
Beginning
Entity Framework
Core 2.0

Database Access from .NET
—
Work directly with data through
domain-specific objects and methods
—
Derek J. Rouleau

www.EBooksWorld.ir

Beginning Entity
Framework Core 2.0
Database Access from .NET

Derek J. Rouleau

www.EBooksWorld.ir

Beginning Entity Framework Core 2.0

ISBN-13 (pbk): 978-1-4842-3374-0				 ISBN-13 (electronic): 978-1-4842-3375-7
https://doi.org/10.1007/978-1-4842-3375-7

Library of Congress Control Number: 2018935922

Copyright © 2018 by Derek J. Rouleau

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484233740. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Derek J. Rouleau
East Baldwin, Maine, USA

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-3375-7

To my best friend Chris and his father Paul Champagne.
If it wasn’t for you two, I may have never gotten

interested in computer science.

www.EBooksWorld.ir

v

About the Author�� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

Introduction��xv

Table of Contents

Chapter 1: �Getting Started��� 1

What Is .NET Core�� 1

Setting Up Your Application�� 2

Creating the Database and Tables (Entities)�� 3

Creating the Database�� 19

Adding Data to a Table��� 21

Retrieving Data from a Database and Displaying It��� 31

Deleting Data from a Database�� 33

Deleting a Single Record�� 33

Deleting Multiple Records�� 40

Updating Data in a Table�� 42

Summary��� 45

Chapter 2: �Working with Multiple Tables��� 49

Adding Data to a Table That Has Foreign Keys�� 50

Retrieving Data from Multiple Tables��� 75

Updating Tables�� 81

Updating Multiple Records��� 91

Summary��� 95

www.EBooksWorld.ir

vi

Chapter 3: �Stepping Beyond the Basics��� 97

Specifying Fields�� 98

Joins�� 101

Left Outer Join�� 102

Right Outer Join�� 104

Cross Join��� 109

Inner Join: Method Syntax�� 110

Grouping�� 112

Query Syntax�� 112

Method Syntax�� 114

Logical Operators��� 115

Logical OR�� 119

Paging and Filtering Results�� 121

Concurrency��� 125

Summary��� 130

Chapter 4: �Data Validation and POCOs��� 133

Validation Using DataAnnotations�� 134

Using Recursion��� 143

POCOs�� 153

Helper Classes�� 156

Validating Using a Class��� 168

Summary��� 177

Chapter 5: �Stored Procedures, Table Design, and Modifications��������������������������� 179

Stored Procedures��� 179

Calling a Stored Procedure with One Parameter�� 185

Inserting Into Multiple Tables��� 189

Table and Entity Design�� 192

Making Changes to the Table��� 194

Summary��� 201

Table of Contents

www.EBooksWorld.ir

vii

Chapter 6: �ASP.NET MVC and EF Core 2.0�� 203

Setting Up the Application��� 204

Database-First Development��� 207

Creating Controllers and Views�� 209

Page Navigation�� 214

The Home Page and Adding an Image��� 216

Error Handling�� 218

Displaying Events by Location�� 224

Sorting Results��� 228

ASP.NET MVC Basics�� 230

Strongly Typed Views�� 232

Why Use MVC?�� 234

Summary��� 235

Chapter 7: �Finishing Our ASP.NET MVC .NET Core 2.0 Project������������������������������� 237

Data Validation��� 237

Using a Regular Expression to Validate a Property��� 241

Validating the Rest of Our Models�� 243

Adding Column Sorting to Results��� 252

Adding Search Capabilities�� 256

Adding Pagination: Version 1��� 262

Adding Paging: Version 2��� 270

Grouping Results�� 275

Summary��� 287

Chapter 8: �Wrap Up and Where to Go Next�� 289

Not Just C# Anymore��� 289

Cross Platform��� 295

Unit Testing�� 297

More on LINQ��� 312

SQL Server Profiler��� 315

Table of Contents

www.EBooksWorld.ir

viii

Change Tracking�� 316

Summary��� 321

Appendix A: �Database Script for Chapter 6��� 323

Database Diagrams�� 329

Index�� 333

Table of Contents

www.EBooksWorld.ir

ix

About the Author

Derek J. Rouleau is a Computer and Information Systems Manager for a small company

in the greater Portland, Maine area. He has been working with computers since the mid

1990s thanks to a friend’s father, who got him interested in hardware and the workings

of the operating system. Derek started professionally programming while working for

an educational publishing and software company in the Quality Assurance department.

He has been using Visual Basic since VB 6 and C# since 2010. Although he now manages

the department where he works, Derek still makes time each week to write code and

research new and exciting technologies. When he’s not working, he is involved with Off

Track Standardbreds, and he competes in Dressage.

www.EBooksWorld.ir

xi

About the Technical Reviewer

Doug Holland is a Technical Evangelist at Microsoft. Before joining Microsoft in 2010,

he was awarded the Microsoft MVP (C#) and Intel Black Belt Developer awards. He has

presented sessions at the Microsoft BUILD conference and frequently speaks at other

events about Microsoft technologies, from cloud computing to mixed reality. He holds a

Master’s Degree in Software Engineering from Oxford University, as well as certifications

from Microsoft and Unity Technologies. You can follow him on Twitter @dougholland or

connect with him on LinkedIn at https://www.linkedin.com/in/dougholland/.

www.EBooksWorld.ir

https://www.linkedin.com/in/dougholland/

xiii

Acknowledgments

I would like to thank Jonathan Gennick and Jill Balzano for having the faith in me and

for helping me bring this book to you. If it weren’t for them and all the great people at

Apress, this would not have been possible.

I also need to thank my Uncle “Doc” and Don Rahmlow of TC2 Consulting Services for

reminding me that we always need to keep trying to learn new things and for pushing me

to keep improving myself. As we get along in our careers, we tend to stick with what we

know, but in this industry you need to keep up with the ever-changing environment, which

isn’t always easy.

www.EBooksWorld.ir

xv

Introduction

We decided to try a different approach at writing a technical book, and that is to convey

the information through examples, rather than long paragraphs of text you are only

going to forget later. The hope is that this will give you a good foundation to start your

Entity Framework Core 2.0 journey and that, when you complete the book and start

working on your own projects, you’ll have a good understanding of the material.

Even though this is a book on Entity Framework Core 2.0, we are going to cover some

C# topics that you might not be familiar with, so I hope you find those parts helpful.

In the second part of this book, we cover some aspects of ASP.NET MVC Core. If you

are interested in that topic, Apress has some very good books on the subject. I highly

recommend that you look into them. Although you will have a working web application

by the end, it will behoove you to do some more reading on the subject.

�Who This Book Is For
This book is for someone who has never used Entity Framework Core and is looking

for a new way to access databases. Although we focus on SQL Server in this book,

according to Microsoft, it is possible to connect to MySQL, PostgreSQL, and MyCAT as

well. (However, there is no Oracle support for EF Core yet, but hopefully there will be in

the future.) If you have not programmed in any language before, you may have a little

bit of trouble, as we don’t explain the basics of C# or ASP.NET. You may not understand

or might miss some key concepts. If you are coming over from Visual Basic, you will

probably do fine, although you need to remember to add those pesky semicolons at the

end of your code lines.

Although we do use quite a bit of LINQ in this book, it is not required that you have

any background in LINQ prior to running any of the examples. It would be wise to do

some follow-up reading on LINQ after you complete this book, but you should be able to

piece together most of what you need to do after completing these examples. If you get

stuck, an Internet search will give you a better idea of what you are looking at so you can

make a better decision as to what to use.

www.EBooksWorld.ir

xvi

�Requirements
When writing this book, I did everything in Visual Studio 2017 Preview and SQL Server

2014. The free version of SQL Server and Visual Studio works with all the examples in

this book. Since this is a beginner book, I thought it best to use the tools that someone

just starting might be using. You can use any version of SQL Server 2008 or newer with

Entity Framework Core 2.0; however, you will run into issues when you try to do the

paging examples if you have an older version of SQL Server, so try to use at least version

2014 if at all possible.

Although you do create a web application in the second section of this book, it is not

required that you have a web server. You need one only if you want to deploy the project

or one like it. Otherwise, you can run and test everything through Visual Studio.

�Notes About NuGet Packages
At the time of the writing of this book, some of the packages that we use were still only

available in preview1-final or preview2-final. If you find that you are getting errors with

your application, it may be due to a mixture of the preview and the release versions. It’s

better to either use all preview or all release versions with your application, as that seems

to be the safest. When you use the preview packages, sometimes you will get warnings

in which it’s trying to find the best match. Normally those warnings won’t cause you any

problems when you run your code and are more of an annoyance than anything.

�Before We Begin
One final note before we begin. I generally try to live my programming life by two of

my favorite quotes. The first is “never remember anything you can look up” which I’m

pretty sure is paraphrased from Albert Einstein. Now I’m not saying that you shouldn’t

remember how to use an int without having to look it up online or in a book. But for

those things that you hardly ever do, don’t take the time to commit them to memory.

The second is “frustration begins where knowledge ends”. This quote I know for sure is

from Clinton Anderson. This is by far the hardest to implement. If you are getting frustrated

Introduction

www.EBooksWorld.ir

xvii

with something, take a step back and try to figure out why. If you are honest with

yourself, it’s probably because you have run out of knowledge on the subject. Try to

figure out where the problem is and which part you are missing. Then learn about it and

try again. By doing this, you will likely have more success than just plugging away and

blindly trying different things.

Introduction

www.EBooksWorld.ir

1
© Derek J. Rouleau 2018
D. J. Rouleau, Beginning Entity Framework Core 2.0, https://doi.org/10.1007/978-1-4842-3375-7_1

CHAPTER 1

Getting Started
We are going to jump right into an example, as I think that is the best way to learn

something. As we cover new topics, we explain them as we work on them. This is better

than a general overview at the start of the chapter or section, because that won’t mean

much to you while you are reading it. I personally dislike it when books show you the

wrong way of doing something and then show you how to do it “correctly” after you just

spent five minutes typing in the wrong way, so I’m not going to do that to you. However,

I do explain why we are doing something and explain what would be wrong. Since this is

a “getting started” type of book, all the examples work as written, although they may not

be the best way of getting it done. As you get more comfortable with this technology and

as your skills grow, you’ll come up with your own way of doing things. I’m just here to

help you started down the path to greatness.

For those of you who are like me and skipped the Introduction, you should be using

the latest build of Visual Studio 2017 and at least .NET Framework 4.6.1. At the time of

this writing, the latest build of Visual Studio was 15.3.3 with the .NET Framework build

4.7.02046. These build numbers can be found in the Visual Studio About window.

�What Is .NET Core
Let’s take a quick moment to cover something that some of you may be wondering—

what is the difference between .NET and .NET Core? First off, .NET Core is cross

platform, so if you want to run an application on Windows, Linux, or Mac, .NET Core is

your tool. Due to its compact nature, .NET Core also gives better performance. The other

nice thing is that you can always start with .NET Core and, if you find you need more

features, you can switch to the full version of the .NET Framework. This is especially true

if you are writing a service.

www.EBooksWorld.ir

2

The application created here is used throughout the first section of this book and

each section builds off the last, so you really can’t skip around. With that being said, let’s

get started!

�Setting Up Your Application
Follow these steps to set up the application:

Step 1: Create a new Visual C# Console App (.NET Core) Application in Visual studio

called ComputerInventory. Again, make sure you are using at least .NET Framework 4.6.1

for your application.

Step 2: Open the NuGet package browser by clicking on Project ➤ Manage NuGet

Packages (see Figure 1-1).

Figure 1-1.  Location of NuGet package manager

Chapter 1 Getting Started

www.EBooksWorld.ir

3

Step 3: Add the following packages:

•	 Microsoft.EntityFrameworkcore.SqlServer v2.0.0

•	 Microsoft.EntityFrameworkcore.Tools v2.0.0

•	 Microsoft.EntityFrameworkcore.SqlServer.Design v2.0.0

Note A s of the writing of this book, only the preview packages were available.
If you can’t find version 2.0.0, check the preview packages.

Figure 1-2 shows what it looks like when you search for a package. Once you have

selected the package you want to install, just click on the Install button to the right and

click I Accept for any prompts that come up.

That completes the basic setup of your application. Feel free to save your work before

you continue.

�Creating the Database and Tables (Entities)
If you have used Entity Framework 6.x or one of the other versions in the past, this

next part will be a little new to you (or perhaps not). We are going to start with a code-

first Entity Framework type of application, as that is somewhat easier when using EF

Figure 1-2.  NuGet package manager

Chapter 1 Getting Started

www.EBooksWorld.ir

4

Core. Later in the book, we use an application that is database-first, so you can see the

difference. If you were to create an application based on an existing database, database-

first is the choice you’d probably use.

We are going to follow the model that is generally used by most people who design

websites, so we need to create two folders in our application—Models and Data. If you

have never done this before, it’s simple. Just right-click on the ComputerInventory

project in the Solution Explorer and select Add and then New Folder. Then change the

name to Models. See Figure 1-3. Each of our eventual tables will have a corresponding

class file in the Models folder. I’ll take you step by step through the first one and then you

should be able to create the remaining ones on your own (you just change the name of

the class).

Figure 1-3.  Adding a new folder

Chapter 1 Getting Started

www.EBooksWorld.ir

5

Let’s create our first class file. Right-click on the Models folder, select Add, and

then select Class (should be at the bottom of the list). Make sure that Class is selected

and change the name to OperatingSys.cs. Figure 1-4 shows you what it should look

like when you are creating the new class file. We are using OperatingSys rather than

OperatingSystem, as OperatingSystem is a reserved type in C# and we’d have to put

Models.OperatingSystem in our code each time we wanted to use it.

Figure 1-4.  Creating a new class

Chapter 1 Getting Started

www.EBooksWorld.ir

6

Once you click on Add, OperatingSys.cs will be created and load for you to start

working on it. Listing 1-1 shows the code for this new class.

Listing 1-1.  OperatingSys.cs After You Changed It

using System;

using System.Collections.Generic;

namespace ComputerInventory.Models {

 public partial class OperatingSys {

 public OperatingSys() {

 Machine = new HashSet<Machine>();

 }

 public int OperatingSysId { get; set; }

 public string Name { get; set; }

 public bool StillSupported { get; set; }

 public ICollection<Machine> Machine { get; set; }

 }

}

The first thing you need to remember is to make the class public so it will be

accessible throughout the application. What we have done here is created the basis

for the first table in that database, which we will call OperatingSys. In your table, it’s a

good idea to have an ID field that is normally a primary key, and we have done that with

OperatingSysID. You should have two errors, both telling you the same thing, that the

type or namespace name Machine could not be found. That is correct, as you haven’t

added them yet, so you can ignore this for now.

Two things should hopefully jump out at you. We have created a constructor for our

class and within that, we have created a new HashSet<Machine> called Machine. You

don’t need to use a HashSet<T> here, but you do need to use a collection and since that is

the default for EF Core we are going to stick with it for our examples.

If you are more familiar with EF Core and have the time, I highly recommend looking

at the other set types as there are cases in which using a HashSet isn’t needed and there is

a better fit. We then have our ICollection<Machine>, which provides an interface to the

Machine table. After all, one OS could have multiple machines, but one machine generally

only has one OS (we aren’t going to handle multi-boot systems in this simple example).

Chapter 1 Getting Started

www.EBooksWorld.ir

7

For a simple class like this, that is all there is to it. We will set up all of our tables that

don’t have any linking via foreign keys first.

Now create the next class and call it MachineType. Listing 1-2 shows all the code you

need to create the class.

Listing 1-2.  MachineType.cs

using System;

using System.Collections.Generic;

namespace ComputerInventory.Models {

 public partial class MachineType {

 public MachineType() {

 Machine = new HashSet<Machine>();

 }

 public int MachineTypeId { get; set; }

 public string Description { get; set; }

 public ICollection<Machine> Machine { get; set; }

 }

}

As you can see, this is very similar to the OperatingSys class. We have one basic class

left, the WarrantyProvider class. Its code is shown in Listing 1-3.

Listing 1-3.  WarrantyProvider.cs

using System;

using System.Collections.Generic;

namespace ComputerInventory.Models {

 public partial class WarrantyProvider {

 public WarrantyProvider() {

 MachineWarranty = new HashSet<MachineWarranty>();

 }

Chapter 1 Getting Started

www.EBooksWorld.ir

8

 public int WarrantyProviderId { get; set; }

 public string ProviderName { get; set; }

 public int? SupportExtension { get; set; }

 public string SupportNumber { get; set; }

 public ICollection<MachineWarranty> MachineWarranty { get; set; }

 }

}

There are a couple of things with this class that you need to be aware of. First of

all, the SupportNumber property is a string. This was done so that we can limit the

number of characters to 10 (this is the number of digits that United States telephone

numbers have; if you need to add a number from another country, this may need to be

increased). We will take care of the field length in a little bit. SupportExtension is not

required, as you could have a direct number to support and thus no value here, so we

add the question mark after int to make it nullable (int?). You should have two new

errors about MachineWarranty, but they will go away soon, so you can ignore those

as well. If you were going to put this into production, you could increase the length of

the ProviderName, as you may have a support contract with a company such as “Bob’s

Computer Repair Service of Northern California,” which would not fit into a 30-character

field.

Now for the first class that has a foreign key in it. Listing 1-4 shows the code for

Machine.cs, which will be the “base class” for most of what you’ll be working on in this

project.

Listing 1-4.  Machine.cs

using System;

using System.Collections.Generic;

namespace ComputerInventory.Models {

 public partial class Machine {

 public Machine() {

 SupportTicket = new HashSet<SupportTicket>();

 }

Chapter 1 Getting Started

www.EBooksWorld.ir

9

 public int MachineId { get; set; }

 public string Name { get; set; }

 public string GeneralRole { get; set; }

 public string InstalledRoles { get; set; }

 public int OperatingSysId { get; set; }

 public int MachineTypeId { get; set; }

 public MachineType MachineType { get; set; }

 public OperatingSys OperatingSys { get; set; }

 public ICollection<SupportTicket> SupportTicket { get; set; }

 }

}

The first three quarters of this code contains all things that you have already seen,

except for the new error for SupportTicket. Then we get to public int OperatingSysId

{ get; set; }. In and of itself, there isn’t anything special about it, until you realize that

we created a property called OperatingSysId in the OperatingSys class. You then see

the line public OperatingSys OperatingSys { get; set; } at the bottom, and this

is what makes all the difference. Hopefully up until now, you have been wondering why

we haven’t specified which field is the primary key. That is because Entity Framework

Core is nice enough to do it if it’s obvious enough, plus we’ll be doing a bit more with

our database fields when we set up our DBContext class, but we are getting ahead of

ourselves. As you’ll see later, specifying the primary key is good practice for making your

code easier to read and for maintainability purposes. The first property we created in

each class so far has the name ID in it. Well, the great folks at Microsoft added logic that

gives EF the ability to pick the most logical choice for the key.

Now that makes sense for the first part, but what about for OperatingSysId? How

is it to know that we want that to be a foreign key? Well, that second line tells EF that we

are going to be adding a reference to the OperatingSys class/table and it assumes that

you want to link it with the OperatingSysId field to create the foreign key. I strongly

encourage you to look into this further if you aren’t going to create your tables in SQL

Server Management Studio or another DBMS, because a good table structure is like a

foundation; the stronger it is, the better it will perform/hold up.

Chapter 1 Getting Started

www.EBooksWorld.ir

10

The code for the three remaining tables you need to create are shown in Listings 1-5,

1-6, and 1-7.

Listing 1-5.  MachineWarranty.cs

using System;

using System.Collections.Generic;

namespace ComputerInventory.Models {

 public partial class MachineWarranty {

 public int MachineWarrantyId { get; set; }

 public string ServiceTag { get; set; }

 public DateTime WarrantyExpiration { get; set; }

 public int MachineId { get; set; }

 public int WarrantyProviderId { get; set; }

 public WarrantyProvider WarrantyProvider { get; set; }

 }

}

Listing 1-6.  SupportTicket.cs

using System;

using System.Collections.Generic;

namespace ComputerInventory.Models {

 public partial class SupportTicket {

 public SupportTicket() {

 SupportLog = new HashSet<SupportLog>();

 }

 public int SupportTicketId { get; set; }

 public DateTime DateReported { get; set; }

 public DateTime? DateResolved { get; set; }

 public string IssueDescription { get; set; }

 public string IssueDetail { get; set; }

 public string TicketOpenedBy { get; set; }

 public int MachineId { get; set; }

Chapter 1 Getting Started

www.EBooksWorld.ir

11

 public Machine Machine { get; set; }

 public ICollection<SupportLog> SupportLog { get; set; }

 }

}

Listing 1-7.  SupportLog.cs

using System;

using System.Collections.Generic;

namespace ComputerInventory.Models {

 public partial class SupportLog {

 public int SupportLogId { get; set; }

 public DateTime SupportLogEntryDate { get; set; }

 public string SupportLogEntry { get; set; }

 public string SupportLogUpdatedBy { get; set; }

 public int SupportTicketId { get; set; }

 public SupportTicket SupportTicket { get; set; }

 }

}

Now you have what you need to start creating the seven tables used in this first section

of the book. As I mentioned, each class created in the Models folder represents a table in

the database. The next thing we need to do is set up our DBContext, which is the Grand

Poobah of Entity Framework and Entity Framework Core. It’s the connection between

your entity classes and the database. Without this primary class, we wouldn’t have Entity

Framework and we’d be back to setting up database connections using the SQL client and

creating instances of the DataSet and DataTables classes while putting things in memory

and using lots of big SQL queries. You’ll see better how great it is once you use it.

Since we are talking about DBContext, let’s create a Context class so we can get to

writing some code to interact with our database that much quicker. Remember that

folder we created called Data? That is where we are going to put our class, so create a

new class in the Data folder and call it MachineContext.cs. Listing 1-8 shows the code

we’ll use for MachineContext.cs. You could have called this class anything you wanted

and you’ll want to give it a name that makes sense to you when you create your own

projects. Okay, this is going to be a big one, so get ready.

Chapter 1 Getting Started

www.EBooksWorld.ir

12

Listing 1-8.  MachineContext.cs

using System;

using Microsoft.EntityFrameworkCore;

using ComputerInventory.Models;

namespace ComputerInventory.Data {

 class MachineContext : DbContext {

 public virtual DbSet<Machine> Machine { get; set; }

 public virtual DbSet<MachineType> MachineType { get; set; }

 public virtual DbSet<MachineWarranty> MachineWarranty { get; set; }

 public virtual DbSet<OperatingSys> OperatingSys { get; set; }

 public virtual DbSet<SupportLog> SupportLog { get; set; }

 public virtual DbSet<SupportTicket> SupportTicket { get; set; }

 public virtual DbSet<WarrantyProvider> WarrantyProvider { get; set; }

 �protected override void OnConfiguring(DbContextOptionsBuilder

optionsBuilder) {

 if (!optionsBuilder.IsConfigured) {

 �optionsBuilder.UseSqlServer(@"Server=ServerName;Database=BegEFCore2;

Trusted_Connection=false;User ID=sa;Password= ");

 }

 }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Machine>(entity => {

 entity.Property(e => e.MachineId).HasColumnName("MachineID");

 entity.Property(e => e.GeneralRole)

 .IsRequired()

 .HasMaxLength(25)

 .IsUnicode(false);

 entity.Property(e => e.InstalledRoles)

 .IsRequired()

 .HasMaxLength(50)

 .IsUnicode(false);

Chapter 1 Getting Started

www.EBooksWorld.ir

13

 entity.Property(e => e.MachineTypeId).HasColumnName("MachineTypeID");

 entity.Property(e => e.Name)

 .IsRequired()

 .HasMaxLength(25)

 .IsUnicode(false);

 entity.Property(e => e.OperatingSysId).HasColumnName("OperatingSysID");

 entity.HasOne(d => d.MachineType)

 .WithMany(p => p.Machine)

 .HasForeignKey(d => d.MachineTypeId)

 .OnDelete(DeleteBehavior.ClientSetNull)

 .HasConstraintName("FK_MachineType");

 entity.HasOne(d => d.OperatingSys)

 .WithMany(p => p.Machine)

 .HasForeignKey(d => d.OperatingSysId)

 .OnDelete(DeleteBehavior.ClientSetNull)

 .HasConstraintName("FK_OperatingSys");

 });

 modelBuilder.Entity<MachineType>(entity => {

 entity.Property(e => e.MachineTypeId).HasColumnName("MachineTypeID");

 entity.Property(e => e.Description)

 .HasMaxLength(15)

 .IsUnicode(false);

 });

 modelBuilder.Entity<MachineWarranty>(entity => {

 �entity.Property(e => e.MachineWarrantyId).HasColumnName

("MachineWarrantyID");

 entity.Property(e => e.MachineId).HasColumnName("MachineID");

 entity.Property(e => e.ServiceTag)

 .IsRequired()

Chapter 1 Getting Started

www.EBooksWorld.ir

14

 .HasMaxLength(20)

 .IsUnicode(false);

 entity.Property(e => e.WarrantyExpiration).HasColumnType("date");

 �entity.Property(e => e.WarrantyProviderId).HasColumnName

("WarrantyProviderID");

 entity.HasOne(d => d.WarrantyProvider)

 .WithMany(p => p.MachineWarranty)

 .HasForeignKey(d => d.WarrantyProviderId)

 .OnDelete(DeleteBehavior.ClientSetNull)

 .HasConstraintName("FK_WarrantyProvider");

 });

 modelBuilder.Entity<OperatingSys>(entity => {

 �entity.Property(e => e.OperatingSysId).HasColumnName

("OperatingSysID");

 entity.Property(e => e.Name)

 .IsRequired()

 .HasMaxLength(35)

 .IsUnicode(false);

 });

 modelBuilder.Entity<SupportLog>(entity => {

 entity.Property(e => e.SupportLogId).HasColumnName("SupportLogID");

 entity.Property(e => e.SupportLogEntry)

 .IsRequired()

 .IsUnicode(false);

 entity.Property(e => e.SupportLogEntryDate).HasColumnType("date");

 entity.Property(e => e.SupportLogUpdatedBy)

 .IsRequired()

 .HasMaxLength(50)

 .IsUnicode(false);

Chapter 1 Getting Started

www.EBooksWorld.ir

15

 �entity.Property(e => e.SupportTicketId).HasColumnName

("SupportTicketID");

 entity.HasOne(d => d.SupportTicket)

 .WithMany(p => p.SupportLog)

 .HasForeignKey(d => d.SupportTicketId)

 .OnDelete(DeleteBehavior.ClientSetNull)

 .HasConstraintName("FK_SupportTicket");

 });

 modelBuilder.Entity<SupportTicket>(entity => {

 �entity.Property(e => e.SupportTicketId).HasColumnName

("SupportTicketID");

 entity.Property(e => e.DateReported).HasColumnType("date");

 entity.Property(e => e.DateResolved).HasColumnType("date");

 entity.Property(e => e.IssueDescription)

 .IsRequired()

 .HasMaxLength(150)

 .IsUnicode(false);

 entity.Property(e => e.IssueDetail).IsUnicode(false);

 entity.Property(e => e.MachineId).HasColumnName("MachineID");

 entity.Property(e => e.TicketOpenedBy)

 .IsRequired()

 .HasMaxLength(50)

 .IsUnicode(false);

 entity.HasOne(d => d.Machine)

 .WithMany(p => p.SupportTicket)

 .HasForeignKey(d => d.MachineId)

 .OnDelete(DeleteBehavior.ClientSetNull)

 .HasConstraintName("FK_Machine");

 });

Chapter 1 Getting Started

www.EBooksWorld.ir

16

 modelBuilder.Entity<WarrantyProvider>(entity => {

 �entity.Property(e => e.WarrantyProviderId).HasColumnName

("WarrantyProviderID");

 entity.Property(e => e.ProviderName)

 .IsRequired()

 .HasMaxLength(50)

 .IsUnicode(false);

 entity.Property(e => e.SupportNumber)

 .IsRequired()

 .HasMaxLength(10)

 .IsUnicode(false);

 });

 }

 }

}

Let’s take a look at the first DBSet line and figure out what is going on. We are creating

a new public property for the MachineContext class of type DBSet<TEntity> in our case

it’s a <Machine>. We are going to use this to query and save instances of our entity type

using our DBContext variable MachineContext. When we create LINQ queries against

our DBSet<Machine> (or any other entity for that matter), it will be translated by EF into a

query against the underlying database. One point to keep in mind is that the results you

see will be from the database and not from other contexts that haven’t been saved back

to the database. In short, we will interact with the entity class we created and thus with

the database table associated with said class.

