderDetail sod ' + 'JOIN Sales.

SalesOrderHeader soh '

 + 'ON sod.SalesOrderID=soh.SalesOrderID ' + 'WHERE sod.

ProductID=“' + @n + "";

--Execute the dynamic query using EXECUTE statement

EXECUTE (@sql);

The EXECUTE statement submits the query along with the value of d.ProductID as an

ad hoc query and thereby may or may not result in simple parameterization. Check the

output yourself by looking at the cache.

SELECT deqs.execution_count,

 deqs.query_hash,

 deqs.query_plan_hash,

 dest.text,

 deqp.query_plan

FROM sys.dm_exec_query_stats AS deqs

 CROSS APPLY sys.dm_exec_sql_text(deqs.plan_handle) AS dest

 CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp

WHERE dest.text LIKE 'SELECT * FROM Sales.SalesOrderDetail sod%';

For improved plan cache reusability, execute the dynamic SQL string as a

parameterized query using sp_executesql.

DECLARE @n NVARCHAR(3) = '776',

 @sql NVARCHAR(MAX),

 @paramdef NVARCHAR(6);

SET @sql

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

508

 = 'SELECT * FROM Sales.SalesOrderDetail sod ' + 'JOIN Sales.Sales

OrderHeader soh '

 + 'ON sod.SalesOrderID=soh.SalesOrderID ' + 'WHERE sod.ProductID=@1';

SET @paramdef = N'@1 INT';

--Execute the dynamic query using sp_executesql system stored procedure

EXECUTE sp_executesql @sql, @paramdef, @1 = @n;

Executing the query as an explicitly parameterized query using sp_executesql

generates a parameterized plan for the query and thereby increases the execution plan

reusability.

 Parameterize Variable Parts of Queries with Care
Be careful while converting variable parts of a query into parameters. The range of values

for some variables may vary so drastically that the execution plan for a certain range of

values may not be suitable for the other values. This can lead to bad parameter sniffing

(covered in Chapter 17).

 Do Not Allow Implicit Resolution of Objects in Queries
SQL Server allows multiple database objects with the same name to be created under

different schemas. For example, table t1 can be created using two different schemas

(u1 and u2) under their individual ownership. The default owner in most systems is dbo

(database owner). If user u1 executes the following query, then SQL Server first tries to

find whether table t1 exists for user u1’s default schema.

SELECT *

FROM tl

WHERE cl = 1;

If not, then it tries to find whether table t1 exists for the dbo user. This implicit

resolution allows user u1 to create another instance of table t1 under a different schema

and access it temporarily (using the same application code) without affecting other users.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

509

On a production database, I recommend using the schema owner and avoiding

implicit resolution. If not, using implicit resolution adds the following overhead on a

production server:

• It requires more time to identify the objects.

• It decreases the effectiveness of plan cache reusability.

 Summary
SQL Server’s cost-based query optimizer decides upon an effective execution plan

not only based on the exact syntax of the query but on the cost of executing the query

using different processing strategies. The cost evaluation of using different processing

strategies is done in multiple optimization phases to avoid spending too much time

optimizing a query. Then, the execution plans are cached to save the cost of execution

plan generation when the same queries are reexecuted. To improve the reusability of

cached plans, SQL Server supports different techniques for execution plan reuse when

the queries are rerun with different values for the variable parts.

Using stored procedures is usually the best technique to improve execution plan

reusability. SQL Server generates a parameterized execution plan for the stored

procedures so that the existing plan can be reused when the stored procedure is rerun

with the same or different parameter values. However, if the existing execution plan

for a stored procedure is invalidated, the plan can’t be reused without a recompilation,

decreasing the effectiveness of plan cache reusability.

In the next chapter, I will discuss how to troubleshoot and resolve bad

parameter sniffing.

CHAPTer 16 exeCuTion PlAn CACHe BeHAVior

www.EBooksWorld.ir

511
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_17

CHAPTER 17

Parameter Sniffing
In the previous chapter, I discussed how to get execution plans into the cache and how to

get them reused from there. It’s a laudable goal and one of the many ways to improve the

overall performance of the system. One of the best mechanisms for ensuring plan reuse

is to parameterize the query, through either stored procedures, prepared statements,

or sp_executesql. All these mechanisms create a parameter that is used instead of a

hard-coded value when creating the plan. These parameters can be sampled, or sniffed,

by the optimizer to use the values contained within when creating the execution plan.

When this works well, as it does most of the time, you benefit from more accurate plans.

But when it goes wrong and becomes bad parameter sniffing, you can see serious

performance issues.

In this chapter, I cover the following topics:

• The helpful mechanisms behind parameter sniffing

• How parameter sniffing can turn bad

• Mechanisms for dealing with bad parameter sniffing

 Parameter Sniffing
When a parameterized query is sent to the optimizer and there is no existing plan

in cache, the optimizer will perform its function to create an execution plan for

manipulating the data as requested by the T-SQL statement. When this parameterized

query is called, the values of the parameters are set, either through your program or

through defaults in the parameter definitions. Either way, there is a value there. The

optimizer knows this. So, it takes advantage of that fact and reads the value of the

parameters. This is the “sniffing” aspect of the process known as parameter sniffing.

With these values available, the optimizer will then use those specific values to look at

the statistics of the data to which the parameters refer. With specific values and a set of

www.EBooksWorld.ir

512

accurate statistics, you’ll get a better execution plan. This beneficial process of parameter

sniffing is running all the time automatically, assuming no changes to the defaults, for all

your parameterized queries, regardless of where they come from.

You can also get sniffing of local variables. Before proceeding with that, though, let’s

delineate between a local variable and a parameter since, within a T-SQL statement, they

can look the same. This example shows both a local variable and a parameter:

CREATE PROCEDURE dbo.ProductDetails (@ProductID INT)

AS

DECLARE @CurrentDate DATETIME = GETDATE();

SELECT p.Name,

 p.Color,

 p.DaysToManufacture,

 pm.CatalogDescription

FROM Production.Product AS p

 JOIN Production.ProductModel AS pm

 ON pm.ProductModelID = p.ProductModelID

WHERE p.ProductID = @ProductID

 AND pm.ModifiedDate < @CurrentDate;

GO

The parameter in the previous query is @ProductID. The local variable is

@CurrentDate. The parameter is defined with the stored procedure (or the prepared

statement in that case). The local variable is part of the code. It’s important to

differentiate these since when you get down to the WHERE clause, they look exactly

the same.

If you get a recompile of any statement that is using local variables, those variables

can be sniffed by the optimizer the same way it sniffs parameters. Just be aware of

this. Other than this unique situation with the recompile, local variables are unknown

quantities to the optimizer when it goes to compile a plan. Normally only parameters

can be sniffed.

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

513

To see parameter sniffing in action and to show that it’s useful, let’s start with a

different procedure.

CREATE OR ALTER PROC dbo.AddressByCity @City NVARCHAR(30)

AS

SELECT a.AddressID,

 a.AddressLine1,

 AddressLine2,

 a.City,

 sp.Name AS StateProvinceName,

 a.PostalCode

FROM Person.Address AS a

 JOIN Person.StateProvince AS sp

 ON a.StateProvinceID = sp.StateProvinceID

WHERE a.City = @City;

GO

After creating the procedure, run it with this parameter:

EXEC dbo.AddressByCity @City = N'London';

This will result in the following I/O and execution times as well as the query plan in

Figure 17-1:

Reads: 219

Duration: 97.1ms

Figure 17-1. Execution plan of AddressByCity

The optimizer sniffed the value London and arrived at a plan based on the data

distribution that the city of London represented within the statistics on the Address

table. There may be other tuning opportunities in that query or with the indexes on the

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

514

table, but the plan is optimal for the value London and the existing data structure. You

can write an identical query using a local variable just like this:

DECLARE @City NVARCHAR(30) = N'London';

SELECT a.AddressID,

 a.AddressLine1,

 AddressLine2,

 a.City,

 sp.[Name] AS StateProvinceName,

 a.PostalCode

FROM Person.Address AS a

JOIN Person.StateProvince AS sp

 ON a.StateProvinceID = sp.StateProvinceID

WHERE a.City = @City;

When this query gets executed, the results of the I/O and execution times are different.

Reads: 1084

Duration: 127.5ms

The execution time has gone up, and you’ve moved from 219 reads total to 1084. This

somewhat explained by taking a look at the new execution plan shown in Figure 17-2.

Figure 17-2. An execution plan created using a local variable

What has happened is that the optimizer was unable to sample, or sniff, the value for

the local variable and therefore had to use an average number of rows from the statistics.

You can see this by looking at the estimated number of rows in the properties of the

Index Scan operator. It shows 34.113. Yet, if you look at the data returned, there are

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

515

actually 434 rows for the value London. In short, if the optimizer thinks it needs to retrieve

434 rows, it creates a plan using the merge join and only 219 reads. But, if it thinks it’s

returning only about 34 rows, it uses the plan with a nested loop join, which, by the

nature of the nested loop that seeks in the lower value once for each value in the upper

set of data, results in 1,084 reads and slower performance.

That is parameter sniffing in action resulting in improved performance. Now, let’s

see what happens when parameter sniffing goes bad.

 Bad Parameter Sniffing
Parameter sniffing creates problems when you have issues with your statistics. The

values passed in the parameter may be representative of your data and the data

distribution within the statistics. In this case, you’ll see a good execution plan. But what

happens when the parameter passed is not representative of the rest of the data in the

table? This situation can arise because your data is just distributed in a nonaverage

way. For example, most values in the statistics will return only a few rows, say six, but

some values will return hundreds of rows. The same thing works the other way, with a

common distribution of large amounts of data and an uncommon set of small values.

In this case, an execution plan is created, based on the nonrepresentative data, but it’s

not useful to most of the queries. This situation most frequently exposes itself through

a sudden, and sometimes quite severe, drop in performance. It can even, seemingly

randomly, fix itself when a recompile event allows a better representative data value to

be passed in a parameter.

You can also see this occur when the statistics are out-of-date, are inaccurate

because of being sampled instead of scanned (for more details on statistics in general,

see Chapter 13), or even are perfectly formed and are just very jagged (odd distributions

of data). Regardless, the situation creates a plan that is less than useful and stores it in

cache. For example, take the following stored procedure:

CREATE OR ALTER PROC dbo.AddressByCity @City NVARCHAR(30)

AS

SELECT a.AddressID,

 a.AddressLine1,

 AddressLine2,

 a.City,

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

516

 sp.Name AS StateProvinceName,

 a.PostalCode

FROM Person.Address AS a

 JOIN Person.StateProvince AS sp

 ON a.StateProvinceID = sp.StateProvinceID

WHERE a.City = @City;

GO

If the stored procedure created previously, dbo.AddressByCity, is run again but this

time with a different parameter, then it returns with a different set of I/O and execution

times but the same execution plan because it is reused from the cache.

EXEC dbo.AddressByCity @City = N'Mentor';

Reads: 218

Duration: 2.8ms

The I/O is the nearly the same since the same execution plan is reused. The

execution time is faster because fewer rows are being returned. You can verify that the

plan was reused by taking a look at the output from sys.dm_exec_query_stats

(in Figure 17-3).

SELECT dest.text,

 deqs.execution_count,

 deqs.creation_time

FROM sys.dm_exec_query_stats AS deqs

CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest

WHERE dest.text LIKE 'CREATE PROC dbo.AddressByCity%';

Figure 17-3. The output from sys.dm_exec_query_stats verifies procedure reuse

To show how bad parameter sniffing can occur, you can reverse the order

of the execution of the procedures. First flush the buffer cache by running DBCC

FREEPROCCACHE, which should not be run against a production machine, unless you’re

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

517

careful to do what I show here, which will remove only a single execution plan from

the cache:

DECLARE @PlanHandle VARBINARY(64);

SELECT @PlanHandle = deps.plan_handle

FROM sys.dm_exec_procedure_stats AS deps

WHERE deps.object_id = OBJECT_ID('dbo.AddressByCity');

IF @PlanHandle IS NOT NULL

BEGIN

 DBCC FREEPROCCACHE(@PlanHandle);

END

GO

Another option here is to only flush the plans for a given database through ALTER

DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE CACHE;.

Now, rerun the queries in reverse order. The first query, using the parameter value

Mentor, results in the following I/O and execution plan (Figure 17-4):

Reads: 218

Duration: 1.8ms

Figure 17-4. The execution plan changes

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

518

Figure 17-4 is not the same execution plan as that shown in Figure 17-2. The number

of reads drops slightly, but the execution time stays roughly the same. The second

execution, using London as the value for the parameter, results in the following I/O and

execution times:

Reads:1084

Duration:97.7ms

This time the reads are radically higher, up to what they were when using the local

variable, and the execution time was increased. The plan created in the first execution of

the procedure with the parameter London results in a plan best suited to retrieve the 434

rows that match those criteria in the database. Then the next execution of the procedure

using the parameter value Mentor did well enough using the same plan generated by

the first execution. When the order is reversed, a new execution plan was created for the

value Mentor that did not work at all well for the value London.

In these examples, I’ve actually cheated just a little. If you were to look at the

distribution of the data in the statistics in question, you’d find that the average number

of rows returned is around 34, while London’s 434 is an outlier. The slightly better

performance you saw when the procedure was compiled for London reflects the fact

that a different plan was needed. However, the performance for values like Mentor

was slightly reduced with the plan for London. Yet, the improved plan for Mentor was

absolutely disastrous for a value like London. Now comes the hard part.

You have to determine which of your plans is correct for your system’s load. One plan

is slightly worse for the average values, while another plan is better for average values

but seriously hurts the outliers. The question is, is it better to have somewhat slower

performance for all possible data sets and support the outliers’ better performance or let

the outliers suffer in order to support a larger cross section of the data because it may be

called more frequently? You’ll have to figure this out on your own system.

 Identifying Bad Parameter Sniffing
Bad parameter sniffing will generally be an intermittent problem. You’ll sometimes

get one plan that works well enough and no one complains, and you’ll sometimes get

another, and suddenly the phone is ringing off the hook with complaints about the speed

of the system. Therefore, the problem is difficult to track down. The trick is in identifying

that you are getting two (or sometimes more) execution plans for a given parameterized

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

519

query. When you start getting these intermittent changes in performance, you must

capture the query plans involved. One method for doing this would be pull the estimated

plans directly out of cache using the sys.dm_exec_query_plan DMO like this:

SELECT deps.execution_count,

 deps.total_elapsed_time,

 deps.total_logical_reads,

 deps.total_logical_writes,

 deqp.query_plan

FROM sys.dm_exec_procedure_stats AS deps

 CROSS APPLY sys.dm_exec_query_plan(deps.plan_handle) AS deqp

WHERE deps.object_id = OBJECT_ID('AdventureWorks2012.dbo.AddressByCity');

This query is using the sys.dm_exec_procedure_stats DMO to retrieve information

about the procedure in the cache and the query plan.

If you have enabled the Query Store, another approach would be to retrieve the plans

from there:

SELECT SUM(qsrs.count_executions) AS ExecutionCount,

 AVG(qsrs.avg_duration) AS AvgDuration,

 AVG(qsrs.avg_logical_io_reads) AS AvgReads,

 AVG(qsrs.avg_logical_io_writes) AS AvgWrites,

 CAST(qsp.query_plan AS XML) AS Query_Plan,

 qsp.query_id,

 qsp.plan_id

FROM sys.query_store_query AS qsq

 JOIN sys.query_store_plan AS qsp

 ON qsp.query_id = qsq.query_id

 JOIN sys.query_store_runtime_stats AS qsrs

 ON qsrs.plan_id = qsp.plan_id

WHERE qsq.object_id = OBJECT_ID('dbo.AddressByCity')

GROUP BY qsp.query_plan,

 qsp.query_id,

 qsp.plan_id;

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

520

This query, unlike the other, can return more than one execution plan.

The results from either query when run within SSMS will include a column for

query_plan that is clickable. Clicking it will open a graphical plan even though what

is retrieved is XML. If you’re dealing with a single plan from cache, right-click the plan

itself and select Save Execution Plan As from the context menu. You can then keep this

plan to compare it to a later plan. If you’re operating out of the Query Store, you’ll have

multiple plans available in a bad parameter sniffing situation.

What you’re going to look at is in the properties of the first operator, in this case the

SELECT operator. There you’ll find the Parameter List item that will show the values that

were used when the plan was compiled by the optimizer, as shown in Figure 17-5.

Figure 17-5. Parameter values used to compile the query plan

You can then use this value to look at your statistics to understand why you’re seeing

a plan that is different from what you expected. In this case, if I run the following query,

I can check out the histogram to see where values like London would likely be stored and

how many rows I can expect:

DBCC SHOW_STATISTICS('Person.Address','_WA_Sys_00000004_164452B1');

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

521

Figure 17-6 shows the applicable part of the histogram.

You can see that the value of London returns a lot more rows than any of the average

rows displayed in AVG_RANGE_ROWS, and it’s higher than many of the other steps RANG_HI_

KEY counts that are stored in EQ_ROWS. In short, the value for London is skewed from the

rest of the data. That’s why the plan there is different from others.

You’ll have to go through the same sort of evaluation of the statistics and compile-

time parameter values to understand where bad parameter sniffing is coming from.

But, if you have a parameterized query that is suffering from bad parameter sniffing,

you can take control in several different ways to attempt to reduce the problem.

 Mitigating Bad Parameter Sniffing
Once you’ve identified that you’re experiencing bad parameter sniffing in one case, you

don’t just have to suffer with it. You can do something about it, but you have to make a

decision. You have several choices for mitigating the behavior of bad parameter sniffing.

• You can force a recompile of the plan at the time of execution by

running sp_recompile against the procedure prior to executing.

• Another way to force the recompile is to use EXEC <procedure name>

WITH RECOMPILE.

Figure 17-6. Part of the histogram showing how many rows you can expect

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

522

• Yet another mechanism for forcing recompiles on each execution

would be to create the procedure using WITH RECOMPILE as part of the

procedure definition.

• You can also use OPTION (RECOMPILE) on individual statements

to have only those statements instead of the entire procedure

recompile. This is frequently the best approach if you’re going to force

recompiles. Just know that this is a trade-off between execution time

and compile time. You could see serious issues if this query is called

frequently and recompiled every time.

• You can reassign input parameters to local variables. This popular

fix forces the optimizer to make a best guess at the values likely to be

used by looking at the statistics of the data being referenced, which

can and does eliminate the values being taken into account. This is

the old way of doing it and has been replaced by using OPTIMIZE FOR

UNKNOWN. This method also suffers from the possibility of variable

sniffing during recompiles.

• You can use a query hint, OPTIMIZE FOR, when you create the

procedure and supply it with known good parameters that will

generate a plan that works well for most of your queries. You can

specify a value that generates a specific plan, or you can specify

UNKNOWN to get a generic plan based on the average of the statistics.

• You can use a plan guide, which is a mechanism to get a query to

behave a certain way without making modifications to the procedure.

This will be covered in detail in Chapter 18.

• You can use plan forcing if you have the Query Store enabled to

choose the preferred plan. This is an elegant solution since it doesn’t

require any code changes to implement.

• You can disable parameter sniffing for the server by setting trace flag

4136 to on. Understand that this beneficial behavior will be turned

off for the entire server, not just one problematic query. This is

potentially a highly dangerous choice to make for your system.

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

523

• You can now disable parameter sniffing at the database level using

DATABASE SCOPED CONFIGURATION to turn off parameter sniffing at

the database level. This is a much safer operation than using the trace

flag as outlined earlier. It is still potentially problematic since most

databases are benefiting from parameter sniffing.

• If you have a particular query pattern that leads to bad parameter

sniffing, you can isolate the functionality by setting up two, or more,

different procedures using a wrapper procedure to determine which

to call. This can help you use multiple different approaches at the

same time. You can also address this issue using dynamic string

execution; just be cautious of SQL injection.

Each of these possible solutions comes with trade-offs that must be taken into

account. If you decide to just recompile the query each time it’s called, you’ll have to pay

the price for the additional CPU needed to recompile the query. This goes against the

whole idea of trying to get plan reuse by using parameterized queries, but it could be the

best solution in your circumstances. Reassigning your parameters to local variables is

something of an old-school approach; the code can look quite silly.

CREATE OR ALTER PROC dbo.AddressByCity @City NVARCHAR(30)

AS

DECLARE @LocalCity NVARCHAR(30) = @City;

SELECT a.AddressID,

 a.AddressLine1,

 AddressLine2,

 a.City,

 sp.Name AS StateProvinceName,

 a.PostalCode

FROM Person.Address AS a

 JOIN Person.StateProvince AS sp

 ON a.StateProvinceID = sp.StateProvinceID

WHERE a.City = @LocalCity;

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

524

Using this approach, the optimizer makes its cardinality estimates based on the

density of the columns in question, not using the histogram. But it looks odd in a query.

In fact, if you take this approach, I strongly suggest adding a comment in front of the

variable declaration so it’s clear why you’re doing this. Here’s an example:

-- This allows the query to bypass bad parameter sniffing

But, with this approach you’re now subject to the possibility of variable sniffing, so

it’s not really recommended unless you’re on a SQL Server instance that is older than

2008. From SQL Server 2008 and onward, you’re better off using the OPTIMIZE FOR

UNKOWN query hint to achieve the same result without the problems of variable sniffing

possibly being introduced.

You can use the OPTIMIZE FOR query hint and pass a specific value. So, for example,

if you wanted to be sure that the plan that was generated by the value Mentor is always

used, you can do this to the query:

CREATE OR ALTER PROC dbo.AddressByCity @City NVARCHAR(30)

AS

SELECT a.AddressID,

 a.AddressLine1,

 AddressLine2,

 a.City,

 sp.Name AS StateProvinceName,

 a.PostalCode

FROM Person.Address AS a

 JOIN Person.StateProvince AS sp

 ON a.StateProvinceID = sp.StateProvinceID

WHERE a.City = @City

OPTION (OPTIMIZE FOR (@City = 'Mentor'));

Now the optimizer will ignore any values passed to @City and will always use the

value of Mentor. You can even see this in action if you modify the query as shown, which

will remove the query from cache, and then you execute it using the parameter value of

London. This will generate a new plan in the cache. If you open that plan and look at the

SELECT properties, you’ll see evidence of the hint in Figure 17-7.

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

525

As you can see, the optimizer did exactly as you specified and used the value Mentor

to compile the plan even though you can also see that you executed the query using the

value London. The problem with this approach is that data changes over time and what

might have been an optimal plan for your data at point is no longer. If you choose to use

the OPTIMIZE FOR hint, you need to plan to regularly reassess it.

If you choose to disable parameter sniffing entirely by using the trace flag or the

DATABASE SCOPED CONFIGURATION, understand that it turns it off on the entire server or

database. Since, most of the time, parameter sniffing is absolutely helping you, you had

best be sure that you’re receiving no benefits from it and the only hope of dealing with

it is to turn off sniffing. This doesn’t require even a server reboot, so it’s immediate. The

plans generated will be based on the averages of the statistics available, so the plans

can be seriously suboptimal depending on your data. Before doing this, explore the

possibility of using the RECOMPILE hint on your most problematic queries. You’re more

likely to get better plans that way even though you won’t get plan reuse.

The simplest approach to dealing with parameter sniffing has to be the use of plan

forcing through the Query Store, assuming you’re in a situation where one particular

plan is the most useful. You can use the reports in the GUI, or you can retrieve

information directly from the system views.

SELECT CAST(qsp.query_plan AS XML) AS query_plan,

 qsp.plan_id,

 qsq.query_id

FROM sys.query_store_plan AS qsp

 JOIN sys.query_store_query AS qsq

 ON qsq.query_id = qsp.query_id

WHERE qsq.object_id = OBJECT_ID('dbo.AddressByCity');

Figure 17-7. Runtime and compile-time values differ

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

526

You have all you need to determine which execution plan will best suit the needs of

your system. Once you have it determined, it’s a simple matter to force the plan choice

on the optimizer. To see this in action, let’s force the plan that is better suited to the value

Mentor. Assuming you’ve been running with the Query Store enabled, you should be

able to retrieve the data using the previous query and pick that plan. If not, enable the

Query Store (see Chapter 11 for the details) and then run both queries, taking the time to

clear the plan from the cache between the executions using the previous scripts.

After you’ve completed that, you have to use the values for query_id and plan_id

along with the sys.sp_query_store_force_plan function.

EXEC sys.sp_query_store_force_plan 1545, 1602;

The result is not immediately apparent. However, if we rerun the stored procedure

passing it a value of London, we will see the plan in Figure 17-8.

Figure 17-8. A forced execution plan

You can try removing the plan from cache and rerunning it for the value of London.

However, nothing you do at this point will bring back that execution plan because the

optimizer is now forcing the plan. You can monitor plan forcing using Extended Events.

You can also query the Query Store views to see which plans are forced. Finally, the plan

itself stores a little bit of information to let you know that it is a forced plan. Looking

at the first operator, in this case the SELECT operator, you can see the properties in

Figure 17-9.

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

527

This is the one indication that you can see within the execution plan that it has been

forced. There’s no indication of the source, so you’ll have to look to the reports within

SSMS or query the tables to track down the information yourself. There is a dedicated

report shown in Figure 17-10.

You can see that there are two different plans for the query. You can even see the

checkmark on the plan, 1602 in Figure 17-10, indicating that it is a forced plan.

Before proceeding, remove the plan forcing using the GUI or the following command:

EXEC sys.sp_query_store_unforce_plan 1545, 1602;

Figure 17-9. The Use plan property showing a forced execution plan

Figure 17-10. The queries with forced plans report

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

528

With all these possible mitigation approaches, test carefully on your systems before

you decide on an approach. Each of these approaches works, but they work in ways

that may be better in one circumstance than another, so it’s good to know the different

methods, and you can experiment with them all depending on your situation.

Finally, remember that this is driven by statistics, so if your statistics are inaccurate or

out-of-date, you’re more likely to get bad parameter sniffing. Reexamining your statistics

maintenance routines to ensure their efficacy is frequently the single best solution.

 Summary
In this chapter, I outlined exactly what parameter sniffing is and how it benefits all your

parameterized queries most of the time. That’s important to keep in mind because when

you run into bad parameter sniffing, it can seem like parameter sniffing is more danger

than it’s worth. I discussed how statistics and data distribution can create plans that are

suboptimal for some of the data set even as they are optimal for other parts of the data.

This is bad parameter sniffing at work. There are several ways to mitigate bad parameter

sniffing, but each one is a trade-off, so examine them carefully to ensure you do what’s

best for your system.

In the next chapter, I’ll talk about what happens to cause queries to recompile and

what can be done about that.

Chapter 17 parameter Sniffing

www.EBooksWorld.ir

529
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_18

CHAPTER 18

Query Recompilation
Stored procedures and parameterized queries improve the reusability of an execution

plan by explicitly converting the variable parts of the queries into parameters. This

allows execution plans to be reused when the queries are resubmitted with the same

or different values for the variable parts. Since stored procedures are mostly used to

implement complex business rules, a typical stored procedure contains a complex set

of SQL statements, making the price of generating the execution plan of the queries

within a stored procedure a bit costly. Therefore, it is usually beneficial to reuse

the existing execution plan of a stored procedure instead of generating a new plan.

However, sometimes the existing plan may not be optimal, or it may not provide the

best processing strategy during reuse. SQL Server resolves this condition by recompiling

statements within stored procedures to generate a new execution plan. This chapter

covers the following topics:

• The benefits and drawbacks of recompilation

• How to identify the statements causing recompilation

• How to analyze the causes of recompilations

• Ways to avoid recompilations when necessary

 Benefits and Drawbacks of Recompilation
The recompilation of queries can be both beneficial and harmful. Sometimes, it may

be beneficial to consider a new processing strategy for a query instead of reusing the

existing plan, especially if the data distribution in the table, and the corresponding

statistics, has changed. The addition of new indexes, constraints, or modifications to

existing structures within a table could also result in a recompiled query performing

better. Recompiles in SQL Server and Azure SQL Database are at the statement level.

www.EBooksWorld.ir

530

This increases the overall number of recompiles that can occur within a procedure, but

it reduces the effects and overhead of recompiles in general. Statement-level recompiles

reduce overhead because they recompile only an individual statement rather than all

the statements within a procedure, whereas recompiles in SQL Server 2000 caused a

procedure, in its entirety, to be recompiled over and over. Despite this smaller footprint

for recompiles, they are generally considered to be something to be reduced and

controlled as much as is practical for your situation.

The exception to the standard recompile process is when plan forcing is enabled

using the Query Store. In that case, a recompile will still occur. However, the plan that

gets generated will be used only if the plan that exists within the Query Store that has

been marked as the forced plan is invalid. If that marked plan is invalid, the newly

generated plan will be used.

To understand how the recompilation of an existing plan can sometimes be

beneficial, assume you need to retrieve some information from the Production.

WorkOrder table. The stored procedure may look like this:

CREATE OR ALTER PROCEDURE dbo.WorkOrder

AS

SELECT wo.WorkOrderID,

 wo.ProductID,

 wo.StockedQty

FROM Production.WorkOrder AS wo

WHERE wo.StockedQty BETWEEN 500

 AND 700;

With the current indexes, the execution plan for the SELECT statement, which is part

of the stored procedure plan, scans the index PK_WorkOrder_WorkOrderlD, as shown in

Figure 18-1.

Figure 18-1. Execution plan for the stored procedure

Chapter 18 Query reCompilation

www.EBooksWorld.ir

531

This plan is saved in the procedure cache so that it can be reused when the stored

procedure is reexecuted. But if a new index is added on the table as follows, then the

existing plan won’t be the most efficient processing strategy to execute the query.

CREATE INDEX IX_Test ON Production.WorkOrder(StockedQty,ProductID);

In this case, it is beneficial to spend extra CPU cycles to recompile the stored

procedure so that you generate a better execution plan.

Since index IX_Test can serve as a covering index for the SELECT statement, the

cost of a bookmark lookup can be avoided by using index IX_Test instead of scanning

PK_WorkOrder_WorkOrderID. SQL Server automatically detects that the new plan was

created and recompiles the existing plan to consider the benefit of using the new index.

This results in a new execution plan for the stored procedure (when executed), as shown

in Figure 18-2.

Figure 18-2. New execution plan for the stored procedure

SQL Server automatically detects the conditions that require a recompilation of the

existing plan. SQL Server follows certain rules in determining when the existing plan

needs to be recompiled. If a specific implementation of a query falls within the rules

of recompilation (execution plan aged out, SET options changed, and so on), then the

statement will be recompiled every time it meets the requirements for a recompile, and

SQL Server may, or may not, generate a better execution plan. To see this in action, you’ll

need a different stored procedure. The following procedure returns all the rows from the

WorkOrder table:

CREATE OR ALTER PROCEDURE dbo.WorkOrderAll

AS

SELECT *

FROM Production.WorkOrder AS wo;

Before executing this procedure, drop the index IXTest.

DROP INDEX Production.WorkOrder.IX_Test;

Chapter 18 Query reCompilation

www.EBooksWorld.ir

532

When you execute this procedure, the SELECT statement returns the complete data

set (all rows and columns) from the table and is therefore best served through a table

scan on the table WorkOrder. If we had a more appropriate query with a limited SELECT

list, a scan of a nonclustered index could be an option. As explained in Chapter 4, the

processing of the SELECT statement won’t benefit from a nonclustered index on any of

the columns. Therefore, ideally, creating the nonclustered index (as follows) before the

execution of the stored procedure shouldn’t matter.

EXEC dbo.WorkOrderAll;

GO

CREATE INDEX IX_Test ON Production.WorkOrder(StockedQty,ProductID);

GO

EXEC dbo.WorkOrderAll; --After creation of index IX_Test

But the stored procedure execution after the index creation faces recompilation, as

shown in the corresponding extended event output in Figure 18-3.

Figure 18-3. Nonbeneficial recompilation of the stored procedure

The sql_statement_recompile event was used to trace the statement recompiles.

There is no longer a separate procedure recompile event as there was in the older

trace events.

In this case, the recompilation is of no real benefit to the stored procedure. But

unfortunately, it falls within the conditions that cause SQL Server to recompile the

stored procedure on every execution in which the schema has been changed. This

can make plan caching for the stored procedure ineffective and wastes CPU cycles in

regenerating the same plan on this execution. Therefore, it is important to be aware of

the conditions that cause the recompilation of queries and to make every effort to avoid

those conditions when implementing stored procedures and parameterized queries that

are targeted for plan reuse. I will discuss these conditions next, after identifying which

statements cause SQL Server to recompile the statement in each respective case.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

533

 Identifying the Statement Causing Recompilation
SQL Server can recompile individual statements within a procedure or the entire

procedure. Thus, to find the cause of recompilation, it’s important to identify the SQL

statement that can’t reuse the existing plan.

You can use Extended Events sessions to track statement recompilation. You can

also use the same events to identify the stored procedure statement that caused the

recompilation. These are the relevant events you can use:

• sql_batch_completed and/or rpc_completed

• sql_statement_recompile

• sql_batch_starting and/or rpc_starting

• sql_statement_completed and/or sp_statement_completed

(Optional)

• sql_statement_starting and/or sp_statement_completed

(Optional)

Note SQl Server 2008 supported extended events, but the rpc_completed and
rpc_starting events didn’t return the correct information. For older queries, you
may have to substitute module_end and module_starting.

Consider the following simple stored procedure:

CREATE OR ALTER PROC dbo.TestProc

AS

CREATE TABLE #TempTable (C1 INT);

INSERT INTO #TempTable (C1)

VALUES (42);

-- data change causes recompile

GO

On executing this stored procedure the first time, you get the Extended Events output

shown in Figure 18-4.

EXEC dbo.TestProc;

Chapter 18 Query reCompilation

www.EBooksWorld.ir

534

In Figure 18-4, you can see that you have a recompilation event (sql_statement_

recompile), indicating that a statement inside the stored procedure went through

recompilation. When a stored procedure is executed for the first time, SQL Server

compiles the stored procedure and generates an execution plan for all the statements

within it, as explained in the previous chapter.

By the way, you might see other statements if you’re using Extended Events to follow

along. Just filter or group by your database ID to make it easier to see the events you’re

interested in. It’s always a good idea to put filters on your Extended Events sessions.

Since execution plans are maintained in volatile memory only, they get dropped

when SQL Server is restarted. On the next execution of the stored procedure, after the

server restart, SQL Server once again compiles the stored procedure and generates the

execution plan. These compilations aren’t treated as a stored procedure recompilation

since a plan didn’t exist in the cache for reuse. An sql_statement_recompile event

indicates that a plan was already there but couldn’t be reused.

Figure 18-4. Extended Events output showing an sql_statement_recompile event
from recompilation

Chapter 18 Query reCompilation

www.EBooksWorld.ir

535

Note i discuss the significance of the recompile_cause data column later in
the “analyzing Causes of recompilation” section.

To see which statement caused the recompile, look at the statement column

within the sql_statement_recompile event. It shows specifically the statement

being recompiled. You can also identify the stored procedure statement causing the

recompilation by using any of the various statement starting events in combination

with a recompile event. If you enable Causality Tracking as part of the Extended Events

session, you’ll get an identifier for the start of an event and then sequence numbers of

other events that are part of the same chain. The Id and sequence number are the first

two columns in Figure 18-4.

Note that after the statement recompilation, the stored procedure statement

that caused the recompilation is started again to execute with the new plan. You can

capture the statement within the event, correlate the events through sequence using

the timestamps, or, best of all, use the Causality Tracking on the extended events. Any of

these can be used to track down specifically which statement is causing the recompile.

 Analyzing Causes of Recompilation
To improve performance, it is important that you analyze the causes of recompilation.

Often, recompilation may not be necessary, and you can avoid it to improve

performance. For example, every time you go through a compile or recompile process,

you’re using the CPU for the optimizer to get its job done. You’re also moving plans in

and out of memory as they go through the compile process. When a query recompiles,

that query is blocked while the recompile process runs, which means frequently called

queries can become major bottlenecks if they also have to go through a recompile.

Knowing the different conditions that result in recompilation helps you evaluate

the cause of a recompilation and determine how to avoid recompiling when it isn’t

necessary. Statement recompilation occurs for the following reasons:

• The schema of regular tables, temporary tables, or views referred to

in the stored procedure statement have changed. Schema changes

include changes to the metadata of the table or the indexes on the table.

• Bindings (such as defaults) to the columns of regular or temporary

tables have changed.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

536

• Statistics on the table indexes or columns have changed, either

automatically or manually, beyond the thresholds discussed in

Chapter 13.

• An object did not exist when the stored procedure was compiled,

but it was created during execution. This is called deferred object

resolution, which is the cause of the preceding recompilation.

• SET options have changed.

• The execution plan was aged and deallocated.

• An explicit call was made to the sp_recompile system stored

procedure.

• There was an explicit use of the RECOMPILE hint.

You can see these causes in Extended Events. The cause is indicated by the

recompile_cause data column value for the sql_statement_recompile event. Let’s look

at some of the reasons listed above for recompilation in more detail and discuss what

you can do to avoid them.

 Schema or Bindings Changes
When the schema or bindings to a view, regular table, or temporary table change, the

existing query’s execution plan becomes invalid. The query must be recompiled before

executing any statement that refers to a modified object. SQL Server automatically

detects this situation and recompiles the stored procedure.

Note i talk about recompilation due to schema changes in more detail in the
“Benefits and Drawbacks of recompilation” section.

 Statistics Changes
SQL Server keeps track of the number of changes to the table. If the number of

changes exceeds the recompilation threshold (RT) value, then SQL Server automatically

updates the statistics when the table is referred to in the statement, as you saw in

Chapter 18 Query reCompilation

www.EBooksWorld.ir

537

Chapter 13. When the condition for the automatic update of statistics is detected, SQL

Server automatically marks the statement for recompile, along with the statistics update.

The RT is determined by a formula that depends on the table being a permanent

table or a temporary table (not a table variable) and how many rows are in the table.

Table 18-1 shows the basic formula so that you can determine when you can expect to

see a statement recompile because of data changes.

Table 18-1. Formula for Determining Data Changes

Type of Table Formula

permanent table if number of rows (n) <= 500, then RT = 500.

if n > 500, then RT = .2 * n or

Sqrt(1000*NumberOfRows).

temporary table if n < 6, then RT = 6.

if 6 <= n <= 500, then RT = 500.

if n > 500, then RT = .2 * n

or

Sqrt(1000*NumberOfRows).

To understand how statistics changes can cause recompilation, consider the

following example. The stored procedure is executed the first time with only one row in

the table. Before the second execution of the stored procedure, a large number of rows

are added to the table.

Note please ensure that the AUTO_UPDATE_STATISTICS setting for the
database is ON. you can determine the AUTO_UPDATE_STATISTICS setting by
executing the following query:

SELECT DATABASEPROPERTYEX('AdventureWorks2017', 'IsAutoUpdateStatistics');

IF EXISTS (SELECT *

 FROM sys.objects AS o

 WHERE o.object_id = OBJECT_ID(N'dbo.NewOrderDetail')

 AND o.type IN (N'U'))

Chapter 18 Query reCompilation

www.EBooksWorld.ir

538

 DROP TABLE dbo.NewOrderDetail;

GO

SELECT *

INTO dbo.NewOrderDetail

FROM Sales.SalesOrderDetail;

GO

CREATE INDEX IX_NewOrders_ProductID ON dbo.NewOrderDetail (ProductID);

GO

CREATE OR ALTER PROCEDURE dbo.NewOrders

AS

SELECT nod.OrderQty,

 nod.CarrierTrackingNumber

FROM dbo.NewOrderDetail AS nod

WHERE nod.ProductID = 897;

GO

SET STATISTICS XML ON;

EXEC dbo.NewOrders;

SET STATISTICS XML OFF;

GO

Next you need to modify a number of rows before reexecuting the stored procedure.

UPDATE dbo.NewOrderDetail

SET ProductID = 897

WHERE ProductID BETWEEN 800

 AND 900;

GO

SET STATISTICS XML ON;

EXEC dbo.NewOrders;

SET STATISTICS XML OFF;

GO

The first time, SQL Server executes the SELECT statement of the stored procedure

using an Index Seek operation, as shown in Figure 18-5.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

539

Note please ensure that the setting for the graphical execution plan is OFF;
otherwise, the output of STATISTICS XML won’t display.

While reexecuting the stored procedure, SQL Server automatically detects that

the statistics on the index have changed. This causes a recompilation of the SELECT

statement within the procedure, with the optimizer determining a better processing

strategy, before executing the SELECT statement within the stored procedure, as you can

see in Figure 18-6.

Figure 18-5. Execution plan prior to data changes

Figure 18-6. Effect of statistics change on the execution plan

Chapter 18 Query reCompilation

www.EBooksWorld.ir

540

In Figure 18-7, you can see that to execute the SELECT statement during the second

execution of the stored procedure, a recompilation was required. From the value of

recompile_cause (Statistics Changed), you can understand that the recompilation

was because of the statistics change. As part of creating the new plan, the statistics are

automatically updated, as indicated by the Auto Stats event, which occurred after the

call for a recompile of the statement. You can also verify the automatic update of the

statistics using the DBCC SHOW_STATISTICS statement or sys.dm_db_stats_properties,

as explained in Chapter 13.

 Deferred Object Resolution
Queries often dynamically create and subsequently access database objects. When such a

query is executed for the first time, the first execution plan won’t contain the information

about the objects to be created during runtime. Thus, in the first execution plan, the

processing strategy for those objects is deferred until the runtime of the query. When a

DML statement (within the query) referring to one of those objects is executed, the query

is recompiled to generate a new plan containing the processing strategy for the object.

Figure 18-7 shows the corresponding Extended Events output.

Figure 18-7. Effect of statistics change on the stored procedure recompilation

Chapter 18 Query reCompilation

www.EBooksWorld.ir

541

Both a regular table and a local temporary table can be created within a stored

procedure to hold intermediate result sets. The recompilation of the statement because

of deferred object resolution behaves differently for a regular table when compared to a

local temporary table, as explained in the following section.

 Recompilation Because of a Regular Table

To understand the query recompilation issue by creating a regular table within the

stored procedure, consider the following example:

CREATE OR ALTER PROC dbo.TestProc

AS

CREATE TABLE dbo.ProcTest1 (C1 INT); --Ensure table doesn't exist

SELECT *

FROM dbo.ProcTest1; --Causes recompilation

DROP TABLE dbo.ProcTest1;

GO

EXEC dbo.TestProc; --First execution

EXEC dbo.TestProc; --Second execution

When the stored procedure is executed for the first time, an execution plan is

generated before the actual execution of the stored procedure. If the table created within

the stored procedure doesn’t exist (as expected in the preceding code) before the stored

procedure is created, then the plan won’t contain the processing strategy for the SELECT

statement referring to the table. Thus, to execute the SELECT statement, the statement

needs to be recompiled, as shown in Figure 18-8.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

542

You can see that the SELECT statement is recompiled when it’s executed the second

time. Dropping the table within the stored procedure during the first execution doesn’t

drop the query plan saved in the plan cache. During the subsequent execution of

the stored procedure, the existing plan includes the processing strategy for the table.

However, because of the re-creation of the table within the stored procedure, SQL

Server considers it a change to the table schema. Therefore, SQL Server recompiles the

statement within the stored procedure before executing the SELECT statement during the

subsequent execution of the rest of the stored procedure. The value of the recompile_

clause for the corresponding sql_statement_recompile event reflects the cause of the

recompilation.

 Recompilation Because of a Local Temporary Table

Most of the time in the stored procedure you create local temporary tables instead of

regular tables. To understand how differently the local temporary tables affect stored

procedure recompilation, modify the preceding example by just replacing the regular

table with a local temporary table.

CREATE OR ALTER PROC dbo.TestProc

AS

CREATE TABLE #ProcTest1 (C1 INT); --Ensure table doesn't exist

SELECT *

FROM #ProcTest1; --Causes recompilation

DROP TABLE #ProcTest1;

Figure 18-8. Extended Events output showing a stored procedure recompilation
because of a regular table

Chapter 18 Query reCompilation

www.EBooksWorld.ir

543

GO

EXEC dbo.TestProc; --First execution

EXEC dbo.TestProc; --Second execution

Since a local temporary table is automatically dropped when the execution of a

stored procedure finishes, it’s not necessary to drop the temporary table explicitly. But,

following good programming practice, you can drop the local temporary table as soon

as its work is done. Figure 18-9 shows the Extended Events output for the preceding

example.

Figure 18-9. Extended Events output showing a stored procedure recompilation
because of a local temporary table

You can see that the query is recompiled when executed for the first time. The cause

of the recompilation, as indicated by the corresponding recompile_cause value, is the

same as the cause of the recompilation on a regular table. However, note that when the

stored procedure is reexecuted, it isn’t recompiled, unlike the case with a regular table.

The schema of a local temporary table during subsequent execution of the stored

procedure remains the same as during the previous execution. A local temporary table

isn’t available outside the scope of the stored procedure, so its schema can’t be altered

in any way between multiple executions. Thus, SQL Server safely reuses the existing plan

(based on the previous instance of the local temporary table) during the subsequent

execution of the stored procedure and thereby avoids the recompilation.

Note to avoid recompilation, it makes sense to hold the intermediate result sets
in the stored procedure using local temporary tables, instead of using temporarily
created regular tables. But, this makes sense only if you can avoid data skew, which
could lead to other bad plans. in that case, the recompile might be less painful.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

544

 SET Options Changes
The execution plan of a stored procedure is dependent on the environment settings.

If the environment settings are changed within a stored procedure, then SQL Server

recompiles the queries on every execution. For example, consider the following code:

CREATE OR ALTER PROC dbo.TestProc

AS

SELECT 'a' + NULL + 'b'; --1st

SET CONCAT_NULL_YIELDS_NULL OFF;

SELECT 'a' + NULL + 'b'; --2nd

SET ANSI_NULLS OFF;

SELECT 'a' + NULL + 'b';

 --3rd

GO

EXEC dbo.TestProc; --First execution

EXEC dbo.TestProc; --Second execution

Changing the SET options in the stored procedure causes SQL Server to recompile

the stored procedure before executing the statement after the SET statement. Thus,

this stored procedure is recompiled twice: once before executing the second SELECT

statement and once before executing the third SELECT statement. The Extended Events

output in Figure 18-10 shows this.

Figure 18-10. Extended Events output showing a stored procedure recompilation
because of a SET option change

If the procedure were reexecuted, you wouldn’t see a recompile since those are now

part of the execution plans.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

545

Since SET NOCOUNT doesn’t change the environment settings, unlike the SET

statements used to change the ANSI settings as shown previously, SET NOCOUNT doesn’t

cause stored procedure recompilation. I explain how to use SET NOCOUNT in detail in

Chapter 19.

 Execution Plan Aging
SQL Server manages the size of the procedure cache by maintaining the age of the

execution plans in the cache, as you saw in Chapter 16. If a stored procedure is not

reexecuted for a long time, the age field of the execution plan can come down to 0,

and the plan can be removed from the cache because of memory pressure. When this

happens and the stored procedure is reexecuted, a new plan will be generated and

cached in the procedure cache. However, if there is enough memory in the system,

unused plans are not removed from the cache until memory pressure increases.

 Explicit Call to sp_recompile
SQL Server automatically recompiles queries when the schema changes or statistics are

altered enough. It also provides the sp_recompile system stored procedure to manually

mark entire stored procedures for recompilation. This stored procedure can be called

on a table, view, stored procedure, or trigger. If it is called on a stored procedure or a

trigger, the stored procedure or trigger is recompiled the next time it is executed. Calling

sp_recompile on a table or a view marks all the stored procedures and triggers that refer

to the table/view for recompilation the next time they are executed.

For example, if sp_recompile is called on table Test1, all the stored procedures and

triggers that refer to table Test1 are marked for recompilation and are recompiled the

next time they are executed, like so:

sp_recompile 'Test1';

You can use sp_recompile to cancel the reuse of an existing plan when executing

dynamic queries with sp_executesql. As demonstrated in the previous chapter, you

should not parameterize the variable parts of a query whose range of values may

require different processing strategies for the query. For instance, reconsidering the

corresponding example, you know that the second execution of the query reuses the

plan generated for the first execution. The example is repeated here for easy reference:

Chapter 18 Query reCompilation

www.EBooksWorld.ir

546

--clear the procedure cache

DECLARE @planhandle VARBINARY(64)

SELECT @planhandle = deqs.plan_handle

FROM sys.dm_exec_query_stats AS deqs

 CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest

WHERE dest.text LIKE '%SELECT soh.SalesOrderNumber,%'

IF @planhandle IS NOT NULL

 DBCC FREEPROCCACHE(@planhandle);

GO

DECLARE @query NVARCHAR(MAX);

DECLARE @param NVARCHAR(MAX);

SET @query

 = N'SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID >= @CustomerId;'

SET @param = N'@CustomerId INT';

EXEC sp_executesql @query, @param, @CustomerId = 1;

EXEC sp_executesql @query, @param, @CustomerId = 30118;

The second execution of the query performs an Index Scan operation on the

SalesOrderHeader table to retrieve the data from the table. As explained in Chapter 8,

an Index Seek operation may have been preferred on the SalesOrderHeader table for

the second execution. You can achieve this by executing the sp_recompile system stored

procedure on the SalesOrderHeader table as follows:

EXEC sp_recompile 'Sales.SalesOrderHeader'

Now, if the query with the second parameter value is reexecuted, the plan for the

query will be recompiled as marked by the preceding sp_recompile statement. This

allows SQL Server to generate an optimal plan for the second execution.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

547

Well, there is a slight problem here: you will likely want to reexecute the first

statement again. With the plan existing in the cache, SQL Server will reuse the plan

(the Index Scan operation on the SalesOrderHeader table) for the first statement even

though an Index Seek operation (using the index on the filter criterion column soh.

CustomerID) would have been optimal. One way of avoiding this problem is to create a

stored procedure for the query and use the OPTION (RECOMPILE) clause on the statement.

I’ll go over the various methods for controlling the recompile next.

 Explicit Use of RECOMPILE
SQL Server allows stored procedures and queries to be explicitly recompiled using the

RECOMPILE command in three ways: with the CREATE PROCEDURE statement, as part of

the EXECUTE statement, and in a query hint. These methods decrease the effectiveness

of plan reusability and can result in radical use of the CPU, so you should consider them

only under the specific circumstances explained in the following sections.

 RECOMPILE Clause with the CREATE PROCEDURE Statement

Sometimes the plan requirements of a stored procedure will vary as the parameter

values to the stored procedure change. In such a case, reusing the plan with different

parameter values may degrade the performance of the stored procedure. You can avoid

this by using the RECOMPILE clause with the CREATE PROCEDURE statement. For example,

for the query in the preceding section, you can create a stored procedure with the

RECOMPILE clause.

CREATE OR ALTER PROCEDURE dbo.CustomerList @CustomerId INT

WITH RECOMPILE

AS

SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID >= @CustomerId;

GO

Chapter 18 Query reCompilation

www.EBooksWorld.ir

548

The RECOMPILE clause prevents the caching of the stored procedure plan for every

statement within the procedure. Every time the stored procedure is executed, new plans

are generated. Therefore, if the stored procedure is executed with the soh.CustomerID

value as 30118 or 1,

EXEC CustomerList

 @CustomerId = 1;

EXEC CustomerList

 @CustomerId = 30118;

a new plan is generated during the individual execution, as shown in Figure 18-11.

Figure 18-11. Effect of the RECOMPILE clause used in stored procedure creation

 RECOMPILE Clause with the EXECUTE Statement

As shown previously, specific parameter values in a stored procedure may require a

different plan, depending upon the nature of the values. You can take the RECOMPILE

clause out of the stored procedure and use it on a case-by-case basis when you execute

the stored procedure, as follows:

EXEC dbo.CustomerList

 @CustomerId = 1

 WITH RECOMPILE;

Chapter 18 Query reCompilation

www.EBooksWorld.ir

549

When the stored procedure is executed with the RECOMPILE clause, a new plan is

generated temporarily. The new plan isn’t cached, and it doesn’t affect the existing plan.

When the stored procedure is executed without the RECOMPILE clause, the plan is cached

as usual. This provides some control over reusability of the existing plan cache rather

than using the RECOMPILE clause with the CREATE PROCEDURE statement.

Since the plan for the stored procedure when executed with the RECOMPILE clause

is not cached, the plan is regenerated every time the stored procedure is executed with

the RECOMPILE clause. However, for better performance, instead of using RECOMPILE,

you should consider creating separate stored procedures, one for each set of parameter

values that requires a different plan, assuming they are easily identified and you’re

dealing only with a small number of possible plans.

 RECOMPILE Hints to Control Individual Statements

While you can use either of the previous methods to recompile an entire procedure, this

can be problematic if the procedure has multiple commands. All statements within a

procedure will be recompiled using either of the previous methods. Compile time for

queries can be the most expensive part of executing some queries, so recompiles should

be avoided. Because of this, a more granular approach is to isolate the recompile to just

the statement that needs it. This is accomplished using the RECOMPILE query hint as

follows:

CREATE OR ALTER PROCEDURE dbo.CustomerList @CustomerId INT

AS

SELECT a.AddressLine1,

 a.AddressLine2,

 a.City,

 a.PostalCode

FROM Person.Address AS a

 JOIN Sales.SalesOrderHeader AS soh

 ON soh.ShipToAddressID = a.AddressID

WHERE soh.CustomerID = @CustomerId;

SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

Chapter 18 Query reCompilation

www.EBooksWorld.ir

550

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID >= @CustomerId

OPTION (RECOMPILE);

SELECT bom.BillOfMaterialsID,

 p.Name,

 sod.OrderQty

FROM Production.BillOfMaterials AS bom

 JOIN Production.Product AS p

 ON p.ProductID = bom.ProductAssemblyID

 JOIN Sales.SalesOrderDetail AS sod

 ON sod.ProductID = p.ProductID

 JOIN Sales.SalesOrderHeader AS soh

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID = @CustomerId;

GO

This middle query in this procedure will appear to behave the same way as the one

where the RECOMPILE was applied to the entire procedure, but if you added multiple

statements to this query, only the statement with the OPTION (RECOMPILE) query hint

would be compiled at every execution of the procedure.

 Avoiding Recompilations
Sometimes recompilation is beneficial, but at other times it is worth avoiding. If a new

index is created on a column referred to in the WHERE or JOIN clause of a query, it makes

sense to regenerate the execution plans of stored procedures referring to the table so

they can benefit from using the index. However, if recompilation is deemed detrimental

to performance, such as when it’s causing blocking or using up resources such as the

CPU, you can avoid it by following these implementation practices:

• Don’t interleave DDL and DML statements.

• Avoid recompilation caused by statistics changes.

• Use the KEEPFIXED PLAN option.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

551

• Disable the auto update statistics feature on the table.

• Use table variables.

• Avoid changing SET options within the stored procedure.

• Use the OPTIMIZE FOR query hint.

• Use plan guides.

 Don’t Interleave DDL and DML Statements
In stored procedures, DDL statements are often used to create local temporary tables

and to change their schema (including adding indexes). Doing so can affect the validity

of the existing plan and can cause recompilation when the stored procedure statements

referring to the tables are executed. To understand how the use of DDL statements

for local temporary tables can cause repetitive recompilation of the stored procedure,

consider the following example:

IF (SELECT OBJECT_ID('dbo.TempTable')) IS NOT NULL

 DROP PROC dbo.TempTable

GO

CREATE PROC dbo.TempTable

AS

CREATE TABLE #MyTempTable (ID INT,

 Dsc NVARCHAR(50))

INSERT INTO #MyTempTable (ID,

 Dsc)

SELECT pm.ProductModelID,

 pm.Name

FROM Production.ProductModel AS pm; --Needs 1st recompilation

SELECT *

FROM #MyTempTable AS mtt;

CREATE CLUSTERED INDEX iTest ON #MyTempTable (ID);

SELECT *

FROM #MyTempTable AS mtt; --Needs 2nd recompilation

CREATE TABLE #t2 (c1 INT);

Chapter 18 Query reCompilation

www.EBooksWorld.ir

552

SELECT *

FROM #t2;

--Needs 3rd recompilation

GO

EXEC dbo.TempTable; --First execution

The stored procedure has interleaved DDL and DML statements. Figure 18-12 shows

the Extended Events output of this code.

Figure 18-12. Extended Events output showing recompilation because of DDL
and DML interleaving

Chapter 18 Query reCompilation

www.EBooksWorld.ir

553

The statements are recompiled four times.

• The execution plan generated for a query when it is first executed

doesn’t contain any information about local temporary tables.

Therefore, the first generated plan can never be used to access the

temporary table using a DML statement.

• The second recompilation comes from the changes encountered in

the data contained within the table as it gets loaded.

• The third recompilation is because of a schema change in the first

temporary table (#MyTempTable). The creation of the index on

#MyTempTable invalidates the existing plan, causing a recompilation

when the table is accessed again. If this index had been created

before the first recompilation, then the existing plan would have

remained valid for the second SELECT statement, too. Therefore,

you can avoid this recompilation by putting the CREATE INDEX DDL

statement above all DML statements referring to the table.

• The fourth recompilation generates a plan to include the processing

strategy for #t2. The existing plan has no information about #t2

and therefore can’t be used to access #t2 using the third SELECT

statement. If the CREATE TABLE DDL statement for #t2 had

been placed before all the DML statements that could cause a

recompilation, then the first recompilation itself would have included

the information on #t2, avoiding the third recompilation.

 Avoiding Recompilations Caused by Statistics Change
In the “Analyzing Causes of Recompilation” section, you saw that a change in statistics

is one of the causes of recompilation. On a simple table with uniform data distribution,

recompilation because of a change of statistics may generate a plan identical to the

previous plan. In such situations, recompilation can be unnecessary and should be

avoided if it is too costly. But, most of the time, changes in statistics need to be reflected

in the execution plan. I’m just talking about situations where you have a long recompile

time or excessive recompiles hitting your CPU.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

554

You have two techniques to avoid recompilations caused by statistics change.

• Use the KEEPFIXED PLAN option.

• Disable the auto update statistics feature on the table.

 Using the KEEPFIXED PLAN Option
SQL Server provides a KEEPFIXED PLAN option to avoid recompilations because

of a statistics change. To understand how you can use KEEPFIXED PLAN, consider

statschanges.sql with an appropriate modification to use the KEEPFIXED PLAN option.

IF (SELECT OBJECT_ID('dbo.Test1')) IS NOT NULL

 DROP TABLE dbo.Test1;

GO

CREATE TABLE dbo.Test1 (C1 INT,

 C2 CHAR(50));

INSERT INTO dbo.Test1

VALUES (1, '2');

CREATE NONCLUSTERED INDEX IndexOne ON dbo.Test1 (C1);

GO

--Create a stored procedure referencing the previous table

CREATE OR ALTER PROC dbo.TestProc

AS

SELECT *

FROM dbo.Test1 AS t

WHERE t.C1 = 1

OPTION (KEEPFIXED PLAN);

GO

--First execution of stored procedure with 1 row in the table

EXEC dbo.TestProc;

--First execution

--Add many rows to the table to cause statistics change

WITH Nums

AS (SELECT 1 AS n

 UNION ALL

Chapter 18 Query reCompilation

www.EBooksWorld.ir

555

 SELECT n + 1

 FROM Nums

 WHERE n < 1000)

INSERT INTO dbo.Test1 (C1,

 C2)

SELECT 1,

 n

FROM Nums

OPTION (MAXRECURSION 1000);

GO

--Reexecute the stored procedure with a change in statistics

EXEC dbo.TestProc; --With change in data distribution

Figure 18-13 shows the Extended Events output.

Figure 18-13. Extended Events output showing the role of the KEEPFIXED PLAN
option in reducing recompilation

You can see that, unlike in the earlier example with changes in data, there’s no

auto_stats event (see Figure 18-7). Consequently, there’s no additional recompilation.

Therefore, by using the KEEPFIXED PLAN option, you can avoid recompilation because of

a statistics change.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

556

There is one recompile event visible in Figure 18-13, but it is the result of the data

modification query, not the execution of the stored procedure as you would expect

without the KEEPFIXED PLAN option.

Note this is a potentially dangerous choice. Before you consider using this
option, ensure that any new plans that would have been generated are not superior
to the existing plan and that you’ve exhausted all other possible solutions. in most
cases, recompiling queries is preferable, though potentially costly.

 Disable Auto Update Statistics on the Table
You can also avoid recompilation because of a statistics update by disabling the

automatic statistics update on the relevant table. For example, you can disable the auto

update statistics feature on table Test1 as follows:

EXEC sp_autostats

 'dbo.Test1',

 'OFF' ;

If you disable this feature on the table before inserting the large number of rows that

causes statistics change, you can avoid the recompilation because of a statistics change.

However, be cautious with this technique since outdated statistics can adversely

affect the effectiveness of the cost-based optimizer, as discussed in Chapter 13. Also, as

explained in Chapter 13, if you disable the automatic update of statistics, you should

have a SQL job to manually update the statistics regularly.

 Using Table Variables
One of the variable types supported by SQL Server 2014 is the table variable. You can

create the table variable data type like other data types by using the DECLARE statement.

It behaves like a local variable, and you can use it inside a stored procedure to hold

intermediate result sets, as you do using a temporary table.

You can avoid the recompilations caused by a temporary table if you use a table

variable. Since statistics are not created for table variables, the different recompilation

issues associated with temporary tables are not applicable to it. For instance, consider

Chapter 18 Query reCompilation

www.EBooksWorld.ir

557

the script used in the section tables are not applicable to it. For instance, consideration

issues associld ir reference:

CREATE OR ALTER PROC dbo.TestProc

AS

CREATE TABLE #TempTable (C1 INT);

INSERT INTO #TempTable (C1)

VALUES (42);

-- data change causes recompile

GO

EXEC dbo.TestProc; --First execution

Because of deferred object resolution, the stored procedure is recompiled during the

first execution. You can avoid this recompilation caused by the temporary table by using

the table variable as follows:

CREATE OR ALTER PROC dbo.TestProc

AS

DECLARE @TempTable TABLE (C1 INT);

INSERT INTO @TempTable (C1)

VALUES (42);

--Recompilation not needed

GO

EXEC dbo.TestProc; --First execution

Figure 18-14 shows the Extended Events output for the first execution of the stored

procedure. The recompilation caused by the temporary table has been avoided by using

the table variable.

Figure 18-14. Extended Events output showing the role of a table variable in
resolving recompilation

Chapter 18 Query reCompilation

www.EBooksWorld.ir

558

However, table variables have their limitations. The main ones are as follows:

• No DDL statement can be executed on the table variable once it is

created, which means no indexes or constraints can be added to

the table variable later. Constraints can be specified only as part of

the table variable’s DECLARE statement. Therefore, only one index

can be created on a table variable, using the PRIMARY KEY or UNIQUE

constraint.

• No statistics are created for table variables, which means they resolve

as single-row tables in execution plans. This is not an issue when the

table actually contains only a small quantity of data, approximately

less than 100 rows. It becomes a major performance problem when

the table variable contains more data since appropriate decisions

regarding the right sorts of operations within an execution plan are

completely dependent on statistics.

 Avoiding Changing SET Options Within a Stored Procedure
It is generally recommended that you not change the environment settings within a

stored procedure and thus avoid recompilation because the SET options changed. For

ANSI compatibility, it is recommended that you keep the following SET options ON:

• ARITHABORT

• CONCAT_NULL_YIELDS_NULL

• QUOTED_IDENTIFIER

• ANSI_NULLS

• ANSI_PADDINC

• ANSI_WARNINGS

• And NUMERIC_R0UNDAB0RT should be OFF.

The earlier example illustrated what happens when you do choose to modify the SET

options within the procedure.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

559

 Using OPTIMIZE FOR Query Hint
Although you may not always be able to reduce or eliminate recompiles, using the

OPTIMIZE FOR query hint can help you get the plan you want when the recompile does

occur. The OPTIMIZE FOR query hint uses parameter values supplied by you to compile

the plan, regardless of the values of the parameter passed in by the calling application.

For an example, examine CustomerList from earlier in the chapter. You know that

if this procedure receives certain values, it will need to create a new plan. Knowing

your data, you also know two more important facts: the frequency that this query will

return small data sets is exceedingly small, and when this query uses the wrong plan,

performance suffers. Rather than recompiling it over and over again, modify it so that it

creates the plan that works best most of the time.

CREATE OR ALTER PROCEDURE dbo.CustomerList @CustomerID INT

AS

SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID >= @CustomerID

OPTION (OPTIMIZE FOR (@CustomerID = 1));

GO

When this query is executed the first time or is recompiled for any reason, it always

gets the same execution plan based on the statistics of the value being passed. To test

this, execute the procedure this way:

EXEC dbo.CustomerList

 @CustomerID = 7920

 WITH RECOMPILE;

EXEC dbo.CustomerList

 @CustomerID = 30118

 WITH RECOMPILE;

Chapter 18 Query reCompilation

www.EBooksWorld.ir

560

Just as earlier in the chapter, this will force the procedure to be recompiled each time

it is executed. Figure 18-15 shows the resulting execution plans.

Unlike earlier in the chapter, recompiling the procedure now doesn’t result in a new

execution plan. Instead, the same plan is generated, regardless of input, because the

query optimizer has received instructions to use the value supplied, @Customerld = 1,

when optimizing the query.

This doesn’t really reduce the number of recompiles, but it does help you control

the execution plan generated. It requires that you know your data very well. If your data

changes over time, you may need to reexamine areas where the OPTIMIZE FOR query hint

was used.

To see the hint in the execution plan, just look at the SELECT operator properties, as

shown in Figure 18-16.

Figure 18-15. WITH RECOMPILE doesn’t change identical execution plans

Figure 18-16. The Parameter Compiled Value matches the value supplied by the
query hint

Chapter 18 Query reCompilation

www.EBooksWorld.ir

561

You can see that while the query was recompiled and it was given a value of 30118,

because of the hint, the compiled value used was 1 as supplied by the hint.

You can specify that the query be optimized using OPTIMIZE FOR UNKOWN. This is

almost the opposite of the OPTIMIZE FOR hint. The OPTIMIZE FOR hint will attempt to use

the histogram, while the OPTIMIZE FOR UNKNOWN hint will use the density vector of the

statistics. What you are directing the processor to do is perform the optimization based

on the average of the statistics, always, and to ignore the actual values passed when the

query is optimized. You can use it in combination with OPTIMIZE FOR <value>. It will

optimize for the value supplied on that parameter but will use statistics on all other

parameters. As was discussed in the preceding chapter, these are both mechanisms for

dealing with bad parameter sniffing.

 Using Plan Guides
A plan guide allows you to use query hints or other optimization techniques without

having to modify the query or procedure text. This is especially useful when you have

a third-party product with poorly performing procedures you need to tune but can’t

modify. As part of the optimization process, if a plan guide exists when a procedure is

compiled or recompiled, it will use that guide to create the execution plan.

In the previous section, I showed you how using OPTIMIZE FOR would affect the

execution plan created on a procedure. The following is the query from the original

procedure, with no hints:

CREATE OR ALTER PROCEDURE dbo.CustomerList @CustomerID INT

AS

SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID >= @CustomerID;

GO

Chapter 18 Query reCompilation

www.EBooksWorld.ir

562

Now assume for a moment that this query is part of a third-party application and you

are not able to modify it to include OPTION (OPTIMIZE FOR). To provide it with the query

hint, OPTIMIZE FOR, create a plan guide as follows:

sp_create_plan_guide @name = N'MyGuide',

 @stmt = N'SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID >= @CustomerID;',

 @type = N'OBJECT',

 @module_or_batch = N'dbo.CustomerList',

 @params = NULL,

 @hints = N'OPTION (OPTIMIZE FOR (@CustomerID = 1))';

Now, when the procedure is executed with each of the different parameters, even

with the RECOMPILE being forced as shown next, the OPTIMIZE FOR hint is applied.

Figure 18-17 shows the resulting execution plan.

EXEC dbo.CustomerList

 @CustomerID = 7920

 WITH RECOMPILE;

EXEC dbo.CustomerList

 @CustomerID = 30118

 WITH RECOMPILE;

Chapter 18 Query reCompilation

www.EBooksWorld.ir

563

The results are the same as when the procedure was modified, but in this case,

no modification was necessary. You can see that a plan guide was applied within the

execution plan by looking at the SELECT properties again (Figure 18-18).

Figure 18-17. Using a plan guide to apply the OPTIMIZE FOR query hint

Figure 18-18. SELECT operator properties show the plan guide

Various types of plan guides exist. The previous example is an object plan

guide, which is a guide matched to a particular object in the database, in this case

CustomerList. You can also create plan guides for ad hoc queries that come into your

system repeatedly by creating a SQL plan guide that looks for particular SQL statements.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

564

Instead of a procedure, the following query gets passed to your system and needs an

OPTIMIZE FOR query hint:

SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID >= 1;

Running this query results in the execution plan you see in Figure 18-19.

Figure 18-19. The query uses a different execution plan from the one wanted

To get a query plan guide, you first need to know the precise format used by the

query in case parameterization, forced or simple, changes the text of the query. The text

has to be precise. If your first attempt at a query plan guide looked like this:

EXECUTE sp_create_plan_guide @name = N'MyBadSQLGuide',

 @stmt = N'SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

join Sales.SalesOrderDetail AS sod

ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID >= @CustomerID',

 @type = N'SQL',

 @module_or_batch = NULL,

Chapter 18 Query reCompilation

www.EBooksWorld.ir

565

 @params = N'@CustomerID int',

 @hints = N'OPTION (TABLE

HINT(soh, FORCESEEK))';

you’ll still get the same execution plan when running the select query. This is because

the query doesn’t look like what was typed in for the plan guide. Several things are

different, such as the spacing and the case on the JOIN statement. You can drop this bad

plan guide using the T-SQL statement.

EXECUTE sp_control_plan_guide @operation = 'Drop',

 @name = N'MyBadSQLGuide';

Inputting the correct syntax will create a new plan.

EXECUTE sp_create_plan_guide @name = N'MyGoodSQLGuide',

 @stmt = N'SELECT soh.SalesOrderNumber,

 soh.OrderDate,

 sod.OrderQty,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.CustomerID >= 1;',

 @type = N'SQL',

 @module_or_batch = NULL,

 @params = NULL,

 @hints = N'OPTION (TABLE

HINT(soh, FORCESEEK))';

Now when the query is run, a completely different plan is created, as shown in

Figure 18-20.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

566

One other option exists when you have a plan in the cache that you think performs

the way you want. You can capture that plan into a plan guide to ensure that the next

time the query is run, the same plan is executed. You accomplish this by running

sp_create_plan_guide_from_handle.

To test it, first clear the procedure cache (assuming we’re not running on a

production instance) so you can control exactly which query plan is used.

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE

With the procedure cache clear and the existing plan guide, MyGoodSOQLGuide, in

place, rerun the query. It will use the plan guide to arrive at the execution plan displayed

in Figure 18-18. To see whether this plan can be kept, first drop the plan guide that is

forcing the Index Seek operation.

EXECUTE sp_control_plan_guide @operation = 'Drop',

 @name = N'MyGoodSQLGuide';

If you were to rerun the query now, it would revert to its original plan. However, right

now in the plan cache, you have the plan displayed in Figure 18-18. To keep it, run the

following script:

DECLARE @plan_handle VARBINARY(64),

 @start_offset INT;

SELECT @plan_handle = deqs.plan_handle,

 @start_offset = deqs.statement_start_offset

FROM sys.dm_exec_query_stats AS deqs

 CROSS APPLY sys.dm_exec_sql_text(sql_handle)

 CROSS APPLY sys.dm_exec_text_query_plan(deqs.plan_handle,

 deqs.statement_start_offset,

Figure 18-20. The plan guide forces a new execution plan on the same query

Chapter 18 Query reCompilation

www.EBooksWorld.ir

567

 deqs.statement_end_offset) AS qp

WHERE text LIKE N'SELECT soh.SalesOrderNumber%'

EXECUTE sp_create_plan_guide_from_handle @name = N'ForcedPlanGuide',

 @plan_handle = @plan_handle,

 @statement_start_offset = @start_

offset;

GO

This creates a plan guide based on the execution plan as it currently exists in the

cache. To be sure this works, clear the cache again. That way, the query has to generate

a new plan. Rerun the query, and observe the execution plan. It will be the same as that

displayed in Figure 18-19 because of the plan guide created using sp_create_plan_

guide_from_handle.

Plan guides are useful mechanisms for controlling the behavior of SQL queries

and stored procedures, but you should use them only when you have a thorough

understanding of the execution plan, the data, and the structure of your system.

 Use Query Store to Force a Plan
Just as with the OPTIMIZE FOR and plan guides, forcing a plan through the Query Store

won’t actually reduce the number of recompiles on the system. It will however allow you to

better control the results of those recompiles. Similar to how plan guides work, as your data

changes over time, you may need to reassess the plans you have forced (see Chapter 11).

 Summary
As you learned in this chapter, query recompilation can both benefit and hurt

performance. Recompilations that generate better plans improve the performance of

the stored procedure. However, recompilations that regenerate the same plan consume

extra CPU cycles without any improvement in processing strategy. Therefore, you should

look closely at recompilations to determine their usefulness. You can use Extended

Events to identify which stored procedure statement caused the recompilation, and you

can determine the cause from the recompile_clause data column value in the Extended

Events output. Once you determine the cause of the recompilation, you can apply

different techniques to avoid the unnecessary recompilations.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

568

Up until now, you have seen how to benefit from proper indexing and plan caching.

However, the performance benefit of these techniques depends on the way the queries

are designed. The cost-based optimizer of SQL Server takes care of many of the query

design issues. However, you should adopt a number of best practices while designing

queries. In the next chapter, I will cover some of the common query design issues that

affect performance.

Chapter 18 Query reCompilation

www.EBooksWorld.ir

569
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_19

CHAPTER 19

Query Design Analysis
A database schema may include a number of performance-enhancement features such

as indexes, statistics, and stored procedures. But none of these features guarantees good

performance if your queries are written badly in the first place. The SQL queries may

not be able to use the available indexes effectively. The structure of the SQL queries

may add avoidable overhead to the query cost. Queries may be attempting to deal with

data in a row-by-row fashion (or to quote Jeff Moden, Row By Agonizing Row, which is

abbreviated to RBAR and pronounced “reebar”) instead of in logical sets. To improve the

performance of a database application, it is important to understand the cost associated

with varying ways of writing a query.

In this chapter, I cover the following topics:

• Aspects of query design that affect performance

• How query designs use indexes effectively

• The role of optimizer hints on query performance

• The role of database constraints on query performance

 Query Design Recommendations
When you need to run a query, you can often use many different approaches to get the

same data. In many cases, the optimizer generates the same plan, irrespective of the

structure of the query. However, in some situations the query structure won’t allow the

optimizer to select the best possible processing strategy. It is important that you are

aware that this can happen and, should it occur, what you can do to avoid it.

www.EBooksWorld.ir

570

In general, keep the following recommendations in mind to ensure the best

performance:

• Operate on small result sets.

• Use indexes effectively.

• Minimize the use of optimizer hints.

• Use domain and referential integrity.

• Avoid resource-intensive queries.

• Reduce the number of network round-trips.

• Reduce the transaction cost. (I’ll cover the last three in the next

chapter.)

Careful testing is essential to identify the query form that provides the best

performance in a specific database environment. You should be conversant with writing

and comparing different SQL query forms so you can evaluate the query form that

provides the best performance in a given environment. You’ll also want to be able to

automate your testing.

 Operating on Small Result Sets
To improve the performance of a query, limit the amount of data it operates on,

including both columns and rows. Operating on a small result set reduces the amount

of resources consumed by a query and increases the effectiveness of indexes. Two of the

rules you should follow to limit the data set’s size are as follows:

• Limit the number of columns in the select list to what is actually

needed.

• Use highly selective WHERE clauses to limit the rows returned.

It’s important to note that you will be asked to return tens of thousands of rows to

an OLTP system. Just because someone tells you those are the business requirements

doesn’t mean they are right. Human beings don’t process tens of thousands of rows.

Few human beings are capable of processing thousands of rows. Be prepared to push

back on these requests and be able to justify your reasons. Also, one of the reasons you’ll

frequently hear and have to be ready to push back is “just in case we need it in the future.”

Chapter 19 Query Design analysis

www.EBooksWorld.ir

571

 Limit the Number of Columns in select_list
Use a minimum set of columns in the select list of a SELECT statement. Don’t use

columns that are not required in the output result set. For instance, don’t use SELECT *

to return all columns. SELECT * statements render covered indexes ineffective since

it is usually impractical to include all columns in an index. For example, consider the

following query:

SELECT Name,

 TerritoryID

FROM Sales.SalesTerritory AS st

WHERE st.Name = 'Australia';

A covering index on the Name column (and through the clustered key, ProductID)

serves the query quickly through the index itself, without accessing the clustered index.

When you have an Extended Events session switched on, you get the following number

of logical reads and execution time, as well as the corresponding execution plan (shown

in Figure 19-1):

Reads: 2

Duration: 920 mcs

Figure 19-1. Execution plan showing the benefit of referring to a limited number
of columns

If this query is modified to include all columns in the select list as follows, then the

previous covering index becomes ineffective because all the columns required by this

query are not included in that index:

SELECT *

FROM Sales.SalesTerritory AS st

WHERE st.Name = 'Australia';

Chapter 19 Query Design analysis

www.EBooksWorld.ir

572

Subsequently, the base table (or the clustered index) containing all the columns has

to be accessed, as shown next. The number of logical reads and the execution time have

both increased.

Table 'SalesTerritory'. Scan count 0, logical reads 4

CPU time = 0 ms, elapsed time = 6.4 ms

The fewer the columns in the select list, the better the potential for improved

query performance. And remember, the query we’ve been looking at is a simple

query returning a single, small row of data, and it has doubled the number of reads

and resulted in six times the execution time. Selecting more columns than are strictly

needed also increases data transfer across the network, further degrading performance.

Figure 19-2 shows the execution plan.

Figure 19-2. Execution plan illustrating the added cost of referring to too many
columns

 Use Highly Selective WHERE Clauses
As explained in Chapter 8, the selectivity of a column referred to in the WHERE, ON, and

HAVING clauses governs the use of an index on the column. A request for a large number

of rows from a table may not benefit from using an index, either because it can’t use an

index at all or, in the case of a nonclustered index, because of the overhead cost of the

lookup operation. To ensure the use of indexes, the columns referred to in the WHERE

clause should be highly selective.

Most of the time, an end user concentrates on a limited number of rows at a time.

Therefore, you should design database applications to request data incrementally as

the user navigates through the data. For applications that rely on a large amount of data

Chapter 19 Query Design analysis

www.EBooksWorld.ir

573

for data analysis or reporting, consider using data analysis solutions such as Analysis

Services or PowerPivot. If the analysis is around aggregation and involves a larger

amount of data, put the columnstore index to use. Remember, returning huge result sets

is costly, and this data is unlikely to be used in its entirety. The only common exception

to this is when working with data scientists who frequently have to retrieve all data from

a given data set as the first step of their operations. In this case alone, you may need to

find other methods for improving performance such as a secondary server, improved

hardware, or other mechanisms. However, work with them to ensure they move the data

only once, not repeatedly.

 Using Indexes Effectively
It is extremely important to have effective indexes on database tables to improve

performance. However, it is equally important to ensure that the queries are designed

properly to use these indexes effectively. These are some of the query design rules you

should follow to improve the use of indexes:

• Avoid nonsargable search conditions.

• Avoid arithmetic operators on the WHERE clause column.

• Avoid functions on the WHERE clause column.

I cover each of these rules in detail in the following sections.

 Avoid Nonsargable Search Conditions
A sargable predicate in a query is one in which an index can be used. The word is a

contraction of “Search ARGument ABLE.” The optimizer’s ability to benefit from an

index depends on the selectivity of the search condition, which in turn depends on the

selectivity of the column(s) referred to in the WHERE, ON, and HAVING clauses, all of which

are referred to the statistics on the index. The search predicate used on the columns

in the WHERE clause determines whether an index operation on the column can be

performed.

Chapter 19 Query Design analysis

www.EBooksWorld.ir

574

Note the use of indexes and other functions around the filtering clauses are
primarily concerned with WHERE, ON, and HAVING. to make things a little easier
to read (and write), i’m going to just use WHERE in a lot of cases in which ON and
HAVING should be included. unless otherwise noted, just include them mentally if
you don’t see them.

The sargable search conditions listed in Table 19-1 generally allow the optimizer

to use an index on the columns referred to in the WHERE clause. The sargable search

conditions generally allow SQL Server to seek to a row in the index and retrieve the row

(or the adjacent range of rows while the search condition remains true).

Table 19-1. Common Sargable and Nonsargable Search Conditions

Type Search Conditions

sargable inclusion conditions =, >, >=, <, <=, and BETWEEN, and some LIKE conditions

such as LIKE '<literal>%'

nonsargable exclusion conditions <>, !=, !>, !<, NOT EXISTS, NOT IN, and NOT LIKE IN,

OR, and some LIKE conditions such as LIKE '%<literal>'

On the other hand, the nonsargable search conditions listed in Table 19-1 generally

prevent the optimizer from using an index on the columns referred to in the WHERE

clause. The exclusion search conditions generally don’t allow SQL Server to perform

Index Seek operations as supported by the sargable search conditions. For example, the

!= condition requires scanning all the rows to identify the matching rows.

Try to implement workarounds for these nonsargable search conditions to improve

performance. In some cases, it may be possible to rewrite a query to avoid a nonsargable

search condition. For example, in some cases an OR condition can be replaced by two

(or more) UNION ALL queries, with multiple seek operations outperforming a single scan.

You can also consider replacing an IN/OR search condition with a BETWEEN condition,

as described in the following section. The trick is to experiment with the different

mechanisms to see whether one will work better in a given situation than another. No

single method within SQL Server is horrible, and no single method is perfect. Everything

has a time and a place where you will need to use a given function. Be flexible and

experiment when you’re attempting to improve performance.

Chapter 19 Query Design analysis

www.EBooksWorld.ir

575

 BETWEEN vs. IN/OR

Consider the following query, which uses the search condition IN:

SELECT sod.*

FROM Sales.SalesOrderDetail AS sod

WHERE sod.SalesOrderID IN (51825, 51826, 51827, 51828);

Another way to write the same query is to use the OR command.

SELECT sod.*

FROM Sales.SalesOrderDetail AS sod

WHERE sod.SalesOrderID = 51825

 OR sod.SalesOrderID = 51826

 OR sod.SalesOrderID = 51827

 OR sod.SalesOrderID = 51828;

You can replace either of these search condition in this query with a BETWEEN clause

as follows:

SELECT sod.*

FROM Sales.SalesOrderDetail AS sod

WHERE sod.SalesOrderID BETWEEN 51825

 AND 51828;

All three queries return the same results. On the face of it, the execution plan of all

three queries appear to be the same, as shown in Figure 19-3.

Chapter 19 Query Design analysis

www.EBooksWorld.ir

576

However, a closer look at the execution plans reveals the difference in their

data- retrieval mechanism, as shown in Figure 19-4.

Figure 19-3. Execution plan for a simple SELECT statement using a BETWEEN
clause

Figure 19-4. Execution plan details for a BETWEEN condition (left) and an IN
condition (right)

As shown in Figure 19-4, SQL Server resolved the IN condition containing

four values into four OR conditions. Accordingly, the clustered index

(PKSalesTerritoryTerritoryld) is accessed four times (Scan count 4) to retrieve rows

for the four IN and OR conditions, as shown in the following corresponding STATISTICS

10 output. On the other hand, the BETWEEN condition is resolved into a pair of >= and <=

conditions, as shown in Figure 19-4. SQL Server accesses the clustered index only once

Chapter 19 Query Design analysis

www.EBooksWorld.ir

577

(Scan count 1) from the first matching row until the match condition is true, as shown

in the following corresponding STATISTICS 10 and QUERY TIME output.

• With the IN condition:

Table 'SalesOrderDetail'. Scan count 4, logical reads 18

CPU time = 0 ms, elapsed time = 140 ms.

• With the BETWEEN condition:

Table 'SalesOrderDetail'. Scan count 1, logical reads 6

CPU time = 0 ms, elapsed time = 72 ms.

Replacing the search condition IN with BETWEEN decreases the number of logical

reads for this query from 18 to 6. As just shown, although all three queries use a clustered

index seek on OrderID, the optimizer locates the range of rows much faster with the

BETWEEN clause than with the IN clause. The same thing happens when you look at the

BETWEEN condition and the OR clause. Therefore, if there is a choice between using IN/OR

and the BETWEEN search condition, always choose the BETWEEN condition because it is

generally much more efficient than the IN/OR condition. In fact, you should go one step

further and use the combination of >= and <= instead of the BETWEEN clause only because

you’re making the optimizer do a little less work.

Also worth noting is that this query violates the earlier suggestion to return only

a limited set of columns rather than using SELECT *. If you look to the properties of

the BETWEEN operation, it was also changed to a parameterized query with simple

parameterization. That can lead to plan reuse as discussed in Chapter 18.

Not every WHERE clause that uses exclusion search conditions prevents the optimizer

from using the index on the column referred to in the search condition. In many cases,

the SQL Server optimizer does a wonderful job of converting the exclusion search

condition to a sargable search condition. To understand this, consider the following two

search conditions, which I discuss in the sections that follow:

• The LIKE condition

• The !< condition versus the >= condition

Chapter 19 Query Design analysis

www.EBooksWorld.ir

578

 LIKE Condition

While using the LIKE search condition, try to use one or more leading characters in the

WHERE clause if possible. Using leading characters in the LIKE clause allows the optimizer

to convert the LIKE condition to an index-friendly search condition. The greater the

number of leading characters in the LIKE condition, the better the optimizer is able to

determine an effective index. Be aware that using a wildcard character as the leading

character in the LIKE condition prevents the optimizer from performing a SEEK (or a

narrow-range scan) on the index; it relies on scanning the complete table instead.

To understand this ability of the SQL Server optimizer, consider the following SELECT

statement that uses the LIKE condition with a leading character:

SELECT c.CurrencyCode

FROM Sales.Currency AS c

WHERE c.Name LIKE 'Ice%';

The SQL Server optimizer does this conversion automatically, as shown in

Figure 19- 5.

Figure 19-5. Execution plan showing automatic conversion of a LIKE clause with
a trailing % sign to an indexable search condition

Chapter 19 Query Design analysis

www.EBooksWorld.ir

579

As you can see, the optimizer automatically converts the LIKE condition to an

equivalent pair of >= and < conditions. You can therefore rewrite this SELECT statement to

replace the LIKE condition with an indexable search condition as follows:

SELECT c.CurrencyCode

FROM Sales.Currency AS c

WHERE c.Name >= N'Ice'

 AND c.Name < N'IcF';

Note that, in both cases, the number of logical reads, the execution time for the query

with the LIKE condition, and the manually converted sargable search condition are all

the same. Thus, if you include leading characters in the LIKE clause, the SQL Server

optimizer optimizes the search condition to allow the use of indexes on the column.

 !< Condition vs. >= Condition

Even though both the !< and >= search conditions retrieve the same result set, they

may perform different operations internally. The >= comparison operator allows the

optimizer to use an index on the column referred to in the search argument because the

= part of the operator allows the optimizer to seek to a starting point in the index and

access all the index rows from there onward. On the other hand, the !< operator doesn’t

have an = element and needs to access the column value for every row.

Or does it? As explained in Chapter 15, the SQL Server optimizer performs syntax-

based optimization, before executing a query, to improve performance. This allows

SQL Server to take care of the performance concern with the !< operator by converting

it to >=, as shown in the execution plan in Figure 19-6 for the two following SELECT

statements:

SELECT *

FROM Purchasing.PurchaseOrderHeader AS poh

WHERE poh.PurchaseOrderID >= 2975;

SELECT *

FROM Purchasing.PurchaseOrderHeader AS poh

WHERE poh.PurchaseOrderID !< 2975;

Chapter 19 Query Design analysis

www.EBooksWorld.ir

580

As you can see, the optimizer often provides you with the flexibility of writing queries

in the preferred T-SQL syntax without sacrificing performance.

Although the SQL Server optimizer can automatically optimize query syntax to

improve performance in many cases, you should not rely on it to do so. It is a good

practice to write efficient queries in the first place.

 Avoid Arithmetic Operators on the WHERE Clause Column
Using an arithmetic operator on a column in the WHERE clause can prevent the optimizer

from using the statistics or the index on the column. For example, consider the following

SELECT statement:

SELECT *

FROM Purchasing.PurchaseOrderHeader AS poh

WHERE poh.PurchaseOrderID * 2 = 3400;

A multiplication operator, *, has been applied on the column in the WHERE clause.

You can avoid this on the column by rewriting the SELECT statement as follows:

SELECT *

FROM Purchasing.PurchaseOrderHeader AS poh

WHERE poh.PurchaseOrderID = 3400 / 2;

The table has a clustered index on the PurchaseOrderID column. As explained

in Chapter 4, an Index Seek operation on this index is suitable for this query since it

returns only one row. Even though both queries return the same result set, the use of the

Figure 19-6. Execution plan showing automatic transformation of a
nonindexable !< operator to an indexable >= operator

Chapter 19 Query Design analysis

www.EBooksWorld.ir

581

multiplication operator on the PurchaseOrderID column in the first query prevents the

optimizer from using the index on the column, as you can see in Figure 19-7.

Figure 19-7. Execution plan showing the detrimental effect of an arithmetic
operator on a WHERE clause column

The following are the corresponding performance metrics:

• With the * operator on the PurchaseOrderID column:

Reads: 11

Duration: 210mcs

• With no operator on the PurchaseOrderID column:

Reads: 2

Duration: 105mcs

Therefore, to use the indexes effectively and improve query performance, avoid

using arithmetic operators on columns in the WHERE clause or JOIN criteria when that

expression is expected to work with an index.

Worth noting in the queries shown in Figure 19-7 is that both queries were simple

enough to qualify for parameterization as indicated by the @1 and @2 in the queries

instead of the values supplied.

Chapter 19 Query Design analysis

www.EBooksWorld.ir

582

Note For small result sets, even though an index seek is usually a better
data-retrieval strategy than a table scan (or a complete clustered index scan), for
small tables (in which all data rows fit on one page) a table scan can be cheaper.
i explain this in more detail in Chapter 8.

 Avoid Functions on the WHERE Clause Column
In the same way as arithmetic operators, functions on WHERE clause columns also hurt

query performance—and for the same reasons. Try to avoid using functions on WHERE

clause columns, as shown in the following two examples:

• SUBSTRING vs. LIKE

• Date part comparison

• Custom scalar user-defined function

 SUBSTRING vs. LIKE

In the following SELECT statement, using the SUBSTRING function prevents the use of the

index on the ShipPostalCode column:

SELECT d.Name

FROM HumanResources.Department AS d

WHERE SUBSTRING(d.Name,

 1,

 1) = 'F';

Figure 19-8 illustrates this.

Figure 19-8. Execution plan showing the detrimental effect of using the
SUBSTRING function on a WHERE clause column

Chapter 19 Query Design analysis

www.EBooksWorld.ir

583

As you can see, using the SUBSTRING function prevented the optimizer from using

the index on the [Name] column. This function on the column made the optimizer use a

clustered index scan. In the absence of the clustered index on the DepartmentID column,

a table scan would have been performed.

You can redesign this SELECT statement to avoid the function on the column as

follows:

SELECT d.Name

FROM HumanResources.Department AS d

WHERE d.Name LIKE 'F%';

This query allows the optimizer to choose the index on the [Name] column, as shown

in Figure 19-9.

Figure 19-9. Execution plan showing the benefit of not using the SUBSTRING
function on a WHERE clause column

 Date Part Comparison

SQL Server can store date and time data as separate fields or as a combined DATETIME

field that has both. Although you may need to keep date and time data together in

one field, sometimes you want only the date, which usually means you have to apply

a conversion function to extract the date part from the DATETIME data type. Doing

this prevents the optimizer from choosing the index on the column, as shown in the

following example.

First, there needs to be a good index on the DATETIME column of one of the tables.

Use Sales.SalesOrderHeader and create the following index:

IF EXISTS (SELECT *

 FROM sys.indexes

 WHERE object_id = OBJECT_ID(N'[Sales].[SalesOrderHeader]')

Chapter 19 Query Design analysis

www.EBooksWorld.ir

584

 AND name = N'IndexTest')

 DROP INDEX IndexTest ON Sales.SalesOrderHeader;

GO

CREATE INDEX IndexTest ON Sales.SalesOrderHeader (OrderDate);

To retrieve all rows from Sales.SalesOrderHeader with OrderDate in the month of

April in the year 2008, you can execute the following SELECT statement:

SELECT soh.SalesOrderID,

 soh.OrderDate

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE DATEPART(yy,

 soh.OrderDate) = 2008

 AND DATEPART(mm,

 soh.OrderDate) = 4;

Using the DATEPART function on the column OrderDate prevents the optimizer from

properly using the index IndexTest on the column and instead causes a scan, as shown

in Figure 19-10.

Figure 19-10. Execution plan showing the detrimental effect of using the
DATEPART function on a WHERE clause column

These are the performance metrics:

Reads: 73

Duration: 2.5ms

Chapter 19 Query Design analysis

www.EBooksWorld.ir

585

The date part comparison can be done without applying the function on the

DATETIME column.

SELECT soh.SalesOrderID,

 soh.OrderDate

FROM Sales.SalesOrderHeader AS soh

JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.OrderDate >= '2008-04-01'

 AND soh.OrderDate < '2008-05-01';

This allows the optimizer to properly reference the index IndexTest that was created

on the DATETIME column, as shown in Figure 19-11.

Figure 19-11. Execution plan showing the benefit of not using the CONVERT
function on a WHERE clause column

These are the performance metrics:

Reads: 2

Duration: 104mcs

Therefore, to allow the optimizer to consider an index on a column referred to in

the WHERE clause, always avoid using a function on the indexed column. This increases

the effectiveness of indexes, which can improve query performance. In this instance,

though, it’s worth noting that the performance was minor since there’s still a scan of the

SalesOrderDetail table.

Chapter 19 Query Design analysis

www.EBooksWorld.ir

586

Be sure to drop the index created earlier.

DROP INDEX Sales.SalesOrderHeader.IndexTest;

 Custom Scalar UDF

Scalar functions are an attractive means of code reuse, especially if you need only a

single value. However, while you can use them for data retrieval, it’s not really their

strong suit. In fact, you can see some significant performance issues depending on the

UDF in question and how much data manipulation is required to satisfy its result set. To

see this in action, let’s start with a scalar function that retrieves the cost of a product.

CREATE OR ALTER FUNCTION dbo.ProductCost (@ProductID INT)

RETURNS MONEY

AS

BEGIN

 DECLARE @Cost MONEY

 SELECT TOP 1

 @Cost = pch.StandardCost

 FROM Production.ProductCostHistory AS pch

 WHERE pch.ProductID = @ProductID

 ORDER BY pch.StartDate DESC;

 IF @Cost IS NULL

 SET @Cost = 0

 RETURN @Cost

END

Calling the function is just a matter of making use of it within a query.

SELECT p.Name,

 dbo.ProductCost(p.ProductID)

FROM Production.Product AS p

WHERE p.ProductNumber LIKE 'HL%';

The performance from this query is about 413 microseconds and 16 reads on

average. For such a simple query with a small result set, that may be fine. Figure 19-12

shows the execution plan for this.

Chapter 19 Query Design analysis

www.EBooksWorld.ir

587

The data is retrieved by using the index, AK_Product_ProductNumber, in a Seek

operation. Because the index is not covering, a Key Lookup operation is used to retrieve

the necessary additional data, p.Name. The Compute Scalar operator is then the scalar

UDF. We can verify this by looking at the properties of the Compute Scalar operator in

the Defined Values dialog, as shown in Figure 19-13.

Figure 19-12. Execution plan with a scalar UDF

Figure 19-13. Compute Scalar operator properties showing the scalar UDF at work

The problem is, you can’t see the data access of the function. That information is

hidden. You can capture it using an estimated plan, or you can query the query store to

see plans for objects that are normally not immediately visible like this UDF:

SELECT CAST(qsp.query_plan AS XML)

FROM sys.query_store_query AS qsq

 JOIN sys.query_store_plan AS qsp

 ON qsp.query_id = qsq.query_id

WHERE qsq.object_id = OBJECT_ID('dbo.ProductCost');

Chapter 19 Query Design analysis

www.EBooksWorld.ir

588

The resulting execution plan looks like Figure 19-14.

While you can’t see the work being done, as you can see from the execution plan, it is

in fact, doing more work. If we were to rewrite this query as follows to eliminate the use

of the function, the performance would also change:

SELECT p.Name,

 pc.StandardCost

FROM Production.Product AS p

 CROSS APPLY

(SELECT TOP 1

 pch.StandardCost

 FROM Production.ProductCostHistory AS pch

 WHERE pch.ProductID = p.ProductID

 ORDER BY pch.StartDate DESC) AS pc

WHERE p.ProductNumber LIKE 'HL%';

Making this change results in a small increase in performance, from 413

microseconds to about 295 microseconds and a reduction in the reads from 16 to 14.

While the execution plan is more complex, as shown in Figure 19-15, the overall

performance is improved.

Figure 19-14. Execution plan of the scalar function

Chapter 19 Query Design analysis

www.EBooksWorld.ir

589

While the optimizer is suggesting that the plan with the scalar function has an

estimated cost below the plan without, the actual performance metrics are almost the

opposite. This is because the cost of a scalar function is fixed at a per-row cost and

doesn’t take into account the complexity of the process supporting it, in this case, access

to a table. This ends up making the query with the compute scalar not only slower but

more resource intensive.

 Minimize Optimizer Hints
SQL Server’s cost-based optimizer dynamically determines the processing strategy for a

query based on the current table/index structure and statistics. This dynamic behavior

can be overridden using optimizer hints, taking some of the decisions away from the

optimizer by instructing it to use a certain processing strategy. This makes the optimizer

behavior static and doesn’t allow it to dynamically update the processing strategy as the

table/index structures or statistics change.

Figure 19-15. An execution plan with a scalar function and one without a scalar
function

Chapter 19 Query Design analysis

www.EBooksWorld.ir

590

Since it is usually difficult to outsmart the optimizer, the usual recommendation is

to avoid optimizer hints. Some hints can be extremely beneficial (for example, OPTIMIZE

FOR), but others are beneficial in only very specific circumstances. Generally, it is

beneficial to let the optimizer determine a cost-effective processing strategy based on the

data distribution statistics, indexes, and other factors. Forcing the optimizer (with hints)

to use a specific processing strategy hurts performance more often than not, as shown in

the following examples for these hints:

• JOIN hint

• INDEX hint

 JOIN Hint
As explained in Chapter 6, the optimizer dynamically determines a cost-effective JOIN

strategy between two data sets based on the table/index structure and data. Table 19-2

summarizes the JOIN types supported by SQL Server 2017 for easy reference.

Table 19-2. JOIN Types Supported by SQL Server 2017

JOIN Type Index on Joining Columns Usual Size of Joining Tables Presorted JOIN Clause

nested

loops

inner table a must small Optional

Outer table preferable

Merge Both tables a must large yes

Optimal condition: clustered

or covering index on both

hash inner table not indexed any no

Optimal condition: inner table

large, outer table small

adaptive uses either hash or loops

depending on the data being

returned by the query

Variable, but usually very large

because it currently works

only with columnstore indexes

Depends on join type

Chapter 19 Query Design analysis

www.EBooksWorld.ir

591

SQL Server 2017 introduced the new join type, the adaptive join. It’s really just

a dynamic determination of either the nested loops or the hash, but that adaptive

processing methodology effectively makes for a new join type, which is why I’ve

listed it here.

Note the outer table is usually the smaller of the two joining tables.

You can instruct SQL Server to use a specific JOIN type by using the JOIN hints in

Table 19-3.

Table 19-3. JOIN Hints

JOIN Type JOIN Hint

nested loop LOOP

Merge MERGE

hash HASH

REMOTE

There is no hint for the adaptive join. There is a hint for a REMOTE join. This is used

when one of the tables in a join is remote to the current database. It allows you to direct

which side of the JOIN, based on the input size, should be doing the work.

To understand how the use of JOIN hints can affect performance, consider the

following SELECT statement:

SELECT s.Name AS StoreName,

 p.LastName + ', ' + p.FirstName

FROM Sales.Store AS s

 JOIN Sales.SalesPerson AS sp

 ON s.SalesPersonID = sp.BusinessEntityID

 JOIN HumanResources.Employee AS e

 ON sp.BusinessEntityID = e.BusinessEntityID

 JOIN Person.Person AS p

 ON e.BusinessEntityID = p.BusinessEntityID;

Chapter 19 Query Design analysis

www.EBooksWorld.ir

592

Figure 19-16 shows the execution plan.

As you can see, SQL Server dynamically decided to use a LOOP JOIN to add the data

from the Person.Person table and to add a HASH JOIN for the Sales.Salesperson and

Sales.Store tables. As demonstrated in Chapter 6, for simple queries affecting a small

result set, a LOOP JOIN generally provides better performance than a HASH JOIN or MERGE

JOIN. Since the number of rows coming from the Sales.Salesperson table is relatively

small, it might feel like you could force the JOIN to be a LOOP like this:

SELECT s.Name AS StoreName,

 p.LastName + ', ' + p.FirstName

FROM Sales.Store AS s

 JOIN Sales.SalesPerson AS sp

 ON s.SalesPersonID = sp.BusinessEntityID

 JOIN HumanResources.Employee AS e

 ON sp.BusinessEntityID = e.BusinessEntityID

 JOIN Person.Person AS p

 ON e.BusinessEntityID = p.BusinessEntityID

OPTION (LOOP JOIN);

Figure 19-16. Execution plan showing choices made by the optimizer

Chapter 19 Query Design analysis

www.EBooksWorld.ir

593

Figure 19-17. Changes made by using the JOIN query hint

When this query is run, the execution plan changes, as you can see in Figure 19-17.

Here are the corresponding performance outputs for each query:

• With no JOIN hint:

Reads: 2364

Duration: 84ms

• With a JOIN hint:

Reads: 3740

Duration: 97ms

You can see that the query with the JOIN hint takes longer to run than the query

without the hint. It also adds a number of reads. You can make this even worse. Instead

of telling all hints used in the query to be a LOOP join, it is possible to target just the one

you are interested in, like so:

SELECT s.Name AS StoreName,

 p.LastName + ', ' + p.FirstName

FROM Sales.Store AS s

 INNER LOOP JOIN Sales.SalesPerson AS sp

 ON s.SalesPersonID = sp.BusinessEntityID

 JOIN HumanResources.Employee AS e

 ON sp.BusinessEntityID = e.BusinessEntityID

 JOIN Person.Person AS p

 ON e.BusinessEntityID = p.BusinessEntityID;

Chapter 19 Query Design analysis

www.EBooksWorld.ir

594

Running this query results in the execution plan shown in Figure 19-18.

As you can see, there are now four tables referenced in the query plan. There have

been four tables referenced through all the previous executions, but the optimizer

was able to eliminate one table from the query through the simplification process of

optimization (referred to in Chapter 8). Now the hint has forced the optimizer to make

different choices than it otherwise might have and removed simplification from the

process. The reads degrade although the execution time improved slightly over the

previous query.

Reads: 3749

Duration: 86ms

JOIN hints force the optimizer to ignore its own optimization strategy and use instead

the strategy specified by the query. JOIN hints can hurt query performance because of

the following factors:

• Hints prevent autoparameterization.

• The optimizer is prevented from dynamically deciding the joining

order of the tables.

Therefore, it makes sense to not use the JOIN hint but to instead let the optimizer

dynamically determine a cost-effective processing strategy. There are exceptions, of

course, but the exceptions must be validated through thorough testing.

Figure 19-18. More changes from using the LOOP join hint

Chapter 19 Query Design analysis

www.EBooksWorld.ir

595

 INDEX Hints
As mentioned earlier, using an arithmetic operator on a WHERE clause column prevents

the optimizer from choosing the index on the column. To improve performance, you can

rewrite the query without using the arithmetic operator on the WHERE clause, as shown in

the corresponding example. Alternatively, you may even think of forcing the optimizer

to use the index on the column with an INDEX hint (a type of optimizer hint). However,

most of the time, it is better to avoid the INDEX hint and let the optimizer behave

dynamically.

To understand the effect of an INDEX hint on query performance, consider the

example presented in the “Avoid Arithmetic Operators on the WHERE Clause Column”

section. The multiplication operator on the PurchaseOrderID column prevented the

optimizer from choosing the index on the column. You can use an INDEX hint to force the

optimizer to use the index on the OrderID column as follows:

SELECT *

FROM Purchasing.PurchaseOrderHeader AS poh WITH (INDEX(PK_

PurchaseOrderHeader_PurchaseOrderID))

WHERE poh.PurchaseOrderID * 2 = 3400;

Note the relative cost of using the INDEX hint in comparison to not using the INDEX

hint, as shown in Figure 19-18. Also, note the difference in the number of logical reads

shown in the following performance metrics:

• No hint (with the arithmetic operator on the WHERE clause column):

Reads: 11

Duration: 210mcs

• No hint (without the arithmetic operator on the WHERE clause

column):

Reads: 2

Duration: 105mcs

• INDEX hint:

Reads: 44

Duration: 380mcs

Chapter 19 Query Design analysis

www.EBooksWorld.ir

596

From the relative cost of execution plans and number of logical reads, it is evident

that the query with the INDEX hint actually impaired the query performance. Even

though it allowed the optimizer to use the index on the PurchaseOrderID column,

it did not allow the optimizer to determine the proper index-access mechanism.

Consequently, the optimizer used the index scan to access just one row. In comparison,

avoiding the arithmetic operator on the WHERE clause column and not using the INDEX

hint allowed the optimizer not only to use the index on the PurchaseOrderID column but

also to determine the proper index access mechanism: INDEX SEEK.

Therefore, in general, let the optimizer choose the best indexing strategy for the

query and don’t override the optimizer behavior using an INDEX hint. Also, not using

INDEX hints allows the optimizer to decide the best indexing strategy dynamically as the

data changes over time. Figure 19-19 shows the difference between specifying index

hints and not specifying them.

Figure 19-19. Cost of a query with and without different INDEX hints

Chapter 19 Query Design analysis

www.EBooksWorld.ir

597

 Using Domain and Referential Integrity
Domain and referential integrity help define and enforce valid values for a column,

maintaining the integrity of the database. This is done through column/table constraints.

Since data access is usually one of the most costly operations in a query execution,

avoiding redundant data access helps the optimizer reduce the query execution time.

Domain and referential integrity help the SQL Server optimizer analyze valid data values

without physically accessing the data, which reduces query time.

To understand how this happens, consider the following examples:

• The NOT NULL constraint

• Declarative referential integrity (DRI)

 NOT NULL Constraint
The NOT NULL column constraint is used to implement domain integrity by defining the

fact that a NULL value can’t be entered in a particular column. SQL Server automatically

enforces this fact at runtime to maintain the domain integrity for that column. Also,

defining the NOT NULL column constraint helps the optimizer generate an efficient

processing strategy when the ISNULL function is used on that column in a query.

To understand the performance benefit of the NOT NULL column constraint, consider

the following example. These two queries are intended to return every value that does

not equal 'B'. These two queries are running against similarly sized columns, each of

which will require a table scan to return the data:

SELECT p.FirstName

FROM Person.Person AS p

WHERE p.FirstName < 'B'

 OR p.FirstName >= 'C';

SELECT p.MiddleName

FROM Person.Person AS p

WHERE p.MiddleName < 'B'

 OR p.MiddleName >= 'C';

The two queries use similar execution plans, as you can see in Figure 19-20.

Chapter 19 Query Design analysis

www.EBooksWorld.ir

598

The differences are primarily caused by the estimated rows to be returned. While

both queries are going against the same index and scanning it, each one still has a

different predicate and estimated rows, as you can see in Figure 19-21.

Figure 19-21. Different estimated rows because of differences in the WHERE clause

Figure 19-20. Table scans caused by a lack of indexes

Since the column Person.MiddleName can contain NULL, the data returned is

incomplete. This is because, by definition, although a NULL value meets the necessary

criteria of not being in any way equal to 'B', you can’t return NULL values in this manner.

An added OR clause is necessary. That would mean modifying the second query like this:

SELECT p.FirstName

FROM Person.Person AS p

WHERE p.FirstName < 'B'

 OR p.FirstName >= 'C';

Chapter 19 Query Design analysis

www.EBooksWorld.ir

599

SELECT p.MiddleName

FROM Person.Person AS p

WHERE p.MiddleName < 'B'

 OR p.MiddleName >= 'C'

 OR p.MiddleName IS NULL;

Also, as shown in the missing index statements in the execution plan in Figure 19-19,

these two queries can benefit from having indexes created on their tables. Creating test

indexes like the following should satisfy the requirements:

CREATE INDEX TestIndex1 ON Person.Person (MiddleName);

CREATE INDEX TestIndex2 ON Person.Person (FirstName);

When the queries are reexecuted, Figure 19-22 shows the resultant execution plan

for the two SELECT statements.

Figure 19-22. Effect of the IS NULL option being used

As shown in Figure 19-22, the optimizer was able to take advantage of the index

TestIndex2 on the Person.FirstName column to get an Index Seek operation.

Unfortunately, the requirements for processing the NULL columns were very different.

The index TestIndex1 was not used in the same way. Instead, three constants were

created for each of the three criteria defined within the query. These were then joined

together through the Concatenation operation, sorted and merged prior to seeking the

index three times through the Nested Loop operator to arrive at the result set. Although

Chapter 19 Query Design analysis

www.EBooksWorld.ir

600

it appears, from the estimated costs in the execution plan, that this was the less costly

query (42 percent compared to 58 percent), performance metrics tell a different story.

Reads: 43

Duration: 143ms

vs.

Reads: 68

Duration: 168ms

Be sure to drop the test indexes that were created.

DROP INDEX TestIndex1 ON Person.Person;

DROP INDEX TestIndex2 ON Person.Person;

As much as possible, you should attempt to leave NULL values out of the database.

However, when data is unknown, default values may not be possible. That’s when NULL

will come back into the design. I find NULLs to be unavoidable, but they are something to

minimize as much as you can.

When it is unavoidable and you will be dealing with NULL values, keep in mind that

you can use a filtered index that removes NULL values from the index, thereby improving

the performance of that index. This was detailed in Chapter 7. Sparse columns offer

another option to help you deal with NULL values. Sparse columns are primarily aimed

at storing NULL values more efficiently and therefore reduce space—at a sacrifice in

performance. This option is specifically targeted at business intelligence (BI) databases,

not OLTP databases where large amounts of NULL values in fact tables are a normal part

of the design.

 Declarative Referential Integrity
Declarative referential integrity is used to define referential integrity between a parent

table and a child table. It ensures that a record in the child table exists only if the

corresponding record in the parent table exists. The only exception to this rule is that

the child table can contain a NULL value for the identifier that links the rows of the child

table to the rows of the parent table. For all other values of the identifier in the child, a

corresponding value must exist in the parent table. In SQL Server, DRI is implemented

Chapter 19 Query Design analysis

www.EBooksWorld.ir

601

using a PRIMARY KEY constraint on the parent table and a FOREIGN KEY constraint on the

child table.

With DRI established between two tables and the foreign key columns of the child

table set to NOT NULL, the SQL Server optimizer is assured that for every record in the

child table, the parent table has a corresponding record. Sometimes this can help the

optimizer improve performance because accessing the parent table is not necessary to

verify the existence of a parent record for a corresponding child record.

To understand the performance benefit of implementing declarative referential

integrity, let’s consider an example. First, eliminate the referential integrity between two

tables, Person.Address and Person.StateProvince, using this script:

IF EXISTS (SELECT *

 FROM sys.foreign_keys

 WHERE object_id = OBJECT_ID(N'[Person].[FK_Address_State

Province_StateProvinceID]')

 AND parent_object_id = OBJECT_ID(N'[Person].[Address]'))

 ALTER TABLE Person.Address

 DROP CONSTRAINT FK_Address_StateProvince_StateProvinceID;

Consider the following SELECT statement:

SELECT a.AddressID,

 sp.StateProvinceID

FROM Person.Address AS a

 JOIN Person.StateProvince AS sp

 ON a.StateProvinceID = sp.StateProvinceID

WHERE a.AddressID = 27234;

Note that the SELECT statement fetches the value of the StateProvinceID column

from the parent table (Person.Address). If the nature of the data requires that for every

product (identified by StateProvinceId) in the child table (Person.StateProvince) the

parent table (Person.Address) contains a corresponding product, then you can rewrite

Chapter 19 Query Design analysis

www.EBooksWorld.ir

602

the preceding SELECT statement as follows to reference the Address table instead of the

StateProvince table for the StateProvinceID column:

SELECT a.AddressID,

 a.StateProvinceID

FROM Person.Address AS a

 JOIN Person.StateProvince AS sp

 ON a.StateProvinceID = sp.StateProvinceID

WHERE a.AddressID = 27234;

Both SELECT statements should return the same result set. After removing the foreign

key constraint, the optimizer generates the same execution plan for both the SELECT

statements, as shown in Figure 19-23.

Figure 19-23. Execution plan when DRI is not defined between the two tables

Chapter 19 Query Design analysis

www.EBooksWorld.ir

603

To understand how declarative referential integrity can affect query performance,

replace the FOREIGN KEY dropped earlier.

ALTER TABLE Person.Address WITH CHECK

ADD CONSTRAINT FK_Address_StateProvince_StateProvinceID

 FOREIGN KEY

 (

 StateProvinceID

)

 REFERENCES Person.StateProvince

 (

 StateProvinceID

);

Note there is now referential integrity between the tables.

Figure 19-24 shows the resultant execution plans for the two SELECT statements.

Chapter 19 Query Design analysis

www.EBooksWorld.ir

604

As you can see, the execution plan of the second SELECT statement is highly

optimized: the Person.StateProvince table is not accessed. With the declarative

referential integrity in place (and Address.StateProvince set to NOT NULL), the

optimizer is assured that for every record in the child table, the parent table contains a

corresponding record. Therefore, the JOIN clause between the parent and child tables is

redundant in the second SELECT statement, with no other data requested from the

parent table.

You probably already knew that domain and referential integrity are Good Things,

but you can see that they not only ensure data integrity but also improve performance.

As just illustrated, domain and referential integrity provide more choices to the

optimizer to generate cost-effective execution plans and improve performance.

To achieve the performance benefit of DRI, as mentioned previously, the foreign

key columns in the child table should be NOT NULL. Otherwise, there can be rows (with

foreign key column values as NULL) in the child table with no representation in the

parent table. That won’t prevent the optimizer from accessing the primary table (Prod)

in the previous query. By default—that is, if the NOT NULL attribute isn’t mentioned for

Figure 19-24. Execution plans showing the benefit of defining DRI between the
two tables

Chapter 19 Query Design analysis

www.EBooksWorld.ir

605

a column—the column can have NULL values. Considering the benefit of the NOT NULL

attribute and the other benefits explained in this section, always mark the attribute of a

column as NOT NULL if NULL isn’t a valid value for that column.

You also must make sure you are using the WITH CHECK option when building

your foreign key constraints. If the NOCHECK option is used, these are considered to be

untrustworthy constraints by the optimizer, and you won’t realize the performance

benefits that they can offer.

 Summary
As discussed in this chapter, to improve the performance of a database application,

it is important to ensure that SQL queries are designed properly to benefit from

performance-enhancement techniques such as indexes, stored procedures, database

constraints, and so on. Ensure that queries don’t prevent the use of indexes. In many

cases, the optimizer has the ability to generate cost-effective execution plans irrespective

of query structure, but it is still a good practice to design the queries properly in the

first place. Even after you design individual queries for great performance, the overall

performance of a database application may not be satisfactory. It is important not only

to improve the performance of individual queries but also to ensure that they don’t use

up the available resources on the system. The next chapter will cover how to reduce

resource usage within your queries.

Chapter 19 Query Design analysis

www.EBooksWorld.ir

607
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_20

CHAPTER 20

Reduce Query
Resource Use
In the previous chapter you focused on writing queries in such a way that they

appropriately used indexes and statistics. In this chapter, you’ll make sure you’re writing

a queries in such a way that they don’t use your resources in inappropriate ways. There

are approaches to writing queries that avoid using memory, CPU, and I/O, as well as

ways to write the queries that use more of these resources than you really should.

I’ll go over a number of mechanisms to ensure your resources are used optimally by the

queries under your control.

In this chapter, I cover the following topics:

• Query designs that are less resource-intensive

• Query designs that use the procedure cache effectively

• Query designs that reduce network overhead

• Techniques to reduce the transaction cost of a query

 Avoiding Resource-Intensive Queries
Many database functionalities can be implemented using a variety of query techniques.

The approach you should take is to use query techniques that are resource friendly and

set-based. These are a few techniques you can use to reduce the footprint of a query:

• Avoid data type conversion.

• Use EXISTS over COUNT(*) to verify data existence.

• Use UNION ALL over UNION.

www.EBooksWorld.ir

608

• Use indexes for aggregate and sort operations.

• Be cautious with local variables in a batch query.

• Be careful when naming stored procedures.

I cover these points in more detail in the next sections.

 Avoid Data Type Conversion
SQL Server allows, in some instances (defined by the large table of data conversions

available in Books Online), a value/constant with different but compatible data types

to be compared with a column’s data. SQL Server automatically converts the data

from one data type to another. This process is called implicit data type conversion.

Although useful, implicit conversion adds overhead to the query optimizer. To improve

performance, use a value/constant with the same data type as that of the column to

which it is compared.

To understand how implicit data type conversion affects performance, consider the

following example:

IF EXISTS (SELECT *

 FROM sys.objects

 WHERE object_id = OBJECT_ID(N'dbo.Test1'))

 DROP TABLE dbo.Test1;

CREATE TABLE dbo.Test1 (Id INT IDENTITY(1, 1),

 MyKey VARCHAR(50),

 MyValue VARCHAR(50));

CREATE UNIQUE CLUSTERED INDEX Test1PrimaryKey ON dbo.Test1 (Id ASC);

CREATE UNIQUE NONCLUSTERED INDEX TestIndex ON dbo.Test1 (MyKey);

GO

SELECT TOP 10000

 IDENTITY(INT, 1, 1) AS n

INTO #Tally

FROM master.dbo.syscolumns AS scl,

 master.dbo.syscolumns AS sc2;

INSERT INTO dbo.Test1 (MyKey,

 MyValue)

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

609

SELECT TOP 10000

 'UniqueKey' + CAST(n AS VARCHAR),

 'Description'

FROM #Tally;

DROP TABLE #Tally;

SELECT t.MyValue

FROM dbo.Test1 AS t

WHERE t.MyKey = 'UniqueKey333';

SELECT t.MyValue

FROM dbo.Test1 AS t

WHERE t.MyKey = N'UniqueKey333';

After creating the table Test1, creating a couple of indexes on it, and placing some

data, two queries are defined. Both queries return the same result set. As you can see,

both queries are identical except for the data type of the variable equated to the MyKey

column. Since this column is VARCHAR, the first query doesn’t require an implicit data

type conversion. The second query uses a different data type from that of the MyKey

column, requiring an implicit data type conversion and thereby adding overhead to the

query performance. Figure 20-1 shows the execution plans for both queries.

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

610

The complexity of the implicit data type conversion depends on the precedence

of the data types involved in the comparison. The data type precedence rules of SQL

Server specify which data type is converted to the other. Usually, the data type of lower

precedence is converted to the data type of higher precedence. For example, the TINYINT

data type has a lower precedence than the INT data type. For a complete list of data type

precedence in SQL Server, please refer to the MSDN article “Data Type Precedence”

(http://bit.ly/1cN7AYc). For further information about which data type can

implicitly convert to which data type, refer to the MSDN article “Data Type Conversion”

(http://bit.ly/1j7kIJf).

Note the warning icon on the SELECT operator. It’s letting you know that there’s

something questionable in this query. In this case, it’s the fact that there is a data type

conversion operation. The optimizer lets you know that this might negatively affect its

ability to find and use an index to assist the performance of the query. This can also

be a false positive. If there are conversions on columns that are not used in any of the

predicates, it really doesn’t matter at all that an implicit, or even an explicit, conversion

has occurred.

Figure 20-1. Plans for a query with and without implicit data type conversion

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

http://bit.ly/1cN7AYc
http://bit.ly/1j7kIJf

611

To see the specific process in place, look to the properties of the Clustered Index

Scan operator and the Predicate value. Mine is listed as follows:

CONVERT_IMPLICIT(nvarchar(50),[AdventureWorks2017].[dbo].[Test1].[MyKey] as

[t].[MyKey],0)=[@1]

The duration went from about 110 microseconds on average to 1,400 microseconds,

and the reads went from 4 to 56.

When SQL Server compares a column value with a certain data type and a variable

(or constant) with a different data type, the data type of the variable (or constant) is

always converted to the data type of the column. This is done because the column value is

accessed based on the implicit conversion value of the variable (or constant). Therefore,

in such cases, the implicit conversion is always applied on the variable (or constant).

As you can see, implicit data type conversion adds overhead to the query performance

both in terms of a poor execution plan and in added CPU cost to make the conversions.

Therefore, to improve performance, always use the same data type for both expressions.

 Use EXISTS over COUNT(*) to Verify Data Existence
A common database requirement is to verify whether a set of data exists. Usually you’ll

see this implemented using a batch of SQL queries, as follows:

DECLARE @n INT;

SELECT @n = COUNT(*)

FROM Sales.SalesOrderDetail AS sod

WHERE sod.OrderQty = 1;

IF @n > 0

 PRINT 'Record Exists';

Using COUNT(*) to verify the existence of data is highly resource-intensive because

COUNT(*) has to scan all the rows in a table. EXISTS merely has to scan and stop at the

first record that matches the EXISTS criterion. To improve performance, use EXISTS

instead of the COUNT(*) approach.

IF EXISTS (SELECT sod.*

 FROM Sales.SalesOrderDetail AS sod

 WHERE sod.OrderQty = 1)

 PRINT 'Record Exists';

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

612

The performance benefit of the EXISTS technique over the COUNT(*) technique can

be compared using the query performance metrics, as well as the execution plan in

Figure 20-2, as you can see from the output of running these queries.

COUNT Duration: 8.9ms

Reads: 1248

EXISTS Duration: 1.7ms

Reads: 17

As you can see, the EXISTS technique used only 17 logical reads compared to the

1,246 used by the COUNT(*) technique, and the execution time went from 8.9ms to 1.7ms.

Therefore, to determine whether data exists, use the EXISTS technique.

 Use UNION ALL Instead of UNION
You can concatenate the result set of multiple SELECT statements using the UNION clause

as follows, as shown in Figure 20-3:

SELECT sod.ProductID,

 sod.SalesOrderID

FROM Sales.SalesOrderDetail AS sod

Figure 20-2. Difference between COUNT and EXISTS

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

613

WHERE sod.ProductID = 934

UNION

SELECT sod.ProductID,

 sod.SalesOrderID

FROM Sales.SalesOrderDetail AS sod

WHERE sod.ProductID = 932

UNION

SELECT sod.ProductID,

 sod.SalesOrderID

FROM Sales.SalesOrderDetail AS sod

WHERE sod.ProductID = 708;

Figure 20-3. The execution plan of the query using the UNION clause

The UNION clause processes the result set from the three SELECT statements,

removing duplicates from the final result set and effectively running DISTINCT on each

query, using the Stream Aggregate to perform the aggregation. If the result sets of the

SELECT statements participating in the UNION clause are exclusive to each other or you

are allowed to have duplicate rows in the final result set, then use UNION ALL instead of

UNION. This avoids the overhead of detecting and removing any duplicates and therefore

improves performance, as shown in Figure 20-4.

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

614

As you can see, in the first case (using UNION), the optimizer aggregated the records

to eliminate the duplicates while using the MERGE to combine the result sets of the three

SELECT statements. Since the result sets are exclusive to each other, you can use UNION

ALL instead of the UNION clause. Using the UNION ALL clause avoids the overhead of

detecting duplicates and joining the data and thereby improves performance.

The query performance metrics tell a similar story going from 125ms on the UNION

query to 95ms on the UNION ALL query. Interestingly enough, the reads are the same at 20.

It’s the different processing needed for one query above and beyond that needed for the

other query that makes a difference in performance in this case.

 Use Indexes for Aggregate and Sort Conditions
Generally, aggregate functions such as MIN and MAX benefit from indexes on the

corresponding column. They benefit even more from columnstore indexes as was

demonstrated in earlier chapters. However, even standard indexes can assist with some

aggregate queries. Without any index of either type on the columns, the optimizer has to

scan the base table (or the rowstore clustered index), retrieve all the rows, and perform a

Figure 20-4. The execution plan of the query using UNION ALL

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

615

stream aggregate on the group (containing all rows) to identify the MIN/MAX value,

as shown in the following example (see Figure 20-5):

SELECT MIN(sod.UnitPrice)

FROM Sales.SalesOrderDetail AS sod;

Figure 20-5. A scan of the entire table filtered to a single row

The performance metrics of the SELECT statement using the MIN aggregate function

are as follows:

Duration: 15.8ms

Reads: 1248

The query performed more than 1,200 logical reads just to retrieve the row

containing the minimum value for the UnitPrice column. You can see this represented

in the execution plan in Figure 20-5. A huge fat row comes out of the Clustered Index

Scan operation only to be filtered to a single row by the Stream Aggregate operation.

If you create an index on the UnitPrice column, then the UnitPrice values will be

presorted by the index in the leaf pages.

CREATE INDEX TestIndex ON Sales.SalesOrderDetail (UnitPrice ASC);

The index on the UnitPrice column improves the performance of the MIN aggregate

function significantly. The optimizer can retrieve the minimum UnitPrice value by

seeking to the topmost row in the index. This reduces the number of logical reads for the

query, as shown in the corresponding metrics and execution plan (see Figure 20-6).

Duration: 97 mcs

Reads: 3

Figure 20-6. An index radically improves performance

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

616

Similarly, creating an index on the columns referred to in an ORDER BY clause helps

the optimizer organize the result set fast because the column values are prearranged in

the index. The internal implementation of the GROUP BY clause also sorts the column

values first because sorted column values allow the adjacent matching values to be

grouped quickly. Therefore, like the ORDER BY clause, the GROUP BY clause also benefits

from having the values of the columns referred to in the GROUP BY clause sorted in

advance.

Just to repeat, for most aggregate queries, a columnstore index will likely result

in even better performance than a regular rowstore index. However, in some

circumstances, a columnstore index could be a waste of resources, so it’s good to know

there may be options, depending on the query and your structures.

 Be Cautious with Local Variables in a Batch Query
Often, multiple queries are submitted together as a batch, avoiding multiple network

round-trips. It’s common to use local variables in a query batch to pass a value between

the individual queries. However, using local variables in the WHERE clause of a query in a

batch doesn’t allow the optimizer to generate an efficient execution plan in all cases.

To understand how the use of a local variable in the WHERE clause of a query in a

batch can affect performance, consider the following batch query:

DECLARE @Id INT = 67260;

SELECT p.Name,

 p.ProductNumber,

 th.ReferenceOrderID

 FROM Production.Product AS p

 JOIN Production.TransactionHistory AS th

 ON th.ProductID = p.ProductID

 WHERE th.ReferenceOrderID = @Id;

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

617

Figure 20-7 shows the execution plan of this SELECT statement.

Figure 20-7. Execution plan showing the effect of a local variable in a batch query

As you can see, an Index Seek operation is performed to access the rows from the

Production.TransactionHistory primary key. A Key Lookup against the clustered

index is necessary through the loops join. Finally, a Clustered Index Seek against the

Product table adds to the result set through another loops join. If the SELECT statement

is executed without using the local variable, by replacing the local variable value with

an appropriate constant value as in the following query, the optimizer makes different

choices:

SELECT p.Name,

 p.ProductNumber,

 th.ReferenceOrderID

 FROM Production.Product AS p

 JOIN Production.TransactionHistory AS th

 ON th.ProductID = p.ProductID

 WHERE th.ReferenceOrderID = 67260;

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

618

Figure 20-8 shows the result.

You have a completely different execution plan. Parts of it are similar. You have the

same Index Seek and Key Lookup operators, but their data is joined to a Clustered

Index Scan and a Merge Join. Comparing plans quickly becomes problematic when

considering performance, so let’s look to the performance metrics to see whether there

are differences. First, here’s the information from the initial query with the local variable:

Duration: 696ms

Reads: 242

Then here’s the second query, without the local variable:

Duration: 817ms

Reads: 197

The plan with the local variable results in somewhat faster execution, 696ms to

817ms, but, in quite a few more reads, 242 to 197. What causes the disparity between

the plans and the differences in performance? It all comes down to the fact that a local

variable, except in the event of a statement-level recompile, cannot be known to the

operator. Therefore, instead of a specific count of the number of rows taken from values

within the statistics, a calculated estimate is done based on the density graph.

So, there are 113,443 rows in the TransactionHistory table. The density value is

2.694111E-05. If we multiply them together, we arrive at the value 3.05628. Now, let’s take

a look at the execution plan estimated number of rows from the first execution plan

(the one in Figure 20-8) to see the estimated number of rows.

Figure 20-8. Execution plan for the query when the local variable is not used

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

619

The estimated number of rows, at the bottom of Figure 20-9, is 3.05628. It’s exactly

the same as the calculation. Note, though, that the actual number of rows, at the top of

Figure 20-9, is 48. This becomes important. If we look at the same properties on the same

operator in the second plan, the one in Figure 20-8, we’ll see that the estimated and

actual number of rows are identical at 48. In this case, the optimizer decided that 48 rows

returned was too many to be able to perform well through an Index Seek against the

Product table. Instead, it opted to use an ordered scan (which you can verify through the

properties of the Index Scan operator) and then a merge join.

Figure 20-9. Estimated versus actual number of rows

In point of fact, the first plan was faster; however, it did result in higher I/O output.

This is where we have to exercise caution. In this case, the performance was a little

better, but if the system was under load, especially if it was under I/O strain, then the

second plan is likely to perform faster, with fewer contentions on resources, since it has a

lower number of reads overall. The caution comes from identifying which of these plans

is better in particular circumstances.

To avoid this potential performance problem, use the following approach. Don’t

use a local variable as a filter criterion in a batch for a query like this. A local variable

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

620

is different from a parameter value, as demonstrated in Chapter 17. Create a stored

procedure for the batch and execute it as follows:

CREATE OR ALTER PROCEDURE ProductDetails (@id INT)

AS

SELECT p.Name,

 p.ProductNumber,

 th.ReferenceOrderID

FROM Production.Product AS p

 JOIN Production.TransactionHistory AS th

 ON th.ProductID = p.ProductID

WHERE th.ReferenceOrderID = @id;

GO

EXEC ProductDetails @id = 1;

This approach can backfire. The process of using the values passed to a parameter is

referred to as parameter sniffing. Parameter sniffing occurs for all stored procedures and

parameterized queries automatically. Depending on the accuracy of the statistics and

the values passed to the parameters, it is possible to get a bad plan using specific values

and a good plan using the sampled values that occur when you have a local variable.

Testing is the only way to be sure which will work best in any given situation. However, in

most circumstances, you’re better off having accurate values rather than sampled ones.

For more details on parameter sniffing, see Chapter 17.

As a general guideline, it’s best to avoid hard-coding values. If the values have to

change, you may have to change them in a lot of code. If you do need to code values

within your queries, local variables let you control them from a single location at the

top of the batch, making the management of the code easier. However, local variables,

as we’ve just seen, when used for data retrieval can affect plan choice. In that case,

parameter values are preferred. You can even set the parameter value and provide it with

a default value. These will still be sniffed as regular parameters.

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

621

 Be Careful When Naming Stored Procedures
The name of a stored procedure does matter. You should not name your procedures with a

prefix of sp_. Developers often prefix their stored procedures with sp_ so that they can easily

identify the stored procedures. However, SQL Server assumes that any stored procedure

with this exact prefix is probably a system stored procedure, whose home is in the master

database. When a stored procedure with an sp_ prefix is submitted for execution,

SQL Server looks for the stored procedure in the following places in the following order:

• In the master database

• In the current database based on any qualifiers provided (database

name or owner)

• In the current database using dbo as the schema, if a schema is not

specified

Therefore, although the user-created stored procedure prefixed with sp_ exists in

the current database, the master database is checked first. This happens even when the

stored procedure is qualified with the database name.

To understand the effect of prefixing sp_ to a stored procedure name, consider the

following stored procedure:

IF EXISTS (SELECT *

 FROM sys.objects

 WHERE object_id = OBJECT_ID(N'[dbo].[sp_Dont]')

 AND type IN (N'P', N'PC'))

 DROP PROCEDURE [dbo].[sp_Dont]

GO

CREATE PROC [sp_Dont]

AS

PRINT 'Done!'

GO

--Add plan of sp_Dont to procedure cache

EXEC AdventureWorks2017.dbo.[sp_Dont] ;

GO

--Use the above cached plan of sp_Dont

EXEC AdventureWorks2012.dbo.[sp_Dont] ;

GO

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

622

The first execution of the stored procedure adds the execution plan of the stored

procedure to the procedure cache. A subsequent execution of the stored procedure

reuses the existing plan from the procedure cache unless a recompilation of the plan is

required (the causes of stored procedure recompilation are explained in Chapter 10).

Therefore, the second execution of the stored procedure spDont shown in Figure 20-10

should find a plan in the procedure cache. This is indicated by an SP:CacheHit event in

the corresponding Extended Events output.

Note that an SP:CacheMiss event is fired before SQL Server tries to locate the plan

for the stored procedure in the procedure cache. The SP:CacheMiss event is caused by

SQL Server looking in the master database for the stored procedure, even though the

execution of the stored procedure is properly qualified with the user database name.

This aspect of the sp_ prefix becomes more interesting when you create a stored

procedure with the name of an existing system stored procedure.

Figure 20-10. Extended Events output showing the effect of the sp_ prefix on a
stored procedure name

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

623

CREATE OR ALTER PROC sp_addmessage @param1 NVARCHAR(25)

AS

PRINT '@param1 = ' + @param1 ;

GO

EXEC AdventureWorks2017.dbo.[sp_addmessage] 'AdventureWorks';

The execution of this user-defined stored procedure causes the execution of the

system stored procedure sp_addmessage from the master database instead, as you can

see in Figure 20-11.

Figure 20-11. Execution result for stored procedure showing the effect of the
sp_ prefix on a stored procedure name

Unfortunately, it is not possible to execute this user-defined stored procedure. You

can see now why you should not prefix a user-defined stored procedure’s name with

sp_. Use some other naming convention. From a pure performance standpoint, this is a

trivial improvement. However, if you have high volume and response time is critical, it is

one more small point in your favor if you avoid the sp_ naming standard.

 Reducing the Number of Network Round-Trips
Database applications often execute multiple queries to implement a database

operation. Besides optimizing the performance of the individual query, it is important

that you optimize the performance of the batch. To reduce the overhead of multiple

network round-trips, consider the following techniques:

• Execute multiple queries together.

• Use SET NOCOUNT.

Let’s look at these techniques in a little more depth.

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

624

 Execute Multiple Queries Together
It is preferable to submit all the queries of a set together as a batch or a stored procedure.

Besides reducing the network round-trips between the database application and

the server, stored procedures also provide multiple performance and administrative

benefits, as described in Chapter 16. This means the code in the application needs to be

able to deal with multiple result sets. It also means your T-SQL code may need to deal

with XML data or other large sets of data, not single-row inserts or updates.

 Use SET NOCOUNT
You need to consider one more factor when executing a batch or a stored procedure.

After every query in the batch or the stored procedure is executed, the server reports the

number of rows affected.

(<Number> row(s) affected)

This information is returned to the database application and adds to the network

overhead. Use the T-SQL statement SET NOCOUNT to avoid this overhead.

SET NOCOUNT ON <SQL queries> SET NOCOUNT OFF

Note that the SET NOCOUNT statement doesn’t cause any recompilation issue with

stored procedures, unlike some SET statements, as explained in Chapter 18.

 Reducing the Transaction Cost
Every action query in SQL Server is performed as an atomic action so that the state

of a database table moves from one consistent state to another. SQL Server does this

automatically, and it can’t be disabled. If the transition from one consistent state to

another requires multiple database queries, then atomicity across the multiple queries

should be maintained using explicitly defined database transactions. The old and new

states of every atomic action are maintained in the transaction log (on the disk) to ensure

durability, which guarantees that the outcome of an atomic action won’t be lost once

it completes successfully. An atomic action during its execution is isolated from other

database actions using database locks.

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

625

Based on the characteristics of a transaction, here are two broad recommendations

to reduce the cost of the transaction:

• Reduce logging overhead.

• Reduce lock overhead.

 Reduce Logging Overhead
A database query may consist of multiple data manipulation queries. If atomicity is

maintained for each query separately, then a large number of disk writes are performed

on the transaction log. Since disk activity is extremely slow compared to memory or

CPU activity, the excessive disk activity can increase the execution time of the database

functionality. For example, consider the following batch query:

--Create a test table

IF (SELECT OBJECT_ID('dbo.Test1')

) IS NOT NULL

 DROP TABLE dbo.Test1;

GO

CREATE TABLE dbo.Test1 (C1 TINYINT);

GO

--Insert 10000 rows

DECLARE @Count INT = 1;

WHILE @Count <= 10000

 BEGIN

 INSERT INTO dbo.Test1

 (C1)

 VALUES (@Count % 256);

 SET @Count = @Count + 1;

 END

Since every execution of the INSERT statement is atomic in itself, SQL Server will

write to the transaction log for every execution of the INSERT statement.

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

626

An easy way to reduce the number of log disk writes is to include the action queries

within an explicit transaction.

DECLARE @Count INT = 1;

DBCC SQLPERF(LOGSPACE);

BEGIN TRANSACTION

WHILE @Count <= 10000

 BEGIN

 INSERT INTO dbo.Test1

 (C1)

 VALUES (@Count % 256) ;

 SET @Count = @Count + 1 ;

 END

COMMIT

DBCC SQLPERF(LOGSPACE);

The defined transaction scope (between the BEGIN TRANSACTION and COMMIT pair of

commands) expands the scope of atomicity to the multiple INSERT statements included

within the transaction. This decreases the number of log disk writes and improves the

performance of the database functionality. To test this theory, run the following T-SQL

command before and after each of the WHILE loops:

DBCC SQLPERF(LOGSPACE);

This will show you the percentage of log space used. On running the first set of

inserts on my database, the log went from 3.2 percent used to 3.3 percent. When running

the second set of inserts, the log grew about 6 percent.

The best way is to work with sets of data rather than individual rows. A WHILE loop

can be an inherently costly operation, like a cursor (more details on cursors in Chapter 23).

So, running a query that avoids the WHILE loop and instead works from a set-based

approach is even better.

SELECT TOP 10000

 IDENTITY(INT, 1, 1) AS n

INTO #Tally

FROM master.dbo.syscolumns AS scl,

 master.dbo.syscolumns AS sc2;

DBCC SQLPERF(LOGSPACE);

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

627

BEGIN TRANSACTION

INSERT INTO dbo.Test1 (C1)

SELECT TOP 1000

 (n % 256)

FROM #Tally AS t

COMMIT

Running this query with the DBCC SQLPERF() function before and after showed less

than .01 percent growth of the used space within the log, and it ran in 41ms as compared

to more than 2s for the WHILE loop.