We then create OnConfiguring(), which is our database connection. It’s not good

form to leave this in the application, but since we are at the beginning stage of our Entity

Framework Core career, we’ll leave it here. There is good documentation from Microsoft

about how to handle this better if you need to remove it from the application. That being

said, take a look at the string so you know what is going on:

optionsBuilder.UseSqlServer(@"Data Source=ServerName;Initial

Catalog=BegEFCore;Integrated Security=false;User ID=sa;Password= ;");

Chapter 1 Getting Started

www.EBooksWorld.ir

17

My good friend Doug brought something to my attention here and as a result I’m

going to bring it up. I did mention that I wasn’t going to show you the wrong way to do

something and then fix it later. Well, we technically aren’t going to fix this part later, as

I’m going to leave that up to you, but leaving your connection in your code isn’t a good

habit to get into.

We need to tell it the data source, which is the name of the database server. The

initial catalog is the name of the database. The next part depends on your connection.

I’m not using integrated security, so I set that to false. I’m using the sa user account for

my database and for obvious reasons I have deleted the password I’m using. However,

you would put it after Password= with no space or quotes.

If you have one of those jobs where you can work on this during your lunch or breaks

at work and they’ll let you create a database, get the login information from your DBA. If

you are in charge of your own database or it’s at home, you just need to be sure you have

the ability to create and modify databases and tables. Many of you will be able to use

Windows Integrated Security for your application and it uses your user account (the one

you logged into the Windows Environment with) to gain access to the database. For this

to work, the user or users need to be given permission to access the SQL Server database.

Note I f you are working for a company or doing a project for someone else, be
sure to find out if you should be using SQL Server or integrated security.

The last part of this class is the OnModelCreating() method. Let’s take a look at

the Machine entity first, as this covers about 90% of what we’ll be doing for the rest of

them. This might look complicated and scary, but once you do it a few times, it’s less

so. We are using our ModelBuilder parameter that was passed into the method to do

all this work. We need to work with each of the entities, so that’s pretty straight forward:

modelBuilder.Entity<Machine>. This is where it gets a little confusing if you aren’t

used to inline and lambda functions, which we’ll be using a lot in this book. We create

our entity property then use our lambda operator (=>), followed by listing the properties

in braces {}. These braces are a terrific way to get this done. If you aren’t familiar with

them, check out MSDN for more information, as they will save you a lot of time.

Chapter 1 Getting Started

www.EBooksWorld.ir

18

Let’s look at each of these property types one at a time to make it a little bit easier to

follow. The first one is the ID field, which I mentioned earlier. Because the ID is the same

name as our entity, EF Core knows to make it the primary key:

entity.Property(e => e.MachineId).HasColumnName("MachineID");

So what are we saying here? We have our entity and we are working with a property.

We create an operator called e (this could be anything, but when you are working with

multiples, it’s very important to keep them straight) and we are going to work with

MachineId, so we tell it that is the property from our Machine class that we are using. We

then tell it that it has a name and its name is MachineID. You might wonder why they are

different. That’s because when I created the class Machine I forgot to hold down the Shift

key and the D ended up being lowercase. I could fix this, but it illustrates how the name

of the field in the database could be different than in the code. This can be helpful when

working with a database that already exists and contains inconsistencies like these. This

is also common when you want a different naming convention from the database and

the EF Source code.

On to the next property, which is the GeneralRole property. In Machine.cs this is:

public MachineType MachineType { get; set; }

entity.Property(e => e.GeneralRole).IsRequired().HasMaxLength(25).

IsUnicode(false);

You can put this all on one line or split it into multiple lines like we did in Listing 1-8.

Because the name hasn’t changed, we don’t need to tell it that it has a different name

but we do need to tell it that it “is required” and that it has a maximum length of 25

characters. The last property, called .IsUnicode(false), makes the field a varchar

rather than a nvarchar. Since we aren’t storing any Unicode characters and they take up

two bytes each rather than one, this saves space.

Next in the code, note the MachineType property. We are going to create a

relationship in which this entity points to a single instance of another entity. In this

case, it’s a MachineType. This is where it’s important to keep track of your variables. We

are going to use d when referring to MachineType. We will then use p for our current

property. By using .WithMany we are creating a many-to-one relationship when going

from MachineType to Machine, as each MachineType could have many different Machines

associated with it.

Chapter 1 Getting Started

www.EBooksWorld.ir

19

We then have a property about what happens when we try to delete a field in

a table that is a primary key and has associated foreign keys. For now, just go with

this. When you have time, look at the different options, as this could prove useful to

you in the future. Lastly, we have to give our foreign key a name and we do so with

.HasConstraintName with the name in parentheses.

Let’s skip down to the OperatingSys entity, since it doesn’t have a foreign key

association.

modelBuilder.Entity<OperatingSys>(entity => {

entity.Property(e => e.OperatingSysId).HasColumnName("OperatingSysID");

entity.Property(e => e.Name).IsRequired().HasMaxLength(35).IsUnicode(false);});

This looks pretty boring in comparison to what we have for our Machine entity. All

we have is our OperatingSysId and the Name properties. There is another field in the

OperatingSys class, but the only thing we are concerned about with the Model Builder is

the properties that aren’t easily defined data types or that require a little tweaking to get

working. If you look at the entry for SupportTicket, you’ll notice that we had to specify

the data type for the Date fields and the string properties are not accepting Unicode

characters.

Take a look at everything we have done in MachineContext.cs and read through it

once or twice using the compiler. Hover over the parts that you don’t quite understand.

Sometimes IntelliSense can be helpful in trying to understand what is going on.

�Creating the Database
Okay, it’s time for the moment of truth. Let’s see if everything we did is going to work and

create the database. Open the NuGet Package Manager console by choosing Tools ➤

NuGet Package Manager ➤ Package Manager Console. Then type the following into the

console (your PMC host version may be different):

Package Manager Console Host Version 4.3.0.4315

Type 'get-help NuGet' to see all available NuGet commands.

PM> Add-Migration ComputerInventory.Data.MachineContext

Chapter 1 Getting Started

www.EBooksWorld.ir

20

You should then see this after it has completed:

To undo this action, use Remove-Migration.

PM>

You don’t want to do that, so instead enter Update-Database. Once it’s done, you’ll

have a new database on your server. Figure 1-5 shows my database in SQL Server

Management Studio.

If you look in Solution Explorer for this project, you’ll see that a Migrations folder

was created and there are a couple of class files in there. They were created for the

database and tables. Take some time to look through them. It’s pretty interesting what EF

Core does for you.

Now that you have some tables set up in the database, you might as well start adding

something to it. The next section covers adding data to the table and then you’ll see how

to retrieve data from it. You could use SSMS to add data, but why not do it in code since

you’ll have to do it eventually anyway.

Figure 1-5.  View of the database from SSMS

Chapter 1 Getting Started

www.EBooksWorld.ir

21

�Adding Data to a Table
Open Program.cs and delete Console.WriteLine("Hello World!"); as you don’t need

that. Listing 1-9 shows Program.cs after we delete this line and add a few using statements.

Listing 1-9.  Program.cs Before Coding

using Microsoft.EntityFrameworkCore;

using System;

using System.Collections.Generic;

using System.Linq;

using ComputerInventory.Data;

using ComputerInventory.Models;

namespace ComputerInventory {

 class Program {

 static void Main(string[] args) {

 }

 }

}

Now that we have our project ready, let’s get started. Listings 1-10 through 1-13 show

the code added to Program.cs in digestible chunks. I explain each section after you add

it. There is a lot here that we need to get set up. Once it’s there, though, it’ll make your life

easier in the long run. Without further ado, here we go.

Listing 1-10.  Program.cs: Setting Up the Menus

static void Main(string[] args) {

 // Set a color you like other than green or red as this will be used later

 Console.ForegroundColor = ConsoleColor.Black;

 int result = -1;

 while (result != 9) {

 result = MainMenu();

 }

}

Chapter 1 Getting Started

www.EBooksWorld.ir

22

static int MainMenu() {

 int result = -1;

 ConsoleKeyInfo cki;

 bool cont = false;

 do {

 Console.Clear();

 WriteHeader("Welcome to Newbie Data Systems");

 WriteHeader("Main Menu");

 �Console.WriteLine("\r\nPlease select from the list below for what you

would like to do today");

 Console.WriteLine("1. List All Machines in Inventory");

 Console.WriteLine("2. List All Operating Systems");

 Console.WriteLine("3. Data Entry Menu");

 Console.WriteLine("9. Exit");

 cki = Console.ReadKey();

 try {

 result = Convert.ToInt16(cki.KeyChar.ToString());

 if (result == 1) {

 //DisplayAllMachines();

 }

 else if (result == 2) {

 //DisplayOperatingSystems();

 }

 else if (result == 3) {

 DataEntryMenu();

 }

 else if (result == 9) {

 // We are exiting so nothing to do

 cont = true;

 }

 }

 catch (System.FormatException) {

 // a key that wasn't a number

 }

Chapter 1 Getting Started

www.EBooksWorld.ir

23

 } while (!cont);

 return result;

}

static void DataEntryMenu() {

 ConsoleKeyInfo cki;

 int result = -1;

 bool cont = false;

 do {

 Console.Clear();

 WriteHeader("Data Entry Menu");

 �Console.WriteLine("\r\nPlease select from the list below for what you

would like to do today");

 Console.WriteLine("1. Add a New Machine");

 Console.WriteLine("2. Add a New Operating System");

 Console.WriteLine("3. Add a New Warranty Provider");

 Console.WriteLine("9. Exit Menu");

 cki = Console.ReadKey();

 try {

 result = Convert.ToInt16(cki.KeyChar.ToString());

 if (result == 1) {

 //AddMachine();

 }

 else if (result == 2) {

 AddOperatingSystem();

 }

 else if (result == 3) {

 //AddNewWarrantyProvider();

 }

 else if (result == 9) {

 // We are exiting so nothing to do

 cont = true;

 }

Chapter 1 Getting Started

www.EBooksWorld.ir

24

 }

 catch (System.FormatException) {

 // a key that wasn't a number

 }

 } while (!cont);

}

Note I set my Console.ForegroundColor = ConsoleColor.Black, as I
have to use a white background for the book. If you are using a black background,
you’ll need to use another color for the console.

That was quite a bit, I know and unfortunately we haven’t gotten to any Entity

Framework Core yet, but don’t worry we are almost there. Let’s go over a couple of things

first. As I hope you have guessed, we are creating a menu-based console application so

every time we get to a new menu we are calling Console.Clear() to clear the old screen.

We are doing some basic error handling to check for proper user input, although if you

want, you can make it more robust.

I have a couple of things commented out that we will be using shortly, so if you didn’t

add them you can now or when we add the new methods. I set the font color to white as

we’ll be making some changes to it shortly and this way I can change it back and forth.

You should have gotten a few errors in your error list and we’ll take care of a few of them

right now. Listing 1-11 shows the helper methods.

Listing 1-11.  Helper Methods in Program.cs

static void WriteHeader(string headerText) {

 Console.WriteLine(string.Format("{0," + ((Console.WindowWidth / 2) +

headerText.Length / 2) + "}", headerText));

}

static bool ValidateYorN(string entry) {

 bool result = false;

 if (entry.ToLower() == "y" || entry.ToLower() == "n") {

Chapter 1 Getting Started

www.EBooksWorld.ir

25

 result = true;

 }

 return result;

}

These two little helper methods will save you a lot of typing later, as you add to

the application. The first will center the text in the console window when it displays

the header line. This makes the text more readable and somewhat more professional

looking. The second you’ll see in action in Listing 1-12, but basically it’s validating user

input when they are asking to enter a y or n. This one is where the real savings is, as you’ll

be using that one quite a lot. You finally get some Entity Framework Core to look at in

Listing 1-12.

Listing 1-12.  Finally Some EF Core

static bool CheckForExistingOS(string osName) {

 bool exists = false;

 using (var context = new MachineContext()) {

 var os = context.OperatingSys.Where(o => o.Name == osName);

 if (os.Count() > 0) {

 exists = true;

 }

 }

 return exists;

}

Well, that was worth the wait, right? Okay, it doesn’t look like a lot, but you did quite

a bit of work in just a couple of lines. As mentioned earlier, DBContext (MachineContext

here) is our connection to the database, so we create a new local variable in this case for

ease of reading we called context. The next thing we do is throw in some LINQ magic

to create a IQueriable<OperatingSys> (var is so much easier to type) object and write

a basic LINQ query to see if there is an entry in the OperatingSys table that matches the

OS. If there is a result, os.Count() will return a value greater than 0. Think of how many

lines that would have been if you did it without EF Core. Finally, let’s get the last piece in

so we can at least enter some data into the table. Listing 1-13 shows you just that.

Chapter 1 Getting Started

www.EBooksWorld.ir

26

Listing 1-13.  Method for Entering Data Into the Table

static void AddOperatingSystem() {

 Console.Clear();

 ConsoleKeyInfo cki;

 string result;

 bool cont = false;

 OperatingSys os = new OperatingSys();

 string osName = "";

 do {

 WriteHeader("Add New Operating System");

 Console.WriteLine("Enter the Name of the Operating System and hit Enter");

 osName = Console.ReadLine();

 if (osName.Length >= 4) {

 cont = true;

 }

 else {

 �Console.WriteLine("Please enter a valid OS name of at least 4

characters.\r\nPress and key to continue...");

 Console.ReadKey();

 }

 } while (!cont);

 cont = false;

 os.Name = osName;

 Console.WriteLine("Is the Operating System still supported? [y or n]");

 do {

 cki = Console.ReadKey();

 result = cki.KeyChar.ToString();

 cont = ValidateYorN(result);

 } while (!cont);

 if (result.ToLower() == "y") {

 os.StillSupported = true;

 }

Chapter 1 Getting Started

www.EBooksWorld.ir

27

 else {

 os.StillSupported = false;

 }

 cont = false;

 do {

 Console.Clear();

 �Console.WriteLine($"You entered {os.Name} as the Operating

System Name\r\nIs the OS still supported, you entered {os.

StillSupported}.\r\nDo you wish to continue? [y or n]");

 cki = Console.ReadKey();

 result = cki.KeyChar.ToString();

 cont = ValidateYorN(result);

 } while (!cont);

 if (result.ToLower() == "y") {

 bool exists = CheckForExistingOS(os.Name);

 if (exists) {

 �Console.WriteLine("\r\nOperating System already exists in the

database\r\nPress any key to continue...");

 Console.ReadKey();

 }

 else {

 using (var context = new MachineContext()) {

 Console.WriteLine("\r\nAttempting to save changes...");

 context.OperatingSys.Add(os);

 int i = context.SaveChanges();

 if (i == 1) {

 �Console.WriteLine("Contents Saved\r\nPress any key to

continue...");

 Console.ReadKey();

 }

 }

 }

 }

}

Chapter 1 Getting Started

www.EBooksWorld.ir

28

The first part of this method is basic question and answer type code with some very

basic validation and error handling. If you are new to C# 6.0, one of the lines may look a

bit new to you:

Console.WriteLine($"You entered {os.Name} as the Operating System Name\r\

nIs the OS still supported, you entered {os.StillSupported}.\r\nDo you wish

to continue? [y or n]");

This uses a feature new to C# 6.0 called string interpolation. My goal is to stick

with new features as much as possible, but you’ll probably still find a couple of

string.formats in the book, as old habits are hard to break. Note at the top that we

created a new OperatingSystem object outside the DBContext loop. We did this for

two reasons:

•	 To show you that they are accessible outside of the loop.

•	 To keep the connection open only as long as we need it.

Let’s take a look at the EF Core code and see what is going on. Just like before,

we get our local DBContext variable and put it into a using block. We then have the

context.OperatingSys.Add(os) line, which makes a lot of sense. Let’s break it down

into parts.

context is our connection to the database. OperatingSys in this case is the table. If

you hover over it, you’ll see that it’s DBSet<OperatingSys>. Lastly, what we are trying to

do is add an object, so we call the Add method. However, there is one thing that we need

to remember. We have added it only to our local copy, which is context. The next line

saves the data to the table: context.SaveChanges(). Then SaveChanges() returns the

number of rows affected as the return value.

Now that you have all that done, it’s time to take this baby for a test drive. Run the

application by pressing F5. After it complies and loads, you should see a window similar

to Figure 1-6.

Chapter 1 Getting Started

www.EBooksWorld.ir

29

Right now the only options that work are 3 and 9, but since we want to add data to

the database, let’s do some data entry. Choose option 3. Then choose option 2 to add a

new operating system. For the name of the operating system, enter Windows Server 2003

R2 and press Enter. When asked if the OS is still supported, choose n for no. If you have

entered your information correctly, you should see output like in Figure 1-7.

Figure 1-7.  Data entry, new operating system

Figure 1-6.  Running the application

If it’s correct, press y. After a second or so (depending on the speed of your database

server and local machine), you should see output in your console window similar to

Figure 1-8.

Chapter 1 Getting Started

www.EBooksWorld.ir

30

When you press Enter, you’ll be brought back to the Data Entry menu. From there, go

back to option 2 and enter the contents of Table 1-1 into the table.

Figure 1-8.  You have successfully added a record with EF Core

Table 1-1.  Operating System Table Entries

Name Still Supported

Windows XP No

Windows 7 Yes

Windows 8 Yes

Windows 8.1 Yes

Windows 10 Yes

Windows Server 2000 No

Windows Server 2008 Yes

Windows Server 2008 R2 Yes

Windows Server 2012 Yes

Windows Server 2012 R2 Yes

Windows Server 2016 Yes

Ubuntu Server 16.14.2 LTS Yes

Ubuntu Server 17.04 Yes

Chapter 1 Getting Started

www.EBooksWorld.ir

31

You now have a few that are no longer supported and a good number that are

supported. For now, we’ll stick with this list, but we’ll be adding some more to the table

later when we start doing some more interesting things with EF Core. In the “Summary”

section of this chapter, you’ll find code you can use if you want to seed the table without

having to use the console.

Now that we have some data, we need a way of looking at it. Option 2 in the Main

menu will list all operating systems, so that seems like a good place to start. Feel free

to add a couple of others, but just be sure that your listing in SSMS matches Table 1-1

(including Windows Server 2003 R2, false that we entered earlier). See what happens

when you don’t capitalize the entries; does it still load or throw an error?

If you want to save some time, use the method for seeding the OperatingSys table at

the end of the chapter (Listing 1-20). You can also use it later to repopulate the table after

you make some changes to it.

�Retrieving Data from a Database and Displaying It
We technically have already retrieved results in the last example, but we need a way to

check if a record is already in the table before we add it (as long as we spell it the same).

Since this is the first chapter, we are going to make this as simple as possible. Listing 1-14

shows the method for displaying the contents of the OperatingSys table.

Listing 1-14.  DisplayOperatingSystems() Added to Program.cs

static void DisplayOperatingSystems() {

 Console.Clear();

 Console.WriteLine("Operating Systems");

 using (var context = new MachineContext()) {

 foreach (var os in context.OperatingSys.ToList()) {

 Console.Write($"Name: {os.Name,-39}\tStill Supported = ");

 if (os.StillSupported == true) {

 Console.ForegroundColor = ConsoleColor.Green;

 }

 else {

 Console.ForegroundColor = ConsoleColor.Red;

 }

Chapter 1 Getting Started

www.EBooksWorld.ir

32

 Console.WriteLine(os.StillSupported);

 Console.ForegroundColor = ConsoleColor.Black;

 }

 }

 Console.WriteLine("\r\nAny key to continue...");

 Console.ReadKey();

}

Before you can run your code, go to the Main menu and uncomment

DisplayOperatingSystems(). Now, when you run your application and chose Option 2

from the Main menu, you should see output similar to Figure 1-9 (although the order of

the values may be different).

Take a look at the code. You can see that not a whole lot is new; we create our

MachineContext object and this time we put our query into a foreach loop. So what are

we saying here? It’s quite simple: to each operating system object in our list of objects

from the OperatingSys table, we are going to do something. We are doing some line

formatting in the first Console.Writeline() so that everything lines up a little better (if

this is new to you, I highly recommend looking up formatting in console applications as

it will help things look a lot better and more readable). Now if you’ll recall, I said the font

color of our console was going to be used; well, here it is. If the operating system is still

Figure 1-9.  A list of operating systems

Chapter 1 Getting Started

www.EBooksWorld.ir

33

supported, we output True in green. If the OS is not supported, we output False in red.

We then have to change the color back to the original selection; otherwise, it will look off.

You can choose any colors you like, but green and red seem to make the most sense to me.

�Deleting Data from a Database
Anytime you are going to delete data from a database, you need to be careful as it’s

quite easy to delete the wrong data. It’s always a good idea to verify with the user that

data should in fact be deleted. We will do some basic checking, but in your applications

the amount of validation you do is entirely up to you. There are a couple of different

methods that you can use to delete/remove records with EF. We will cover a couple of

different ways in this book so you can determine which way you like best.

�Deleting a Single Record
In this example, we are going to work a little backwards. We create the method in which

we delete the record and then we create all the menu objects. Listing 1-15 shows the

code for this deletion method.

Listing 1-15.  DeleteOperatingSystem()

static void DeleteOperatingSystem(int id) {

 OperatingSys os = GetOperatingSystemById(id);

 if (os != null) {

 �Console.WriteLine($"\r\nAre you sure you want to delete {os.Name}?

[y or n]");

 ConsoleKeyInfo cki;

 string result;

 bool cont;

 do {

 cki = Console.ReadKey(true);

 result = cki.KeyChar.ToString();

 cont = ValidateYorN(result);

 } while (!cont);

 if ("y" == result.ToLower()) {

 Console.WriteLine("\r\nDeleting record");

Chapter 1 Getting Started

www.EBooksWorld.ir

34

 using (var context = new MachineContext()) {

 context.Remove(os);

 context.SaveChanges();

 }

 Console.WriteLine("Record Deleted");

 Console.ReadKey();

 }

 else {

 Console.WriteLine("Delete Aborted\r\nHit any key to continue...");

 Console.ReadKey();

 }

 }

 else {

 Console.WriteLine("\r\nOperating System Not Found!");

 Console.ReadKey();

 SelectOperatingSystem("Delete");

 }

}

This method starts off with a call to a helper method to retrieve an OperatingSys()

object, which we’ll get to in a minute, and then it checks to see if the result is null. We

then do some basic checking to be sure that the user does want to delete the record.