One area of caution, however, is that by including too many data manipulation

queries within a transaction, the duration of the transaction is increased. During that

time, all other queries trying to access the resources referred to in the transaction are

blocked. Rollback duration and recovery time during a restore increase because of long

transactions.

 Reduce Lock Overhead
By default, all four SQL statements (SELECT, INSERT, UPDATE, and DELETE) use database

locks to isolate their work from that of other SQL statements. This lock management

adds performance overhead to the query. The performance of a query can be improved

by requesting fewer locks. By extension, the performance of other queries are also

improved because they have to wait a shorter period of time to obtain their own locks.

By default, SQL Server can provide row-level locks. For a query working on a large

number of rows, requesting a row lock on all the individual rows adds a significant

overhead to the lock-management process. You can reduce this lock overhead by

decreasing the lock granularity, say to the page level or table level. SQL Server performs

the lock escalation dynamically by taking into consideration the lock overheads.

Therefore, generally, it is not necessary to manually escalate the lock level. But, if

required, you can control the concurrency of a query programmatically using lock hints

as follows:

SELECT * FROM <TableName> WITH(PAGLOCK) --Use page level lock

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

628

Similarly, by default, SQL Server uses locks for SELECT statements besides those for

INSERT, UPDATE, and DELETE statements. This allows the SELECT statements to read data

that isn’t being modified. In some cases, the data may be quite static, and it doesn’t go

through much modification. In such cases, you can reduce the lock overhead of the

SELECT statements in one of the following ways:

• Mark the database as READONLY.

ALTER DATABASE <DatabaseName> SET READ_ONLY

This allows users to retrieve data from the database, but it prevents

them from modifying the data. The setting takes effect immediately.

If occasional modifications to the database are required, then it may

be temporarily converted to READWRITE mode.

ALTER DATABASE <DatabaseName> SET READ_WRITE

<Database modifications>

ALTER DATABASE <DatabaseName> SET READONLY

• Use one of the snapshot isolations.

SQL Server provides a mechanism to put versions of data into

tempdb as updates are occurring, radically reducing locking

overhead and blocking for read operations. You can change the

isolation level of the database by using an ALTER statement.

ALTER DATABASE AdventureWorks2017 SET READ_COMMITTED_SNAPSHOT ON;

• Prevent SELECT statements from requesting any lock.

SELECT * FROM <TableName> WITH(NOLOCK)

This prevents the SELECT statement from requesting any lock, and

it is applicable to SELECT statements only. Although the NOLOCK

hint can’t be used directly on the tables referred to in the action

queries (INSERT, UPDATE, and DELETE), it may be used on the data

retrieval part of the action queries, as shown here:

DELETE Sales.SalesOrderDetail

FROM Sales.SalesOrderDetail AS sod WITH (NOLOCK)

 JOIN Production.Product AS p WITH (NOLOCK)

 ON sod.ProductID = p.ProductID

 AND p.ProductID = 0;

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

629

Just know that this leads to dirty reads, which can cause duplicate rows or missing

rows and is therefore considered to be a last resort to control locking. In fact, this is

considered to be quite dangerous and will lead to improper results. The best approach is

to mark the database as read-only or use one of the snapshot isolation levels.

This is a huge topic, and a lot more can be said about it. I discuss the different types

of lock requests and how to manage lock overhead in the next chapter. If you made any

of the proposed changes to the database from this section, I recommend restoring from a

backup.

 Summary
As discussed in this chapter, to improve the performance of a database application, it is

important to ensure that SQL queries are designed properly to benefit from performance

enhancement techniques such as indexes, stored procedures, database constraints, and

so on. Ensure that queries are resource friendly and don’t prevent the use of indexes.

In many cases, the optimizer has the ability to generate cost-effective execution plans

irrespective of query structure, but it is still a good practice to design the queries properly

in the first place. Even after you design individual queries for great performance, the

overall performance of a database application may not be satisfactory. It is important not

only to improve the performance of individual queries but also to ensure that they work

well with other queries without causing serious blocking issues. In the next chapter, you

will look into the different blocking aspects of a database application.

Chapter 20 reduCe Query resourCe use

www.EBooksWorld.ir

631
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_21

CHAPTER 21

Blocking and Blocked
Processes
You would ideally like your database application to scale linearly with the number of

database users and the volume of data. However, it is common to find that performance

degrades as the number of users increases and as the volume of data grows. One cause

for degradation, especially associated with ever-increasing scale, is blocking. In fact,

database blocking is usually one of the biggest enemies of scalability for database

applications.

In this chapter, I cover the following topics:

• The fundamentals of blocking in SQL Server

• The ACID properties of a transactional database

• Database lock granularity, escalation, modes, and compatibility

• ANSI isolation levels

• The effect of indexes on locking

• The information necessary to analyze blocking

• A SQL script to collect blocking information

• Resolutions and recommendations to avoid blocking

• Techniques to automate the blocking detection and information

collection processes

www.EBooksWorld.ir

632

 Blocking Fundamentals
In an ideal world, every SQL query would be able to execute concurrently, without

any blocking by other queries. However, in the real world, queries do block each other,

similar to the way a car crossing through a green traffic signal at an intersection blocks

other cars waiting to cross the intersection. In SQL Server, this traffic management takes

the form of the lock manager, which controls concurrent access to a database resource

to maintain data consistency. The concurrent access to a database resource is controlled

across multiple database connections.

I want to make sure things are clear before moving on. Three terms are used within

databases that sound the same and are interrelated but have different meanings. These

are frequently confused, and people often use the terms incorrectly and interchangeably.

These terms are locking, blocking, and deadlocking. Locking is an integral part of the

process of SQL Server managing multiple sessions. When a session needs access to a

piece of data, a lock of some type is placed on it. This is different from blocking, which

is when one session, or thread, needs access to a piece of data and has to wait for

another session’s lock to clear. Finally, deadlocking is when two sessions, or threads,

form what is sometimes referred to as a deadly embrace. They are each waiting on the

other for a lock to clear. Deadlocking could also be referred to as a permanent blocking

situation, but it’s one that won’t resolve by waiting any period of time. Deadlocking

will be covered in more detail in Chapter 22. So, locks can lead to blocks, and both

locks and blocks play a part in deadlocks, but these are three distinct concepts. Please

understand the differences between these terms and use them correctly. It will help

in your understanding of the system, your ability to troubleshoot, and your ability to

communicate with other database administrators and developers.

In SQL Server, a database connection is identified by a session ID. Connections

may be from one or many applications and one or many users on those applications;

as far as SQL Server is concerned, every connection is treated as a separate session.

Blocking between two sessions accessing the same piece of data at the same time is a

natural phenomenon in SQL Server. Whenever two sessions try to access a common

database resource in conflicting ways, the lock manager ensures that the second session

waits until the first session completes its work in conjunction with the management of

transactions within the system. For example, a session might be modifying a table record

while another session tries to delete the record. Since these two data access requests are

incompatible, the second session will be blocked until the first session completes

its task.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

633

On the other hand, if the two sessions try to read a table concurrently, both requests

are allowed to execute without blocking, since these data access requests are compatible

with each other.

Usually, the effect of blocking on a session is quite small and doesn’t affect its

performance noticeably. At times, however, because of poor query and/or transaction

design (or maybe bad luck), blocking can affect query performance significantly. In a

database application, every effort should be made to minimize blocking and thereby

increase the number of concurrent users who can use the database.

With the introduction of in-memory tables in SQL Server 2014, locking, at least for these

tables, takes on whole new dimensions. I’ll cover their behavior separately in Chapter 24.

 Understanding Blocking
In SQL Server, a database query can execute as a logical unit of work in itself, or it can

participate in a bigger logical unit of work. A bigger logical unit of work can be defined

using the BEGIN TRANSACTION statement along with COMMIT and/or ROLLBACK statements.

Every logical unit of work must conform to a set of four properties called ACID properties:

• Atomicity

• Consistency

• Isolation

• Durability

I cover these properties in the sections that follow because understanding how

transactions work is fundamental to understanding blocking.

 Atomicity
A logical unit of work must be atomic. That is, either all the actions of the logical unit of

work are completed or no effect is retained. To understand the atomicity of a logical unit

of work, consider the following example:

USE AdventureWorks2017;

GO

DROP TABLE IF EXISTS dbo.ProductTest;

GO

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

634

CREATE TABLE dbo.ProductTest (ProductID INT

 CONSTRAINT ValueEqualsOne CHECK

(ProductID = 1));

GO

--All ProductIDs are added into ProductTest as a logical unit of work

INSERT INTO dbo.ProductTest

SELECT p.ProductID

FROM Production.Product AS p;

GO

SELECT pt.ProductID

FROM dbo.ProductTest AS pt; --Returns 0 rows

SQL Server treats the preceding INSERT statement as a logical unit of work. The CHECK

constraint on column ProductID of the dbo.ProductTest table allows only the value of 1.

Although the ProductID column in the Production.Product table starts with the value

of 1, it also contains other values. For this reason, the INSERT statement won’t add any

records at all to the dbo.ProductTest table, and an error is raised because of the CHECK

constraint. Thus, atomicity is automatically ensured by SQL Server.

So far, so good. But in the case of a bigger logical unit of work, you should be aware

of an interesting behavior of SQL Server. Imagine that the previous insert task consists

of multiple INSERT statements. These can be combined to form a bigger logical unit of

work, as follows:

BEGIN TRAN

 --Start: Logical unit of work

--First:

INSERT INTO dbo.ProductTest

 SELECT p.ProductID

 FROM Production.Product AS p;

--Second:

INSERT INTO dbo.ProductTest

VALUES (1);

COMMIT --End: Logical unit of work

GO

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

635

With the dbo.ProductTest table already created in the preceding script, the BEGIN

TRAN and COMMIT pair of statements defines a logical unit of work, suggesting that all

the statements within the transaction should be atomic in nature. However, the default

behavior of SQL Server doesn’t ensure that the failure of one of the statements within

a user-defined transaction scope will undo the effect of the prior statements. In the

preceding transaction, the first INSERT statement will fail as explained earlier, whereas

the second INSERT is perfectly fine. The default behavior of SQL Server allows the second

INSERT statement to execute, even though the first INSERT statement fails. A SELECT

statement, as shown in the following code, will return the row inserted by the second

INSERT statement:

SELECT *

FROM dbo.ProductTest; --Returns a row with t1.c1 = 1

The atomicity of a user-defined transaction can be ensured in the following two ways:

• SET XACT_ABORT ON

• Explicit rollback

Let’s look at these briefly.

 SET XACT_ABORT ON

You can modify the atomicity of the INSERT task in the preceding section using the SET

XACT_ ABORT ON statement.

SET XACT_ABORT ON;

GO

BEGIN TRAN

 --Start: Logical unit of work

--First:

INSERT INTO dbo.ProductTest

 SELECT p.ProductID

 FROM Production.Product AS p;

--Second:

INSERT INTO dbo.ProductTest

VALUES (1);

COMMIT

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

636

 --End: Logical unit of work GO

SET XACT_ABORT OFF;

GO

The SET XACT_ABORT statement specifies whether SQL Server should automatically

roll back and abort an entire transaction when a statement within the transaction

fails. The failure of the first INSERT statement will automatically suspend the entire

transaction, and thus the second INSERT statement will not be executed. The effect of SET

XACT_ABORT is at the connection level, and it remains applicable until it is reconfigured

or the connection is closed. By default, SET XACT_ABORT is OFF.

 Explicit Rollback

You can also manage the atomicity of a user-defined transaction by using the TRY/CATCH

error-trapping mechanism within SQL Server. If a statement within the TRY block of code

generates an error, then the CATCH block of code will handle the error. If an error occurs

and the CATCH block is activated, then the entire work of a user-defined transaction can

be rolled back, and further statements can be prevented from execution, as follows:

BEGIN TRY

 BEGIN TRAN

 --Start: Logical unit of work

 --First:

 INSERT INTO dbo.ProductTest

 SELECT p.ProductID

 FROM Production.Product AS p

 Second:

 INSERT INTO dbo.ProductTest (ProductID)

 VALUES (1)

 COMMIT --End: Logical unit of work

END TRY

BEGIN CATCH

 ROLLBACK

 PRINT 'An error occurred'

 RETURN

END CATCH

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

637

The ROLLBACK statement rolls back all the actions performed in the transaction until

that point. For a detailed description of how to implement error handling in SQL Server–

based applications, please refer to the MSDN Library article titled “Using TRY...CATCH

in Transact SQL” (http://bit.ly/PNlAHF).

Since the atomicity property requires that either all the actions of a logical unit

of work are completed or no effects are retained, SQL Server isolates the work of a

transaction from that of others by granting it exclusive rights on the affected resources.

This means the transaction can safely roll back the effect of all its actions, if required.

The exclusive rights granted to a transaction on the affected resources block all other

transactions (or database requests) trying to access those resources during that time

period. Therefore, although atomicity is required to maintain the integrity of data, it

introduces the undesirable side effect of blocking.

 Consistency
A unit of work should cause the state of the database to travel from one consistent state to

another. At the end of a transaction, the state of the database should be fully consistent.

SQL Server always ensures that the internal state of the databases is correct and valid

by automatically applying all the constraints of the affected database resources as part

of the transaction. SQL Server ensures that the state of internal structures, such as data

and index layout, are correct after the transaction. For instance, when the data of a

table is modified, SQL Server automatically identifies all the indexes, constraints, and

other dependent objects on the table and applies the necessary modifications to all the

dependent database objects as part of the transaction. That means that SQL Server will

maintain the physical consistency of the data and the objects.

The logical consistency of the data is defined by the business rules and should be

put in place by the developer of the database. A business rule may require changes to be

applied on multiple tables, certain types of data to be restricted, or any number of other

requirements. The database developer should accordingly define a logical unit of work to

ensure that all the criteria of the business rules are taken care of. Further, the developer

will ensure that the appropriate constructs are put in place to support the business rules

that have been defined. SQL Server provides different transaction management features

that the database developer can use to ensure the logical consistency of the data.

So, SQL Server works with the logical, business-defined, constraints that ensure a

business-oriented data consistency to create a physical consistency on the underlying

structures. The consistency characteristic of the logical unit of work blocks all other

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

http://bit.ly/PNlAHF

638

transactions (or database requests) trying to access the affected objects during that time

period. Therefore, even though consistency is required to maintain a valid logical and

physical state of the database, it also introduces the same side effect of blocking.

 Isolation
In a multiuser environment, more than one transaction can be executed simultaneously.

These concurrent transactions should be isolated from one another so that the

intermediate changes made by one transaction don’t affect the data consistency of other

transactions. The degree of isolation required by a transaction can vary. SQL Server

provides different transaction isolation features to implement the degree of isolation

required by a transaction.

Note transaction isolation levels are explained later in the chapter in the
“isolation levels” section.

The isolation requirements of a transaction operating on a database resource

can block other transactions trying to access the resource. In a multiuser database

environment, multiple transactions are usually executed simultaneously. It is imperative

that the data modifications made by an ongoing transaction be protected from the

modifications made by other transactions. For instance, suppose a transaction is in the

middle of modifying a few rows in a table. During that period, to maintain database

consistency, you must ensure that other transactions do not modify or delete the

same rows. SQL Server logically isolates the activities of a transaction from that of

others by blocking them appropriately, which allows multiple transactions to execute

simultaneously without corrupting one another’s work.

Excessive blocking caused by isolation can adversely affect the scalability of a

database application. A transaction may inadvertently block other transactions for a

long period of time, thereby hurting database concurrency. Since SQL Server manages

isolation using locks, it is important to understand the locking architecture of SQL

Server. This helps you analyze a blocking scenario and implement resolutions.

Note the fundamentals of database locks are explained later in the chapter in
the “Capturing Blocking information” section.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

639

 Durability
Once a transaction is completed, the changes made by the transaction should be

durable. Even if the electrical power to the machine is tripped off immediately after

the transaction is completed, the effect of all actions within the transaction should be

retained. SQL Server ensures durability by keeping track of all pre- and post-images of

the data under modification in a transaction log as the changes are made. Immediately

after the completion of a transaction, SQL Server ensures that all the changes made by

the transaction are retained—even if SQL Server, the operating system, or the hardware

fails (excluding the log disk). During restart, SQL Server runs its database recovery

feature, which identifies the pending changes from the transaction log for completed

transactions and applies them to the database resources. This database feature is called

roll forward.

The recovery interval period depends on the number of pending changes that need

to be applied to the database resources during restart. To reduce the recovery interval

period, SQL Server intermittently applies the intermediate changes made by the running

transactions as configured by the recovery interval option. The recovery interval option

can be configured using the sp_configure statement. The process of intermittently

applying the intermediate changes is referred to as the checkpoint process. During

restart, the recovery process identifies all uncommitted changes and removes them from

the database resources by using the pre-images of the data from the transaction log.

Starting with SQL Server 2016, the default value of the TARGET_RECOVERY_TIME

has been changed from 0, which means that the database will be doing all automatic

checkpoints, to one minute. The default interval for automatic is also one minute, but

now, the control is being set through the TARGET_RECOVERY_TIME value by default. If you

need to change the frequency of the checkpoint operation, use sp_configure to change

the recovery interval value. Setting this value means that the database is using indirect

checkpoints. Instead of relying on the automatic checkpoints, you can use indirect

checkpoints. This is a method to basically make the checkpoints occur all the time in

order to meet the recovery interval. For systems with an extremely high number of data

modifications, you might see high I/O because of indirect checkpoints. Starting in SQL

Server 2016, all new databases created are automatically using indirect checkpoints

because the TARGET_INTERVAL_TIME has been set. Any databases migrated from previous

versions will be using whichever checkpoint method they had in that previous version.

You may want to change their behavior as well. Using indirect checkpoints can result, for

most systems, in a more consistent checkpoint behavior and faster recovery.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

640

The durability property isn’t a direct cause of most blocking since it doesn’t require

the actions of a transaction to be isolated from those of others. But in an indirect way, it

increases the duration of the blocking. Since the durability property requires saving the

pre- and post-images of the data under modification to the transaction log on disk, it

increases the duration of the transaction and therefore the possibility of blocking.

Introduced in SQL Server 2014 is the ability to reduce latency, the time waiting on

a query to commit and write to the log, by modifying the durability behavior of a given

database. You can now use delayed durability. This means that when a transaction

completes, it reports immediately to the application as a successful transaction, reducing

latency. But the writes to the log have not yet occurred. This may also allow for more

transactions to be completed while still waiting on the system to write all the output to

the transaction log. While this may increase apparent speed within the system, as well as

possibly reducing contention on transaction log I/O, it’s inherently a dangerous choice.

This is a difficult recommendation to make. Microsoft suggests three possible situations

that may make it attractive.

• You don’t care about the possible loss of some data: Since you can be

in a situation where you need to restore to a point in time from log

backups, by choosing to put a database in delayed durability you may

lose some data when you have to go to a restore situation.

• You have a high degree of contention during log writes: If you’re

seeing a lot of waits while transactions get written to the log, delayed

durability could be a viable solution. But, you’re also going to want to

be tolerant of data loss, as discussed earlier.

• You’re experiencing high overall resource contention: A lot of resource

contention on the server comes down to the locks being held longer.

If you’re seeing lots of contention and you’re seeing long log writes

or also seeing contention on the log and you have a high tolerance

for data loss, this may be a viable way to help reduce the system’s

contention.

In other works, I recommend using delayed durability only if you meet all those

criteria, with the first being the most important. Also, don’t forget about the changes to

the checkpoint behavior noted earlier. If you’re in a high-volume system, with lots of

data changes, you may need to adjust the recovery interval to assist with system behavior

as well.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

641

Note out of the four aCid properties, the isolation property, which is also
used to ensure atomicity and consistency, is the main cause of blocking in a sQl
server database. in sQl server, isolation is implemented using locks, as explained
in the next section.

 Locks
When a session executes a query, SQL Server determines the database resources that

need to be accessed; and, if required, the lock manager grants different types of locks

to the session. The query is blocked if another session has already been granted the

locks; however, to provide both transaction isolation and concurrency, SQL Server uses

different lock granularities, as explained in the sections that follow.

 Lock Granularity
SQL Server databases are maintained as files on the physical disk. In the case of a

traditional nondatabase file such as an Excel file on a desktop machine, the file may

be written to by only one user at a time. Any attempt to write to the file by other users

fails. However, unlike the limited concurrency on a nondatabase file, SQL Server allows

multiple users to modify (or access) contents simultaneously, as long as they don’t affect

one another’s data consistency. This decreases blocking and improves concurrency

among the transactions.

To improve concurrency, SQL Server implements lock granularities at the following

resource levels and in this order:

• Row (RID)

• Key (KEY)

• Page (PAG)

• Extent (EXT)

• Heap or B-tree (HoBT)

• Table (TAB)

• File (FIL)

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

642

• Application (APP)

• MetaData (MDT)

• Allocation Unit (AU)

• Database (DB)

Let’s take a look at these lock levels in more detail.

 Row-Level Lock
This lock is maintained on a single row within a table and is the lowest level of lock on

a database table. When a query modifies a row in a table, an RID lock is granted to the

query on the row. For example, consider the transaction on the following test table:

DROP TABLE IF EXISTS dbo.Test1;

CREATE TABLE dbo.Test1 (C1 INT);

INSERT INTO dbo.Test1

VALUES (1);

GO

BEGIN TRAN

DELETE dbo.Test1

WHERE C1 = 1;

SELECT dtl.request_session_id,

 dtl.resource_database_id,

 dtl.resource_associated_entity_id,

 dtl.resource_type,

 dtl.resource_description,

 dtl.request_mode,

 dtl.request_status

FROM sys.dm_tran_locks AS dtl

WHERE dtl.request_session_id = @@SPID;

ROLLBACK

The dynamic management view sys.dm_tran_locks can be used to display the

lock status. The query against sys.dm_tran_locks in Figure 21-1 shows that the DELETE

statement acquired, among other locks, an exclusive RID lock on the row to be deleted.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

643

Note i explain lock modes later in the chapter in the “lock Modes” section.

Granting an RID lock to the DELETE statement prevents other transactions from

accessing the row.

The resource locked by the RID lock can be represented in the following format from

the resource_description column:

FileID:PageID:Slot(row)

In the output from the query against sys.dm_tran_locks in Figure 21-1, the

DatabaseID is displayed separately under the resource_database_id column. The

resource_description column value for the RID type represents the remaining part

of the RID resource as 1:121321:0. In this case, a FileID of 1 is the primary data file, a

PageID of 121321 is a page belonging to the dbo.Test1 table identified by the C1 column,

and a Slot (row) of 0 represents the row position within the page. You can obtain the

table name and the database name by executing the following SQL statements:

SELECT OBJECT_NAME(1940201962),

 DB_NAME(6);

The row-level lock provides very high concurrency since blocking is restricted to the

row under effect.

 Key-Level Lock
This is a row lock within an index, and it is identified as a KEY lock. As you know, for

a table with a clustered index, the data pages of the table and the leaf pages of the

clustered index are the same. Since both of the rows are the same for a table with a

clustered index, only a KEY lock is acquired on the clustered index row, or limited range

Figure 21-1. Output from sys.dm_tran_locks showing the row-level lock granted
to the DELETE statement

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

644

of rows, while accessing the rows from the table (or the clustered index). For example,

consider having a clustered index on the Test1 table.

CREATE CLUSTERED INDEX TestIndex ON dbo.Test1(C1);

Next, rerun the following code:

BEGIN TRAN

DELETE dbo.Test1

WHERE C1 = 1 ;

SELECT dtl.request_session_id,

 dtl.resource_database_id,

 dtl.resource_associated_entity_id,

 dtl.resource_type,

 dtl.resource_description,

 dtl.request_mode,

 dtl.request_status

FROM sys.dm_tran_locks AS dtl

WHERE dtl.request_session_id = @@SPID ;

ROLLBACK

The corresponding output from sys.dm_tran_locks shows a KEY lock instead of the

RID lock, as you can see in Figure 21-2.

Figure 21-2. Output from sys.dm_tran_locks showing the key-level lock granted to
the DELETE statement

When you are querying sys.dm_tran_locks, you will be able to retrieve the database

identifier, resource_database_id. You can also get information about what is being

locked from resource_associated_entity_id; however, to get to the particular resource

(in this case, the page on the key), you have to go to the resource_ description column

for the value, which is 1:34064. In this case, the Index ID of 1 is the clustered index on

the dbo.Test1 table. You also see the types of requests that are made: S, IX, X, and so on.

I cover these in more detail in the upcoming “Lock Modes” section.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

645

Note You’ll learn about different values for the IndId column and how to
determine the corresponding index name in this chapter’s “effect of indexes on
locking” section.

Like the row-level lock, the key-level lock provides very high concurrency.

 Page-Level Lock
A page-level lock is maintained on a single page within a table or an index, and it

is identified as a PAG lock. When a query requests multiple rows within a page, the

consistency of all the requested rows can be maintained by acquiring either RID/KEY

locks on the individual rows or a PAG lock on the entire page. From the query plan, the

lock manager determines the resource pressure of acquiring multiple RID/KEY locks, and

if the pressure is found to be high, the lock manager requests a PAG lock instead.

The resource locked by the PAG lock may be represented in the following format in

the resource_description column of sys.dm_tran_locks:

FileID:PageID

The page-level lock can increase the performance of an individual query by reducing

its locking overhead, but it hurts the concurrency of the database by blocking access to

all the rows in the page.

 Extent-Level Lock
An extent-level lock is maintained on an extent (a group of eight contiguous data or

index pages), and it is identified as an EXT lock. This lock is used, for example, when an

ALTER INDEX REBUILD command is executed on a table and the pages of the table may

be moved from an existing extent to a new extent. During this period, the integrity of the

extents is protected using EXT locks.

 Heap or B-tree Lock
A heap or B-tree lock is used to describe when a lock to either type of object could be

made. The target object could be an unordered heap table, a table without a clustered

index, or a B-tree object, usually referring to partitions. A setting within the ALTER TABLE

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

646

function allows you to exercise a level of control over how locking escalation (covered in

the “Lock Escalation” section) is affected with the partitions. Because partitions can be

across multiple filegroups, each one has to have its own data allocation definition. This

is where the HoBT lock comes into play. It acts like a table-level lock but on a partition

instead of on the table itself.

 Table-Level Lock
This is the highest level of lock on a table, and it is identified as a TAB lock. A table-level

lock on a table reserves access to the complete table and all its indexes.

When a query is executed, the lock manager automatically determines the locking

overhead of acquiring multiple locks at the lower levels. If the resource pressure of

acquiring locks at the row level or the page level is determined to be high, then the lock

manager directly acquires a table-level lock for the query.

The resource locked by the OBJECT lock will be represented in

resource_description in the following format:

ObjectID

A table-level lock requires the least overhead compared to the other locks and

thus improves the performance of the individual query. On the other hand, since the

table-level lock blocks all write requests on the entire table (including indexes), it can

significantly hurt database concurrency.

Sometimes an application feature may benefit from using a specific lock level for a

table referred to in a query. For instance, if an administrative query is executed during

nonpeak hours, then a table-level lock may not impact the users of the system too

much; however, it can reduce the locking overhead of the query and thereby improve

its performance. In such cases, a query developer may override the lock manager’s lock

level selection for a table referred to in the query by using locking hints.

SELECT * FROM <TableName> WITH(TABLOCK)

But, be cautious when taking control away from SQL Server like this. Test it

thoroughly prior to implementation.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

647

 Database-Level Lock
A database-level lock is maintained on a database and is identified as a DB lock. When

an application makes a database connection, the lock manager assigns a database-level

shared lock to the corresponding session_id. This prevents a user from accidentally

dropping or restoring the database while other users are connected to it.

SQL Server ensures that the locks requested at one level respect the locks granted at

other levels. For instance, once a user acquires a row-level lock on a table row, another

user can’t acquire a lock at any other level that may affect the integrity of the row. The

second user may acquire a row-level lock on other rows or a page-level lock on other

pages, but an incompatible page- or table-level lock containing the row won’t be granted

to other users.

The level at which locks should be applied need not be specified by a user or

database administrator; the lock manager determines that automatically. It generally

prefers row-level and key-level locks when accessing a small number of rows to aid

concurrency. However, if the locking overhead of multiple low-level locks turns out to be

very high, the lock manager automatically selects an appropriate higher-level lock.

 Lock Operations and Modes
Because of the variety of operations that SQL Server needs to perform, an equally large

and complex set of locking mechanisms are maintained. In addition to the different

types of locks, there is an escalation path to change from one type of lock to another. The

following sections describe these modes and processes, as well as their uses.

 Lock Escalation
When a query is executed, SQL Server determines the required lock level for the

database objects referred to in the query, and it starts executing the query after acquiring

the required locks. During the query execution, the lock manager keeps track of the

number of locks requested by the query to determine the need to escalate the lock level

from the current level to a higher level.

The lock escalation threshold is determined by SQL Server during the course of a

transaction. Row locks and page locks are automatically escalated to a table lock when

a transaction exceeds its threshold. After the lock level is escalated to a table-level lock,

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

648

all the lower-level locks on the table are automatically released. This dynamic lock

escalation feature of the lock manager optimizes the locking overhead of a query.

It is possible to establish a level of control over the locking mechanisms on a given

table. For example, you can control whether lock escalation occurs. The following is the

T-SQL syntax to make that change:

ALTER TABLE schema.table

SET (LOCK_ESCALATION = DISABLE);

This syntax will disable lock escalation on the table entirely (except for a few special

circumstances). You can also set it to TABLE, which will cause the escalation to go to

a table lock every single time. You can also set lock escalation on the table to AUTO,

which will allow SQL Server to make the determination for the locking schema and any

escalation necessary. If that table is partitioned, you may see the escalation change to

the partition level. Again, exercise caution using these types of modifications to standard

SQL Server behavior.

You also have the option to disable lock escalation on a wider basis by using trace

flag 1224. This disables lock escalation based on the number of locks but leaves intact

lock escalation based on memory pressure. You can also disable the memory pressure

lock escalation as well as the number of locks by using trace flag 1211, but that’s a

dangerous choice and can lead to errors on your systems. I strongly suggest thorough

testing before using either of these options.

 Lock Modes
The degree of isolation required by different transactions may vary. For instance,

consistency of data is not affected if two transactions read the data simultaneously;

however, the consistency is affected if two transactions are allowed to modify the data

simultaneously. Depending on the type of access requested, SQL Server uses different

lock modes while locking resources.

• Shared (S)

• Update (U)

• Exclusive (X)

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

649

• Intent

• Intent Shared (IS)

• Intent Exclusive (IX)

• Shared with Intent Exclusive (SIX)

• Schema

• Schema Modification (Sch-M)

• Schema Stability (Sch-S)

• Bulk Update (BU)

• Key-Range

 Shared (S) Mode

Shared mode is used for read-only queries, such as a SELECT statement. It doesn’t

prevent other read-only queries from accessing the data simultaneously because the

integrity of the data isn’t compromised by the concurrent reads. However, concurrent

data modification queries on the data are prevented to maintain data integrity. The

(S) lock is held on the data until the data is read. By default, the (S) lock acquired by a

SELECT statement is released immediately after the data is read. For example, consider

the following transaction:

BEGIN TRAN

SELECT *

FROM Production.Product AS p

WHERE p.ProductID = 1;

--Other queries

COMMIT

The (S) lock acquired by the SELECT statement is not held until the end of the

transaction; instead, it is released immediately after the data is read by the SELECT

statement under read_ committed, the default isolation level. This behavior of the (S)

lock can be altered by using a higher isolation level or a lock hint.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

650

 Update (U) Mode

Update mode may be considered similar to the (S) lock, but it also includes an objective

to modify the data as part of the same query. Unlike the (S) lock, the (U) lock indicates

that the data is read for modification. Since the data is read with an objective to modify it,

SQL Server does not allow more than one (U) lock on the data simultaneously. This rule

helps maintain data integrity. Note that concurrent (S) locks on the data are allowed. The

(U) lock is associated with an UPDATE statement, and the action of an UPDATE statement

actually involves two intermediate steps: first read the data to be modified, and then

modify the data.

Different lock modes are used in the two intermediate steps to maximize

concurrency. Instead of acquiring an exclusive right while reading the data, the first

step acquires a (U) lock on the data. In the second step, the (U) lock is converted to

an exclusive lock for modification. If no modification is required, then the (U) lock is

released; in other words, it’s not held until the end of the transaction. Consider the

following script, which would lead to blocking until the UPDATE statement is completed:

UPDATE Sales.Currency

SET Name = 'Euro'

WHERE CurrencyCode = 'EUR';

To understand the locking behavior of the intermediate steps of the UPDATE

statement, you need to obtain data from sys.dm_tran_locks while queries run. You

can obtain the lock status after each step of the UPDATE statement by following the steps

outlined next. You’re going have three connections open that I’ll refer to as Connection 1,

Connection 2, and Connection 3. This will require three different query windows in

Management Studio. You’ll run the queries in the connections I list in the order that I

specify to arrive at a blocking situation. The point of this is to observe those blocks as

they occur. Table 21-1 shows the different connections in different T-SQL query windows

and the order of the queries to be run in them.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

651

Table 21-1. Order of the Scripts to Show UPDATE Blocking

Script
Order

T-SQL Window 1
(Connection 1)

T-SQL Window 2
(Connection 2)

T-SQL Window 3
(Connection 3)

1 BEGIN TRANSACTION

LockTran2

--Retain an (S) lock

on the resource

SELECT *

FROM Sales.

Currency AS c WITH

(REPEATABLEREAD)

WHERE c.CurrencyCode

= 'EUR' ;

--Allow DMVs to be

executed before second

step of

-- UPDATE statement is

executed by transaction

LockTran1

WAITFOR DELAY

'00:00:10';

COMMIT

(continued)

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

652

Table 21-1. (continued)

Script
Order

T-SQL Window 1
(Connection 1)

T-SQL Window 2
(Connection 2)

T-SQL Window 3
(Connection 3)

2 BEGIN TRANSACTION

LockTran1

UPDATE Sales.

Currency

SET Name =

'Euro'

WHERE

CurrencyCode =

'EUR';

-- NOTE: We're

not committing

yet

3 SELECT dtl.request_

session_id,

dtl.resource_database_id,

dtl.resource_associated_

entity_id,

dtl.resource_type,

dtl.resource_

description,

dtl.request_mode,

dtl.request_status

FROM sys.dm_tran_

locks AS dtl

ORDER BY dtl.request_

session_id;

(continued)

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

653

Table 21-1. (continued)

Script
Order

T-SQL Window 1
(Connection 1)

T-SQL Window 2
(Connection 2)

T-SQL Window 3
(Connection 3)

4) Wait 10
seconds

5 SELECT dtl.request_

session_id,

dtl.resource_database_id,

dtl.resource_associated_

entity_id,

dtl.resource_type,

dtl.resource_

description,

dtl.request_mode,

dtl.request_status

FROM sys.dm_tran_

locks AS dtl

ORDER BY dtl.request_

session_id;

6 COMMIT

The REPEATABLEREAD locking hint, running in Connection 2, allows the SELECT

statement to retain the (S) lock on the resource. The output from sys.dm_tran_locks in

Connection 3 will provide the lock status after the first step of the UPDATE statement since

the lock conversion to an exclusive (X) lock by the UPDATE statement is blocked by the

SELECT statement. Next, let’s look at the lock status provided by sys.dm_tran_locks as

you go through the individual steps of the UPDATE statement.

Figure 21-3 shows the lock status after step 1 of the UPDATE statement (obtained from

the output from sys.dm_tran_locks executed on the third connection, Connection 3, as

explained previously).

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

654

Figure 21-3. Output from sys.dm_tran_locks showing the lock conversion state of
an UPDATE statement

Figure 21-4. Output from sys.dm_tran_locks showing the final lock status held by
the UPDATE statement

Note the order of these rows is not that important. i’ve ordered by session_id
in order to group the locks from each query.

• Figure 21-4 shows the lock status after step 2 of the UPDATE statement.

From the sys.dm_tran_locks output after the first step of the UPDATE statement, you

can note the following:

• A (U) lock is granted to the SPID on the data row.

• A conversion to an (X) lock on the data row is requested.

From the output of sys.dm_tran_locks after the second step of the UPDATE

statement, you can see that the UPDATE statement holds only an (X) lock on the data row.

Essentially, the (U) lock on the data row is converted to an (X) lock.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

655

This is important, by not acquiring an exclusive lock at the first step, an UPDATE

statement allows other transactions to read the data using the SELECT statement during

that period. This is possible because (U) and (S) locks are compatible with each other.

This increases database concurrency.

Note i discuss lock compatibility among different lock modes later in this chapter.

You may be curious to learn why a (U) lock is used instead of an (S) lock in the first

step of the UPDATE statement. To understand the drawback of using an (S) lock instead of

a (U) lock in the first step of the UPDATE statement, let’s break the UPDATE statement into

two steps.

 1. Read the data to be modified using an (S) lock instead of a

(U) lock.

 2. Modify the data by acquiring an (X) lock.

Consider the following code:

BEGIN TRAN

--1.Read data to be modified using (S)lock instead of (U)lock.

-- Retain the (S)lock using REPEATABLEREAD locking hint, since

-- the original (U)lock is retained until the conversion to

-- (X)lock.

SELECT *

FROM Sales.Currency AS c WITH (REPEATABLEREAD)

WHERE c.CurrencyCode = 'EUR' ;

--Allow another equivalent update action to start concurrently

WAITFOR DELAY '00:00:10' ;

--2. Modify the data by acquiring (X)lock

UPDATE Sales.Currency WITH (XLOCK)

SET Name = 'EURO'

WHERE CurrencyCode = 'EUR' ;

COMMIT

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

656

If this transaction is executed from two connections simultaneously, then, after a

delay, it causes a deadlock, as follows:

Msg 1205, Level 13, State 51, Line 13

Transaction (Process ID 58) was deadlocked on lock resources with another

process and has been chosen as the deadlock victim. Rerun the transaction.

Both transactions read the data to be modified using an (S) lock and then request

an (X) lock for modification. When the first transaction attempts the conversion to the

(X) lock, it is blocked by the (S) lock held by the second transaction. Similarly, when the

second transaction attempts the conversion from (S) lock to the (X) lock, it is blocked

by the (S) lock held by the first transaction, which in turn is blocked by the second

transaction. This causes a circular block—and therefore, a deadlock.

Note deadlocks are covered in more detail in Chapter 22.

To avoid this typical deadlock, the UPDATE statement uses a (U) lock instead of an (S)

lock at its first intermediate step. Unlike an (S) lock, a (U) lock doesn’t allow another (U)

lock on the same resource simultaneously. This forces the second concurrent UPDATE

statement to wait until the first UPDATE statement completes.

 Exclusive (X) Mode
Exclusive mode provides an exclusive right on a database resource for modification by data

manipulation queries such as INSERT, UPDATE, and DELETE. It prevents other concurrent

transactions from accessing the resource under modification. Both the INSERT and DELETE

statements acquire (X) locks at the very beginning of their execution. As explained earlier,

the UPDATE statement converts to the (X) lock after the data to be modified is read. The (X)

locks granted in a transaction are held until the end of the transaction.

The (X) lock serves two purposes.

• It prevents other transactions from accessing the resource under

modification so that they see a value either before or after the

modification, not a value undergoing modification.

• It allows the transaction modifying the resource to safely roll back

to the original value before modification, if needed, since no other

transaction is allowed to modify the resource simultaneously.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

657

 Intent Shared (IS), Intent Exclusive (IX), and Shared
with Intent Exclusive (SIX) Modes
Intent Shared, Intent Exclusive, and Shared with Intent Exclusive locks indicate that the

query intends to grab a corresponding (S) or (X) lock at a lower lock level. For example,

consider the following transaction on the Sales.Currency table:

BEGIN TRAN

DELETE Sales.Currency

WHERE CurrencyCode = 'ALL';

SELECT tl.request_session_id,

 tl.resource_database_id,

 tl.resource_associated_entity_id,

 tl.resource_type,

 tl.resource_description,

 tl.request_mode,

 tl.request_status

FROM sys.dm_tran_locks tl;

ROLLBACK TRAN

Figure 21-5 shows the output from sys.dm_tran_locks.

Figure 21-5. Output from sys.dm_tran_locks showing the intent locks granted at
higher levels

The (IX) lock at the table level (PAGE) indicates that the DELETE statement intends

to acquire an (X) lock at a page, row, or key level. Similarly, the (IX) lock at the page

level (PAGE) indicates that the query intends to acquire an (X) lock on a row in the

page. The (IX) locks at the higher levels prevent another transaction from acquiring an

incompatible lock on the table or on the page containing the row.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

658

Flagging the intent lock—(IS) or (IX)—at a corresponding higher level by a

transaction, while holding the lock at a lower level, prevents other transactions from

acquiring an incompatible lock at the higher level. If the intent locks were not used,

then a transaction trying to acquire a lock at a higher level would have to scan through

the lower levels to detect the presence of lower-level locks. While the intent lock at

the higher levels indicates the presence of a lower level lock, the locking overhead of

acquiring a lock at a higher level is optimized. The intent locks granted to a transaction

are held until the end of the transaction.

Only a single (SIX) lock can be placed on a given resource at once. This prevents

updates made by other transactions. Other transactions can place (IS) locks on the

lower-level resources while the (SIX) lock is in place.

Furthermore, there can be a combination of locks requested (or acquired) at a

certain level and the intention of having a lock (or locks) at a lower level. For example,

there can be (SIU) and (UIX) lock combinations indicating that an (S) or a (U) lock has

been acquired at the corresponding level and that (U) or (X) lock(s) are intended at a

lower level.

 Schema Modification (Sch-M) and Schema Stability
(Sch- S) Modes
Schema Modification and Schema Stability locks are acquired on a table by SQL

statements that depend on the schema of the table. A DDL statement, working on the

schema of a table, acquires an (Sch-M) lock on the table and prevents other transactions

from accessing the table. An (Sch-S) lock is acquired for database activities that depend

on the schema but do not modify the schema, such as a query compilation. It prevents

an (Sch-M) lock on the table, but it allows other locks to be granted on the table.

Since, on a production database, schema modifications are infrequent, (Sch-M)

locks don’t usually become a blocking issue. And because (Sch-S) locks don’t block other

locks except (Sch-M) locks, concurrency is generally not affected by (Sch-S) locks either.

 Bulk Update (BU) Mode
The Bulk Update lock mode is unique to bulk load operations. These operations are the

older-style bcp (bulk copy), the BULK INSERT statement, and inserts from the OPENROWSET

using the BULK option. As a mechanism for speeding up these processes, you can provide

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

659

a TABLOCK hint or set the option on the table for it to lock on bulk load. The key to (BU)

locking mode is that it will allow multiple bulk operations against the table being locked

but prevent other operations while the bulk process is running.

 Key-Range Mode
The Key-Range mode is applicable only while the isolation level is set to Serializable

(you’ll learn more about transaction isolation levels in the later “Isolation Levels”

section). The Key-Range locks are applied to a series, or range, of key values that will

be used repeatedly while the transaction is open. Locking a range during a serializable

transaction ensures that other rows are not inserted within the range, possibly changing

result sets within the transaction. The range can be locked using the other lock modes,

making this more like a combined locking mode rather than a distinctively separate

locking mode. For the Key-Range lock mode to work, an index must be used to define

the values within the range.

 Lock Compatibility
SQL Server provides isolation to a transaction by preventing other transactions from

accessing the same resource in an incompatible way. However, if a transaction attempts

a compatible task on the same resource, then to increase concurrency, it won’t be

blocked by the first transaction. SQL Server ensures this kind of selective blocking by

preventing a transaction from acquiring an incompatible lock on a resource held by

another transaction. For example, an (S) lock acquired on a resource by a transaction

allows other transactions to acquire an (S) lock on the same resource. However, an

(Sch-M) lock on a resource by a transaction prevents other transactions from acquiring

any lock on that resource.

 Isolation Levels
The lock modes explained in the previous section help a transaction protect its data

consistency from other concurrent transactions. The degree of data protection or

isolation a transaction gets depends not only on the lock modes but also on the isolation

level of the transaction. This level influences the behavior of the lock modes. For

example, by default an (S) lock is released immediately after the data is read; it isn’t held

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

660

until the end of the transaction. This behavior may not be suitable for some application

functionality. In such cases, you can configure the isolation level of the transaction to

achieve the desired degree of isolation.

SQL Server implements six isolation levels, four of them as defined by ISO:

• Read Uncommitted

• Read Committed

• Repeatable Read

• Serializable

Two other isolation levels provide row versioning, which is a mechanism whereby

a version of the row is created as part of data manipulation queries. This extra version

of the row allows read queries to access the data without acquiring locks against it.

The extra two isolation levels are as follows:

• Read Committed Snapshot (actually part of the Read Committed

isolation)

• Snapshot

The four ISO isolation levels are listed in increasing order of degree of isolation. You

can configure them at either the connection or query level by using the SET TRANSACTION

ISOLATION LEVEL statement or the locking hints, respectively. The isolation level

configuration at the connection level remains effective until the isolation level is

reconfigured using the SET statement or until the connection is closed. All the isolation

levels are explained in the sections that follow.

 Read Uncommitted
Read Uncommitted is the lowest of the four isolation levels, and it allows SELECT statements

to read data without requesting an (S) lock. Since an (S) lock is not requested by a SELECT

statement, it neither blocks nor is blocked by the (X) lock. It allows a SELECT statement to

read data while the data is under modification. This kind of data read is called a dirty read.

Assume you have an application in which the amount of data modification is

extremely minimal and that your application doesn’t require much in the way of

accuracy from the SELECT statement it issues to read data. In this case, you can use the

Read Uncommitted isolation level to avoid having some other data modification activity

block the SELECT statement.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

661

You can use the following SET statement to configure the isolation level of a database

connection to the Read Uncommitted isolation level:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

You can also achieve this degree of isolation on a query basis using the NOLOCK

locking hint.

SELECT *

FROM Production.Product AS p WITH (NOLOCK);

The effect of the locking hint remains applicable for the query and doesn’t change

the isolation level of the connection.

The Read Uncommitted isolation level avoids the blocking caused by a SELECT

statement, but you should not use it if the transaction depends on the accuracy of the

data read by the SELECT statement or if the transaction cannot withstand a concurrent

change of data by another transaction.

It’s important to understand what is meant by a dirty read. Lots of people think this

means that, while a field is being updated from Tusa to Tulsa, a query can still read the

previous value or even the updated value, prior to the commit. Although that is true,

much more egregious data problems could occur. Since no locks are placed while reading

the data, indexes may be split. This can result in extra or missing rows of data returned

to the query. To be clear, using Read Uncommitted in any environment where data

manipulation as well as data reads are occurring can result in unanticipated behaviors.

The intention of this isolation level is for systems primarily focused on reporting and

business intelligence, not online transaction processing. You may see radically incorrect

data because of the use of uncommitted data. This fact cannot be over-emphasized.

 Read Committed
The Read Committed isolation level prevents the dirty read caused by the Read

Uncommitted isolation level. This means that (S) locks are requested by the SELECT

statements at this isolation level. This is the default isolation level of SQL Server. If

needed, you can change the isolation level of a connection to Read Committed by using

the following SET statement:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

662

The Read Committed isolation level is good for most cases, but since the (S) lock

acquired by the SELECT statement isn’t held until the end of the transaction, it can cause

nonrepeatable read or phantom read issues, as explained in the sections that follow.

The behavior of the Read Committed isolation level can be changed by the

READ_COMMITTED_SNAPSHOT database option. When this is set to ON, row versioning is

used by data manipulation transactions. This places an extra load on tempdb because

previous versions of the rows being changed are stored there while the transaction is

uncommitted. This allows other transactions to access data for reads without having to

place locks on the data, which can improve the speed and efficiency of all the queries in

the system without resulting in the issues generated by page splits with NOLOCK or READ

UNCOMMITTED. In Azure SQL Database, the default setting is READ_COMMITTED_SNAPSHOT.

Next, modify the AdventureWorks2017 database so that READ_COMMITTED_SNAPSHOT

is turned on.

ALTER DATABASE AdventureWorks2017 SET READ_COMMITTED_SNAPSHOT ON;

Now imagine a business situation. The first connection and transaction will be

pulling data from the Production.Product table, acquiring the color of a particular item.

BEGIN TRANSACTION;

SELECT p.Color

FROM Production.Product AS p

WHERE p.ProductID = 711;

A second connection is made with a new transaction that will be modifying the color

of the same item.

BEGIN TRANSACTION ;

UPDATE Production.Product

SET Color = 'Coyote'

WHERE ProductID = 711;

SELECT p.Color

FROM Production.Product AS p

WHERE p.ProductID = 711;

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

663

Running the SELECT statement after updating the color, you can see that the color

was updated. But if you switch back to the first connection and rerun the original SELECT

statement (don’t run the BEGIN TRAN statement again), you’ll still see the color as Blue.

Switch back to the second connection and finish the transaction.

COMMIT TRANSACTION;

Switching again to the first transaction, commit that transaction, and then rerun the

original SELECT statement. You’ll see the new color updated for the item, Coyote. You can

reset the isolation level on AdventureWorks2017 before continuing.

ALTER DATABASE AdventureWorks2017 SET READ_COMMITTED_SNAPSHOT OFF;

Note if the tempdb is filled, data modification using row versioning will continue
to succeed, but reads may fail since the versioned row will not be available. if you
enable any type of row versioning isolation within your database, you must take
extra care to maintain free space within tempdb.

 Repeatable Read
The Repeatable Read isolation level allows a SELECT statement to retain its (S) lock until

the end of the transaction, thereby preventing other transactions from modifying the

data during that time. Database functionality may implement a logical decision inside

a transaction based on the data read by a SELECT statement within the transaction. If

the outcome of the decision is dependent on the data read by the SELECT statement,

then you should consider preventing modification of the data by other concurrent

transactions. For example, consider the following two transactions:

• Normalize the price for ProductID = 1: For ProductID = 1, if Price >

10, then decrease the price by 10.

• Apply a discount: For products with Price > 10, apply a discount of

40 percent.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

664

Now consider the following test table:

DROP TABLE IF EXISTS dbo.MyProduct;

GO

CREATE TABLE dbo.MyProduct (ProductID INT,

 Price MONEY);

INSERT INTO dbo.MyProduct

VALUES (1, 15.0);

You can write the two transactions like this:

DECLARE @Price INT ;

BEGIN TRAN NormailizePrice

SELECT @Price = mp.Price

FROM dbo.MyProduct AS mp

WHERE mp.ProductID = 1 ;

/*Allow transaction 2 to execute*/

WAITFOR DELAY '00:00:10' ;

IF @Price > 10

 UPDATE dbo.MyProduct

 SET Price = Price - 10

 WHERE ProductID = 1 ;

COMMIT

--Transaction 2 from Connection 2

BEGIN TRAN ApplyDiscount

UPDATE dbo.MyProduct

SET Price = Price * 0.6 --Discount = 40%

WHERE Price > 10 ;

COMMIT

On the surface, the preceding transactions may look good, and yes, they do work in

a single-user environment. But in a multiuser environment, where multiple transactions

can be executed concurrently, you have a problem here!

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

665

To figure out the problem, let’s execute the two transactions from different

connections in the following order:

 1. Start transaction 1 first.

 2. Start transaction 2 within ten seconds of the start of transaction 1.

As you may have guessed, at the end of the transactions, the new price of the product

(with ProductID = 1) will be -1.0. Ouch—it appears that you’re ready to go out of

business!

The problem occurs because transaction 2 is allowed to modify the data while

transaction 1 has finished reading the data and is about to make a decision on it.

Transaction 1 requires a higher degree of isolation than that provided by the default

isolation level (Read Committed).

As a solution, you want to prevent transaction 2 from modifying the data while

transaction 1 is working on it. In other words, provide transaction 1 with the ability

to read the data again later in the transaction without being modified by others. This

feature is called repeatable read. Considering the context, the implementation of the

solution is probably obvious. After re-creating the sample table, you can write this:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ ;

GO

--Transaction 1 from Connection 1

DECLARE @Price INT ;

BEGIN TRAN NormalizePrice

SELECT @Price = Price

FROM dbo.MyProduct AS mp

WHERE mp.ProductID = 1 ;

/*Allow transaction 2 to execute*/

WAITFOR DELAY '00:00:10' ;

IF @Price > 10

 UPDATE dbo.MyProduct

 SET Price = Price - 10

 WHERE ProductID = 1 ;

COMMIT

GO

SET TRANSACTION ISOLATION LEVEL READ COMMITTED --Back to default

GO

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

666

Increasing the isolation level of transaction 1 to Repeatable Read will prevent

transaction 2 from modifying the data during the execution of transaction 1.

Consequently, you won’t have an inconsistency in the price of the product. Since the

intention isn’t to release the (S) lock acquired by the SELECT statement until the end of

the transaction, the effect of setting the isolation level to Repeatable Read can also be

implemented at the query level using the lock hint.

DECLARE @Price INT ;

BEGIN TRAN NormalizePrice

SELECT @Price = Price

FROM dbo.MyProduct AS mp WITH (REPEATABLEREAD)

WHERE mp.ProductID = 1 ;

/*Allow transaction 2 to execute*/

WAITFOR DELAY '00:00:10'

IF @Price > 10

 UPDATE dbo.MyProduct

 SET Price = Price - 10

 WHERE ProductID = 1 ;

COMMIT

This solution prevents the data inconsistency of MyProduct.Price, but it introduces

another problem to this scenario. On observing the result of transaction 2, you realize

that it could cause a deadlock. Therefore, although the preceding solution prevented

the data inconsistency, it is not a complete solution. Looking closely at the effect of

the Repeatable Read isolation level on the transactions, you see that it introduced the

typical deadlock issue avoided by the internal implementation of an UPDATE statement,

as explained previously. The SELECT statement acquired and retained an (S) lock instead

of a (U) lock, even though it intended to modify the data later within the transaction.

The (S) lock allowed transaction 2 to acquire a (U) lock, but it blocked the (U) lock’s

conversion to an (X) lock. The attempt of transaction 1 to acquire a (U) lock on the data

at a later stage caused a circular block, resulting in a deadlock.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

667

To prevent the deadlock and still avoid data corruption, you can use an equivalent

strategy as adopted by the internal implementation of the UPDATE statement. Thus,

instead of requesting an (S) lock, transaction 1 can request a (U) lock by using an

UPDLOCK locking hint when executing the SELECT statement.

DECLARE @Price INT ;

BEGIN TRAN NormalizePrice

SELECT @Price = Price

FROM dbo.MyProduct AS mp WITH (UPDLOCK)

WHERE mp.ProductID = 1 ;

/*Allow transaction 2 to execute*/

WAITFOR DELAY '00:00:10'

IF @Price > 10

 UPDATE dbo.MyProduct

 SET Price = Price - 10

 WHERE ProductID = 1 ;

COMMIT

This solution prevents both data inconsistency and the possibility of the deadlock.

If the increase of the isolation level to Repeatable Read had not introduced the typical

deadlock, then it would have done the job. Since there is a chance of a deadlock

occurring because of the retention of an (S) lock until the end of a transaction, it is

usually preferable to grab a (U) lock instead of holding the (S) lock, as just illustrated.

 Serializable
Serializable is the highest of the six isolation levels. Instead of acquiring a lock only on

the row to be accessed, the Serializable isolation level acquires a range lock on the row

and the next row in the order of the data set requested. For instance, a SELECT statement

executed at the Serializable isolation level acquires a (RangeS-S) lock on the row to

be accessed and the next row in the order. This prevents the addition of rows by other

transactions in the data set operated on by the first transaction, and it protects the first

transaction from finding new rows in its data set within its transaction scope. Finding

new rows in a data set within a transaction is also called a phantom read.

To understand the need for a Serializable isolation level, let’s consider an example.

Suppose a group (with GroupID = 10) in a company has a fund of $100 to be distributed

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

668

among the employees in the group as a bonus. The fund balance after the bonus

payment should be $0. Consider the following test table:

DROP TABLE IF EXISTS dbo.MyEmployees;

GO

CREATE TABLE dbo.MyEmployees (EmployeeID INT,

 GroupID INT,

 Salary MONEY);

CREATE CLUSTERED INDEX i1 ON dbo.MyEmployees (GroupID);

--Employee 1 in group 10

INSERT INTO dbo.MyEmployees

VALUES (1, 10, 1000),

 --Employee 2 in group 10

 (2, 10, 1000),

 --Employees 3 & 4 in different groups

 (3, 20, 1000),

 (4, 9, 1000);

The described business functionality may be implemented as follows:

DECLARE @Fund MONEY = 100,

 @Bonus MONEY,

 @NumberOfEmployees INT;

BEGIN TRAN PayBonus

SELECT @NumberOfEmployees = COUNT(*)

FROM dbo.MyEmployees

WHERE GroupID = 10;

/*Allow transaction 2 to execute*/

WAITFOR DELAY '00:00:10';

IF @NumberOfEmployees > 0

 BEGIN

 SET @Bonus = @Fund / @NumberOfEmployees;

 UPDATE dbo.MyEmployees

 SET Salary = Salary + @Bonus

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

669

 WHERE GroupID = 10;

 PRINT 'Fund balance =

' + CAST((@Fund - (@@ROWCOUNT * @Bonus)) AS VARCHAR(6)) + ' $';

 END

COMMIT

You’ll see the returned value as a fund balance of $0 since the updates complete

successfully. The PayBonus transaction works well in a single-user environment.

However, in a multiuser environment, there is a problem.

Consider another transaction that adds a new employee to GroupID = 10 as follows

and is executed concurrently (immediately after the start of the PayBonus transaction)

from a second connection:

BEGIN TRAN NewEmployee

INSERT INTO MyEmployees

VALUES (5, 10, 1000);

COMMIT

The fund balance after the PayBonus transaction will be -$50! Although the new

employee may like it, the group fund will be in the red. This causes an inconsistency in

the logical state of the data.

To prevent this data inconsistency, the addition of the new employee to the group

(or data set) under operation should be blocked. Of the five isolation levels discussed,

only Snapshot isolation can provide a similar functionality, since the transaction has to

be protected not only on the existing data but also from the entry of new data in the data

set. The Serializable isolation level can provide this kind of isolation by acquiring a

range lock on the affected row and the next row in the order determined by the

MyEmployees.il index on the GroupID column. Thus, the data inconsistency of the

PayBonus transaction can be prevented by setting the transaction isolation level to

Serializable.

Remember to re-create the table first.

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

GO

DECLARE @Fund MONEY = 100,

 @Bonus MONEY,

 @NumberOfEmployees INT;

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

670

BEGIN TRAN PayBonus

SELECT @NumberOfEmployees = COUNT(*)

FROM dbo.MyEmployees

WHERE GroupID = 10;

/*Allow transaction 2 to execute*/

WAITFOR DELAY '00:00:10';

IF @NumberOfEmployees > 0

 BEGIN

 SET @Bonus = @Fund / @NumberOfEmployees;

 UPDATE dbo.MyEmployees

 SET Salary = Salary + @Bonus

 WHERE GroupID = 10;

 PRINT 'Fund balance =

' + CAST((@Fund - (@@ROWCOUNT * @Bonus)) AS VARCHAR(6)) + ' $';

 END

COMMIT

GO

--Back to default

SET TRANSACTION ISOLATION LEVEL READ COMMITTED ;

GO

The effect of the Serializable isolation level can also be achieved at the query level by

using the HOLDLOCK locking hint on the SELECT statement, as shown here:

DECLARE @Fund MONEY = 100,

 @Bonus MONEY,

 @NumberOfEmployees INT ;

BEGIN TRAN PayBonus

SELECT @NumberOfEmployees = COUNT(*)

FROM dbo.MyEmployees WITH (HOLDLOCK)

WHERE GroupID = 10 ;

/*Allow transaction 2 to execute*/

WAITFOR DELAY '00:00:10' ;

IF @NumberOfEmployees > 0

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

671

 BEGIN

 SET @Bonus = @Fund / @NumberOfEmployees

 UPDATE dbo.MyEmployees

 SET Salary = Salary + @Bonus

 WHERE GroupID = 10 ;

 PRINT 'Fund balance =

' + CAST((@Fund - (@@ROWCOUNT * @Bonus)) AS VARCHAR(6)) + ' $' ;

 END

COMMIT

You can observe the range locks acquired by the PayBonus transaction by querying

sys.dm_tran_locks from another connection while the PayBonus transaction is

executing, as shown in Figure 21-6.

Figure 21-6. Output from sys.dm_tran_locks showing range locks granted to the
serializable transaction

The output of sys.dm_tran_locks shows that shared-range (RangeS-S) locks are

acquired on three index rows: the first employee in GroupID = 10, the second employee

in GroupID = 10, and the third employee in GroupID = 20. These range locks prevent

the entry of any new employee in GroupID = 10.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

672

The range locks just shown introduce a few interesting side effects.

• No new employee with a GroupID between 10 and 20 can be added

during this period. For instance, an attempt to add a new employee

with a GroupID of 15 will be blocked by the PayBonus transaction.

BEGIN TRAN NewEmployee

INSERT INTO dbo.MyEmployees

VALUES (6, 15, 1000);

COMMIT

• If the data set of the PayBonus transaction turns out to be the last set

in the existing data ordered by the index, then the range lock required

on the row, after the last one in the data set, is acquired on the last

possible data value in the table.

To understand this behavior, let’s delete the employees with a

GroupID > 10 to make the GroupID = 10 data set the last data set

in the clustered index (or table).

DELETE dbo.MyEmployees

WHERE GroupID > 10;

Run the updated bonus and newemployee again. Figure 21-7 shows the resultant

output of sys.dm_tran_locks for the PayBonus transaction.

Figure 21-7. Output from sys.dm_tran_locks showing extended range locks
granted to the serializable transaction

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

673

The range lock on the last possible row (KEY = ffffffffffff) in the clustered index,

as shown in Figure 21-7, will block the addition of employees with all GroupIDs greater

than or equal to 10. You know that the lock is on the last row, not because it’s displayed

in a visible fashion in the output of sys.dm_tran_locks but because you cleaned out

everything up to that row previously. For example, an attempt to add a new employee

with GroupID = 999 will be blocked by the PayBonus transaction.

BEGIN TRAN NewEmployee

INSERT INTO dbo.MyEmployees

VALUES (7, 999, 1000);

COMMIT

Guess what will happen if the table doesn’t have an index on the GroupID column

(in other words, the column in the WHERE clause)? While you’re thinking, I’ll re-create

the table with the clustered index on a different column.

DROP TABLE IF EXISTS dbo.MyEmployees;

GO

CREATE TABLE dbo.MyEmployees (EmployeeID INT,

 GroupID INT,

 Salary MONEY);

CREATE CLUSTERED INDEX i1 ON dbo.MyEmployees (EmployeeID);

--Employee 1 in group 10

INSERT INTO dbo.MyEmployees

VALUES (1, 10, 1000),

 --Employee 2 in group 10

 (2, 10, 1000),

 --Employees 3 & 4 in different groups

 (3, 20, 1000),

 (4, 9, 1000);

Now rerun the updated bonus query and the new employee query. Figure 21-8

shows the resultant output of sys.dm_tran_locks for the PayBonus transaction.

Once again, the range lock on the last possible row (KEY = ffffffffffff) in the new

clustered index, as shown in Figure 21-8, will block the addition of any new row to the

table. I will discuss the reason behind this extensive locking later in the chapter in the

“Effect of Indexes on the Serializable Isolation Level” section.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

674

As you’ve seen, the Serializable isolation level not only holds the share locks until

the end of the transaction like the Repeatable Read isolation level but also prevents any

new row from appearing in the data set by holding range locks. Because this increased

blocking can hurt database concurrency, you should avoid the Serializable isolation

level. If you have to use Serializable, then be sure you have good indexes and queries

in place to optimize performance in order to minimize the size and length of your

transactions.

 Snapshot
Snapshot isolation is the second of the row-versioning isolation levels available in SQL

Server since SQL Server 2005. Unlike Read Committed Snapshot isolation, Snapshot

isolation requires an explicit call to SET TRANSACTION ISOLATION LEVEL at the start of

the transaction. It also requires setting the isolation level on the database. Snapshot

isolation is meant as a more stringent isolation level than the Read Committed

Snapshot isolation. Snapshot isolation will attempt to put an exclusive lock on the data

it intends to modify. If that data already has a lock on it, the snapshot transaction will

fail. It provides transaction-level read consistency, which makes it more applicable to

financial-type systems than Read Committed Snapshot.

Figure 21-8. Output from sys.dm_tran_locks showing range locks granted to the
serializable transaction with no index on the WHERE clause column

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

675

 Effect of Indexes on Locking
Indexes affect the locking behavior on a table. On a table with no indexes, the lock

granularities are RID, PAG (on the page containing the RID), and TAB. Adding indexes to

the table affects the resources to be locked. For example, consider the following test table

with no indexes:

DROP TABLE IF EXISTS dbo.Test1;

GO

CREATE TABLE dbo.Test1 (C1 INT,

 C2 DATETIME);

INSERT INTO dbo.Test1

VALUES (1, GETDATE());

Next, observe the locking behavior on the table for the transaction:

BEGIN TRAN LockBehavior

UPDATE dbo.Test1 WITH (REPEATABLEREAD) --Hold all acquired locks

SET C2 = GETDATE()

WHERE C1 = 1 ;

--Observe lock behavior from another connection

WAITFOR DELAY '00:00:10' ;

COMMIT

Figure 21-9 shows the output of sys.dm_tran_locks applicable to the test table.

Figure 21-9. Output from sys.dm_tran_locks showing the locks granted on a table
with no index

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

676

The following locks are acquired by the transaction:

• An (IX) lock on the table

• An (IX) lock on the page containing the data row

• An (X) lock on the data row within the table

When the resource_type is an object, the resource_associated_entity_id column

value in sys.dm_tran_locks indicates the objectid of the object on which the lock is

placed. You can obtain the specific object name on which the lock is acquired from the

sys.object system table, as follows:

SELECT OBJECT_NAME(<object_id>);

The effect of the index on the locking behavior of the table varies with the type of index

on the WHERE clause column. The difference arises from the fact that the leaf pages of the

nonclustered and clustered indexes have a different relationship with the data pages of the

table. Let’s look into the effect of these indexes on the locking behavior of the table.

 Effect of a Nonclustered Index
Because the leaf pages of the nonclustered index are separate from the data pages

of the table, the resources associated with the nonclustered index are also protected

from corruption. SQL Server automatically ensures this. To see this in action, create a

nonclustered index on the test table.

CREATE NONCLUSTERED INDEX iTest ON dbo.Test1(C1);

On running the LockBehavior transaction again and querying sys.dm_tran_locks

from a separate connection, you get the result shown in Figure 21-10.

Figure 21-10. Output from sys.dm_tran_locks showing the effect of a nonclustered
index on locking behavior

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

677

The following locks are acquired by the transaction:

• An (IU) lock on the page containing the nonclustered index row

• A (U) lock on the nonclustered index row within the index page

• An (IX) lock on the table

• An (IX) lock on the page containing the data row

• An (X) lock on the data row within the data page

Note that only the row-level and page-level locks are directly associated with the

nonclustered index. The next higher level of lock granularity for the nonclustered index

is the table-level lock on the corresponding table.

Thus, nonclustered indexes introduce an additional locking overhead on the

table. You can avoid the locking overhead on the index by using the ALLOW_ROW_LOCKS

and ALLOW_PAGE_LOCKS options in ALTER INDEX. Understand, though, that this is a

trade- off that could involve a loss of performance, and it requires careful testing to

ensure it doesn’t negatively impact your system.

ALTER INDEX iTest ON dbo.Test1

 SET (ALLOW_ROW_LOCKS = OFF ,ALLOW_PAGE_LOCKS= OFF);

BEGIN TRAN LockBehavior

UPDATE dbo.Test1 WITH (REPEATABLEREAD) --Hold all acquired locks

SET C2 = GETDATE()

WHERE C1 = 1;

--Observe lock behavior using sys.dm_tran_locks

--from another connection

WAITFOR DELAY '00:00:10';

COMMIT

ALTER INDEX iTest ON dbo.Test1

 SET (ALLOW_ROW_LOCKS = ON ,ALLOW_PAGE_LOCKS= ON);

You can use these options when working with an index to enable/disable the KEY

locks and PAG locks on the index. Disabling just the KEY lock causes the lowest lock

granularity on the index to be the PAG lock. Configuring lock granularity on the index

remains effective until it is reconfigured.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

678

Note Modifying locks like this should be a last resort after many other options
have been tried. this could cause significant locking overhead that would seriously
impact the performance of the system.

Figure 21-11 displays the output of sys.dm_tran_locks executed from a separate

connection.

Figure 21-11. Output from sys.dm_tran_locks showing the effect of sp_index
option on lock granularity

The only lock acquired by the transaction on the test table is an (X) lock on the table.

You can see from the new locking behavior that disabling the KEY lock escalates lock

granularity to the table level. This will block every concurrent access to the table or to

the indexes on the table; consequently, it can seriously hurt the database concurrency.

However, if a nonclustered index becomes a point of contention in a blocking scenario,

then it may be beneficial to disable the PAG locks on the index, thereby allowing only KEY

locks on the index.

Note Using this option can have serious side effects. You should use it only as a
last resort.

 Effect of a Clustered Index
Since for a clustered index the leaf pages of the index and the data pages of the table are

the same, the clustered index can be used to avoid the overhead of locking additional

pages (leaf pages) and rows introduced by a nonclustered index. To understand the

locking overhead associated with a clustered index, convert the preceding nonclustered

index to a clustered index.

CREATE CLUSTERED INDEX iTest ON dbo.Test1(C1) WITH DROP_EXISTING;

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

679

If you run the locking script again and query sys.dm_tran_locks in a different

connection, you should see the resultant output for the LockBehavior transaction on

iTest shown in Figure 21-12.

Figure 21-12. Output from sys.dm_tran_locks showing the effect of a clustered
index on locking behavior

The following locks are acquired by the transaction:

• An (IX) lock on the table

• An (IX) lock on the page containing the clustered index row

• An (X) lock on the clustered index row within the table or

clustered index

The locks on the clustered index row and the leaf page are actually the locks on

the data row and data page, too, since the data pages and the leaf pages are the same.

Thus, the clustered index reduced the locking overhead on the table compared to the

nonclustered index.

Reduced locking overhead of a clustered index is another benefit of using a clustered

index over a heap.

 Effect of Indexes on the Serializable Isolation Level
Indexes play a significant role in determining the amount of blocking caused by the

Serializable isolation level. The availability of an index on the WHERE clause column

(that causes the data set to be locked) allows SQL Server to determine the order of

the rows to be locked. For instance, consider the example used in the section on the

Serializable isolation level. The SELECT statement uses a filter on the GroupID column to

form its data set, like so:

DECLARE @NumberOfEmployees INT;

SELECT @NumberOfEmployees = COUNT(*)

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

680

FROM dbo.MyEmployees WITH (HOLDLOCK)

WHERE GroupID = 10;

A clustered index is available on the GroupID column, allowing SQL Server to acquire

a (RangeS-S) lock on the row to be accessed and the next row in the correct order.

If the index on the GroupID column is removed, then SQL Server cannot determine the

rows on which the range locks should be acquired since the order of the rows is no longer

guaranteed. Consequently, the SELECT statement acquires an (IS) lock at the table level

instead of acquiring lower-granularity locks at the row level, as shown in Figure 21- 13.

Figure 21-13. Output from sys.dm_tran_locks showing the locks granted to a
SELECT statement with no index on the WHERE clause column

By failing to have an index on the filter column, you significantly increase the degree

of blocking caused by the Serializable isolation level. This is another good reason to have

an index on the WHERE clause columns.

 Capturing Blocking Information
Although blocking is necessary to isolate a transaction from other concurrent

transactions, sometimes it may rise to excessive levels, adversely affecting database

concurrency. In the simplest blocking scenario, the lock acquired by a session on a

resource blocks another session requesting an incompatible lock on the resource. To

improve concurrency, it is important to analyze the cause of blocking and apply the

appropriate resolution.

In a blocking scenario, you need the following information to have a clear

understanding of the cause of the blocking:

• The connection information of the blocking and blocked sessions: You

can obtain this information from the sys.dm_os_waiting_tasks

dynamic management view.

• The lock information of the blocking and blocked sessions: You can

obtain this information from the sys.dm_tran_locks DMO.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

681

• The SQL statements last executed by the blocking and blocked sessions:

You can use the sys.dm_exec_requests DMV combined with sys.

dm_exec_sql_text and sys.dm_exec_queryplan or Extended Events

to obtain this information.

You can also obtain the following information from SQL Server Management Studio

by running the Activity Monitor. The Processes page provides connection information

of all SPIDs. This shows blocked SPIDS, the process blocking them, and the head of any

blocking chain with details on how long the process has been running, its SPID, and

other information. It is possible to put Extended Events to work using the blocking report

to gather a lot of the same information. For immediate checks on locking, use the DMOs;

for extended monitoring and historical tracking, you’ll want to use Extended Events. You

can find more on this in the “Extended Events and the blocked_process_report Event”

section.

To provide more power and flexibility to the process of collecting blocking

information, a SQL Server administrator can use SQL scripts to provide the relevant

information listed here.

 Capturing Blocking Information with SQL
To arrive at enough information about blocked and blocking processes, you can bring

several dynamic management views into play. This query will show information

necessary to identify blocked processes based on those that are waiting. You can easily

add filtering to access only those processes blocked for a certain period of time or only

within certain databases, among other options.

SELECT dtl.request_session_id AS WaitingSessionID,

 der.blocking_session_id AS BlockingSessionID,

 dowt.resource_description,

 der.wait_type,

 dowt.wait_duration_ms,

 DB_NAME(dtl.resource_database_id) AS DatabaseName,

 dtl.resource_associated_entity_id AS WaitingAssociatedEntity,

 dtl.resource_type AS WaitingResourceType,

 dtl.request_type AS WaitingRequestType,

 dest.[text] AS WaitingTSql,

 dtlbl.request_type BlockingRequestType,

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

682

 destbl.[text] AS BlockingTsql

FROM sys.dm_tran_locks AS dtl

JOIN sys.dm_os_waiting_tasks AS dowt

 ON dtl.lock_owner_address = dowt.resource_address

JOIN sys.dm_exec_requests AS der

 ON der.session_id = dtl.request_session_id

CROSS APPLY sys.dm_exec_sql_text(der.sql_handle) AS dest

LEFT JOIN sys.dm_exec_requests derbl

 ON derbl.session_id = dowt.blocking_session_id

OUTER APPLY sys.dm_exec_sql_text(derbl.sql_handle) AS destbl

LEFT JOIN sys.dm_tran_locks AS dtlbl

 ON derbl.session_id = dtlbl.request_session_id;

To understand how to analyze a blocking scenario and the relevant information

provided by the blocker script, consider the following example. First, create a test table.

DROP TABLE IF EXISTS dbo.BlockTest;

GO

CREATE TABLE dbo.BlockTest (C1 INT,

 C2 INT,

 C3 DATETIME);

INSERT INTO dbo.BlockTest

VALUES (11, 12, GETDATE()),

 (21, 22, GETDATE());

Now open three connections and run the following two queries concurrently. Once

you run them, use the blocker script in the third connection. Execute the following code

in one connection:

BEGIN TRAN User1

UPDATE dbo.BlockTest

SET C3 = GETDATE();

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

683

Next, execute this code while the User1 transaction is executing:

BEGIN TRAN User2

SELECT C2

FROM dbo.BlockTest

WHERE C1 = 11;

COMMIT

This creates a simple blocking scenario where the User1 transaction blocks the User2

transaction.

The output of the blocker script provides information immediately useful to begin

resolving blocking issues. First, you can identify the specific session information,

including the session ID of both the blocking and waiting sessions. You get an immediate

resource description from the waiting resource, the wait type, and the length of time in

milliseconds that the process has been waiting. It’s that value that allows you to provide a

filter to eliminate short-term blocks, which are part of normal processing.

The database name is supplied because blocking can occur anywhere in the system,

not just in AdventureWorks2017. You’ll want to identify it where it occurs. The resources

and types from the basic locking information are retrieved for the waiting process.

The blocking request type is displayed, and both the waiting T-SQL and blocking

T-SQL, if available, are displayed. Once you have the object where the block is occurring,

having the T-SQL so that you can understand exactly where and how the process is either

blocking or being blocked is a vital part of the process of eliminating or reducing the

amount of blocking. All this information is available from one simple query. Figure 21-14

shows the sample output from the earlier blocked process.

Figure 21-14. Output from the blocker script

Be sure to go back to Connection 1 and commit or roll back the transaction.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

684

 Extended Events and the blocked_process_report Event
Extended Events provides an event called blocked_process_report. This event works

off the blocked process threshold that you need to provide to the system configuration.

This script sets the threshold to five seconds:

EXEC sp_configure 'show advanced option', '1';

RECONFIGURE;

EXEC sp_configure

 'blocked process threshold',

 5;

RECONFIGURE;

This would normally be a very low value in most systems. If you have an established

performance service level agreement (SLA), you could use that as the threshold. Once

the value is set, you can configure alerts so that e-mails, tweets, or instant messages are

sent if any process is blocked longer than the value you set. It also acts as a trigger for the

extended event. The default value for the blocked process threshold is zero, meaning

that it never actually fires. If you are going to use Extended Events to track blocked

processes, you will want to adjust this value from the default.

To set up a session that captures the blocked_process_report, first open the

Extended Events session properties window. (Although you should use scripts to set

up this event in a production environment, I’ll show how to use the GUI.) Provide the

session with a name and then navigate to the Events page. Type block into the “Event

library” text box, which will find the blocked_process_report event. Select that event by

clicking the right arrow. You should see something similar to Figure 21-15.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

685

The event fields are all preselected for you. If you still have the queries running from

the previous section that created the block, all you need to do now is click the Run button

to capture the event. Otherwise, go back to the queries we used to generate the blocked

process report in the previous section and run them in two different connections. After

the blocked process threshold is passed, you’ll see the event fire…and fire. It will fire

every five seconds if that’s how you’ve configured it and you’re leaving the connections

running. The output in the live data stream looks like Figure 21-16.

Figure 21-15. The blocked process report event selected in the Extended Events
window

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

686

Some of the information is self-explanatory; to get into the details, you need to look

at the XML generated in the blocked_process field.

<blocked-process-report monitorLoop="72925">

 <blocked-process>

 < process id="process1edc0b0c108" taskpriority="0" logused="0"

waitresource="RID: 6:1:72793:0" waittime="7035" ownerId="18467193"

transactionname="User2" lasttranstarted="2018-03-22T14:55:53.743"

XDES="0x1edf1bc0490" lockMode="S" schedulerid="1" kpid="14036"

status="suspended" spid="53" sbid="0" ecid="0" priority="0" trancount="1"

lastbatchstarted="2018-03-22T14:55:53.743" lastbatchcompleted="2018-

03- 22T14:55:53.740" lastattention="1900-01-01T00:00:00.740"

clientapp="Microsoft SQL Server Management Studio - Query" hostname="WIN-

8A2LQANSO51" hostpid="5540" loginname="WIN-8A2LQANSO51\Administrator"

isolationlevel="read committed (2)" xactid="18467193" currentdb="6"

lockTimeout="4294967295" clientoption1="671090784" clientoption2="390200">

 <executionStack>

 < frame line="2" stmtstart="24" stmtend="118" sqlhandle="0x02000000ccf3e60

45e680885750c3f36d7cc549d8ff0136800"/>

Figure 21-16. Output from the blocked_process_report event

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

687

 < frame line="2" stmtstart="36" stmtend="134" sqlhandle="0x0200000063e12d309

fa7874804b7b56c7be7beecf2a0255b00"/>

 </executionStack>

 <inputbuf>

BEGIN TRAN User2

SELECT C2

FROM dbo.BlockTest

WHERE C1 = 11;

COMMIT </inputbuf>

 </process>

 </blocked-process>

 <blocking-process>

 < process status="sleeping" spid="62" sbid="0" ecid="0" priority="0"

trancount="1" lastbatchstarted="2018-03-22T14:55:50.923"

lastbatchcompleted="2018-03-22T14:55:50.927" lastattention="1900-01-

01T00:00:00.927" clientapp="Microsoft SQL Server Management Studio -

Query" hostname="WIN-8A2LQANSO51" hostpid="5540" loginname="WIN-

8A2LQANSO51\Administrator" isolationlevel="read committed

(2)" xactid="18467189" currentdb="6" lockTimeout="4294967295"

clientoption1="671090784" clientoption2="390200">

 <executionStack />

 <inputbuf>

BEGIN TRAN User1

UPDATE dbo.BlockTest

SET C3 = GETDATE(); </inputbuf>

 </process>

 </blocking-process>

</blocked-process-report>

The elements are clear if you look through this XML. <blocked-process> shows

information about the process that was blocked, including familiar information such

as the session ID (labeled with the old-fashioned SPID here), the database ID, and so

on. You can see the query in the <inputbuf> element. Details such as the lockMode are

available within the <process> element. Note that the XML doesn’t include some of the

other information that you can easily get from T-SQL queries, such as the query string of

the blocked and waiting processes. But with the SPID available, you can get them from

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

688

the cache, if available, or you can combine the Blocked Process report with other events

such as rpc_starting to show the query information. However, doing so will add to the

overhead of using those events long term within your database. If you know you have

a blocking problem, this can be part of a short-term monitoring project to capture the

necessary blocking information.

 Blocking Resolutions
Once you’ve analyzed the cause of a block, the next step is to determine any possible

resolutions. Here are a few techniques you can use to do this:

• Optimize the queries executed by blocking and blocked SPIDs.

• Decrease the isolation level.

• Partition the contended data.

• Use a covering index on the contended data.

Note a detailed list of recommendations to avoid blocking appears later in the
chapter in the “recommendations to reduce Blocking” section.

To understand these resolution techniques, let’s apply them in turn to the preceding

blocking scenario.

 Optimize the Queries
Optimizing the queries executed by the blocking and blocked processes helps reduce

the blocking duration. In the blocking scenario, the queries executed by the processes

participating in the blocking are as follows:

• Blocking process:

BEGIN TRAN User1

UPDATE dbo.BlockTest

SET C3 = GETDATE();

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

689

• Blocked process:

BEGIN TRAN User2

SELECT C2

FROM dbo.BlockTest

WHERE C1 = 11;

COMMIT

Note that beyond the missing COMMIT for the first query, running UPDATE without a

WHERE clause is certainly potentially problematic and will not perform well. It will get

worse over time as the data scales. However, it is just a test for demonstration purposes.

Next, let’s analyze the individual SQL statements executed by the blocking and

blocked SPIDs to optimize their performance.

• The UPDATE statement of the blocking SPID accesses the data without

a WHERE clause. This makes the query inherently costly on a large

table. If possible, break the action of the UPDATE statement into

multiple batches using appropriate WHERE clauses. Remember to

try to use set-based operations such as a TOP statement to limit the

rows. If the individual UPDATE statements of the batch are executed in

separate transactions, then fewer locks will be held on the resource

within one transaction and for shorter time periods. This could also

help reduce or avoid lock escalation.

• The SELECT statement executed by the blocked SPID has a WHERE

clause on the C1 column. From the index structure on the test table,

you can see that there is no index on this column. To optimize the

SELECT statement, you could create a clustered index on the C1

column.

CREATE CLUSTERED INDEX i1 ON dbo.BlockTest(C1);

Note since the example table fits within one page, adding the clustered index
won’t make much difference to the query performance. however, as the number
of rows in the table increases, the beneficial effect of the index will become more
pronounced.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

690

Optimizing the queries reduces the duration for which the locks are held by the

processes. The query optimization reduces the impact of blocking, but it doesn’t prevent

the blocking completely. However, as long as the optimized queries execute within

acceptable performance limits, a small amount of blocking may be ignored.

 Decrease the Isolation Level
Another approach to resolve blocking can be to use a lower isolation level, if possible.

The SELECT statement of the User2 transaction gets blocked while requesting an (S)

lock on the data row. The isolation level of this transaction can be mitigated by taking

advantage of SNAPSHOT isolation level Read Committed Snapshot so that the (S) lock is

not requested by the SELECT statement. The Read Committed Snapshot isolation level

can be configured for the connection using the SET statement.

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

GO

BEGIN TRAN User2

SELECT C2

FROM dbo.BlockTest

WHERE C1 = 11;

COMMIT

GO

--Back to default

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

GO

This example shows the utility of reducing the isolation level. Using this SNAPSHOT

isolation is radically preferred over using any of the methods that produce dirty reads

that could lead to incorrect data or missing or extra rows.

 Partition the Contended Data
When dealing with large data sets or data that can be discretely stored, it is possible

to apply table partitioning to the data. Partitioned data is split horizontally, that is, by

certain values (such as splitting sales data up by month, for example). This allows the

transactions to execute concurrently on the individual partitions, without blocking each

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

691

other. These separate partitions are treated as a single unit for querying, updating, and

inserting; only the storage and access are separated by SQL Server. It should be noted

that partitioning is available only in the Developer and Enterprise editions of SQL Server.

In the preceding blocking scenario, the data could be separated by date. This would

entail setting up multiple filegroups if you’re concerned with performance (or just put

everything on PRIMARY if you’re worried about management) and splitting the data per

a defined rule. Once the UPDATE statement gets a WHERE clause, then it and the original

SELECT statement will be able to execute concurrently on two separate partitions. This

does require that the WHERE clause filters only on the partition key column. As soon as

you get other conditions in the mix, you’re unlikely to benefit from partition elimination,

which means performance could be much worse, not better.

Note partitioning, if done properly, can improve both performance and
concurrency on large data sets. But, partitioning is almost exclusively a data
management solution, not a performance tuning option.

In a blocking scenario, you should analyze whether the query of the blocking or the

blocked process can be fully satisfied using a covering index. If the query of one of the

processes can be satisfied using a covering index, then it will prevent the process from

requesting locks on the contended resource. Also, if the other process doesn’t need a

lock on the covering index (to maintain data integrity), then both processes will be able

to execute concurrently without blocking each other.

For instance, in the preceding blocking scenario, the SELECT statement by the

blocked process can be fully satisfied by a covering index on the C1 and C2 columns.

CREATE NONCLUSTERED INDEX iAvoidBlocking ON dbo.BlockTest(C1, C2) ;

The transaction of the blocking process need not acquire a lock on the covering

index since it accesses only the C3 column of the table. The covering index will allow the

SELECT statement to get the values for the C1 and C2 columns without accessing the base

table. Thus, the SELECT statement of the blocked process can acquire an (S) lock on the

covering-index row without being blocked by the (X) lock on the data row acquired by

the blocking process. This allows both transactions to execute concurrently without any

blocking.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

692

Consider a covering index as a mechanism to “duplicate” part of the table data in

which consistency is automatically maintained by SQL Server. This covering index, if

mostly read-only, can allow some transactions to be served from the “duplicate” data

while the base table (and other indexes) can continue to serve other transactions. The

trade-offs to this approach are the need for additional storage and the potential for

additional overhead during data modification.

 Recommendations to Reduce Blocking
Single-user performance and the ability to scale with multiple users are both important

for a database application. In a multiuser environment, it is important to ensure that

the database operations don’t hold database resources for a long time. This allows the

database to support a large number of operations (or database users) concurrently

without serious performance degradation. The following is a list of tips to reduce/avoid

database blocking:

• Keep transactions short.

• Perform the minimum steps/logic within a transaction.

• Do not perform costly external activity within a transaction, such

as sending an acknowledgment e-mail or performing activities

driven by the end user.

• Optimize queries.

• Create indexes as required to ensure optimal performance of the

queries within the system.

• Avoid a clustered index on frequently updated columns. Updates

to clustered index key columns require locks on the clustered

index and all nonclustered indexes (since their row locator

contains the clustered index key).

• Consider using a covering index to serve the blocked SELECT

statements.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

693

• Use query timeouts or a resource governor to control runaway

queries. For more on the resource governor, consult Books Online:

http://bit.ly/1jiPhfS.

• Avoid losing control over the scope of the transactions because of

poor error-handling routines or application logic.

• Use SET XACT_ABORT ON to avoid a transaction being left open on

an error condition within the transaction.

• Execute the following SQL statement from a client error handler

(TRY/CATCH) after executing a SQL batch or stored procedure

containing a transaction.

IF @@TRANCOUNT > 0 ROLLBACK

• Use the lowest isolation level required.

• Consider using row versioning, one of the SNAPSHOT isolation

levels, to help reduce contention.

 Automation to Detect and Collect Blocking Information
In addition to capturing information using extended events, you can automate the

process of detecting a blocking condition and collecting the relevant information using

SQL Server Agent. SQL Server provides the Performance Monitor counters shown in

Table 21-2 to track the amount of wait time.

Table 21-2. Performance Monitor Counters

Object Counter Instance Description

SQLServer:Locks (for sol server named

instance MSSOL$<InstanceName>:Locks)

Average Wait

Time(ms)

_Total average amount of

wait time for each

lock that resulted in

a wait

Lock Wait

Time (ms)

_Total total wait time for

locks in the last

second

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

http://bit.ly/1jiPhfS

694

You can create a combination of SQL Server alerts and jobs to automate the

following process:

 1. Determine when the average amount of wait time exceeds an

acceptable amount of blocking using the Average Wait Time

(ms) counter. Based on your preferences, you can use the Lock

Wait Time (ms) counter instead.

 2. Once you’ve established the minimum wait, set Blocked Process

Threshold. When the average wait time exceeds the limit, notify

the SQL Server DBA of the blocking situation through e-mail.

 3. Automatically collect the blocking information using the blocker

script or a trace that relies on the Blocked Process report for a

certain period of time.

To set up the Blocked Process report to run automatically, first create the SQL Server

job, called Blocking Analysis, so that it can be used by the SQL Server alert you’ll create

later. You can create this SQL Server job from SQL Server Management Studio to collect

blocking information by following these steps:

 1. Generate an Extended Events script (as detailed in Chapter 6)

using the blocked_process_report event.

 2. Run the script to create the session on the server, but don’t start

it yet.

 3. In Management Studio, expand the server by selecting

<ServerName> ➤ SQL Server Agent ➤ Jobs. Finally, right-click and

select New Job.

 4. On the General page of the New Job dialog box, enter the job

name and other details.

 5. On the Steps page, click New and enter the command to start and

stop the session through T-SQL, as shown in Figure 21-17.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

695

You can do this using the following command:

ALTER EVENT SESSION Blocking

ON SERVER

STATE = START;

WAITFOR DELAY '00:10';

ALTER EVENT SESSION Blocking

ON SERVER

STATE = STOP;

The output of the session is determined by how you defined the target or targets

when you created it.

 1. Return to the New Job dialog box by clicking OK.

 2. Click OK to create the SQL Server job. The SQL Server job will be

created with an enabled and runnable state to collect blocking

information for ten minutes using the trace script.

Figure 21-17. Entering the command to run the blocker script

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

696

You can create a SQL Server alert to automate the following tasks:

• Inform the DBA via e-mail, SMS text, or pager.

• Execute the Blocking Analysis job to collect blocking information for

ten minutes.

You can create the SQL Server alert from SQL Server Enterprise Manager by

following these steps:

 1. In Management Studio, while still in the SQL Agent area of the

Object Explorer, right- click Alerts and select New Alert.

 2. On the General page of the new alert’s Properties dialog box,

enter the alert name and other details, as shown in Figure 21-18.

The specific object you need to capture information from for your

instance is Locks (MSSQL$GF2008:Locks in Figure 21-18). I chose

500ms as an example of a stringent SLA that wants to know when

queries extend beyond that value.

Figure 21-18. Entering the alert name and other details

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

697

 1. On the Response page, define the response you think appropriate,

such as alerting an operator.

 2. Return to the new alert’s Properties dialog box by clicking OK.

 3. On the Response page, enter the remaining information shown in

Figure 21-19.

Figure 21-19. Entering the actions to be performed when the alert is triggered

 4. The Blocking Analysis job is selected to automatically collect the

blocking information.

 5. Once you’ve finished entering all the information, click OK to

create the SQL Server alert. The SQL Server alert will be created in

the enabled state to perform the intended tasks.

 6. Ensure that the SQL Server Agent is running.

Together, the SQL Server alert and the job will automate the blocking detection and

the information collection process. This automatic collection of the blocking information

will ensure that a good amount of the blocking information will be available whenever

the system gets into a massive blocking state.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

698

 Summary
Even though blocking is inevitable and is in fact essential to maintain isolation among

transactions, it can sometimes adversely affect database concurrency. In a multiuser

database application, you must minimize blocking among concurrent transactions.

SQL Server provides different techniques to avoid/reduce blocking, and a database

application should take advantage of these techniques to scale linearly as the number

of database users increases. When an application faces a high degree of blocking, you

can collect the relevant blocking information using various tools to understand the root

cause of the blocking. The next step is to use an appropriate technique to either avoid or

reduce blocking.

Blocking not only can hurt concurrency but can lead to an abrupt termination of

a database request in the case of mutual blocking between processes or even within a

process. We will cover this event, known as a deadlock, in the next chapter.

Chapter 21 BloCking and BloCked proCesses

www.EBooksWorld.ir

699
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_22

CHAPTER 22

Causes and Solutions
for Deadlocks
In the preceding chapter, I discussed how blocking works. Blocking is one of the

primary causes of poor performance. Blocking can lead to a special situation referred

to as a deadlock, which in turn means that deadlocks are fundamentally a performance

problem. When a deadlock occurs between two or more transactions, SQL Server allows

one transaction to complete and terminates the other transaction, rolling back the

transaction. SQL Server then returns an error to the corresponding application, notifying

the user that he has been chosen as a deadlock victim. This leaves the application with

only two options: resubmit the transaction or apologize to the end user. To successfully

complete a transaction and avoid the apologies, it is important to understand what

might cause a deadlock and the ways to handle a deadlock.

In this chapter, I cover the following topics:

• Deadlock fundamentals

• Error handling to catch a deadlock

• Ways to analyze the cause of a deadlock

• Techniques to resolve a deadlock

 Deadlock Fundamentals
A deadlock is a special blocking scenario in which two processes get blocked by each

other. Each process, while holding its own resources, attempts to access a resource that

is locked by the other process. This will lead to a blocking scenario known as a deadly

embrace, as illustrated in Figure 22-1.

www.EBooksWorld.ir

700

Deadlocks also frequently occur when two processes attempt to escalate their

locking mechanisms on the same resource. In this case, each of the two processes has a

shared lock on a resource, such as an RID, and each attempts to promote the lock from

shared to exclusive; however, neither can do so until the other releases its shared lock.

This too leads to one of the processes being chosen as a deadlock victim.

Finally, it is possible for a single process to get a deadlock during parallel operations.

During parallel operations, it’s possible for a thread to be holding a lock on one resource,

A, while waiting for another resource, B; at the same time, another thread can have a

lock on B while waiting for A. This is as much a deadlock situation as when multiple

processes are involved but instead involves multiple threads from one process. This is

a rare event, but it is possible and is generally considered a bug that has probably been

fixed by a Cumulative Update.

Deadlocks are an especially nasty type of blocking because a deadlock cannot

resolve on its own, even if given an unlimited period of time. A deadlock requires an

external process to break the circular blocking.

SQL Server has a deadlock detection routine, called a lock monitor, that regularly

checks for the presence of deadlocks in SQL Server. Once a deadlock condition is

detected, SQL Server selects one of the sessions participating in the deadlock as a victim

to break the circular blocking. The victim is usually the process with the lowest estimated

cost since this implies that process will be the easiest one for SQL Server to roll back. This

Figure 22-1. A deadlock scenario

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

701

operation involves withdrawing all the resources held by the victim session. SQL Server

does so by rolling back the uncommitted transaction of the session picked as a victim.

Deadlocks are a performance issue and, like any performance issue, need to be dealt

with. Like other performance issues, there is a general threshold of pain. The occasional

rare deadlock is not a cause for alarm. However, frequent and consistent deadlocks

certainly are. Just as you may get a query that on rare occasions runs a little long and

doesn’t need a lot of tuning attention, you may run into deadlock situations that also

don’t need your focus. Be sure you’re working on the most painful parts of your system.

 Choosing the Deadlock Victim
SQL Server determines the session to be a deadlock victim by evaluating the cost of

undoing the transaction of the participating sessions, and it selects the one with the least

estimated cost. You can exercise some control over the session to be chosen as a victim

by setting the deadlock priority of its connection to LOW.

SET DEADLOCK_PRIORITY LOW;

This steers SQL Server toward choosing this particular session as a victim in the

event of a deadlock. You can reset the deadlock priority of the connection to its normal

value by executing the following SET statement:

SET DEADLOCK_PRIORITY NORMAL;

The SET statement allows you to mark a session as a HIGH deadlock priority, too. This

won’t prevent deadlocks on a given session, but it will reduce the likelihood of a given

session being picked as the victim. You can even set the priority level to a number value

from –10 for the lowest priority up to 10 for the highest.

Caution setting the deadlock priority is not something that should be applied
promiscuously. You could accidently set the priority on a report that causes
mission-critical processes to be chosen as a victim. Careful testing is necessary
with this setting.

In the event of a tie, one of the processes is chosen as a victim and rolled back as if it

had the least cost. Some processes are invulnerable to being picked as a deadlock victim.

These processes are marked as such in the deadlock graph and will never be chosen as

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

702

a deadlock victim. The most common example that I’ve seen occurs when processes are

already involved in a rollback.

 Using Error Handling to Catch a Deadlock
When SQL Server chooses a session as a victim, it raises an error with the error number.

You can use the TRY/CATCH construct within T-SQL to handle the error. SQL Server

ensures the consistency of the database by automatically rolling back the transaction of

the victim session. The rollback ensures that the session is returned to the same state it

was in before the start of its transaction. On determining a deadlock situation in the error

handler, it is possible to attempt to restart the transaction within T-SQL a number of

times before returning the error to the application.

Take the following T-SQL statement as an example of one method for handling a

deadlock error:

DECLARE @retry AS TINYINT = 1,

 @retrymax AS TINYINT = 2,

 @retrycount AS TINYINT = 0;

WHILE @retry = 1 AND @retrycount <= @retrymax

BEGIN

 SET @retry = 0;

 BEGIN TRY

 UPDATE HumanResources.Employee

 SET LoginID = '54321'

 WHERE BusinessEntityID = 100;

 END TRY

 BEGIN CATCH

 IF (ERROR_NUMBER() = 1205)

 BEGIN

 SET @retrycount = @retrycount + 1;

 SET @retry = 1;

 END

 END CATCH

END

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

703

The TRY/CATCH methodology allows you to capture errors. You can then check the

error number using the ERROR_NUMBER() function to determine whether you have a

deadlock. Once a deadlock is established, it’s possible to try restarting the transaction a

set number of times—two, in this case. Using error trapping will help your application

deal with intermittent or occasional deadlocks, but the best approach is to analyze the

cause of the deadlock and resolve it, if possible.

 Deadlock Analysis
You can sometimes prevent a deadlock from happening by analyzing the causes.

You need the following information to do this:

• The sessions participating in the deadlock

• The resources involved in the deadlock

• The queries executed by the sessions

 Collecting Deadlock Information
You have four ways to collect the deadlock information.

• Use Extended Events.

• Set trace flag 1222.

• Set trace flag 1204.

• Use trace events.

Trace flags are used to customize certain SQL Server behavior such as, in this

case, generating the deadlock information. But, they’re an older way to capture this

information. Within SQL Server, on every instance since 2008, there is an Extended

Events session called system_health. This session runs automatically, and one of

the events it gathers by default is the deadlock graph. This is the easiest way to get

immediate access to deadlock information without having to modify your server in

any way. The system_health session is also how you get deadlock information from an

Azure SQL Database.

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

704

The system_health session writes to disk by default. The files are limited in size

and number, so depending the activity on your system, you may find that the deadlock

information is missing if the deadlock you’re investigating occurred some time in the

past. If you need to gather information for longer periods of time and ensure that you

capture as many events as possible, Extended Events provides several ways to gather the

deadlock information. This is probably the best method you can apply to your server for

collecting deadlock information. You can use these options:

• lock_deadlock: Displays basic information about a deadlock

occurrence

• lock_deadlock_chain: Captures information from each participant

in a deadlock

• xml:deadlock_report: Displays an XML deadlock graph with the

cause of the deadlock

The deadlock graph generates XML output. After Extended Events captures the

deadlock event, you can view the deadlock graph within SSMS either by using the event

viewer or by opening the XML file if you output your event results there. While similar

information is displayed in all three events, for basic deadlock information, the easiest

to understand is the xml:deadlock_report. When specifically monitoring for deadlocks,

in a situation where you’re attempting to deal with one in particular, I recommend also

capturing the lock_deadlock_chain so that you have more detailed information about

the individual sessions involved in the deadlock if you need it. For most situations, the

deadlock graph should provide the information you need.

To retrieve the graph directly from the system_health session, you can query the

output like this:

DECLARE @path NVARCHAR(260)

--to retrieve the local path of system_health files

SELECT @path = dosdlc.path

FROM sys.dm_os_server_diagnostics_log_configurations AS dosdlc;

SELECT @path = @path + N'system_health_*';

WITH fxd

AS (SELECT CAST(fx.event_data AS XML) AS Event_Data

 FROM sys.fn_xe_file_target_read_file(@path,

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

705

 NULL,

 NULL,

 NULL) AS fx)

SELECT dl.deadlockgraph

FROM

(SELECT dl.query('.') AS deadlockgraph

 FROM fxd

 CROSS APPLY event_data.nodes('(/event/data/value/deadlock)') AS

d(dl)) AS dl;

You can open the deadlock graph in Management Studio. You can search the XML,

but the deadlock graph generated from the XML works almost like an execution plan for

deadlocks, as shown in Figure 22-2.

Figure 22-2. A deadlock graph as displayed in the Profiler

I’ll show you how to use this in the “Analyzing the Deadlock” section later in this

chapter.

The two trace flags that generate deadlock information can be used individually

or together to generate different sets of information. Usually people will prefer to run

one or the other because they write a lot of information into the error log of SQL Server.

The trace flags write the information gathered into the log file on the server where the

deadlock event occurred. Trace flag 1222 provides the most detailed information on the

deadlock.

Trace flag 1204 provides deadlock information that helps you analyze the cause

of a deadlock. It sorts the information by each of the nodes involved in the deadlock.

Trace flag 1222 provides detailed deadlock information, but it breaks the information

down differently. Trace flag 1222 sorts the information by resource and processes, and it

provides even more information. Both sets of data will be discussed in the “Analyzing the

Deadlock” section.

The DBCC TRACEON statement is used to turn on (or enable) the trace flags. A trace flag

remains enabled until it is disabled using the DBCC TRACEOFF statement. If the server is

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

706

restarted, this trace flag will be cleared. You can determine the status of a trace flag using

the DBCC TRACESTATUS statement. Setting both of the deadlock trace flags looks like this:

DBCC TRACEON (1222, -1);

DBCC TRACEON (1204, -1);

To ensure that the trace flags are always set, it is possible to make them part of the

SQL Server startup in the SQL Server Configuration Manager by following these steps:

 1. Open the Properties dialog box of the instance of SQL Server.

 2. Switch to the Startup Parameters tab of the Properties dialog box,

as shown in Figure 22-3.

Figure 22-3. A SQL Server instance’s Properties dialog box showing the Startup
Parameters tab

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

707

 3. Type -T1222 in the “Specify a startup parameter” text box, and

click Add to add trace flag 1222.

 4. Click the OK button to close all the dialog boxes.

These trace flag settings will be in effect after you restart your SQL Server instance.

For most systems, using the system_health session is an easier and more efficient

mechanism. It’s installed and enabled by default. You don’t have to do anything to get it

running. The system_health session doesn’t add noise to your servers error log, making it

cleaner and easier to deal with as well. The trace flags are still available for use, and older

systems may find they’re necessary. However, more modern systems just won’t need them.

 Analyzing the Deadlock
To analyze the cause of a deadlock, let’s consider a straightforward little example. I’m

going to use the system_health session to show the deadlock information.

In one connection, execute this script:

BEGIN TRAN

UPDATE Purchasing.PurchaseOrderHeader

SET Freight = Freight * 0.9 -- 10% discount on shipping

WHERE PurchaseOrderID = 1255;

In a second connection, execute this script:

BEGIN TRANSACTION

UPDATE Purchasing.PurchaseOrderDetail

SET OrderQty = 4

WHERE ProductID = 448

 AND PurchaseOrderID = 1255;

Each of these scripts opens a transaction and manipulates data, but neither

commits or rolls back the transaction. Switch back to the first transaction and run this

additional query:

UPDATE Purchasing.PurchaseOrderDetail

SET OrderQty = 2

WHERE ProductID = 448

 AND PurchaseOrderID = 1255;

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

708

Unfortunately, after possibly a few seconds, the first connection faces a deadlock.

Msg 1205, Level 13, State 51, Line 1

Transaction (Process ID 52) was deadlocked on lock resources with another

process and has been chosen as the deadlock victim. Rerun the transaction.

Any idea what’s wrong here?

Let’s analyze the deadlock by examining the deadlock graph collected

through the trace event. There is a separate tab in the event explorer window for the

xml:deadlock_report event. Opening that tab will show you the deadlock graph (see

Figure 22-4).

Figure 22-4. A deadlock graph displayed in the Profiler tool

Figure 22-5. The T-SQL statement for the deadlock victim

From the deadlock graph displayed in Figure 22-4, it’s fairly clear that two processes

were involved: session 53 on the left and session 63 on the right. Session 53, the one with

the big X crossing it out (blue on the deadlock graph screen), was chosen as the deadlock

victim. Two different keys were in question. The top key was owned by session 53, as

indicated by the arrow pointing to the session object, named Owner Mode, and marked

with an X for exclusive. Session 63 was attempting to request the same key for an update.

The other key was owned by session 63, with session 53 requesting an update, indicated

by the U. You can see the exact HoBt ID, object ID, object name, and index name for the

objects in question for the deadlock. For a classic, simple deadlock like this, you have

most of the information you need. The last piece would be the queries running from

each process. These are available if you over the mouse over each session, as shown in

Figure 22-5.

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

709

The T-SQL statement for each side of the deadlock can be read in this manner so that

you can focus exactly where the information is contained.

This visual representation of the deadlock can do the job. However, you may need

to drill down into the underlying XML to examine some details of the deadlock, such as

the isolation level of the processes involved. If you open that XML file directly from the

extended event value, you can find a lot more information available than the simple set

displayed for you in the graphical deadlock graph. Take a look at Figure 22-6.

Figure 22-6. The XML information that defines the deadlock graph

If you look through this, you can see some of the information on display in the

deadlock graph, but you also see a whole lot more. For example, part of this deadlock

actually involves code that I did not write or execute as part of the example. There’s a

trigger on the table called uPurchaseOrderDetail. You can also see the code I used to

generate the deadlock. All this information can help you identify exactly which pieces of

code lead to the deadlock. You also get information such as the sqlhandle, which you

can then use in combination with DMOs to pull statements and execution plans out of

the cache or out of the Query Store. Because the plan is created before the query is run, it

will be available for you even for the queries that were chosen as the deadlock victim.

It’s worth taking some time to explore this XML in a little more detail. Table 22-1

shows some of the elements from the extended event and the information it represents.

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

710

Table 22-1. XML Deadlock Graph Data

Entry in Log Description

<deadlock>

<victim-list>

the beginning of the

deadlock information.

it starts laying out the

victim processes.

<victimProcess id="process179b3f3b468" /> physical memory address

of the process picked to

be the deadlock victim.

<process-list> processes that define the

deadlock victim. there

may be more than one.

<process179b3f3b468" />

 </victim-list>

 <process-list>

 <process id="process179b3f3b468" taskpriority="0"

logused="400" waitresource="KEY: 6:72057594050904064

(4ab5f0d47ad5)" waittime="3703" ownerId="179351993"

transactionname="user_transaction"

lasttranstarted="2018-03-25T11:28:18.140"

XDES="0x179b4bdc490" lockMode="U" schedulerid="1"

kpid="2168" status="suspended" spid="53"

sbid="0" ecid="0" priority="0" trancount="2"

lastbatchstarted="2018-03- 25T11:29:05.377"

lastbatchcompleted="2018-03-25T11:29:05.363"

lastattention="1900- 01- 01T00:00:00.363"

clientapp="Microsoft SQL Server Management Studio -

Query" hostname="WIN-8A2LQANSO51" hostpid="7028"

loginname="WIN-8A2LQANSO51\Administrator"

isolationlevel="read committed (2)" xactid="179351993"

currentdb="6" lockTimeout="4294967295"

clientoption1="671090784" clientoption2="390200">

all the information about

the session picked as the

deadlock victim. note the

highlighted isolation level,

which is a key for helping

identify the root cause of

a deadlock.

(continued)

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

711

Entry in Log Description

 <executionStack>

 <frame procname="adhoc" line="1" stmtend="240" sqlh

andle="0x02000000d0c7f31a30fb1ad425c34357fe8ef6326793

e7aa00">

unknown </frame>

 <frame procname="adhoc" line="1" stmtend="240" sqlh

andle="0x02000000e7794d32ae3080d4a3217fdd3d1499f2e322

d46e00">

unknown </frame>

 </executionStack>

 <inputbuf>

UPDATE Purchasing.PurchaseOrderDetail

SET OrderQty = 2

WHERE ProductID = 448

 AND PurchaseOrderID = 1255;

 </inputbuf>

 </process>

<process id="process179b7b63468" taskpriority="0"

logused="9800" waitresource="KEY: 6:72057594050969600

(4bc08edebc6b)" waittime="44833" ownerId="179352664"

transactionname="user_transaction" lasttranstarted=

"2018-03-25T11:28:24.163" XDES="0x179bc2a8490" lockMode=

"U" schedulerid="1" kpid="3784" status="suspended" spid=

"63" sbid="0" ecid="0" priority="0" trancount="2" last

batchstarted="2018-03-25T11:28:23.960" lastbatch

completed="2018-03-25T11:28:23.920" lastattention=

"1900-01-01T00:00:00.920" clientapp="Microsoft SQL

Server Management Studio - Query" hostname="WIN-

8A2LQANSO51" hostpid="7028" loginname="WIN-8A2LQANSO51\

Administrator" isolationlevel="read committed (2)"

xactid="179352664" currentdb="6" lockTimeout="4294967295"

clientoption1="673319008" clientoption2="390200">

the second process

defined.

Table 22-1. (continued)

(continued)

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

712

Entry in Log Description

<frame procname="AdventureWorks2017.Purchasing.

uPurchaseOrderDetail" line="39" stmtstart="2732"

stmtend="3830" sqlhandle="0x0300060025999f

1142d8ef0019a800000000000000000000000000000000

0000000000000000000000000000">

UPDATE [Purchasing].[PurchaseOrderHeader]

 SET [Purchasing].

[PurchaseOrderHeader].[SubTotal] =

 (SELECT SUM([Purchasing].

[PurchaseOrderDetail].[LineTotal])

 FROM [Purchasing].[PurchaseOrderDetail]

 WHERE [Purchasing].[PurchaseOrderHeader].

[PurchaseOrderID]

 = [Purchasing].[PurchaseOrderDetail].

[PurchaseOrderID])

 WHERE [Purchasing].[PurchaseOrderHeader].

[PurchaseOrderID]

 IN (SELECT inserted.[PurchaseOrderID] FROM

inserted </frame>

You can see that this

is a trigger, referred

to as a procname,

uPurchaseOrderDetail.

it has the sqlhandle,

highlighted, so that you can

retrieve it from the cache

or the Query store. it also

shows the code of the

trigger.

<frame procname="adhoc" line="2"

stmtstart="38" stmtend="278" sqlhandle="0x02

000000352f5b347ab7d87fc940e4f04e534f1c825a2

8b400">

unknown </frame>

 </executionStack>

 <inputbuf>

BEGIN TRANSACTION

UPDATE Purchasing.PurchaseOrderDetail

SET OrderQty = 4

WHERE ProductID = 448

 AND PurchaseOrderID = 1255;

 </inputbuf>

the next statement in the

batch and the code being

called.

Table 22-1. (continued)

(continued)

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

713

Entry in Log Description

<resource-list>

 <keylock hobtid="72057594050904064"

dbid="6" objectname="AdventureWorks2017.

Purchasing.PurchaseOrderDetail" indexname="PK_

PurchaseOrderDetail_PurchaseOrderID_

PurchaseOrderDetailID" id="lock17992a41a00" mode="X"

associatedObjectId="72057594050904064">

 <owner-list>

 <owner id="process179b7b63468" mode="X" />

 </owner-list>

 <waiter-list>

 <waiter id="process179b3f3b468" mode="U"

requestType="wait" />

 </waiter-list>

 </keylock>

 <keylock hobtid="72057594050969600"

dbid="6" objectname="AdventureWorks2017.

Purchasing.PurchaseOrderHeader"

indexname="PK_PurchaseOrderHeader_

PurchaseOrderID" id="lock179b7a1a880" mode="X"

associatedObjectId="72057594050969600">

 <owner-list>

 <owner id="process179b3f3b468" mode="X" />

 </owner-list>

 <waiter-list>

 <waiter id="process179b7b63468" mode="U"

requestType="wait" />

 </waiter-list>

 </keylock>

 </resource-list>

the objects that caused

the conflict. Within

this is the definition of

the primary key from

the Purchasing.

PurchaseOrderDetail

table. You can see which

process from the earlier

code owned which

resource. You can also

see the information

defining the processes

that were waiting. this is

everything you need to

discern where the issue

exists.

Table 22-1. (continued)

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

714

This information is a bit more difficult to read through than the clean set of data

provided by the graphical deadlock graph. However, it is a similar set of information, just

more detailed. You can see, highlighted in bold near the bottom, the definition of one of

the keys associated with the deadlock. You can also see, just before it, that the text of the

execution plans is available through the Extended Events tool’s XML output, just like

the deadlock graph. You get everything you need to isolate the cause of the deadlock

either way.

The information gathered by trace flag 1222 is almost identical to the XML data in

every regard. The main differences are the formatting and location. The output from

1222 is located in the SQL Server error log, and it’s in text format instead of nice, clean

XML. The information collected by trace flag 1204 is completely different from either of

the other two sets of data and doesn’t provide nearly as much detail. Trace flag 1204 is

also much more difficult to interpret. For all these reasons, I suggest you stick to using

Extended Events if you can—or trace flag 1222 if you can’t—to capture deadlock data.

You also have the system_health session that captures a number of events by default,

including deadlocks. It’s a great resource if you are unprepared for capturing this

information. Just remember that it keeps only four 5MB files online. As these fill, the data

in the oldest file is lost. Depending on the number of transactions in your system and the

number of deadlocks or other events that could fill these files, you may have only recent

data available. Further, as mentioned earlier, since the system_health session uses the

ring buffer to capture events, you can expect some event loss, so your deadlock events

could go missing.

This example demonstrated a classic circular reference. Although not immediately

obvious, the deadlock was caused by a trigger on the Purchasing.PurchaseOrderDetail

table. When Quantity is updated on the Purchasing.PurchaseOrderDetail table, it

attempts to update the Purchasing.PurchaseOrderHeader table. When the first two

queries are run, each within an open transaction, it’s just a blocking situation. The

second query is waiting on the first to clear so that it can also update the Purchasing.

PurchaseOrderHeader table. But when the third query (that is, the second within the first

transaction) is introduced, a circular reference is created. The only way to resolve it is to

kill one of the processes.

Before proceeding, be sure to roll back any open transactions.

Here’s the obvious question at this stage: can you avoid this deadlock? If the answer

is “yes,” then how?

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

715

 Avoiding Deadlocks
The methods for avoiding a deadlock scenario depend upon the nature of the deadlock.

The following are some of the techniques you can use to avoid a deadlock:

• Access resources in the same physical order.

• Decrease the number of resources accessed.

• Minimize lock contention.

• Tune queries.

 Accessing Resources in the Same Physical Order
One of the most commonly adopted techniques for avoiding a deadlock is to ensure

that every transaction accesses the resources in the same physical order. For instance,

suppose that two transactions need to access two resources. If each transaction accesses

the resources in the same physical order, then the first transaction will successfully

acquire locks on the resources without being blocked by the second transaction. The

second transaction will be blocked by the first while trying to acquire a lock on the

first resource. This will cause a typical blocking scenario without leading to a circular

blocking and a deadlock.

If the resources are not accessed in the same physical order (as demonstrated in the

earlier deadlock analysis example), this can cause a circular blocking between the two

transactions.

• Transaction 1:

• Access Resource 1

• Access Resource 2

• Transaction 2:

• Access Resource 2

• Access Resource 1

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

716

In the current deadlock scenario, the following resources are involved in the

deadlock:

• Resource 1, hobtid=72057594046578688: This is the index row

within index PK_ PurchaseOrderDetail_PurchaseOrderId_

PurchaseOrderDetailId on the Purchasing.PurchaseOrderDetail

table.

• Resource 2, hobtid=72057594046644224: This is the row within

clustered index PK_ PurchaseOrderHeader_PurchaseOrderId on the

Purchasing.PurchaseOrderHeader table.

Both sessions attempt to access the resource; unfortunately, the order in which they

access the key is different.

It’s common with some of the generated code produced by tools such as nHibernate

and Entity Framework to see objects being referenced in a different order in different

queries. You’ll have to work with your development team to see that type of issue

eliminated within the generated code.

 Decreasing the Number of Resources Accessed
A deadlock involves at least two resources. A session holds the first resource and then

requests the second resource. The other session holds the second resource and requests

the first resource. If you can prevent the sessions (or at least one of them) from accessing

one of the resources involved in the deadlock, then you can prevent the deadlock. You

can achieve this by redesigning the application, which is a solution highly resisted by

developers late in the project. However, you can consider using the following features of

SQL Server without changing the application design:

• Convert a nonclustered index to a clustered index.

• Use a covering index for a SELECT statement.

 Convert a Nonclustered Index to a Clustered Index

As you know, the leaf pages of a nonclustered index are separate from the data pages of

the heap or the clustered index. Therefore, a nonclustered index takes two locks: one for the

base (either the cluster or the heap) and one for the nonclustered index. However,

in the case of a clustered index, the leaf pages of the index and the data pages of the table

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

717

are the same; it requires one lock, and that one lock protects both the clustered index

and the table because the leaf pages and the data pages are the same. This decreases

the number of resources to be accessed by the same query, compared to a nonclustered

index. But, it is completely dependent on this being an appropriate clustered index.

There’s nothing magical about the clustered index that simply applying it to any column

would help. You still need to assess whether it’s appropriate.

 Use a Covering Index for a SELECT Statement

You can also use a covering index to decrease the number of resources accessed by a

SELECT statement. Since a SELECT statement can get everything from the covering index

itself, it doesn’t need to access the base table. Otherwise, the SELECT statement needs to

access both the index and the base table to retrieve all the required column values. Using

a covering index stops the SELECT statement from accessing the base table, leaving the

base table free to be locked by another session.

 Minimizing Lock Contention
You can also resolve a deadlock by avoiding the lock request on one of the contended

resources. You can do this when the resource is accessed only for reading data.

Modifying a resource will always acquire an exclusive (X) lock on the resource to

maintain the consistency of the resource; therefore, in a deadlock situation, identify the

resource accesses that are read-only and try to avoid their corresponding lock requests

by using the dirty read feature, if possible. You can use the following techniques to avoid

the lock request on a contended resource:

• Implement row versioning.

• Decrease the isolation level.

• Use locking hints.

 Implement Row Versioning

Instead of attempting to prevent access to resources using a more stringent locking

scheme, you could implement row versioning through the READ_COMMITTED_SNAPSHOT

isolation level or through the SNAPSHOT isolation level. The row versioning isolation levels

are used to reduce blocking, as outlined in Chapter 21. Because they reduce blocking,

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

718

which is the root cause of deadlocks, they can also help with deadlocks. By introducing

READ_COMMITTED_SNAPSHOT with the following T-SQL, you can have a version of the rows

available in tempdb, thus potentially eliminating the contention caused by the lock in

the preceding deadlock scenario:

ALTER DATABASE AdventureWorks2017

SET READ_COMMITTED_SNAPSHOT ON;

This will allow any necessary reads without causing lock contention since the reads

are on a different version of the data. There is overhead associated with row versioning,

especially in tempdb and when marshaling data from multiple resources instead of just

the table or indexes used in the query. But that trade-off of increased tempdb overhead

versus the benefit of reduced deadlocking and increased concurrency may be worth

the cost.

 Decrease the Isolation Level

Sometimes the (S) lock requested by a SELECT statement contributes to the formation of

circular blocking. You can avoid this type of circular blocking by reducing the isolation

level of the transaction containing the SELECT statement to READ COMMITTED SNAPSHOT.

This will allow the SELECT statement to read the data without requesting an (S) lock and

thereby avoid the circular blocking. You may also see issues of this type around cursors

because they tend to have pessimistic concurrency.

Also check to see whether the connections are setting themselves to be

SERIALIZABLE. Sometimes online connection string generators will include this option,

and developers will use it completely by accident. MSDTC will use serializable by

default, but it can be changed.

 Use Locking Hints

I absolutely do not recommend this approach. However, you can potentially resolve the

deadlock presented in the preceding technique using the following locking hints:

• NOLOCK

• READUNCOMMITTED

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

719

Like the READ UNCOMMITTED isolation level, the NOLOCK or READUNCOMMITTED locking

hint will avoid the (S) locks requested by a given session, thereby preventing the

formation of circular blocking.

The effect of the locking hint is at a query level and is limited to the table (and its

indexes) on which it is applied. The NOLOCK and READUNCOMMITTED locking hints are

allowed only in SELECT statements and the data selection part of the INSERT, DELETE, and

UPDATE statements.

The resolution techniques of minimizing lock contention introduce the side effect of

a dirty read, which may not be acceptable in every transaction. A dirty read can involve

missing rows or extra rows because of page splits and rearranging pages. Therefore,

use these resolution techniques only in situations in which a low quality of data is

acceptable.

 Tune the Queries

At its root, deadlocking is about performance. If all the queries complete execution

before resource contention is possible, then you can completely avoid the issue entirely.

 Summary
As you learned in this chapter, a deadlock is the result of conflicting blocking between

processes and is reported to an application with the error number 1205. You can analyze

the cause of a deadlock by collecting the deadlock information using various resources,

but the extended event xml:deadlock_report is probably the best.

You can use a number of techniques to avoid a deadlock; which technique is

applicable depends upon the type of queries executed by the participating sessions, the

locks held and requested on the involved resources, and the business rules governing the

degree of isolation required. Generally, you can resolve a deadlock by reconfiguring the

indexes and the transaction isolation levels. However, at times you may need to redesign

the application or automatically reexecute the transaction on a deadlock. Just remember,

at its core, deadlocks are a performance problem, and anything you can do to make the

queries run faster will help to mitigate, if not eliminate, deadlocks in your queries.

In the next chapter, I cover the performance aspects of cursors and how to optimize

the cost overhead of using cursors.

Chapter 22 Causes and solutions for deadloCks

www.EBooksWorld.ir

721
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_23

CHAPTER 23

Row-by-Row Processing
It is common to find database applications that use cursors to process one row at a time.

Developers tend to think about processing data in a row-by-row fashion. Oracle even

uses something called cursors as a high-speed data access mechanism. Cursors in SQL

Server are different. Because data manipulation through a cursor in SQL Server incurs

significant additional overhead, database applications should avoid using cursors.

T-SQL and SQL Server are designed to work best with sets of data, not one row at a time.

Jeff Moden famously termed this type of processing RBAR (pronounced, “ree-bar”),

meaning row by agonizing row. However, if a cursor must be used, then use a cursor with

the least cost.

In this chapter, I cover the following topics:

• The fundamentals of cursors

• A cost analysis of different characteristics of cursors

• The benefits and drawbacks of a default result set over cursors

• Recommendations to minimize the cost overhead of cursors

 Cursor Fundamentals
When a query is executed by an application, SQL Server returns a set of data consisting

of rows. Generally, applications can’t process multiple rows together; instead, they

process one row at a time by walking through the result set returned by SQL Server. This

functionality is provided by a cursor, which is a mechanism to work with one row at a

time out of a multirow result set.

www.EBooksWorld.ir

722

T-SQL cursor processing usually involves the following steps:

 1. Declare the cursor to associate it with a SELECT statement and

define the characteristics of the cursor.

 2. Open the cursor to access the result set returned by the SELECT

statement.

 3. Retrieve a row from the cursor. Optionally, modify the row

through the cursor.

 4. Move to additional rows in the result set.

 5. Once all the rows in the result set are processed, close the cursor

and release the resources assigned to the cursor.

You can create cursors using T-SQL statements or the data access layers used to

connect to SQL Server. Cursors created using data access layers are commonly referred

to as client cursors. Cursors written in T-SQL are referred to as server cursors. The

following is an example of a server cursor processing query results from a table:

--Associate a SELECT statement to a cursor and define the

--cursor's characteristics

USE AdventureWorks2017;

GO

SET NOCOUNT ON

DECLARE MyCursor CURSOR /*<cursor characteristics>*/

FOR

SELECT adt.AddressTypeID,

 adt.Name,

 adt.ModifiedDate

FROM Person.AddressType AS adt;

--Open the cursor to access the result set returned by the

--SELECT statement

OPEN MyCursor;

--Retrieve one row at a time from the result set returned by

--the SELECT statement

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

723

DECLARE @AddressTypeId INT,

 @Name VARCHAR(50),

 @ModifiedDate DATETIME;

FETCH NEXT FROM MyCursor

INTO @AddressTypeId,

 @Name,

 @ModifiedDate;

WHILE @@FETCH_STATUS = 0

BEGIN

 PRINT 'NAME = ' + @Name;

 --Optionally, modify the row through the cursor

 UPDATE Person.AddressType

 SET Name = Name + 'z'

 WHERE CURRENT OF MyCursor;

 --Move through to additional rows in the data set

 FETCH NEXT FROM MyCursor

 INTO @AddressTypeId,

 @Name,

 @ModifiedDate;

END

--Close the cursor and release all resources assigned to the

--cursor

CLOSE MyCursor;

DEALLOCATE MyCursor;

Part of the overhead of the cursor depends on the cursor characteristics. The

characteristics of the cursors provided by SQL Server and the data access layers can be

broadly classified into three categories.

• Cursor location: Defines the location of the cursor creation

• Cursor concurrency: Defines the degree of isolation and

synchronization of a cursor with the underlying content

• Cursor type: Defines the specific characteristics of a cursor

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

724

Before looking at the costs of cursors, I’ll take a few pages to introduce the various

characteristics of cursors. You can undo the changes to the Person.AddressType table

with this query:

UPDATE Person.AddressType

SET Name = LEFT(Name, LEN(Name) - 1);

 Cursor Location
Based on the location of its creation, a cursor can be classified into one of two categories.

• Client-side cursors

• Server-side cursors

The T-SQL cursors are always created on SQL Server. However, the database API

cursors can be created on either the client or server side.

 Client-Side Cursors

As its name signifies, a client-side cursor is created on the machine running the

application, whether the app is a service, a data access layer, or the front end for the user.

It has the following characteristics:

• It is created on the client machine.

• The cursor metadata is maintained on the client machine.

• It is created using the data access layers.

• It works against most of the data access layers (OLEDB providers and

ODBC drivers).

• It can be a forward-only or static cursor.

Note Cursor types, including forward-only and static cursor types, are described
later in the chapter in the “Cursor types” section.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

725

 Server-Side Cursors

A server-side cursor is created on the SQL Server machine. It has the following

characteristics:

• It is created on the server machine.

• The cursor metadata is maintained on the server machine.

• It is created using either data access layers or T-SQL statements.

• A server-side cursor created using T-SQL statements is tightly

integrated with SQL Server.

• It can be any type of cursor. (Cursor types are explained later in the

chapter.)

Note the cost comparison between client-side and server-side cursors is
covered later in the chapter in the “Cost Comparison on Cursor type” section.

 Cursor Concurrency
Depending on the required degree of isolation and synchronization with the underlying

content, cursors can be classified into the following concurrency models:

• Read-only: A nonupdatable cursor

• Optimistic: An updatable cursor that uses the optimistic concurrency

model (no locks retained on the underlying data rows)

• Scroll locks: An updatable cursor that holds a lock on any data row to

be updated

 Read-Only

A read-only cursor is nonupdatable; no locks are held on the base tables. While fetching

a cursor row, whether an (S) lock will be acquired on the underlying row depends upon

the isolation level of the connection and any locking hints used in the SELECT statement

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

726

for the cursor. However, once the row is fetched, by default the locks are released. The

following T-SQL statement creates a read-only T-SQL cursor:

DECLARE MyCursor CURSOR READ_ONLY FOR

SELECT adt.Name

FROM Person.AddressType AS adt

WHERE adt.AddressTypeID = 1;

Using as minimal locking overhead as possible makes the read-only type of cursor

faster and safer. Just remember that you cannot manipulate data through the read-only

cursor, which is the sacrifice you make for improved performance.

 Optimistic

The optimistic with values concurrency model makes a cursor updatable. No locks are

held on the underlying data. The factors governing whether an (S) lock will be acquired

on the underlying row are the same as for a read-only cursor.

The optimistic concurrency model uses row versioning to determine whether a row

has been modified since it was read into the cursor, instead of locking the row while it

is read into the cursor. Version-based optimistic concurrency requires a ROWVERSION

column in the underlying user table on which the cursor is created. The ROWVERSION

data type is a binary number that indicates the relative sequence of modifications on

a row. Each time a row with a ROWVERSION column is modified, SQL Server stores the

current value of the global ROWVERSION value, @@DBTS, in the ROWVERSION column; it then

increments the @@DBTS value.

Before applying a modification through the optimistic cursor, SQL Server determines

whether the current ROWVERSION column value for the row matches the ROWVERSION

column value for the row when it was read into the cursor. The underlying row is

modified only if the ROWVERSION values match, indicating that the row hasn’t been

modified by another user in the meantime. Otherwise, an error is raised. In case of an

error, refresh the cursor with the updated data.

If the underlying table doesn’t contain a ROWVERSION column, then the cursor

defaults to value-based optimistic concurrency, which requires matching the current

value of the row with the value when the row was read into the cursor. The version-based

concurrency control is more efficient than the value-based concurrency control since it

requires less processing to determine the modification of the underlying row. Therefore,

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

727

for the best performance of a cursor with the optimistic concurrency model, ensure that

the underlying table has a ROWVERSION column.

The following T-SQL statement creates an optimistic T-SQL cursor:

DECLARE MyCursor CURSOR OPTIMISTIC FOR

SELECT adt.Name

FROM Person.AddressType AS adt

WHERE adt.AddressTypeID = 1;

A cursor with scroll locks concurrency holds a (U) lock on the underlying row until

another cursor row is fetched or the cursor is closed. This prevents other users from

modifying the underlying row when the cursor fetches it. The scroll locks concurrency

model makes the cursor updatable.

The following T-SQL statement creates a T-SQL cursor with the scroll locks

concurrency model:

DECLARE MyCursor CURSOR SCROLL_LOCKS FOR

SELECT adt.Name

FROM Person.AddressType AS adt

WHERE adt.AddressTypeID = 1;

Since locks are held on a row being referenced (until another cursor row is fetched

or the cursor is closed), it blocks all the other users trying to modify the row during that

period. This hurts database concurrency but ensures that you won’t get errors if you’re

modifying data through the cursor.

 Cursor Types
Cursors can be classified into the following four types:

• Forward-only cursors

• Static cursors

• Keyset-driven cursors

• Dynamic cursors

Let’s take a closer look at these four types in the sections that follow.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

728

 Forward-Only Cursors

These are the characteristics of forward-only cursors:

• They operate directly on the base tables.

• Rows from the underlying tables are usually not retrieved until the

cursor rows are fetched using the cursor FETCH operation. However,

the database API forward-only cursor type, with the following

additional characteristics, retrieves all the rows from the underlying

table first:

• Client-side cursor location

• Server-side cursor location and read-only cursor concurrency

• They support forward scrolling only (FETCH NEXT) through the cursor.

• They allow all changes (INSERT, UPDATE, and DELETE) through the

cursor. Also, these cursors reflect all changes made to the underlying

tables.

The forward-only characteristic is implemented differently by the database API

cursors and the T-SQL cursor. The data access layers implement the forward-only cursor

characteristic as one of the four previously listed cursor types. But the T-SQL cursor

doesn’t implement the forward-only cursor characteristic as a cursor type; rather, it

implements it as a property that defines the scrollable behavior of the cursor. Thus,

for a T-SQL cursor, the forward-only characteristic can be used to define the scrollable

behavior of one of the remaining three cursor types.

The T-SQL syntax provides a specific cursor type option, FAST_FORWARD, to create

a fast-forward-only cursor. The nickname for the FAST_FORWARD cursor is the fire

hose because it is the fastest way to move data through a cursor and because all the

information flows one way. However, don’t be surprised when the “firehose” is still not

as fast as traditional set-based operations. The following T-SQL statement creates a fast-

forward- only T-SQL cursor:

DECLARE MyCursor CURSOR FAST_FORWARD FOR

SELECT adt.Name

FROM Person.AddressType AS adt

WHERE adt.AddressTypeID = 1;

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

729

The FAST_FORWARD property specifies a forward-only, read-only cursor with

performance optimizations enabled.

 Static Cursors

These are the characteristics of static cursors:

• They create a snapshot of cursor results in the tempdb database

when the cursor is opened. Thereafter, static cursors operate on the

snapshot in the tempdb database.

• Data is retrieved from the underlying tables when the cursor is

opened.

• Static cursors support all scrolling options: FETCH FIRST, FETCH NEXT,

FETCH PRIOR, FETCH LAST, FETCH ABSOLUTE n, and FETCH RELATIVE n.

• Static cursors are always read-only; data modifications are not

allowed through static cursors. Also, changes (INSERT, UPDATE, and

DELETE) made to the underlying tables are not reflected in the cursor.

The following T-SQL statement creates a static T-SQL cursor:

DECLARE MyCursor CURSOR STATIC FOR

SELECT adt.Name

FROM Person.AddressType AS adt

WHERE adt.AddressTypeID = 1;

Some tests show that a static cursor can perform as well as—and sometimes faster

than—a forward-only cursor. Be sure to test this behavior on your own system in

situations where you must use a cursor.

 Keyset-Driven Cursors

These are the characteristics of keyset-driven cursors:

• Keyset cursors are controlled by a set of unique identifiers (or keys)

known as a keyset. The keyset is built from a set of columns that

uniquely identify the rows in the result set.

• These cursors create the keyset of rows in the tempdb database when

the cursor is opened.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

730

• Membership of rows in the cursor is limited to the keyset of rows

created in the tempdb database when the cursor is opened.

• On fetching a cursor row, the database engine first looks at the keyset

of rows in tempdb and then navigates to the corresponding data row

in the underlying tables to retrieve the remaining columns.

• They support all scrolling options.

• Keyset cursors allow all changes through the cursor. An INSERT

performed outside the cursor is not reflected in the cursor since

the membership of rows in the cursor is limited to the keyset of

rows created in the tempdb database on opening the cursor. An

INSERT through the cursor appears at the end of the cursor. A DELETE

performed on the underlying tables raises an error when the cursor

navigation reaches the deleted row. An UPDATE on the nonkeyset

columns of the underlying tables is reflected in the cursor. An UPDATE

on the keyset columns is treated like a DELETE of an old key value

and the INSERT of a new key value. If a change disqualifies a row

for membership or affects the order of a row, then the row does not

disappear or move unless the cursor is closed and reopened.

The following T-SQL statement creates a keyset-driven T-SQL cursor:

DECLARE MyCursor CURSOR KEYSET FOR

SELECT adt.Name

FROM Person.AddressType AS adt

WHERE adt.AddressTypeID = 1;

 Dynamic Cursors

These are the characteristics of dynamic cursors:

• Dynamic cursors operate directly on the base tables.

• The membership of rows in the cursor is not fixed since they operate

directly on the base tables.

• As with forward-only cursors, rows from the underlying tables are

not retrieved until the cursor rows are fetched using a cursor FETCH

operation.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

731

• Dynamic cursors support all scrolling options except FETCH

ABSOLUTE n, since the membership of rows in the cursor is not fixed.

• These cursors allow all changes through the cursor. Also, all changes

made to the underlying tables are reflected in the cursor.

• Dynamic cursors don’t support all properties and methods

implemented by the database API cursors. Properties such as

AbsolutePosition, Bookmark, and RecordCount, as well as methods

such as clone and Resync, are not supported by dynamic cursors.

Instead, they are supported by keyset-driven cursors.

The following T-SQL statement creates a dynamic T-SQL cursor:

DECLARE MyCursor CURSOR DYNAMIC FOR

SELECT adt.Name

FROM Person.AddressType AS adt

WHERE adt.AddressTypeID = 1;

The dynamic cursor is absolutely the slowest possible cursor to use in all

situations. It takes more locks and holds them longer, which radically increases its poor

performance. Take this into account when designing your system.

 Cursor Cost Comparison
Now that you’ve seen the different cursor flavors, let’s look at their costs. If you must use

a cursor, you should always use the lightest-weight cursor that meets the requirements

of your application. The cost comparisons among the different characteristics of the

cursors are detailed next.

 Cost Comparison on Cursor Location
The client-side and server-side cursors have their own cost benefits and overhead, as

explained in the sections that follow.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

732

 Client-Side Cursors

Client-side cursors have the following cost benefits compared to server-side cursors:

• Higher scalability: Since the cursor metadata is maintained on the

individual client machines connected to the server, the overhead of

maintaining the cursor metadata is taken up by the client machines.

Consequently, the ability to serve a larger number of users is not

limited by the server resources.

• Fewer network round-trips: Since the result set returned by the

SELECT statement is passed to the client where the cursor is

maintained, extra network round-trips to the server are not required

while retrieving rows from the cursor.

• Faster scrolling: Since the cursor is maintained locally on the client

machine, it’s potentially faster to walk through the rows of the cursor.

• Highly portable: Since the cursor is implemented using data access

layers, it works across a large range of databases: SQL Server, Oracle,

Sybase, and so forth.

Client-side cursors have the following cost overhead or drawbacks:

• Higher pressure on client resources: Since the cursor is managed at

the client side, it increases pressure on the client resources. But it

may not be all that bad, considering that most of the time the client

applications are web applications and scaling out web applications

(or web servers) is quite easy using standard load-balancing

solutions. On the other hand, scaling out a transactional SQL

Server database is still an art!

• Support for limited cursor types: Dynamic and keyset-driven cursors

are not supported.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

733

• Only one active cursor-based statement on one connection: As many

rows of the result set as the client network can buffer are arranged

in the form of network packets and sent to the client application.

Therefore, until all the cursor’s rows are fetched by the application,

the database connection remains busy, pushing the rows to the

client. During this period, other cursor-based statements cannot use

the connection. This is negated by taking advantage of multiple active

result sets (MARS), which would allow a connection to have a second

active cursor.

 Server-Side Cursors

Server-side cursors have the following cost benefits:

• Multiple active cursor-based statements on one connection: While

using server-side cursors, no results are left outstanding on the

connection between the cursor operations. This frees the connection,

allowing the use of multiple cursor-based statements on one

connection at the same time. In the case of client-side cursors, as

explained previously, the connection remains busy until all the

cursor rows are fetched by the application. This means they cannot

be used simultaneously by multiple cursor-based statements.