Once we have determined that the user does want to delete this record, we create the

using statement to get our DBContext object and then we call context.Remove(os) to

remove our os object from the context. Then we call context.SaveChanges() to save

our changes to the database. Just like when we added records to the database, nothing

is written back to the database until SaveChanges() is called. Now, some may argue that

this is not the best way to do it. That you should instead add the object to the context first

and then remove it, which would look like this:

Context.Add(os);

Context.Remove(os);

Context.SaveChanges();

You are free to use this method, but it is not required. Once we add the rest of the

code, we’ll step through it and you’ll get a better understanding of what is going on with

this function of Entity Framework Core.

Chapter 1 Getting Started

www.EBooksWorld.ir

35

Listing 1-16 shows how to add the other methods and Listing 1-17 shows how to add

the menu updates.

Listing 1-16.  More Helper Methods

static OperatingSys GetOperatingSystemById(int id) {

 var context = new MachineContext();

 �OperatingSys os = context.OperatingSys.FirstOrDefault(i =>

i.OperatingSysId == id);

 return os;

}

static void SelectOperatingSystem(string operation) {

 ConsoleKeyInfo cki;

 Console.Clear();

 WriteHeader($"{operation} an Existing Operating System Entry");

 Console.WriteLine($"{"ID",-7}|{"Name",-50}|Still Supported");

 Console.WriteLine("-------------------------------------- -----------");

 using (var context = new MachineContext()) {

 List<OperatingSys> lOperatingSystems = context.OperatingSys.ToList();

 foreach (OperatingSys os in lOperatingSystems) {

 �Console.WriteLine($"{os.OperatingSysId,-7}|{os.Name,-50}|

{os.StillSupported}");

 }

 }

 �Console.WriteLine($"\r\nEnter the ID of the record you wish to

{operation} and hit Enter\r\nYou can hit Esc to exit this menu");

 bool cont = false;

 string id = "";

 do {

 cki = Console.ReadKey(true);

 if (cki.Key == ConsoleKey.Escape) {

 cont = true;

 id = "";

 }

Chapter 1 Getting Started

www.EBooksWorld.ir

36

 else if (cki.Key == ConsoleKey.Enter) {

 if (id.Length > 0) {

 cont = true;

 }

 else {

 Console.WriteLine("Please enter an ID that is at least 1 digit.");

 }

 }

 else if (cki.Key == ConsoleKey.Backspace) {

 Console.Write("\b \b");

 try {

 id = id.Substring(0, id.Length - 1);

 }

 catch (System.ArgumentOutOfRangeException) {

 // at the 0 position, can't go any further back

 }

 }

 else {

 if (char.IsNumber(cki.KeyChar)) {

 id += cki.KeyChar.ToString();

 Console.Write(cki.KeyChar.ToString());

 }

 }

 } while (!cont);

 int osId = Convert.ToInt32(id);

 if ("Delete" == operation) {

 DeleteOperatingSystem(osId);

 }

 else if ("Modify" == operation) {

 //ModifyOperatingSystem(osId);

 }

}

Chapter 1 Getting Started

www.EBooksWorld.ir

37

The GetOperatingSystemById method returns an operating system object. There

shouldn’t be anything new here. We created this method to call this code more than once

from different locations. However, note that we aren’t using our usual using statement

here. You don’t need to always use the using statement in your operations. As with many

of the aspects of EF Core, it comes down to how you like to do things and what makes

the most sense to you. Sometimes I like to have the using statement with brackets to

keep things together and tidy. However, one more thing that I should mention is that the

using statement will call the Dispose method once the object is no longer needed.

Listing 1-15 includes a call back to SelectOperatingSystem when the user enters

an invalid operating system from the menu. This method takes a string variable as an

argument, which we use to determine if we are trying to delete a record or update a

record. Since the initial code of both pieces was the same, it made sense to create a

single method that we could use for both operations. Our first bit of EF Core code gets

our list of operating systems and, as you more than likely noticed, we decided to not use

a var this time. We specifically used a List<OperatingSys> instead, just to show you that

you can. Whichever method you use is up to you, although I do use both depending on

what I’m doing for notation purposes. In this case, I know I’m creating a list instead of

just getting a single object.

We then loop through our results, putting them into a nice formatted “table” to read

on the screen. Because we didn’t specify anything in our query, we will be retrieving all

records from the OperatingSys table, which in this case is fine. We’ll get into filtering

results in the upcoming chapters. We then have some more basic C# code. Toward the

bottom is the call to DeleteOperatingSystem(osId) to do the actual deletion and right

under that is the call to modify a record, which we’ll get to later, so for now just leave it

commented out. Listing 1-17 shows the DataModificationMenu code, which looks just

like our other menus. Feel free to cut and paste and then change it as needed to save

yourself some typing.

Listing 1-17.  The Data Modification Menu

static void DataModificationMenu() {

 ConsoleKeyInfo cki;

 int result = -1;

 bool cont = false;

 do {

 Console.Clear();

Chapter 1 Getting Started

www.EBooksWorld.ir

38

 WriteHeader("Data Modification Menu");

 �Console.WriteLine("\r\nPlease select from the list below for what you

would like to do today");

 Console.WriteLine("1. Delete Operating System");

 Console.WriteLine("2. Modify Operating System");

 Console.WriteLine("3. Delete All Unsupported Operating Systems");

 Console.WriteLine("9. Exit Menu");

 cki = Console.ReadKey();

 try {

 result = Convert.ToInt16(cki.KeyChar.ToString());

 if (result == 1) {

 SelectOperatingSystem("Delete");

 }

 else if (result == 2) {

 //SelectOperatingSystem("Modify");

 }

 else if (result == 3) {

 //DeleteAllUnsupportedOperatingSystems();

 }

 else if (result == 9) {

 // We are exiting so nothing to do

 cont = true;

 }

 }

 catch (System.FormatException) {

 // a key that wasn't a number

 }

 } while (!cont);

}

The only thing left to do is update the Main menu so we can get to the new menu and

code. The following are a couple of lines from the MainMenu method to show the changes

that you need to make:

Console.WriteLine("3. Data Entry Menu");

Console.WriteLine("4. Data Modification Menu");

Console.WriteLine("9. Exit");

Chapter 1 Getting Started

www.EBooksWorld.ir

39

Figure 1-10.  The context variable

else if (result == 3) {

 DataEntryMenu();

}

else if (result == 4) {

 DataModificationMenu();

}

else if (result == 9) {

 // We are exiting so nothing to do

 cont = true;

}

Before we run this, let’s add a breakpoint to context.Remove(os); so we can take a

look at our variables. Run your code and choose the Data Modification menu and then

Delete Operating System. We will delete Windows Server 2000 so enter its ID and press

Enter. When you press Enter, you should hit your breakpoint. If you expand the context

variable, you should see something similar to Figure 1-10.

Chapter 1 Getting Started

www.EBooksWorld.ir

40

As you can see, the context already knows a lot about our database just by

connecting to it. This also shows you that you didn’t need to add the operating system

variable to the context, as the system already knew about it. If you step through the code,

you will see that after the Remove is called, the local count drops by one, but the results

view still has all the original values in it. Once you step past SaveChanges(), you’ll see

that the Results view now matches your local copy in context. If you go back to the Main

menu and choose List All Operating Systems, you should now see that Windows Server

2000 is no longer on the list.

Although we cover this in detail later, I wanted to show you what is happening with

DBContext so you have a better understanding of what is available to you. You can see

how using smart SELECT statements is important once you start working on larger and

more complex tables and table structures.

�Deleting Multiple Records
Deleting multiple records is just as easy as deleting a single record and there are multiple

ways of doing it. We cover one way in this section and I explain a different way you could

have tackled this problem afterward. Listing 1-18 shows the code to delete all the records

from the operating system table, where the OS is no longer supported. Obviously, you

could create a more generic delete, but since we are going to use it only for this one

example, we’ll stick with a straightforward delete of hardcoded data.

Listing 1-18.  Deleting Multiple Records at One Time

static void DeleteAllUnsupportedOperatingSystems() {

 using (var context = new MachineContext()) {

 �var os = (from o in context.OperatingSys where o.StillSupported ==

false select o);

 �Console.WriteLine("\r\nDeleting all Unsupported Operating

Systems...");

 context.OperatingSys.RemoveRange(os);

 int i = context.SaveChanges();

 Console.WriteLine($"We have deleted {i} records");

 Console.WriteLine("Hit any key to continue...");

 Console.ReadKey();

 }

}

Chapter 1 Getting Started

www.EBooksWorld.ir

41

I hope this is starting to sense and you can see what is going on before I explain

it to you. We have our usual using statement to create our instance of DBContext

followed by our SELECT. If you hover over os, you should see that we are creating an

IQueriable<OperatingSys> variable type. We then let the users know that they are

about to delete some data with no way of stopping it.

Unlike in the last example, this delete is handled a little differently because we are

deleting a group of one or more records. To do this, we use RemoveRange() in order to

delete the entity or entities that we have chosen from our DBContext object. We then call

SaveChanges() to write those changes back to the database. We get back the number of

rows that were affected and we are done. Uncomment your code as follows in the Data

Modification menu and you can delete all those pesky unsupported operating systems

from the table.

else if (result == 3) {

 DeleteAllUnsupportedOperatingSystems();

}

If you run your code multiple times, you will find that instead of throwing an error,

it just tells you that you have deleted zero records. You could have determined if your

initial query returned any results before calling RemoveRange() and you may want to do

that in future projects, but in the interest of brevity, I left that out.

Now let’s say you wanted to validate each record for some reason or you didn’t want

to use RemoveRange() to delete the entire group at one time. You could get the list of

operating systems and then just do a loop, going through each one and deleting them

in the same manner that we did when we deleted the single record. You wouldn’t need

to get a new DBContext each time, but you would have to be sure to call the Remove()

for each record. You could either make one call to SaveChanges() or do it with each

iteration; it’s up to you, but you do need to do it before you close your connection.

This should make you dangerous enough for now; you have a database and can

delete records from it. Remember you need to be careful before you delete something

from a database. If you aren’t careful, pray that you have a good and recent backup.

Chapter 1 Getting Started

www.EBooksWorld.ir

42

�Updating Data in a Table
This last section covers the process of updating data in your database/tables. Listing 1-19

shows the code for modifying an operating system entity and the table. As you can see,

we are using our GetOperatingSystemById() helper method to get an OperatingSystem

object that we’ll use to do our update.

Listing 1-19.  Updating an Operating System Entry

static void ModifyOperatingSystem(int id) {

 OperatingSys os = GetOperatingSystemById(id);

 Console.Clear();

 char operation = '0';

 bool cont = false;

 ConsoleKeyInfo cki;

 WriteHeader("Update Operating System");

 if (os != null) {

 �Console.WriteLine($"\r\nOS Name: {os.Name} Still Supported:

{os.StillSupported}");

 �Console.WriteLine("To modify the name press 1\r\nTo modify if the OS

is Still Supported press 2");

 Console.WriteLine("Hit Esc to exit this menu");

 do {

 cki = Console.ReadKey(true);

 if (cki.Key == ConsoleKey.Escape)

 cont = true;

 else {

 if (char.IsNumber(cki.KeyChar)) {

 if (cki.KeyChar == '1') {

 Console.WriteLine("Updated Operating System Name: ");

 operation = '1';

 cont = true;

 }

 else if (cki.KeyChar == '2') {

Chapter 1 Getting Started

www.EBooksWorld.ir

43

 �Console.WriteLine("Update if the OS is Still Supported

[y or n]: ");

 operation = '2';

 cont = true;

 }

 }

 }

 } while (!cont);

 }

 if (operation == '1') {

 string osName;

 cont = false;

 do {

 osName = Console.ReadLine();

 if (osName.Length >= 4) {

 cont = true;

 }

 else {

 �Console.WriteLine("Please enter a valid OS name of at least 4

characters.\r\nPress and key to continue...");

 Console.ReadKey();

 }

 } while (!cont);

 os.Name = osName;

 }

 else if (operation == '2') {

 string k;

 do {

 cki = Console.ReadKey(true);

 k = cki.KeyChar.ToString();

 cont = ValidateYorN(k);

 } while (!cont);

 if (k == "y") {

 os.StillSupported = true;

 }

Chapter 1 Getting Started

www.EBooksWorld.ir

44

 else {

 os.StillSupported = false;

 }

 }

 using (var context = new MachineContext()) {

 �var o = context.OperatingSys.FirstOrDefault(i => i.OperatingSysId ==

os.OperatingSysId);

 if (o != null) {

 // just making sure

 o.Name = os.Name;

 o.StillSupported = os.StillSupported;

 Console.WriteLine("\r\nUpdating the database...");

 context.SaveChanges();

 Console.WriteLine("Done!\r\nHit any key to continue...");

 }

 }

 Console.ReadKey();

}

After we make our selection and retrieve our data from the database, we give the user

some options to change what they see. At the end of our code sample, we do a restrictive

SELECT just like we did in GetOperatingSystemById()to get the one entry we want to

update and we double-check that we didn’t get a null result, as that would cause some

problems. We then simply change the Name and StillSupported values to those that

we originally modified and save our changes. We also could have checked here to see

if any of the values changed. We’ll do that in a future example, but I just wanted to give

you a simple way to update your records. Could we have done this all while leaving the

connection open versus getting two OperatingSys objects? Yes, we could have retrieved

our OperatingSys object and done all of this work while we left the connection open and

then saved the original object back to the database. However, when you start working with

websites, everything is done separately, so you should get in the habit of doing that now.

Another thing that we’ll cover later, but that you need to keep in mind, is that you

should validate your update in the same manner that you do your initial insert. You

wouldn’t want a user attempting to insert a date into a name field or something along

those lines. It’s good practice to have the validation in both places or to use the same

validation in both places.

Chapter 1 Getting Started

www.EBooksWorld.ir

45

Before you can try this, don’t forget that you need to uncomment ModifyOperating

System(osId); within SelectOperatingSystem() and then uncomment SelectOpera

tingSystem("Modify"); from within DataModificationMenu(). Once you have done

that, you can run the application and make a change. It’s getting pretty close, which I’m

sure is upsetting to many of you out there, so let’s change Windows 7 so it’s no longer

supported.

Follow the prompts as if you were an end user. If you do everything correctly, you

should see that Windows 7 is no longer supported. Choose Main Menu ➤ List All

Operating Systems to see the list, as shown in Figure 1-11 (although your order may be a

little bit different).

Feel free to play around with everything that you have done until now. Once you are

done, be sure to put everything back as it was (don’t forget Windows Server 2003 R2) for

Chapter 2. Don’t worry about the order or the OperatingSysId numbers. We haven’t

done anything with the operating systems yet, so the ID doesn’t matter.

�Summary
By now you should be fairly comfortable with getting and using your DBContext object

for some basic database manipulation. We covered how to create entities through code

and how to then have those entities turn into a database and tables in the database.

You created the DBContext class and the DBSet<TEntity> objects to query and save

Figure 1-11.  Results after updating Windows 7 to not be supported

Chapter 1 Getting Started

www.EBooksWorld.ir

46

instances of the TEntities (this allows you to save your local copy of the entity back to

the database). You then typed in some regular old C# code to create a working console

application, and in the process you learned something new that you can use in the

future. In the process of selecting, deleting, and updating the data, you learned how to

use LINQ, which is something we’ll discuss in greater detail in upcoming chapters.

Before going on, you should be able to explain the following:

•	 What is DBContext?

•	 Why do you have to call SaveChanges() even though you already

added or updated DBContext?

•	 What is a DBSet<TEntity>?

•	 How do you insert a record into a table?

•	 How do you delete a record or records from a table?

•	 How do you update a record in a table?

You should also be able to create entities and your DBContext, and work with the

Package Manager console to create your database and tables. Okay, I’ll be honest; I don’t

even remember how to do that without referencing my notes. I believe it was Albert

Einstein who said “never memorize something that you can look up”. I don’t know about

you, but I have plenty of other things that I do on a regular basis that I need to remember,

so something I do rarely doesn’t need to take up space in my memory.

Hopefully, you are now comfortable with the basic operations of Entity Framework

Core 2.0, as with these basic skills you can do quite a bit of work on a small project of your

own if you are so inclined. Plus, what better way to learn something than to put it to use?

You could create a simple application to track the daily temperatures and weather where

you live. You could then figure out trends and averages once you have enough data (and

get better with LINQ) and come up with an algorithm to do it. Have some fun with it.

One last thing before we go on. As I mentioned earlier, I created a method for

seeding the OperatingSys table with data initially instead of using the interface to

enter it manually. For those who read the chapter first, feel free to use this code to seed

the database. Before you run the following code, you’ll need to delete all the records

or comment out the existing records as well as the Add line. I leave it up to you which

method you use, but Listing 1-20 shows you one way that you can do this. Either add

another item to the menu or modify one of them to run the seed operation and then

comment it out once you are done.

Chapter 1 Getting Started

www.EBooksWorld.ir

47

Listing 1-20.  Seeding the Table with Some Data

static void SeedOperatingSystemTable() {

 using (var context = new MachineContext()) {

 �var os = new OperatingSys { Name = "Windows XP", StillSupported =

false };

 context.OperatingSys.Add(os);

 os = new OperatingSys { Name = "Windows 7", StillSupported = true };

 context.OperatingSys.Add(os);

 os = new OperatingSys { Name = "Windows 8", StillSupported = false };

 context.OperatingSys.Add(os);

 os = new OperatingSys { Name = "Windows 8.1", StillSupported = true };

 context.OperatingSys.Add(os);

 os = new OperatingSys { Name = "Windows 10", StillSupported = true };

 context.OperatingSys.Add(os);

 �os = new OperatingSys { Name = "Windows Server 2000", StillSupported

= false };

 context.OperatingSys.Add(os);

 �//os = new OperatingSys { Name = "Windows Server 2003 R2",

StillSupported = false };

 //context.OperatingSys.Add(os);

 �os = new OperatingSys { Name = "Windows Server 2008", StillSupported

= true };

 context.OperatingSys.Add(os);

 �os = new OperatingSys { Name = "Windows Server 2008 R2",

StillSupported = true };

 context.OperatingSys.Add(os);

 �os = new OperatingSys { Name = "Windows Server 2012", StillSupported

= true };

 context.OperatingSys.Add(os);

 �os = new OperatingSys { Name = "Windows Server 2012 R2",

StillSupported = true };

 context.OperatingSys.Add(os);

 �os = new OperatingSys { Name = "Windows Server 2016", StillSupported

= true };

 context.OperatingSys.Add(os);

Chapter 1 Getting Started

www.EBooksWorld.ir

48

 �os = new OperatingSys { Name = "Ubuntu Server 16.14.2 LTS",

StillSupported = true };

 context.OperatingSys.Add(os);

 �os = new OperatingSys { Name = "Ubuntu Server 17.04", StillSupported

= true };

 context.OperatingSys.Add(os);

 context.SaveChanges();

 }

}

This is a little bit easier than entering everything in SSMS or using the interface for

large amounts of additions (if you cut and paste a basic template that is). As you can see,

we are adding each OperatingSystem object to the context each time, but we are only

saving it once. There are a couple of ways you could have done this; can you figure out

what they are? Take some time to play around with it and perhaps even add a check to

see if they exist first. If you want to use the seed code, just add it to one of your menu

items and run it one time. Just be sure to comment it out afterward, so you don’t add the

same information multiple times.

Chapter 1 Getting Started

www.EBooksWorld.ir

49
© Derek J. Rouleau 2018
D. J. Rouleau, Beginning Entity Framework Core 2.0, https://doi.org/10.1007/978-1-4842-3375-7_2

CHAPTER 2

Working with
Multiple Tables
In Chapter 1 we created our application, set up our database and tables, and did some

basic database operations with EF Core. While working with a single table is helpful

and a good place to start, you’ll be dealing with two or more tables for most things you

do in your programming lives. We are going to cover the same operations that we did

in Chapter 1 here, but using multiple tables. This chapter also explains how things are

working in a little more detail, since you now have an understanding of the basics.

The first thing we need to be sure of is that we are starting with the same data in

our OperatingSystem table. Figure 2-1 shows you the entries you should have in your

table, although yours could be in a different order depending on what you did after you

finished Chapter 1.

Figure 2-1.  Table contents to start with

www.EBooksWorld.ir

50

If you are missing any of these entries, use your application to add them or modify

them as needed. Sure, you could use SQL Server Management Studio, but what fun

would that be?

The first thing we are going to do is add some machines to our database. If you look

in SSMS at the Machines table, you should see Figure 2-2. As you can see, this table has

two foreign keys—one we already populated with some data and the second one we’ll

take care of while we are creating our Machine object.

Figure 2-2.  Machines table in SSMS

�Adding Data to a Table That Has Foreign Keys
If you don’t already have Visual Studio and our ComputerInventory application open,

open them and then open Program.cs. If you scan down to DataEntryMenu(), you’ll see

that we already created a section to add a new machine, but it’s commented out,

//AddMachine();.

Let’s begin by creating a method to add a machine and add some code to it; the code

for this step is in Listing 2-1. We are going to create this method in stages and explain

what we are doing as we go, since it’s a little different than working with just one table.

Some of these variables won’t be used at first, so if you get a warning about unused

variables, don’t worry, as you probably didn’t miss anything.

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

51

Listing 2-1.  AddMachine() Initial Code

static void AddMachine() {

 Console.Clear();

 ConsoleKeyInfo cki;

 string result;

 bool cont = false;

 Machine machine = new Machine();

 WriteHeader("Add New Machine");

}

As you can see, this code looks like all of the other methods we have created up to

this point. That's because the fundamentals are very similar. We need to figure out how

we want to tackle the problem of adding a machine to our table. We know we need to

add two foreign key entries—one for the machine type and one for the operating system.

I think it makes the most sense to start off with what type of machine we are working

with so we’ll start there.

The first thing we need to do is get a list of the current choices for machine types. There

is a very good chance that we may need to be able to do this later and someplace else in our

code, so let’s create a new method that returns a list of machines, as shown in Listing 2-2.

Listing 2-2.  GetMachineTypes()

static List<MachineType> GetMachineTypes() {

 List<MachineType> lMachineType = new List<MachineType>();

 using(var context = new MachineContext()) {

 lMachineType = context.MachineType.ToList();

 }

 return lMachineType;

}

It’s simple and gets the job done. We create the List<MachineType> named

lMachineType. Yes, I’m in the habit of adding the variable type to the name for certain

types (list being one of them), which I know many don't do any more.

We then create our using statement to access our DBContext object and then simply

grab everything in the MachineType table and create a list with the results. We then

return that to our calling method. You may wonder if this will throw an error because

there is nothing in the table. You can test it or take my word for it, but at this point, it’s

not going to throw an error. It will simply return a empty list to the calling method.

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

52

If we have no machine types in our table, or if we don’t have the right one, we need

to add one. We’ll take care of that right now. Listing 2-3 shows the code needed to add

a machine type. As mentioned in Chapter 1, I’m a big fan of cutting and pasting code

to make my life easier. Looking at what we have already created, I know that I have

code that is similar to what I want to do, in AddOperatingSystem(). So we copy the first

section and make changes to it so we can save a lot of typing and then grab some code

from the bottom. You can also just type everything in; it’s entirely up to you.

Listing 2-3.  AddMachineType() and CheckForExistingMachineType()

static MachineType AddMachineType() {
 Console.Clear();
 ConsoleKeyInfo cki;
 string result;
 bool cont = false;
 MachineType mt = new MachineType();
 string mName = "";
 do {
 WriteHeader("Add New Machine Type");
 �Console.WriteLine("Enter a Description for the Machine Type and hit Enter");
 mName = Console.ReadLine();
 if (mName.Length >= 6) {
 cont = true;
 mt.Description = mName;
 }
 else {
 �Console.WriteLine("Please enter a valid Description of at least 6

characters.\r\nPress and key to continue...");
 Console.ReadKey();
 }
 } while (!cont);

 cont = false;
 do {
 Console.Clear();
 �Console.WriteLine($"You entered {mt.Description} as the

Description.\r\nDo you wish to continue? [y or n]");

 cki = Console.ReadKey();

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

53

 result = cki.KeyChar.ToString();

 cont = ValidateYorN(result);

 } while (!cont);

 if (result.ToLower() == "y") {

 bool exists = CheckForExistingMachineType(mt.Description);

 if (exists) {

 �Console.WriteLine("\r\nMachine Type already exists in the database\

r\nPress any key to continue...");

 Console.ReadKey();

 }

 else {

 using (var context = new MachineContext()) {

 Console.WriteLine("\r\nAttempting to save changes...");

 context.MachineType.Add(mt);

 int i = context.SaveChanges();

 if (i == 1) {

 �Console.WriteLine("Contents Saved\r\nPress any key to

continue...");

 Console.ReadKey();

 }

 }

 }

 }

 return mt;

}

static bool CheckForExistingMachineType(string mtDesc) {

 bool exists = false;

 using (var context = new MachineContext()) {

 var mt = context.MachineType.Where(t => t.Description == mtDesc);

 if (mt.Count() > 0) {

 exists = true;

 }

 }

 return exists;

}

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

54

There is nothing new to this code that we haven’t already seen. We are doing some

basic checking and validation and then we ensure that the machine type hasn’t already

been added to the database while we are doing our work. When we add a new machine

type, we verify that it is six or more characters and we then save it to our MachineType

variable as the Description. As CheckForExistingMachineType() is basically the same

code we used to check for an existing operating system.