• Row processing near the data: If the row processing involves joining

with other tables and a considerable amount of set operations, then it

is advantageous to perform the row processing near the data using a

server-side cursor.

• Less pressure on client resources: It reduces pressure on the client

resources. But this may not be that desirable because, if the server

resources are maxed out (instead of the client resources), then it will

require scaling out the database, which is a difficult proposition.

• Support for all cursor types: Client-side cursors have limitations on

which types of cursors can be supported. There are no limits on the

server-side cursors.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

734

Server-side cursors have the following cost overhead or disadvantages:

• Lower scalability: They make the server less scalable since server

resources are consumed to manage the cursor.

• More network round-trips: They increase network round-trips if the

cursor row processing is done in the client application. The number

of network round-trips can be optimized by processing the cursor

rows in the stored procedure or by using the cache size feature of the

data access layer.

• Less portable: Server-side cursors implemented using T-SQL cursors

are not readily portable to other databases because the syntax of the

database code managing the cursor is different across databases.

 Cost Comparison on Cursor Concurrency
As expected, cursors with a higher concurrency model create the least amount of

blocking in the database and support higher scalability, as explained in the following

sections.

 Read-Only

The read-only concurrency model provides the following cost benefits:

• Lowest locking overhead: The read-only concurrency model

introduces the least locking and synchronization overhead on the

database. Since (S) locks are not held on the underlying row after a

cursor row is fetched, other users are not blocked from accessing the

row. Furthermore, the (S) lock acquired on the underlying row while

fetching the cursor row can be avoided by using the NO_LOCK locking

hint in the SELECT statement of the cursor, but only if you don’t care

about what kind of data you get back because of dirty reads.

• Highest concurrency: Since additional locks are not held on the

underlying rows, the read-only cursor doesn’t block other users from

accessing the underlying tables. The shared lock is still acquired.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

735

The main drawback of the read-only cursor is as follows:

• Nonupdatable: The content of underlying tables cannot be modified

through the cursor.

 Optimistic

The optimistic concurrency model provides the following benefits:

• Low locking overhead: Similar to the read-only model, the optimistic

concurrency model doesn’t hold an (S) lock on the cursor row

after the row is fetched. To further improve concurrency, the

NOLOCK locking hint can also be used, as in the case of the read-only

concurrency model. But, please know that NOLOCK can absolutely lead

to incorrect data or missing or extra rows, so its use requires careful

planning. Modification through the cursor to an underlying row

requires exclusive rights on the row as required by an action query.

• High concurrency: Since only a shared lock is used on the underlying

rows, the cursor doesn’t block other users from accessing the

underlying tables. But the modification through the cursor to an

underlying row will block other users from accessing the row during

the modification.

The following examples detail the cost overhead of the optimistic concurrency model:

• Row versioning: Since the optimistic concurrency model allows

the cursor to be updatable, an additional cost is incurred to ensure

that the current underlying row is first compared (using either

version- based or value-based concurrency control) with the original

cursor row fetched before applying a modification through the cursor.

This prevents the modification through the cursor from accidentally

overwriting the modification made by another user after the cursor

row is fetched.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

736

• Concurrency control without a ROWVERSION column: As explained

previously, a ROWVERSION column in the underlying table allows the

cursor to perform an efficient version-based concurrency control. In

case the underlying table doesn’t contain a ROWVERSION column, the

cursor resorts to value-based concurrency control, which requires

matching the current value of the row to the value when the row

was read into the cursor. This increases the cost of the concurrency

control. Both forms of concurrency control will cause additional

overhead in tempdb.

 Scroll Locks

The major benefit of the scroll locks concurrency model is as follows:

• Simple concurrency control: By locking the underlying row

corresponding to the last fetched row from the cursor, the cursor

assures that the underlying row can’t be modified by another user.

This eliminates the versioning overhead of optimistic locking. Also,

since the row cannot be modified by another user, the application is

relieved from checking for a row-mismatch error.

The scroll locks concurrency model incurs the following cost overhead:

• Highest locking overhead: The scroll locks concurrency model

introduces a pessimistic locking characteristic. A (U) lock is held on

the last cursor row fetched, until another cursor row is fetched or the

cursor is closed.

• Lowest concurrency: Since a (U) lock is held on the underlying row,

all other users requesting a (U) or an (X) lock on the underlying row

will be blocked. This can significantly hurt concurrency. Therefore,

please avoid using this cursor concurrency model unless absolutely

necessary.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

737

 Cost Comparison on Cursor Type
Each of the basic four cursor types mentioned in the “Cursor Fundamentals” section

earlier in the chapter incurs a different cost overhead on the server. Choosing an

incorrect cursor type can hurt database performance. Besides the four basic cursor

types, a fast-forward-only cursor (a variation of the forward-only cursor) is provided

to enhance performance. The cost overhead of these cursor types is explained in the

sections that follow.

 Forward-Only Cursors

These are the cost benefits of forward-only cursors:

• Lower cursor open cost than static and keyset-driven cursors: Since the

cursor rows are not retrieved from the underlying tables and are not

copied into the tempdb database during cursor open, the forward-

only T-SQL cursor opens quickly. Similarly, the forward-only, server-

side API cursors with optimistic/scroll locks concurrency open

quickly since they do not retrieve the rows during cursor open.

• Lower scroll overhead: Since only FETCH NEXT can be performed on

this cursor type, it requires less overhead to support different scroll

operations.

• Lower impact on the tempdb database than static and keyset-driven

cursors: Since the forward-only T-SQL cursor doesn’t copy the rows

from the underlying tables into the tempdb database, no additional

pressure is created on the database.

The forward-only cursor type has the following drawbacks:

• Lower concurrency: Every time a cursor row is fetched, the

corresponding underlying row is accessed with a lock request

depending on the cursor concurrency model (as noted earlier in

the discussion about concurrency). It can block other users from

accessing the resource.

• No backward scrolling: Applications requiring two-way scrolling can’t

use this cursor type. But if the applications are designed properly,

then it isn’t difficult to live without backward scrolling.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

738

 Fast-Forward-Only Cursor

The fast-forward-only cursor is the fastest and least expensive cursor type. This forward-

only and read-only cursor is specially optimized for performance. Because of this, you

should always prefer it to the other SQL Server cursor types.

Furthermore, the data access layer provides a fast-forward-only cursor on the client

side. That type of cursor uses a so-called default result set to make cursor overhead

almost disappear.

Note the default result set is explained later in the chapter in the “Default result
set” section.

 Static Cursors

These are the cost benefits of static cursors:

• Lower fetch cost than other cursor types: Since a snapshot is created

in the tempdb database from the underlying rows on opening the

cursor, the cursor row fetch is targeted to the snapshot instead of the

underlying rows. This avoids the lock overhead that would otherwise

be required to fetch the cursor rows.

• No blocking on underlying rows: Since the snapshot is created in the

tempdb database, other users trying to access the underlying rows

are not blocked.

On the downside, the static cursor has the following cost overhead:

• Higher open cost than other cursor types: The cursor open operation

of the static cursor is slower than that of other cursor types since all

the rows of the result set have to be retrieved from the underlying

tables and the snapshot has to be created in the tempdb database

during the cursor open.

• Higher impact on tempdb than other cursor types: There can be

significant impact on server resources for creating, populating, and

cleaning up the snapshot in the tempdb database.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

739

 Keyset-Driven Cursors

These are the cost benefits of keyset-driven cursors:

• Lower open cost than the static cursor: Since only the keyset, not

the complete snapshot, is created in the tempdb database, the

keyset-driven cursor opens faster than the static cursor. SQL Server

populates the keyset of a large keyset-driven cursor asynchronously,

which shortens the time between when the cursor is opened and

when the first cursor row is fetched.

• Lower impact on tempdb than that with the static cursor: Because the

keyset-driven cursor is smaller, it uses less space in tempdb.

The cost overhead of keyset-driven cursors is as follows:

• Higher open cost than forward-only and dynamic cursors: Populating

the keyset in the tempdb database makes the cursor open operation

of the keyset-driven cursor costlier than that of forward-only (with

the exceptions mentioned earlier) and dynamic cursors.

• Higher fetch cost than other cursor types: For every cursor row

fetch, the key in the keyset has to be accessed first, and then the

corresponding underlying row in the user database can be accessed.

Accessing both the tempdb and the user database for every cursor

row fetch makes the fetch operation costlier than that of other cursor

types.

• Higher impact on tempdb than forward-only and dynamic cursors:

Creating, populating, and cleaning up the keyset in tempdb impacts

server resources.

• Higher lock overhead and blocking than the static cursor: Since row

fetch from the cursor retrieves rows from the underlying table, it

acquires an (S) lock on the underlying row (unless the NOLOCK locking

hint is used) during the row fetch operation.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

740

 Dynamic Cursor

The dynamic cursor has the following cost benefits:

• Lower open cost than static and keyset-driven cursors: Since the cursor

is opened directly on the underlying rows without copying anything

to the tempdb database, the dynamic cursor opens faster than the

static and keyset-driven cursors.

• Lower impact on tempdb than static and keyset-driven cursors: Since

nothing is copied into tempdb, the dynamic cursor places far less

strain on tempdb than the other cursor types.

The dynamic cursor has the following cost overhead:

• Higher lock overhead and blocking than the static cursor: Every

cursor row fetch in a dynamic cursor requeries the underlying tables

involved in the SELECT statement of the cursor. The dynamic fetches

are generally expensive because the original select condition might

have to be reexecuted.

For a summary of the different cursors, their positives and negatives, please refer to

Table 23-1.

Table 23-1. Comparing Cursors

Cursor Type Positives Negatives

Forward- only Lower cost, lower scroll overhead, lower

impact on tempdb

Lower concurrency, no backward

scrolling

Fast- forward- only Fastest cursor, lowest cost, lowest impact no backward scrolling, no concurrency

Static Lower fetch cost, no blocking, forward

and backward scrolling

higher open cost, higher impact on

tempdb, no concurrency

Keyset- driven Lower open cost, lower impact on

tempdb, forward and backward scrolling,

concurrency

higher open cost, highest fetch cost,

highest impact on tempdb, higher

locking costs

Dynamic Lower open cost, lower impact on

tempdb, forward and backward scrolling,

concurrency

highest locking costs

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

741

 Default Result Set
The default cursor type for the data access layers (ADO, OLEDB, and ODBC) is forward-

only and read-only. The default cursor type created by the data access layers isn’t a true

cursor but a stream of data from the server to the client, generally referred to as the default

result set or fast-forward-only cursor (created by the data access layer). In ADO.NET, the

DataReader control has the forward-only and read-only properties, and it can be considered

as the default result set in the ADO.NET environment. SQL Server uses this type of result set

processing under the following conditions:

• The application, using the data access layers (ADO, OLEDB, ODBC),

leaves all the cursor characteristics at the default settings, which

requests a forward-only and read-only cursor.

• The application executes a SELECT statement instead of executing a

DECLARE CURSOR statement.

Note because sQL server is designed to work with sets of data, not to walk
through records one by one, the default result set is always faster than any other
type of cursor.

The only request sent from the client to SQL Server is the SQL statement associated

with the default cursor. SQL Server executes the query, organizes the rows of the result

set in network packets (filling the packets as best it can), and then sends the packets to

the client. These network packets are cached in the network buffers of the client. SQL

Server sends as many rows of the result set to the client as the client-network buffers can

cache. As the client application requests one row at a time, the data access layer on the

client machine pulls the row from the client-network buffers and transfers it to the client

application.

The following sections outline the benefits and drawbacks of the default result set.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

http://ado.net
http://ado.net

742

 Benefits
The default result set is generally the best and most efficient way of returning rows from

SQL Server for the following reasons:

• Minimum network round-trips between the client and SQL Server:

Since the result set returned by SQL Server is cached in the client-

network buffers, the client doesn’t have to make a request across the

network to get the individual rows. SQL Server puts most of the rows

that it can in the network buffer and sends to the client as much as

the client-network buffer can cache.

• Minimum server overhead: Since SQL Server doesn’t have to store

data on the server, this reduces server resource utilization.

 Multiple Active Result Sets
SQL Server 2005 introduced the concept of multiple active result sets, wherein a single

connection can have more than one batch running at any given moment. In prior

versions, a single result set had to be processed or closed out prior to submitting the

next request. MARS allows multiple requests to be submitted at the same time through

the same connection. MARS is enabled on SQL Server all the time. It is not enabled by a

connection unless that connection explicitly calls for it. Transactions must be handled

at the client level and have to be explicitly declared and committed or rolled back.

With MARS in action, if a transaction is not committed on a given statement and the

connection is closed, all other transactions that were part of that single connection will

be rolled back. MARS is enabled through application connection properties.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

743

 Drawbacks
While there are advantages to the default result set, there are drawbacks as well. Using

the default result set requires some special conditions for maximum performance:

• It doesn’t support all properties and methods: Properties such as

AbsolutePosition, Bookmark, and RecordCount, as well as methods

such as Clone, MoveLast, MovePrevious, and Resync, are not

supported.

• Locks may be held on the underlying resource: SQL Server sends as

many rows of the result set to the client as the client-network buffers

can cache. If the size of the result set is large, then the client-network

buffers may not be able to receive all the rows. SQL Server then holds

a lock on the next page of the underlying tables, which has not been

sent to the client.

To demonstrate these concepts, consider the following test table:

USE AdventureWorks2017;

GO

DROP TABLE IF EXISTS dbo.Test1;

GO

CREATE TABLE dbo.Test1 (C1 INT,

 C2 CHAR(996));

CREATE CLUSTERED INDEX Test1Index ON dbo.Test1 (C1);

INSERT INTO dbo.Test1

VALUES (1, '1'),

 (2, '2');

GO

Now consider this PowerShell script, which accesses the rows of the test table using

ADO with OLEDB and the default cursor type for the database API cursor (ADODB.

Recordset object) as follows:

$AdoConn = New-Object -comobject ADODB.Connection

$AdoRecordset = New-Object -comobject ADODB.Recordset

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

744

##Change the Data Source to your server

$AdoConn.Open("Provider= SQLOLEDB; Data Source=DOJO\RANDORI; Initial

Catalog=AdventureWorks2017; Integrated Security=SSPI")

$AdoRecordset.Open("SELECT * FROM dbo.Test1", $AdoConn)

do {

 $C1 = $AdoRecordset.Fields.Item("C1").Value

 $C2 = $AdoRecordset.Fields.Item("C2").Value

 Write-Output "C1 = $C1 and C2 = $C2"

 $AdoRecordset.MoveNext()

 } until ($AdoRecordset.EOF -eq $True)

$AdoRecordset.Close()

$AdoConn.Close()

This is not how you normally access databases from PowerShell, but it does show

how a client-side cursor operates. Note that the table has two rows with the size of each

row equal to 1,000 bytes (= 4 bytes for INT + 996 bytes for CHAR(996)) without considering

the internal overhead. Therefore, the size of the complete result set returned by the

SELECT statement is approximately 2,000 bytes (= 2 × 1,000 bytes).

On execution of the cursor open statement ($AdoRecordset.Open()), a default result

set is created on the client machine running the code. The default result set holds as

many rows as the client-network buffer can cache.

Since the size of the result set is small enough to be cached by the client-network

buffer, all the cursor rows are cached on the client machine during the cursor open

statement itself, without retaining any lock on the dbo.Test1 table. You can verify the

lock status for the connection using the sys.dm_tran_locks dynamic management view.

During the complete cursor operation, the only request from the client to SQL Server is

the SELECT statement associated to the cursor, as shown in the Extended Events output

in Figure 23-1.

Figure 23-1. Profiler trace output showing database requests made by the default
result set

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

745

To find out the effect of a large result set on the default result set processing, let’s add

some more rows to the test table.

SELECT TOP 100000

 IDENTITY(INT, 1, 1) AS n

INTO #Tally

FROM master.dbo.syscolumns AS scl,

 master.dbo.syscolumns AS sc2;

INSERT INTO dbo.Test1 (C1,

 C2)

SELECT n,

 n

FROM #Tally AS t;

GO

The additional rows generated by this example increase the size of the result set

considerably. Depending on the size of the client-network buffer, only part of the result

set can be cached. On execution of the Ado.Recordset.Open statement, the default result

set on the client machine will get part of the result set, with SQL Server waiting on the

other end of the network to send the remaining rows.

On my machine during this period, the locks shown in Figure 23-2 are held on the

underlying Test1 table as obtained from the output of sys.dm_tran_locks.

Figure 23-2. sys.dm_tran_locks output showing the locks held by the default result
set while processing the large result set

The (IS) lock on the table will block other users trying to acquire an (X) lock. To

minimize the blocking issue, follow these recommendations:

• Process all rows of the default result set immediately.

• Keep the result set small. As demonstrated in the example, if the size

of the result set is small, then the default result set will be able to read

all the rows during the cursor open operation itself.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

746

 Cursor Overhead
When implementing cursor-centric functionality in an application, you have two

choices. You can use either a T-SQL cursor or a database API cursor. Because of the

differences between the internal implementation of a T-SQL cursor and a database API

cursor, the load created by these cursors on SQL Server is different. The impact of these

cursors on the database also depends on the different characteristics of the cursors, such

as location, concurrency, and type. You can use Extended Events to analyze the load

generated by the T-SQL and database API cursors. The standard events for monitoring

queries are, of course, going to be useful. There are also a number of events under the

category of cursor. The most useful of these events includes the following:

• cursor_open

• cursor_close

• cursor_execute

• cursor_prepare

The other events are useful as well, but you’ll need them only when you’re

attempting to troubleshoot specific issues. Even the optimization options for these

cursors are different. Let’s analyze the overhead of these cursors one by one.

 Analyzing Overhead with T-SQL Cursors
The T-SQL cursors implemented using T-SQL statements are always executed on SQL

Server because they need the SQL Server engine to process their T-SQL statements. You

can use a combination of the cursor characteristics explained previously to reduce the

overhead of these cursors. As mentioned earlier, the most lightweight T-SQL cursor is the

one created, not with the default settings but by manipulating the settings to arrive at the

forward-only read-only cursor. That still leaves the T-SQL statements used to implement

the cursor operations to be processed by SQL Server. The complete load of the cursor

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

747

is supported by SQL Server without any help from the client machine. Suppose an

application requirement results in the following list of tasks that must be supported:

• Identify all products (from the Production.WorkOrder table) that

have been scrapped.

• For each scrapped product, determine the money lost, where the

money lost per product equals the units in stock times the unit price

of the product.

• Calculate the total loss.

• Based on the total loss, determine the business status.

The FOR EACH phrase in the second point suggests that these application tasks could

be served by a cursor. However, a FOR, WHILE, cursor, or any other kind of processing

of this type can be dangerous within SQL Server. Despite the attraction that this

approach holds, it is not set-based, and it is not how you should be processing these

types of requests. However, let’s see how it works with a cursor. You can implement this

application requirement using a T-SQL cursor as follows:

CREATE OR ALTER PROC dbo.TotalLoss_CursorBased

AS --Declare a T-SQL cursor with default settings, i.e., fast

--forward-only to retrieve products that have been discarded

DECLARE ScrappedProducts CURSOR FOR

SELECT p.ProductID,

 wo.ScrappedQty,

 p.ListPrice

FROM Production.WorkOrder AS wo

 JOIN Production.ScrapReason AS sr

 ON wo.ScrapReasonID = sr.ScrapReasonID

 JOIN Production.Product AS p

 ON wo.ProductID = p.ProductID;

--Open the cursor to process one product at a time

OPEN ScrappedProducts;

DECLARE @MoneyLostPerProduct MONEY = 0,

 @TotalLoss MONEY = 0;

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

748

--Calculate money lost per product by processing one product

--at a time

DECLARE @ProductId INT,

 @UnitsScrapped SMALLINT,

 @ListPrice MONEY;

FETCH NEXT FROM ScrappedProducts

INTO @ProductId,

 @UnitsScrapped,

 @ListPrice;

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @MoneyLostPerProduct = @UnitsScrapped * @ListPrice; --Calculate

total loss

 SET @TotalLoss = @TotalLoss + @MoneyLostPerProduct;

 FETCH NEXT FROM ScrappedProducts

 INTO @ProductId,

 @UnitsScrapped,

 @ListPrice;

END

--Determine status

IF (@TotalLoss > 5000)

 SELECT 'We are bankrupt!' AS Status;

ELSE

 SELECT 'We are safe!' AS Status;

--Close the cursor and release all resources assigned to the cursor

CLOSE ScrappedProducts;

DEALLOCATE ScrappedProducts;

GO

The stored procedure can be executed as follows, but you should execute it twice to

take advantage of plan caching (Figure 23-3):

EXEC dbo.TotalLoss_CursorBased;

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

749

The total number of logical reads performed by the stored procedure is 8,786

(indicated by the sql_batch_completed event in Figure 23-3). Well, is it high or low?

Considering the fact that the Production.Products table has only 6,196 pages and the

Production.WorkOrder table has only 926, it’s surely not low. You can determine the

number of pages allocated to these tables by querying the dynamic management view

sys.dm_db_index_physical_stats.

SELECT SUM(page_count)

FROM sys.dm_db_index_physical_stats(DB_ID(N'AdventureWorks2017'),

 OBJECT_ID('Production.WorkOrder'),

 DEFAULT, DEFAULT, DEFAULT);

Note the sys.dm_db_index_physical_stats DMV is explained in detail in
Chapter 13.

In most cases, you can avoid cursor operations by rewriting the functionality using

SQL queries, concentrating on set-based methods of accessing the data. For example,

you can rewrite the preceding stored procedure using SQL queries (instead of the cursor

operations) as follows:

CREATE OR ALTER PROC dbo.TotalLoss

AS

SELECT CASE --Determine status based on following computation

 WHEN SUM(MoneyLostPerProduct) > 5000 THEN

 'We are bankrupt!'

 ELSE

 'We are safe!'

 END AS Status

Figure 23-3. Extended Events output showing some of the total cost of the data
processing using a T-SQL cursor

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

750

FROM

(--Calculate total money lost for all discarded products

 SELECT SUM(wo.ScrappedQty * p.ListPrice) AS MoneyLostPerProduct

 FROM Production.WorkOrder AS wo

 JOIN Production.ScrapReason AS sr

 ON wo.ScrapReasonID = sr.ScrapReasonID

 JOIN Production.Product AS p

 ON wo.ProductID = p.ProductID

 GROUP BY p.ProductID) AS DiscardedProducts;

GO

In this stored procedure, the aggregation functions of SQL Server are used to

compute the money lost per product and the total loss. The CASE statement is used to

determine the business status based on the total loss incurred. The stored procedure can

be executed as follows; but again, you should execute it twice, so you can see the results

of plan caching:

EXEC dbo.TotalLoss;

Figure 23-4 shows the corresponding Extended Events output.

Figure 23-4. Extended Events output showing the total cost of the data processing
using an equivalent SELECT statement

In Figure 23-4, you can see that the second execution of the stored procedure, which

reuses the existing plan, uses a total of 547 logical reads. However, you can see a result

even more important than the reads: the duration falls from 32.7ms to 10.3ms. Using

SQL queries instead of the cursor operations made the execution three times faster.

Therefore, for better performance, it is almost always recommended that you use

set- based operations in SQL queries instead of T-SQL cursors.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

751

 Cursor Recommendations
An ineffective use of cursors can degrade the application performance by introducing

extra network round-trips and load on server resources. To keep the cursor cost low, try

to follow these recommendations:

• Use set-based SQL statements over T-SQL cursors since SQL Server is

designed to work with sets of data.

• Use the least expensive cursor.

• When using SQL Server cursors, use the FAST FORWARD

cursor type.

• When using the API cursors implemented by ADO, OLEDB, or

ODBC, use the default cursor type, which is generally referred to

as the default result set.

• When using ADO.NET, use the DataReader object.

• Minimize impact on server resources.

• Use a client-side cursor for API cursors.

• Do not perform actions on the underlying tables through the

cursor.

• Always deallocate the cursor as soon as possible. This helps free

resources, especially in tempdb.

• Redesign the cursor’s SELECT statement (or the application) to

return the minimum set of rows and columns.

• Avoid T-SQL cursors entirely by rewriting the logic of the cursor

as set-based statements, which are generally more efficient than

cursors.

• Use a ROWVERSION column for dynamic cursors to benefit from the

efficient, version-based concurrency control instead of relying

upon the value-based technique.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

http://ado.net

752

• Minimize impact on tempdb.

• Minimize resource contention in tempdb by avoiding the static

and keyset-driven cursor types.

• Static and key-set cursors put additional load on tempdb, so take

that into account if you must use them, or avoid them if your

tempdb is under stress.

• Minimize blocking.

• Use the default result set, fast-forward-only cursor, or static

cursor.

• Process all cursor rows as quickly as possible.

• Avoid scroll locks or pessimistic locking.

• Minimize network round-trips while using API cursors.

• Use the CacheSize property of ADO to fetch multiple rows in one

round-trip.

• Use client-side cursors.

• Use disconnected record sets.

 Summary
As you learned in this chapter, a cursor is the natural extension to the result set returned

by SQL Server, enabling the calling application to process one row of data at a time.

Cursors add a cost overhead to application performance and impact the server

resources.

You should always be looking for ways to avoid cursors. Set-based solutions work

better in almost all cases. However, if a cursor operation is mandated, then choose the

best combination of cursor location, concurrency, type, and cache size characteristics to

minimize the cost overhead of the cursor.

In the next chapter, we explore the special functionality introduced with in-memory

tables, natively compiled procedures, and the other aspects of memory-optimized

objects.

Chapter 23 row-by-row proCessing

www.EBooksWorld.ir

753
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_24

CHAPTER 24

Memory-Optimized OLTP
Tables and Procedures
One of the principal needs for online transaction processing (OLTP) systems is to get as

much speed as possible out of the system. With this in mind, Microsoft introduced the

in-memory OLTP enhancements. These were improved on in subsequent releases and

added to Azure SQL Database. The memory-optimized technologies consist of

in- memory tables and natively compiled stored procedures. This set of features is meant

for high-end, transaction-intensive, OLTP-focused systems. In SQL Server 2014, you

had access to the in-memory OLTP functionality only in the Enterprise edition of SQL

Server. Since SQL Server 2016, all editions support this enhanced functionality. The

memory- optimized technologies are another tool in the toolbox of query tuning, but

they are a highly specialized tool, applicable only to certain applications. Be cautious

in adopting this technology. That said, on the right system with the right amount of

memory, in- memory tables and native stored procedures result in blazing-fast speed.

In this chapter, I cover the following topics:

• The basics of how in-memory tables work

• Improving performance by natively compiling stored procedures

• The benefits and drawbacks of natively compiled procedures and in-

memory OLTP tables

• Recommendations for when to use in-memory OLTP tables

www.EBooksWorld.ir

754

 In-Memory OLTP Fundamentals
At the core of it all, you can tune your queries to run incredibly fast. But, no matter

how fast you make them run, to a degree you’re limited by some of the architectural

issues within modern computers and the fundamentals of the behavior of SQL Server.

Typically, the number-one bottleneck with your hardware is the storage system. Whether

you’re still looking at spinning platters or you’ve moved on to some type of SSD or

similar technology, the disks are still the slowest aspect of the system. This means for

reads or writes, you have to wait. But memory is fast, and with 64-bit operating systems,

it can be plentiful. So, if you have tables that you can move completely into memory,

you can radically improve the speed. That’s part of what in-memory OLTP tables are all

about: moving the data access, both reads and writes, into memory and off the disk.

However, Microsoft did more than simply move tables into memory. It recognized

that while the disk was slow, another aspect of the system slowing things down was

how the data was accessed and managed through the transaction system. So, Microsoft

made a series of changes there as well. The primary one was removing the pessimistic

approach to transactions. The existing product forces all transactions to get written to

the transaction log before allowing the data changes to get flushed to disk. This creates

a bottleneck in the processing of transactions. So, instead of pessimism about whether a

transaction will successfully complete, Microsoft took an optimistic approach that most

of the time, transactions will complete. Further, instead of having a blocking situation

where one transaction has to finish updating data before the next can access it or update

it, Microsoft versioned the data. It has now eliminated a major point of contention within

the system and eliminated locks, and with all this is in memory, so it’s even faster.

Microsoft then took all this another step further. Instead of the pessimistic approach

to memory latches that prevent more than one process from accessing a page to write

to it, Microsoft extended the optimistic approach to memory management. Now,

with versioning, in-memory tables work off a model that is “eventually” consistent

with a conflict resolution process that will roll back a transaction but never block one

transaction by another. This has the potential to lead to some data loss, but it makes

everything within the data access layer fast.

Data does get written to disk in order to persist in a reboot or similar situation.

However, nothing is read from disk except at the time of starting the server (or bringing

the database online). Then all the data for the in-memory tables is loaded into memory

and no reads occur against the disk again for any of that data. However, if you are dealing

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

755

with temporary data, you can even short circuit this functionality by defining the data as

not being persisted to disk at all, reducing even the startup times.

Finally, as you’ve seen throughout the rest of the book, a major part of query

tuning is figuring out how to work with the query optimizer to get a good execution

plan and then have that plan reused multiple times. This can also be an intensive and

slow process. SQL Server 2014 introduced the concept of natively compiled stored

procedures. These are literally T-SQL code compiled down to DLLs and made part of

the SQL Server OS. This compile process is costly and shouldn’t be used for just any old

query. The principal idea is to spend time and effort compiling a procedure to native

code and then get to use that procedure millions of times at a radically improved speed.

All this technology comes together to create new functionality that you can use by

itself or in combination with existing table structures and standard T-SQL. In fact, you

can treat in-memory tables much the same way as you treat normal SQL Server tables

and still realize some performance improvements. But, you can’t just do this anywhere.

There are some fairly specific requirements for taking advantage of in-memory OLTP

tables and procedures.

 System Requirements
You must meet a few standard requirements before you can even consider whether

memory-optimized tables are a possibility.

• A modern 64-bit processor

• Twice the amount of free disk storage for the data you intend to put

into memory

• Lots of memory

Obviously, for most systems, the key is lots of memory. You need to have enough

memory for the operating system and SQL Server to function normally. Then you still

need to have memory for all the non-memory-optimized requirements of your system

including the data cache. Finally, you’re going to add, on top of all that, memory for your

memory-optimized tables. If you’re not looking at a fairly large system, with a minimum

of 64GB memory, I don’t suggest even considering this as an option. Smaller systems are

just not going to provide enough storage in memory to make this worth the time

and effort.

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

756

In SQL Server 2014 only, you must have the Enterprise edition of SQL Server

running. You can also use the Developer edition in SQL Server 2014, of course, but you

can’t run production loads on that. For versions newer than SQL Server 2014, there are

memory limits based on the editions as published by Microsoft.

 Basic Setup
In addition to the hardware requirements, you have to do additional work on your

database to enable in-memory tables. I’ll start with a new database to illustrate.

CREATE DATABASE InMemoryTest

ON PRIMARY (NAME = N'InMemoryTest_Data',

 FILENAME = N'D:\Data\InMemoryTest_Data.mdf',

 SIZE = 5GB)

LOG ON (NAME = N'InMemoryTest_Log',

 FILENAME = N'L:\Log\InMemoryTest_Log.ldf');

For the in-memory tables to maintain durability, they must write to disk as well

as to memory since memory goes away with the power. Durability (part of the ACID

properties of a relational dataset) means that once a transaction commits, it stays

committed. You can have a durable in-memory table or a nondurable table. With a

nondurable table, you may have committed transactions, but you could still lose that

data, which is different from how standard tables work within SQL Server. The most

commonly known uses for data that isn’t durable are things such as session state or

time-sensitive information such as an electronic shopping cart. Anyway, in-memory

storage is not the same as the usual storage within your standard relational tables. So, a

separate file group and files must be created. To do this, you can just alter the database,

as shown here:

ALTER DATABASE InMemoryTest

ADD FILEGROUP InMemoryTest_InMemoryData

CONTAINS MEMORY_OPTIMIZED_DATA;

ALTER DATABASE InMemoryTest

ADD FILE (NAME = 'InMemoryTest_InMemoryData',

 FILENAME = 'D:\Data\InMemoryTest_InMemoryData.ndf')

TO FILEGROUP InMemoryTest_InMemoryData;

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

757

I would have simply altered the AdventureWorks2017 database that you’ve been

experimenting with, but another consideration for in-memory optimized tables is that

you can’t remove the special filegroup once it’s created. You can only ever drop the

database. That’s why I’ll just experiment with a separate database. It’s safer. It’s also one

of the drivers for you being cautious about how and where you implement in-memory

technology. You simply can’t try it on your production servers without permanently

altering them.

There are some limitations to features available to a database using in-memory OLTP.

• DBCC CHECKDB: You can run consistency checks, but the

memory- optimized tables will be skipped. You’ll get an error if you

attempt to run DBCC CHECKTABLE.

• AUTO_CLOSE: This is not supported.

• DATABASE SNAPSHOT: This is not supported.

• ATTACH_REBUILD_LOG: This is also not supported.

• Database mirroring: You cannot mirror a database with a MEMORY_

OPTIMIZED_DATA file group. However, availability groups provide a

seamless experience, and Failover Clustering supports in-memory

tables (but it will affect recovery time).

Once these modifications are complete, you can begin to create in-memory tables in

your system.

 Create Tables
Once the database setup is complete, you have the capability to create tables

that will be memory optimized, as described earlier. The actual syntax is quite

straightforward. I’m going to replicate, as much as I can, the Person.Address table from

AdventureWorks2017.

USE InMemoryTest;

GO

CREATE TABLE dbo.Address

 (AddressID INT IDENTITY(1, 1) NOT NULL PRIMARY KEY NONCLUSTERED HASH

 WITH (BUCKET_COUNT = 50000),

 AddressLine1 NVARCHAR(60) NOT NULL,

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

758

 AddressLine2 NVARCHAR(60) NULL,

 City NVARCHAR(30) NOT NULL,

 StateProvinceID INT NOT NULL,

 PostalCode NVARCHAR(15) NOT NULL,

 --[SpatialLocation geography NULL,

 --rowguid uniqueidentifier ROWGUIDCOL NOT NULL CONSTRAINT DF_

Address_rowguid DEFAULT (newid()),

 ModifiedDate DATETIME NOT NULL

 CONSTRAINT DF_Address_ModifiedDate

 DEFAULT (GETDATE()))

WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);

This creates a durable table in the memory of the system using the disk space

you defined to retain a durable copy of the data, ensuring that you won’t lose data in

the event of a power loss. It has a primary key that is an IDENTITY value just like with

a regular SQL Server table (however, to use IDENTITY instead of SEQUENCE, you will

be surrendering the capability to set the definition to anything except (1,1) in this

version of SQL Server). You’ll note that the index definition is not clustered. Instead,

it’s NON-CLUSTERED HASH. I’ll talk about indexing and things like BUCKET_COUNT in the

next section. You’ll also note that I had to comment out two columns, SpatialLocation

and rowguid. These are using data types not available with in-memory tables. Finally,

the WITH statement lets SQL Server know where to place this table by defining MEMORY_

OPTIMIZED=ON. You can make an even faster table by modifying the WITH clause to use

DURABILITY=SCHEMA_ONLY. This allows data loss but makes the table even faster since

nothing gets written to disk.

There are a number of unsupported data types that could prevent you from taking

advantage of in-memory tables.

• XML

• ROWVERSION

• SQL_VARIANT

• HIERARCHYID

• DATETIMEOFFSET

• GEOGRAPHY/GEOMETRY

• User-defined data types

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

759

In addition to data types, you will run into other limitations. I’ll talk about the index

requirements in the “In-Memory Indexes” section. Starting with SQL Server 2016,

support for foreign keys and check constraints and unique constraints was added.

Once a table is created in-memory, you can access it just like a regular table. If I were

to run a query against it now, it wouldn’t return any rows, but it would function.

SELECT a.AddressID

FROM dbo.Address AS a

WHERE a.AddressID = 42;

So, to experiment with some actual data in the database, go ahead and load the

information stored in Person.Address in AdventureWorks2017 into the new table that’s

stored in-memory in this new database.

CREATE TABLE dbo.AddressStaging (AddressLine1 NVARCHAR(60) NOT NULL,

 AddressLine2 NVARCHAR(60) NULL,

 City NVARCHAR(30) NOT NULL,

 StateProvinceID INT NOT NULL,

 PostalCode NVARCHAR(15) NOT NULL);

INSERT dbo.AddressStaging (AddressLine1,

 AddressLine2,

 City,

 StateProvinceID,

 PostalCode)

SELECT a.AddressLine1,

 a.AddressLine2,

 a.City,

 a.StateProvinceID,

 a.PostalCode

FROM AdventureWorks2017.Person.Address AS a;

INSERT dbo.Address (AddressLine1,

 AddressLine2,

 City,

 StateProvinceID,

 PostalCode)

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

760

SELECT a.AddressLine1,

 a.AddressLine2,

 a.City,

 a.StateProvinceID,

 a.PostalCode

FROM dbo.AddressStaging AS a;

DROP TABLE dbo.AddressStaging;

You can’t combine an in-memory table in a cross-database query, so I had to load

the approximate 19,000 rows into a staging table and then load them into the in-memory

table. This is not meant to be part of the examples for performance, but it’s worth

nothing that it took nearly 850ms to insert the data into the standard table and only 2ms

to load the same data into the in-memory table on my system.

But, with the data in place, I can rerun the query and actually see results, as shown in

Figure 24-1.

Figure 24-1. The first query results from an in-memory table

Granted, this is not terribly exciting. So, to have something meaningful to work

with, I’m going to create a couple of other tables so that you can see some more query

behavior on display.

CREATE TABLE dbo.StateProvince (StateProvinceID INT IDENTITY(1, 1) NOT NULL

PRIMARY KEY NONCLUSTERED HASH

 WITH (BUCKET_COUNT = 10000),

 StateProvinceCode NCHAR(3) COLLATE Latin1_General_100_BIN2 NOT NULL,

 CountryRegionCode NVARCHAR(3) NOT NULL,

 Name VARCHAR(50) NOT NULL,

 TerritoryID INT NOT NULL,

 ModifiedDate DATETIME NOT NULL

 CONSTRAINT DF_StateProvince_ModifiedDate

 DEFAULT (GETDATE()))

WITH (MEMORY_OPTIMIZED = ON);

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

761

CREATE TABLE dbo.CountryRegion (CountryRegionCode NVARCHAR(3) NOT NULL,

 Name VARCHAR(50) NOT NULL,

 ModifiedDate DATETIME NOT NULL

 CONSTRAINT DF_CountryRegion_ModifiedDate

 DEFAULT (GETDATE()),

 CONSTRAINT PK_CountryRegion_CountryRegionCode

 PRIMARY KEY CLUSTERED

 (

 CountryRegionCode ASC

));

That’s an additional memory-optimized table and a standard table. I’ll also load data

into these so you can make more interesting queries.

SELECT sp.StateProvinceCode,

 sp.CountryRegionCode,

 sp.Name,

 sp.TerritoryID

INTO dbo.StateProvinceStaging

FROM AdventureWorks2017.Person.StateProvince AS sp;

INSERT dbo.StateProvince (StateProvinceCode,

 CountryRegionCode,

 Name,

 TerritoryID)

SELECT StateProvinceCode,

 CountryRegionCode,

 Name,

 TerritoryID

FROM dbo.StateProvinceStaging;

DROP TABLE dbo.StateProvinceStaging;

INSERT dbo.CountryRegion (CountryRegionCode,

 Name)

SELECT cr.CountryRegionCode,

 cr.Name

FROM AdventureWorks2017.Person.CountryRegion AS cr;

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

762

With the data loaded, the following query returns a single row and has an execution

plan that looks like Figure 24-2:

SELECT a.AddressLine1,

 a.City,

 a.PostalCode,

 sp.Name AS StateProvinceName,

 cr.Name AS CountryName

FROM dbo.Address AS a

 JOIN dbo.StateProvince AS sp

 ON sp.StateProvinceID = a.StateProvinceID

 JOIN dbo.CountryRegion AS cr

 ON cr.CountryRegionCode = sp.CountryRegionCode

WHERE a.AddressID = 42;

Figure 24-2. An execution plan showing both in-memory and standard tables

As you can see, it’s entirely possible to get a normal execution plan even when

using in-memory tables. The operators are even the same. In this case, you have three

different index seek operations. Two of them are against the nonclustered hash indexes

you created with the in-memory tables, and the other is a standard clustered index seek

against the standard table. You might also note that the estimated cost on this plan adds

up to 101 percent. You may occasionally see such anomalies dealing with in-memory

tables since the cost for them through the optimizer is so radically different than regular

tables.

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

763

The principal performance enhancements come from the lack of locking and

latching, allowing massive inserts and updates while simultaneously allowing for

querying. But, the queries do run faster as well. The previous query resulted in the

execution time and reads shown in Figure 24-3.

Running a similar query against the AdventureWorks2017 database results in the

behavior shown in Figure 24-4.

While it’s clear that the execution times are much better with the in-memory table,

what’s not clear is how the reads are dealt with. But, since I’m talking about reading from

the in-memory storage and not either pages in memory or pages on the disk but the hash

index instead, things are completely different in terms of measuring performance. You

won’t be using all the same measures as before but will instead rely on execution time.

The reads in this case are a measure of the activity of the system, so you can anticipate

that higher values mean more access to the data and lower values mean less.

With the tables in place and proof of improved performance both for inserts and

for selects, let’s talk about the indexes that you can use with in-memory tables and how

they’re different from standard indexes.

 In-Memory Indexes
An in-memory table can have up to eight indexes created on it at one time. But, every

memory-optimized table must have at least one index. The index defined by the primary

key counts. A durable table must have a primary key. You can create three index types:

the nonclustered hash index that you used previously, the nonclustered index, and the

columnstore indexes. These indexes are not the type of indexes that are created with

Figure 24-3. Query metrics for an in-memory table

Figure 24-4. Query metrics for a regular table

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

764

standard tables. First, they’re maintained in memory in the same way the in-memory

tables are. Second, the same rules apply about durability of the indexes as the in-

memory tables. In-memory indexes do not have a fixed page size either, so they won’t

suffer from fragmentation. Let’s discuss each of the index types in a little more detail.

 Hash Index

A hash index is not a balanced-tree index that’s just stored in memory. Instead, the hash

index uses a predefined hash bucket, or table, and hash values of the key to provide a

mechanism for retrieving the data of a table. SQL Server has a hash function that will

always result in a constant hash value for the inputs provided. This means for a given

key value, you’ll always have the same hash value. You can store multiple copies of the

hash value in the hash bucket. Having a hash value to retrieve a point lookup, a single

row, makes for an extremely efficient operation, that is, as long as you don’t run into lots

of hash collisions. A hash collision is when you have multiple values stored at the same

location.

This means the key to getting the hash index right is getting the right distribution

of values across buckets. You do this by defining the bucket count for the index. For the

first table I created, dbo.Address, I set a bucket count of 50,000. There are 19,000 rows

currently in the table. So, with a bucket count of 50,000, I ensure that I have plenty of

storage for the existing set of values, and I provide a healthy growth overhead. You need

to set the bucket count so that it’s big enough without being too big. If the bucket count

is too small, you’ll be storing lots of data within a bucket and seriously impact the ability

of the system to efficiently retrieve the data. In short, it’s best to have your bucket be too

big. If you look at Figure 24-5, you can see this laid out in a different way.

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

765

The first set of buckets has what is called a shallow distribution, which is few hash

values distributed across a lot of buckets. This is a more optimal storage plan. Some

buckets may be empty as you can see, but the lookup speed is fast because each bucket

contains a single value. The second set of buckets shows a small bucket count, or a deep

distribution. This is more hash values in a given bucket, requiring a scan within the

bucket to identify individual hash values.

Microsoft’s recommendation on bucket count is go between one to two times the

quantity of the number of rows in the table. But, since you can’t alter in-memory tables,

you also need to consider projected growth. If you think your in-memory table is likely to

grow three times as large over the next three to six months, you may want to expand the

size of your bucket count. The only problem you’ll encounter with an oversized bucket

count is that scans will take longer, so you’ll be allocating more memory. But, if your

queries are likely to lead to scans, you really shouldn’t be using the nonclustered hash

index. Instead, just go to the nonclustered index. The current recommendation is to go

to no more than ten times the number of unique values you’re likely to be dealing with

when setting the bucket count.

You also need to worry about how many values can be returned by the hash value.

Unique indexes and primary keys are prime candidates for using the hash index because

they’re always unique. Microsoft’s recommendation is that if, on average, you’re going

Large Bucket Count

Small Bucket Count

HashValue1 HashValue2 HashValue3 HashValue5HashValue4

HashValue1

HashValue2

HashValue3

HashValue4

HashValue5

Figure 24-5. Hash values in lots of buckets and few buckets

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

766

to see more than five values for any one hash value, you should move away from the

nonclustered hash index and use the nonclustered index instead. This is because the

hash bucket simply acts as a pointer to the first row that is stored in that bucket. Then,

if duplicate or additional values are stored in the bucket, the first row points to the next

row, and each subsequent row points to the row following it. This can turn point lookups

into scanning operations, again radically hurting performance. This is why going with a

small number of duplicates, less than five, or unique values work best with hash indexes.

To see the distribution of your index within the hash table, you can

use sys.dm_db_xtp_hash_index_stats.

SELECT i.name AS [index name],

 hs.total_bucket_count,

 hs.empty_bucket_count,

 hs.avg_chain_length,

 hs.max_chain_length

FROM sys.dm_db_xtp_hash_index_stats AS hs

 JOIN sys.indexes AS i

 ON hs.object_id = i.object_id

 AND hs.index_id = i.index_id

WHERE OBJECT_NAME(hs.object_id) = 'Address';

Figure 24-6 shows the results of this query.

Figure 24-6. Results of querying sys.dm_db_xtp_hash_index_stats

With this you can see a few interesting facts about how hash indexes are created

and maintained. You’ll note that the total bucket count is not the value I set, 50,000.

The bucket count is rounded up to the next closest power of two, in this case, 65,536.

There are 48,652 empty buckets. The average chain length, since this is a unique index,

is a value of 1 because the values are unique. There are some chain values because as

rows get modified or updated there will be versions of the data stored until everything is

resolved.

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

767

 Nonclustered Indexes

The nonclustered indexes are basically just like regular indexes except that they’re

stored in memory along with the data to assist in data retrieval. They also have pointers

to the storage location of the data similar to how a nonclustered index behaves with a

heap table. One interesting difference between an in-memory nonclustered index and

a standard nonclustered index is that SQL Server can’t retrieve the data in reverse order

from the in-memory index. Other behavior seems close to the same as standard indexes.

To see the nonclustered index in action, let’s take this query:

SELECT a.AddressLine1,

 a.City,

 a.PostalCode,

 sp.Name AS StateProvinceName,

 cr.Name AS CountryName

FROM dbo.Address AS a

 JOIN dbo.StateProvince AS sp

 ON sp.StateProvinceID = a.StateProvinceID

 JOIN dbo.CountryRegion AS cr

 ON cr.CountryRegionCode = sp.CountryRegionCode

WHERE a.City = 'Walla Walla';

Currently the performance looks like Figure 24-7.

Figure 24-7. Metrics of query without an index

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

768

While an in-memory table scan is certainly going to be faster than the same scan

on a table stored on disk, it’s still not a good situation. Plus, considering the extra work

resulting from the Filter operation and the Sort operation to satisfy the Merge Join

that the optimizer felt it needed, this is a problematic query. So, you should add an index

to the table to speed it up.

But, you can’t just run CREATE INDEX on the dbo.Address table. Instead, you have

two choices, re-creating the table or altering the table. You’ll need to test your system as

to which works better. The ALTER TABLE command for adding an index to an in-memory

table can be costly. If you wanted to drop the table and re-create it, the table creation

script now looks like this:

CREATE TABLE dbo.Address (

 AddressID INT IDENTITY(1, 1) NOT NULL PRIMARY KEY NONCLUSTERED HASH

 WITH (BUCKET_COUNT = 50000),

 AddressLine1 NVARCHAR(60) NOT NULL,

 AddressLine2 NVARCHAR(60) NULL,

 City NVARCHAR(30) NOT NULL,

 StateProvinceID INT NOT NULL,

 PostalCode NVARCHAR(15) NOT NULL,

 ModifiedDate DATETIME NOT NULL

 CONSTRAINT DF_Address_ModifiedDate

 DEFAULT (GETDATE()),

 INDEX nci NONCLUSTERED (City))

WITH (MEMORY_OPTIMIZED = ON);

Figure 24-8. Query results in an execution plan that has table scans

Figure 24-8 shows the execution plan.

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

769

Creating the same index using the ALTER TABLE command looks like this:

ALTER TABLE dbo.Address ADD INDEX nci (City);

After reloading the data into the newly created table, you can try the query again.

This time it ran in 800 microseconds on my system, much faster than the 3.7ms it ran in

previously. The reads stayed the same. Figure 24-9 shows the execution plan.

Figure 24-9. An improved execution plan taking advantage of nonclustered indexes

As you can see, the nonclustered index was used instead of a table scan to improve

performance much as you would expect from an index on a standard table. However,

unlike the standard table, while this query did pull columns that were not part of

nonclustered index, no key lookup was required to retrieve the data from the in-memory

table because each index points directly to the storage location, in memory, of the data

necessary. This is yet another small but important improvement over how standard

tables behave.

 Columnstore Index

There actually isn’t much to say about adding a columnstore index to an in-memory

table. Since columnstore indexes work best on tables with 100,000 rows or more, you

will need quite a lot of memory to support their implementation on your in-memory

tables. You are limited to clustered columnstore indexes. You also cannot apply a filtered

columnstore index to an in-memory table. Except for those limitations, the creation of

an in-memory columnstore index is the same as the indexes we’ve already seen:

ALTER TABLE dbo.Address ADD INDEX ccs CLUSTERED COLUMNSTORE;

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

770

 Statistics Maintenance

There are many fundamental differences between how indexes get created with

in- memory tables when compared to standard tables. Index maintenance,

defragmenting indexes, is not something you have to take into account. However, you

do need to worry about statistics of in-memory tables. In-memory indexes maintain

statistics that will need to be updated. You’ll also want information about the in-memory

indexes such as whether they’re being accessed using scans or seeks. While the desire to

track all this is the same, the mechanisms for doing so are different.

You can’t actually see the statistics on hash indexes. You can run

DBCC SHOW_STATISTICS against the index, but the output looks like Figure 24-10.

Figure 24-10. The empty output of statistics on an in-memory index

This means there is no way to look at the statistics of the in-memory indexes. You can

check the statistics of any nonclustered index. Whether you can see the statistics or not,

those statistics will still get out-of-date as your data changes. Statistics are automatically

maintained in SQL Server 2016 and newer for in-memory tables and indexes. The rules

are the same as for disk-based statistics. SQL Server 2014 does not have automatic

statistics maintenance, so you will have to use manual methods.

You can use sp_updatestats. The current version of the procedure is completely aware

of in-memory indexes and their differences. You can also use UPDATE STATISTICS, but in

SQL Server 2014, you must use FULLSCAN or RESAMPLE along with NORECOMPUTE as follows:

UPDATE STATISTICS dbo.Address WITH FULLSCAN, NORECOMPUTE;

If you don’t use this syntax, it appears that you’re attempting to alter the statistics on

the in-memory table, and you can’t do that. You’ll be presented with a pretty clear error.

Msg 41346, Level 16, State 2, Line 1

CREATE and UPDATE STATISTICS for memory optimized tables requires the WITH

FULLSCAN or RESAMPLE and the NORECOMPUTE options. The WHERE clause is not

supported.

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

771

Defining the sampling as either FULLSCAN or RESAMPLE and then letting it know that

you’re not attempting to turn on automatic update by using NORECOMPUTE, the statistics

will get updated.

In SQL Server 2016 and greater, you can control the sampling methods as you would

with other statistics.

 Natively Compiled Stored Procedures
Just getting the table into memory and radically reducing the locking contention with

the optimistic approaches results in impressive performance improvements. To really

make things move quickly, you can also implement the new feature of compiling stored

procedures into a DLL that runs within the SQL Server executable. This really makes the

performance scream. The syntax is straightforward. This is how you could take the query

from before and compile it:

CREATE PROC dbo.AddressDetails @City NVARCHAR(30)

 WITH NATIVE_COMPILATION,

 SCHEMABINDING,

 EXECUTE AS OWNER

AS

BEGIN ATOMIC WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE =

N'us_english')

 SELECT a.AddressLine1,

 a.City,

 a.PostalCode,

 sp.Name AS StateProvinceName,

 cr.Name AS CountryName

 FROM dbo.Address AS a

 JOIN dbo.StateProvince AS sp

 ON sp.StateProvinceID = a.StateProvinceID

 JOIN dbo.CountryRegion AS cr

 ON cr.CountryRegionCode = sp.CountryRegionCode

 WHERE a.City = @City;

END

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

772

Unfortunately, if you attempt to run this query definition as currently defined, you’ll

receive the following error:

Msg 10775, Level 16, State 1, Procedure AddressDetails, Line 7 [Batch Start

Line 5013]

Object 'dbo.CountryRegion' is not a memory optimized table or a natively

compiled inline table-valued function and cannot be accessed from a

natively compiled module.

While you can query a mix of in-memory and standard tables, you can only create

natively compiled stored procedures against in-memory tables. I’m going to use the

same methods shown previously to load the dbo.CountryRegion table into memory and

then run the script again. This time it will compile successfully. If you then execute the

query using @City = 'Walla Walla' as before, the execution time won’t even register

inside SSMS. You have to capture the event through Extended Events, as shown in

Figure 24-11.

Figure 24-11. Extended Events showing the execution time of a natively compiled
procedure

The execution time there is not in milliseconds but microseconds. So, the query

execution time has gone from the native run time of 3.7ms down to the in-memory

run time of 800 microseconds and then finally 451 microseconds. That’s a pretty hefty

performance improvement.

But, there are restrictions. As was already noted, you have to be referencing only

in-memory tables. The parameter values assigned to the procedures cannot accept NULL

values. If you choose to set a parameter to NOT NULL, you must also supply an initial

value. Otherwise, all parameters are required. You must enforce schema binding with

the underlying tables. Finally, you need to have the procedures exist with an ATOMIC

BLOCK. An atomic blocks require that all statements within the transaction succeed or all

statements within the transaction will be rolled back.

Here are another couple of interesting points about the natively compiled

procedures. You can retrieve only an estimated execution plan, not an actual plan. If you

turn on actual plans in SSMS and then execute the query, nothing appears. But, if you

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

773

request an estimated plan, you can retrieve one. Figure 24-12 shows the estimated plan

for the procedure created earlier.

Figure 24-12. Estimated execution plan for a natively compiled procedure

Figure 24-13. SELECT operator properties from two different execution plans

You’ll note that it looks largely like a regular execution plan, but there are quite a few

differences behind the scenes. If you click the SELECT operator, you don’t have nearly

as many properties. Compare the two sets of data from the compiled stored procedure

shown earlier and the properties of the regular query run earlier in Figure 24-13.

Much of the information you would expect to see is gone because the natively

compiled procedures just don’t operate in the same way as the other queries. The use of

execution plans to determine the behavior of these queries is absolutely as valuable here

as it was with standard queries, but the internals are going to be different.

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

774

 Recommendations
While the in-memory tables and natively compiled procedures can result in radical

improvements in performance within SQL Server, you’re still going to want to evaluate

whether their use is warranted in your situation. The limits imposed on the behavior

of these objects means they are not going to be useful in all circumstances. Further,

because of the requirements on both hardware and on the need for an enterprise-level

installation of SQL Server, many just won’t be able to implement these new objects and

their behavior. To determine whether your workload is a good candidate for the use of

these new objects, you can do a number of things.

 Baselines
You should already be planning on establishing a performance baseline of your system

by gathering various metrics using Performance Monitor, the dynamic management

objects, Extended Events, and all the other tools at your disposal. Once you have the

baseline, you can make determinations if your workload is likely to benefit from the

reduced locking and increased speed of the in-memory tables.

 Correct Workload
This technology is called in-memory OLTP tables for a reason. If you are dealing with

a system that is primarily read focused, has only nightly or intermittent loads, or has a

very low level of online transaction processing as its workload, the in-memory tables and

natively compiled procedures are unlikely to be a major benefit for you. If you’re dealing

with a lot of latency in your system, the in-memory tables could be a good solution.

Microsoft has outlined several other potentially beneficial workloads that you could

consider using in-memory tables and natively compiled procedures; see Books Online

(http://bit.ly/1r6dmKY).

 Memory Optimization Advisor
To quickly and easily determine whether a table is a good candidate for moving to

in-memory storage, Microsoft has supplied a tool within SSMS. If you use the Object

Explorer to navigate to a particular table, you can right-click that table and select

Memory Optimization Advisor from the context menu. That will open a wizard. If I select

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

http://bit.ly/1r6dmKY

775

the Person.Address table that I manually migrated earlier, the initial check will find

all the columns that are not supported within the in-memory table. That will stop the

wizard, and no other options are available. The output looks like Figure 24-14.

Figure 24-14. Table Memory Optimization Advisor showing all the unsupported
data types

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

776

That means this table, as currently structured, would not be a candidate for moving

to in-memory storage. So that you can see a clean run-through of the tool, I’ll create a

clean copy of the table in the InMemoryTest database created earlier, shown here:

USE InMemoryTest;

GO

CREATE TABLE dbo.AddressStaging

 (

 AddressID INT NOT NULL

 IDENTITY(1, 1)

 PRIMARY KEY,

 AddressLine1 NVARCHAR(60) NOT NULL,

 AddressLine2 NVARCHAR(60) NULL,

 City NVARCHAR(30) NOT NULL,

 StateProvinceID INT NOT NULL,

 PostalCode NVARCHAR(15) NOT NULL

);

Now, running the Memory Optimization Advisor has completely different results in

the first step, as shown in Figure 24-15.

Figure 24-15. Successful first check of the Memory Optimization Advisor

The next step in the wizard shows a fairly standard set of warnings about the

differences that using the in-memory tables will cause in your T-SQL as well as links

to further reading about these limitations. It’s a useful reminder that you may have to

address your code should you choose to migrate this table to in-memory storage. You

can see that in Figure 24-16.

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

777

You can stop there and click the Report button to generate a report of the check that

was run against your table. Or, you can use the wizard to actually move the table into

memory. Clicking Next from the Warnings page will open an Options page where you

can determine how the table will be migrated into memory. You get to choose what the

old table will be named. It assumes you’ll be keeping the table name the same for the

in- memory table. Several other options are available, as shown in Figure 24-17.

Figure 24-16. Data migration warnings

Figure 24-17. Setting the options for migrating the standard table to in- memory

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

778

Clicking Next you get to determine how you’re going to create the primary key for

the table. You get to supply it with a name. Then you have to choose if you’re going with

a nonclustered hash or a nonclustered index. If you choose the nonclustered hash, you

will have to provide a bucket count. Figure 24-18 shows how I configured the key in

much the same way as I did it earlier using T-SQL.

Figure 24-18. Choosing the configuration of the primary key of the new
in- memory table

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

779

Clicking Next will show you a summary of the choices you have made and enable a

button at the bottom of the screen to immediately migrate the table. It will migrate the

table, renaming the old table however it was told to, and it will migrate the data if you

chose that option. The output of a successful migration looks like Figure 24-19.

The Memory Optimization Advisor can then identify which tables can physically be

moved into memory and can do that work for you. But, it doesn’t have the judgment to

know which tables should be moved into memory. You’re still going to have to think that

through on your own.

 Native Compilation Advisor
Similar in function to the Memory Optimization Advisor, the Native Compilation Advisor

can be run against an existing stored procedure to determine whether it can be compiled

natively. However, it’s much simpler in function than the prior wizard. To show it in

action, I’m going create two different procedures, shown here:

CREATE OR ALTER PROCEDURE dbo.FailWizard (@City NVARCHAR(30))

AS

SELECT a.AddressLine1,

 a.City,

 a.PostalCode,

 sp.Name AS StateProvinceName,

 cr.Name AS CountryName

FROM dbo.Address AS a

 JOIN dbo.StateProvince AS sp

 ON sp.StateProvinceID = a.StateProvinceID

 JOIN dbo.CountryRegion AS cr WITH (NOLOCK)

Figure 24-19. A successful in-memory table migration using the wizard

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

780

 ON cr.CountryRegionCode = sp.CountryRegionCode

WHERE a.City = @City;

GO

CREATE OR ALTER PROCEDURE dbo.PassWizard (@City NVARCHAR(30))

AS

SELECT a.AddressLine1,

 a.City,

 a.PostalCode,

 sp.Name AS StateProvinceName,

 cr.Name AS CountryName

FROM dbo.Address AS a

 JOIN dbo.StateProvince AS sp

 ON sp.StateProvinceID = a.StateProvinceID

 JOIN dbo.CountryRegion AS cr

 ON cr.CountryRegionCode = sp.CountryRegionCode

WHERE a.City = @City;

GO

The first procedure includes a NOLOCK hint that can’t be run against in-memory

tables. The second procedure is just a repeat of the procedure you’ve been working with

throughout this chapter. After executing the script to create both procedures, I can access

the Native Compilation Advisor by right-clicking the stored procedure dbo.FailWizard

and selecting Native Compilation Advisor from the context menu. After getting past the

wizard start screen, the first step identifies a problem with the procedure, as shown in

Figure 24-20.

Figure 24-20. The Native Compilation Advisor has identified inappropriate
T-SQL syntax

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

781

Pay special attention to the note at the top of Figure 24-20. It states that all tables

must be memory-optimized tables to natively compile the procedure. But, that check is

not part of the Native Compilation Advisor checks.

Clicking Next as prompted, you can then see the problem that was identified by the

wizard, as shown in Figure 24-21.

The wizard shows the problematic T-SQL, and it shows the line on which that T-SQL

occurs. That’s all that’s provided by this wizard. If I run the same check against the

other procedure, dbo.WizardPass, it just reports that there are not any improper T-SQL

statements. There is no additional action to compile the procedure for me. To get the

procedure to compile, it will be necessary to add the additional functionality as defined

earlier in this chapter. Except for this syntax check, there is no other help for natively

compiling stored procedures.

 Summary
This chapter introduced the concepts of in-memory tables and natively compiled stored

procedures. These are high-end methods for achieving potentially massive performance

enhancements. There are, however, a lot of limitations on implementing these new

objects on a wide scale. You will need to have a machine with enough memory to

support the additional load. You’re also going to want to carefully test your data and load

prior to committing to this approach in a production environment. But, if you do need to

make your OLTP systems perform faster than ever before, this is a viable technology. It’s

also supported within Azure SQL Database.

The next chapter outlines how query and index optimization has been partially

automated within SQL Server 2017 and Azure SQL Database.

Figure 24-21. The problem with the code is identified by the Native Compilation
Advisor

Chapter 24 MeMory-optiMized oLtp tabLes and proCedures

www.EBooksWorld.ir

783
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_25

CHAPTER 25

Automated Tuning
in Azure SQL Database
and SQL Server
While a lot of query performance tuning involves detailed knowledge of the systems,

queries, statistics, indexes, and all the rest of the information put forward in this book,

certain aspects of query tuning are fairly mechanical in nature. The process of noticing

a missing index suggestion and then testing whether that index helps or hurts a query

and whether it hurts other queries could be automated. The same thing goes for certain

kinds of bad parameter sniffing where it’s clear that one plan is superior to another.

Microsoft has started the process of automating these aspects of query tuning. Further, it

is putting other forms of automated mechanisms into both Azure SQL Database and SQL

Server that will help you by tuning aspects of your queries on the fly. Don’t worry, the

rest of the book will still be extremely useful because these approaches are only going to

fix a fairly narrow range of problems. You’ll still have plenty of challenging work to do.

In this chapter, I’ll cover the following:

• Automatic plan correction

• Azure SQL Database automatic index management

• Adaptive query processing

www.EBooksWorld.ir

784

 Automatic Plan Correction
The mechanisms behind SQL Server 2017 and Azure SQL Database being able to

automatically correct execution plans are best summed up in this way. Microsoft has

taken the data now available to it, thanks to the Query Store (for more details on the

Query Store, see Chapter 11), and it has weaponized that data to do some amazing

things. As your data changes, your statistics can change. You may have a well-written

query and appropriate indexes, but over time, as the statistics shift, you might see a new

execution plan introduced that hurts performance, basically a bad parameter sniffing

issue as outlined in Chapter 17. Other factors could also lead to good query performance

turning bad, such as a Cumulative Update changing engine behavior. Whatever the

cause, your code and structures still support good performance, if only you can get the

right plan in place. Obviously, you can use the tools provided through the Query Store

yourself to identify queries that have degraded in performance and which plans supplied

better performance and then force those plans. However, notice how the entire process

just outlined is very straightforward.

 1. Monitor query performance, and note when a query that has

not changed in the past suddenly experiences a change in

performance.

 2. Determine whether the execution plan for that query has

changed.

 3. If the plan has changed and performance has degraded, force the

previous plan.

 4. Measure performance to see whether it degrades, improves, or

stays the same.

 5. If it degrades, undo the change.

In a nutshell, this is what happens within SQL Server. A process within SQL Server

observes the query performance within the Query Store. If it sees that the query has

remained the same but the performance degraded when the execution plan changed, it

will document this as a suggested plan regression. If you enable the automatic tuning of

queries, when a regression is identified, it will automatically force the last good plan. The

automatic process will then observe behavior to see whether forcing the plan was a bad

choice. If it was, it corrects the issue and records that fact for you to look at later. In short,

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

785

Microsoft automated fixing things such as bad parameter sniffing through automated

plan forcing thanks to the data available in the Query Store.

 Tuning Recommendations
To start with, let’s see how SQL Server identifies tuning recommendations. Since this

process is completely dependent on the Query Store, you can enable it only on databases

that also have the Query Store enabled (see Chapter 11). With the Query Store enabled,

SQL Server, whether 2017 or Azure SQL Database, will automatically begin monitoring

for regressed plans. There’s nothing else you have to enable once you’ve enabled the

Query Store.

Microsoft is not defining precisely what makes a plan become regressed sufficiently

that it is marked as such. So, we’re not going to take any chances. We’re going to use Adam

Machanic’s script (make_big_adventure.sql) to create some very large tables within

AdventureWorks. The script can be downloaded from http://bit.ly/2mNBIhg. We also

used this in Chapter 9 when working with columnstore indexes. If you are still using the

same database, drop those tables and re-create them. This will give us a very large data set

from which we can create a query that behaves two different ways depending on the data

values passed to it. To see a regressed plan, let’s take a look at the following script:

CREATE INDEX ix_ActualCost ON dbo.bigTransactionHistory (ActualCost);

GO

--a simple query for the experiment

CREATE OR ALTER PROCEDURE dbo.ProductByCost (@ActualCost MONEY)

AS

SELECT bth.ActualCost

FROM dbo.bigTransactionHistory AS bth

JOIN dbo.bigProduct AS p

ON p.ProductID = bth.ProductID

WHERE bth.ActualCost = @ActualCost;

GO

--ensuring that Query Store is on and has a clean data set

ALTER DATABASE AdventureWorks2017 SET QUERY_STORE = ON;

ALTER DATABASE AdventureWorks2017 SET QUERY_STORE CLEAR;

GO

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

http://bit.ly/2mNBIhg

786

This code creates an index that we’re going to use on the

dbo.bigTransactionHistory table. It also creates a simple stored procedure that we’re

going to test. Finally, the script ensures that the Query Store is set to ON and it’s clear of all

data. With all that in place, we can run our test script as follows:

--establish a history of query performance

EXEC dbo.ProductByCost @ActualCost = 8.2205;

GO 30

--remove the plan from cache

DECLARE @PlanHandle VARBINARY(64);

SELECT @PlanHandle = deps.plan_handle

FROM sys.dm_exec_procedure_stats AS deps

WHERE deps.object_id = OBJECT_ID('dbo.ProductByCost');

IF @PlanHandle IS NOT NULL

 BEGIN

 DBCC FREEPROCCACHE(@PlanHandle);

 END

GO

--execute a query that will result in a different plan

EXEC dbo.ProductByCost @ActualCost = 0.0;

GO

--establish a new history of poor performance

EXEC dbo.ProductByCost @ActualCost = 8.2205;

GO 15

This will take a while to execute. Once it’s complete, we should have a tuning

recommendation in our database. Referring to the previous listing, we established

a particular behavior in our query by executing it at least 30 times. The query itself

returns just a single row of data when the value 8.2205 is used. The plan used looks like

Figure 25-1.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

787

While the plan shown in Figure 25-1 may have some tuning opportunities, especially

with the inclusion of the Key Lookup operation, it works well for small data sets. Running

the query multiple times builds up a history within the Query Store. Next, we remove

the plan from cache, and a new plan is generated when we use the value 0.0, visible in

Figure 25-2.

Figure 25-1. Initial execution plan for the query when returning a small data set

Figure 25-2. Execution plan for a much larger data set

After that plan is generated, we execute the procedure a number of additional times

(15 seems to work) so that it’s clear that we’re not looking at a simple anomaly but a true

plan regression in progress. That will suggest a tuning recommendation.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

788

We can validate that this set of queries resulted in a tuning recommendation by

looking at the new DMV called sys.dm_db_tuning_recommendations. Here is an

example query returning a limited result set:

SELECT ddtr.type,

 ddtr.reason,

 ddtr.last_refresh,

 ddtr.state,

 ddtr.score,

 ddtr.details

FROM sys.dm_db_tuning_recommendations AS ddtr;

There is even more than this available from sys.dm_db_tuning_recommendations,

but let’s step through what we have currently, based on the plan regression from earlier.

You can see the results of this query in Figure 25-3.