The next possibility is that we have at least one record in our MachineType table, so

we should display that output. Listing 2-4 shows a very short section of the code for this

purpose.

Listing 2-4.  DisplayMachineTypes

static void DisplayMachineTypes(List<MachineType> lMachineType) {

 foreach(MachineType mt in lMachineType) {

 �Console.WriteLine($"ID: {mt.MachineTypeId} Description: {mt.

Description}");

 }

}

We are passing along our list of MachineType to the method and looping through a

list displaying the contents on the screen for the user. Let’s update AddMachine(), a little

bit of which you can see in Listing 2-5. We include everything this one last time. After

this, we just show the additional code, plus more variables for future use.

Listing 2-5.  AddMachine() Updated

static void AddMachine() {

 Console.Clear();

 ConsoleKeyInfo cki;

 string result;

 bool cont = false;

 Machine machine = new Machine();

 WriteHeader("Add New Machine");

 Console.WriteLine();

 List<MachineType> lMachineType = GetMachineTypes();

 MachineType machineType = new MachineType();

 Models.OperatingSys os = new Models.OperatingSys();

 if (lMachineType.Count == 0) {

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

55

 // No results so we need to add a machine type

 machineType = AddMachineType();

 }

 else {

 �// We have at least one Result so we should display the results for

the user to select from

 DisplayMachineTypes(lMachineType);

 �Console.WriteLine("Enter the ID for the Machine Type you would like

to use.");

 Console.WriteLine("To add a new Machine Type enter [a]");

 do {

 cki = Console.ReadKey(true);

 if (cki.Key == ConsoleKey.A) {

 machineType = AddMachineType();

 cont = true;

 }

 else {

 if (char.IsNumber(cki.KeyChar)) {

 int idEntered = Convert.ToInt16(cki.KeyChar.ToString());

 if (lMachineType.Exists(x => x.MachineTypeId == idEntered)) {

 �machineType = lMachineType.Find(x => x.MachineTypeId ==

idEntered);

 cont = true;

 }

 else {

 �// No match, could add a counter here and after a certain

number of attempts

 // Add in some error handling

 }

 }

 }

 } while (!cont);

 }

 machine.MachineTypeId = machineType.MachineTypeId;

}

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

56

We should now have all the variables we need to complete this process. The first

thing we are going to do is check to see if we have any MachineType entries in the

database. If we do, we’ll list them for the user to select. If there are no results returned,

then the user is required to add one. Once the user adds the MachineType to the

database, that object is saved in our machineType variable for future use.

If we do have results, we are presented with a list that users can either select from or

add to. If they add a new type it’s the same as if they are starting from the beginning with

no entries. Once the MachintType is saved to our variable, we set our flag to true so we

can continue.

If we have a result set and the type the user wants to use is in the list, we make sure

that we are capturing and processing only numbers. After the users press a number key,

we check the List<MachineType> variable we created earlier, called lMachineType, to

see if the ID that the user entered exists. If it does exist, we save the MachineType to our

variable and continue. If it doesn’t exist, we keep in the loop.

Note  We are assuming that there will be nine or fewer MachineTypes in the
database, which is why we are able to do this with a Console.ReadKey().
Normally, we’d have to allow for two digits to be entered.

As you have probably noticed, we are using a lot of LINQ and lambda expressions

and we will continue to do so. If you are not familiar with either of them, I highly

recommend doing some further reading on the subject, as it will make your life a lot

easier once you move beyond this book.

However, I’ll give you a quick explanation of how to read the expression, as that may

make it a little easier to understand until you have time to do more reading on your own.

We have the following line of code machineType = lMachineType.Find(x =>

x.MachineTypeId == idEntered);. There is a bit of disagreement on the actual verbiage

of this, but this is the one that I use, “x, such that x.MachineTypeId equals idEntered”.

The format is input-parameters => expression or statement. We’ll be doing some more

advanced ones shortly, which make it a little easier to understand.

The next part we’ll add is pretty straightforward with nothing that should be new

to you. As you’ll see in Listing 2-6, we are getting information from the user and then

displaying the list of operating systems that they can choose from.

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

57

Listing 2-6.  AddMachine() Updated

...

machine.MachineTypeId = machineType.MachineTypeId;

// We have our machine type, now to get the machine info

Console.WriteLine("What is the name of the new machine?");

machine.Name = Console.ReadLine();

Console.WriteLine("What is the general role for this machine?");

Console.WriteLine("For example a server could be a Domain Controller or

Database Server.");

machine.GeneralRole = Console.ReadLine();

Console.WriteLine("What is the specific role of this machine? <separate

each with a comma>");

Console.WriteLine("For example a DC could have the following roles: DNS, DHCP");

machine.InstalledRoles = Console.ReadLine();

// Now we need to get the operating system

Console.WriteLine($"\r\n{"ID",-7}|{"Name",-50}|StillSupported");

Console.WriteLine("---");

using (var context = new MachineContext()) {

 List<OperatingSys> lOperatingSys = context.OperatingSys.ToList();

 foreach (OperatingSys o in lOperatingSys) {

 �Console.WriteLine($"{o.OperatingSysId,-7}|{o.Name,-50}|{o.

StillSupported}");

 }

}

Console.WriteLine("\r\nEnter the ID of the Operating System you wish to use.");

Console.WriteLine("If you need to add an Operating System hit the 'a' key.");

Console.WriteLine("When you are done hit the Enter Key.");

Nothing new here. We reused our code to create our List< OperatingSys>,

although we did make a slight change to the variable name in our foreach loop. At least

we got to do a little bit of EF Core work to help reinforce what you have learned. The

last thing we are going to do before we save our machine is add OperatingSys to our

variable. Listing 2-7 shows that this is a modified version of what we have already done.

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

58

Listing 2-7.  AddMachine() Updated

...

Console.WriteLine("When you are done hit the Enter Key.");

string id = string.Empty;

cont = false;

do {

 cki = Console.ReadKey(true);

 if (cki.Key == ConsoleKey.A) {

 cont = true;

 os = AddOperatingSystem();

 }

 else if (cki.Key == ConsoleKey.Enter) {

 if (id.Length > 0) {

 // Need to verify the OS is "good"

 os = GetOperatingSystemById(Convert.ToInt16(id));

 if (os == null) {

 �Console.WriteLine("\r\nOperating System ID is not valid, please

try again.");

 // Clear out the id so we can start over

 id = string.Empty;

 }

 else {

 cont = true;

 }

 }

 else {

 Console.WriteLine("Please enter an ID that is at least 1 digit.");

 }

 }

 else if (cki.Key == ConsoleKey.Backspace) {

 Console.Write("\b \b");

 try {

 id = id.Substring(0, id.Length - 1);

 }

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

59

 catch (System.ArgumentOutOfRangeException) {

 // at the 0 position, can't go any further back

 }

 }

 else {

 if (char.IsNumber(cki.KeyChar)) {

 id += cki.KeyChar.ToString();

 Console.Write(cki.KeyChar.ToString());

 }

 }

} while (!cont);

machine.OperatingSysId = os.OperatingSysId;

After you enter this, you should get an error indicating that you can’t covert type void

to ComputerInventory.Models.OperatingSys. That is because we have to change the

AddOperatingSystem() method. You need to make the following two changes: change

static void AddOperatingSystem() { to static OperatingSys AddOperatingSystem()

{. And then right before the closing bracket, you need a return statement: return os;.

In the last line, we add our OperatingSys object to our Machine variable, which we’ll

use to display the information back to the user in the next step. We now have everything

we need in order to add our machine to the database. Listing 2-8 shows the last part of

the AddMachine() code that we are adding.

Listing 2-8.  AddMachine() Last Section of Code

...

machine.OperatingSysId = os.OperatingSysId;

Console.Clear();

WriteHeader("Add New Machine");

Console.WriteLine("\r\nYou have entered the following:");

Console.WriteLine($"\tName: {machine.Name}");

Console.WriteLine($"\tType: {machineType.Description}");

Console.WriteLine($"\tOperating System: {os.Name}");

Console.WriteLine($"\tRole: {machine.GeneralRole}");

Console.WriteLine($"\tInstalled Roles: {machine.InstalledRoles}");

Console.WriteLine("Would you like to save your work? [y or n]");

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

60

cont = false;

do {

 cki = Console.ReadKey();

 result = cki.KeyChar.ToString();

 cont = ValidateYorN(result);

} while (!cont);

if(result.ToLower() == "y") {

 using(MachineContext context = new MachineContext()) {

 Console.WriteLine($"Saving {machine.Name} to the database");

 context.Machine.Add(machine);

 context.SaveChanges();

 Console.WriteLine("Done!");

 }

}

Console.WriteLine("\r\nHit any key to continue");

Console.ReadKey();

Finally, some multi-table data to display to the user. As you can see, we had to use

our operating system and machine type variables in order to display certain data.

As you can see, displaying the MachineType or OperatingSystem values involves

simple, standard dot notation. Because our Machines class contains an OperatingSystem

and a MachineType. they are available to us as .OperatingSys or .MachineType. What’s

nice is that we didn’t have to create anything extra to have this functionality.

Lastly, we gave the users the ability to choose if they want to save the machine or not

and we use our handy ValidateYorN() method to validate their input. If they choose to

save it, we create a new DBContext, add our machine to the context, and then save the

changes.

For some extra credit, you could handle what happens when the users press n by

giving them an option to fix whatever they don’t like. However, because that would be

98% regular C# type programming, I’m not going to bore you with it. If you want extra

credit, allow them to change the MachineType or OperatingSystem values.

Now let’s add a couple of machines and make sure things work. Don’t forget to

uncomment out AddMachine() in DataEntryMenu().

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

61

When you get to the Data Entry menu and press 1 to get to the Add New Machine

option, you are presented with adding a new machine type. We are going to add a server,

so enter Server and press Enter. When you’re prompted, press y to continue and save the

changes. Call this machine DC1POR. The general role will be domain controller and for

specific roles, add DNS, DHCP, and AD DS. For the operating system, choose Windows

Server 2012 R2. After you have entered all this information, your console window should

look like Figure 2-3.

If everything looks good, press y to save the data to the table. We’ll create a way

to retrieve this in the next section. As long as you entered everything properly and

didn’t get an error, you should be good to continue. When we create the entry for the

MachineWarranty and WarrantyProvider entities, we’ll look at a different way to do this.

Let’s add a couple more machines so we have something to work with. Table 2-1 lists

the information you need.

Figure 2-3.  Entering the first machine

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

62

This data will give you a few different PCs and servers to work with when you work

on the warranty part. We’ll be adding some more later, so don’t worry—you’ll have

enough data to work with as you move into some more exciting areas of EF Core 2.0.

The first thing we do is create the ability to add a new warranty provider. We can

do this from the Data Entry menu or we’ll be able to do it when we are adding a new

MachineWarranty. Listing 2-9 shows the code needed to create the new provider and

Listing 2-10 shows the code needed to add the new warranty provider.

Listing 2-9.  Creating a Warranty Provider

static WarrantyProvider CreateNewWarrantyProvider() {

 string provider = string.Empty;

 string phoneNumber = string.Empty;

 int? extension = null;

 ConsoleKeyInfo cki;

 bool cont = false;

 Console.Clear();

 WriteHeader("Add new Warranty Provider");

 �Console.WriteLine("\r\n\r\nPlease enter the name of the Provider and

then hit Enter.");

 provider = Console.ReadLine();

 Console.WriteLine("\r\nPlease enter the Providers phone number.");

 do {

 cki = Console.ReadKey(true);

Table 2-1.  Additional Machine Data

Name Type OS Role Role Breakdown

DC2POR Server Windows Server 2012 R2 Domain Controller AD DS, DNS, DHCP

RDS1POR Server Windows Server 2016 Remote Desktop RDS

DB1SQL Server Windows Server 2008 R2 DBMS SQL Server 2012

DB2SQL Server Ubuntu Server 17.04 DBMS MySQL

BobsPC Workstation Windows 7 Accounting Accounting

JacksPC Workstation Windows 10 IT IT

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

63

 if (cki.Key == ConsoleKey.Enter) {

 if (phoneNumber.Length >= 7) {

 cont = true;

 }

 else {

 �Console.WriteLine("Please enter a Phone number that is at least

7 digits.");

 }

 }

 else if (cki.Key == ConsoleKey.Backspace) {

 Console.Write("\b \b");

 try {

 phoneNumber = phoneNumber.Substring(0, phoneNumber.Length - 1);

 }

 catch (System.ArgumentOutOfRangeException) {

 // at the 0 position, can't go any further back

 }

 }

 else {

 if (char.IsNumber(cki.KeyChar)) {

 phoneNumber += cki.KeyChar.ToString();

 Console.Write(cki.KeyChar.ToString());

 }

 }

 } while (!cont);

 cont = false;

 �Console.WriteLine("\r\nPlease enter the Providers extension.\r\nIf there

is no extension hit ESC or Enter to continue.");

 string tempExt = string.Empty;

 do {

 cki = Console.ReadKey(true);

 if (cki.Key == ConsoleKey.Escape) {

 cont = true;

 extension = null;

 }

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

64

 else if (cki.Key == ConsoleKey.Enter) {

 // can be any length or null

 if (tempExt.Length > 0)

 extension = Convert.ToInt32(tempExt);

 else

 extension = null;

 cont = true;

 }

 else if (cki.Key == ConsoleKey.Backspace) {

 Console.Write("\b \b");

 try {

 tempExt = tempExt.Substring(0, tempExt.Length - 1);

 }

 catch (System.ArgumentOutOfRangeException) {

 // at the 0 position, can't go any further back

 }

 }

 else {

 if (char.IsNumber(cki.KeyChar)) {

 tempExt += cki.KeyChar.ToString();

 Console.Write(cki.KeyChar.ToString());

 }

 }

 } while (!cont);

 WarrantyProvider wp = new WarrantyProvider() {

 ProviderName = provider,

 SupportNumber = phoneNumber,

 SupportExtension = extension

 };

 return wp;

}

We start by creating the variables we need as usual, although this time we had to

create a nullable int for our extension variable, as the value can be null in the table. We

are doing very little error handling for this, as the provider could be virtually anything

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

65

and the same goes for the extension. We do make sure that the phone number is at least

seven digits (for a country other than the United States or Canada, this may need to be

changed).

We aren’t checking for a upper limit to save some space and time, although

it’s something you should be able to easily add if you want. Finally, we create our

WarrantyProvider object and return it to the calling method. We haven’t added

anything yet. All we are doing is creating the object, and you’ll see why shortly.

Listing 2-10.  Adding a Warranty Provider (Standalone)

static void AddNewWarrantyProvider(WarrantyProvider wp) {

 bool cont = false;

 ConsoleKeyInfo cki;

 string result = string.Empty;

 Console.WriteLine("\r\nYou have entered the following:");

 Console.WriteLine($"Provider Name: {wp.ProviderName}");

 Console.WriteLine($"Provider Number: {wp.SupportNumber}");

 Console.WriteLine($"Provider Extension: {wp.SupportExtension}");

 Console.WriteLine("\r\nIs this information correct? [y or n]");

 do {

 cki = Console.ReadKey(true);

 result = cki.KeyChar.ToString();

 cont = ValidateYorN(result);

 } while (!cont);

 if(result.ToLower() == "y") {

 using (MachineContext context = new MachineContext()) {

 �var count = context.WarrantyProvider.Count(p => p.ProviderName ==

wp.ProviderName);

 if (count == 0) {

 �Console.WriteLine($"\r\nSaving {wp.ProviderName} to the

database...");

 context.WarrantyProvider.Add(wp);

 context.SaveChanges();

 Console.WriteLine("Complete!");

 }

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

66

 else {

 �Console.WriteLine(string.Format("\r\nWarranty Provider {0}

already exists", wp.ProviderName));

 }

 }

 }

 else {

 Console.WriteLine("No changes have been made.");

 }

 Console.WriteLine("\r\nHit any key to continue...");

 Console.ReadKey();

}

Not much new here, except we have changed the way that we determine if the record

exists. Recall from Chapter 1 when we checked to see if an operating system existed, we

did the following:

var os = context.OperatingSys.Where(o => o.Name == osName);

if (os.Count() > 0) {

 exists = true;

}

This is a fine way of checking to see if you have a value already in the database.

However, there is another option, used in this example. By using the .Count in our LINQ

expression, we are getting the count of results that match our condition, which in this

case is the number of warranty providers that have a specific name. This is similar to

doing a SqlCommand.ExecuteScalar, where you have a COUNT in your query.

Another line of code that we used again is cki = Console.ReadKey(true); which I

hope you remember makes it so we aren’t seeing any “invalid” characters cluttering up

the console. In this case, we are keeping the y or n from displaying on the console.

Before we can test this, we need to make some changes to our DataEntry method so

we can enter data. Add the following code for when the user enters a 3:

else if (result == 3) {

 WarrantyProvider wp = new WarrantyProvider();

 wp = CreateNewWarrantyProvider();

 AddNewWarrantyProvider(wp);

}

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

67

Once you are done, run the application and go to the Add Warranty Provider menu,

which is CreateNewWarrantyProvider(). Figure 2-4 shows the screen with the entered data .

If your information matches, press y and you should see the following:

Saving Big Server Co to the database... Complete!

Hit any key to continue...

If you look in SSMS, you should now see an entry in the WarrantyProvider table.

If you don’t see anything, verify that you have context.SaveChanges() in your code

and didn’t bypass it by accident. Also remember that we are only accepting up to 10

characters for the phone number, so if you enter 18005551212, it won’t fit. We’ll cover

data validation a little bit later on in the book, but I want to bring this point up now in

case you get an error.

Although we are working on multiple tables in this chapter, we need a way of adding

our warranty provider as well. So let’s now add our MachineWarranty. As I promised

when we added the Machine, we are going to do something a little bit different this time.

Listing 2-11 shows the code for adding a MachineWarranty and Listing 2-12 shows a

helper method for retrieving a list of machines that you can use later.

Figure 2-4.  Adding a new warranty provider

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

68

Listing 2-11.  AddMachineWarrantyInfo

static void AddMachineWarrantyInfo() {

 bool cont = false;

 MachineWarranty machineWarranty = new MachineWarranty();

 WarrantyProvider warrantyProvider = new WarrantyProvider();

 Machine machine = new Machine();

 ConsoleKeyInfo cki;

 int machineId = -1;

 string serviceTag;

 Console.Clear();

 WriteHeader("Add Warranty Info To an Existing Machine");

 Console.WriteLine();

 List<Machine> lMachine = GetListOfMachines();

 foreach (Machine m in lMachine) {

 Console.WriteLine($"ID: {m.MachineId} Name: {m.Name}");

 }

 �Console.WriteLine("\r\nEnter the ID of the Machine you wish to add

Warranty Info for and then hit the Enter key.");

 string tempMachineId = string.Empty;

 do {

 cki = Console.ReadKey(true);

 if (cki.Key == ConsoleKey.Enter) {

 if (tempMachineId.Length > 0) {

 machineId = Convert.ToInt32(tempMachineId);

 machine = lMachine.Find(x => x.MachineId == machineId);

 }

 cont = true;

 }

 else if (cki.Key == ConsoleKey.Backspace) {

 Console.Write("\b \b");

 try {

 �tempMachineId = tempMachineId.Substring(0, tempMachineId.

Length - 1);

 }

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

69

 catch (System.ArgumentOutOfRangeException) {

 // at the 0 position, can't go any further back

 }

 }

 else {

 if (char.IsNumber(cki.KeyChar)) {

 tempMachineId += cki.KeyChar.ToString();

 Console.Write(cki.KeyChar.ToString());

 }

 }

 } while (!cont);

 �Console.WriteLine("\r\nEnter the Service Tag of the machine and then hit

Enter.");

 serviceTag = Console.ReadLine();

 cont = false;

 string tDate;

 DateTime warrantyExp;

 do {

 �Console.WriteLine("Enter the date the warranty expires

[mm/dd/yyyy].");

 tDate = Console.ReadLine();

 if (DateTime.TryParse(tDate, out warrantyExp)) {

 cont = true;

 }

 else {

 Console.WriteLine("\r\nNot a valid date, please try again.");

 }

 } while (!cont);

 List<WarrantyProvider> lWarrantyProvider = new List<WarrantyProvider>();

 using (MachineContext context = new MachineContext()) {

 lWarrantyProvider = context.WarrantyProvider.ToList();

 }

 Console.WriteLine();

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

70

 foreach (WarrantyProvider wp in lWarrantyProvider) {

 �Console.WriteLine($"ID: {wp.WarrantyProviderId} Name: {wp.

ProviderName}");

 }

 machineWarranty.ServiceTag = serviceTag;

 machineWarranty.WarrantyExpiration = warrantyExp;

 machineWarranty.MachineId = machineId;

 �Console.WriteLine("Enter the ID for the Warranty Provider you would like

to use.");

 Console.WriteLine("To add a new Provider enter [a]");

 string tempProviderId = string.Empty;

 cont = false;

 do {

 cki = Console.ReadKey(true);

 if (cki.Key == ConsoleKey.A) {

 cont = true;

 warrantyProvider = CreateNewWarrantyProvider();

 machineWarranty.WarrantyProvider = warrantyProvider;

 }

 else if (cki.Key == ConsoleKey.Enter) {

 if (tempProviderId.Length > 0) {

 int provID = Convert.ToInt32(tempProviderId);

 �if (lWarrantyProvider.Exists(x => x.WarrantyProviderId ==

provID)) {

 �warrantyProvider = lWarrantyProvider.Find(x =>

x.WarrantyProviderId == provID);

 machineWarranty.WarrantyProviderId = provID;

 cont = true;

 }

 else {

 �Console.WriteLine("No match please verify your entry and try

again!");

 }

 }

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

71

 else {

 �Console.WriteLine("Please enter an ID that is at least 1 digit.");

 }

 }

 else if (cki.Key == ConsoleKey.Backspace) {

 Console.Write("\b \b");

 try {

 �tempProviderId = tempProviderId.Substring(0, tempProviderId.

Length - 1);

 }

 catch (System.ArgumentOutOfRangeException) {

 // at the 0 position, can't go any further back

 }

 }

 else {

 if (char.IsNumber(cki.KeyChar)) {

 tempProviderId += cki.KeyChar.ToString();

 Console.Write(cki.KeyChar.ToString());

 }

 }

 } while (!cont);

 Console.Clear();

 WriteHeader("Add Warranty Info To an Existing Machine");

 Console.WriteLine("You have entered the following:");

 Console.WriteLine($"Machine: {machine.Name}");

 Console.WriteLine($"Service Tag: {machineWarranty.ServiceTag}");

 �Console.WriteLine($"Warranty Expiration: {machineWarranty.

WarrantyExpiration.ToShortDateString()}");

 �Console.WriteLine($"Warranty Provider: {warrantyProvider.

ProviderName}");

 Console.WriteLine("\r\nIs this information correct? [y or n]");

 string result;

 do {

 cki = Console.ReadKey(true);

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

72

 result = cki.KeyChar.ToString();

 cont = ValidateYorN(result);

 } while (!cont);

 Console.WriteLine();

 if (result.ToLower() == "y") {

 Console.WriteLine("Saving Machine Warranty Information");

 using (MachineContext context = new MachineContext()) {

 context.MachineWarranty.Add(machineWarranty);

 context.SaveChanges();

 Console.WriteLine("Save complete!");

 }

 }

 Console.WriteLine("Any key to continue...");

 Console.ReadKey();

}

Phew, that was a lot! Let’s add the helper method and then we’ll explain a couple of

things that are different in this one. See Listing 2-12.

Listing 2-12.  Getting a List of Machines

static List<Machine> GetListOfMachines() {

 List<Machine> lmachine = new List<Machine>();

 MachineContext context = new MachineContext();

 lmachine = context.Machine.ToList();

 context.Dispose();

 return lmachine;

}

Let’s discuss the simple one first. Hopefully, there is nothing new to you with

GetListOfMachines(). I added the context.Dispose() mainly to show you that it’s

there, but you really don’t need to use it. However, some would consider it good form to

do so. Getting a list of machines or really any other entity can’t be much easier than it is

with Entity Framework.

Before we explain this, let’s run it and be sure it works. However, before we can

do that, we need to update our DataEntryMenu() a little bit. In this code snippet, the

changes are in bold:

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

73

Console.WriteLine("3. Add a New Warranty Provider");

Console.WriteLine("4. Add New Machine Warranty Information");

Console.WriteLine("9. Exit Menu");

cki = Console.ReadKey();

try {

 result = Convert.ToInt16(cki.KeyChar.ToString());

 if (result == 1) {

 AddMachine();

 }

 else if (result == 2) {

 AddOperatingSystem();

 }

 else if (result == 3) {

 WarrantyProvider wp = new WarrantyProvider();

 wp = CreateNewWarrantyProvider();

 AddNewWarrantyProvider(wp);

 }

 else if (result == 4) {

 AddMachineWarrantyInfo();

 }

Let’s add some warranty information for DC1POR. Figure 2-5 has our validation

information. The information to enter is as follows:

•	 MachineId: 1 DC1POR

•	 Service Tag: 12DG3

•	 Warranty Expiration: 8/30/2020

•	 Warranty Provider: Add a new one

	 a.	 Warranty Provider Name: Harvey Package Inc.

	 b.	 Phone Number: 8665552323

	 c.	 Provider Extension: 56

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

74

If you aren’t relatively impressed with what you just did, you are forgetting

something. Note that there is only one DBContext.SaveChanges() in the code. But

we created a new warranty provider too, so we forgot to save that, right? If you look in

SSMS and at the WarrantyProvider table, you’ll see that you now have two entries.