Figure 25-3. First tuning recommendation from sys.dm_db_tuning_
recommendations DMV

The information presented here is both straightforward and a little confusing. To

start with, the TYPE value is easy enough to understand. The recommendation here is

that we need FORCE_LAST_GOOD_PLAN for this query. Currently, this is the only available

option at the time of publication, but this will change as additional automatic tuning

mechanisms are implemented. The reason value is where things get interesting. In this

case, the explanation for the need to revert to a previous plan is as follows:

Average query CPU time changed from 0.12ms to 2180.37ms

Our CPU changed from less than 1ms to just over 2.2 seconds for each execution of

the query. That is an easily identifiable issue. The last_refresh value tells us the last

time any of the data changed within the recommendation. We get the state value, which

is a small JSON document consisting of two fields, currentValue and reason. Here is the

document from the previous result set:

{"currentValue":"Active","reason":"AutomaticTuningOptionNotEnabled"}

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

789

It’s showing that this recommendation is Active but that it was not implemented

because we have not yet implemented automatic tuning. There are a number of possible

values for the Status field. We’ll go over them and the values for the reason field in

the next section, “Enabling Automatic Tuning.” The score is an estimated impact value

ranging between 0 and 100. The higher the value, the greater the impact of the suggested

process. Finally, you get details, another JSON document containing quite a bit more

information, as you can see here:

{"planForceDetails":{"queryId":2,"regressedPlanId":4,

"regressedPlanExecutionCount":15,"regressedPlanErrorCount":0,

"regressedPlanCpuTimeAverage":2.180373266666667e+006,

"regressedPlanCpuTimeStddev":1.680328201712986e+006,

"recommendedPlanId":2,"recommendedPlanExecutionCount":30,

"recommendedPlanErrorCount":0,"recommendedPlanCpuTimeAverage":

1.176333333333333e+002,"recommendedPlanCpuTimeStddev":

6.079253426385694e+001},"implementationDetails":{"method":"TSql",

"script":"exec sp_query_store_force_plan @query_id = 2, @plan_id = 2"}}

That’s a lot of information in a bit of a blob, so let’s break it down more directly

into a grid:

planForceDetails

queryID 2: query_id value from the

Query Store

regressedPlanID 4: plan_id value from the

Query Store of the problem plan

regressedPlanExecutionCount 15: number of times the

regressed plan was used

regressedPlanErrorCount 0: When there is a value, errors

during execution

regressedPlanCpuTimeAverage 2.18037326666667e+006:

average Cpu of the plan

regressedPlanCpuTimeStddev 1.60328201712986e+006:

Standard deviation of that value

(continued)

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

790

planForceDetails

recommendedPlanID 2: plan_id that the tuning

recommendation is suggesting

recommendedPlanExecutionCount 30: number of times the

recommended plan was used

recommendedPlanErrorCount 0: When there is a value, errors

during execution

recommendedPlanCpuTimeAverage 1.176333333333333e+002:

average Cpu of the plan

recommendedPlanCpuTimeStddev 6.079253426385694e+001:

Standard deviation of that value

implementationDetails

method TSql: value will always be

t-SQL

script exec sp_query_store_

force_plan @query_id = 2,

@plan_id = 2

That represents the full details of the tuning recommendations. Without ever

enabling automatic tuning, you can see suggestions for plan regressions and the full

details behind why these suggestions are being made. You even have the script that will

enable you to, if you want, execute the suggested fix without enabling automatic plan

correction.

With this information, you can then write a much more sophisticated query to

retrieve all the information that would enable you to fully investigate these suggestions,

including taking a look at the execution plans. All you have to do is query the JSON data

directly and then join that to the other information you have from the Query Store, much

as this script does:

WITH DbTuneRec

AS (SELECT ddtr.reason,

 ddtr.score,

 pfd.query_id,

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

791

 pfd.regressedPlanId,

 pfd.recommendedPlanId,

 JSON_VALUE(ddtr.state,

 '$.currentValue') AS CurrentState,

 JSON_VALUE(ddtr.state,

 '$.reason') AS CurrentStateReason,

 JSON_VALUE(ddtr.details,

 '$.implementationDetails.script') AS

ImplementationScript

 FROM sys.dm_db_tuning_recommendations AS ddtr

 CROSS APPLY

 OPENJSON(ddtr.details,

 '$.planForceDetails')

 WITH (query_id INT '$.queryId',

 regressedPlanId INT '$.regressedPlanId',

 recommendedPlanId INT '$.recommendedPlanId') AS pfd)

SELECT qsq.query_id,

 dtr.reason,

 dtr.score,

 dtr.CurrentState,

 dtr.CurrentStateReason,

 qsqt.query_sql_text,

 CAST(rp.query_plan AS XML) AS RegressedPlan,

 CAST(sp.query_plan AS XML) AS SuggestedPlan,

 dtr.ImplementationScript

FROM DbTuneRec AS dtr

 JOIN sys.query_store_plan AS rp

 ON rp.query_id = dtr.query_id

 AND rp.plan_id = dtr.regressedPlanId

 JOIN sys.query_store_plan AS sp

 ON sp.query_id = dtr.query_id

 AND sp.plan_id = dtr.recommendedPlanId

 JOIN sys.query_store_query AS qsq

 ON qsq.query_id = rp.query_id

 JOIN sys.query_store_query_text AS qsqt

 ON qsqt.query_text_id = qsq.query_text_id;

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

792

The next steps after you’ve observed how the tuning recommendations are arrived at

are to investigate them, implement them, and then observe their behavior over time, or

you can enable automatic tuning so you don’t have to baby-sit the process.

You do need to know that the information in sys.dm_db_tuning_recommendations

is not persisted. If the database or server goes offline for any reason, this information is

lost. If you find yourself using this regularly, you should plan on scheduling an export to

a more permanent home.

 Enabling Automatic Tuning
The process to enable automatic tuning completely depends on if you’re working

within Azure SQL Database or if you’re in SQL Server 2017. Since automatic tuning is

dependent on the Query Store, turning it on is also a database-by-database undertaking.

Azure offers two methods: using the Azure portal or using T-SQL commands. SQL Server

2017 only supports T-SQL. We’ll start with the Azure portal.

Note the azure portal is updated frequently. Screen captures in this book may
be out-of-date, and you may see different graphics when you walk through on your
own.

 Azure Portal

I’m going to assume you already have an Azure account and that you know how to

create an Azure SQL Database and can navigate to it. We’ll start from the main blade

of a database. You can see all the various standard settings on the left. The top of the

page will show the general settings of the database. The center of the page will show the

performance metrics. Finally, at the bottom right of the page are the database features.

You can see all this in Figure 25-4.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

793

Figure 25-4. Database blade on Azure portal

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

794

We’ll focus down on the details at the lower right of the screen and click the

automatic tuning feature. That will open a new blade with the settings for automatic

tuning within Azure, as shown in Figure 25-5.

To enable automatic tuning within this database, we change the settings for FORCE

PLAN from INHERIT, which is OFF by default, to ON. You will then have to click the

Apply button at the top of the page. Once this process is complete, your options should

look like mine in Figure 25-6.

Figure 25-5. Automatic tuning features of the Azure SQL Database

Figure 25-6. Automatic tuning options change to FORCE PLAN as ON

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

795

You can change these settings for the server, and then each database can

automatically inherit them. Turning them on or off does not reset connections or in any

way take the database offline. The other options will be discussed in the section later in

this chapter titled “Azure SQL Database Automatic Index Management.”

With this completed, Azure SQL Database will begin to force the last good plan in the

event of a regressed query, as you saw earlier in the section “Tuning Recommendations.”

As before, you can query the DMVs to retrieve the information. You can also use the

portal to look at this information. On the left side of the SQL Database blade are the list

of functions. Under the heading “Support + Troubleshooting” you’ll see “Performance

recommendations.” Clicking that will bring up a screen similar to Figure 25-7.

Figure 25-7. Performance recommendations page on the portal

The information on display in Figure 25-7 should look partly familiar. You’ve

already seen the action, recommendation, and impact from the DMVs we queried in

the “Tuning Recommendations” section earlier. From here you can manually apply

recommendations, or you can view discarded recommendations. You can also get back

to the settings screen by clicking the Automate button. All of this is taking advantage of

the Query Store, which is enabled by default in all new databases.

That’s all that’s needed to enable automatic tuning within Azure. Let’s see how to do

it within SQL Server 2017.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

796

 SQL Server 2017

There is no graphical interface for enabling automatic query tuning within SQL Server

2017 at this point. Instead, you have to use a T-SQL command. You can also use this

same command within Azure SQL Database. The command is as follows:

ALTER DATABASE current SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON);

You can of course substitute the appropriate database name for the default value of

current that I use here. This command can be run on only one database at a time. If you

want to enable automatic tuning for all databases on your instance, you have to enable it

in the model database before those other databases are created, or you need to turn it on

for each database on the server.

The only option currently for automatic_tuning is to do as we have done and enable

the forcing of the last good plan. You can disable this by using the following command:

ALTER DATABASE current SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = OFF);

If you run this script, remember to run it again using ON to keep plan automated

tuning in place.

 Automatic Tuning in Action

With the automatic tuning enabled, we can rerun our script that generates a regressed

plan. However, just to verify that automated tuning is running, let’s use a new system

view, sys.database_automatic_tuning_options, to verify.

SELECT name,

 desired_state,

 desired_state_desc,

 actual_state,

 actual_state_desc,

 reason,

 reason_desc

FROM sys.database_automatic_tuning_options;

The results show a desired_state value of 1 and a desired_state_desc value of On.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

797

I clear the cache first when I do it for testing as follows:

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

GO

EXEC dbo.ProductByCost @ActualCost = 8.2205;

GO 30

--remove the plan from cache

DECLARE @PlanHandle VARBINARY(64);

SELECT @PlanHandle = deps.plan_handle

FROM sys.dm_exec_procedure_stats AS deps

WHERE deps.object_id = OBJECT_ID('dbo.ProductByCost');

IF @PlanHandle IS NOT NULL

 BEGIN

 DBCC FREEPROCCACHE(@PlanHandle);

 END

GO

--execute a query that will result in a different plan

EXEC dbo.ProductByCost @ActualCost = 0.0;

GO

--establish a new history of poor performance

EXEC dbo.ProductByCost @ActualCost = 8.2205;

GO 15

Now, when we query the DMV using my sample script from earlier, the results are

different, as shown in Figure 25-8.

Figure 25-8. The regressed query has been forced

The CurrentState value has been changed to Verifying. It will measure

performance over a number of executions, much as it did before. If the performance

degrades, it will unforce the plan. Further, if there are errors such as timeouts or aborted

executions, the plan will also be unforced. You’ll also see the error_prone column in

sys.dm_db_tuning_recommendations changed to a value of Yes in this event.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

798

If you restart the server, the information in sys.dm_db_tuning_recommendations will

be removed. Also, any plans that have been forced will be removed. As soon as a query

regresses again, any plan forcing will be automatically reenabled, assuming the Query

Store history is there. If this is an issue, you can always force the plan manually.

If a query is forced and then performance degrades, it will be unforced, as already

noted. If that query again suffers from degraded performance, plan forcing will be

removed, and the query will be marked such that, at least until a server reboot when the

information is removed, it will not be forced again.

We can also see the forced plan if we look to the Query Store reports. Figure 25-9

shows the result of the plan forcing from the automated tuning.

Figure 25-9. The Queries with Forced Plans report showing the result of
automated tuning

These reports won’t show you why the plan is forced. However, you can always go to

the DMVs for that information if needed.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

799

 Azure SQL Database Automatic Index Management
Automatic index management goes to the heart of the concept of Azure SQL Database

being positioned as a Platform as a Service (PaaS). A large degree of functionality such

as patching, backups, and corruption testing, along with high availability and a bunch

of others, are all managed for you inside the Microsoft cloud. It just makes sense that

they can also put their knowledge and management of the systems to work on indexes.

Further, because all the processing for Azure SQL Database is taking place inside

Microsoft’s server farms in Azure, they can put their machine learning algorithms to

work when monitoring your systems.

Note that Microsoft doesn’t gather private information from your queries, data,

or any of the information stored there. It simply uses the query metrics to measure

behavior. It’s important to state this up front because misinformation has been

transmitted about these functions.

Before we enable index management, though, let’s generate some bad

query behavior. I’m using two scripts against the sample database within Azure,

AdventureWorksLT. When you provision a database within Azure, the example database,

one of your choices in the portal, is simple and easy to immediately implement. That’s

why I like to use it for examples. To get started, here’s a T-SQL script to generate some

stored procedures:

CREATE OR ALTER PROCEDURE dbo.CustomerInfo

(@Firstname NVARCHAR(50))

AS

SELECT c.FirstName,

 c.LastName,

 c.Title,

 a.City

FROM SalesLT.Customer AS c

 JOIN SalesLT.CustomerAddress AS ca

 ON ca.CustomerID = c.CustomerID

 JOIN SalesLT.Address AS a

 ON a.AddressID = ca.AddressID

WHERE c.FirstName = @Firstname;

GO

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

800

CREATE OR ALTER PROCEDURE dbo.EmailInfo (@EmailAddress nvarchar(50))

AS

SELECT c.EmailAddress,

 c.Title,

 soh.OrderDate

FROM SalesLT.Customer AS c

 JOIN SalesLT.SalesOrderHeader AS soh

 ON soh.CustomerID = c.CustomerID

WHERE c.EmailAddress = @EmailAddress;

GO

CREATE OR ALTER PROCEDURE dbo.SalesInfo (@firstName NVARCHAR(50))

AS

SELECT c.FirstName,

 c.LastName,

 c.Title,

 soh.OrderDate

FROM SalesLT.Customer AS c

 JOIN SalesLT.SalesOrderHeader AS soh

 ON soh.CustomerID = c.CustomerID

WHERE c.FirstName = @firstName

GO

CREATE OR ALTER PROCEDURE dbo.OddName (@FirstName NVARCHAR(50))

AS

SELECT c.FirstName

FROM SalesLT.Customer AS c

WHERE c.FirstName BETWEEN 'Brian'

 AND @FirstName

GO

Next, here is a PowerShell script to call these procedures multiple times:

$SqlConnection = New-Object System.Data.SqlClient.SqlConnection

$SqlConnection.ConnectionString = 'Server=qpf.database.windows.net;Database

=QueryPerformanceTuning;trusted_connection=false;user=UserName;password=You

rPassword'

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

801

load customer names

$DatCmd = New-Object System.Data.SqlClient.SqlCommand

$DatCmd.CommandText = "SELECT c.FirstName, c.EmailAddress

FROM SalesLT.Customer AS c;"

$DatCmd.Connection = $SqlConnection

$DatDataSet = New-Object System.Data.DataSet

$SqlAdapter = New-Object System.Data.SqlClient.SqlDataAdapter

$SqlAdapter.SelectCommand = $DatCmd

$SqlAdapter.Fill($DatDataSet)

$Proccmd = New-Object System.Data.SqlClient.SqlCommand

$Proccmd.CommandType = [System.Data.CommandType]'StoredProcedure'

$Proccmd.CommandText = "dbo.CustomerInfo"

$Proccmd.Parameters.Add("@FirstName",[System.Data.SqlDbType]"nvarchar")

$Proccmd.Connection = $SqlConnection

$EmailCmd = New-Object System.Data.SqlClient.SqlCommand

$EmailCmd.CommandType = [System.Data.CommandType]'StoredProcedure'

$EmailCmd.CommandText = "dbo.EmailInfo"

$EmailCmd.Parameters.Add("@EmailAddress",[System.Data.SqlDbType]"nvarchar")

$EmailCmd.Connection = $SqlConnection

$SalesCmd = New-Object System.Data.SqlClient.SqlCommand

$SalesCmd.CommandType = [System.Data.CommandType]'StoredProcedure'

$SalesCmd.CommandText = "dbo.SalesInfo"

$SalesCmd.Parameters.Add("@FirstName",[System.Data.SqlDbType]"nvarchar")

$SalesCmd.Connection = $SqlConnection

$OddCmd = New-Object System.Data.SqlClient.SqlCommand

$OddCmd.CommandType = [System.Data.CommandType]'StoredProcedure'

$OddCmd.CommandText = "dbo.OddName"

$OddCmd.Parameters.Add("@FirstName",[System.Data.SqlDbType]"nvarchar")

$OddCmd.Connection = $SqlConnection

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

802

while(1 -ne 0)

{

 foreach($row in $DatDataSet.Tables[0])

 {

 $name = $row[0]

 $email = $row[1]

 $SqlConnection.Open()

 $Proccmd.Parameters["@FirstName"].Value = $name

 $Proccmd.ExecuteNonQuery() | Out-Null

 $EmailCmd.Parameters["@EmailAddress"].Value = $email

 $EmailCmd.ExecuteNonQuery() | Out-Null

 $SalesCmd.Parameters["@FirstName"].Value = $name

 $SalesCmd.ExecuteNonQuery() | Out-Null

 $OddCmd.Parameters["@FirstName"].Value = $name

 $OddCmd.ExecuteNonQuery() | Out-Null

 $SqlConnection.Close()

 }

 }

These scripts will enable us to generate the necessary load to cause the automatic

index management to fire. The PowerShell script must be run for approximately 12 to 18

hours before a sufficient amount of data can be collected within Azure. However, there

are some requirements and settings you must change first.

For automatic index management to work, you must have the Query Store enabled

on the Azure SQL Database. The Query Store is enabled by default in Azure, so you’ll

only need to turn it back on if you have turned it off. To ensure that it is enabled, you can

run the following script:

ALTER DATABASE CURRENT SET QUERY_STORE = ON;

With the Query Store enabled, you’ll now need to navigate to the Overview screen

of your database. Figure 25-2 shows the full screen. For a reminder, at the bottom of

the screen are a number of options, one of which is “Automatic tuning,” as shown in

Figure 25-10.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

803

Automatic tuning is the selection in the upper right. Just remember, Azure is subject

to change, so your screen may look different from mine. Clicking the “Automatic tuning”

button will open the screen shown in Figure 25-11.

Figure 25-10. Database features in Azure SQL Database including “Automatic
tuning”

Figure 25-11. Enabling “Automatic tuning” within Azure SQL Database

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

804

In this case, I have enabled all three options, so not only will I get the last good plan

through automatic tuning as described in the earlier section, but I also have now turned

on automatic index management.

With these features enabled, we can now run the PowerShell script for at least 12

hours. You can validate whether you have received an index by querying sys.dm_db_

tuning_recommendations as we did earlier. Here I’m using the simple script that just

retrieves the core information from the DMV:

SELECT ddtr.type,

 ddtr.reason,

 ddtr.last_refresh,

 ddtr.state,

 ddtr.score,

 ddtr.details

FROM sys.dm_db_tuning_recommendations AS ddtr;

The results on my Azure SQL Database look something like Figure 25-12.

Figure 25-12. Results of automatic tuning within Azure SQL Database

As you can see, there have been multiple tuning events on my system. The first

one is the one we’re interested in for this example, the CreateIndex type. You can also

look to the Azure portal to retrieve the behavior of automatic tuning. On the left side

of your portal screen, near the bottom, you should see a Support + Troubleshooting

choice labeled “Performance recommendations.” Selecting that will open a window like

Figure 25-13.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

805

Since we have enabled all automatic tuning, there are no recommendations

currently. The automated tuning has taken effect. However, we can still drill down and

gather additional information. Click the CREATE INDEX choice to open a new window.

When the automatic tuning has not yet been validated, the window will open by default

in the Estimated Impact view, shown in Figure 25-14.

Figure 25-13. Performance recommendations and tuning history

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

806

In my case, the index has already been created, and validation that the index

is properly supporting the queries is underway. You get a good overview of the

recommendation, and it should look familiar since the information is similar to that

included in the earlier automatic plan tuning. The differences are in the details where,

instead of a suggested plan, we have a suggested index, index type, schema, table, index

column or columns, and any included columns.

You can take control of these automated changes by looking at the buttons across the

top of the screen. You can remove the changes manually by clicking Revert. You can see

the script used to generate the changes, and you can look at the query metrics collected.

Figure 25-14. Estimated Impact view of recommended index

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

807

My system opens by default on the Validation report, as shown in Figure 25-15.

Figure 25-15. Validation in action during automatic index management

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

808

From this report you can see that the new index is in place, but it is currently going

through an evaluation period. It’s currently unclear exactly how long the evaluation

period lasts, but it’s safe to assume it’s probably another 12 to 18 hours of load on the

system during which any negative effects from the index will be measured and used to

decide whether the index is kept. The exact time over which an evaluation is done is not

published information, so even my estimates here could be subject to change.

As a part of demonstrating the behavior, I stopped running queries against the

database during the validation period. This meant that any queries measured by the

system were unlikely to have any kind of benefit from the new index. Because of that, two

days later, the index reverted, meaning it was removed from the system. We can see this

in the tuning history, as shown in Figure 25-16.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

809

Figure 25-16. The index has been removed after the load changed

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

810

Assuming the load was kept in place, however, the index would have been validated

as showing a performance improvement for the queries being called.

 Adaptive Query Processing
Tuning queries is the purpose of this book, so talking about mechanisms that will make it

so you don’t have to tune quite so many queries does seem somewhat counterintuitive,

but it’s worth understanding exactly the places where SQL Server will automatically help

you out. The new mechanisms outlined by adaptive query processing are fundamentally

about changing the behavior of queries as the queries execute. This can help deal with

some fundamental issues related to misestimated row counts and memory allocation.

There are currently three types of adaptive query processing, and we’ll demonstrate all

three in this chapter:

• Batch mode memory grant feedback

• Batch mode adaptive join

• Interleaved execution

We already went over adaptive joins in Chapter 9. We’ll deal with the other two

mechanisms of adaptive query processing in order, starting with batch mode memory

grant feedback.

 Batch Mode Memory Grant Feedback
Batch mode, as of this writing, is supported only by queries that involve a columnstore

index, clustered or nonclustered. Batch mode itself is worth a short explanation.

During row mode execution within an execution plan, each pair of operators has to

negotiate each row being transferred between them. If there are ten rows, there are ten

negotiations. If there are ten million rows, there are ten million negotiations. As you can

imagine, this gets quite costly. So, in a batch mode operation, instead of processing each

row one at a time, the processing occurs in batches, generally distributed up to 900 rows

per batch, but there is quite a bit of variation there. This means, instead of ten million

negotiations to move ten million rows, there are only this many:

10000000 rows / ~ 900 rows per batch = 11,111 batches

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

811

Going from ten million negotiations to approximately 11,000 is a radical

improvement. Additionally, because processing time has been freed up and because

better row estimates are possible, you can get different behaviors within the execution of

the query.

The first of the behaviors we’ll explore is batch mode memory grant feedback. In this

case, when a query gets executed in batch mode, calculations are made as to whether the

query had excess or inadequate memory. Inadequate memory is especially a problem

because it leads to having to allocate and use the disk to manage the excess, referred to

as a spill. Having better memory allocation can improve performance. Let’s explore an

example.

First, for it to work, ensure you still have a columnstore index on your

bigTransactionHistory table and that the compatibility mode of the database is

set to 140.

Before we start, we can also ensure that we can observe the behavior by using

Extended Events to capture events directly related to the memory grant feedback

process. Here’s a script that does that:

CREATE EVENT SESSION MemoryGrant

ON SERVER

 ADD EVENT sqlserver.memory_grant_feedback_loop_disabled

 (WHERE (sqlserver.database_name = N'AdventureWorks2017')),

 ADD EVENT sqlserver.memory_grant_updated_by_feedback

 (WHERE (sqlserver.database_name = N'AdventureWorks2017')),

 ADD EVENT sqlserver.sql_batch_completed

 (WHERE (sqlserver.database_name = N'AdventureWorks2017'))

WITH (TRACK_CAUSALITY = ON);

The first event, memory_grant_feedback_loop_disabled, occurs when the query

in question is overly affected by parameter values. Instead of letting the memory grant

swing wildly back and forth, the query engine will disable the feedback for some plans.

When this happens to a plan, this event will fire during the execution. The second event,

memory_grant_updated_by_feedback, occurs when the feedback is processed. Let’s see

that in action.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

812

Here is a procedure with a query that aggregates some of the information from the

bigTransactionHistory table:

CREATE OR ALTER PROCEDURE dbo.CostCheck (@Cost MONEY)

AS

SELECT p.Name,

 AVG(th.Quantity),

 AVG(th.ActualCost)

FROM dbo.bigTransactionHistory AS th

 JOIN dbo.bigProduct AS p

 ON p.ProductID = th.ProductID

WHERE th.ActualCost = @Cost

GROUP BY p.Name;

GO

If we execute this query, passing it the value of 0, and capture the actual execution

plan, it looks like Figure 25-17.

Figure 25-17. Execution plan with a warning on the SELECT operator

What should immediately draw your eye with this query is the warning on the SELECT

operator. We can open the Properties window to see all the warnings for a plan. Note that

the tooltip only ever shows the first warning, as shown in Figure 25-18.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

813

Figure 25-18. Excessive memory grant warning from the execution plan

The definition here is fairly clear. Based on the statistics for the data stored in the

columnstore index, SQL Server assumed that to process the data for this query, it would

need 85,624KB. The actual memory used was 4,056KB. That’s a more than 81,000KB

difference. If queries like this ran a lot with this sort of disparity, we would be facing

serious memory pressure without much in the way of benefit. We can also look

to the Extended Events to see the feedback process in action. Figure 25-19 shows the

memory_grant_updated_by_feedback event that fired as part of executing the query.

Figure 25-19. Extended Events properties for the memory_grant_updated_by_
feedback event

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

814

You can see in Figure 25-19 some important information. The activity_id values

show that this event occurred before the others in the Extended Events session since

the seq value is 1. If you’re running the code, you’ll see that your sql_batch_completed

had a seq value of 2. This means the memory grant adjustments occur before the query

completes execution, although you still get the warning in the plan. These adjustments

are for subsequent executions of the query. In fact, let’s execute the query again and look

at the results of the query execution in Extended Events, as shown in Figure 25-20.

Figure 25-20. Extended Events showing the memory grant feedback occurs only once

Figure 25-21. The same execution plan but without a warning

The other interesting thing to note is that if you capture the execution plan again, as

shown in Figure 25-21, you are no longer seeing the warning.

If we were to continue running this procedure using these parameter values,

you wouldn’t see any other changes. However, if we were to modify the parameter

values as follows:

EXEC dbo.CostCheck @Cost = 15.035;

we wouldn’t see any changes at all. This is because that while the result sets are quite

different, 1 row versus 9000, the memory requirements are not so wildly different as what

we saw in the first execution of the first query. However, if we were to clear the memory

cache and then execute the procedure using these values, you would again see the

memory_grant_updated_by_feedback firing.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

815

If you are experiencing issues with some degree of thrash caused by changing

the memory grant, you can disable it on a database level using DATABASE SCOPED

CONFIGURATION as follows:

ALTER DATABASE SCOPED CONFIGURATION SET DISABLE_BATCH_MODE_MEMORY_GRANT_

FEEDBACK = ON;

To reenable it, just use the same command to set it to OFF. There is also a query

hint that you can use to disable the memory feedback for a single query. Simply add

DISABLE_BATCH_MODE_MEMORY_GRANT_FEEDBACK to the USE part of the query hint.

 Interleaved Execution
While my recommendation of avoiding the use of multistatement table-valued functions

remains the same, you may find yourself forced to deal with them. Prior to SQL Server

2017, the only real option for making these run faster was to rewrite the code to not

use them at all. However, SQL Server 2017 now has interleaved execution for these

objects. The way it works is that the optimizer will identify that it is dealing with one of

these multistatement functions. It will pause the optimization process. The part of the

plan dealing with the table-valued function will execute, and accurate row counts will

be returned. These row counts will then be used through the rest of the optimization

process. If you have more than one multistatement function, you’ll get multiple

executions until all such objects have more accurate row counts returned.

To see this in action, I want to create the following multistatement functions:

CREATE OR ALTER FUNCTION dbo.SalesInfo ()

RETURNS @return_variable TABLE (SalesOrderID INT,

 OrderDate DATETIME,

 SalesPersonID INT,

 PurchaseOrderNumber dbo.OrderNumber,

 AccountNumber dbo.AccountNumber,

 ShippingCity NVARCHAR(30))

AS

BEGIN;

 INSERT INTO @return_variable (SalesOrderID,

 OrderDate,

 SalesPersonID,

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

816

 PurchaseOrderNumber,

 AccountNumber,

 ShippingCity)

 SELECT soh.SalesOrderID,

 soh.OrderDate,

 soh.SalesPersonID,

 soh.PurchaseOrderNumber,

 soh.AccountNumber,

 a.City

 FROM Sales.SalesOrderHeader AS soh

 JOIN Person.Address AS a

 ON soh.ShipToAddressID = a.AddressID;

 RETURN;

END;

GO

CREATE OR ALTER FUNCTION dbo.SalesDetails ()

RETURNS @return_variable TABLE (SalesOrderID INT,

 SalesOrderDetailID INT,

 OrderQty SMALLINT,

 UnitPrice MONEY)

AS

BEGIN;

 INSERT INTO @return_variable (SalesOrderID,

 SalesOrderDetailID,

 OrderQty,

 UnitPrice)

 SELECT sod.SalesOrderID,

 sod.SalesOrderDetailID,

 sod.OrderQty,

 sod.UnitPrice

 FROM Sales.SalesOrderDetail AS sod;

 RETURN;

END;

GO

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

817

CREATE OR ALTER FUNCTION dbo.CombinedSalesInfo ()

RETURNS @return_variable TABLE (SalesPersonID INT,

 ShippingCity NVARCHAR(30),

 OrderDate DATETIME,

 PurchaseOrderNumber dbo.OrderNumber,

 AccountNumber dbo.AccountNumber,

 OrderQty SMALLINT,

 UnitPrice MONEY)

AS

BEGIN;

 INSERT INTO @return_variable (SalesPersonID,

 ShippingCity,

 OrderDate,

 PurchaseOrderNumber,

 AccountNumber,

 OrderQty,

 UnitPrice)

 SELECT si.SalesPersonID,

 si.ShippingCity,

 si.OrderDate,

 si.PurchaseOrderNumber,

 si.AccountNumber,

 sd.OrderQty,

 sd.UnitPrice

 FROM dbo.SalesInfo() AS si

 JOIN dbo.SalesDetails() AS sd

 ON si.SalesOrderID = sd.SalesOrderID;

 RETURN;

END;

GO

These are the types of anti-patterns (or code smells) I see so frequently when

working with multistatement functions. One function calls another, which joins to a

third, and so on. Since the optimizer will do one of two things with these functions,

depending on the version of the cardinality estimation engine in use, you have no real

choices. Prior to SQL Server 2014 the optimizer assumed one row for these objects.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

818

SQL Server 2014 and greater have a different assumption, 100 rows. So if the

compatibility level is set to 140 or greater, you’ll see the 100-row assumption, except if

interleaved execution is enabled.

We can run a query against these functions. However, first we’ll want to run it with

interleaved execution disabled. Then we’ll reenable it, clear the cache, and execute the

query again as follows:

ALTER DATABASE SCOPED CONFIGURATION SET DISABLE_INTERLEAVED_EXECUTION_TVF = ON;

GO

SELECT csi.OrderDate,

 csi.PurchaseOrderNumber,

 csi.AccountNumber,

 csi.OrderQty,

 csi.UnitPrice,

 sp.SalesQuota

FROM dbo.CombinedSalesInfo() AS csi

 JOIN Sales.SalesPerson AS sp

 ON csi.SalesPersonID = sp.BusinessEntityID

WHERE csi.SalesPersonID = 277

 AND csi.ShippingCity = 'Odessa';

GO

ALTER DATABASE SCOPED CONFIGURATION SET DISABLE_INTERLEAVED_EXECUTION_TVF = OFF;

GO

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

GO

SELECT csi.OrderDate,

 csi.PurchaseOrderNumber,

 csi.AccountNumber,

 csi.OrderQty,

 csi.UnitPrice,

 sp.SalesQuota

FROM dbo.CombinedSalesInfo() AS csi

 JOIN Sales.SalesPerson AS sp

 ON csi.SalesPersonID = sp.BusinessEntityID

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

819

WHERE csi.SalesPersonID = 277

 AND csi.ShippingCity = 'Odessa';

GO

The resulting execution plans are different, but the differences are subtle, as you can

see in Figure 25-22.

Figure 25-22. Two execution plans, one with interleaved execution

Looking at the plans, it’s actually difficult to see the differences since all the operators

are the same. However, the differences are in the estimated cost values. At the top, the

table-valued function has an estimated cost of 1 percent, suggesting that it’s almost

free when compared to the Clustered Index Seek and Table Scan operations. In the

second plan, though, the Clustered Index Seek, returning an estimated one row,

suddenly costs only an estimated 1 percent of the total, and the rest of the cost is rightly

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

820

redistributed to the other operations. It’s these differences in row estimates that may

lead, in some situations, to enhanced performance. However, let’s look at the values to

see this in action.

The Sequence operator forces each subtree attached to it to fire in order. In this

instance, the first to fire would be the table-valued function. It’s supplying data to the

Table Scan operator at the bottom of both plans. Figure 25-23 shows the properties for

the top plan (the plan that executed in the old way).

Figure 25-23. The properties of the old-style plan

At the bottom of the image captured in Figure 25-23 you can see the estimated

number of rows to be read from the operator is 100. Of these, an expected number of

matching rows was anticipated as 3.16228. The actual number of rows is at the top and

is 148. That disparity is a major part of what leads to such poor execution times for

multistatement functions.

Now, let’s look at the same properties for the function that executed in an interleaved

fashion, as shown in Figure 25-24.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

821

The same number of actual rows was returned because these are identical queries

against identical result sets. However, look at the Estimated Number of Rows to be Read

value. Instead of the hard-coded value of 100, regardless of the data involved, we now

have 121317. That is a much more accurate estimate. It resulted in an anticipated 18.663

rows being returned. That’s still not the actual value of 148, but it’s moving toward a

more accurate estimate.

Since these plans are similar, the chances of much of a difference in execution times

and reads is unlikely. However, let’s get the measures from Extended Events. On average the

noninterleaved execution was 1.48 seconds with 341,000 reads. The interleaved execution

ran in 1.45 seconds on average and had 340,000 reads. There was a small improvement.

Now, we can actually improve the performance remarkably and still use a

multistatement function. Instead of joining functions together, if we were to rewrite the

code something like this:

CREATE OR ALTER FUNCTION dbo.AllSalesInfo (@SalesPersonID INT,

 @ShippingCity VARCHAR(50))

RETURNS @return_variable TABLE (SalesPersonID INT,

 ShippingCity NVARCHAR(30),

 OrderDate DATETIME,

 PurchaseOrderNumber dbo.OrderNumber,

 AccountNumber dbo.AccountNumber,

 OrderQty SMALLINT,

 UnitPrice MONEY)

Figure 25-24. The properties of the interleaved execution

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

822

AS

BEGIN;

 INSERT INTO @return_variable (SalesPersonID,

 ShippingCity,

 OrderDate,

 PurchaseOrderNumber,

 AccountNumber,

 OrderQty,

 UnitPrice)

 SELECT soh.SalesPersonID,

 a.City,

 soh.OrderDate,

 soh.PurchaseOrderNumber,

 soh.AccountNumber,

 sod.OrderQty,

 sod.UnitPrice

 FROM Sales.SalesOrderHeader AS soh

 JOIN Person.Address AS a

 ON a.AddressID = soh.ShipToAddressID

 JOIN Sales.SalesOrderDetail AS sod

 ON sod.SalesOrderID = soh.SalesOrderID

 WHERE soh.SalesPersonID = @SalesPersonID

 AND a.City = @ShippingCity;

 RETURN;

END;

GO

Instead of using a WHERE clause to execute the final query, we would execute it like this:

SELECT asi.OrderDate,

 asi.PurchaseOrderNumber,

 asi.AccountNumber,

 asi.OrderQty,

 asi.UnitPrice,

 sp.SalesQuota

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

823

FROM dbo.AllSalesInfo(277,'Odessa') AS asi

 JOIN Sales.SalesPerson AS sp

 ON asi.SalesPersonID = sp.BusinessEntityID;

By passing the parameters down to the function, we allow the interleaved execution

to have values to measure itself against. Doing it this way returns exactly the same data,

but the performance dropped to 65ms and only 1,135 reads. That’s pretty amazing

for a multistatement function. However, running this as a noninterleaved function

also dropped the execution time to 69ms and 1,428 reads. While we are talking about

improvements requiring no code or structure changes, those improvements are very

minimal.

One additional problem can arise because of the interleaved execution, especially

if you pass values as I did in the second query. It’s going to create a plan based on the

values it has in hand. This effectively acts as if it is parameter sniffing. It’s using these

hard- coded values to create execution plans directly in support of them, using these

values against the statistics as the row count estimates. If your statistics vary wildly, you

could be looking at performance problems similar to what we talked about in Chapter 15.

You can also use a query hint to disable the interleaved execution. Simply supply

DISABLE_INTERLEAVED_EXECUTION_TVF to the query through the hint, and it will disable

it only for the query being executed.

 Summary
With the addition of the tuning recommendations in SQL Server 2017, along with the

index automation in Azure SQL Database, you now have a lot more help within SQL

Server when it comes to automation. You’ll still need to use the information you’ve

learned in the rest of the book to understand when those suggestions are helpful and

when they’re simply clues to making your own choices. However, things are even easier

because SQL Server can make automatic adjustments without you having to do any work

at all through the adaptive query processing. Just remember that all this is helpful, but

none of it is a complete solution. It just means you have more tools in your toolbox to

help deal with poorly performing queries.

The next chapter discusses methods you can use to automate the testing of your

queries through the use of distributed replay.

Chapter 25 automated tuning in azure SQL databaSe and SQL Server

www.EBooksWorld.ir

825
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_26

CHAPTER 26

Database
Performance Testing
Knowing how to identify performance issues and knowing how to fix them are great

skills to have. The problem, though, is that you need to be able to demonstrate that the

improvements you make are real improvements. While you can, and should, capture the

performance metrics before and after you tune a query or add an index, the best way to

be sure you’re looking at measurable improvement is to put the changes you make to

work. Testing means more than simply running a query a few times and then putting it

into your production system with your fingers crossed. You need to have a systematic

way to validate performance improvements using the full panoply of queries that are run

against your system in a realistic manner. Introduced with the 2012 version, SQL Server

provides such a mechanism through its Distributed Replay tool.

Distributed Replay works with information generated from the SQL Profiler and

the trace events created by it. Trace events capture information in a somewhat similar

fashion to the Extended Events tool, but trace events are an older (and less capable)

mechanism for capturing events within the system. Prior to the release of SQL

Server 2012, you could use SQL Server’s Profiler tool to replay captured events using a

server- side trace. This worked, but the process was extremely limited. For example, the

tool could be run only on a single machine, and it dealt with the playback mechanism—a

single-threaded process that ran in a serial fashion, rather than what happens in reality.

Microsoft has added the capability to run from multiple machines in a parallel fashion

to SQL Server. Until Microsoft makes a mechanism to use Distributed Replay through

Extended Events output, you’ll still be using the trace events for this one aspect of your

performance testing.

Distributed Replay is not a widely adopted tool. Most people just skip the idea of

implementing repeatable tests entirely. Others may go with some third-party tools that

provide a little more functionality. I strongly recommend you do some form of testing to

www.EBooksWorld.ir

826

ensure your tuning efforts are resulting in positive impact on your systems that you can

accurately measure.

This chapter covers the following topics:

• The concepts of database testing

• How to create a server-side trace

• Using Distributed Replay for database testing

 Database Performance Testing
The general approach to database performance and load testing is pretty simple. You

need to capture the calls against a production system under normal load and then

be able to play that load over and over again against a test system. This enables you

to directly measure the changes in performance caused by changes to your code or

structures. Unfortunately, accomplishing this in the real world is not as simple

as it sounds.

To start with, you can’t simply capture the recording of queries. Instead, you must

first ensure that you can restore your production database to a moment in time on a

test system. Specifically, you need to be able to restore to exactly the point at which you

start recording the transactions on the system because if you restore to any other point,

you might have different data or even different structures. This will cause the playback

mechanism to generate errors instead of useful information. This means, to start with,

you must have a database that is in Full Recovery mode so that you can take regular full

backups as well as log backups in order to restore to a specific point in time when your

testing will start.

Once you establish the ability to restore to the appropriate time, you will need to

configure your query capture mechanism—a server-side trace definition generated by

Profiler, in this case. The playback mechanism will define exactly which events you’ll

need to capture. You’ll want to set up your capture process so that it impacts your system

as little as possible.

Next, you’ll have to deal with the large amounts of data captured by the trace.

Depending on how big your system is, you may have a large number of transactions

over a short period of time. All that data has to be stored and managed, and there will be

many files.

Chapter 26 Database performanCe testing

www.EBooksWorld.ir

827

You can set up this process on a single machine; however, to really see the benefits,

you’ll want to set up multiple machines to support the playback capabilities of the

Distributed Replay tool. This means you’ll need to have these machines available to you

as part of your testing process. Unfortunately, with all editions except Enterprise, you can

have only a single client, so take that into account as you set up your test environment.

Also, you can’t ignore the fact that the best data, database, and code to work with

is your production system. However, depending on your need for compliance for local

and international law, you may have to choose a completely different mechanism

for recording your server-side trace. You don’t want to compromise the privacy and

protection of the data under management within the organization. If this is the case, you

may have to capture your load from a QA server or a preproduction server that is used for

other types of automated testing. These can be difficult problems to overcome.

When you have all these various parts in place, you can begin testing. Of course, this

leads to a new question: what exactly are you doing with your database testing?

 A Repeatable Process
As explained in Chapter 1, performance tuning your system is an iterative process that

you may have to go through on multiple occasions to get your performance to where

you need it to be and keep it there. Since businesses change over time, so will your data

distribution, your applications, your data structures, and all the code supporting it.

Because of all this, one of the most important things you can do for testing is to create a

process that you can run over and over again.

The primary reason you need to create a repeatable testing process is because you

can’t always be sure that the methods outlined in the preceding chapters of this book will

work well in every situation. This no doubt means you need to be able to validate that

the changes you have made have resulted in a positive improvement in performance. If

not, you need to be able to remove any changes you’ve made, make a new set of changes,

and then repeat the tests, repeating this process iteratively. You may find that you’ll need

to repeat the entire tuning cycle until you’ve met your goals for this round.

Because of the iterative nature of this process, you absolutely need to concentrate on

automating it as much as possible. This is where the Distributed Replay tool comes into

the picture.

Chapter 26 Database performanCe testing

www.EBooksWorld.ir

828

 Distributed Replay
The Distributed Replay tool consists of three pieces of architecture.

• Distributed Replay Controller: This service manages the processes of

the Distributed Replay system.

• Distributed Replay Administrator: This is an interface to allow you

to control the Distributed Replay Controller and the Distributed

Replace process.

• Distributed Replay Client: This is an interface that runs on one

or more machines (up to 16) to make all the calls to your

database server.

You can install all three components onto one machine; however, the ideal approach

is to have the controller on one machine and then have one or more client machines that

are completely separated from the controller so that each of these machines is handling

only some of the transactions you’ll be making against the test machine. Only for the

purposes of illustration, I have all the components running on a single instance.

Begin by installing the Distributed Replay Controller service onto a machine. There is

no interface for the Distributed Replay utility. Instead, you’ll use XML configuration files

to take control of the different parts of the Distributed Replay architecture. You can use the

distributed playback for various tasks, such as basic query playback, server-side cursors,

or prepared server statements. Since I’m primarily covering query tuning, I’m focus on the

queries and prepared server statements (also known as parameterized queries). This defines

a particular set of events that must be captured. I’ll cover how to do that in the next section.

Once the information is captured in a trace file, you will have to run that file through

the preprocess event using the Distributed Replay Controller. This modifies the basic trace

data into a different format that can be used to distribute to the various Distributed Replay

Client machines. You can then fire off a replay process. The reformatted data is sent to the

clients, which in turn will create queries to run against the target server. You can capture

another trace output from the client machines to see exactly which calls they made, as

well as the I/O and CPU of those calls. Presumably you’ll also set up standard monitoring

on the target server to see how the load you are generating impacts that server.

When you go to run the system against your server, you can choose one of two types

of playback: Synchronization mode or Stress mode. In Synchronization mode, you will

get an exact copy of the original playback, although you can affect the amount of idle

Chapter 26 Database performanCe testing

www.EBooksWorld.ir

829

time on the system. This is good for precise performance tuning because it helps you

understand how the system is working, especially if you’re making changes to structures,

indexes, or T-SQL code. Stress mode doesn’t run in any particular order, except within a

single connection, where queries will be streamed in the correct order. In this case, the

calls are made as fast as the client machines can make them—in any order—as fast as

the server can receive them. In short, it performs a stress test. This is useful for testing

database designs or hardware installations.

One important note, as a general rule, is that you’re safest when using the latest

version of SQL Server for your replay only with the latest version of trace data. However,

you can replay SQL Server 2005 data on SQL Server 2017. Also, Azure SQL Database is

not supported by Distributed Replay or trace events, so you won’t be able to use any of

this with your Azure database.

 Capturing Data with the Server-Side Trace
Using trace events to capture data is similar to capturing query executions with Extended

Events. To support the Distributed Replay process, you’ll need to capture some specific

events and specific columns for those events. If you want to build your own trace events,

you need to go after the events listed in Table 26-1.

Table 26-1. Events to Capture

Events Columns

Prepare SQL

Exec Prepared SQL

SQL:BatchStarting

SQL:BatchCompleted

RPC:Starting

RPC:Completed

RPC Output Parameter

Audit Login

Audit Logout

Existing Connection

Server-side Cursor

Server-side prepared SQL

Event Class

EventSequence

TextData

Application Name

LoginName

DatabaseName

Database ID

HostName

Binary Data

SPID

Start Time

EndTime

IsSystem

Chapter 26 Database performanCe testing

www.EBooksWorld.ir

830

You have two options for setting up these events. First, you can use T-SQL to set up a

server-side trace. Second, you can use an external tool called Profiler. While Profiler can

connect directly to your SQL Server instance, I strongly recommend against using this

tool to capture data. Profiler is best used as a way to supply a template for performing the

capture. You should use T-SQL to generate the actual server-side trace.

On a test or development machine, open Profiler and select TSQL_Replay from the

Template list, as shown in Figure 26-1.

Figure 26-1. The Distributed Replay trace template

Since you need a file for Distributed Replay, you’ll want to save the output of the trace

to file. It’s the best way to set up a server-side trace anyway, so this works out. You’ll want

to output to a location that has sufficient space. Depending on the number of transactions

you have to support with your system, trace files can be extremely large. Also, it’s a good

idea to put a limit on the size of the files and allow them to roll over, creating new files as

needed. You’ll have more files to deal with, but the operating system can actually deal

with a larger number of smaller files for writes better than it can deal with a single large

file. I’ve found this to be true because of two things. First, with a smaller file size, you get

Chapter 26 Database performanCe testing

www.EBooksWorld.ir

831

a quicker rollover, which means the previous file is available for processing if you need

to load it into a table or copy it to another server. Second, in my experience, it generally

takes longer for writes to occur with simple log files because the size of such files gets very

large. I also suggest defining a stop time for the trace process; again, this helps ensure you

don’t fill the drive you’ve designated for storing the trace data.

Since this is a template, the events and columns have already been selected for you.

You can validate the events and columns to ensure you are getting exactly what you need

by clicking the Events Selection tab. Figure 26-2 shows some of the events and columns,

all of which are predefined for you.

Figure 26-2. The TSQL_Replay template events and columns

This template is generic, so it includes the full list of events, including all the cursor

events. You can edit it by clicking boxes to deselect events; however, I do not recommend

removing anything other than the cursor events, if you’re going to remove any.

I started this template connected to a test server instead of a production machine

because once you’ve set it up appropriately, you have to start the trace by clicking Run.

I wouldn’t do that on a production system. On a test system, however, you can watch the

Chapter 26 Database performanCe testing

www.EBooksWorld.ir

832

screen to ensure you’re getting the events you think you should. It will display the events,

as well as capture them to a file. When you’re satisfied that it’s correct, you can pause the

trace. Next, click the File menu and then select Export ➤ Script Trace Definition. Finally,

select For SQL Server 2005 – 2014 (see Figure 26-3).

Figure 26-3. The menu selection to output the trace definition

This template will allow you to save the trace you just created as a T-SQL file. Once

you have the T-SQL, you can configure it to run on any server that you like. The file path

will have to be replaced, and you can reset the stop time through parameters within the

script. The following script shows the beginning of the T-SQL process used to set up the

server-side trace events:

/**/

/* Created by: SQL Server 2017 Profiler */

/* Date: 05/08/2018 08:27:40 PM */

/**/

-- Create a Queue

declare @rc int

declare @TraceID int

declare @maxfilesize bigint

set @maxfilesize = 5

-- Please replace the text InsertFileNameHere, with an appropriate

-- filename prefixed by a path, e.g., c:\MyFolder\MyTrace. The .trc extension

-- will be appended to the filename automatically. If you are writing from

-- remote server to local drive, please use UNC path and make sure server has

-- write access to your network share

exec @rc = sp_trace_create @TraceID output, 0, N'InsertFileNameHere',

@maxfilesize, NULL

if (@rc != 0) goto error

Chapter 26 Database performanCe testing

www.EBooksWorld.ir

833

You can edit the path where it says InsertFileNameHere and provide different values

for @DateTime. At this point, your script can be run on any SQL Server 2017 server. You

can probably run the same script all the way back to SQL Server 2008R2; there have

been so few changes made to trace events since then that this is a fixed standard now.

However, always test to be on the safe side.

The amount of information you collect really depends on what kind of test you want

to run. For a standard performance test, it’s probably a good idea to collect at least one

hour’s worth of information; however, you wouldn’t want to capture more than two to

three hours of data in most circumstances. Plus, it can’t be emphasized enough that

trace events are not as lightweight as extended events, so the longer you capture data,

the more you’re negatively impacting your production server. Capturing more than

that would entail managing a lot more data, and it would mean you were planning

on running your tests for a long time. It all depends on the business and application

behaviors you intend to deal with in your testing.

Before you capture the data, you do need to think about where you’re going to run

your tests. Let’s assume you’re not worried about disk space and that you don’t need

to protect legally audited data (if you have those issues, you’ll need to address them

separately). If your database is not in Full Recovery mode, then you can’t use the log

backups to restore it to a point in time. If this is the case, I strongly recommend running

a database backup as part of starting the trace data collection. The reason for this is

that you need the database to be in the same condition it’s in when you start recording

transactions. If it’s not, you may get a larger number of errors, which could seriously

change the way your performance tests run. For example, attempting to select or modify

data that doesn’t exist will impact the I/O and CPU measured in your tests. If your

database remains in the same state that it was at or near the beginning of your trace, then

you should few, if any, errors.

With a copy of the database ready to go and a set of trace data, you’re ready to run

the Distributed Replay tool.

 Distributed Replay for Database Testing
Assuming you used the Distributed Replay template to capture your trace information,

you should be ready to start processing the files. As noted earlier, the first step is to

convert the trace file into a different format, one that can be split up among multiple

client machines for playback. But there is more to it than simply running the executable

Chapter 26 Database performanCe testing

www.EBooksWorld.ir

834

against your file. You also need to make some decisions about how you want the

Distributed Replay to run; you make those decisions when you preprocess the trace file.

The decisions are fairly straightforward. First, you need to decide whether you’re

going to replay system processes along with the user processes. Unless you’re dealing

with the potential of specific system issues, I suggest setting this value to No. This is

also the default value. Second, you need to decide how you want to deal with idle time.

You can use the actual values for how often calls were made to the database; or, you

can put in a value, measured in seconds, to limit the wait time to no more than that

value. It really depends on what type of playback you’re going to run. Assuming you

use Synchronization mode playback, the mode best suited for straight performance

measurement, it’s a good idea to eliminate idle time by setting the value to something

low, such as three to five seconds.

If you choose to use the default values, you don’t need to modify the configuration

file. But if you’ve chosen to include the system calls or to change the idle time, then you’ll

need to change the configuration file, DReplay.Exe.Preprocess.config. It’s a simple

XML configuration file. The one I’m using looks like this:

<?xml version="1.0" encoding="utf-8"?>

<Options>

<PreprocessModifiers>

<IncSystemSession>No</IncSystemSession>

<MaxIdleTime>2</MaxIdleTime>

</PreprocessModifiers>

</Options>

I’ve made only one change, adjusting MaxdIdleTime to limit any down period during

the playback.

Before you run the preprocessing, make sure have installed the DRController and

that the DReplay service is running on your system. If so, you’ll just need to call DReplay.

exe to execute the preprocessing.

dreplay preprocess –i c:\perfdata\dr.trc –d c:\DRProcess

In the preceding code, you can see that DReplay runs the preprocess event. The

input file was supplied by the –i parameter, and a folder to hold the output was supplied

through the –d parameter. The trace files will be processed, and the output will go to the

folder specified. The output will look something like Figure 26-4.

Chapter 26 Database performanCe testing

www.EBooksWorld.ir

835

With the preprocessing complete, you’re ready to move ahead with running the

Distributed Replay process. Before you do so, however, you need to make sure you have

one or more client systems ready to go.

 Configuring the Client
The client machines will have to be configured to work with the Distributed Replay

controller. Begin by installing your clients to the different machines. For illustration

purposes only, I’m running everything on a single machine; however, the setup is no

different if you use multiple machines. You need to configure the client to work with

a controller, and a client can work with only one controller at a time. You also need to

have space on the system for two items. First, you need a location for working files that

are overwritten at each replay. Second, you need room for trace file output from the

client if you want to collect execution data from that client. You also get to decide on

the logging level of the client process. All of this is set in another XML configuration file,

DReplayClient.config. Here is my configuration:

<Options>

<Controller>PerfTune</Controller>

<WorkingDirectory>C:\DRClientWork\</WorkingDirectory>

<ResultDirectory>C:\DRClientOutput\</ResultDirectory>

<LoggingLevel>CRITICAL</LoggingLevel>

</Options>

The directories and logging level are clear. I also had to point the client to the

server where the Distributed Replay service is running. No other settings are required

for multiple clients to work; you just need to be sure they’re going to the right controller

system.

Figure 26-4. Output from the preprocessing steps of Distributed Replay

Chapter 26 Database performanCe testing

www.EBooksWorld.ir

836

 Running the Distributed Tests
So far you have configured everything and captured the data. Next, you need to go back

to the command line to run things from the Dreplay.exe executable. Most of the control

is accomplished through the configuration files, so there is little input required in the

executable. You invoke the tests using the following command:

Dreplay replay –d c:\data –w DOJO

You need to feed in the location of the output from the preprocessing, which means

you need to list the client machines that are taking part in a comma-delimited list. The

output from the execution would look something like Figure 26-5.

Figure 26-5. The output from running DReplay.exe

As you can see, 62 events were captured, and all 62 events were successfully

replayed. If, on the other hand, you had errors or events that failed, you might need

to establish what information might exist about why some of the events failed. This

information is available in the logs. Then, simply reconfigure the tests and run them

again. The whole idea behind having a repeatable testing process is that you can run it

over and over. The preceding example represents a light load run against my local copy

of AdventureWorks2017, captured over about five minutes. However, I configured the

limits on idle time, so the replay completes in only 26 seconds.

From here, you can reconfigure the tests, reset the database, and run the tests over

and over again, as needed. Note that changing the configuration files will require you

to restart the associated services to ensure that the changes are implemented with the

next set of tests. One of the best ways to deal with testing here is to have the Query Store

enabled. You can capture one set of results, reset the test, make whatever changes to the

system you’re going to make, and then capture another set of results from a second test.

Then, you can easily look at reports for regressed queries, queries that used the most

resources, and so on.

Chapter 26 Database performanCe testing

www.EBooksWorld.ir

837

 Conclusion
With the inclusion of the Distributed Replay utilities, SQL Server now gives you the

ability to perform load and function testing against your databases. You accomplish

this by capturing your code in a simple manner with a server-side trace. If you plan to

take advantage of this feature, however, be sure to validate that the changes you make

to queries based on the principles put forward in this book actually work and will help

improve the performance of your system. You should also make sure you reset the

database to avoid errors as much as possible.

Chapter 26 Database performanCe testing

www.EBooksWorld.ir

839
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_27

CHAPTER 27

Database Workload
Optimization
So far, you have learned about a number of aspects that can affect query performance,

the tools that you can use to analyze query performance, and the optimization

techniques you can use to improve query performance. Next, you will learn how to apply

this information to analyze, troubleshoot, and optimize the performance of a database

workload. I’ll walk you through a tuning process, including possibly going down a bad

path or two, so bear with me as we navigate the process.

In this chapter, I cover the following topics:

• The characteristics of a database workload

• The steps involved in database workload optimization

• How to identify costly queries in the workload

• How to measure the baseline resource use and performance of costly

queries

• How to analyze factors that affect the performance of costly queries

• How to apply techniques to optimize costly queries

• How to analyze the effects of query optimization on the overall

workload

www.EBooksWorld.ir

840

 Workload Optimization Fundamentals
Optimizing a database workload often fits the 80/20 rule: 80 percent of the workload

consumes about 20 percent of server resources. Trying to optimize the performance of

the majority of the workload is usually not very productive. So, the first step in workload

optimization is to find the 20 percent of the workload that consumes 80 percent of the

server resources.

Optimizing the workload requires a set of tools to measure the resource

consumption and response time of the different parts of the workload. As you saw

in Chapters 4 and 5, SQL Server provides a set of tools and utilities to analyze the

performance of a database workload and individual queries.

In addition to using these tools, it is important to know how you can use different

techniques to optimize a workload. The most important aspect of workload optimization

to remember is that not every optimization technique is guaranteed to work on every

performance problem. Many optimization techniques are specific to certain database

application designs and database environments. Therefore, for each optimization

technique, you need to measure the performance of each part of the workload (that is,

each individual query) before and after you apply an optimization technique. You can

use the techniques discussed in Chapter 26 to make this happen.

It is not unusual to find that an optimization technique has little effect—or even

a negative effect—on the other parts of the workload, thereby hurting the overall

performance of the workload. For instance, a nonclustered index added to optimize a

SELECT statement can hurt the performance of UPDATE statements that modify the value

of the indexed column. The UPDATE statements have to update index rows in addition to

the data rows. However, as demonstrated in Chapter 6, sometimes indexes can improve

the performance of action queries, too. Therefore, improving the performance of a

particular query could benefit or hurt the performance of the overall workload. As usual,

your best course of action is to validate any assumptions through testing.

 Workload Optimization Steps
The process of optimizing a database workload follows a specific series of steps. As part

of this process, you will use the set of optimization techniques presented in previous

chapters. Since every performance problem is a new challenge, you can use a different

set of optimization techniques for troubleshooting different performance problems. Just

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

841

remember that the first step is always to ensure that the server is well configured and

operating within acceptable limits, as defined in Chapters 2 and 3.

To understand the query optimization process, you will simulate a sample workload

using a set of queries.

The core of query tuning comes down to just a few steps.

 1. Identify the query to tune.

 2. Look at the execution plan to understand resource usage and

behavior.

 3. Modify the query or modify the structure to improve performance.

Most of the time, the answer is, modify the query. In a nutshell, that’s all that’s

necessary to do query tuning. However, this assumes a lot of knowledge of the system,

and you’ve looked at things like statistics in the past. When you’re approaching query

tuning for the first time or you’re on a new system, the process is quite a bit more

detailed. For a thorough and complete definition of the steps necessary to tune a query,

here’s what you’re going to do. These are the optimization steps you will follow as you

optimize the sample workload:

 1. Capture the workload.

 2. Analyze the workload.

 3. Identify the costliest/most frequently called/longest-running

query.

 4. Quantify the baseline resource use of the costliest query.

 5. Determine the overall resource use.

 6. Compile detailed information on resource use.

 7. Analyze and optimize external factors.

 8. Analyze the use of indexes.

 9. Analyze the batch-level options used by the application.

 10. Analyze the effectiveness of statistics.

 11. Assess the need for defragmentation.

 12. Analyze the internal behavior of the costliest query.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

842

 13. Analyze the query execution plan.

 14. Identify the costly operators in the execution plan.

 15. Analyze the effectiveness of the processing strategy.

 16. Optimize the costliest query.

 17. Analyze the effects of the changes on database workload.

 18. Iterate through multiple optimization phases.

As explained in Chapter 1, performance tuning is an iterative process. Therefore,

you should iterate through the performance optimization steps multiple times until you

achieve the desired application performance targets. After a certain period of time, you

will need to repeat the process to address the impact on the workload caused by data

and database changes. Further, as you find yourself working on a server over time, you

may be skipping lots of the previous steps since you’ve already validated transaction

methods or statistics maintenance or other steps. You don’t have to follow this slavishly.

It’s meant to be a guide. I’ll refer you to Chapter 1 for the graphical representation of the

steps needed to tune a query.

 Sample Workload
To troubleshoot SQL Server performance, you need to know the SQL workload that

is executed on the server. You can then analyze the workload to identify causes of

poor performance and applicable optimization steps. Ideally, you should capture

the workload on the SQL Server facing the performance problems. In this chapter,

you will use a set of queries to simulate a sample workload so that you can follow the

optimization steps listed in the previous section. The sample workload you’ll use

consists of a combination of good and bad queries.

Note i recommend you restore a clean copy of the adventureWorks2017
database so that any artifacts left over from previous chapters are completely
removed.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

843

The simple test workload is simulated by the following set of sample stored

procedures; you execute them using the second script on the AdventureWorks2017

database:

USE AdventureWorks2017;

GO

CREATE OR ALTER PROCEDURE dbo.ShoppingCart @ShoppingCartId VARCHAR(50)

AS

--provides the output from the shopping cart including the line total

SELECT sci.Quantity,

 p.ListPrice,

 p.ListPrice * sci.Quantity AS LineTotal,

 p.Name

FROM Sales.ShoppingCartItem AS sci

 JOIN Production.Product AS p

 ON sci.ProductID = p.ProductID

WHERE sci.ShoppingCartID = @ShoppingCartId;

GO

CREATE OR ALTER PROCEDURE dbo.ProductBySalesOrder @SalesOrderID INT

AS

/*provides a list of products from a particular sales order,

and provides line ordering by modified date but ordered

by product name*/

SELECT ROW_NUMBER() OVER (ORDER BY sod.ModifiedDate) AS LineNumber,

 p.Name,

 sod.LineTotal

FROM Sales.SalesOrderHeader AS soh

 JOIN Sales.SalesOrderDetail AS sod

 ON soh.SalesOrderID = sod.SalesOrderID

 JOIN Production.Product AS p

 ON sod.ProductID = p.ProductID

WHERE soh.SalesOrderID = @SalesOrderID

ORDER BY p.Name ASC;

GO

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

844

CREATE OR ALTER PROCEDURE dbo.PersonByFirstName @FirstName NVARCHAR(50)

AS

--gets anyone by first name from the Person table

SELECT p.BusinessEntityID,

 p.Title,

 p.LastName,

 p.FirstName,

 p.PersonType

FROM Person.Person AS p

WHERE p.FirstName = @FirstName;

GO

CREATE OR ALTER PROCEDURE dbo.ProductTransactionsSinceDate

 @LatestDate DATETIME,

 @ProductName NVARCHAR(50)

AS

--Gets the latest transaction against

--all products that have a transaction

SELECT p.Name,

 th.ReferenceOrderID,

 th.ReferenceOrderLineID,

 th.TransactionType,

 th.Quantity

FROM Production.Product AS p

 JOIN Production.TransactionHistory AS th

 ON p.ProductID = th.ProductID

 AND th.TransactionID = (SELECT TOP (1)

 th2.TransactionID

 FROM Production.TransactionHistory AS

th2

 WHERE th2.ProductID = p.ProductID

 ORDER BY th2.TransactionID DESC)

WHERE th.TransactionDate > @LatestDate

 AND p.Name LIKE @ProductName;

GO

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

845

CREATE OR ALTER PROCEDURE dbo.PurchaseOrderBySalesPersonName

 @LastName NVARCHAR(50),

 @VendorID INT = NULL

AS

SELECT poh.PurchaseOrderID,

 poh.OrderDate,

 pod.LineTotal,

 p.Name AS ProductName,

 e.JobTitle,

 per.LastName + ', ' + per.FirstName AS SalesPerson,

 poh.VendorID

FROM Purchasing.PurchaseOrderHeader AS poh

 JOIN Purchasing.PurchaseOrderDetail AS pod

 ON poh.PurchaseOrderID = pod.PurchaseOrderID

 JOIN Production.Product AS p

 ON pod.ProductID = p.ProductID

 JOIN HumanResources.Employee AS e

 ON poh.EmployeeID = e.BusinessEntityID

 JOIN Person.Person AS per

 ON e.BusinessEntityID = per.BusinessEntityID

WHERE per.LastName LIKE @LastName

 AND poh.VendorID = COALESCE(@VendorID,

 poh.VendorID)

ORDER BY per.LastName,

 per.FirstName;

GO

CREATE OR ALTER PROCEDURE dbo.TotalSalesByProduct @ProductID INT

AS

--retrieve aggregation of sales based on a productid

SELECT SUM((isnull((sod.UnitPrice*((1.0)-sod.UnitPriceDiscount))*sod.

OrderQty,(0.0)))) AS TotalSales,

 AVG(sod.OrderQty) AS AverageQty,

 AVG(sod.UnitPrice) AS AverageUnitPrice,

 SUM(sod.LineTotal)

FROM Sales.SalesOrderDetail AS sod

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

846

WHERE sod.ProductID = @ProductID

GROUP BY sod.ProductID;

GO

Please remember that this is just meant to be an illustrative example, not a literal

and real load placed on a server. Real procedures are generally much more complex,

but there’s only so much space we can devote to setting up a simulated production load.

With these procedures in place, you can execute them using the following script:

EXEC dbo.PurchaseOrderBySalesPersonName @LastName = 'Hill%';

GO

EXEC dbo.ShoppingCart @ShoppingCartId = '20621';

GO

EXEC dbo.ProductBySalesOrder @SalesOrderID = 43867;

GO

EXEC dbo.PersonByFirstName @FirstName = 'Gretchen';

GO

EXEC dbo.ProductTransactionsSinceDate @LatestDate = '9/1/2004',

 @ProductName = 'Hex Nut%';

GO

EXEC dbo.PurchaseOrderBySalesPersonName @LastName = 'Hill%',

 @VendorID = 1496;

GO

EXEC dbo.TotalSalesByProduct @ProductID = 707;

GO

I know I’m repeating myself, but I want to be clear. This is an extremely simplistic

workload that just illustrates the process. You’re going to see hundreds and thousands

of additional calls across a much wider set of procedures and ad hoc queries in a typical

system. As simple as it is, however, this sample workload consists of the different types of

queries you usually execute on SQL Server.

• Queries using aggregate functions

• Point queries that retrieve only one row or a small number of rows

• Queries joining multiple tables

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

847

• Queries retrieving a narrow range of rows

• Queries performing additional result set processing, such as

providing a sorted output

The first optimization step is to capture the workload, meaning see how these

queries are performing, as explained in the next section.

 Capturing the Workload
As part of the diagnostic-data collection step, you must define an Extended Events

session to capture the workload on the database server. You can use the tools and

methods recommended in Chapter 6 to do this. Table 27-1 lists the specific events you

can use to measure how many resources your queries use.

Table 27-1. Events to Capture Information About Costly Queries

Category Event

execution rpc_completed

sql_batch_completed

As explained in Chapter 6, for production databases it is recommended that you

capture the output of the Extended Events session to a file. Here are a couple significant

advantages to capturing output to a file:

• Since you intend to analyze the SQL queries once the workload is

captured, you do not need to display the SQL queries while capturing

them.

• Running the session through SSMS doesn’t provide a flexible timing

control over the tracing process.

Let’s look at the timing control more closely. Assume you want to start capturing

events at 11 p.m. and record the SQL workload for 24 hours. You can define an Extended

Events session using the GUI or T-SQL. However, you don’t have to start the process until

you’re ready. This means you can create commands in SQL Agent or with some other

scheduling tool to start and stop the process with the ALTER EVENT SESSION command.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

848

ALTER EVENT SESSION <sessionname>

ON SERVER

STATE = <start/stop>;

For this example, I’ve put a filter on the session to capture events only from the

AdventureWorks2017 database. The file will capture queries against only that database,

reducing the amount of information I need to deal with. This may be a good choice for

your systems, too. While Extended Events sessions can be very low cost, especially when

compared to the older trace events, they are not free. Good filtering should always be

applied to ensure minimum impact.

 Analyzing the Workload
Once the workload is captured in a file, you can analyze the workload either by browsing

through the data using SSMS or by importing the content of the output file into a

database table.

SSMS provides the following two methods for analyzing the content of the file, both

of which are relatively straightforward:

• Sort the output on a data column by right-clicking to select a sort order

or to group by a particular column: You may want to select columns

from the Details tab and use the “Show column in table” command

to move them up. Once there, you can issue grouping and sorting

commands on that column.

• Rearrange the output to a selective list of columns and events: You can

change the output displayed through SSMS by right-clicking the table

and selecting Pick Columns from the context menu. This lets you do

more than simply pick and choose columns; it also lets you combine

them into new columns.