We handled adding our foreign key data a bit different for the Machine than we did for

the WarrantyProvider. If you look back, you’ll see that we added the machineId to our

machineWarranty object: machineWarranty.MachineId = machineId;. Yet when we

added the WarrantyProvider, we added a WarrantyProvider object: machineWarranty.

WarrantyProvider = warrantyProvider; (but only if it was new). Had we added an

existing Machine or WarrantyProvider object to our machineWarranty object and saved,

we would get an SQL exception telling us that we cannot insert explicit values for identity

columns in “some table name”. This is the reason we have different logic when we choose

an existing provider and why we only add the WarrantyProviderId:

warrantyProvider = lWarrantyProvider.Find(x => x.WarrantyProviderId == provID);

machineWarranty.WarrantyProviderId = provID;

Could we have created our warranty provider and saved it to the database and then

just added the ID to our machineWarranty object? Sure, why not. There is nothing wrong

with that. I just wanted to give you yet another way of handling things using Entity

Framework Core 2.0. You need to figure out which way you are most comfortable with

and which makes the most sense for what you are doing at the time.

Figure 2-5.  Adding warranty information for DC1POR

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

75

Another thing that you’ll want to consider when deciding on a strategy is how you

are going to handle data integrity. In short, you’ll want to be sure that the data you are

referencing in another table is in that table before you add a reference to it.

Because this section of code is so long, there is a lot of error handling and validation

that has been left out in the interest of not boring you with it. Feel free to go back through

the code and add it, as it would be good practice. Just make sure that you are getting the

desired results in the end.

Let’s add a couple more MachineWarranty objects to Table 2-2 before we move on.

For now, we’ll stick with our two support folks, as they seem quite capable.

Now we have a couple of entries in our MachineWarranty table to work with. I think

that is good for now as far as entering data into our tables and what we need to do when

we are working with tables that have relations. Let’s now retrieve some data from our

database from multiple tables, as we really should check to be sure what we think we

entered is actually there.

�Retrieving Data from Multiple Tables
Let’s take a look at our machines that we have in inventory, as doing so will use most of the

tables that we have in our database. We’ll break this process down into smaller sections, as

this is going to be quite lengthy but fairly straightforward. We are going to run our code a

few times even before we complete the method to get a better look at what is going on.

If you have used Entity Framework 6.x, I apologize in advance for this section, as you

aren’t going to like it. If you are new to Entity Framework then this part won’t bother you

too much. I’ll explain what I mean when we get there. Listing 2-13 shows the start of the

code to retrieve information about our machines.

Table 2-2.  New Example Data

Machine Name Service Tag Warranty Expiration Service Provider

DC2POR 68987TYP 8/30/2020 Big Server Co

RDS1POR HAR456 7/15/2019 Harvey Package Inc.

DB1SQL YYM689 12/31/2017 Big Server Co

JacksPC PWM207 2/15/2018 Big Server Co

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

76

Listing 2-13.  DisplayAllMachines

static void DisplayAllMachines() {

 Console.Clear();

 List<Machine> lMachine = GetListOfMachines();

 foreach(Machine m in lMachine) {

 Console.WriteLine($"{m.Name} {m.OperatingSys.Name} {m.GeneralRole}");

 }

 Console.WriteLine("Hit any key to continue");

 Console.ReadKey();

}

If you were now to run your code, you would receive the error in Figure 2-6. If you

have used EF 6.x in the past, you probably just had a few not-so-nice things to say about

Entity Framework Core 2.0, just like I did. However if you are new you are probably

thinking, “well, yeah, you never selected the operating system info from the database”.

In EF 6.x, you would have received all the information about your machine due to

something called lazy loading. I’m not going to get into what it is, since it’s not available

to us right now, but it can be a good or a bad thing depending on how you use it.

We now need to make a decision about how our application is going to work. We

have a couple of options. It comes down to how much information we are going to put

on the screen. If this was a WinForms application or a web page, we would have a lot

more space. However, since we are doing this on a Windows console, we are limited to

the amount of horizontal space we have. For this first screen, let’s stick with something

simple and list the MachineID and the machine Name. The update to the extensive code

that we have already written is shown in Listing 2-14.

Figure 2-6.  This isn’t EF 6.x

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

77

Listing 2-14.  Updated DisplayAllMachines

static void DisplayAllMachines() {
 Console.Clear();
 List<Machine> lMachine = GetListOfMachines();
 Console.WriteLine("Machine ID | Machine Name");
 foreach(Machine m in lMachine) {
 Console.WriteLine($"{m.MachineId,-11}| {m.Name}");
 }

 �Console.WriteLine("\r\nEnter the MachineId followed by the Enter Key for
more information.");

 Console.WriteLine("Hit the Esc key at anytime to exit the menu.");

 Console.WriteLine("Hit any key to continue");
 Console.ReadKey();

}

If you were to run your code now, you would get results you could read and not get an

error. We are going to handle our data entry handling like we have in the past—we’ll check

for the Esc key, the Enter key, or any number, and handle it appropriately. I think it’s time to

create a helper method here, as we seem to be doing the same thing, over and over again,

code-wise. Listing 2-15 shows a helper method that gets an ID value from the console.

Listing 2-15.  GetNumbersFromConsole

static string GetNumbersFromConsole() {
 ConsoleKeyInfo cki;
 bool cont = false;
 string numbers = string.Empty;
 do {
 cki = Console.ReadKey(true);
 if (cki.Key == ConsoleKey.Escape) {
 cont = true;
 numbers = "";
 }
 else if (cki.Key == ConsoleKey.Enter) {

 if (numbers.Length > 0) {
 cont = true;

 }

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

78

 else {
 Console.WriteLine("Please enter an ID that is at least 1 digit.");
 }
 }
 else if (cki.Key == ConsoleKey.Backspace) {
 Console.Write("\b \b");
 try {
 numbers = numbers.Substring(0, numbers.Length - 1);
 }
 catch (System.ArgumentOutOfRangeException) {
 // at the 0 position, can't go any further back
 }
 }
 else {
 if (char.IsNumber(cki.KeyChar)) {
 numbers += cki.KeyChar.ToString();
 Console.Write(cki.KeyChar.ToString());
 }
 }
 } while (!cont);
 return numbers;

}

If you are feeling motivated, feel free to go back through your code and replace this

code with a call to the method we just created. The following two methods show code that

you can use to replace the code you have moved to the method. If you aren’t sure, you can

look at the code online for Chapter 2 and see the changes I made for these two cases.

SelectOperatingSystem

id = GetNumbersFromConsole();

CreateNewWarrantyProvider

tempExt = GetNumbersFromConsole();

if (tempExt.Length > 0) {

 extension = Convert.ToInt32(tempExt);

}

else {

 extension = null;

}

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

79

All righty then, on to retrieving some data from more than one table. Listing 2-16

shows one of the ways that we can do this. We are going to do this in two steps. First we’ll

list all of our machines and then we’ll let the users choose which machine they want

to get more information about (if any). In our first example, we do our SELECT with a

“basic” LINQ query. It should will look somewhat familiar to you, as it’s closer to a SQL

Query.

Listing 2-16.  Displaying Machine Detail to the User from Multiple Tables

static void DisplayMachineDetail(int machineId) {

 Console.Clear();

 Console.WriteLine("\r\nRetrieving information about our machine.");

 using (MachineContext context = new MachineContext()) {

 var mach = (from mac in context.Machine

 �join mw in context.MachineWarranty on mac.MachineId equals

mw.MachineId

 where mac.MachineId == machineId

 �select new { mac.Name, MacType = mac.MachineType.Description,

osName = mac.OperatingSys.Name, mac.OperatingSys.StillSupported,

mw.WarrantyProvider, mw.WarrantyExpiration, mac.MachineType.

Description }).FirstOrDefault();

 if(mach != null) {

 �Console.WriteLine($"Machine: {mach.Name} is a {mach.Description}

\r\nOS = {mach.osName} Still Supported?: {mach.StillSupported}");

 �Console.WriteLine($"Warranty Provider = {mach.WarrantyProvider.

ProviderName} Support Ends on: {mach.WarrantyExpiration.

ToShortDateString()}");

 }

 else {

 Console.WriteLine($"No Machine Found with ID: {machineId}");

 }

 }

 Console.WriteLine("Hit any key to continue");

 Console.ReadKey();

}

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

80

We’ll add the ability to get to this code in a moment. This method will give us the

closest method to lazy loading that we have available. As normal, we have created our

DBContext object with a using statement and within that we are doing our work. We

create an anonymous type called mach and we populate that with our LINQ query. The

only table we had to join on was the MachineWarranty table, because there is no direct

relation from the Machine table to it.

As you can see, we can get our operating system information as well as our machine

type without a join. If you are new to LINQ, then the last part of the query probably looks

a little weird to you. That’s because you have to end the queries with either a select or

group by clause. The good thing is if you forget to do it, the error you get is helpful.

After we do our query, we check to see if mach is null or not. If it’s not null, we

display some information to the user. If it is null, we let the users know we didn’t get any

results. What’s nice is we don’t get an error if our result set is null, unless of course we

try to display the information without the check, in which case we’d get a null reference

exception. Listing 2-17 shows some of the code that makes it possible to get to the

section of code we just wrote.

Listing 2-17.  DisplayAllMachines, Code Update

static string DisplayAllMachines() {
 Console.Clear();
 List<Machine> lMachine = GetListOfMachines();
 Console.WriteLine("Machine ID | Machine Name");
 foreach(Machine m in lMachine) {
 Console.WriteLine($"{m.MachineId,-11}| {m.Name}");
 }

 �Console.WriteLine("\r\nEnter the MachineId followed by the Enter Key for
more information.");

 Console.WriteLine("Hit the Esc key at anytime to exit the menu.");

 string machineId = GetNumbersFromConsole();
 if(machineId.Length > 0) {
 int machId = Convert.ToInt32(machineId);
 DisplayMachineDetail(machId);
 }
 return machineId;

}

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

81

As with many of our other menus or sections of code, we are doing some basic error

checking after we retrieve our the list of machines. If the length of the string is greater

than zero, we call our new code. Because we know what the MachineIds are, we could

run a quick check to see if they exist. However, I wanted to show you that getting a

null return value is okay, so I have made it possible to do so. In your own applications

going forward, you should do your checking here. Don’t forget to uncomment

DisplayAllMachines(); in MainMenu() so you can try it.

When you run your code and choose MachineID: 1 DC1POR, your results should look

like Figure 2-7.

As mentioned, there are multiple ways of running queries against multiple tables

or entities. We will now take a look at doing so using a lambda expression. As you will

see, other than the style being different, there are a couple of things you have to keep

in mind.

�Updating Tables
Listing 2-18 shows the start of the code to update a machine, including the operating

system, machine type, and warranty information. If you are a LINQ expert, you’ll be

saying, “hey, there is a better way of doing this,” and that is true. However, since this

is a book on Entity Framework Core 2.0 and not LINQ, we’ll stick with the easier way.

As I have mentioned many times and will continue to do so, it behooves you to get

comfortable with LINQ. I don’t want to confuse you with a lot of really fancy LINQ syntax

and take away from what you are trying to learn.

Figure 2-7.  Results from multiple tables

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

82

Listing 2-18.  UpdateMachineDetails

static void UpdateMachineDetails() {

 Console.Clear();

 List<Machine> lMachine = GetListOfMachines();

 WriteHeader("Update Machine Details");

 string machineId = DisplayAllMachines();

 if (machineId.Length > 0) {

 int mId = Convert.ToInt32(machineId);

 Machine mach;

 MachineWarranty mWar;

 using (MachineContext context = new MachineContext()) {

 mach = context.Machine

 .Include(o => o.OperatingSys)

 .Include(t => t.MachineType)

 .Where(x => x.MachineId == mId).FirstOrDefault();

 mWar = context.MachineWarranty

 .Include(p => p.WarrantyProvider)

 .Where(x => x.MachineId == mach.MachineId).FirstOrDefault();

 }

 Console.Clear();

 Console.WriteLine("To Update the Machine Information Press 1");

 �Console.WriteLine($"Name: {mach.Name} General Role: { mach.

GeneralRole}");

 Console.WriteLine($"Installed Role: {mach.InstalledRoles}");

 �Console.WriteLine("\r\nTo Update the Operating System Information

Press 2");

 �Console.WriteLine($"OS Name: {mach.OperatingSys.Name} Still

Supported: {mach.OperatingSys.StillSupported}");

 Console.WriteLine($"\r\nTo Update the Machine Type Press 3");

 Console.WriteLine($"Machine Type: {mach.MachineType.Description}");

 Console.WriteLine($"\r\nTo Update the Warranty Information Press 4");

 �Console.WriteLine($"Provider Name: {mWar.WarrantyProvider.

ProviderName}");

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

83

 �Console.WriteLine($"Expiration: {mWar.WarrantyExpiration.ToShort

DateString()}");

 }

 Console.ReadKey();

}

As promised, we handled our queries in a different way than in the last example. As

you can see, we created two objects this time. One is for our machine and the second is

for the machine warranty information that we have in the database. The database was

intentionally set up this way to show you how to handle a table that’s added later and for

some reason you can’t update the table to add a foreign key field.

The Machine table doesn’t know about the MachineWarranty table but the

MachineWarranty table knows about the Machine table. At the end, we have a ReadKey()

so we can view our code. We don’t have a way of handling user input yet, so it will just

run right past and out of the menu. In order to run our code, we need to make a quick

change to DataModificationMenu(). You’ll find that change in Listing 2-19.

Listing 2-19.  DataModificationMenu with Changes

Console.WriteLine("2. Modify Operating System");

Console.WriteLine("3. Delete All Unsupported Operating Systems");

Console.WriteLine("4. Update Machine Information");

Console.WriteLine("9. Exit Menu");

cki = Console.ReadKey();

try {

 result = Convert.ToInt16(cki.KeyChar.ToString());

 if (result == 1) {

 SelectOperatingSystem("Delete");

 }

 else if (result == 2) {

 SelectOperatingSystem("Modify");

 }

 else if (result == 3) {

 DeleteAllUnsupportedOperatingSystems();

 }

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

84

 else if (result == 4) {

 UpdateMachineDetails();

 }

 else if (result == 9) {

 // We are exiting so nothing to do

 cont = true;

 }

When you run the code, choose Option 4 (the Data Modification menu), then

choose Option 4 again (Update Machine Information). We’ll go with the first machine,

which is DC1POR, and you should see something similar to Figure 2-8 after you press

Enter or any key.

If we were doing a web page or some sort of form, we could handle this differently,

but because we are using a console window, we need to go through a few extra steps. In

the interest of not boring you, we are only going to update the Machine, OperatingSys,

and MachineWarranty objects. You can add the other functionality later if you desire.

Figure 2-8.  UpdateMachineDetails output

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

85

Let’s start with Machine, as it’s technically the easiest. Say that the list of servers you

got from Bill is wrong. It shouldn’t list DC1POR, but instead should list PORDC1. We’ll take

care of that starting with Listing 2-20, which includes a couple of helper methods.

Listing 2-20.  Helper Methods

static char CheckForYorN(bool intercept) {

 ConsoleKeyInfo cki;

 char entry;

 bool cont = false;

 do {

 cki = Console.ReadKey(intercept);

 entry = cki.KeyChar;

 cont = ValidateYorN(entry.ToString());

 } while (!cont);

 return entry;

}

static string GetTextFromConsole(int minLength, bool allowEscape = false) {

 ConsoleKeyInfo cki;

 bool cont = false;

 string rtnValue = string.Empty;

 do {

 cki = Console.ReadKey(true);

 if (cki.Key == ConsoleKey.Escape) {

 if (allowEscape) {

 cont = true;

 rtnValue = "";

 }

 }

 else if (cki.Key == ConsoleKey.Enter) {

 if (rtnValue.Length >= minLength) {

 cont = true;

 }

 else {

 Console.WriteLine($"Please enter least {minLength} characters.");

 }

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

86

 }

 else if (cki.Key == ConsoleKey.Backspace) {

 Console.Write("\b \b");

 try {

 rtnValue = rtnValue.Substring(0, rtnValue.Length - 1);

 }

 catch (System.ArgumentOutOfRangeException) {

 // at the 0 position, can't go any further back

 }

 }

 else {

 rtnValue += cki.KeyChar.ToString();

 Console.Write(cki.KeyChar.ToString());

 }

 } while (!cont);

 return rtnValue;

}

No Entity Framework code here, but we did create a method with a default value,

which we use in the next example. These two methods will save us a lot of typing later, as

we’ll be using this same code several times. See Listing 2-21.

Listing 2-21.  UpdateMachine

static void UpdateMachine(int machineId) {

 Console.Clear();

 char response;

 using (MachineContext context = new MachineContext()) {

 �Machine machine = context.Machine.Where(x => x.MachineId ==

machineId).FirstOrDefault();

 if (machine != null) {

 �Console.WriteLine($"Machine Name: {machine.Name}\r\nDo you wish to

change it?");

 response = CheckForYorN(true);

 if (response == 'y') {

 �Console.WriteLine("Enter a new Machine Name and then hit Enter

to continue");

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

87

 machine.Name = GetTextFromConsole(3);

 }

 �Console.WriteLine($"General Role: {machine.GeneralRole}\r\nDo you

wish to change it?");

 response = CheckForYorN(true);

 if (response == 'y') {

 �Console.WriteLine("Enter a new General Role For the Machine and

then hit Enter to continue");

 machine.GeneralRole = GetTextFromConsole(5);

 }

 �Console.WriteLine($"Installed Roles: {machine.InstalledRoles}\r\nDo

you wish to change it?");

 response = CheckForYorN(true);

 if (response == 'y') {

 �Console.WriteLine("Enter a new listing of Installed Roles For

the Machine and then hit Enter to continue");

 �Console.WriteLine("You can hit Esc to exit without making any

changes");

 string result = GetTextFromConsole(5, true);

 if(result.Length >= 5) {

 machine.InstalledRoles = result;

 }

 }

 }

 if (context.ChangeTracker.HasChanges()) {

 Console.WriteLine("\r\nSaving changes!");

 context.SaveChanges();

 }

 else {

 Console.WriteLine("\r\nNo Changes...");

 }

 }

 Console.WriteLine("Hit any key to continue...");

 Console.ReadKey();

}

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

88

We are going to make a change to UpdateMachineDetails to use the UpdateMachine

method that we just created. If you want to use the menu-based method, you can, and it

will be good practice if you are new to programming. I’m just going to comment it out in

my code. Listing 2-22 shows the updated code for UpdateMachineDetails with the new

call and the commented out section.

Listing 2-22.  UpdateMachineDetails

static void UpdateMachineDetails() {

 Console.Clear();

 List<Machine> lMachine = GetListOfMachines();

 WriteHeader("Update Machine Details");

 string machineId = DisplayAllMachines();

 if (machineId.Length > 0) {

 int mId = Convert.ToInt32(machineId);

 Machine mach;

 MachineWarranty mWar;

 using (MachineContext context = new MachineContext()) {

 mach = context.Machine

 .Include(o => o.OperatingSys)

 .Include(t => t.MachineType)

 .Where(x => x.MachineId == mId).FirstOrDefault();

 mWar = context.MachineWarranty

 .Include(p => p.WarrantyProvider)

 .Where(x => x.MachineId == mach.MachineId).FirstOrDefault();

 }

 //Console.Clear();

 //Console.WriteLine("To Update the Machine Information Press 1");

 �//Console.WriteLine($"Name: {mach.Name} General Role: { mach.

GeneralRole}");

 //Console.WriteLine($"Installed Role: {mach.InstalledRoles}");

 �//Console.WriteLine("\r\nTo Update the Operating System Information

Press 2");

 �//Console.WriteLine($"OS Name: {mach.OperatingSys.Name} Still

Supported: {mach.OperatingSys.StillSupported}");

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

89

 //Console.WriteLine($"\r\nTo Update the Machine Type Press 3");

 //Console.WriteLine($"Machine Type: {mach.MachineType.Description}");

 //Console.WriteLine($"\r\nTo Update the Warranty Information Press 4");

 �//Console.WriteLine($"Provider Name: {mWar.WarrantyProvider.

ProviderName}");

 �//Console.WriteLine($"Expiration: {mWar.WarrantyExpiration.

ToShortDateString()}");

 UpdateMachine(mach.MachineId);

 }

 //Console.ReadKey();

}

We have a very simple way to update your machine here. I think it goes without

saying, but I’m going to say it anyways—you should do a lot more validation in a

production application than we are doing here. Let’s take this for a test drive and see how

it goes. Let’s change DC1POR to PORDC1. Go to the Data Modification menu and choose

Update Machine Information. After a couple of seconds, you should see something like

Figure 2-9, although your IDs may be different.

Figure 2-9.  Current list of machines

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

90

Choose the machine ID for DC1POR (in my case, it’s 5) and press Enter. You should see

something that looks like Figure 2-10. Figure 2-11 shows the prompt about changing the

name of the machine.

Figure 2-12 shows the remaining prompts. You should press N in each case and then

save the changes.

Figure 2-11.  Prompt for changing the machine name

Figure 2-12.  The rest of the choices and saving the machine

Figure 2-10.  Displaying the information about the machine prior to making changes

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

91

As you can see, we need to clean up the console a bit. This is one downside to

console applications and something you’ll fix quite often in testing, which is why I left

it here. As you can see, PORDC1 and the next prompt about the general role run together.

Be sure that you add a carriage return and linefeed to your WriteLines or add a blank

write line. Make the change to the two places that need it: Console.WriteLine($"\r\

nGeneral Role: {machine.GeneralRole}\r\nDo you wish to change it?");. Do the

same for the Installed Roles line. You could also add a [y or n] to your questions. I’ll

leave that up to you.

Before we go on to the next example, let’s add two new servers to our database. We

are going to add RDS1 and RDS2, which are Windows Server 2008. Both have a general

role of terminal server and both have installed roles of RDS. To finish it off and make it

official, we will add some warranty information. You can make up a service tag for each

server (just make sure they are different), have them expire 2/1/2021, and indicate that

are both serviced by Harvey Package, Inc.

This isn’t something you would normally do, but since we are creating an example

here, it’ll be fine. We are going to create a way to upgrade all machines that have one

operating system to another operating system.

�Updating Multiple Records
In Chapter 1, we updated a single record. Now we are going to update multiple records

at one time. For this example, let’s pretend we just updated our Remote Desktop Servers

and as a result they are going to be Windows Server 2016. Everything is going to stay

the same except for the operating system, which is going to change. The first thing we

need to do is add another item to the Main menu. We are going to add Option 5 (Update

Operating Systems) and a call to UpdateOperatingSystems(). The following snippet

shows what to add:

Console.WriteLine("4. Data Modification Menu");

Console.WriteLine("5. Update Operating Systems");

Console.WriteLine("9. Exit");

cki = Console.ReadKey();

try {

 result = Convert.ToInt16(cki.KeyChar.ToString());

 if (result == 1) {

 DisplayAllMachines();

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

92

 //SeedOperatingSystemTable();

 }

 else if (result == 2) {

 DisplayOperatingSystems();

 }

 else if (result == 3) {

 DataEntryMenu();

 }

 else if (result == 4) {

 DataModificationMenu();

 }

 else if(result == 5) {

 UpdateOperatingSystems();

 }

 else if (result == 9) {

 // We are exiting so nothing to do

 cont = true;

}

Once you have added that option, you can start on the code. We are going

to create a helper method called GetMachine() and our primary method called

UpdateOperatingSystems(), which you probably already guessed. Listing 2-23 shows

the code for both methods.

Listing 2-23.  Updating Multiple Records

static Machine GetMachine() {

 Machine machine;

 List<Machine> lMachine = GetListOfMachines();

 Console.WriteLine("Machine ID | Machine Name");

 foreach (Machine m in lMachine) {

 Console.WriteLine($"{m.MachineId,-11}| {m.Name}");

 }

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

93

 �Console.WriteLine("\r\nEnter the ID of the Machine you want then hit the

Enter Key");

 int mId = Convert.ToInt16(GetNumbersFromConsole());

 machine = lMachine.Where(x => x.MachineId == mId).FirstOrDefault();

 return machine;

}

static void UpdateOperatingSystems() {

 ConsoleKeyInfo cki;

 string result;

 int newOsId = -1;

 bool valid = false;

 Console.Clear();

 WriteHeader($"Operating System Update");

 List<Machine> lMachines = new List<Machine>();

 bool cont = false;

 do {

 valid = false;

 lMachines.Add(GetMachine());

 Console.WriteLine("Do you want to add another Machine? [y or n]");

 do {

 cki = Console.ReadKey(true);

 result = cki.KeyChar.ToString();

 valid = ValidateYorN(result);

 } while (!valid);

 if(result.ToLower() == "n") {

 cont = true;

 }

 } while (!cont);

 Console.WriteLine($"{"ID",-7}|{"Name",-50}|Still Supported");

 Console.WriteLine("--");

 using (var context = new MachineContext()) {

 List<OperatingSys> lOperatingSystems = context.OperatingSys.ToList();

 foreach (OperatingSys os in lOperatingSystems) {

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

94

 �Console.WriteLine($"{os.OperatingSysId,-7}|{os.Name,-50}|

{os.StillSupported}");

 }

 }

 �Console.WriteLine("\r\nEnter the ID of the Operating System you want to

Update to.");

 Console.WriteLine("Then hit the Enter Key");

 string newOs = GetNumbersFromConsole();

 newOsId = Convert.ToInt16(newOs);

 using (MachineContext context = new MachineContext()) {

 foreach(Machine m in lMachines) {

 m.OperatingSysId = newOsId;

 context.Update(m);

 }

 context.SaveChanges();

 }

}

Let’s run the application. Choose Option 5 from the Main menu. When the list

populates, we’ll update RDS1 and RDS2 to Windows Server 2016. Figure 2-13 shows the

change to RDS1. If you were to check RDS2, it would also show that it is now Windows

Server 2016.

Figure 2-13.  Detailed information about the server we just updated

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

95

The only thing that is new in this code is where we did context.Update(m). When we

get into programming for ASP, this method is generally used, because most everything

is done outside of the DBContext using block. I cover this in greater detail later, but I

thought this would be a good quick way to show you how to work outside of the block

with data you retrieved from the database.

�Summary
This chapter was very similar to Chapter 1, although we got information from multiple

places to work with our objects and entities. We didn’t cover deleting records, as we are

going do that in the next chapter. I hope you are getting more comfortable getting data

out of the database/entities and other objects using LINQ.

Before you go on to Chapter 3, you should be able to explain the following:

•	 How do you add data to a table with foreign keys?

•	 How can you retrieve data from multiple tables and display it?

•	 How do you update one or more records that have relationships to

other tables?

Go back through the code and add some error handling or make it more aesthetically

pleasing by adding carriage return/line feeds where we entered text and then had some

text after it. You should be able to do this quite easily at this point and it will be good

practice. This will help you think about where people could break your application,

which is something that you need to be conscious of when you are building your own

applications.

Chapter 2 Working with Multiple Tables

www.EBooksWorld.ir

97
© Derek J. Rouleau 2018
D. J. Rouleau, Beginning Entity Framework Core 2.0, https://doi.org/10.1007/978-1-4842-3375-7_3

CHAPTER 3

Stepping Beyond
the Basics
I think it’s safe to say by this point that you are pretty comfortable with adding, retrieving,

updating, and deleting records from a database using Entity Framework Core 2.0. Now

it’s time to do something that’s a bit more exciting and slightly more difficult. We’ll start

off by selecting only the columns we want in our query, as we generally don’t need every

value in a table. In the example here, this might not seem like a big deal, but if you are

working with a table that has 15+ columns and millions of rows, you can start to see why

only getting the columns and rows that you need is important.

We are going to run these examples from a new menu item called Testing and

change the method we call from there. Update MainMenu() to add the following lines:

Console.WriteLine("5. Update Operating Systems");

Console.WriteLine("6. Testing");

Console.WriteLine("9. Exit");

And then in the select section:

else if(result == 5) {

 UpdateOperatingSystems();

}

else if(result == 6) {

}

else if (result == 9) {

 // We are exiting so nothing to do

 cont = true;

}

www.EBooksWorld.ir

98

As you can see, we left it empty so we can add our method once we are done. Note

the variable cont. It is shorthand for continue. (Some people prefer to spell it out, but

I’ve been in the habit of just using cont.) It basically answers the question, is it safe to

continue?

�Specifying Fields
Listing 3-1 creates a very simple example to show how you can select specific fields in

your queries. As your tables get larger and larger, this will become more important to

help increase the speed at which your queries run. Because we aren’t going to be doing

anything with our data, we are going to leave out the ID field. However, if you will later

modify these tables based on your query, you should include it.

Listing 3-1.  Specifying Fields

static void DisplaySpecificMachineData() {

 using(var context = new MachineContext()) {

 var machines = (from m in context.Machine

 �join o in context.OperatingSys on m.OperatingSysId equals

o.OperatingSysId

 where m.MachineTypeId == 1

 �select new { MachineName = m.Name, Role = m.GeneralRole,

OperatingSystem = o.Name });

 foreach(var m in machines) {

 �Console.WriteLine($"{m.MachineName} {m.OperatingSystem}

{m.Role}");

 }

 }

}

That’s all there is to it in this simple example, although to make it more interesting,

we did use a join. Because we have two fields with the name (Name), we had to give our

new fields different names. If you were to try to compile your program without doing

that, you would receive the following error:

An anonymous type cannot have multiple properties with the same name

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

99

This makes sense, because how does the program know what Name you want? Listing 3-2

shows another short example.

Listing 3-2.  Specifying Fields Example 2

static void DisplaySpecificMachineData2() {

 using (var context = new MachineContext()) {

 var machines = (from m in context.Machine

 �join o in context.OperatingSys on m.OperatingSysId equals

o.OperatingSysId

 where m.MachineTypeId == 1

 select new { m.Name, m.GeneralRole, OperatingSystem = o.Name });

 foreach (var m in machines) {

 �Console.WriteLine($"{m.Name} {m.OperatingSystem}

{m.GeneralRole}");

 }

 }

}

As you can see, this is the same code except we changed the name of the operating

system. Let’s add a couple of lines to Option 6 in the Main menu and test this. The results

are shown in Figure 3-1.

else if(result == 6) {

 Console.WriteLine();

 DisplaySpecificMachineData();

 Console.WriteLine();

 DisplaySpecificMachineData2();

 Console.ReadKey();

}

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

100

As you can see, the loops produce the same results, which is what we expect to

happen. This last quick example retrieves the MachineID and the Name of the code, as

shown in Listing 3-3.

Listing 3-3.  Retrieving the MachineID and the Code Name

static void DisplayMachineNameAndIdOnly() {

 using (var context = new MachineContext()) {

 var machines = (from m in context.Machine

 where m.MachineTypeId == 1

 select new { m.MachineId, m.Name });

 foreach (var m in machines) {

 Console.WriteLine($"{m.MachineId} {m.Name}");

 }

 }

}

Figure 3-1.  Results from specifying fields

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

101

This code is virtually identical; we just removed the join and retrieved only the two fields

we needed. Make a change in Main menu so you call DisplayMachineNameAndIdOnly().

Your results should look similar to Figure 3-2. Don’t forget that your IDs may be different.

Now if you wanted to view workstations as well, you could change your where clause

(or remove it entirely if you wanted to get all machines). The point here is to selectively

retrieve what we want, which is why we are selecting only servers.

�Joins
We already used joins in the previous example, so we aren’t going to cover a lot that is

new here. However, we’ll explain the differences between the common types of joins

and then look at a couple of examples. One will fix a bug that we currently have in our

application (did you find it yet?). The most common joins are inner joins, outer joins, left

and right outer joins, and cross joins. So far, you have seen inner joins in the examples.

Figure 3-3 shows a visual representation of a join of the Machine and WarrantyProvider

tables for a join on MachineId.

Figure 3-2.  Retrieving MachineId and Name only

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

102

In Figure 3-3, you can see that we have two tables and the MachineIds currently

in them. When we use an inner join, we are going to get that white section where the

tables have overlapping results. So that means that since MachineIds 1, 2, 3, 4, 7, 8, and

9 are in both tables, if we do an inner join we will get results that have those matching

MachineIds. If we were to do a left outer join, we would get all the records (rows) in the

machine table and from the right table. In this case, that’s the WarrantyProvider table. If

there are no matching columns in the right table, it will return a NULL value. You’ll see an

example of this in a moment.

A right outer join is the same as a left, just in the reverse order. A cross join produces

a set that is the first table (total rows) multiplied by the number of rows in the second

table if you don’t use a where clause; if you use a where clause, then it’s basically just an

inner join. One of the main uses of cross joins is when you need to get a result set that

includes every option. For instance, you are working with clothing and want to display

every possible size and color combination that is possible. We’ll take a look at the cross

join in more detail in upcoming examples.

�Left Outer Join
Let’s take a look at using a left outer join with the two tables from Figure 3-3. Listing 3-4

shows the code to perform a left outer join.

Figure 3-3.  Visual representation of a join

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

103

Listing 3-4.  Left Outer Join of Machine and MachineWarranty

static void LeftOuterJoin() {

 using (var context = new MachineContext()) {

 var leftJoin = from M in context.Machine

 �join MW in context.MachineWarranty on M.MachineId equals

MW.MachineId into lJoin

 from MW in lJoin.DefaultIfEmpty()

 select new {

 machineId = M.MachineId,

 machineName = M.Name,

 providerId = MW != null ? MW.WarrantyProviderId : (int?)null

 };

 foreach(var lj in leftJoin) {

 string pId;

 if (lj.providerId == null) { pId = "null"; }

 else { pId = lj.providerId.ToString(); }

 Console.WriteLine($"{lj.machineId} {lj.machineName} {pId}");

 }

 }

}

You may have noticed that we didn’t specify a left outer join, and that is because

there isn’t a way of doing that in C#. Instead, we had to use the DefaultIfEmpty()

function to get that functionality. We also had to add (int?) before the null in the

providerId line because we had to make our int value nullable. Otherwise, you would

get an error telling you that there is no implicit conversion between int and null. To

make the null value a bit more obvious than just a blank space in the output, we created

a variable to display the value. We could have done this a different way, but I tried to

keep it simple. Make the appropriate change to Option 6 of the Main menu. When you

run your code, you should get a result similar to Figure 3-4.

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

104

As you can see, we have values for everything but DB2SQL and BobsPC, which

return a null value as expected.

Feel free to mess around a bit with this before moving on so you get a better idea

of how it’s working. One last thing—when you are pointing to your tables in your LINQ

query, don’t forget to specify the DBContext. Otherwise, you’ll run into problems. I can’t

tell you how many times I sat for a minute or two trying to determine why I was getting

an error before the light bulb turned on.

�Right Outer Join
This section covers something new in order to show you how right outer joins can work

in Entity Framework Core. Listing 3-5 shows the code to display right outer joins. Before

you start, you need to add the following using statement to the top of the program:

using System.Data.Common;

You’ll see why you need this using statement in a moment.

Figure 3-4.  Results from a left outer join

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

105

Listing 3-5.  Right Outer Joins

static void RightOuterJoin() {

 using (var context = new MachineContext()) {

 var dataBaseConnection = context.Database.GetDbConnection();

 dataBaseConnection.Open();

 using(var cmd = dataBaseConnection.CreateCommand()) {

 �string eSQL = "SELECT MW.MachineID, M.Name, MW.WarrantyProviderID,

mw.WarrantyExpiration FROM MachineWarranty AS MW RIGHT OUTER JOIN

Machine AS M ON MW.MachineID = M.MachineID";

 cmd.CommandText = eSQL;

 DbDataReader reader = cmd.ExecuteReader();

 if (reader.HasRows) {

 while (reader.Read()) {

 string mId;

 if (reader.IsDBNull(0)) { mId = "Null"; }

 else { mId = reader.GetInt32(0).ToString(); }

 string machineName = reader.GetString(1);

 string warrantyProviderId;

 if (reader.IsDBNull(2)) { warrantyProviderId = "Null"; }

 else { warrantyProviderId = reader.GetInt32(2).ToString(); }

 string warrantyExpiration;

 if (reader.IsDBNull(3)) { warrantyExpiration = "Null"; }

 �else{ warrantyExpiration = reader.GetDateTime(3).

ToShortDateString(); }

 �Console.WriteLine($"{mId} {machineName} {warrantyProviderId}

{warrantyExpiration}");

 }

 }

 dataBaseConnection.Close();

 }

 Console.WriteLine();

 var rightJoin = from mw in context.MachineWarranty

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

106

 �join m in context.Machine on mw.MachineId equals m.MachineId into

rJoin

 from m in rJoin.DefaultIfEmpty()

 select new {

 machineId = m != null ? m.MachineId : (int?)null,

 machineName = m.Name,

 �warrantyProviderId = mw != null ? mw.WarrantyProviderId :

(int?)null,

 �warrantyExpiration = mw != null ? mw.WarrantyExpiration :

(DateTime?)null

 };

 foreach (var rj in rightJoin) {

 string mId;

 string machineName;

 string warrProv;

 string warrExp;

 machineName = rj.machineName;

 if (rj.machineId == null) { mId = "null"; }

 else { mId = rj.machineId.ToString(); }

 if(rj.warrantyProviderId == null) { warrProv = "null"; }

 else { warrProv = rj.warrantyProviderId.ToString(); }

 if(rj.warrantyExpiration == null) { warrExp = "null"; }

 else { warrExp = rj.warrantyExpiration.ToString(); }

 �Console.WriteLine(value: $"{mId} {machineName} {warrProv}

{warrExp}");

 }

 }

}

I’ll explain what’s going on after you run the code. Now when you update Option 6 in

the Main menu and run the code, you should see the results in Figure 3-5.

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

107

I know what you are thinking—hey our results are different. Yes, that’s the great thing

about using LINQ and Entity Framework for some queries. Without a ton of “mucking

around,” it’s a bit hard to get things how you want them. The good news is you can just

write a query like you normally would and off you go.

The good news is that you are learning something new and the better news is that

it’s pretty simple. As you can see, we still create the DBContext variable and do all of our

work inside that using statement. We could have created two separate connections, but I

didn’t see the point in doing so.

Note R emember that the DBContext creates a connection to the database.

We then create the dataBaseConnection variable, which gives us access to the

database. We then create our DBCommand object and create a using block for it. Then

we create our SQL string (called eSQL here, which is short for Entity SQL, because we

are using what is called Entity SQL to retrieve our data from the database). I hope you

are familiar with using a DataReader of some sort because that is what we are doing—

creating a DbDataReader and executing our DBCommand.

Figure 3-5.  Right outer joins, kind of

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

108

This is where it gets a little tricky at first. Because I want to display a value of Null in

the output, I convert the values to strings, but in order to avoid errors, I have to check

if the value is null first. Otherwise, I will get an error when I run the code and hit a null

value. We’ll take a look at the first check in this code example, as the other two are

virtually the same:

string mId;

if (reader.IsDBNull(0)) {

 mId = "Null";

}

else {

 mId = reader.GetInt32(0).ToString();

}

We expanded the code a bit to make it more readable instead of putting the if and

else on a single line. We check to see if the value at position 0 of reader is null, and if

it is, we set mId to a value of Null. Otherwise, we have to convert the integer value to a

string and set that as the value of mId. You need to know what the expected value type is

going to be when you are doing this, as you have to tell the reader what the data type is.

We do this for all our types that aren’t nullable by default, which is why we don’t have to

check first for a null value for the name.

As with all database applications, it’s a good idea to close your connection, so we do

that at the end. If you were going to do something with this data other than display it, you

can create a struct or a class to hold the values in a list. But since we are just displaying

the results, there isn’t a reason to do that.

We ran our code and we got two results that have nulls in them like we would expect

for a right outer join with the current state of our tables. Now we get to the LINQ part of

our code, which is where this falls apart. As mentioned in the left outer join section, there

isn’t a way to specify what type of join you are using with LINQ that closely matches the

phrasing you used with SQL, although we have the choice of Join and GroupJoin. With

the exception of the extra fields, this should look exactly like the code used for the left

outer join. The only other difference is the order of the tables. We then check for our null

values like we did before making the types nullable where we need them to be. We run

our code and there are no null values.

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

109

You want to take all of the records in the MachineWarranty table that have

a MachineId of something and join them to the Machine table. Because it’s not

looking at the Machine table as well for MachineIds, it’s only looking for those in the

MachineWarranty table. This is why we aren’t getting a true right outer join.

�Cross Join
This section looks at a cross join so you can see what it looks like and see why for our

purposes here, it’s not overly helpful. Listing 3-6 shows the code for the cross join. After

the last listing, I’m sure you’re happy about how short it is.

Listing 3-6.  Cross Join

static void CrossJoin() {

 using (var _context = new MachineContext()) {

 var crossJoin = from m in _context.Machine

 from mw in _context.MachineWarranty

 select new {

 m, mw

 };

 int counter = 1;

 foreach(var cj in crossJoin) {

 �Console.WriteLine($"Row: {counter++}\t{cj.m.MachineId} {cj.m.Name}

{ cj.mw.WarrantyProviderId} {cj.mw.WarrantyExpiration}");

 }

 }

}

This is pretty simple. This time I changed the name of the DBContext variable to

_context. I figured I’d mix it up a little bit. I also added a counter so you can see the

number of rows at a quick glance. Update Option 6 in the Main menu and run your code.

You should see results similar to Figure 3-6, which is only a small portion of the entire

result set.

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

110

We have nine rows in the Machine table and seven rows in the MachineWarranty

table, so if we multiply those, we get 63 rows. When we run our query, we get 63 rows so

we know the math has worked out. In short, what this is saying is show me all possible

combinations of Table1 and Table2.

�Inner Join: Method Syntax
Up until now, we have created all of our inner joins using query syntax because it’s a

lot easier and more straightforward. However, I wouldn’t be doing my due diligence

if I didn’t show you how to do it using method syntax. As you will see, it’s a bit harder.

Listing 3-7 shows the code and Figure 3-7 shows the results.

Listing 3-7.  Method Syntax for a Inner Join

static void InnerJoin() {

 using (var context = new MachineContext()) {

 var mw = context.MachineWarranty

 �.Join(context.WarrantyProvider, m => m.WarrantyProviderId, p =>

p.WarrantyProviderId, (m, p) => new {

Figure 3-6.  Partial results of a cross join

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

111

 machineId = m.MachineId,

 warrantyProvider = p.ProviderName,

 warrantyExpiration = m.WarrantyExpiration,

 supportNumber = p.SupportNumber

 });

 foreach (var m in mw) {

 �Console.WriteLine($"MachineID: {m.machineId} Warranty Provider:

{m.warrantyProvider}");

 �Console.WriteLine($"Warranty Expiration: {m.warrantyExpiration.

ToShortDateString()} Support Number: {m.supportNumber}");

 �Console.WriteLine("--");

// 40 dashes

 }

 }

}

Figure 3-7.  Results of the inner join using method syntax

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

112

I think you can now see why I said creating joins using method syntax are a bit messy

compared to query syntax. I have never created a group by join using method syntax,

although if you want to become proficient at it then that’s one more thing you can

impress your friends with. So let’s take a look at what we have and try to figure it out.

We create our anonymous type mw, which contains four anonymous types of its

own—machineId, warrantyProvider, warrantyExpiration, and supportNumber. We did

this when we declared them in the new{} block of the code. In this case, we are starting

with the MachineWarranty model and we are going to join the WarrantyProvider model

to it. The one part I usually forget here is that the code goes inside the parentheses when

I first write these so try to remember that part.

The first parameter is m, which represents the MachineWarranty model. The second

parameter is the table we are joining, which in this case is the WarrantyProvider model.

In both of these cases, we are joining on the WarrantyProviderId, so that is why we have

m => m.WarrantyProviderId, etc. The way that I understand the (m, p) to work is that

we are saying that we want these two parameters available for the new{} block.

Now I hope you understand why I say it is a lot easier to use the query syntax when

you are creating joins. However, knowing how to create them with method syntax is not a

bad idea either.

�Grouping
You should now have a better understanding of how you are going to handle joins as

you progress in your Entity Framework Core career. Feel free to mess around a bit with

what you have and create some other joins by building off what you already know. The

next thing we are going to look at is grouping our results together. Sometimes we need

to know how many of something is in our table. The first thing we’ll do is figure out how

many machines we have in each of our operating systems. First let’s take a look at how

we can do this using query syntax.

�Query Syntax
Listing 3-8 shows the code for displaying a count of machines by operating system.

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

113

Listing 3-8.  Grouping Machines by Operating System

static void GroupMachinesByOS() {

 using (var context = new MachineContext()) {

 var mli = (from m in context.Machine

 �join o in context.OperatingSys on m.OperatingSysId equals

o.OperatingSysId

 group new { m, o } by m.OperatingSysId into grouped

 �select new { grouped.Key, count = grouped.Select(x=>x.m.Operating

SysId).Count(), Name = grouped.Select(ma=>ma.o.Name) });

 foreach(var m in mli) {

 �Console.WriteLine($"OS ID: {m.Key} Machine Count W/OS: {m.count}

OS Name: {m.Name.ElementAt(0)}");

 }

 }

}

Like you saw in the last section, we created the query and used a join to bring in the

OperatingSys model. The change here is where we have group new {} and, as you can

probably guess by its name, this is what makes it a group by query. It groups m and o by

a specified key, which in this case is m.OperatingSysId. We then select the values that

we want to access. We have our range variable, which is grouped (you could have named

this anything) and from that, we need the key, which is the OperatingSysId. We then

want to get a count, which we do with an inline function (lambda).

From grouped, we are going to get a count of the OperatingSysId. Lastly, this

example goes the extra mile and gets the name of the operating system as well.

If you search online for group by for Entity Framework, you probably won’t find

one that includes this information. It’s not very intuitive and Name = grouped.

Select(ma=>ma.o.Name) is the easy part. The part that makes no sense at first is {m.

Name.ElementAt(0)}. ElementAt returns the value from that index in sequence. Since

we only have one element in our sequence, we want the first one, which is of course zero.

Figure 3-8 shows the results.

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

114

�Method Syntax
Just to show you how do it another way, let’s figure out how many of each type of

machine we have. Since we used query syntax to get our count for operating systems,

we’ll use method syntax this time for machine type. Listing 3-9 shows the code for

doing this. Try to figure out how to do this without looking at Listing 3-9 first. Why not

give it a try? Don’t worry, we aren’t going to be doing a join for this one, so it should be

fairly easy.

Listing 3-9.  Grouping Machines by Type Method Syntax

static void GroupMachineByType() {

 using(var context = new MachineContext()) {

 var mType = context.Machine

 .GroupBy(m => m.MachineTypeId)

 .Select(g => new { id = g.Key, count = g.Count() });

 foreach (var m in mType) {

 Console.WriteLine($"{m.id} {m.count}");

 }

 }

}

Figure 3-8.  Grouping using query syntax

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

115

As you can see, when you don’t do a join or anything it’s pretty simple and

straightforward. The results for this quick example are shown in Figure 3-9. We are

grouping by MachineTypeId and we are passing along two anonymous types to mType, id,

and count.

The results show that for MachineType 1, we have seven machines and for

MachineType 2, we have two machines. If you wanted a simple way to display the

machine type description, you could have created a list that has the ID and description

and within the loop. Then, when you display your output, you could quickly search the

list and replace the output with the description.

�Logical Operators
We are going to borrow a bit from one of the earlier examples and make a slight change

to make it “new”. What we are trying to do is get a list of machines grouped by operating

system and then display the name as well as the role as a subgroup of the operating

system. We have already done some of the work in GroupMachinesByOS(), so we can just

copy that code for the query. Listing 3-10 shows all of the code for this example.

Figure 3-9.  Results from grouping by machine type

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

116

Listing 3-10.  Logical AND Operator

static void LogicalAnd() {

 using (var context = new MachineContext()) {

 var lOs = (from m in context.Machine

 �join o in context.OperatingSys on m.OperatingSysId equals

o.OperatingSysId

 group new { m, o } by m.OperatingSysId into grouped

 �select new { grouped.Key, count = grouped.Select(x =>

x.m.OperatingSysId).Count(), Name = grouped.Select(ma =>

ma.o.Name) });

 foreach(var os in lOs) {

 �List<Machine> lMachine = context.Machine.Where(x =>

x.MachineTypeId == 1 && x.OperatingSysId == os.Key).ToList();

 if(lMachine.Count > 0) {

 Console.WriteLine($"Servers Running {os.Name.ElementAt(0)}");

 foreach (Machine m in lMachine) {

 �Console.WriteLine($"\tName: {m.Name}\tRole: {m.GeneralRole}");

 }

 Console.WriteLine();

 }

 }

 }

}

The only change we made to our first query is to change the name to lOs since it is a

list of operating systems. I’ll be the first to admit that this isn’t the most efficient way of

getting results, but it’s a decent example of how to use a logical AND. For each iteration,

we check our model to see if we have any machines that have the OperatingSysId in our

list and has a MachineTypeId of 1. If we have at least one result, we display the results

to the user; otherwise, we go on to the next entry. Figure 3-10 shows the results of the

query.

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

117

In a production example, you would more than likely have added a where clause to

your initial query looking for MachineTypeId of 1, as that would have returned the set

you were looking for. If you would like to test that, change LogicalAnd() to Listing 3-11.

You will see that you get the same results.