As I’ve shown throughout the book, the Live Data Explorer within SSMS when used

with Extended Events can be used to put together basic aggregations. For example, if you

wanted to group by the text of queries or the object ID and then get the average duration

or a count of the number of executions, you can. In fact, SSMS is an way to do this type of

simpler aggregation.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

849

If, on the other hand, you want to do an in-depth analysis of the workload, you must

import the content of the trace file into a database table. Then you can create much more

complex queries. The output from the session puts most of the important data into an

XML field, so you’ll want to query it as you load the data as follows:

DROP TABLE IF EXISTS dbo.ExEvents;

GO

WITH xEvents

AS (SELECT object_name AS xEventName,

 CAST(event_data AS XML) AS xEventData

 FROM sys.fn_xe_file_target_read_file('C:\PerfData\QueryPerfTuning2017*.xel',

 NULL,

 NULL,

 NULL))

SELECT xEventName,

 xEventData.value('(/event/data[@name="duration"]/value)[1]',

 'bigint') AS Duration,

 xEventData.value('(/event/data[@name="physical_reads"]/value)[1]',

 'bigint') AS PhysicalReads,

 xEventData.value('(/event/data[@name="logical_reads"]/value)[1]',

 'bigint') AS LogicalReads,

 xEventData.value('(/event/data[@name="cpu_time"]/value)[1]',

 'bigint') AS CpuTime,

 CASE xEventName

 WHEN 'sql_batch_completed' THEN

 xEventData.value('(/event/data[@name="batch_text"]/value)[1]',

 'varchar(max)')

 WHEN 'rpc_completed' THEN

 xEventData.value('(/event/data[@name="statement"]/value)[1]',

 'varchar(max)')

 END AS SQLText,

 xEventData.value('(/event/data[@name="query_plan_hash"]/value)[1]',

 'binary(8)') AS QueryPlanHash

INTO dbo.ExEvents

FROM xEvents;

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

850

You need to substitute your own path and file name for <ExEventsFileName>. Once

you have the content in a table, you can use SQL queries to analyze the workload. For

example, to find the slowest queries, you can execute this SQL query:

SELECT *

FROM dbo.ExEvents AS ee

ORDER BY ee.Duration DESC;

The preceding query will show the single costliest query, and it is adequate for the

tests you’re running in this chapter. You may also want to run a query like this on a

production system; however, it’s more likely you’ll want to work from aggregations of

data, as in this example:

SELECT ee.SQLText,

 SUM(Duration) AS SumDuration,

 AVG(Duration) AS AvgDuration,

 COUNT(Duration) AS CountDuration

FROM dbo.ExEvents AS ee

GROUP BY ee.SQLText;

Executing this query lets you order things by the fields you’re most interested

in—say, CountDuration to get the most frequently called procedure or SumDuration

to get the procedure that runs for the longest cumulative amount of time. You need a

method to remove or replace parameters and parameter values. This is necessary to

aggregate based on just the procedure name or just the text of the query without the

parameters or parameter values (since these will be constantly changing).

Another mechanism is to simply query the cache to see the costliest queries through

there. It is easier than setting up Extended Events. Further, you’ll probably capture most

of the bad queries most of the time. Because of this, if you’re just getting started with

query tuning your system for the first time, you may want to skip setting up Extended

Events to identify the costliest queries. However, I’ve found that as time goes on and you

begin to quantify your systems behaviors, you’re going to want the kind of detailed data

that using Extended Events provides.

One more method we have already explored in the book is using the Query Store to

gather metrics on the behavior of the queries in your system. It has the benefits of being

extremely easy to set up and easy to query, with no XML involved. The only detriment is

if you need granular and detailed performance metrics on individual calls to queries and

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

851

procedures. In that case, again, you’ll find yourself calling on Extended Events to satisfy

the need for that type of data.

In short, you have a lot of choices and flexibility in how you put this information

together. With SQL Server 2016 and SQL Server 2017, you can even start putting data

analysis using R or Python to work to enhance the information presented. For our

purposes, though, I’ll stick with the first method I outlined, using Live Data within SSMS.

The objective of analyzing the workload is to identify the costliest query (or costly

queries in general); the next section covers how to do this.

 Identifying the Costliest Query
As just explained, you can use SSMS or the query technique to identify costly queries

for different criteria. The queries in the workload can be sorted on the CPU, Reads, or

Writes column to identify the costliest query, as discussed in Chapter 3. You can also

use aggregate functions to arrive at the cumulative cost, as well as individual costs. In a

production system, knowing the procedure that is accumulating the longest run times,

the most CPU usage, or the largest number of reads and writes is frequently more useful

than simply identifying the query that had the highest numbers one time.

Since the total number of reads usually outnumbers the total number of writes by

at least seven to eight times for even the heaviest OLTP database, sorting the queries

on the Reads column usually identifies more bad queries than sorting on the Writes

column (but you should always test this on your systems). It’s also worth looking at the

queries that simply take the longest to execute. As outlined in Chapter 5, you can capture

wait states with Performance Monitor and view those along with a given query to help

identify why a particular query is taking a long time to run. You can also capture specific

waits for a given query using Extended Events and add that to your calculations. Each

system is different. In general, I approach the most frequently called procedures first,

then the longest-running, and, finally, those with the most reads. Of course, performance

tuning is an iterative process, so you will need to reexamine each category on a regular

basis.

To analyze the sample workload for the worst-performing queries, you need to know

how costly the queries are in terms of duration or reads. Since these values are known

only after the query completes its execution, you are mainly interested in the completed

events. (The rationale behind using completed events for performance analysis is

explained in detail in Chapter 6.)

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

852

For presentation purposes, open the trace file in SSMS. Figure 27-1 shows the

captured trace output after moving several columns to the grid and then choosing to sort

by duration by clicking that column (twice to get the sort to be descending instead of

ascending).

Figure 27-1. Extended Events session output showing the SQL workload

The worst-performing query in terms of duration is also one of the worst in terms of

CPU usage and reads. That procedure, dbo.PurchaseOrderBySalesPersonName, is at the

top in Figure 27-1 (you may have different values, but this query is likely to be the

worst- performing query or at least one of the worst of the example queries).

Once you’ve identified the worst-performing query, the next optimization step is to

determine the resources consumed by the query.

 Determining the Baseline Resource Use of the
Costliest Query
The current resource use of the worst-performing query can be considered as a

baseline figure before you apply any optimization techniques. You may apply different

optimization techniques to the query, and you can compare the resultant resource use of

the query with the baseline figure to determine the effectiveness of a given optimization

technique. The resource use of a query can be presented in two categories.

• Overall resource use

• Detailed resource use

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

853

 Overall Resource Use
The overall resource use of the query provides a gross figure for the amount of hardware

resources consumed by the worst-performing query. You can compare the resource use

of an optimized query to the overall resource use of a nonoptimized query to ensure the

overall effectiveness of the performance techniques you’ve applied.

You can determine the overall resource use of the query from the workload trace.

You’ll use the first call of the procedure since it displays the worst behavior. Table 27-2

shows the overall use of the query from the trace in Figure 27-1. One point, the durations

in the table are in milliseconds, while the values in Figure 27-1 are in microseconds.

Remember to take this into account when working with Extended Events.

Table 27-2. Data Columns Representing the Amount of Resources Used by a

Query

Data Column Value Description

LogicalReads 8671 number of logical reads performed by the query. if a page is not

found in memory, then a logical read for the page will require a

physical read from the disk to fetch the page to the memory first.

 Writes 0 number of pages modified by the query.

 CPU 62ms how long the CpU was used by the query.

 Duration 464.1ms the time it took sQl server to process this query from compilation

to returning the result set.

Note in your environment, you may have different figures for the preceding data
columns. irrespective of the data columns’ absolute values, it’s important to keep
track of these values so that you can compare them with the corresponding values
later.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

854

 Detailed Resource Use
You can break down the overall resource use of the query to locate bottlenecks on the

different database objects accessed by the query. This detailed resource use helps you

determine which operations are the most problematic. Understanding the wait states

in your system will help you identify where you need to focus your tuning. A rough rule

of thumb can be to simply look at duration; however, duration can be affected by so

many factors, especially blocking, that it’s an imperfect measure at best. In this case, I’ll

spend time on all three: CPU usage, reads, and duration. Reads are a popular measure

of performance, but they can be as problematic to look at in isolation as duration. This

is why I prefer to capture multiple values and have the ability to compare them across

iterations of the query.

As you saw in Chapter 6, you can obtain the number of reads performed on the

individual tables accessed by a given query from the STATISTICS IO output for that

query. You can also set the STATISTICS TIME option to get the basic execution time

and CPU time for the query, including its compile time. You can obtain this output by

reexecuting the query with the SET statements as follows (or by selecting the Set Statistics

IO check box in the query window):

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

DBCC DROPCLEANBUFFERS;

GO

SET STATISTICS TIME ON;

GO

SET STATISTICS IO ON;

GO

EXEC dbo.PurchaseOrderBySalesPersonName @LastName = 'Hill%';

GO

SET STATISTICS TIME OFF;

GO

SET STATISTICS IO OFF;

GO

To simulate the same first-time run shown in Figure 27-1, clean out the data

stored in memory using DBCC DROPCLEANBUFFERS (not to be run on a production

system) and remove the queries from the specified database from the cache by using the

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

855

database- scoped configuration command CLEAR PROCEDURE_CACHE (also not to be run

on a production system).

The STATISTICS output for the worst-performing query looks like this:

DBCC execution completed. If DBCC printed error messages, contact your

system administrator.

SQL Server parse and compile time:

 CPU time = 0 ms, elapsed time = 0 ms.

 SQL Server Execution Times:

 CPU time = 0 ms, elapsed time = 0 ms.

SQL Server parse and compile time:

 CPU time = 0 ms, elapsed time = 0 ms.

SQL Server parse and compile time:

 CPU time = 31 ms, elapsed time = 40 ms.

(1496 rows affected)

Table 'Employee'. Scan count 0, logical reads 2992, physical reads 2, read- ahead

reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'Product'. Scan count 0, logical reads 2992, physical reads 4, read- ahead

reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'PurchaseOrderDetail'. Scan count 763, logical reads 1539, physical reads

9, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read- ahead

reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'Workfile'. Scan count 0, logical reads 0, physical reads 0, read- ahead

reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'PurchaseOrderHeader'. Scan count 1, logical reads 44, physical reads

1, read-ahead reads 42, lob logical reads 0, lob physical reads 0, lob

read-ahead reads 0.

Table 'Person'. Scan count 1, logical reads 4, physical reads 1, read-ahead

reads 2, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

 SQL Server Execution Times:

 CPU time = 15 ms, elapsed time = 93 ms.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

856

 SQL Server Execution Times:

 CPU time = 46 ms, elapsed time = 133 ms.

SQL Server parse and compile time:

 CPU time = 0 ms, elapsed time = 0 ms.

One caveat that is worth mentioning is that there is some overhead to return this

information along with the data, and it will impact some of your performance metrics

including the duration measure of the query. For most of us, most of the time, it’s not

a problem, but sometimes it’s noticeably causing issues. Be aware that by capturing

information in this way, you are making a choice.

Table 27-3 summarizes the output of STATISTICS IO.

Usually, the sum of the reads from the individual tables referred to in a query

will be less than the total number of reads performed by the query. This is because

additional pages have to be read to access internal database objects, such as sysobjects,

syscolumns, and sysindexes.

Table 27-4 summarizes the output of STATISTICS TIME.

Table 27-4. Breaking Down the Output from STATISTICS TIME

Event Duration CPU

Compile 40 ms 31 ms

Execution 93 ms 15 ms

Completion 133 ms 46 ms

Table 27-3. Breaking Down the Output from STATISTICS IO

Table Logical Reads

Person.Employee 2,992

Production.Product 2,992

Purchasing.PurchaseOrderDetail 1,539

Purchasing.PurchaseOrderHeader 44

Person.Person 4

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

857

Don’t use the logical reads in isolation from the execution times. You need to take all

the measures into account when determining poorly performing queries. Conversely,

don’t assume that the execution time is a perfect measure, either. Resource contention

plays a big part in execution time, so you’ll see some variation in this measure. Use both

values, but use them with a full understanding that either in isolation may not be an

accurate reflection of reality.

You can also add additional metrics to these details. As I outlined in Chapters 2–4,

wait statistics are an important measure to understand what’s happening on your

system. The same thing applies to queries. In SQL Server 2016 and newer, you can see

waits that are over 1ms when you capture an actual execution plan. That information is

in the properties of the SELECT operator in the query execution plan. You can also use

Extended Events to capture wait statistics for a given query, which will show all the waits,

not just the ones that exceed 1ms. These are useful additions to the detailed metrics for

measuring your query’s performance.

Once the worst-performing query has been identified and its resource use has been

measured, the next optimization step is to determine the factors that are affecting the

performance of the query. However, before you do this, you should check to see whether

any factors external to the query might be causing that poor performance.

 Analyzing and Optimizing External Factors
In addition to factors such as query design and indexing, external factors can affect

query performance. Thus, before diving into the execution plan of the query, you should

analyze and optimize the major external factors that can affect query performance. Here

are some of those external factors:

• The connection options used by the application

• The statistics of the database objects accessed by the query

• The fragmentation of the database objects accessed by the query

 Analyzing the Connection Options Used by the Application
When making a connection to SQL Server, various options, such as ANSI_NULL or

CONCAT_NULL_YIELDS_NULL, can be set differently than the defaults for the server or the

database. However, changing these settings per connection can lead to recompiles of

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

858

stored procedures, causing slower behavior. Also, some options, such as ARITHABORT,

must be set to ON when dealing with indexed views and certain other specialized indexes.

If they are not, you can get poor performance or even errors in the code. For example,

setting ANSI_WARNINGS to OFF will cause the optimizer to ignore indexed views and

indexed computed columns when generating the execution plan. You can look to the

properties of the execution plans again for this information. When an execution plan is

created, the ANSI settings are stored with it. So, if you query the cache to look at a plan

and retrieve it from the Query Store, capturing using Extended Events or SSMS, you’ll

have the ANSI settings at the time the plan was compiled. Further, if the same query is

called and the ANSI settings are different from what is currently in cache, a new plan will

be compiled (and stored in the Query Store alongside the other plan). The properties are

in the SELECT operator, as shown in Figure 27-2.

Figure 27-2. Properties of the execution plan showing the Set Options
properties

I recommend using the ANSI standard settings, in which you set the following

options to TRUE: ANSI_NULLS, ANSI_NULL_DFLT_ON, ANSI_PADDING, ANSI_WARNINGS,

CURS0R_CLOSE_ON_COMMIT, IMPLICIT_TRANSACTIONS, and QUOTED_IDENTIFIER. You can

use the single command SET ANSI_DEFAULTS ON to set them all to TRUE at the same time.

Querying sys.query_context_settings is also a helpful way for seeing the history of

settings used across workloads.

 Analyzing the Effectiveness of Statistics
The statistics of the database objects referred to in the query are one of the key pieces

of information that the query optimizer uses to decide upon certain execution plans. As

explained in Chapter 13, the optimizer generates the execution plan for a query based on

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

859

the statistics of the objects referred to in the query. The number of rows that the statistics

suggest is a major part of the cost estimation process that drives the optimizer. In this

way, it determines the processing strategy for the query. If a database object’s statistics

are not accurate, then the optimizer may generate an inefficient execution plan for the

query. Several problems can arise: you can have a complete lack of statistics because

auto_create statistics have been disabled, out-of-date statistics because automatic

updates are not enabled, outdated statistics because the statistics have simply aged, or

inaccurate statistics because of data distribution or sampling size issues.

As explained in Chapter 13, you can check the statistics of a table and its

indexes using DBCC SHOW_STATISTICS or sys.dm_db_stats_properties and sys.

dm_db_stats_histogram. There are five tables referenced in this query: Purchasing.

PurchaseOrderHeader, Purchasing.PurchaseOrderDetail, Person.Employee, Person.

Person, and Production.Product. You must know which indexes are in use by the query

to get the statistics information about them. You can determine this when you look at the

execution plan. Specifically, you can now look to the execution plan to get the specific

statistics used by the optimizer when building the execution plan. As with so much other

interesting information, this is stored in the SELECT operator, as you can see in Figure 27- 3.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

860

While there are five tables, you can see that there were seven statistics objects used in

generating the plan. As you can see, more than one object in the PurchaseOrderDetail

table was used. You may see several different stats from any given table in use. This is a

great way to easily identify the statistics of which you need to determine the efficiency.

Figure 27-3. Statistics used by the optimizer to create the execution plan for the
query we’re exploring

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

861

For now, I’ll check the statistics on the primary key of the HumanResources.Employee

table since it had the most reads. Now run the following query:

DBCC SHOW_STATISTICS('HumanResources.Employee', 'PK_Employee_

BusinessEntityID');

When the preceding query completes, you’ll see the output shown in Figure 27-4.

Figure 27-4. SHOW_STATISTICS output for HumanResources.Employee

You can see the selectivity on the index is very high since the density is quite low,

as shown in the All density column. You can see that all rows were scanned in these

statistics and that the distribution was in 146 steps. In this instance, it’s doubtful that

statistics are likely to be the cause of this query’s poor performance. It’s probably a good

idea, where possible, to look at the actual execution plan and compare estimated versus

actual rows there. You can also check the Updated column to determine the last time

this set of statistics was updated. If it has been more than a few days since the statistics

were updated, then you need to check your statistics maintenance plan, and you should

update these statistics manually. That of course does depend on the frequency of data

change within your database. In this case, these statistics could be seriously out-of-date

considering the data provided (however, they’re not because this is a sample database

that has not been updated).

 Analyzing the Need for Defragmentation
As explained in Chapter 14, a fragmented table increases the number of pages to be

accessed by a query performing a scan, which adversely affects performance. However,

fragmentation is frequently not an issue for point queries. If you are seeing a lot of scans,

you should ensure that the database objects referred to in the query are not too fragmented.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

862

You can determine the fragmentation of the five tables accessed by the worst-

performing query by running a query against sys.dm_db_index_physical_stats. Begin

by running the query against the HumanResources.Employee table.

SELECT s.avg_fragmentation_in_percent,

 s.fragment_count,

 s.page_count,

 s.avg_page_space_used_in_percent,

 s.record_count,

 s.avg_record_size_in_bytes,

 s.index_id

FROM sys.dm_db_index_physical_stats(DB_ID('AdventureWorks2017'),

 OBJECT_ID(N'HumanResources.Employee'),

 NULL,

 NULL,

 'Sampled') AS s

WHERE s.record_count > 0

ORDER BY s.index_id;

Figure 27-5 shows the output of this query.

Figure 27-5. The index fragmentation of the HumanResources.Employee table

If you run the same query for the other four tables (in order Purchasing.

PurchaseOrderHeader, Purchasing.PurchaseOrderDetail, Production.Product, and

Person.Person), the output will look like Figure 27-6.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

863

The fragmentation of all the indexes is very low, and the space used for all of

them is very high. This means it’s unlikely that any of them are negatively impacting

performance. If you also examine the fact that most of the indexes here have less

than 100 pages in them, this makes them very small indexes, and even if they were

fragmented, the degree of this affecting the query must be extremely minimal. In fact,

fragmentation is far too frequently a crutch to try to improve performance without doing

the hard work of identifying the actual issues in the system, usually internal behavior of

the query.

Worth noting is the index that has 301,696 rows instead of the 19,972 in the other

indexes. If you look that up, it’s an XML index, so the difference is in the XML tree. It’s

not used anywhere in these queries, so we’ll ignore it here.

Once you’ve analyzed the external factors that can affect the performance of a query

and resolved the nonoptimal ones, you should analyze internal factors, such as improper

indexing and query design.

Figure 27-6. The index fragmentation for the four tables in the problem query

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

864

 Analyzing the Internal Behavior of the Costliest
Query
Now you need to analyze the processing strategy for the query chosen by the optimizer

to determine the internal factors affecting the query’s performance. Analyzing the

internal factors that can affect query performance involves these steps:

• Analyzing the query execution plan

• Identifying the costly steps in the execution plan

• Analyzing the effectiveness of the processing strategy

 Analyzing the Query Execution Plan
To see the execution plan, click the Show Actual Execution Plan button to enable

it and then run the stored procedure. Be sure you’re doing these types of tests on a

nonproduction system, while, at the same time, have it be as much like production as

possible so that the behavior there mirrors what you see in production. We covered

execution plans in Chapter 16. For more details on reading execution plans, check out

my book SQL Server Execution Plans (Red Gate Publishing, 2018). Figure 27-7 shows the

graphical execution plan of the worst-performing query.

Figure 27-7. The actual execution plan of the worst-performing query

The graphic of this plan is somewhat difficult to read. I’ll break down a few of the

interesting details in case you’re not following along with code. You could observe the

following from this execution plan:

• SELECT properties

• Optimization Level: Full

• Reason for Early Termination: Good enough plan found

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

865

• Query Time Statistics: 30ms CpuTime and 244 ms ElapsedTime

• WaitStats: WaitCount 4, WaitTimeMs 214, WaitType ASYNC_

NETWORK_IO

• Data access

• Index seek on nonclustered index, Person.IX_Person_LastName_

FirstName_MiddleName

• Clustered index scan on, PurchaseOrderHeader.PK_

PruchaseOrderHeader_PurchaseOrderID

• Clustered index seek on PurchaseOrderDetail.PK_

PurchaseOrderDetail_PurchaseOrderDetailID

• Clustered Index seek on Product.PK_Product_ProductID

• Clustered Index seek on Employee.PK_Employee_

BusinessEntityID

• Join strategy

• Nested loop join between the constant scan and Person.Person

table with the Person.Person table as the outer table

• Nested loop join between the output of the previous join and

Purchasing.PurchaseOrderHeader with the Purchasing.

PurchaseOrderHeader table as the outer table

• Nested loop join between the output of the previous join and the

Purchasing.PurchaseOrderDetail table that was also the outer

table

• Nested loop join between the output of the previous join and the

Production.Product table with Production.Product as the

outer table

• Nested loop join between the previous join and the

HumanResources.Employee table with the HumanResource.

Employee table as the outer table

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

866

• Additional processing

• Constant scan to provide a placeholder for the @LastName

variable’s LIKE operation

• Compute scalar that defined the constructs of the @LastName

variable’s LIKE operation, showing the top and bottom of the

range and the value to be checked

• Compute scalar that combines the FirstName and LastName

columns into a new column

• Compute scalar that calculates the LineTotal column from the

Purchasing.PurchaseOrderDetail table

• Compute scalar that takes the calculated LineTotal and stores it

as a permanent value in the result set for further processing

All this information is available by browsing the details of the operators exposed in

the properties sheet from the graphical execution plan.

 Identifying the Costly Steps in the Execution Plan
Once you understand the execution plan of the query, the next step is to identify the

steps estimated as the most costly in the execution plan. Although these costs are

estimated and don’t reflect reality in any way, they are the only numbers you will receive

that measure the function of the plan, so identifying, understanding, and possibly

addressing the most costly operations can result in massive performance benefit. You

can see that the following are the two costliest steps:

• Costly step 1: The clustered index scan on the Purchasing.

PurchaseOrderHeader table is 36 percent.

• Costly step 2: The hash match join operation is 32 percent.

The next optimization step is to analyze the costliest steps so you can determine

whether these steps can be optimized through techniques such as redesigning the query

or indexes.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

867

 Analyzing the Processing Strategy
While the optimizer completed optimizing the plan, which you know because the reason

for early termination of the optimization process was “Good Enough Plan Found” (or,

because it showed FULL optimization without a reason for early termination), that

doesn’t mean there are not tuning opportunities in the query and structure. You can

begin evaluating it by following the traditional steps.

Costly step 1 is a clustered index scan. Scans are not necessarily a problem. They’re

just an indication that a full scan of the object in question, in this case the entire table,

was less costly than the alternatives to retrieve the information needed by the query.

Costly step 2 is the hash match join operation of the query. This again is not

necessarily a problem. But, sometimes, a hash match is an indication of bad or missing

indexes, or queries that can’t make use of the existing indexes, so they are frequently

an area that needs work. At least, that’s frequently the case for OLTP systems. For large

data warehouse systems, a hash match may be ideal for dealing with the types of queries

you’ll see there.

Tip at times you may find that no improvements can be made to the costliest
step in a processing strategy. in that case, concentrate on the next costliest step to
identify the problem. if none of the steps suggests indications for optimization, then
you may need to consider changing the database design or the construction of the
query.

 Optimizing the Costliest Query
Once you’ve diagnosed the queries with costly steps, the next stage is to implement the

necessary corrections to reduce the cost of these steps.

The corrective actions for a problematic step can have one or more alternative

solutions. For example, should you create a new index or structure the query differently? In

such cases, you should prioritize the solutions based on their expected effectiveness and

the amount of work required. For example, if a narrow index can more or less do the job,

then it is usually better to prioritize that over changes to code that might lead to business

testing. Making changes to code may also be the less intrusive approach. You need to

evaluate each situation within the business and application that you’re dealing with.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

868

Apply the solutions individually in the order of their expected benefit and measure

their individual effect on the query performance. Finally, you can apply the solution

(or solutions) that provides the greatest performance improvement to correct the

problematic step. Sometimes, it may be evident that the best solution will hurt other

queries in the workload. For example, a new index on a large number of columns can

hurt the performance of action queries. However, since that’s not always an issue, it’s

better to determine the effect of such optimization techniques on the complete workload

through testing. If a particular solution hurts the overall performance of the workload,

choose the next best solution while keeping an eye on the overall performance of the

workload.

 Modifying the Code
The costliest operation in the query is a clustered index scan of the

PurchaseOrderHeader table. The first thing you need to do is understand if the clustered

index scan is necessary for the query and data returned or may be there because of the

code or even because another index or a different index structure could work better. To

begin to understand why you’re getting a clustered index scan, you should look at the

properties of the scan operation. Since you’re getting a scan, you also need to look to the

code to ensure it’s sargable. Specifically, you’re interested in the Predicate property, as

shown in Figure 27-8.

Figure 27-8. The predicate of the clustered index scan

This is a calculation. There is an existing index on the VendorID column of the

PurchaseOrderTable that might be of use to this query, but because you’re using a

COALESCE statement to filter values, a scan of the entire table is necessary to retrieve the

information. The COALESCE operator is basically a way to take into account that a given

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

869

value might be NULL and, if it is NULL, to provide an alternate value, possibly several

alternate values. However, it’s a function, and a function against a column within a WHERE

clause, the JOIN criteria, or a HAVING clause is likely to lead to scans, so you need to get

rid of the function. Because of this function, you can’t simply add or modify the index

because you’d still end up with a scan. You could try rewriting the query with an OR

clause like this:

...WHERE per.LastName LIKE @LastName AND

 poh.VendorID = @VendorID

 OR poh.VendorID = poh.VendorID…

But logically, that’s not the same as the COALESCE operation. Instead, it’s substituting

one part of the WHERE clause for another, not just using the OR construct. So, you could

rewrite the entire stored procedure definition like this:

CREATE OR ALTER PROCEDURE dbo.PurchaseOrderBySalesPersonName

 @LastName NVARCHAR(50),

 @VendorID INT = NULL

AS

IF @VendorID IS NULL

BEGIN

 SELECT poh.PurchaseOrderID,

 poh.OrderDate,

 pod.LineTotal,

 p.Name AS ProductName,

 e.JobTitle,

 per.LastName + ', ' + per.FirstName AS SalesPerson,

 poh.VendorID

 FROM Purchasing.PurchaseOrderHeader AS poh

 JOIN Purchasing.PurchaseOrderDetail AS pod

 ON poh.PurchaseOrderID = pod.PurchaseOrderID

 JOIN Production.Product AS p

 ON pod.ProductID = p.ProductID

 JOIN HumanResources.Employee AS e

 ON poh.EmployeeID = e.BusinessEntityID

 JOIN Person.Person AS per

 ON e.BusinessEntityID = per.BusinessEntityID

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

870

 WHERE per.LastName LIKE @LastName

 ORDER BY per.LastName,

 per.FirstName;

END

ELSE

BEGIN

 SELECT poh.PurchaseOrderID,

 poh.OrderDate,

 pod.LineTotal,

 p.Name AS ProductName,

 e.JobTitle,

 per.LastName + ', ' + per.FirstName AS SalesPerson,

 poh.VendorID

 FROM Purchasing.PurchaseOrderHeader AS poh

 JOIN Purchasing.PurchaseOrderDetail AS pod

 ON poh.PurchaseOrderID = pod.PurchaseOrderID

 JOIN Production.Product AS p

 ON pod.ProductID = p.ProductID

 JOIN HumanResources.Employee AS e

 ON poh.EmployeeID = e.BusinessEntityID

 JOIN Person.Person AS per

 ON e.BusinessEntityID = per.BusinessEntityID

 WHERE per.LastName LIKE @LastName

 AND poh.VendorID = @VendorID

 ORDER BY per.LastName,

 per.FirstName;

END

GO

Using the IF construct breaks the query in two. Running it with the same set of

parameters resulted in a change in execution time from 434ms to 128ms (as measured in

Extended Events), which is a fairly strong improvement. The reads went up from 8,671 to

9,243. While the execution time went down quite a lot, we had a small increase in reads.

The execution plan is certainly different, as shown in Figure 27-9.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

871

The two costliest operators are now different. There are no more scan operations,

and all the join operations are now loop joins. But, a new data access operation has been

added. You’re now seeing a Key Lookup operation, as described in Chapter 12, so you

have more tuning opportunities.

 Fixing the Key Lookup Operation
Now that you know you have a key lookup, you need to determine whether any of the

methods for addressing it suggested in Chapter 12 can be applied. First, you need to

know what columns are being retrieved in the operation. This means accessing the

properties of the Key Lookup operator. The properties show the VendorID and OrderDate

columns. This means you only need to add those columns to the leaf pages of the index

through the INCLUDE part of the nonclustered index. You can modify that index as

follows:

CREATE NONCLUSTERED INDEX IX_PurchaseOrderHeader_EmployeeID

ON Purchasing.PurchaseOrderHeader

(

 EmployeeID ASC

)

INCLUDE

(

 VendorID,

 OrderDate

)

WITH DROP_EXISTING;

Figure 27-9. New execution plan after breaking apart the query

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

872

Applying this index results in a change in the execution plan and a modification

in the performance. The previous structure and code resulted in 128ms. With this new

index in place, the query execution time dropped to 110ms, and the reads have dropped

to 7748. The execution plan is now completely different, as shown in Figure 27-10.

Figure 27-10. New execution plan after modifying the index

At this point there are nothing but nested loop joins and index seeks. There’s not

even a sort operation anymore despite the ORDER BY statement in the query. This is

because the output of the index seek against the Person table is Ordered and the rest of

the operations maintain that order. In short, you’re largely in good shape as far as this

query goes, but there were two queries in the procedure now.

 Tuning the Second Query
Eliminating COALESCE allowed you to use existing indexes, but in doing this you effectively

created two paths through your query. Because you’ve explored the first path only

because you have used only the single parameter, you’ve been ignoring the second query.

Let’s modify the test script to see how the second path through the query will work.

EXEC dbo.PurchaseOrderBySalesPersonName @LastName = 'Hill%',

 @VendorID = 1496;

Running this query results in a different execution plan entirely. You can see the

most interesting part of this in Figure 27-11.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

873

This new query has different behaviors because of the differences in the query.

The main issue here is a clustered index scan against the PurchaseOrderHeader table.

You’re seeing a scan despite that there is an index on VendorID. Again, you can look to

see what the output of the operator includes. This time, it’s more than just two columns:

OrderDate, EmployeeID, PurchaseOrderID. These are not very large columns, but they

will add to the size of the index. You’ll need to evaluate whether this increase in index

size is worth the performance benefits of the elimination of the scan of the index. I’m

going to go ahead and try it by modifying the index as follows:

CREATE NONCLUSTERED INDEX IX_PurchaseOrderHeader_VendorID

ON Purchasing.PurchaseOrderHeader

(

 VendorID ASC

)

INCLUDE

(

 OrderDate,

 EmployeeID,

 PurchaseOrderID

)

WITH DROP_EXISTING;

GO

Figure 27-11. Execution plan for the other query in the procedure

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

874

Prior to applying the index, the execution time was around 4.3ms with 273 reads.

After applying the index, the execution time dropped to 2.3ms and 263 reads. The

execution plan now looks like Figure 27-12.

Figure 27-12. The second execution plan after modifying the index

The new execution plan consists of index seeks and nested loops joins. There is a sort

operator, the second costliest in the plan, ordering the data by LastName and FirstName.

Getting this to be taken care of by the retrieval process might help to improve performance,

but I’ve had a fairly successful tuning to this point, so I’ll leave it as is for now.

One additional consideration should be made for the split query. When the

optimizer processes a query like this, both statements will be optimized for the

parameter values passed in. Because of this, you may see bad execution plans, especially

for the second query that uses the VendorID for filtering, because of parameter sniffing

gone bad. To avoid that situation, one additional tuning effort should be made.

 Creating a Wrapper Procedure
Because you’ve created two paths within the procedure to accommodate the different

mechanisms of querying the data, you have the potential for getting bad parameter

sniffing because both paths will be compiled, regardless of the parameters passed. One

mechanism around this is to run the procedure you have into a wrapper procedure. But

first, you have to create two new procedures, one for each query like this:

CREATE OR ALTER PROCEDURE dbo.PurchaseOrderByLastName @LastName

NVARCHAR(50)

AS

SELECT poh.PurchaseOrderID,

 poh.OrderDate,

 pod.LineTotal,

 p.Name AS ProductName,

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

875

 e.JobTitle,

 per.LastName + ', ' + per.FirstName AS SalesPerson,

 poh.VendorID

FROM Purchasing.PurchaseOrderHeader AS poh

 JOIN Purchasing.PurchaseOrderDetail AS pod

 ON poh.PurchaseOrderID = pod.PurchaseOrderID

 JOIN Production.Product AS p

 ON pod.ProductID = p.ProductID

 JOIN HumanResources.Employee AS e

 ON poh.EmployeeID = e.BusinessEntityID

 JOIN Person.Person AS per

 ON e.BusinessEntityID = per.BusinessEntityID

WHERE per.LastName LIKE @LastName

ORDER BY per.LastName,

 per.FirstName;

GO

CREATE OR ALTER PROCEDURE dbo.PurchaseOrderByLastNameVendor

 @LastName NVARCHAR(50),

 @VendorID INT

AS

SELECT poh.PurchaseOrderID,

 poh.OrderDate,

 pod.LineTotal,

 p.Name AS ProductName,

 e.JobTitle,

 per.LastName + ', ' + per.FirstName AS SalesPerson,

 poh.VendorID

FROM Purchasing.PurchaseOrderHeader AS poh

 JOIN Purchasing.PurchaseOrderDetail AS pod

 ON poh.PurchaseOrderID = pod.PurchaseOrderID

 JOIN Production.Product AS p

 ON pod.ProductID = p.ProductID

 JOIN HumanResources.Employee AS e

 ON poh.EmployeeID = e.BusinessEntityID

 JOIN Person.Person AS per

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

876

 ON e.BusinessEntityID = per.BusinessEntityID

WHERE per.LastName LIKE @LastName

 AND poh.VendorID = @VendorID

ORDER BY per.LastName,

 per.FirstName;

GO

Then you have to modify the existing procedure so that it looks like this:

CREATE OR ALTER PROCEDURE dbo.PurchaseOrderBySalesPersonName

 @LastName NVARCHAR(50),

 @VendorID INT = NULL

AS

IF @VendorID IS NULL

BEGIN

 EXEC dbo.PurchaseOrderByLastName @LastName;

END

ELSE

BEGIN

 EXEC dbo.PurchaseOrderByLastNameVendor @LastName, @VendorID;

END

GO

With that in place, regardless of the code path chosen, the first time these queries are

called, each procedure will get its own unique execution plan, avoiding bad parameter

sniffing. And, this won’t negatively impact performance time. If I run both the queries

now, the results are approximately the same. This pattern works very well for a small

number of paths. If you have some large number of paths, certainly more than 10 or so,

this pattern breaks down, and you may need to look to dynamic execution methods.

Taking the performance from 434ms to 110ms or 2.3ms, depending on our new

queries, is a pretty good reduction in execution time, and we also had equally big wins

on reads. If this query were called hundreds of times in a minute, that level of reduction

would be quite serious indeed. But, you should always go back and assess the impact on

the overall database workload.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

877

 Analyzing the Effect on Database Workload
Once you’ve optimized the worst-performing query, you must ensure that it doesn’t hurt

the performance of the other queries; otherwise, your work will have been in vain.

To analyze the resultant performance of the overall workload, you need to use the

techniques outlined in Chapter 15. For the purposes of this small test, reexecute the

complete workload and capture extended events to record the overall performance.

Tip For proper comparison with the original extended events, please ensure that
the graphical execution plan is off.

Figure 27-13 shows the corresponding Extended Events output captured.

Figure 27-13. The Extended Events output showing the effect of optimizing the
costliest query on the complete workload

It’s possible that the optimization of the worst-performing query may hurt the

performance of some other query in the workload. However, as long as the overall

performance of the workload is improved, you can retain the optimizations performed

on the query. In this case, the other queries were not impacted. But now, there is a query

that takes longer than the others. It too might need optimization, and the whole process

starts again. This is also a place where having the Query Store in place so that you can

look for regression or changes in behavior easily becomes a great resource.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

878

 Iterating Through Optimization Phases
An important point to remember is that you need to iterate through the optimization

steps multiple times. In each iteration, you can identify one or more poorly performing

queries and optimize the query or queries to improve the performance of the overall

workload. You must continue iterating through the optimization steps until you achieve

adequate performance or meet your service level agreement (SLA).

Besides analyzing the workload for resource-intensive queries, you must also

analyze the workload for error conditions. For example, if you try to insert duplicate rows

into a table with a column protected by the unique constraint, SQL Server will reject the

new rows and report an error condition to the application. Although the data was not

entered into the table and no useful work was performed, valuable resources were used

to determine that the data was invalid and must be rejected.

To identify the error conditions caused by database requests, you will need to

include the following in your Extended Events session (alternatively, you can create a

new session that looks for these events in the errors or warnings category):

• error_reported

• execution_warning

• hash_warning

• missing_column_statistics

• missing_join_predicate

• sort_warning

• hash_spill_details

For example, consider the following SQL queries:

INSERT INTO Purchasing.PurchaseOrderDetail

 (PurchaseOrderID,

 DueDate,

 OrderQty,

 ProductID,

 UnitPrice,

 ReceivedQty,

 RejectedQty,

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

879

 ModifiedDate

)

VALUES (1066,

 '1/1/2009',

 1,

 42,

 98.6,

 5,

 4,

 '1/1/2009'

) ;

GO

SELECT p.[Name],

 psc.[Name]

FROM Production.Product AS p,

 Production.ProductSubCategory AS psc ;

GO

Figure 27-14 shows the corresponding session output.

Figure 27-14. Extended Events output showing errors raised by a SQL workload

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

880

From the Extended Events output in Figure 27-14, you can see that the two errors I

intentionally generated occurred.

• error_reported

• missing_join_predicate

The error_reported error was caused by the INSERT statement, which tried to insert

data that did not pass the referential integrity check; namely, it attempted to insert

Productld = 42 when there is no such value in the Production.Product table. From the

error_number column, you can see that the error number is 547. The message column

shows the full description for the error. It’s worth noting, though, that error_reported

can be quite chatty with lots of data returned and not all of it useful.

The second type of error, missing_join_predicate, is caused by the SELECT

statement.

SELECT p.Name,

 c.Name

FROM Production.Product AS p,

 Production.ProductSubcategory AS c;

If you take a closer look at the SELECT statement, you will see that the query does not

specify a JOIN clause between the two tables. A missing join predicate between the tables

usually leads to an inaccurate result set and a costly query plan. This is what is known

as a Cartesian join, which leads to a Cartesian product, where every row from one table

is combined with every row from the other table. You must identify the queries causing

such events in the Errors and Warnings section and implement the necessary fixes.

For instance, in the preceding SELECT statement, you should not join every row from the

Production.ProductCategory table to every row in the Production.Product table—you

must join only the rows with matching ProductCategorylD, as follows:

SELECT p.Name,

 c.Name

FROM Production.Product AS p

 JOIN Production.ProductSubcategory AS c

 ON p.ProductSubcategoryID = c.ProductSubcategoryID;

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

881

Even after you thoroughly analyze and optimize a workload, you must remember

that workload optimization is not a one-off process. The workload or data distribution

on a database can change over time, so you should periodically check whether

your queries are optimized for the current situation. It’s also possible that you may

identify shortcomings in the design of the database itself. Too many joins from

overnormalization or too many columns from improper denormalization can both lead

to queries that perform badly, with no real optimization opportunities. In this case, you

will need to consider redesigning the database to get a more optimized structure.

 Summary
As you learned in this chapter, optimizing a database workload requires a range of

tools, utilities, and commands to analyze different aspects of the queries involved in the

workload. You can use Extended Events to analyze the big picture of the workload and

identify the costly queries. Once you’ve identified the costly queries, you can use the

execution plan and various SQL commands to troubleshoot the problems associated

with the costly queries. Based on the problems detected with the costly queries, you can

apply one or more sets of optimization techniques to improve the query performance.

The optimization of the costly queries should improve the overall performance of the

workload; if this does not happen, you should roll back the change or changes.

In the next chapter, I summarize the performance-related best practices in a

nutshell. You’ll be able to use this information as a quick and easy-to-read reference.

Chapter 27 Database WorkloaD optimization

www.EBooksWorld.ir

883
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2_28

CHAPTER 28

SQL Server Optimization
Checklist
If you have read through the previous 27 chapters of this book, then you understand the

major aspects of performance optimization. You also understand that it is a challenging

and ongoing activity.

What I hope to do in this chapter is to provide a performance-monitoring

checklist that can serve as a quick reference for database developers and DBAs when

in the field. The idea is similar to the notion of tear-off cards of best practices. This

chapter does not cover everything, but it does summarize, in one place, some of

the major tuning activities that can have a quick and demonstrable impact on the

performance of your SQL Server systems. I have categorized these checklist items into

the following sections:

• Database design

• Configuration settings

• Database administration

• Database backup

• Query design

Each section contains a number of optimization recommendations and techniques.

Where appropriate, each section also cross-references specific chapters in this book that

provide more detailed information.

www.EBooksWorld.ir

884

 Database Design
Database design is a broad topic, and it can’t be given due justice in a small section in

this query tuning book; nevertheless, I advise you to keep an eye on the following design

aspects to ensure that you pay attention to database performance from an early stage:

• Use entity-integrity constraints.

• Maintain domain and referential integrity constraints.

• Adopt index-design best practices.

• Avoid the use of the sp_ prefix for stored procedure names.

• Minimize the use of triggers.

• Put tables into in-memory storage.

• Use columnstore indexes.

 Use Entity-Integrity Constraints
Data integrity is essential to ensuring the quality of data in the database. An essential

component of data integrity is entity integrity, which defines a row as a unique entity for

a particular table; that is, every row in a table must be uniquely identifiable. The column

or columns serving as the unique row identifier for a table must be represented as the

primary key of the table.

Sometimes, a table may contain an additional column (or columns) that also can

be used to uniquely identify a row in the table. For example, an Employee table may

have the EmployeeID and SocialSecurityNumber columns. The EmployeeID column

serves as the unique row identifier, and it can be defined as the primary key. Similarly,

the SocialSecurityNumber column can be defined as the alternate key. In SQL Server,

alternate keys can be defined using unique constraints, which are essentially the

younger siblings to primary keys. In fact, both the unique constraint and the primary key

constraint use unique indexes behind the scenes.

It’s worth noting that there is honest disagreement regarding the use of a natural

key (for example, the SocialSecurityNumber column in the previous example) or an

artificial key (for example, the EmployeeID column). I’ve seen both designs succeed, but

each approach has strengths and weaknesses. Rather than suggest one over the other,

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

885

I’ll provide you with a couple of reasons to use both and some of the costs associated

with each and thereby avoid the religious argument. An identity column is usually an

INT or a BIGINT, which makes it narrow and easy to index, improving performance. Also,

separating the value of the primary key from any business knowledge is considered good

design in some circles. Sometimes globally unique identifiers (GUIDs) may be used as

a primary key. They work fine but are difficult to read, so it impacts troubleshooting,

and they can lead to greater index fragmentation. The breadth of the key can also cause

a negative impact to performance. One of the drawbacks of artificial keys is that the

numbers sometimes acquire business meaning, which should never happen. Another

thing to keep in mind is that you have to create a unique constraint for the alternate

keys to prevent the creation of multiple rows where none should exist. This increases

the amount of information you have to store and maintain. Natural keys provide a

clear, human-readable, primary key that has true business meaning. They tend to be

wider fields—sometimes very wide—making them less efficient inside indexes. Also,

sometimes the data may change, which has a profound trickle-down effect within your

database because you will have to update every single place that key value is in use

instead of simply one place with an artificial key. With the introduction of compliance

like the General Data Protection Regulation (GDPR) in the European Union, natural keys

become more problematic when worrying about your ability to modify data without

removing it.

Let me just reiterate that either approach can work well and that each provides

plenty of opportunities for tuning. Either approach, properly applied and maintained,

will protect the integrity of your data.

Besides maintaining data integrity, unique indexes—the primary vehicle for

entity- integrity constraints—help the optimizer generate efficient execution plans.

SQL Server can often search through a unique index faster than it can search through

a nonunique index. This is because each row in a unique index is unique; and, once

a row is found, SQL Server does not have to look any further for other matching

rows (the optimizer is aware of this fact). If a column is used in sort (or GROUP BY or

DISTINCT) operations, consider defining a unique constraint on the column (using a

unique index) because columns with a unique constraint generally sort faster than

ones with no unique constraint. Also, a unique constraint adds additional information

for the optimizer’s cardinality estimation. Even an “unused” or “disused” index may

still be helpful for optimization because of the effects on cardinality estimation.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

886

To understand the performance benefit of entity-integrity or unique constraints,

consider an example. Assume you want to modify the existing unique index on the

Production.Product table.

CREATE NONCLUSTERED INDEX AK_Product_Name

ON Production.Product

(

 Name ASC

)

WITH (DROP_EXISTING = ON)

ON [PRIMARY];

GO

The nonclustered index does not include the UNIQUE constraint. Therefore, although

the [Name] column contains unique values, the absence of the UNIQUE constraint from

the nonclustered index does not provide this information to the optimizer in advance.

Now, let’s consider the performance impact of the UNIQUE constraint (or a missing

UNIQUE constraint) on the following SELECT statement:

SELECT DISTINCT

 (p.Name)

FROM Production.Product AS p;

Figure 28-1 shows the execution plan of this SELECT statement.

Figure 28-1. An execution plan with no UNIQUE constraint on the [Name] column

From the execution plan, you can see that the nonclustered AK_ProductName index

is used to retrieve the data, and then a Stream Aggregate operation is performed on the

data to group the data on the [Name] column so that the duplicate [Name] values can be

removed from the final result set. Note that the Stream Aggregate operation would not

have been required if the optimizer had been told in advance about the uniqueness of

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

887

the [Name] column. You can accomplish this by defining the nonclustered index with a

UNIQUE constraint, as follows:

CREATE UNIQUE NONCLUSTERED INDEX [AK_Product_Name]

ON [Production].[Product]([Name] ASC)

WITH (

DROP_EXISTING = ON)

ON [PRIMARY];

GO

Figure 28-2 shows the new execution plan of the SELECT statement.

Figure 28-2. An execution plan with a UNIQUE constraint on the [Name] column

In general, the entity-integrity constraints (in other words, primary keys and unique

constraints) provide useful information to the optimizer about the expected results,

assisting the optimizer in generating efficient execution plans. Of note is the fact that

sys.dm_db_index_usage_stats doesn’t show when a constraint check has been run

against the index that defines the unique constraint.

 Maintain Domain and Referential Integrity Constraints
The other two important components of data integrity are domain integrity and

referential integrity. Domain integrity for a column can be enforced by restricting the

data type of the column, defining the format of the input data, and limiting the range of

acceptable values for the column. Referential integrity is enforced by the use of foreign

key constraints defined between tables. SQL Server provides the following features to

implement the domain and referential integrity: data types, FOREIGN KEY constraints,

CHECK constraints, DEFAULT definitions, and NOT NULL definitions. If an application

requires that the values for a data column be restricted to a range of values, then this

business rule can be implemented either in the application code or in the database

schema. Implementing such a business rule in the database using domain constraints

(such as the CHECK constraint) can help the optimizer generate efficient execution plans.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

888

To understand the performance benefit of domain integrity, consider this example:

DROP TABLE IF EXISTS dbo.Test1;

GO

CREATE TABLE dbo.Test1 (

 C1 INT,

 C2 INT CHECK (C2 BETWEEN 10 AND 20)

) ;

INSERT INTO dbo.Test1

VALUES (11, 12);

GO

DROP TABLE IF EXISTS dbo.Test2;

GO

CREATE TABLE dbo.Test2 (C1 INT, C2 INT);

INSERT INTO dbo.Test2

VALUES (101, 102);

Now execute the following two SELECT statements:

SELECT T1.C1,

 T1.C2,

 T2.C2

FROM dbo.Test1 AS T1

 JOIN dbo.Test2 AS T2

 ON T1.C1 = T2.C2

 AND T1.C2 = 20;

GO

SELECT T1.C1,

 T1.C2,

 T2.C2

FROM dbo.Test1 AS T1

 JOIN dbo.Test2 AS T2

 ON T1.C1 = T2.C2

 AND T1.C2 = 30;

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

889

The two SELECT statements appear to be the same, except for the predicate values

(20 in the first statement and 30 in the second). Although the two SELECT statements

have the same form, the optimizer treats them differently because of the CHECK constraint

on the Tl.C2 column, as shown in the execution plan in Figure 28-3.

Figure 28-3. Execution plans with predicate values within and outside the
CHECK constraint boundaries

From the execution plan, you can see that, for the first query (with T1.C2 = 20), the

optimizer accesses the data from both tables. For the second query (with Tl.C2 = 30), the

optimizer understands from the corresponding CHECK constraint on the column Tl.C2

that the column can’t contain any value outside the range of 10 to 20. Thus, the optimizer

doesn’t even access the data from either table. Consequently, the relative estimated cost,

and the actual performance measurement of doing almost nothing, of the second query

is 0 percent.

I explained the performance advantage of referential integrity in detail in the

“Declarative Referential Integrity” section of Chapter 19.

Therefore, you should use domain and referential constraints not only to implement data

integrity but also to facilitate the optimizer in generating efficient query plans. Make sure that

your foreign key constraints are created using the WITH CHECK option, or the optimizer will

ignore them. To understand other performance benefits of domain and referential integrity,

please refer to the “Using Domain and Referential Integrity” section of Chapter 19.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

890

 Adopt Index-Design Best Practices
The most common optimization recommendation—and frequently one of the biggest

contributors to good performance—is to implement the correct indexes for the database

workload. Indexes are unlike tables, which are used to store data and can be designed

even without knowing the queries thoroughly (as long as the tables properly represent

the business entities). Instead, indexes must be designed by reviewing the database

queries thoroughly. Except in common and obvious cases, such as primary keys and

unique indexes, please don’t fall into the trap of designing indexes without knowing

the queries. Even for primary keys and unique indexes, I advise you to validate the

applicability of those indexes as you start designing the database queries. Considering

the importance of indexes for database performance, you must be careful when

designing indexes.

Although the performance aspect of indexes is explained in detail in Chapters 8, 9,

12, and 13, I’ll reiterate a short list of recommendations for easy reference here:

• Choose narrow columns for index keys.

• Ensure that the selectivity of the data in the candidate column is very

high (that is, the column must have a low number of candidate values

returned).

• Prefer columns with the integer data type (or variants of the integer

data type). Also, avoid indexes on columns with string data types

such as VARCHAR.

• Consider listing columns having higher selectivity first in a

multicolumn index.

• Use the INCLUDE list in an index as a way to make an index cover

the index key structure without changing that structure. Do this by

adding columns to the key, which enables you to avoid expensive

lookup operations.

• When deciding which columns to index, pay extra attention to

the queries’ WHERE clauses and JOIN criteria columns and HAVING

clause. These can serve as the entry points into the tables, especially

if a WHERE clause criterion on a column filters the data on a highly

selective value or constant. Such a clause can make the column a

prime candidate for an index.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

891

• When choosing the type of an index (clustered or nonclustered,

columnstore or rowstore), keep in mind the advantages and

disadvantages of the various index types.

Be extra careful when designing a clustered index because every nonclustered index

on the table depends on the clustered index. Therefore, follow these recommendations

when designing and implementing clustered indexes:

• Keep the clustered indexes as narrow as possible. You don’t want to

widen all your nonclustered indexes by having a wide clustered index.

• Create the clustered index first and then create the nonclustered

indexes on the table.

• If required, rebuild a clustered index in a single step using the

DROP_EXISTING = {ON|OFF} command in the CREATE INDEX

command. You don’t want to rebuild all the nonclustered indexes on

the table twice: once when the clustered index is dropped and again

when the clustered index is re-created.

• Do not create a clustered index on a frequently updated column. If

you do so, the nonclustered indexes on the table will create additional

load by remaining in sync with the clustered index key values.

To keep track of the indexes you’ve created and determine others that you need to

create, you should take advantage of the dynamic management views that SQL Server

2017 and Azure SQL Database make available to you. By checking the data in sys.

dm_db_index_usage_stats on a regular basis—say once a week or so—you can determine

which of your indexes are actually being used and which are redundant. Indexes that

are not contributing to your queries to help you improve performance are just a drain on

the system. They require both more disk space and additional I/O to maintain the data

inside the index as the data in the table changes. On the other hand, querying sys.dm_db_

missing_indexes_details will show potential indexes deemed missing by the system and

even suggest INCLUDE columns. You can access the DMV sys.dm_db_missing_indexes_

groups_stats to see aggregate information about the number of times queries are called

that could have benefited from a particular group of indexes. Just remember to test these

suggestions thoroughly and don’t assume that they will be correct. All these suggestions

are just that: suggestions. All these tips can be combined to give you an optimal method for

maintaining the indexes in your system over the long term.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

892

 Avoid the Use of the sp_Prefix for Stored Procedure Names
As a rule, don’t use the sp_ prefix for user stored procedures since SQL Server assumes

that stored procedures with the sp_ prefix are system stored procedures, and these are

supposed to be in the master database. Using sp or usp as the prefix for user stored

procedures is quite common. This is neither a major performance hit nor a major

problem, but why court trouble? The performance hit of the sp_ prefix is explained in

detail in the “Be Careful Naming Stored Procedures” section of Chapter 20. Getting rid

of prefixes entirely is a fine way to go. You have plenty of space for descriptive object

names. There is no need for odd abbreviations that don’t add to the functional definition

of the queries.

 Minimize the Use of Triggers
Triggers provide an attractive method for automating behavior within the database.

Since they fire as data is manipulated by other processes (regardless of the processes),

triggers can be used to ensure certain functions are run as the data changes. That

same functionality makes them dangerous since they are not immediately visible to

the developer or DBA working on a system. They must be taken into account when

designing queries and when troubleshooting performance problems. Because they carry

a somewhat hidden cost, triggers should be considered carefully. Before using a trigger,

make sure that the only way to solve the problem presented is with a trigger. If you do use

a trigger, document that fact in as many places as you can to ensure that the existence of

the trigger is taken into account by other developers and DBAs.

 Put Tables into In-Memory Storage
While there are a large number of limitations on in-memory storage mechanisms, the

performance benefits are high. If you have a high-volume OLTP system and you’re

seeing lots of contention on I/O, especially around latches, the in-memory storage is a

viable option. You may also want to explore using in-memory storage for table variables

to help enhance their performance. If you have data that doesn’t have to persist, you

can even create the table in-memory using the SCHEMA_ONLY durability option. The

general approach is to use the in-memory objects to help with high-throughput OLTP

where you may have concurrency issues, as opposed to greater degrees of scans, and

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

893

so on, experienced in a data warehouse situation. All these methods lead to significant

performance benefits. But remember, you must have the memory available to support

these options. There’s nothing magic here. You’re enhancing performance by throwing

significant amounts of memory, and therefore money, at the problem.

 Use Columnstore Indexes
If you’re designing and building a data warehouse, the use of columnstore indexes is

almost automatic. Most of your queries are likely to involve aggregations across large

groups of data, so the columnstore index is a natural performance enhancer. However,

don’t forget about putting the nonclustered columnstore index to work in your OLTP

systems where you get frequent analytical style queries. There is additional maintenance

overhead, and it will increase the size of your databases, but the benefits are enormous.

You can create a rowstore table, as defined by the clustered index, that can use columnstore

indexes. You can also create a columnstore table, as defined by its clustered index, that can

use rowstore indexes. Using both these mechanisms, you can ensure that you meet the

most common query style, analytical versus OLTP, while still supporting the other.

 Configuration Settings
Here’s a checklist of the server and database configurations settings that have a big

impact on database performance:

• Memory configuration options

• Cost threshold for parallelism

• Max degree of parallelism

• Optimize for ad hoc workloads

• Blocked process threshold

• Database file layout

• Database compression

I cover these settings in more detail in the sections that follow.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

894

 Memory Configuration Options
As explained in the “SQL Server Memory Management” section of Chapter 2, it

is strongly recommended that the max server memory setting be configured to a

nondefault value determined by the system configuration. These memory configurations

of SQL Server are explained in detail in the “Memory Bottleneck Analysis” and “Memory

Bottleneck Resolutions” sections of Chapter 2.

 Cost Threshold for Parallelism
On systems with multiple processors, the parallel execution of queries is possible. The

default value for parallelism is 5. This represents a cost estimate by the optimizer of

a five-second execution on the query. In most circumstances, I’ve found this value to

be radically too low; in other words, a higher threshold for parallelism results in better

performance. Testing on your system will help you determine the appropriate value.

Suggesting a value for this can be considered somewhat dangerous, but I’m going to do

it anyway. I’d begin testing with a value of 35 and see where things go from there. Even

better, use the data from the Query Store to determine the average cost of all your queries

and then go two to three standard deviations above that average for the value of the Cost

Threshold for Parallelism. In that way, you’re looking at 95 percent to 98 percent of your

queries will not go parallel, but the ones that really need it will. Finally, remember what

type of system you’re running. An OLTP system is much more likely to benefit from a

lot of queries using a minimal amount of CPU each, while an analytical system is much

more likely to benefit from more of the queries using more CPU.

 Max Degree of Parallelism
When a system has multiple processors available, by default SQL Server will use all of

them during parallel executions. To better control the load on the machine, you may

find it useful to limit the number of processors used by parallel executions. Further, you

may need to set the affinity so that certain processors are reserved for the operating

system and other services running alongside SQL Server. OLTP systems may receive a

benefit from disabling parallelism entirely, although that’s a questionable choice. First

try increasing the cost threshold for parallelism because, even in OLTP systems, there are

queries that will benefit from parallel execution, especially maintenance jobs. You may

also explore the possibility of using the Resource Governor to control some workloads.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

895

 Optimize for Ad Hoc Workloads
If the primary calls being made to your system come in as ad hoc or dynamic T-SQL

instead of through well-defined stored procedures or parameterized queries, such as

you might find in some of the implementations of object-relational mapping (ORM)

software, then turning on the optimize for ad hoc workloads setting will reduce the

consumption of procedure cache because plan stubs are created for initial query calls

instead of full execution plans. This is covered in detail in Chapter 18.

 Blocked Process Threshold
The blocked process threshold setting defines in seconds when a blocked process

report is fired. When a query runs and exceeds the threshold, the report is fired. An alert,

which can be used to send an e-mail or a text message, is also fired. Testing an individual

system determines what value to set this to. You can monitor for this using events within

Extended Events.

 Database File Layout
For easy reference, the following are the best practices you should consider when laying

out database files:

• Place the data and transaction log files of a user database on different

I/O paths. This allows the transaction log disk head to progress

sequentially without being moved randomly by the nonsequential

I/Os commonly used for the data files.

• Placing the transaction log on a dedicated disk also enhances

data protection. If a database disk fails, you will be able to save the

completed transactions until the point of failure by performing a

backup of the transaction log. By using this last transaction log backup

during the recovery process, you will be able to recover the database

up to the point of failure. This is known as point-in-time recovery.

• Avoid RAID 5 for transaction logs because, for every write request,

RAID 5 disk arrays incur twice the number of disk I/Os compared to

RAID 1 or 10.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

896

• You may choose RAID 5 for data files since even in a heavy OLTP

system, the number of read requests is usually seven to eight times

the number of write requests. Also, for read requests the performance

of RAID 5 is similar to that of RAID 1 and RAID 10 with an equal

number of total disks.

• Look into moving to a more modern disk subsystem like SSD or

FusionIO.

• Have multiple files for tempdb. The general rule would be half or

one-quarter the files for the number of logical processor cores. All

allocations in tempdb now use uniform extents. You’ll also see the

files will automatically grow at the same size now.

For a detailed understanding of database file layout and RAID subsystems, please

refer to the “Disk Bottleneck Resolutions” section of Chapter 3.

 Database Compression
SQL Server has supplied data compression since 2008 with the Enterprise and

Developer editions of the product. This can provide a great benefit in space used and

in performance as more data gets stored on a page. These benefits come at the cost of

added overhead in the CPU and memory of the system; however, the benefits usually far

outweigh the costs. Take this into account as you implement compression.

 Database Administration
For your reference, here is a short list of the performance-related database

administrative activities that you should perform on a regular basis as part of the process

of managing your database server:

• Keep the statistics up-to-date.

• Maintain a minimum amount of index defragmentation.

• Avoid automatic database functions such as AUTOCLOSE or

AUTOSHRINK.

In the following sections, I cover the preceding activities in more detail.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

897

Note For a detailed explanation of SQL Server 2017 administration needs and
methods, please refer to the microsoft SQL Server Books Online article “Database
engine Features and tasks” (http://bit.ly/SIlz8d).

 Keep the Statistics Up-to-Date
The performance impact of database statistics is explained in detail in Chapter 13 (and

in various places throughout the book); however, this short list will serve as a quick and

easy reference for keeping your statistics up-to-date:

• Allow SQL Server to automatically maintain the statistics of the

data distribution in the tables by using the default settings for the

configuration parameters AUTO_CREATE_ STATISTICS and AUTO_

UPDATE_STATISTICS.

• As a proactive measure, you can programmatically update the

statistics of every database object on a regular basis as you determine

it is needed and supported within your system. This practice partly

protects your database from having outdated statistics in case

the auto update statistics feature fails to provide a satisfactory

result. In Chapter 13, I illustrate how to set up a SQL Server job to

programmatically update the statistics on a regular basis.

• Remember that you also have the ability to update the statistics in an

asynchronous fashion. This reduces the contention on stats as they’re

being updated; thus, if you have a system with fairly constant access,

you can use this method to update the statistics more frequently.

Async is more likely to be helpful if you’re seeing waits on statistics

updates.

Note please ensure that the statistics update job is scheduled before the
completion of the index defragmentation job, as explained later in this chapter.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

http://bit.ly/SIlz8d

898

 Maintain a Minimum Amount of Index Defragmentation
The following best practices will help you maintain a minimum amount of index

defragmentation:

• Defragment a database on a regular basis during nonpeak hours.

• On a regular basis, determine the level of fragmentation on your

indexes; then, based on that fragmentation, either rebuild the

index or defrag the index by executing the defragmentation queries

outlined in Chapter 14.

• Remember that very small tables don’t need to be defragmented at all.

• Different rules may apply for very large databases when it comes to

defragmenting indexes.

• If you have indexes that are only ever used for single seek operations,

then fragmentation doesn’t impact performance.

• In Azure SQL Database, it’s much more important to only rebuild

indexes if you really need to. Index rebuilds can use up a lot of I/O

bandwidth and can lead to throttling.

Also remember that index fragmentation is much less of a problem than most people

make it out to be. Some experts are even suggesting that defragmenting of indexes is a

waste of time. While I still think there are benefits, that is on a situational basis, so be

sure you’re monitoring and measuring your performance metrics carefully so that you

can tell whether defragmentation is a benefit.

 Avoid Database Functions Such As AUTO_CLOSE or
AUTO_SHRINK
AUTO_CLOSE cleanly shuts down a database and frees all its resources when the last user

connection is closed. This means all data and queries in the cache are automatically

flushed. When the next connection comes in, not only does the database have to restart

but all the data has to be reloaded into the cache. Also, stored procedures and the

other queries have to be recompiled. That’s an extremely expensive operation for most

database systems. Leave AUTO_CLOSE set to the default of OFF.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

899

AUTO_SHRINK periodically shrinks the size of the database. It can shrink the data

files and, when in Simple Recovery mode, the log files. While doing this, it can block

other processes, seriously slowing down your system. More often than not, file growth

is also set to occur automatically on systems with AUTO_SHRINK enabled, so your system

will be slowed down yet again when the data or log files have to grow. Further, you’re

going to see the physical file storage get fragmented at the operating system level,

seriously impacting performance. Set your database sizes to an appropriate size, and

monitor them for growth needs. If you must grow them automatically, do so by physical

increments, not by percentages.

 Database Backup
Database backup is a broad topic and can’t be given due justice in this query

optimization book. Nevertheless, I suggest that when it comes to database performance,

you be attentive to the following aspects of your database backup process:

• Differential and transaction log backup frequency

• Backup distribution

• Backup compression

The next sections go into more detail on these suggestions.

 Incremental and Transaction Log Backup Frequency
For an OLTP database, it is mandatory that the database be backed up regularly so that, in

case of a failure, the database can be restored on a different server. For large databases, the

full database backup usually takes a long time, so full backups cannot be performed often.

Consequently, full backups are performed at widespread time intervals, with incremental

backups and transaction log backups scheduled more frequently between two consecutive

full backups. With the frequent incremental and transaction log backups set in place, if a

database fails completely, the database can be restored up to a point in time.

Differential backups can be used to reduce the overhead of a full backup by backing

up only the data that has changed since the last full backup. Because this is potentially

much faster, it will cause less of a slowdown on the production system. Each situation is

unique, so you need to find the method that works best for you. As a general rule,

I recommend taking a weekly full backup and then daily differential backups. From

there, you can determine the needs of your transaction log backups.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

900

Frequently backing up of the transaction log adds a small amount of overhead to the

server, especially during peak hours.

For most businesses, the acceptable amount of data loss (in terms of time) usually

takes precedence over conserving the log-disk space or providing ideal database

performance. Therefore, you must take into account the acceptable amount of data loss

when scheduling the transaction log backup, as opposed to randomly setting the backup

schedule to a low-time interval.

 Backup Scheduling Distribution
When multiple databases need to be backed up, you must ensure that all full backups are

not scheduled at the same time so that the hardware resources are not hit at the same

time. If the backup process involves backing up the databases to a central SAN disk array,

then the full backups from all the database servers must be distributed across the backup

time window so that the central backup infrastructure doesn’t get slammed by too many

backup requests at the same time. Flooding the central infrastructure with a great deal of

backup requests at the same time forces the components of the infrastructure to spend a

significant part of their resources just managing the excessive number of requests. This

mismanaged use of the resources increases the backup durations significantly, causing

the full backups to continue during peak hours and thus affecting the performance of the

user requests.

To minimize the impact of the full backup process on database performance, you

must first determine the nonpeak hours when full backups can be scheduled and then

distribute the full backups across the nonpeak time window, as follows:

 1. Identify the number of databases that must be backed up.

 2. Prioritize the databases in order of their importance to the

business.

 3. Determine the nonpeak hours when the full database backups can

be scheduled.

 4. Calculate the time interval between two consecutive full backups

as follows: Time interval = (Total backup time window) / (Number

of full backups).

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

901

 5. Schedule the full backups in order of the database priorities, with

the first backup starting at the start time of the backup window

and subsequent backups spread uniformly at the time intervals

calculated in the preceding equation.

This uniform distribution of the full backups will ensure that the backup

infrastructure is not flooded with too many backup requests at the same time, thereby

reducing the impact of the full backups on the database performance.

 Backup Compression
For relatively large databases, the backup durations and backup file sizes usually become

an issue. Long backup durations make it difficult to complete the backups within

the administrative time windows and thus start affecting the end user’s experience.

The large size of the backup files makes space management for the backup files quite

challenging, and it increases the pressure on the network when the backups are

performed across the network to a central backup infrastructure. Compression also acts

to speed up the backup process since fewer writes to the disk are needed.

The recommended way to optimize the backup duration, the backup file size, and

the resultant network pressure is to use backup compression.

 Query Design
Here’s a list of the performance-related best practices you should follow when designing

the database queries:

• Use the command SET NOCOUNT ON.

• Explicitly define the owner of an object.

• Avoid nonsargable search conditions.

• Avoid arithmetic operators and functions on WHERE clause columns.

• Avoid optimizer hints.

• Stay away from nesting views.

• Ensure there are no implicit data type conversions.

• Minimize logging overhead.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

902

• Adopt best practices for reusing execution plans.

• Adopt best practices for database transactions.

• Eliminate or reduce the overhead of database cursors.

• Use natively compile stored procedures.

• Take advantage of columnstore indexes for analytical queries

I further detail each best practice in the following sections.

 Use the Command SET NOCOUNT ON
As a rule, always use the command SET NOCOUNT ON as the first statement in stored

procedures, triggers, and other batch queries. This enables you to avoid the network

overhead associated with the return of the number of rows affected after every execution

of a SQL statement. The command SET NOCOUNT is explained in detail in the “Use SET

NOCOUNT” section of Chapter 20.

 Explicitly Define the Owner of an Object
As a performance best practice, always qualify a database object with its owner to avoid

the runtime cost required to verify the owner of the object. The performance benefit of

explicitly qualifying the owner of a database object is explained in detail in the “Do Not

Allow Implicit Resolution of Objects in Queries” section of Chapter 16.

 Avoid Nonsargable Search Conditions
Be vigilant when defining the search conditions in your query. If the search condition

on a column used in the WHERE clause prevents the optimizer from effectively using the

index on that column, then the execution cost for the query will be high in spite of the

presence of the correct index. The performance impact of nonsargable search conditions

is explained in detail in the corresponding section of Chapter 19.