Listing 3-11.  Changes to the Method

static void LogicalAnd() {

 using (var context = new MachineContext()) {

 DateTime start = DateTime.Now;

 var lOs = (from m in context.Machine

 �join o in context.OperatingSys on m.OperatingSysId equals

o.OperatingSysId

 group new { m, o } by m.OperatingSysId into grouped

 �select new { grouped.Key, count = grouped.Select(x =>

x.m.OperatingSysId).Count(), Name = grouped.Select(ma =>

ma.o.Name) });

 foreach(var os in lOs) {

 �List<Machine> lMachine = context.Machine.Where(x =>

x.MachineTypeId == 1 && x.OperatingSysId == os.Key).ToList();

Figure 3-10.  Results from the logical AND

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

118

 if(lMachine.Count > 0) {

 Console.WriteLine($"Servers Running {os.Name.ElementAt(0)}");

 foreach (Machine m in lMachine) {

 Console.WriteLine($"\tName: {m.Name}\tRole: {m.GeneralRole}");

 }

 Console.WriteLine();

 }

 }

 DateTime end = DateTime.Now;

 TimeSpan ts = end.Subtract(start);

 Console.WriteLine($"It took {ts.Milliseconds} ms to run");

 start = DateTime.Now;

 Console.WriteLine("Using a where clause for the same results...");

 var lOs2 = (from m in context.Machine

 �join o in context.OperatingSys on m.OperatingSysId equals

o.OperatingSysId

 where m.MachineTypeId == 1

 group new { m, o } by m.OperatingSysId into grouped

 �select new { grouped.Key, count = grouped.Select(x =>

x.m.OperatingSysId).Count(), Name = grouped.Select(ma =>

ma.o.Name) });

 foreach (var os in lOs2) {

 �List<Machine> lMachine = context.Machine.Where(x =>

x.OperatingSysId == os.Key).ToList();

 if (lMachine.Count > 0) {

 Console.WriteLine($"Servers Running {os.Name.ElementAt(0)}");

 foreach (Machine m in lMachine) {

 �Console.WriteLine($"\tName: {m.Name}\tRole:

{m.GeneralRole}");

 }

 Console.WriteLine();

 }

 }

 end = DateTime.Now;

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

119

 ts = end.Subtract(start);

 Console.WriteLine($"It took {ts.Milliseconds} ms to run");

 }

}

We added the where clause and removed the && operator from the query, plus we

added some DateTime variables to check for timing. If you run it again, you’ll see that

they produce identical results, but the second one is more efficient. Figure 3-11 shows

part of the results but displays the timing results. Your times will be different, but this

shows how a small change can make a big difference.

�Logical OR
The Logical OR (see Listing 3-12) works similarly to the AND with the exception that

it looks to see if either operation is true. To show this, we are going to look for servers

where the operating system is Server 2008 R2 or Server 2012 R2. This time, we’ll just do it

the more efficient way, which is how we’d likely do it in the real world.

Figure 3-11.  Timing results

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

120

Listing 3-12.  Logical OR

static void LogicalOr() {

 using (var context = new MachineContext()) {

 var machines = from m in context.Machine

 �join o in context.OperatingSys on m.OperatingSysId equals

o.OperatingSysId into mj

 where (m.OperatingSysId == 22 || m.OperatingSysId == 24)

 orderby m.OperatingSysId

 select new { m.Name, osName = m.OperatingSys.Name };

 foreach(var m in machines) {

 Console.WriteLine($"{m.Name} is running {m.osName}");

 }

 }

}

I always find it to be good practice to put parentheses around the where clause, even

though it will run and compile without doing it. It’s easier to see the grouping at a quick

glance if I have a large number of OR or AND operators. Since the only two values we are

concerned with are the names of the machine and the operating system, that’s what we

create for our anonymous type. Since in each model they are called Name, we have to at

least give one of them a new name. We have also included an order by clause to order the

results by the operating system ID. Figure 3-12 shows the three servers that are running

2008 R2 or 2012 R2.

Figure 3-12.  Results from a logical OR

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

121

�Paging and Filtering Results
There are many times when you’ll want to display only a certain amount of data on the

screen. This is certainly the case when it comes to working with websites. Let’s say you

only have enough space to display five rows of data at a time on your page, but you have

200 rows in your database that meet the query’s criteria. Do you want to retrieve all 200

rows and then have some sort of method for displaying the records in blocks? Like you

saw in the logical AND example, that isn’t always the best choice. When you run into this

situation, you should use paging for your data results. Normally when you are paging,

you are also filtering to keep your result set as small as possible. This will make it a more

enjoyable experience for the end users.

Working with the data we currently have, let’s say that we might want to page and

filter our display of the operating systems. This will give the users a chance to select how

they want to see the results. See Listing 3-13.

Listing 3-13.  Paging and Filtering Results

static void PageAndFilterOperatingSystems() {

 ConsoleKeyInfo cki;

 string result;

 bool cont = false;

 �System.Linq.Expressions.Expression<Func<OperatingSys, bool>> where

Clause = o => o.StillSupported == true;

 string pageOptions = "";

 List<OperatingSys> lOperatingSys;

 Console.Clear();

 �Console.WriteLine("Do you want to display all of the Operating Systems

in one list? [y or n]");

 do {

 cki = Console.ReadKey(true);

 result = cki.KeyChar.ToString();

 cont = ValidateYorN(result);

 } while (!cont);

 if (result.ToLower() == "y") {

 DisplayOperatingSystems();

 }

 else {

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

122

 �Console.WriteLine("Do you want to view [a]ll, [s]upported operating

systems or [u]nsupported operating systems?");

 cont = false;

 do {

 cki = Console.ReadKey(true);

 �if (cki.Key == ConsoleKey.A || cki.Key == ConsoleKey.S ||

cki.Key == ConsoleKey.U) {

 result = cki.KeyChar.ToString();

 cont = true;

 }

 } while (!cont);

 if (result.ToLower() == "a") {

 �whereClause = o => o.StillSupported == true || o.Still

Supported == false;

 }

 else if (result.ToLower() == "s") {

 whereClause = o => o.StillSupported == true;

 }

 else if (result.ToLower() == "u") {

 whereClause = o => o.StillSupported == false;

 }

 int pageSize;

 int pageIndex = 0;

 �Console.WriteLine("How many results do you want per page, enter a

number between 3 and 5");

 cont = false;

 do {

 cki = Console.ReadKey(true);

 �if (cki.Key == ConsoleKey.D3 || cki.Key == ConsoleKey.D4 || cki.

Key == ConsoleKey.D5) {

 result = cki.KeyChar.ToString();

 cont = true;

 }

 } while (!cont);

 pageSize = Convert.ToInt16(result);

 cont = false;

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

123

 do {

 Console.Clear();

 using (var context = new MachineContext()) {

 lOperatingSys = context.OperatingSys

 .Where(whereClause)

 .OrderBy(i => i.OperatingSysId)

 .Skip(pageIndex * pageSize)

 .Take(pageSize)

 .ToList();

 }

 foreach (OperatingSys os in lOperatingSys) {

 Console.Write($"Name: {os.Name,-39}\tStill Supported = ");

 if (os.StillSupported == true) {

 Console.ForegroundColor = ConsoleColor.Green;

 }

 else {

 Console.ForegroundColor = ConsoleColor.Red;

 }

 Console.WriteLine(os.StillSupported);

 Console.ForegroundColor = ConsoleColor.Black;

 }

 if(pageIndex == 0) {

 pageOptions = "Hit Esc to exit\tN for Next";

 }

 else {

 pageOptions = "Hit Esc to exit\tN for Next\tP for Previous";

 }

 Console.WriteLine($"Page: {pageIndex}\t{pageOptions}");

 cki = Console.ReadKey(true);

 if(cki.Key == ConsoleKey.Escape) {

 cont = true;

 }else if(cki.Key == ConsoleKey.N) {

 pageIndex++;

 }else if(cki.Key == ConsoleKey.P) {

 if(pageIndex > 0) {

 pageIndex--;

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

124

 }

 }

 } while (!cont);

 }

}

This is probably one of the most exciting and longest sections of code. Note that we

reused the code for displaying the operating systems in a color-coded fashion. One of the

most exciting parts of this comes early on:

System.Linq.Expressions.Expression<Func<OperatingSys, bool>> whereClause =

o => o.StillSupported == true;

We have just managed to make our where clause in our query a variable. We are

replacing the where clause with the contents of the object, so it will read .Where(o =>

o.StillSupported == true) if we didn’t have our variable.

This is something that you may find useful in the future. I had to give it a default

value so the code could compile, so I decided to go with StillSupported = true. It was

more so when you are looking at it and you have some idea what it is doing. We build

our where clause based on what the user enters. We can have just one query that way.

Toward the bottom of the code you’ll see the paging and filtering.

using (var context = new MachineContext()) {

 lOperatingSys = context.OperatingSys

 .Where(whereClause)

 .OrderBy(i => i.OperatingSysId)

 .Skip(pageIndex * pageSize)

 .Take(pageSize)

 .ToList();

}

The Where clause produces the filtering. .Skip and .Take provide the paging ability.

If you are using a version of SQL Server before 2012, this will not work (you’ll have to

do it the old fashioned way, sorry). For our skip argument, we are multiplying our page

index variable by the page size. If our index is anything over zero, we will skip records in

our query. The take argument tells SQL server how many records we want, or up to how

many records we want. In the interest of making this slightly more compact, I haven’t

checked for a upper bound for moving onto the next page, so we can keep on going

forever. Yes, EF Core will allow you to do that.

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

125

When we do something similar in our website, I’ll show you how to check for the

upper bound. When the users are tired of paging through the results, they can press the

Esc key and leave the loop. Again, we couldn’t keep loading the results again and again if

they press the wrong keys like we are now, but I figured this example was long enough so

I left that part out. You are welcome to alter your code and put in these fixes if you want.

Before you can test these changes, you need to update a few things. Make the

following change in the Main menu:

Console.WriteLine("2. List Operating Systems"); // Changed from List All

Operating Systems

And then change Option 2:

else if (result == 2) {

 //DisplayOperatingSystems();

 PageAndFilterOperatingSystems();

}

When you run your code, you should see something similar to Figure 3-13. If you choose

to view the supported operating systems, it lists four results per page. You can use Next to get

to the second page. When we look at paging in the ASP .NET MVC Core application, we’ll

look at how to handle the upper bounds of a paged list. For now, we just keep it simple.

Figure 3-13.  Paging and filtering results

�Concurrency
I think it’s pretty safe to say that we are the only ones using this application and the

tables associated with it. However, when you are working on applications in a business

environment or on a website, there is a very good chance that other people will modify

the data the same time you are (hopefully not the same data). So let’s test something.

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

126

Open SQL Server Management Studio to modify a table while we are in the process

of modifying it from the application. Once you have done that, you need to make two

more change to the application. Go to the Machine model, Machine.cs, and add the

following using statement:

using System.ComponentModel.DataAnnotations;

Then make the following change in the class:

[ConcurrencyCheck]

public int OperatingSysId { get; set; }

By adding the [ConcurrentyCheck] to the OperatingSysId parameter, we tell Entity

Framework Core that we want to check for concurrency conflicts. Back in Program.cs,

find UpdateOperatingSystems() and, at the bottom of that method, put a breakpoint on

the line that includes context.SaveChanges();.

There is no need to make any more changes, so run the application and choose

Option 5 (Update Operating Systems). We are going to modify JacksPC, so choose

the appropriate MachineId for that machine only. Pick any operating system from the

list. When you hit the breakpoint, go to SSMS and edit the machine table by changing

the value of OperatingSysId for JacksPC to some value other than what you selected.

Figure 3-14 shows the table in SSMS and Figure 3-15 shows what happens when you

continue the code.

Figure 3-14.  SSMS showing the change

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

127

You have to admit it, the errors have gotten a lot better in the last couple of

years. They aren’t as vague as they used to be. We get the error that we thought we

would get. So what are we going to do about it? Let’s take care of the problem so we

don’t have to worry about it in the future. Listing 3-14 shows the changes added to

UpdateOperatingSystems().

Listing 3-14.  UpdateOperatingSystems() with Changes

static void UpdateOperatingSystems() {

 ConsoleKeyInfo cki;

 string result;

 int newOsId = -1;

 bool valid = false;

 Console.Clear();

 WriteHeader($"Operating System Update");

 List<Machine> lMachines = new List<Machine>();

 bool cont = false;

 do {

 valid = false;

 lMachines.Add(GetMachine());

 Console.WriteLine("Do you want to add another Machine? [y or n]");

 do {

 cki = Console.ReadKey(true);

Figure 3-15.  Error in Visual Studio

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

128

 result = cki.KeyChar.ToString();

 valid = ValidateYorN(result);

 } while (!valid);

 if (result.ToLower() == "n") {

 cont = true;

 }

 } while (!cont);

 Console.WriteLine($"{"ID",-7}|{"Name",-50}|Still Supported");

 �Console.WriteLine("---

----------- ----------");

 using (var context = new MachineContext()) {

 List<OperatingSys> lOperatingSystems = context.OperatingSys.ToList();

 foreach (OperatingSys os in lOperatingSystems) {

 �Console.WriteLine($"{os.OperatingSysId,-7}|{os.Name,-50}|

{os.StillSupported}");

 }

 }

 �Console.WriteLine("\r\nEnter the ID of the Operating System you want to

Update to.");

 Console.WriteLine("Then hit the Enter Key");

 string newOs = GetNumbersFromConsole();

 newOsId = Convert.ToInt16(newOs);

 using (MachineContext context = new MachineContext()) {

 foreach (Machine m in lMachines) {

 �var mach = context.Machine.Single(x => x.MachineId ==

m.MachineId);

 mach.OperatingSysId = newOsId;

 context.Update(mach);

 try {

 context.SaveChanges();

 }

 catch (DbUpdateConcurrencyException ex) {

 foreach (var e in ex.Entries) {

 if (e.Entity is Machine) {

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

129

 �var dbEntity = context.Machine.AsNoTracking().Single

(m1 => m1.MachineId == ((Machine)e.Entity).MachineId);

 var dbEntry = context.Entry(dbEntity);

 foreach (var property in e.Metadata.GetProperties()) {

 if (property.Name == "OperatingSysId") {

 �var proposedValue = e.Property(property.Name).

CurrentValue;

 �var dbValue = dbEntry.Property(property.Name).

CurrentValue;

 �Console.WriteLine("The value has been changed

outside of the program.");

 �OperatingSys osN = GetOperatingSystemById(Convert.

ToInt32(dbValue));

 Console.WriteLine($"The new value is {osN.Name}");

 �osN = GetOperatingSystemById(Convert.

ToInt32(proposedValue));

 Console.WriteLine($"You entered {osN.Name}");

 �Console.WriteLine("Do you want to overwrite this

change? [y or n]");

 cki = Console.ReadKey(true);

 result = cki.KeyChar.ToString();

 if (result.ToLower() == "y") {

 �e.Property(property.Name).OriginalValue =

dbEntry.Property(property.Name).CurrentValue;

 //try again

 context.SaveChanges();

 }

 }

 }

 }

 }

 }

 }

 }

}

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

130

This listing has a lot going on and we have done a little bit of hard coding

to make it easier to explain what we are doing. We made all of the changes

around context.SaveChanges();, staring with a try catch and looking for

a DbUpdateConcurrencyException. When we set up dbEntity, we do so with

.AsNoTracking(), so that the changes won’t be tracked by the change tracker.

ProposedValue is the value that we said we wanted to change to. We are proposing to

change the value in the database to x. DbValue, on the other hand, is the current value

in the database. We got our proposed value from our error via the Entity entry and we go

to the database value from the database, which in this case originated from dbEntity.

Once we have that straight, we check to see which value the user wants to use. If they

decide they want to use theirs or what is in the database, we have to change the Entity

Entry Original Value to the value that we entered. Sometimes it gets confusing as to

which value is which. While you are setting this up, try using breakpoints, as they are a

great way to get it all straight and to verify that you are using the right values.

�Summary
This chapter expanded your abilities to retrieve one or more records based on multiple

criteria. You no longer have to retrieve all the columns from an entity, but can retrieve

just the ones you want in an effort to increase efficiency. You can now perform different

types of joins and use regular SQL in your applications if you need it. After all, Entity

Framework Core 2.0 is just another tool in your toolbox and there isn’t one tool that does

every job well. Can you use a crescent wrench to hammer in a nail? Sure, but a hammer

does a much better job, just like you learned with the right outer join.

You should be able to group your results together in logical ways as well as use

logical operators. If you are using SQL Server 2012 or newer, you will be able to page your

results in a much simpler way that results in retrieving fewer records at a time. Lastly, we

solved the issue of someone else updating records.

What does all this mean? Before moving on to the next chapter, you should be able to

explain and do the following:

•	 Write a query and retrieve only the fields you want

•	 Perform different types of joins on entities

•	 Group results together using both query and method syntax

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

131

•	 Perform operations using logical AND and logical OR statements

•	 Page and filter results

•	 Handle concurrency issues with your tables

If any of these are still a bit fuzzy, don’t worry. As with learning anything new, it takes

time and practice. Fortunately, as you continue on in this book, we’ll be hitting a lot of

these subjects again to give you more practice.

Chapter 3 Stepping Beyond the Basics

www.EBooksWorld.ir

133
© Derek J. Rouleau 2018
D. J. Rouleau, Beginning Entity Framework Core 2.0, https://doi.org/10.1007/978-1-4842-3375-7_4

CHAPTER 4

Data Validation
and POCOs
One of the most important things to remember when working with a database is to sure

that the data you are putting into the database is as clean as possible. Let’s say you are a

customer service rep and you get a call from John Smith. One of the first things you are

supposed to do is verify his information. Now I’m not putting down CSRs, as they have

a tough job, but some of them are like Anchorman and will just read what is in front of

them. So let’s go to the wonderful world of make believe and see how this could go with

bad data in the database:

Caller: “Good morning, this is John Smith and my account number is JSmith1234”.

(He calls in a lot and knows the drill.)

CSR: “Good morning Mr. Smith and thank you for calling. Is your phone number

still 123AJK5678?”

Now I know what you are thinking—that never happens. Well, like with Dragnet, the

names have been changed for protect the innocent but I have seen/heard this happen.

Other than the CSR not paying attention to what they were reading, the problem was the

software in place to load data into the system was only set up to look for 10 characters,

not even digits, but characters. The person who was loading the data wasn’t paying close

attention when they loaded it and didn’t notice the alpha characters in the telephone

number field. Now we have a situation.

Other than making sure that this doesn’t happen again by paying better attention to

what is loaded by bulk processing, how can avoid such issues?

If you have access to the source code you can be sure to validate your data before you

put it into the database in the first place. There are two ways you can do this (actually

there are more, but we’ll stick with two in this example).

www.EBooksWorld.ir

134

You could have a process that scrubs your data files prior to getting them to the

loading stage. Let’s say your application is called Data Loader and it loads the data into

some form that you can view to check for glaring errors. If you created a scrubber type

application, you would run that application by reading the file you were going to load.

Your scrubber application would then make sure that all the phone numbers are valid,

perhaps fix any formatting issues that are in the file, and output a cleaner version of the

original file.

If you don’t have access to the source code because your application that loads

data is off-the-shelf software, that could be your only choice. But you are running two

applications instead of one and perhaps at some point after getting clean files for 6 or 9

months, your data entry person might start skipping the scrubbing step.

�Validation Using DataAnnotations
One good thing about Entity Framework Core 2.0, and eventually if you go that route,

MVC, is that it encourages you to keep your code as centralized as possible and not

repeat code in multiple places. One of the ways we can use it is via the DataAnnotations

namespace. What’s nice is if you go through the class listing, you’ll see things like

CreditCardAttribute, EmailAddressAttribute, and PhoneAttribute. Since we have

been discussing phone numbers, we’ll pick that out of the list. Through the use of regular

expressions, this class will validate phone numbers without you having to write a regular

expression to do so. It’s very easy to use, although it is geared more toward MVC type

applications. You can still use it. Look back at Program.cs in the ComputerInventory

application and you’ll see that we already did some basic validation. Take a look at

Listing 4-1 to see what we already did.

Listing 4-1.  Validation in CreateNewWarrantyProvider()

Console.WriteLine("\r\nPlease enter the Providers phone number.");

do {

 cki = Console.ReadKey(true);

 if (cki.Key == ConsoleKey.Enter) {

 if (phoneNumber.Length >= 7) {

 cont = true;

 }

 else {

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

135

 �Console.WriteLine("Please enter a Phone number that is at least

7 digits.");

 }

 }

 else if (cki.Key == ConsoleKey.Backspace) {

 Console.Write("\b \b");

 try {

 phoneNumber = phoneNumber.Substring(0, phoneNumber.Length - 1);

 }

 catch (System.ArgumentOutOfRangeException) {

 // at the 0 position, can't go any further back

 }

 }

 else {

 if (char.IsNumber(cki.KeyChar)) {

 phoneNumber += cki.KeyChar.ToString();

 Console.Write(cki.KeyChar.ToString());

 }

 }

} while (!cont);

Keep in mind, if you look in WarrantyProvider.cs, you’ll see that the SupportNumber

property is a string. This was done so we would have better control over the actual

variable, which may sound strange as we are storing a number, but you’ll see why in a

moment. Back to Listing 4-1. As you might recall, we did some basic error checking to

get a number that is at least seven characters and we checked to make sure that users

are only entering digits. This will alleviate our problem of having a number such as

123AGB5678. Since I’m writing this book in the United States, I’m going to base the logic

on phone numbers that are valid in the US and Canada.

Using the Phone attribute is a quick check, but unfortunately it doesn’t work very

well. Let’s say you entered 123AGB5678 and validated against that. You would get an

error, which you would expect. However, if you were to enter 12345678, it will validate

as a properly formatted number. For that reason I’m going to recommend that you use

caution when using the built-in validation and do a lot of testing to be sure it works for

your needs.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

136

But don’t fret, there is still a way. We need to think about what we are trying to

accomplish, which is to validate North American based phone numbers (US and Canada).

We know that the phone numbers can be 7 or 10 digits long, so that is a good start. To do

this, we are going to use a regular expression since we are using the DataAnnotations

namespace. Listing 4-2 shows an updated version of WarrantyProvider.cs with the new

code in it.

Listing 4-2.  WarrantyProvider.cs

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace ComputerInventory.Models {

 public partial class WarrantyProvider {

 public WarrantyProvider() {

 MachineWarranty = new HashSet<MachineWarranty>();

 }

 public int WarrantyProviderId { get; set; }

 public string ProviderName { get; set; }

 public int? SupportExtension { get; set; }

 �[RegularExpression("^(?=(?:.{7}|.{10})$)[0-9]*$", ErrorMessage =

"Must be 7 or 10 digits")]

 public string SupportNumber { get; set; }

 public ICollection<MachineWarranty> MachineWarranty { get; set; }

 }

}

The two additions are the using statement for DataAnnotations and the

RegularExpression attribute that we are assigning to our SupportNumber property. Let’s

look at the regular expression, as that part can be a little confusing if you aren’t used to

using it. The hat symbol (^) denotes that we are starting with the beginning of the string

or line and the dollar sign is used for the end of string. The ?= is a lookahead that isn’t

captured but must be followed by parentheses. In the parentheses we have ?:, which

matches the following expression but doesn’t capture it. In our case, those expressions

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

137

are .{7}|.{10}, which you can read as any character exactly 7 repetitions or any

character exactly 10 repetitions through the end of the string. That covers the first part of

the statement: ^(?=(?:.{7}|.{10})$).

The end of the statement is pretty straightforward. We are looking for any character

between 0 and 9, with any number of repetitions (remember that the repetitions were

taken care of in the first part of the statement) and we end with the end of the line or

a string character. If this doesn’t make a ton of sense to you, don’t worry, as it took me

a while to get the hang of it. I still use a Regular Expression Editor for anything that’s

complex, like this one.

Now that we have added some validation to our model, we need a way of knowing

if we have a valid property or not. To do this, we will go back to Program.cs and

CreateNewWarrantyProvider(). Right now we are concerned with the end of the

method, which you’ll see in Listing 4-3. I removed the other code from the listing to

make it easier to see the changes. We aren’t doing anything other than checking to see if

our value is valid. We’ll add some more code for that shortly.

Listing 4-3.  Validating the Warranty Provider Support Number

WarrantyProvider wp = new WarrantyProvider() {

 ProviderName = provider,

 SupportNumber = phoneNumber,

 SupportExtension = extension

};

var vResults = new List<ValidationResult>();

var vContext = new ValidationContext(wp);

bool isValid = Validator.TryValidateObject(wp, vContext, vResults, true);

return wp;

We haven’t made any changes to the creation of our WarrantyProvider variable,

but the magic starts on the following line where we create our List<ValidationResult>

variable. You could have declared it specifically rather than using the generic, but I think

it’s a lot neater and shorter to use the var:

List<ValidationResult> vResults = new List<ValidationResult>();

var vResults = new List<ValidationResult>();

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

138

Whichever method you choose is entirely up to you. Just try to be consistent. Now

you may have noticed that you got some errors when you added this code. That’s

because you need to add the following using statement:

using System.ComponentModel.DataAnnotations;

You have created a list of validation results, but what does that mean? When we

check to see if we have any errors/validation results, we need a place to put them, and

since we need to have a ICollection<ValidationResult> to pass them to, it seems like

a pretty good idea to create one.

We then need to create our ValidationContext variable, which is what we use so our

validator knows what class or type our validation is going to be performed on.

Lastly, we have our bool value, which tells us if our validation is valid. This is done by

using the Validator class and TryValidateObject. The part that people tend to have the

most problem with when it comes to doing this is that last argument (true), as the default

is false. What does that mean? The default is not to check any of the properties other

than the “required” attribute (which we didn’t use yet so don’t panic if you aren’t finding

it in the code), so it wouldn’t check our regular expression and would validate as true no

matter what value we put in there. I like to think of that as a feature, not a very good one,

but a feature of the language.

I’m going to add a breakpoint to the return statement so we can check to see if our

validation is working. The good thing is, even if it’s not, we have built in a check to ask

the user if the information is correct and we will press n for no. Feel free to run your code

along with me, so you can be sure yours is working.