Additionally, please be careful about providing too much flexibility on search

capabilities. If you define an application feature such as “retrieve all products with

product name ending in caps,” then you will have queries scanning the complete table

(or the clustered index). As you know, scanning a multimillion-row table will hurt your

database performance. Unless you use an index hint, you won’t be able to benefit from

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

903

the index on that column. However, using an index hint overrides the decisions of the

query optimizer, so it’s generally not recommended that you use index hints either (see

Chapter 19 for more information). To understand the performance impact of such a

business rule, consider the following SELECT statement:

SELECT p.*

FROM Production.Product AS p

WHERE p.Name LIKE '%Caps';

In Figure 28-4, you can see that the execution plan used the index on the [Name]

column, but it had to perform a scan instead of a seek. Since an index on a column with

character data types (such as CHAR and VARCHAR) sorts the data values for the column on

the leading-end characters, using a leading % in the LIKE condition doesn’t allow a seek

operation into the index. The matching rows may be distributed throughout the index

rows, making the index ineffective for the search condition and thereby hurting the

performance of the query.

Figure 28-4. An execution plan showing a clustered index scan caused by a
nonsargable LIKE clause

 Avoid Arithmetic Expressions on the WHERE Clause Column
Always try to avoid using arithmetic operators and functions on columns in the WHERE

and JOIN clauses. Using operators and functions on columns prevents the use of indexes

on those columns. The performance impact of using arithmetic operators on WHERE

clause columns is explained in detail in the “Avoid Arithmetic Operators on the WHERE

Clause Column” section of Chapter 18, and the impact of using functions is explained

in detail in the “Avoid Functions on the WHERE Clause Column” section of the

same chapter.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

904

Figure 28-5. Execution plans showing a function that prevents index use

To see this in action, consider the following queries:

SELECT soh.SalesOrderNumber

FROM Sales.SalesOrderHeader AS soh

WHERE 'SO5' = LEFT(SalesOrderNumber, 3);

SELECT soh.SalesOrderNumber

FROM Sales.SalesOrderHeader AS soh

WHERE SalesOrderNumber LIKE 'SO5%';

These queries basically implement the same logic: they check SalesOrderNumber

to see whether it is equal to S05. However, the first query performs a function on the

SalesOrderNumber column, while the second uses a LIKE clause to check for the same

data. Figure 28-5 shows the resulting execution plans.

As you can see in Figure 28-5, the first query forces an Index Scan operation, while

the second is able to perform a nice, clean Index Seek. These examples demonstrate

clearly why you should avoid functions and operators on WHERE clause columns.

The warning you see in the plans relates to the implicit conversion occurring within

the calculated columns in the SalesOrderHeader table.

 Avoid Optimizer Hints
As a rule, avoid the use of optimizer hints, such as index hints and join hints, because

they overrule the decision-making process of the optimizer. In most cases, the optimizer

is smart enough to generate efficient execution plans, and it works best without any

optimizer hint imposed on it. For a detailed understanding of the performance impact of

optimizer hints, please refer to the “Avoiding Optimizer Hints” section of Chapter 19.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

905

 Stay Away from Nesting Views
A nested view exists when one view calls another view, which calls more views, and so

on. This can lead to confusing code for two reasons. First, the views are masking the

operations being performed. Second, the query may be simple, but the execution plan

and subsequent operations by the SQL engine can be complex and expensive. This

occurs because the optimizer doesn’t have time to simplify the query, eliminating tables

and columns it doesn’t need; instead, the optimizer assumes that all tables and columns

are needed. The same rule applies to nesting user-defined functions.

 Ensure No Implicit Data Type Conversions
When you create variables in a query, be sure those variables are of the same data type

as the columns that they will be used to compare against. Even though SQL Server can

and will convert, for example, a VARCHAR to a DATE, that implicit conversion can prevent

indexes from being used. You have to be just as careful in situations like table joins so

that the primary key data type of one table matches the foreign key of the table being

joined. You may occasionally see a warning in the execution plan to help you with this,

but you can’t count on this.

 Minimize Logging Overhead
SQL Server maintains the old and new states of every atomic action (or transaction)

in the transaction log to ensure database consistency and durability. This can place

tremendous pressure on the log disk, often making the log disk a point of contention.

Therefore, to improve database performance, you must try to optimize the transaction

log overhead. In addition to the hardware solutions discussed later in the chapter, you

should adopt the following query-design best practices:

• Choose table variables over temporary tables for small result sets,

less than 20 to 50 rows, where possible. Remember, if the result set is

not small, you can encounter serious issues. The performance benefit

of table variables is explained in detail in the “Using Table Variables”

section of Chapter 18.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

906

• Batch a number of action queries in a single transaction. You must be

careful when using this option because if too many rows are affected

within a single transaction, the corresponding database objects will be

locked for a long time, blocking all other users trying to access the objects.

• Reduce the amount of logging of certain operations by using the Bulk

Logged recovery model. This rule applies primarily when dealing

with large-scale data manipulation. You also will use minimal logging

when Bulk Logged is enabled, and you use the WRITE clause of the

UPDATE statement or drop or create indexes.

 Adopt Best Practices for Reusing Execution Plans
The best practices for optimizing the cost of plan generation can be broadly classified

into these two categories:

• Caching execution plans effectively

• Minimizing recompilation of execution plans

 Caching Execution Plans Effectively

You must ensure that the execution plans for your queries are not only cached but

reused often. Do so by adopting the following best practices:

• Avoid executing queries as nonparameterized, ad hoc queries.

Instead, parameterize the variable parts of a query and submit the

parameterized query using a stored procedure or the sp_executesql

system stored procedure.

• If you must use lots of ad hoc queries, enable the Optimize for Ad

Hoc Workload option, which will create a plan stub instead of a full

plan the first time a query is called. This radically reduces the amount

of procedure cache used.

• Use the same environment settings (such as ANSI NULLS) in every

connection that executes the same parameterized queries. This is

important because the execution plan for a query is dependent on

the environment settings of the connection.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

907

• As explained earlier in the “Explicitly Define the Owner of an Object”

section, explicitly qualify the owner of the objects when accessing

them in your queries.

The whole idea is to ensure you have only the plans that you need in the cache and

that you use those plans repeatedly rather than compiling new ones all the time. The

preceding aspects of plan caching are explained in detail in Chapter 17.

 Minimizing Recompilation of Execution Plans

To minimize the unnecessary generation of execution plans for queries, you must ensure

that the plans in the cache are not invalidated or recompiled for reasons that are under

your control. The following recommended best practices minimize the recompilation of

stored procedure plans:

• Do not interleave DDL and DML statements in your stored

procedures. You should put all the DDL statements at the top of the

stored procedures.

• In a stored procedure, avoid using temporary tables that are created

outside the stored procedure.

• Prefer table variables over temporary tables for small data sets.

• Do not change the ANSI SET options within a stored procedure.

• If you really can’t avoid a recompilation, then identify the stored

procedure statement that is causing the recompilation, and execute it

through the sp_executesql system stored procedure.

The causes of stored procedure recompilation and the recommended solutions are

explained in detail in Chapter 18.

 Adopt Best Practices for Database Transactions
The more effectively you design your queries for concurrency, the faster the queries

will be able to complete without blocking one another. Consider the following

recommendations while designing the transactions in your queries:

• Keep the scope of the transactions as short as possible. In a

transaction, include only the statements that must be committed

together for data consistency.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

908

• Prevent the possibility of transactions being left open because of

poor error-handling routines or application logic. Do so using the

following techniques:

• Use SET XACTABORT ON to ensure that a transaction is aborted or

rolled back on an error condition within the transaction.

• After executing a stored procedure or a batch of queries

containing a transaction from a client code, always check for an

open transaction and then roll back any open transactions using

the following SQL statement:

IF @@TRANC0UNT > 0 ROLLBACK

• Use the lowest level of transaction isolation required to maintain data

consistency as determined by your application requirements. The

amount of isolation provided by the Read Committed isolation level,

the default isolation level, is sufficient most of the time. If excessive

locking is occurring, consider using the Read Committed Snapshot

isolation level.

The impact of transactions on database performance is explained in detail in

Chapter 20.

 Eliminate or Reduce the Overhead of Database Cursors
Since SQL Server is designed to work with sets of data, processing multiple rows using

DML statements is generally much faster than processing the rows one by one using

database cursors. If you find yourself using lots of cursors, reexamine the logic to see

whether there are ways you can eliminate the cursors. If you must use a database cursor,

then use the database cursor with the least overhead: the FAST_FORWARD cursor type

(generally referred to as the fast-forward-only cursor). You can also use the equivalent

DataReader object in ADO.NET.

The performance overhead of database cursors is explained in detail in Chapter 23.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

http://inado.net

909

 Use Natively Compile Stored Procedures
In situations where you’re accessing only in-memory tables, you have one additional

performance enhancement open to you, which is to compile your stored procedures into

a DLL that runs within the SQL Server executable. As was shown in Chapter 24, this has

fairly radical performance implications. Just be sure that you call the procedures in the

correct fashion passing parameters by ordinal position rather than by parameter name.

Although this feels like you’re breaking a best practice, it leads to better performance of

the compiled procedure.

 Take Advantage of Query Store for Analytical Queries
Most applications using relational databases to store their information have some

degree of analytical queries. Either you have an OLTP system with a few analytical

queries or you have a data warehouse or reporting system with lots of analytical

queries. Take advantage of columnstore indexes in support of the queries that do lots

of aggregation and analysis. A clustered columnstore is best when the majority of the

queries are analytical but doesn’t work as well for OLTP point look up style of query.

The nonclustered columnstore index adds analysis when the majority of queries are

OLTP focused, but some of them need to do analysis. In this case, it’s all about picking

the right tool for the job.

 Summary
Performance optimization is an ongoing process. It requires continual attention to

database and query characteristics that affect performance. The goal of this chapter

was to provide you with a checklist of these characteristics to serve as a quick and

easy reference during the development and maintenance phases of your database

applications.

Chapter 28 SQL Server OptimizatiOn CheCkLiSt

www.EBooksWorld.ir

911
© Grant Fritchey 2018
G. Fritchey, SQL Server 2017 Query Performance Tuning, https://doi.org/10.1007/978-1-4842-3888-2

Index

A
Active Server Pages (ASP), 85
Adaptive query processing

interleaved execution
anti-patterns, 817
Clustered Index Seek and Table

Scan, 819
estimated number of rows, 821
execution plans, 819
execution times, 821
multistatement functions,

815–817, 821
parameter sniffing, 823
properties, 820–821
run a query, 818
WHERE clause, 822

mechanisms, 810
memory grant feedback

bigTransactionHistory table,
811–812

DATABASE SCOPED
CONFIGURATION, 815

DISABLE_BATCH_MODE_
MEMORY_GRANT_FEED
BACK, 815

execution plan, 812, 814
Extended Events, 811, 814
inadequate memory, 811
memory_grant_feedback_loop_

disabled, 811

memory_grant_updated_by_
feedback event, 813, 815

row mode execution, 810
types, 810

Ad hoc workloads
definition, 474
forced parameterization, 485–488
optimization, 479–481
plan reusability

non reusability of existing plan, 479
non reuse of existing plan, 478
from procedure cache, 477
sys.dm_exec_cached_plans

output, 477
prepared workload, 475–476
simple parameterization

autoparameterized plan, 482–485
limits, 485
using template, 484

ALTER DATABASE command,
339, 387, 392

Atomicity, consistency, isolation, and
durability (ACID), 18

Automatic index management
AdventureWorksLT, 799
automatic tuning

database features, 802–803
enabling, 803
results, 804

estimated impact view, 805–806

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-3888-2

912

evaluation period, 808
PaaS, 799
performance recommendations and

tuning history, 804–805
PowerShell script, 800–802
Query Store, 802
sys.dm_db_tuning_

recommendations, 804
T-SQL script, 799–800
tuning history, 808–809
Validation report, 807

Automatic plan correction
enable automatic tuning

Azure portal, 792–795
cache, testing, 797
CurrentState value, 797
desired_state value, 796
forced plan, 798
SQL Server 2017, 796
sys.database_automatic_

tuning_options, 796
sys.dm_db_tuning_

recommendations, 798
Query Store, 784
tuning recommendations

AdventureWorks, 785
CPU time, 788
dbo.bigTransactionHistory

table, 786
execution plan, data set, 786–787
FORCE_LAST_GOOD_PLAN, 788
JSON document, 788–791
planForceDetails, 789
Query Store, 785
sys.dm_db_tuning_

recommendations, 788, 792

B
Baseline creation

Azure SQL Database, 102
counter log

data collector set, 92–93
data logs, 93–94
Performance Monitor, 95–96
schedule pane, 94–95

counter number, 97
monitoring virtual and hosted

machines, 87
Performance Monitor graphs, 98
prefer counter logs, 97
reusable list

.htm file, 91
Internet browser, 92
Performance Monitor

counters, 89–92
SQL Server, 90–91

sampling interval, 98
save counter log, 98
system behavior analysis

database server, 99
log analysis, 100
performance data, 100–101
Performance Monitor tool, 99

Blocking
atomicity

dbo.ProductTest table, 635
explicit rollback, 636–637
INSERT statement, 634–635
logical unit of work, 633–634
SET XACT_ABORT ON, 635–636

consistency, 637
data access requests, 633
database connection, 632
deadlocking, 632

Automatic index management (cont.)

Index

www.EBooksWorld.ir

913

deadly embrace, 632
durability, 639–640
information

cause of, 680
Extended Events and blocked_

process_report, 684–687
SQL, 681–683

isolation, 638
locking, 632
lock manager, 632
Performance Monitor

counters, 693
reduce/avoid, recommendations,

692–693
resolutions

covering index, contended data,
691–692

isolation level, 690
optimizing queries, 688–690
partitioning, contended data,

690–691
SQL Server alerts

Blocked Process report, 694–695
and jobs, 694
SQL Server Enterprise

Manager, 696–697
Bookmark lookups, 222, 319, 321

C
Causality tracking, 126–127
CHECK constraint, 889
Checkpoint process, 60
Client cursors, 722
Client-side cursors

characteristics, 724
cost benefits, 732
cost overhead/drawbacks, 732–733

Clustered indexes, 187
creating, 213
data access, 217
data retrieval, 218–219
frequently updatable columns, 220–221
heap tables, 209
narrow, 213, 215–216
and nonclustered

B-tree structure, 212
data page, 212
dbo.DatabaseLog, 210
execution plan, 211–212
heap table, 209
nested loop operation, 211
RID lookup operation, 211
row locator, 209–210, 212

rebuilding, 216
uniqueifier, 216–217
wide keys, 221

Clustered Index Scan, 263
Clustered IndexSeek, 263
Columnstore indexes, 769

adaptive join and attendant behavior,
262–263

Adaptive Threshold Rows property, 264
aggregations for GROUP BY query, 259
ALTER INDEX REORGANIZE

command, 258
batch mode processing, 261
benefits, 257
clustered, 256, 260
Clustered Index Scan, 263
Clustered IndexSeek, 263
Columnstore Index Scan operator,

260–261
data types, 256
data warehousing, 256

Index

www.EBooksWorld.ir

914

dbo.bigTransationHistory, 264
deltastore, 258
dictionary, 257
make_big_adventure.sql, 257
nonclustered, 256, 259
performance enhancements, 256
reads and execution times, 260
recommendations, 266
restrictions, 256
rowgroups, 257
rowstore indexes, 257
sample query, 258
segment, 257
segment elimination, 262
status of row groups, 264
sys.dm_db_column_store_row_group_

physical_stats, 264–265
tuple mover, 258
types, 259

Columnstore Index Scan operator, 260–261
Common table expression (CTE), 136
Composite index, 200, 202
Cost analysis

client-side cursors, 732–733
dynamic cursors, 740
fast-forward-only cursor, 738
forward-only cursors, 737
keyset-driven cursors, 739
optimistic concurrency model, 735–736
read-only concurrency model, 734–735
scroll locks concurrency model, 736
server-side cursors, 733–734
static cursors, 738

Cost-based optimization, 451
Covering indexes, 222, 224, 231

definition, 232
HumanResources.Employee table

BusinessEntityID, 330
DBCC SHOWSTATISTICS, 331–332
INCLUDE columns, 328–329
index storage, INCLUDE

keyword, 329
JobTitle and HireDate, 327
maintenance cost, 328
metrics and execution plan, 327–329
NationalIDNumber, 330
statistics, 332

INCLUDE operator, 233, 234
Index Seek operation, 234
I/O and execution time, 232–233
Key Lookup operator, PostalCode

data, 233
pseudoclustered index, 234
recommendations, 235
SELECT statement, 232

CPU performance analysis
eliminating excessive compiles/

recompiles, 76
Linux, 75
network analysis

application workload, 79
Bytes Total/sec counter, 77
% Net Utilization counter, 78
Performance Monitor counters, 77

optimizing application workload, 75
processor analysis

batch requests/sec, 73
context switches/sec, 72
Performance Monitor counters, 70
% Privileged Time, 72
processor queue length, 72
% Processor Time, 71
resolutions, 75–76
SQL Compilations/sec, 73
SQL Recompilations/sec, 73

Columnstore indexes (cont.)

Index

www.EBooksWorld.ir

915

Query Store, 74
SQL server analysis

batch requests/sec, 84
database concurrency, 82
Deadlocks/Sec counter, 83
dynamic management objects, 81
excessive data scans, 80
execution plan reusability, 83–84
Full Scans/sec, 80
incoming requests, 84
Lock Timeouts/sec, 82–83
Lock Wait Time (ms), 82–83
missing indexes, 80
Performance Monitor

counters, 79–80
Total Latch Wait Time, 82
user connection, 84

Sys.dm_os_wait_stats, 74
Sys.dm_os_workers and Sys.dm_

os_schedulers, 74
Cursors

categories, 723
concurrency

optimistic, 726–727
read-only, 725–726
scroll locks, 727

cost analysis (see Cost analysis)
data manipulation, 721
default result set (see Default result set)
dynamic, 730–731
events, 746
forward-only, 728
keyset-driven, 729–730
location

client-side cursors, 724
server-side cursors, 725

Person.AddressType table, 724
positives and negatives, 740

recommendations, 751–752
server, 722
static, 729
T-SQL, 722, 746–750

D
Database administration

AUTO_CLOSE, 898
AUTO_SHRINK, 899
minimum index defragmentation, 898
up-to-date statistics, 897

Database API cursor, 746
Database design

adopting index-design, 890
configurations settings, 893
domain and referential integrity

constraints, 887
entity-integrity constraints

data integrity, 884
natural key, 884
UNIQUE constraint, 886

in-memory storage, 892
sp_prefix, 892
triggers, 892
use of columnstore indexes, 893

Database Engine Tuning Advisor
advanced Tuning Options dialog

box, 277
Apply Recommendation, 283–284
command prompt (dta.exe), 273
covering index, 283
description, 273
drop-down box, 275
limitations, 290–291
Limit Tuning Time, 276
partitioning, 276
plan cache, 288–289

Index

www.EBooksWorld.ir

916

Query Store, 289–290
query tuning general settings, 279–280
query tuning initial recommendations,

281–282
query tuning recommendations, 283
reports, 278
server and database, 274
simple query, 279
testing queries, 284
tool, 271
trace workload, 285–288
T-SQL statements, 284
Tuning Options tab, 275–276, 280–281
workload, 275

Database-level lock, 647
Database performance testing

Distributed Replay
architecture, 828
client configuration, 835
execution, 836
preprocessing, 834–835
XML configuration file, 834

Full Recovery mode, 826
load testing, 826
playback mechanism, 826
query capture mechanism, 826
repeatable process, 827
server side trace, 829

@DateTime, 833
Distributed Replay, 830
event and column, 829, 831
profiler, 830
SQL Server 2005–2014, 832
standard performance test, 833
TSQL file, 830, 832

SQL profiler, 825
SQL server 2012, 825

DATABASEPROPERTYEX function, 350
Database Transaction Unit (DTU), 102
Database workload optimization

AdventureWorks2012 database, 843
ALTER EVENT SESSION command, 847
Cartesian join, 880
costliest query identification

baseline resource, 852
detailed resource use, 854
OLTP database, 851
overall resource use, 853
SQL workload, 852
SSMS/query technique, 851
worst-performing query, 851–852

CountDuration, 850
database application designs and

database environments, 840
errors/warnings, 878
Extended Events, 847, 850
external factors analysis

code modification, 868
connection options, 857
cost reduction, 867
defragmentation (see

Defragmentation)
execution plan, 866
internal behavior, 864
lookup operation, 871–872
processing strategy, 867
query execution plan, 864
statistics effectiveness, 858
tuning, second query, 872
wrapper procedure, 874

in-depth analysis, 849
INSERT statement, 880
Live Data explorer, 848
optimizing effect, 877
query optimization process, 841

Database Engine Tuning Advisor (cont.)

Index

www.EBooksWorld.ir

917

query types, 846–847
SELECT statement, 840, 880
server resources, 840
SLA, 878
SQL query, 850, 878–879
SQL Server performance, 842
SumDuration, 850
UPDATE statement, 840
XML field data, 849

Data Definition Language (DDL), 457
Data Manipulation Language (DML), 457
Data retrieval mechanism, 338
Data storage, 117–118
DBCC SHOW_STATISTICS command,

361, 368, 397
Deadlocks

access resources, physical order, 715–716
covering index, SELECT statement, 717
deadly embrace, 699
error handling, 702–703
graph, 708
information

DBCC TRACEON statement, 705
DBCC TRACESTATUS

statement, 706
execution plan, 705
Extended Events, 704
SQL Server Configuration Manager,

706–707
system_health session, 703–704, 707
trace flags, 703, 705

lock contention
isolation level, 718
locking hints, 718–719
row versioning, 717

lock monitor, 700
nonclustered to clustered index, 716
parallel operations, 700

Purchasing.PurchaseOrderDetail
table, 714

scenario, 700
shared lock, 700
T-SQL statement, 708–709
victim, 700–701
xml:deadlock_report event, 708
XML information, 709–714

Deadly embrace, 699
Declarative referential integrity (DRI), 600
Default result set, 738

benefits, 742
client-network buffer, 744
conditions, 741
data access layers (ADO, OLEDB,

and ODBC), 741
database requests, 744
drawbacks, 743
MARS, 742
PowerShell script, 743
sys.dm_tran_locks, 744–745
test table, 743

Deferred object resolution, 536
execution plan, 540
local temporary table

Extended Events output, 543
schema, 543
stored procedure recompilation, 542

SELECT statement, 541–542
sql_statement_recompile event, 542
table creation, 541

Defragmentation
ALTER INDEX REBUILD statement, 436
characteristics, 443
DROP_EXISTING clause, 432
HumanResources.Employee table, 862
Purchasing.PurchaseOrderHeader

table, 862

Index

www.EBooksWorld.ir

918

Direct-attached storage (DAS), 61
Disk performance analysis

alignment, 62
Avg. Disk Sec/Read and Avg. Disk

Sec/Write, 55
buffer manager page, 55
data files configuration, 64
disk bottleneck analysis, 51
Disk Bytes/sec counter, 54
disk counters, 52
disk transfers/sec monitors, 54
faster I/O path, 58
filegroups configuration, 63–64
I/O monitoring tools, 55
log files, 66–67
Monitoring Linux I/O, 57
new disk subsystem, 65–66
optimizing application workload, 57
PhysicalDisk and LogicalDisk

counters, 53
RAID array, 53

configurations, 58
RAID 0, 59
RAID 1, 59
RAID 1+0 (RAID 10), 61
RAID 5, 59–60
RAID 6, 60

SAN system, 61
solid-state drives, 62
sys.dm_io_virtual_file_stats

function, 55–56
sys.dm_os_wait_stats function, 56
system memory, 62
table partition, 67

Distributed replay administrator, 828
Distributed replay client, 828
Distributed replay controller, 828
Domain integrity, 887

DReplayClient.config file, 835
Dreplay.exe command, 836
DReplay.Exe.Preprocess.config file, 834
DROP_EXISTING clause, 432–433
Dynamic cursors

characteristics, 730–731
cost benefits, 740
cost overhead, 740

Dynamic management functions
(DMFs), 26

Dynamic management objects
(DMOs), 26–27

sys.dm_db_xtp_table_memory_stats, 44
sys.dm_os_memory_brokers, 42
sys.dm_os_memory_clerks, 43
sys.dm_os_ring_buffers, 43–44
sys.dm_xtp_system_memory_

consumers, 44
Dynamic management views

(DMVs), 26, 463

E
Entity-integrity constraints

data integrity, 884
natural key, 884
SQL Server, 885
Stream Aggregate operation, 886
UNIQUE, 886

Execution plan cache
ad hoc workloads (see Ad hoc

workloads)
recommendations

avoiding ad hoc queries, 506
avoiding implicit resolution,

508–509
parameterizing variable parts, 508
prepare/execute model, 506

Index

www.EBooksWorld.ir

919

query, 504
sp_executesql coding, 505–508
steps, 504
stored procedure creation, 505

reuse, 473–474
sys.dm_exec_cached_plans, 471–472

Execution plan generation
aging, 469–470
binding

error statement, 455
query processor tree, 454
syntax-based optimization,

455–456
warning indicator, 456

cost-based optimization, 451
execution context, 469
parse tree, 454
query compilation, 454
query plan, 468
relational engine, 454
SQL Server techniques

query execution, 453
resource consumption, 451

storage engine, 454
Extended Events sessions

Advanced page, 119
automation

GUI, 123–124
T-SQL, 124–126

causality tracking, 126–127
data storage, 117–118
date and time, 120–121
description, 103
event fields

actions commands, 116
configure on display, 117

Event library, 109
Events page, 107

filters, 113–115
General page, 104–105
global fields, 111–113
live output, wizard, 119–120
Management Studio GUI, 104
monitor query completion, 108
query_hash, 121
query performance, 109–111
Query Store, 103
recommendations

cautious with debug
events, 128

No_Event_Loss, 128
set max file size, 127

resource stress, 108
RPC mechanism, 108
system_health, 121–123
templates, 105–106
T-SQL batch, 108
XE Profiler, 106

Extent-level lock, 645
External fragmentation, 407, 418

F
Fast-forward-only cursor, 738
Filtered indexes, 231

ANSI settings, 246
covering index, 243
definition, 242
execution plans, 245
Index Seek, 244
I/O and execution time, 242–243
null values, 242, 243, 246
performance, 245
Sales.SalesOrderHeader

table, 242
simplification, 245

Index

www.EBooksWorld.ir

920

Forced parameterization, 485–488
Forward-only cursors

characteristics, 728
cost benefits, 737
drawbacks, 737

FULLSCAN, 373, 389
Full-text index, 267

G
General Data Protection Regulation

(GDPR), 885
4-Gig tuning (4GT), 49
Globally unique identifiers (GUIDs), 885

H
Hardware resource bottlenecks

identifying, 28
memory, 30
resolution, 29

Hash index
bucket count, 764–766
deep distribution, 765
description, 764
shallow distribution, 765
sys.dm_db_xtp_hash_index_stats, 766
unique indexes and primary keys, 765

Heap or B-tree (HoBT) lock, 645

I
Implicit data type conversion, 608–611
INDEX hint, 595–596
Index compression, 232

code modification, 255
CPU, 255
definition, 253
IX_Comp_Page_Test, 255

IX_Test, 253, 255
page-level, 253
row-level, 253
sys.dm_db_index_physical_

stats, 254
Indexed views, 232

AVG, 251
benefit, 247
computations, 250
execution plan, 252
logical reads, 250
materialized view, 246
OLTP database, 247
PurchaseOrderDetail table, 250–252
query execution, 248–249
reporting systems, 248
restrictions, 247–248
SELECT statement, 246
T-SQL code, 248

Indexes
BIT data type column, 269
B-tree structure

branch nodes, 190
initial layout of 27 rows, 189
ordered layout of 27 rows, 189
root node, 190
search process, 190
single-column table, 189

clustered (see Clustered indexes)
column data type, 204–205
column order

composite index, 206
execution plan, 207–208
leading edge, 205, 207
Seek operation, 207–208
SELECT statement, 207

computed columns, 268
CREATE INDEX operation, 269

Index

www.EBooksWorld.ir

921

Database Engine Tuning Advisor
tool, 271

data manipulation queries
DELETE statement, 191, 193
INSERT statement, 191
test table, 192
UPDATE statement, 191, 193–194

definition, 185
different column sort order, 268
heap table, 188
impact of, 191
locking

clustered index, 678–679
nonclustered index, 676–678
resource_type, 676
sys.dm_tran_locks, 675
test table, 675

manufacturer, 188
MaritalStatus column

composite index, 200
DBCC SHOW_STATISTICS, 201
execution plan, 201–202
FORCESEEK, 204
HumanResources.Employee table,

201–203
Nested Loops join and Key Lookup

operator, 204
unique values, 200
WHERE clause/join criterion, 201

narrow, 197–200
nonclustered (see Nonclustered

indexes)
online index creation, 270
parallel index creation, 270
Production.Product table, 186
scan process, 188
Serializable isolation level, 679–680
StandardCost, product table, 186–187

WHERE clause and JOIN criteria
columns, 195–197

Index fragmentation
ALTER INDEX REBUILD statement

CREATE INDEX and DROP_
EXISTING clause, 433, 434

defragmentation technique, 436
internal and external

fragmentation, 435
PAD_INDEX setting, 436
sys.dm_db_index_physical_

stats, 435
ALTER INDEX REORGANIZE

statement, 437–442
analyzing amount of, 423–424
automatic maintenance, database

analysis, 449
causes of, 405
clustered index, 419–420
columnstore indexes, 421–423
data modification and columnstore

indexes, 415–417
data modification and rowstore

indexes, 405
defragmentation and partitions, 444–445
disk and random I/O operation, 418
extents, 406, 407
external fragmentation, 407, 418
fill factor

Avg. Page Density (full), 448
avg_page_space_used_in_

percent, 447
clustered index, 446
default fill factor, 446
INSERT and UPDATE

operations, 447
small test table, 446
transactional table, 445

Index

www.EBooksWorld.ir

922

INSERT statement
DBCC IND and DBCC PAGE, 415
dbo.Test1, 414
page split, 413–414
sys.dm_db_index_physical_stats

output, 413
internal fragmentation, 407, 418
leaf pages, 405
resolutions, 430

DROP_EXISTING clause, 432–433
dropping and re-creation, 431

SELECT statements, 420–421
small table analyzing, 428–430
sys.dm_db_index_physical_stats

clustered index, 424
detailed scan, 425, 427
mixed extents, 424
output, 425
uniform extent, 424

UPDATE statement
clustered index, 408
DBCC IND output, 411–412
page_count column, 410
page split, 411
PageType, 412
SELECT statement, 409
sys.dm_db_index_physical_

stats, 410
Index intersections, 231

covering index, 237
hash join, 237
key lookup, 237
nonclustered index, 238
OrderDate column, 235–237
SalesPersonID, 235
statistics I/O and time, 237

Index joins, 238–241

Index types
full-text, 267
spatial, 267
storage mechanisms, 266
XML, 268

In-memory OLTP tables
columnstore indexes, 769
correct workload, 774
data, 754
database, 756–757
durability, 756
features, 753
hash index, 764–766
limitations, 757
Memory Optimization Advisor (see

Memory Optimization Advisor)
memory-optimized technologies, 753
Native Compilation Advisor, 779–781
natively compiled stored procedures

dbo.CountryRegion table, 772
estimated plan, 773
execution time, 772
parameters, 772
query definition, 772
SELECT operator properties, 773
syntax, 771

nonclustered indexes, 767–769
performance baseline, 774
Person.Address table

coding, 757
execution plan, 762
IDENTITY value, 758
load data, 759, 761–762
query metrics, 763
query results, 760
run a query, 759
unsupported data types, 758

spinning platters, 754

Index fragmentation (cont.)

Index

www.EBooksWorld.ir

923

statistics maintenance, 770–771
system requirements, 755–756
transactions, 754
T-SQL code, 755

Internal fragmentation, 407, 418
Internet Information Services (IIS), 85
Internet Small Computing System

Interface (iSCSI), 61
Isolation levels

Read Committed, 661–663
Read Uncommitted, 660–661
repeatable read, 663, 665–667
Serializable, 667
Snapshot, 674

J
JOIN hint

execution plan, 592–593
LOOP, 593–594
SELECT statement, 591
SQL Server 2017, 590–591
types, 591

K
KEEPFIXED PLAN option, 554
Key-level lock, 643–645
Keyset-driven cursors

characteristics, 729–730
cost benefits, 739
cost overhead, 739

L
LIKE search condition, 578–579
Lock compatibility, 659
Lock escalation, 647–648
Lock granularity

database, 647
extent, 645
HoBT, 645
KEY, 643–644
PAG, 645
resource levels, 641
RID, 642–643
TAB, 646

Lock manager, 632
Lock modes

BU, 658
exclusive (X), 656
IS, IX, and SIX, 657–658
Key-Range, 659
resources, 648
Sch-M and Sch-S, 658
Shared (S), 649
UPDATE

data integrity, 650
drawback, 655
script order, T-SQL query windows,

650–651, 653
sys.dm_tran_locks, 653–654
transactions, 656

Lock monitor, 700
Lookups

bookmark, 319, 321
clustered index, 319, 326
covering index (see Covering indexes)
drawbacks, 322–323
HumanResources.Employee table

execution plan, 324
key lookup Properties window, 325
NationalIDNumber, JobTitle, and

HireDate, 324
Output List property, 325–326
views and user-defined

functions, 325

Index

www.EBooksWorld.ir

924

index join (PurchaseOrderHeader)
covering index, 334
execution plan, 335
Key Lookup operation, 334
narrow indexes, 333
OrderDate, 334
SELECT statement, 334, 335
VendorID and OrderID, 335
WHERE clause, 334

nonclustered index, 319
SalesOrderDetail table, 320–321

LOOP join hint, 593–594

M
Mapping index, 222
Memory bottleneck analysis, 894
Memory bottleneck resolutions, 894
Memory Optimization Advisor

data migration warnings, 776–777
InMemoryTest database, 776
options, 777
Person.Address table, 775
primary key, 778
results, 776
running, 776
successful migration, 779
unsupported data types, 775

Memory performance analysis
DBCC MEMORYSTATUS, 41–42
DMO, 26–27, 42
Performance Monitor tool, 24–25
resolution

address fragmentation, 50
32-bit to 64-bit processor, 48
data compression, 49
flowchart, 45–47

in-memory table, 48
memory allocation, 47
optimizing application workload, 47
process address space, 3GB, 49
system memory, 48

SQL Server Management
Available Bytes counter, 36
buffer cache hit ratio, 38
buffer pool, 30
Checkpoint Pages/sec counter, 39
configuration, 30–31, 33
dynamic memory, 34
Lazy writes/sec counter, 39
max server memory, 32
Memory Grants Pending counter, 39
memory pressure analysis, 35
min server memory, 31
operating system and external

processes, 32
Page Faults/sec, 36–37
Page File %Usage, 37
Page Life Expectancy, 38–39
Pages/sec counter, 36–37
private bytes, 32
RECONFIGURE statement, 34
sp_configure system, 33
Target and Total Server Memory, 40

Microsoft Developers Network, 138
Multiple active result sets (MARS), 742
Multiple optimization phases

configuration cost, 460
DMV, 463–464
index variations, 460
nontrivial plan, 461
QueryPlanHash, 463
size and complexity, 459
T-SQL SELECT operator, 462
WHERE clause, 460

Lookups (cont.)

Index

www.EBooksWorld.ir

925

N
Narrow indexes, 197–200
Native Compilation Advisor, 779–781
Nonclustered indexes, 188, 767–769

vs. clustered indexes, 224
analytical style queries, 228
avoid blocking, 227
covering index, 229–230
credit cards, 228
data-retrieval performance, 228
execution plan, 226–227
INCLUDE operation, 229
index key size, 227
SELECT statement, 225–227, 230
test table, 225

covering index, 222, 224
frequently updatable columns, 223
lookups, 222
maintenance, 221–222
mapping index, 222
row locator, 221
UPDATE operation, 223
wide keys, 223

Nonsargable search conditions, 574
BETWEEN vs. IN/OR, 575
!< Condition vs. >= Condition,

579–580
LIKE condition, 578–579
and sargable conditions, 574

Nonuniform memory access (NUMA), 39
NOT NULL constraint, 597

O
Old-school approach, 523
Online index creation, 270
Online transaction processing (OLTP),

see In-memory OLTP tables

Optimistic concurrency model, 726–727
benefits, 735
cost overhead, 735–736

Optimizer hints
INDEX hints, 595–596
JOIN hint, 590

execution plan, 592–593
LOOP join hint, 593–594
SELECT statement, 591
SQL Server 2017, 590–591
types, 591

P
Page-level compression, 253
Page-level lock, 645
Parallel index creation, 270
Parallel plan optimization

affinity setting, 465
cost factors, 464
cost threshold, 466
DML action queries, 467
MAXDOP query hint, 465
memory requirement, 466
number of CPUs, 465
OLTP queries, 467
query execution, 467

Parameter sniffing, 620
AddressByCity, 513
bad parameter

identification, 518
I/O and execution plan, 517
Mentor, 517–518
mitigating behavior, 521
old-school approach, 523
OPTIMIZE FOR hint, 524–525
runtime and compile time values, 525
SELECT properties, 524

Index

www.EBooksWorld.ir

926

definition, 511
local variable, 512

execution plan, 514–515
query, 513–514

maintenance reexamination, 528
stored procedure, 515
sys.dm_exec_query_stats output, 516
values, 515

Parse tree, 454
Partition elimination, 67
Performance Monitor counters, 693
Performance tuning process

baseline performance, 11–13
data access layer, 13
database connection, 5
database design, 5
hardware and software factors, 3
high level database, 15
iteration process

costliest query, 8–9
user activity, 7

low level database, 15
optimization, 6
performance killers

cursors, 21
excessive blocking and deadlocks, 18
excessive fragmentation, 21
frequent recompilation, 20
inaccurate statistics, 17
inappropriate database design, 19
insufficient indexing, 16
nonreusable execution plans, 20
non-set-based operations, 19
parameter sniffing, 18
query design, 17
SQL Server, 15–16

vs. price, 10

query optimization, 1–2, 6
root causes, 13–14
SQL Server configuration, 5

Physical Design Structure (PDS), 282
Plan cache, 468
Plan forcing, Query Store, 313–315
Plan guides

execution plan, 562, 566
Index Seek operation, 566
OPTIMIZE FOR query hint, 561–563
SELECT operator property, 563
sp_create_plan_guide_from_

handle, 567
T-SQL statement, 565

Platform as a Service (PaaS), 799
Prepared workloads, plan reusability

prepare/execute model, 499
sp_executesql

additional output, 498
parameterized plan, 496
plan sensitivity, 497
SELECT statement, 495–496

stored procedures
extended events, 489–490
output, 490
reuse, 491

Prepare/execute model, 475, 499, 506
Pseudoclustered index, 234

Q
Query analysis

missing statistics issue
ALTER DATABASE command, 392
CREATE STATISTICS statement, 394
execution plan, 395–396
graphical plan, 394
Index Scan operator, 394

Parameter sniffing (cont.)

Index

www.EBooksWorld.ir

927

SELECT statement, 393
test table creation, 392

outdated statistics issue
Analyze Actual Execution Plan, 399
database, 400
DBCC SHOW_STATISTICS

command, 397
estimated vs. actual rows value,

398, 400
execution plan, 398
FULLSCAN, 399
iFirstIndex, 397
inaccurate_cardinality_

estimate, 396
SELECT statement, 397
Table Scan operator, 398

Query compilation, 454
Query design

advantage of query store, 909
aggregate functions, MIN and MAX,

614–615
arithmetic expressions, 903–904
compile stored procedure, 909
COUNT(*) and EXISTS, 611–612
database cursors, 908
database object owner, 902
database transactions, 907
implicit conversion, 905
implicit data type conversion, 608–611
local variables in batch query

estimated number of rows, 618–619
execution plan, 617–618
index seek and Key Lookup

operators, 617–618
I/O output, 619
parameter sniffing, 620
SELECT statement, 617
TransactionHistory table, 618

WHERE clause, 616
naming stored procedures, 621–623
nesting views, 905
network round-trips

execute multiple queries, 624
SET NOCOUNT, 624

ORDER BY clause, 616
nonsargable search conditions,

902–903
optimizer hints, 904
reusing execution plans, 906
SET NOCOUNT ON command, 902
techniques, 607
transaction cost

atomic action, 624
lock overhead, 627–629
logging overhead, 625–627

transaction log, 905–906
UNION ALL, 613–614
UNION clause, 612–613

Query design recommendations
avoiding optimizer hints

(see Optimizer hints)
domain and referential integrity

DRI, 600
NOT NULL constraint, 597

effective indexes
avoid arithmetic operators, 580
avoid nonsargable search

conditions (see Nonsargable
search conditions)

avoid WHERE clause column
(see WHERE clause columns)

performance, 570
small result sets

limited number of columns,
571–572

WHERE clause, 572–573

Index

www.EBooksWorld.ir

928

Query execution, 105–106
Query hash, 468, 499–503
Query optimization

multiple phases (see Multiple
optimization phases)

parallel plan optimization (see Parallel
plan optimization)

simplification, 459
statistics (see Statistics)
steps, 457–458
trivial plan match, 459

Query performance metrics
Extended Events (see Extended Events

sessions)
methods, 128
sys.dm_exec_query_stats DMO, 129–130

Query plan, 468, 499–503
Query processor tree, 454
Query recompilation

compile process, 535
deferred object resolution (see

Deferred object resolution)
execution plan, 530, 545
Extended Events, 533–535
implementation

DDL/DML statements, 551
disabling automatic statistics

update, 556
KEEPFIXED PLAN, 554
OPTIMIZE FOR query hint, 559, 561
plan guides (see Plan guides)
SET options, 558
statistics change, 553
table variables, 556

index IX_Test, 531
nonbeneficial recompilation, 532
RECOMPILE clause (see RECOMPILE

clause)

schema/binding changes, 536
SELECT statement, 530, 532
SET options, 544
sp_recompile, 545
SQL Server rules, 531
sql_statement_recompile event, 532
statement recompilation, 535–536
statistics changes, 536
stored procedure, 530

Query Store
behavior, 294–296
controlling, 306–308
monitoring, query performance, 293
plan forcing, 313–315
query information

basic structure, 297–298
parameter definition, 299
primary file group, 298
query_hash value, 297
simple parameterization, 300–301
stored procedure, execution

plan, 298
T-SQL, 299–300

reporting
AdventureWorks2017

database, 309
details of information, 312–313
forcing and unforcing plans, 313
performance behaviors and

execution plans, 312
Top 25 Resource Consumers

report, 310–311
T-SQL, 309

runtime data and wait statistics,
301–305

safety and reporting mechanism, 293
system views, 297
upgrades, 316–317

Index

www.EBooksWorld.ir

929

R
Read Committed isolation level, 661–663
Read-only concurrency model, 725–726

cost benefits, 734
drawback, 735

Read Uncommitted isolation level, 660–661
Recompilation threshold (RT), 536
RECOMPILE clause

with CREATE PROCEDURE
statement, 547

EXECUTE statement, 548–549
query hint, 549–550

Remote procedure call (RPC), 108
Referential integrity, 887
Repeatable Read isolation level, 663,

665–667
Row-level compression, 253
Row-level lock, 642–643
Rowstore indexes, 257

S
Sargable search conditions, 574
Scalar functions, 586–589
Scroll locks concurrency model, 727

benefit, 736
cost overhead, 736

Semantic search, 267
Serializable isolation level, 679–680

bonus payment, 668
business functionality, 668
clustered index, 673
HOLDLOCK locking, 670
PayBonus transaction, 669
phantom read, 667
SELECT statement, 667
side effects, 672
sys.dm_tran_locks, 671–673

Server-side cursors
characteristics, 725
cost benefits, 733
cost overhead/disadvantages, 734

SET statement, 544–545
Simple parameterization

autoparameterized plan, 482–483, 485
definition, 481
limits, 485
using template, 484

Snapshot isolation, 674
Solid-state disks (SSDs), 51
Solid-state drives (SSD), 36, 62
Spatial index, 267
sp_executesql technique

additional output, 498
definition, 475
and EXECUTE, 507–508
parameterized plan, 496
plan sensitivity, 497
SELECT statement, 495–496

SQL query performance
actual vs. estimated execution plans, 161
costly query

multiple executions, 134, 137
query execution plan, 133
query optimizer, 133
reads fields, 133–134
single execution, 134–135
slow-running query, 141–142

execution plan
Active Expensive Queries, 173
Activity Monitor, 173
actual vs. estimated execution

plans, 142–143
Clustered Index Scan operator, 145
compare plans, 166
cost-effective execution plan, 142

Index

www.EBooksWorld.ir

930

dynamic management views and
functions, 164

Find Node, 165
graphical execution plan, 142–143
identification, 148, 150
index effectiveness, 150
index scan/seek, 145–146
Live Query Statistics, 170
operator selection properties,

147–148
physical and logical operation, 147
query optimizer, 142
query window, 171
scenarios, 169
SET SHOWPLAN_XML

command, 143
Show Execution Plan XML, 144
SQL Server Management Studio

2016, 172
tooltip sheet, 146–147
XML execution plan, 142–143

Extended Events, 132
join effectiveness

adaptive, 159
hash, 154
merge, 156
nested loop, 157

parameters, 133
plan cache, 164
query resource cost

client statistics, 176
execution time, 178
Extended Events, 176
QueryTimeStats and Wait

Stats, 182
STATISTICS IO, 179

query thread profiles, 174

reducing database blocking and
pressure, 132

SQL Server Management Studio 2016, 172
SQL server optimization

configuration settings
ad hoc workloads, 895
blocked process threshold, 895
cost threshold, 894
database file layout, 895–896
data compression, 896
max degree of parallelism, 894
memory configuration, 894

database administration
AUTO_CLOSE, 898
AUTO_SHRINK, 899
minimum index

defragmentation, 898
up-to-date statistics, 897

database backup
compression, 901
distribution, 900
transaction log frequency, 899

database design (see Database design)
query design (see Query design)

Statement recompilation, 535–536
Static cursors

characteristics, 729
cost benefits, 738
cost overhead, 738

Statistics
auto create statistics, 401
auto update statistics, 401
backward compatibility, 400
cardinality estimation

AND calculation, 370, 372
enabling and disabling, 377
Estimated Row Count value, 371
Find Node menu selection, 376

SQL query performance (cont.)

Index

www.EBooksWorld.ir

931

FULLSCAN, 373
graphical execution plan, 376
query_optimizer_estimate_

cardinality event, 373–374
OR calculation, 370, 372
stats_collection_id values, 375

data retrieval strategy, 360–361
definition, 337
density, 363
DMOs, 379
filtered index, 367
histogram, 359–360, 362
iFirstIndex, 361
maintenance behavior

auto create statistics, 381–382, 391
automatic maintenance, 381
auto update statistics, 382, 385
management setting, 387
manual maintenance, 385

maintenance status, 390
multicolumn index, 364
nonindexed column

ad hoc T-SQL activities, 348
ALTER DATABASE command, 348
AUTO_CREATE_STATISTICS

process, 352
cost comparison, 357
execution plan, 353
Index Seek operation, 354
query optimizer, 347
SQL Server, 348, 355
sys.stats table, 352

nonindexed columns
AUTO_CREATE_STATISTICS

OFF, 355–357
AUTO_CREATE_STATISTICS

ON, 351
auto_stats events, 351

DATABASEPROPERTYEX
function, 350

data distribution, 348
FROM clause, 356–357
graphical plan, 358
missing_column_statistics, 359
query cost, 357
sample tables, 350
SELECT statement, 350
sys.stats_columns system, 354
Test1.Test1_C2 and Test2.Test2_C2,

352–353
query analysis (see Query analysis)
query optimization

auto_stats events, 345
Extended Events, 341
indexed column, 338–339
large data modification, 343–344
nonclustered index, 340
outdated statistics, 345
SELECT statement, 340, 343
small data modification, 341–342
system resources, 339

sampling rate, 402
small and large result set

queries, 362
Storage area network (SAN), 53, 61
Stored procedures

definition, 475
extended events, 489–490
first execution, 492
output, 490
performance benefits, 492–494
reuse, 491
UserOne user, 494

Syntax-based optimization, 455–456
system_health Extended Events session,

121–123

Index

www.EBooksWorld.ir

932

T
Table-level lock, 646
T-SQL cursors, 746–750

U
UNIQUE constraint, 886

V
Virtual machine (VM), 24, 87–88

W, X, Y, Z
WHERE clause

columns, 572–573
custom scalar UDF,

586–589
date part comparison

CONVERT function, 585
DATEPART function, 584
DATETIME column, 583

SUBSTRING vs. LIKE, 582

Index

www.EBooksWorld.ir

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: SQL Query Performance Tuning
	The Performance Tuning Process
	The Core Process
	Iterating the Process

	Performance vs. Price
	Performance Targets
	“Good Enough” Tuning

	Performance Baseline
	Where to Focus Efforts
	SQL Server Performance Killers
	Insufficient or Inaccurate Indexing
	Inaccurate Statistics
	Improper Query Design
	Poorly Generated Execution Plans
	Excessive Blocking and Deadlocks
	Non-Set-Based Operations
	Inappropriate Database Design
	Recompiling Execution Plans
	Frequent Recompilation of Queries
	Improper Use of Cursors
	Excessive Index Fragmentation

	Summary

	Chapter 2: Memory Performance Analysis
	Performance Monitor Tool
	Dynamic Management Views
	Hardware Resource Bottlenecks
	Identifying Bottlenecks
	Bottleneck Resolution

	Memory Bottleneck Analysis
	SQL Server Memory Management
	Available Bytes
	Pages/Sec and Page Faults/Sec
	Paging File %Usage and Page File %Usage
	Buffer Cache Hit Ratio
	Page Life Expectancy
	Checkpoint Pages/Sec
	Lazy Writes/Sec
	Memory Grants Pending
	Target Server Memory (KB) and Total Server Memory (KB)

	Additional Memory Monitoring Tools
	DBCC MEMORYSTATUS
	Dynamic Management Views
	Sys.dm_os_memory_brokers
	Sys.dm_os_memory_clerks
	Sys.dm_os_ring_buffers
	Sys.dm_db_xtp_table_memory_stats
	Sys.dm_xtp_system_memory_consumers

	Monitoring Memory in Linux

	Memory Bottleneck Resolutions
	Optimizing Application Workload
	Allocating More Memory to SQL Server
	Moving In-Memory Tables Back to Standard Storage
	Increasing System Memory
	Changing from a 32-Bit to a 64-Bit Processor
	Compressing Data
	Enabling 3GB of Process Address Space
	Addressing Fragmentation

	Summary

	Chapter 3: Disk Performance Analysis
	Disk Bottleneck Analysis
	Disk Counters
	Disk Transfers/Sec
	Disk Bytes/Sec
	Avg. Disk Sec/Read and Avg. Disk Sec/Write
	Buffer Manager Page Reads/Writes

	Additional I/O Monitoring Tools
	Sys.dm_io_virtual_file_stats
	Sys.dm_os_wait_stats
	Monitoring Linux I/0

	Disk Bottleneck Resolutions
	Optimizing Application Workload
	Using a Faster I/O Path
	Using a RAID Array
	RAID 0
	RAID 1
	RAID 5
	RAID 6
	RAID 1+0 (RAID 10)

	Using a SAN System
	Using Solid-State Drives
	Aligning Disks Properly
	Adding System Memory
	Creating Multiple Files and Filegroups
	Moving the Log Files to a Separate Physical Disk
	Using Partitioned Tables

	Summary

	Chapter 4: CPU Performance Analysis
	Processor Bottleneck Analysis
	% Processor Time
	% Privileged Time
	Processor Queue Length
	Context Switches/Sec
	Batch Requests/Sec
	SQL Compilations/Sec
	SQL Recompilations/Sec

	Other Tools for Measuring CPU Performance
	Sys.dm_os_wait_stats
	Sys.dm_os_workers and Sys.dm_os_schedulers
	Query Store
	Measure CPU Behavior in Linux

	Processor Bottleneck Resolutions
	Optimizing Application Workload
	Eliminating Excessive Compiles/Recompiles
	Using More or Faster Processors
	Not Running Unnecessary Software

	Network Bottleneck Analysis
	Bytes Total/Sec
	% Net Utilization

	Network Bottleneck Resolutions
	Optimizing Application Workload

	SQL Server Overall Performance
	Missing Indexes
	Full Scans/Sec
	Dynamic Management Objects

	Database Concurrency
	Total Latch Wait Time (Ms)
	Lock Timeouts/Sec and Lock Wait Time (Ms)
	Number of Deadlocks/Sec

	Nonreusable Execution Plans
	General Behavior
	User Connections
	Batch Requests/Sec

	Summary

	Chapter 5: Creating a Baseline
	Considerations for Monitoring Virtual and Hosted Machines
	Creating a Baseline
	Creating a Reusable List of Performance Counters
	Creating a Counter Log Using the List of Performance Counters
	Performance Monitor Considerations
	Limit the Number of Counters
	Prefer Counter Logs
	View Performance Monitor Graphs Remotely
	Save Counter Log Locally
	Increase the Sampling Interval

	System Behavior Analysis Against Baseline

	Baseline for Azure SQL Database
	Summary

	Chapter 6: Query Performance Metrics
	Extended Events
	Extended Events Sessions
	Global Fields
	Event Filters
	Event Fields
	Data Storage
	Finishing the Session
	The Built-in system_health Session

	Extended Events Automation
	Creating a Session Script Using the GUI
	Defining a Session Using T-SQL

	Using Causality Tracking
	Extended Events Recommendations
	Set Max File Size Appropriately
	Be Cautious with Debug Events
	Avoid Use of No_Event_Loss

	Other Methods for Query Performance Metrics
	Summary

	Chapter 7: Analyzing Query Performance
	Costly Queries
	Identifying Costly Queries
	Costly Queries with a Single Execution
	Costly Queries with Multiple Executions
	Identifying Slow-Running Queries

	Execution Plans
	Analyzing a Query Execution Plan
	Identifying the Costly Steps in an Execution Plan
	Analyzing Index Effectiveness
	Analyzing Join Effectiveness
	Hash Join
	Merge Join
	Nested Loop Join
	Adaptive Join

	Actual vs. Estimated Execution Plans
	Plan Cache
	Execution Plan Tooling
	Find Node
	Compare Plans
	Scenarios
	Live Execution Plans
	Query Thread Profiles

	Query Resource Cost
	Client Statistics
	Execution Time
	STATISTICS IO
	Actual Execution Plans

	Summary

	Chapter 8: Index Architecture and Behavior
	What Is an Index?
	The Benefit of Indexes
	Index Overhead

	Index Design Recommendations
	Examine the WHERE Clause and JOIN Criteria Columns
	Use Narrow Indexes
	Examine Column Uniqueness
	Examine the Column Data Type
	Consider Index Column Order
	Consider the Type of Index

	Clustered Indexes
	Heap Tables
	Relationship with Nonclustered Indexes
	Clustered Index Recommendations
	Create the Clustered Index First
	Keep Clustered Indexes Narrow
	Rebuild the Clustered Index in a Single Step
	Where Possible, Make the Clustered Index Unique

	When to Use a Clustered Index
	Accessing the Data Directly
	Retrieving Presorted Data

	Poor Design Practices for a Clustered Index
	Frequently Updatable Columns
	Wide Keys

	Nonclustered Indexes
	Nonclustered Index Maintenance
	Defining the Lookup Operation
	Nonclustered Index Recommendations
	When to Use a Nonclustered Index
	When Not to Use a Nonclustered Index

	Clustered vs. Nonclustered Indexes
	Benefits of a Clustered Index over a Nonclustered Index
	Benefits of a Nonclustered Index over a Clustered Index

	Summary

	Chapter 9: Index Analysis
	Advanced Indexing Techniques
	Covering Indexes
	A Pseudoclustered Index
	Recommendations
	Index Intersections
	Index Joins
	Filtered Indexes
	Indexed Views
	Benefit
	Overhead
	Usage Scenarios

	Index Compression

	Columnstore Indexes
	Columnstore Index Storage
	Columnstore Index Behavior
	Recommendations

	Special Index Types
	Full-Text
	Spatial
	XML

	Additional Characteristics of Indexes
	Different Column Sort Order
	Index on Computed Columns
	Index on BIT Data Type Columns
	CREATE INDEX Statement Processed As a Query
	Parallel Index Creation
	Online Index Creation
	Considering the Database Engine Tuning Advisor

	Summary

	Chapter 10: Database Engine Tuning Advisor
	Database Engine Tuning Advisor Mechanisms
	Database Engine Tuning Advisor Examples
	Tuning a Query
	Tuning a Trace Workload
	Tuning from the Procedure Cache
	Tuning from the Query Store

	Database Engine Tuning Advisor Limitations
	Summary

	Chapter 11: Query Store
	Query Store Function and Design
	Query Store Behavior
	Information Query Store Collects
	Query Information
	Query Runtime Data

	Controlling the Query Store

	Query Store Reporting
	Plan Forcing
	Query Store for Upgrades
	Summary

	Chapter 12: Key Lookups and Solutions
	Purpose of Lookups
	Drawbacks of Lookups
	Analyzing the Cause of a Lookup
	Resolving Lookups
	Using a Clustered Index
	Using a Covering Index
	Using an Index Join

	Summary

	Chapter 13: Statistics, Data Distribution, and Cardinality
	The Role of Statistics in Query Optimization
	Statistics on an Indexed Column
	Benefits of Updated Statistics
	Drawbacks of Outdated Statistics

	Statistics on a Nonindexed Column
	Benefits of Statistics on a Nonindexed Column
	Drawback of Missing Statistics on a Nonindexed Column

	Analyzing Statistics
	Density
	Statistics on a Multicolumn Index
	Statistics on a Filtered Index
	Cardinality
	Enabling and Disabling the Cardinality Estimator

	Statistics DMOs

	Statistics Maintenance
	Automatic Maintenance
	Auto Create Statistics
	Auto Update Statistics
	Auto Update Statistics Asynchronously
	Manual Maintenance
	Manage Statistics Settings
	Generate Statistics

	Statistics Maintenance Status
	Status of Auto Create Statistics

	Analyzing the Effectiveness of Statistics for a Query
	Resolving a Missing Statistics Issue
	Resolving an Outdated Statistics Issue

	Recommendations
	Backward Compatibility of Statistics
	Auto Create Statistics
	Auto Update Statistics
	Automatic Update Statistics Asynchronously
	Amount of Sampling to Collect Statistics

	Summary

	Chapter 14: Index Fragmentation
	Discussion on Fragmentation
	Causes of Fragmentation
	Data Modification and the Rowstore Indexes
	Page Split by an UPDATE Statement
	Page Split by an INSERT Statement

	Data Modification and the Columnstore Indexes

	Fragmentation Overhead
	Rowstore Overhead
	Columnstore Overhead

	Analyzing the Amount of Fragmentation
	Analyzing the Fragmentation of a Small Table
	Fragmentation Resolutions
	Dropping and Re-creating the Index
	Re-creating the Index with the DROP_EXISTING Clause
	Executing the ALTER INDEX REBUILD Statement
	Executing the ALTER INDEX REORGANIZE Statement
	Defragmentation and Partitions

	Significance of the Fill Factor
	Automatic Maintenance
	Summary

	Chapter 15: Execution Plan Generation
	Execution Plan Generation
	Parser
	Binding
	Optimization
	Simplification
	Trivial Plan Match
	Multiple Optimization Phases
	Parallel Plan Optimization

	Execution Plan Caching

	Components of the Execution Plan
	Query Plan
	Execution Context

	Aging of the Execution Plan
	Summary

	Chapter 16: Execution Plan Cache Behavior
	Analyzing the Execution Plan Cache
	Execution Plan Reuse
	Ad Hoc Workload
	Prepared Workload
	Plan Reusability of an Ad Hoc Workload
	Optimize for an Ad Hoc Workload
	Simple Parameterization
	Simple Parameterization Limits
	Forced Parameterization

	Plan Reusability of a Prepared Workload
	Stored Procedures
	Stored Procedures Are Compiled on First Execution
	Other Performance Benefits of Stored Procedures

	sp_executesql
	Prepare/Execute Model

	Query Plan Hash and Query Hash
	Execution Plan Cache Recommendations
	Explicitly Parameterize Variable Parts of a Query
	Create Stored Procedures to Implement Business Functionality
	Code with sp_executesql to Avoid Stored Procedure Deployment
	Implement the Prepare/Execute Model to Avoid Resending a Query String
	Avoid Ad Hoc Queries
	Prefer sp_executesql Over EXECUTE for Dynamic Queries
	Parameterize Variable Parts of Queries with Care
	Do Not Allow Implicit Resolution of Objects in Queries

	Summary

	Chapter 17: Parameter Sniffing
	Parameter Sniffing
	Bad Parameter Sniffing
	Identifying Bad Parameter Sniffing
	Mitigating Bad Parameter Sniffing

	Summary

	Chapter 18: Query Recompilation
	Benefits and Drawbacks of Recompilation
	Identifying the Statement Causing Recompilation
	Analyzing Causes of Recompilation
	Schema or Bindings Changes
	Statistics Changes
	Deferred Object Resolution
	Recompilation Because of a Regular Table
	Recompilation Because of a Local Temporary Table

	SET Options Changes
	Execution Plan Aging
	Explicit Call to sp_recompile
	Explicit Use of RECOMPILE
	RECOMPILE Clause with the CREATE PROCEDURE Statement
	RECOMPILE Clause with the EXECUTE Statement
	RECOMPILE Hints to Control Individual Statements

	Avoiding Recompilations
	Don’t Interleave DDL and DML Statements
	Avoiding Recompilations Caused by Statistics Change
	Using the KEEPFIXED PLAN Option
	Disable Auto Update Statistics on the Table
	Using Table Variables
	Avoiding Changing SET Options Within a Stored Procedure
	Using OPTIMIZE FOR Query Hint
	Using Plan Guides
	Use Query Store to Force a Plan

	Summary

	Chapter 19: Query Design Analysis
	Query Design Recommendations
	Operating on Small Result Sets
	Limit the Number of Columns in select_list
	Use Highly Selective WHERE Clauses

	Using Indexes Effectively
	Avoid Nonsargable Search Conditions
	BETWEEN vs. IN/OR
	LIKE Condition
	!< Condition vs. >= Condition

	Avoid Arithmetic Operators on the WHERE Clause Column
	Avoid Functions on the WHERE Clause Column
	SUBSTRING vs. LIKE
	Date Part Comparison
	Custom Scalar UDF

	Minimize Optimizer Hints
	JOIN Hint
	INDEX Hints

	Using Domain and Referential Integrity
	NOT NULL Constraint
	Declarative Referential Integrity

	Summary

	Chapter 20: Reduce Query Resource Use
	Avoiding Resource-Intensive Queries
	Avoid Data Type Conversion
	Use EXISTS over COUNT(*) to Verify Data Existence
	Use UNION ALL Instead of UNION
	Use Indexes for Aggregate and Sort Conditions
	Be Cautious with Local Variables in a Batch Query
	Be Careful When Naming Stored Procedures

	Reducing the Number of Network Round-Trips
	Execute Multiple Queries Together
	Use SET NOCOUNT

	Reducing the Transaction Cost
	Reduce Logging Overhead
	Reduce Lock Overhead

	Summary

	Chapter 21: Blocking and Blocked Processes
	Blocking Fundamentals
	Understanding Blocking
	Atomicity
	SET XACT_ABORT ON
	Explicit Rollback

	Consistency
	Isolation
	Durability

	Locks
	Lock Granularity
	Row-Level Lock
	Key-Level Lock
	Page-Level Lock
	Extent-Level Lock
	Heap or B-tree Lock
	Table-Level Lock
	Database-Level Lock

	Lock Operations and Modes
	Lock Escalation
	Lock Modes
	Shared (S) Mode
	Update (U) Mode

	Exclusive (X) Mode
	Intent Shared (IS), Intent Exclusive (IX), and Shared with Intent Exclusive (SIX) Modes
	Schema Modification (Sch-M) and Schema Stability (Sch-S) Modes
	Bulk Update (BU) Mode
	Key-Range Mode
	Lock Compatibility

	Isolation Levels
	Read Uncommitted
	Read Committed
	Repeatable Read
	Serializable
	Snapshot

	Effect of Indexes on Locking
	Effect of a Nonclustered Index
	Effect of a Clustered Index
	Effect of Indexes on the Serializable Isolation Level

	Capturing Blocking Information
	Capturing Blocking Information with SQL
	Extended Events and the blocked_process_report Event

	Blocking Resolutions
	Optimize the Queries
	Decrease the Isolation Level

	Partition the Contended Data
	Recommendations to Reduce Blocking
	Automation to Detect and Collect Blocking Information
	Summary

	Chapter 22: Causes and Solutions for Deadlocks
	Deadlock Fundamentals
	Choosing the Deadlock Victim
	Using Error Handling to Catch a Deadlock

	Deadlock Analysis
	Collecting Deadlock Information
	Analyzing the Deadlock

	Avoiding Deadlocks
	Accessing Resources in the Same Physical Order
	Decreasing the Number of Resources Accessed
	Convert a Nonclustered Index to a Clustered Index
	Use a Covering Index for a SELECT Statement

	Minimizing Lock Contention
	Implement Row Versioning
	Decrease the Isolation Level
	Use Locking Hints
	Tune the Queries

	Summary

	Chapter 23: Row-by-Row Processing
	Cursor Fundamentals
	Cursor Location
	Client-Side Cursors
	Server-Side Cursors

	Cursor Concurrency
	Read-Only
	Optimistic

	Cursor Types
	Forward-Only Cursors
	Static Cursors
	Keyset-Driven Cursors
	Dynamic Cursors

	Cursor Cost Comparison
	Cost Comparison on Cursor Location
	Client-Side Cursors
	Server-Side Cursors

	Cost Comparison on Cursor Concurrency
	Read-Only
	Optimistic
	Scroll Locks

	Cost Comparison on Cursor Type
	Forward-Only Cursors
	Fast-Forward-Only Cursor
	Static Cursors
	Keyset-Driven Cursors
	Dynamic Cursor

	Default Result Set
	Benefits
	Multiple Active Result Sets
	Drawbacks

	Cursor Overhead
	Analyzing Overhead with T-SQL Cursors
	Cursor Recommendations

	Summary

	Chapter 24: Memory-Optimized OLTP Tables and Procedures
	In-Memory OLTP Fundamentals
	System Requirements
	Basic Setup
	Create Tables
	In-Memory Indexes
	Hash Index
	Nonclustered Indexes
	Columnstore Index
	Statistics Maintenance

	Natively Compiled Stored Procedures
	Recommendations
	Baselines
	Correct Workload
	Memory Optimization Advisor
	Native Compilation Advisor

	Summary

	Chapter 25: Automated Tuning in Azure SQL Database and SQL Server
	Automatic Plan Correction
	Tuning Recommendations
	Enabling Automatic Tuning
	Azure Portal
	SQL Server 2017
	Automatic Tuning in Action

	Azure SQL Database Automatic Index Management
	Adaptive Query Processing
	Batch Mode Memory Grant Feedback
	Interleaved Execution

	Summary

	Chapter 26: Database Performance Testing
	Database Performance Testing
	A Repeatable Process
	Distributed Replay

	Capturing Data with the Server-Side Trace
	Distributed Replay for Database Testing
	Configuring the Client
	Running the Distributed Tests

	Conclusion

	Chapter 27: Database Workload Optimization
	Workload Optimization Fundamentals
	Workload Optimization Steps
	Sample Workload

	Capturing the Workload
	Analyzing the Workload
	Identifying the Costliest Query
	Determining the Baseline Resource Use of the Costliest Query
	Overall Resource Use
	Detailed Resource Use

	Analyzing and Optimizing External Factors
	Analyzing the Connection Options Used by the Application
	Analyzing the Effectiveness of Statistics
	Analyzing the Need for Defragmentation

	Analyzing the Internal Behavior of the Costliest Query
	Analyzing the Query Execution Plan
	Identifying the Costly Steps in the Execution Plan
	Analyzing the Processing Strategy

	Optimizing the Costliest Query
	Modifying the Code
	Fixing the Key Lookup Operation
	Tuning the Second Query
	Creating a Wrapper Procedure

	Analyzing the Effect on Database Workload
	Iterating Through Optimization Phases
	Summary

	Chapter 28: SQL Server Optimization Checklist
	Database Design
	Use Entity-Integrity Constraints
	Maintain Domain and Referential Integrity Constraints
	Adopt Index-Design Best Practices
	Avoid the Use of the sp_Prefix for Stored Procedure Names
	Minimize the Use of Triggers
	Put Tables into In-Memory Storage
	Use Columnstore Indexes

	Configuration Settings
	Memory Configuration Options
	Cost Threshold for Parallelism
	Max Degree of Parallelism
	Optimize for Ad Hoc Workloads
	Blocked Process Threshold
	Database File Layout
	Database Compression

	Database Administration
	Keep the Statistics Up-to-Date
	Maintain a Minimum Amount of Index Defragmentation
	Avoid Database Functions Such As AUTO_CLOSE or AUTO_SHRINK

	Database Backup
	Incremental and Transaction Log Backup Frequency
	Backup Scheduling Distribution
	Backup Compression

	Query Design
	Use the Command SET NOCOUNT ON
	Explicitly Define the Owner of an Object
	Avoid Nonsargable Search Conditions
	Avoid Arithmetic Expressions on the WHERE Clause Column
	Avoid Optimizer Hints
	Stay Away from Nesting Views
	Ensure No Implicit Data Type Conversions
	Minimize Logging Overhead
	Adopt Best Practices for Reusing Execution Plans
	Caching Execution Plans Effectively
	Minimizing Recompilation of Execution Plans

	Adopt Best Practices for Database Transactions
	Eliminate or Reduce the Overhead of Database Cursors
	Use Natively Compile Stored Procedures
	Take Advantage of Query Store for Analytical Queries

	Summary

	Index