Navigate to the Data Entry menu and add a new warranty provider. The name

doesn’t matter as we aren’t going to save it, but I’m going to enter Will's Discount

Servers as the provider. For the phone number, I’m going to enter 12345678, which is

eight digits. Remember, we are looking for seven or 10 digits and our method code will

catch anything under seven. I skip the extension by pressing the Esc key. If all goes right,

we will be at our breakpoint, which you can see in Figure 4-1.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

139

If you hover over isValid, you will see that the value is false, which is good, as that

is what we expect. I expanded the results for vResults and as you can see the Count = 1

and we have our custom error message that we created. There are default error messages

that you could use, but they aren’t the best. Had we not created a custom message our

error message would have been: “The field SupportNumber must match the regular

expression '^(?=(?:.{7}|.{10})$)[0-9]*$'.”. If you are the only one using this

application, then by all means have at it, but the custom one is more helpful.

We are going to validate one more field before we point out an issue. If you haven’t

done so already, exit the application without saving the data. If you did save it, it’s not the

end of the world and I’m pretty sure I saved one by accident while testing.

Looking at our model, the only other field that makes sense right away to validate is

the ProviderName property. This will give me a chance to show you how not to validate

the phone number field at the same time without you needing to type any extra code to

later delete, as it’s wrong. We need to think about how we want to validate this property.

We know it can only be a total of 50 characters, so that’s a good place to start. Do we want

to have a minimum number of characters? I think we should have at least two characters

in this property, so we will do the following code right above the ProviderName property

just like you did for the SupportNumber.

[StringLength(50, MinimumLength = 2, ErrorMessage = "You must have between

2 and 50 characters for the Provider Name")]

public string ProviderName { get; set; }

We are now checking to be sure that we have at least two characters and no more

than 50. If we re-run the application and this time enter A as the provider name and

12345678 as the phone number, we should have two validation errors. Let’s try it.

Figure 4-2 shows the results.

Figure 4-1.  vResult value

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

140

So that you can see it better, I expanded the second value, which is our

SupportNumber property, but as you can see both of the validation errors are there. We

could have done something similar for our phone number and searched for numbers

between seven and 10 digits, but if you entered eight digits, it would be a valid number,

which isn’t what we wanted. That’s why we had to use the regular expression. I also

added an attribute to ProviderName, the Required attribute. Since this is a required

field, we need to add that attribute. Look in SQL Server Management Studio or in

MachineContext.cs and you’ll find the code in Listing 4-4.

Listing 4-4.  MachineContext.cs, WarrantyProvider

modelBuilder.Entity<WarrantyProvider>(entity => {

 �entity.Property(e => e.WarrantyProviderId).HasColumnName("Warranty

ProviderID");

 entity.Property(e => e.ProviderName)

 .IsRequired()

 .HasMaxLength(50)

 .IsUnicode(false);

 entity.Property(e => e.SupportNumber)

 .IsRequired()

 .HasMaxLength(10)

 .IsUnicode(false);

});

To fix this, all we do is add the Required attribute to the code:

[Required]

[StringLength(50, MinimumLength = 2, ErrorMessage = "You must have between

2 and 50 characters for the Provider Name")]

public string ProviderName { get; set; }

Figure 4-2.  Two validation errors

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

141

Now if we run our application and don’t enter anything for the provider name we get

the following error: "The ProviderName field is required".

The good news is the default error message for this one is actually helpful, so we

don’t need to change it.

Note O ne thing to keep in mind if you are writing an application that will be in
multiple languages. You’ll need to localize your custom error messages for the
proper language.

Why have we done this even though it’s not technically Entity Framework Core 2.0

code? Because if we didn’t, we’d get an error message when we try to save (in the case

of our provider name, we would). Since we are forcing a minimum number of seven

characters to our SupportNumber field, it will not throw an error unless you try to enter

too many numbers. I commented out my Validation code and tried to save the changes

in Figure 4-3.

Figure 4-3.  Entity Framework Core error

In this case, it’s throwing an exception because I entered a value for SupportNumber

that was 17 characters. As a result, we haven’t done any Entity Framework Code per

se, but we have saved ourselves from getting an Entity Framework Core error, so

we’ll go with close enough. I now put the validation back in place and enter the same

information; we are back to having some values in vResults.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

142

In an effort to make our lives a little bit easier, we aren’t going to change a lot of

code from what we already have. Although we are going to do this in two steps as we

have an option.

Go back to the CreateWarrantyProvider method in Program.cs. We are going to add

a check to see if our model is valid. If it’s not, then we are going to loop through the list of

VResults and display them to the user. Listing 4-5 shows the bottom section of the code

that we will be changing.

Listing 4-5.  CreateWarrantyProvider()

var vResults = new List<ValidationResult>();

var vContext = new ValidationContext(wp);

bool isValid = Validator.TryValidateObject(wp, vContext, vResults, true);

if (!isValid) {

 Console.WriteLine();

 foreach (var res in vResults) {

 �Console.WriteLine($"{((string[])res.MemberNames)[0]} threw an error

of:\r\n\t {res.ErrorMessage.ToString()}");

 }

 Console.ReadKey();

}

return wp;

If you run the code and enter A for the provider name and 123456789789456 for the

phone number, you should see the results in Figure 4-4.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

143

�Using Recursion
You need to make a decision—how are you going to get from this error to having a good

well formed WarrantyProvider object? You could wrap the code in a loop and check to

see if isValid is true at the end. If it’s not, then you’d loop through the code again. Or

you could use everyone’s favorite thing, recursion. A couple of things about recursion—

you need to have a way to exit the loop, because otherwise you will end up in an infinite

loop, which no one wants. Secondly, you have to be sure it’s actually doing what you

want it to do. Fortunately, I can show you a broken recursive call without you needing

to type anything extra. Listing 4-6 shows the code we just entered with the recursive

call added.

Listing 4-6.  Adding a Recursive Call

var vResults = new List<ValidationResult>();

var vContext = new ValidationContext(wp);

bool isValid = Validator.TryValidateObject(wp, vContext, vResults, true);

if (!isValid) {

 Console.WriteLine();

 foreach (var res in vResults) {

 �Console.WriteLine($"{((string[])res.MemberNames)[0]} threw an error

of:\r\n\t {res.ErrorMessage.ToString()}");

 }

Figure 4-4.  Displaying the error to the user

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

144

 Console.WriteLine("Hit any key to continue...");

 Console.ReadKey();

 CreateNewWarrantyProvider();

}

return wp;

If we build our application, we won’t get any errors, which is good. However, when

we run our code, we’ll see that we have a problem. To show you what I mean, I’m going

to add a new warranty provider. This first time I will enter A as the provider name and

123456789456 as the phone number; the second time I will enter Al’s Discount Servers

as the provider name and 1234567890 as the phone number. Figure 4-5 shows the issue.

Figure 4-5.  Wait, what happened to our values?

As you can see, the correct information was entered the second time and was

validated, but when we exit the method and display our data for the user to also validate,

we see the original data. What’s going on? Even though we did get valid data in our

second call to CreateNewWarrantyProvider(), the original value of wp is returned by the

method. However, we just need to press a few keys and our problems are solved. Change

your recursive call to:

wp = CreateNewWarrantyProvider();

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

145

Now when we do the exact same thing, we get the results shown in Figure 4-6.

Figure 4-6.  Recursion is now successfully implemented

There we have it; we have successfully entered the wrong data and then entered

the correct data. Our application is moving forward with that correct data. There

are some other things you can do in order to save the user some work if you want

to. You could have some argument with default values that you could pass back to

CreateNewWarrantyProvider if they are valid. Something like:

static WarrantyProvider CreateNewWarrantyProvider(string pName = "",

string pNumber = "", string pExt = "")

You could then do some checking to see if each of them has a value before prompting

the user to enter the same information again. Feel free to do that as some extra practice.

Let’s practice some more with using the DataAnnotations class. We will do some

work with the support log and support tickets that we haven’t touched yet. We will start

with the ticket, as you can’t have a log without a ticket. See Listing 4-7.

Listing 4-7.  SupportTicket.cs

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

146

namespace ComputerInventory.Models {

 public partial class SupportTicket {

 public SupportTicket() {

 SupportLog = new HashSet<SupportLog>();

 }

 public int SupportTicketId { get; set; }

 [Required]

 [DataType(DataType.DateTime)]

 public DateTime DateReported { get; set; }

 [DataType(DataType.DateTime)]

 public DateTime? DateResolved { get; set; }

 [Required]

 [StringLength(150)]

 public string IssueDescription { get; set; }

 [Required]

 public string IssueDetail { get; set; }

 [Required, StringLength(50)]

 public string TicketOpenedBy { get; set; }

 public int MachineId { get; set; }

 public Machine Machine { get; set; }

 public ICollection<SupportLog> SupportLog { get; set; }

 }

}

We added our validation to our model and there are two new things for us to look

at. The first is that we are able to specify that DateReported is a DateTime data type. The

good news is that DateTime isn’t our only choice. If you look at Figure 4-7, you’ll see a

couple of choices that you could have made.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

147

The second thing that is new is that we combined our attributes on one line for

TicketOpenedBy. You can chain together a whole bunch of attributes if you want,

although keep in mind at some point you’ll probably have to come back and look at it

again. If you want to set up error messages for your attributes, feel free to do that. For the

interest and readability of the readers, I’m going to leave them out in this example.

We are going to create a way to add support tickets, so let’s create a quick menu.

Since we have done this many times before, I’m going to create a basic one with

very little error checking. If you were going to use this application, you would want

to put a little more effort into it. Back in Program.cs, we’ll add a new method called

SupportMenu(), as shown in Listing 4-8.

Listing 4-8.  SupportMenu()

static void SupportMenu() {

 ConsoleKeyInfo cki;

 int result = -1;

 bool cont = false;

 do {

Figure 4-7.  Just a few of our choices for data types

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

148

 Console.Clear();

 WriteHeader("Support Menu");

 �Console.WriteLine("\r\nPlease select from the list below for what you

would like to do today");

 Console.WriteLine("1. Create a New Support Ticket");

 Console.WriteLine("2. Update a Support Ticket");

 Console.WriteLine("3. View All Tickets");

 Console.WriteLine("9. Exit Menu");

 cki = Console.ReadKey();

 try {

 result = Convert.ToInt16(cki.KeyChar.ToString());

 if (result == 1) {

 // CreateSupportTicket();

 }

 else if (result == 2) {

 //UpdateSupportTicket();

 }

 else if (result == 3) {

 //DisplaySupportTickets();

 }

 else if (result == 9) {

 // We are exiting so nothing to do

 cont = true;

 }

 }

 catch (System.FormatException) {

 // a key that wasn't a number

 }

 } while (!cont);

}

Just a little tip—I copied the body of the code from DataEntryMenu and replaced or

deleted what I needed. There is absolutely nothing new here, so we aren’t even going to

go through the code. When you run it, you’ll know if you missed anything.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

149

Before we create our method, we should think about what values we need to get from

our users. Since we are creating a ticket, we can assume that the DateReported should be

today, unless you are using yellow sticky notes to keep track of them before you log them

so we can get that for the user. We should be able to retrieve the username ourselves,

though we could double check that just to be sure it’s the right user.

Perhaps it will be used where everyone logs in as SupportAgent on this particular PC.

We’ll ask the user to verify that the name is correct but save them from typing if it is. They

will need to pick a machine and then we simply need a description and some detail.

Let’s get some basic functionality so we can get data into the table.

The first thing we need to do is modify DisplayAllMachines() to adjust the text that

doesn’t work. Listing 4-9 shows the updated method.

Listing 4-9.  DisplayAllMachines()

static string DisplayAllMachines(string textToDisplay) {

 Console.Clear();

 List<Machine> lMachine = GetListOfMachines();

 Console.WriteLine("Machine ID | Machine Name");

 foreach (Machine m in lMachine) {

 Console.WriteLine($"{m.MachineId,-11}| {m.Name}");

 }

 Console.WriteLine();

 Console.WriteLine(textToDisplay);

 Console.WriteLine("Hit the Esc key at anytime to exit the menu.");

 string machineId = GetNumbersFromConsole();

 if (machineId.Length > 0) {

 int machId = Convert.ToInt32(machineId);

 DisplayMachineDetail(machId);

 }

 return machineId;

}

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

150

Once you have made the changes, you should get the error: There is no argument

given that corresponds to the required formal parameter 'textToDisplay' of

'Program.DisplayAllMachines(string)'. You have two options. You can go to those

two locations and add an argument of "Enter the MachineId followed by the Enter

Key for more information" or you can add a default value for textToDisplay. If you

choose to go the default value route, your declaration will look like the following:

static string DisplayAllMachines(string textToDisplay = "Enter the

MachineId followed by the Enter Key for more information") {

It will still list the machine details, but the text makes a little bit more sense when we

get to running our code. Listing 4-10 shows the start of the code. After we have entered

the following code we will have all the data we need in order to create our support ticket,

just no way to save the data yet.

Listing 4-10.  CreateSupportTicket()

static void CreateSupportTicket() {

 string ticketOpenedBy = Environment.UserName;

 DateTime dateReported = DateTime.Now;

 int machineId;

 string issueDescription;

 string issueDetail;

 �string tempMachineId = DisplayAllMachines("Enter the MachineId followed

by the Enter Key for our Support Ticket.");

 bool machineIdReturned = Int32.TryParse(tempMachineId, out machineId);

 if (machineIdReturned) {

 Console.WriteLine("\r\nEnter a brief description of the issue:");

 issueDescription = GetTextFromConsole(5, false);

 Console.WriteLine("\r\nEnter a detailed description of the issue:");

 issueDetail = GetTextFromConsole(5, false);

 }

}

Because we have created a lot of our data entry methods, we don’t need to do a lot

here to get the information from the user. The next part of code we add will be in the if

block after issueDetail = GetTextFromConsole(5, false);, as shown in Listing 4-11.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

151

Listing 4-11.  Validating the Support Ticket

SupportTicket _supportTicket = new SupportTicket {

MachineId = machineId,

 TicketOpenedBy = ticketOpenedBy,

 DateReported = dateReported,

 IssueDescription = issueDescription,

 IssueDetail = issueDetail

};

var vResults = new List<ValidationResult>();

var vContext = new ValidationContext(_supportTicket);

bool isValid = Validator.TryValidateObject(_supportTicket, vContext,

vResults, true);

if (!isValid) {

 Console.WriteLine();

 foreach (var res in vResults) {

 �Console.WriteLine($"{((string[])res.MemberNames)[0]} threw an error

of:\r\n\t {res.ErrorMessage.ToString()}");

 }

 Console.WriteLine("Hit any key to continue...");

 Console.ReadKey();

}

Not very different from what we did before. The only interesting part here is the

only value that can be wrong is the description. Everything else is either handled by us

through code or the value can be any length string. So the only validation error we have

to worry about is that one, so we will check to see if we have that error. If we do, we’ll give

them a chance to fix it, update the value, and then we can save it (see Listing 4-12).

Listing 4-12.  Fixing the Error and Saving

if (!isValid) {

Console.WriteLine();

 foreach (var res in vResults) {

 �Console.WriteLine($"{((string[])res.MemberNames)[0]} threw an error

of:\r\n\t {res.ErrorMessage.ToString()}");

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

152

 if(((string[])res.MemberNames)[0] == "IssueDescription") {

 �Console.WriteLine("Please enter a description that is 50

characters or less.");

 do {

 issueDescription = GetTextFromConsole(5, false);

 } while (issueDescription.Count() <= 50);

 _supportTicket.IssueDescription = issueDescription;

 }

 }

Console.WriteLine("Hit any key to continue...");

Console.ReadKey();

}

Console.WriteLine("Saving new Support Ticket");

using (MachineContext context = new MachineContext()) {

 context.SupportTicket.Add(_supportTicket);

 context.SaveChanges();

 Console.WriteLine("Save complete!");

}

Would I do something like this in production code? Probably not. However, it does

show you some different ways of handing your errors. If you wanted to, you could create

a way of checking for all the possible error types and handle each one as they arise. This

is easier than killing the entire thing and starting over like we did in the first example.

We could run our code and test it, but we don’t have a way to view our results yet.

That’s okay because we have SQL Server Management Studio for that. Before you can

run your code, you’ll need to make sure you can get to it. In the Main menu, you need to

add Option 6, which will call the SupportMenu() method. Add the following code in the

appropriate location (if you aren’t sure where, just take a stab at it or download the code

online). One thing to note, I’m using Option 6 here, which we used for testing earlier. You

can move testing to Option 7 or just update the code like I have.

Console.WriteLine("6. Support Tickets and Log");

And then

else if (result == 6) {

 SupportMenu();

}

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

153

Lastly, if you haven’t already done so, uncomment CreateSupportTicket() in

SupportMenu(). I’m going to add the following record:

MachineId = 5

IssueDescription = Stuck at login screen

 = Server froze and Bob did a hard boot, now stuck at the log in screen.

Can't enter any information nor is there any movement of the mouse.

When you run your code, it should be pretty unremarkable. The only thing

you should see is the following two lines—“Saving new Support Ticket” and “Save

complete!”—going by very fast. Figure 4-8 is a view from the SQL Server Management

Studio showing the record in the table.

Figure 4-8.  Results in SQL Server Management Studio

As you can see, it’s very hard to read and we didn’t even try to display the full

message in IssueDetail. Obviously, this isn’t the way that we want our users to be

getting this information. Don’t worry, we’ll take care of that in a little while. For now we

can be satisfied in knowing that we are able to create support tickets.

I hope by now you have a better understanding of one of the ways of validating your

data. When we work on the MVC application in Chapters 6 and 7, you’ll see where this

method of validation really shines. It works pretty well in a WinForms application, but

there is of course another way you can validate your data.

�POCOs
If you haven’t done much reading on Entity Framework or Entity Framework Core,

you may not know what a POCO is. What can I say, we computer types (and people in

general) love acronyms. POCO stands for Plain Old CLR Objects, which is just a class that

isn’t directly tied to any framework-specific base class. So what does that mean? Let’s

look at a simple example, shown in Listing 4-13.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

154

Listing 4-13.  POCO, Machine.cs

using System;

using System.Collections.Generic;

namespace ComputerInventory.Models {

 public partial class Machine {

 public Machine() {

 SupportTicket = new HashSet<SupportTicket>();

 }

 public int MachineId { get; set; }

 public string Name { get; set; }

 public string GeneralRole { get; set; }

 public string InstalledRoles { get; set; }

 public int OperatingSysId { get; set; }

 public int MachineTypeId { get; set; }

 public MachineType MachineType { get; set; }

 public OperatingSys OperatingSys { get; set; }

 public ICollection<SupportTicket> SupportTicket { get; set; }

 }

}

There you go, that is a POCO, and you’ve been using it all along. I know some of you

are thinking, “no, that is our Entity Framework Core code, it’s not a POCO”. But a POCO is

a class that isn’t directly tied to any framework-specific base class. So take a look again, is

this class tied to any specific base class, in our case, Entity Framework Core 2.0?

Let’s talk a little bit in theory here before we do something with some regular plain

old classes. If you are new to Entity Framework, you probably didn’t know what lazy

loading was until I mentioned it because we can’t do it yet in Entity Framework Core.

That being said, maybe you still want to be able to do it even though it’s not natively

available in EF Core. You could create a class that would do all the work for you. It’s

not “true” lazy loading, but it would behave the same way. Let’s use our machine from

Listing 4-13 as an example. If we retrieve a machine record from the database, what do

we get in return if we want to retrieve the record that has a MachineId of 5?

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

155

•	 MachineId = 5

•	 Name = PORDC1

•	 GeneralRole = Domain Controller

•	 InstalledRoles = DNS, DHCP, AD DS

•	 OperatingSystemId = 24

•	 MachineTypeID = 1

•	 MachineType = Empty

•	 OperatingSys = Empty

Since we want to use lazy loading, we need a way of also retrieving a MachineType

and OperatingSys that is also populated. We have done this to an extent but we did it in

Program.cs. Let’s look at some code that we wrote for UpdateMachineDetails(), shown

in Listing 4-14.

Listing 4-14.  Using an include Statement to Get Related Data

using (MachineContext context = new MachineContext()) {

 mach = context.Machine

 .Include(o => o.OperatingSys)

 .Include(t => t.MachineType)

 .Where(x => x.MachineId == mId).FirstOrDefault();

 mWar = context.MachineWarranty

 .Include(p => p.WarrantyProvider)

 .Where(x => x.MachineId == mach.MachineId).FirstOrDefault();

}

Those include statements give us the equivalent of lazy loading and, as you can see,

if you wanted to do a large set of data, it would be a little bit more complicated to the

extent that you would need to do it in a loop and store your results in some sort of list

object. Keep in mind that Entity Framework Core is somewhat more geared toward web

development, so you wouldn’t want to be retrieving large amounts of data each time. To

be honest, even in desktop type applications, you don’t want to be pulling large amounts

of data every time if you can help it.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

156

So what can we do with classes that we haven’t already done? Well, if you are

asking that question, then you are one of those people who the rest of us love that puts

everything or just about everything in Program.cs or on the Form code page. Adding

classes to your application will help make it easier to follow and easier to maintain

and reduce code duplication. We already did that in our current application, although

we didn’t put it in a separate class. The simplest example I could find for this is the

ValidateYorN() method, shown in Listing 4-15.

Listing 4-15.  Helper Method

static bool ValidateYorN(string entry) {

 bool result = false;

 if (entry.ToLower() == "y" || entry.ToLower() == "n") {

 result = true;

 }

 return result;

}

There is something that I usually create called helper classes. I’m going to create a

new class to show how this could work. If you don’t want to and are quite comfortable

doing this, you can skip this section, as we aren’t going to add anything new. However,

if you are new to programming and don’t use classes a lot or at all, you’ll want to pay

attention.

�Helper Classes
We start off by creating a new class file. From the menu bar, choose Project and then

Add Class. A type of class should be selected. If not, click on it and change the name to

BasicValidation.cs. Once it’s created it should open. Then all you need to do is make

sure it looks like Listing 4-16.

Listing 4-16.  BasicValidation(), a Helper Class

using System;

using System.Collections.Generic;

using System.Text;

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

157

namespace ComputerInventory {

 public class BasicValidation {

 public static bool ValidateYorN(string entry) {

 bool result = false;

 if (entry.ToLower() == "y" || entry.ToLower() == "n") {

 result = true;

 }

 return result;

 }

 }

}

We have made the class public so it will be accessible from anywhere in the

application. If you aren’t familiar with creating classes, you should look into it. After this,

you’ll be able to fake it relatively well, but you’ll have a pretty large hole in your class

knowledge. To use this, it will be quite similar to what you have already been doing. After

doing a quick scan, I found that we are using this method in AddNewWarrantyProvider(),

so that is where I’m going to make my change. Since we aren’t going to be using this

method multiple times, I’m not going to bother creating a BasicValidation object, plus

I made the method static. For that reason, we don’t need it. Let’s take a look at part of our

code and find the needed changes, as shown in Listing 4-17.

Listing 4-17.  Calling the Method from the Helper Class

static void AddNewWarrantyProvider(WarrantyProvider wp) {

 bool cont = false;

 ConsoleKeyInfo cki;

 string result = string.Empty;

 Console.WriteLine("\r\nYou have entered the following:");

 Console.WriteLine($"Provider Name: {wp.ProviderName}");

 Console.WriteLine($"Provider Number: {wp.SupportNumber}");

 Console.WriteLine($"Provider Extension: {wp.SupportExtension}");

 Console.WriteLine("\r\nIs this information correct? [y or n]");

 do {

 cki = Console.ReadKey(true);

 result = cki.KeyChar.ToString();

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

158

 cont = BasicValidation.ValidateYorN(result);

 } while (!cont);

...

}

The functionality will be the same, but you can feel free to test it if you want. So

obviously we are going to do a little bit more than just create a helper class to check for

a Y or N character. You may be wondering why I keep referring to them as helper classes

and methods, well to be honest I forget who got me saying that but I remember the

reason. It’s because the class really doesn’t do anything on its own, but it helps to get

something done.

Another concept that is big and if you get into MVC even more so is separation of

concerns (SOC). So what does that mean? The concept is pretty simple but if you aren’t

careful you’ll find yourself breaking it a lot. The idea is that when you create a class that

it will specifically do that one thing and nothing else. Obviously, we haven’t done a good

job of that thus far, as we have pretty much put all of our code in Program.cs. However,

if we go with what we have, we have at least put all of our models into their own classes

and they do nothing else but give us a place to get our entity data. In the next example,

we are going to break free from our current model and create a class that will handle our

“business logic”. As a good rule of thumb, all of your business logic for you application

should be done outside of the model. It shouldn’t be on your form or in the case of a

console application, in the Program.cs (if you didn’t rename it) file.

Let’s create two new classes called SupportTicketLogEntry.cs and

ConsoleHelper.cs. The good news is that ConsoleHelper will pretty much be all copy

and paste so the hard part will be finding what you are looking for. We will populate

ConsoleHelper.cs first to help reduce the number of errors we get in our code while

typing. One last thing before we get to some more code. Something that I usually do is

leave the initial three using statements in my classes until I’m done with them and then

if I don’t use them, I will remove them. There are cases where I know that I won’t be

using System.Collections.Generic so I may delete that one right off, but I generally

don’t delete any of them until I’m ready to send my application to the world just in case.

See Listing 4-18.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

159

Listing 4-18.  ConsoleHelper.cs

using System;

using System.Collections.Generic;

using System.Text;

namespace ComputerInventory {

 public class ConsoleHelper {

 �public void WriteHeader(string headerText) => Console.

WriteLine(string.Format("{0," + ((Console.WindowWidth / 2) +

headerText.Length / 2) + "}", headerText));

 public char CheckForYorN(bool intercept) {

 ConsoleKeyInfo cki;

 char entry;

 bool cont = false;

 do {

 cki = Console.ReadKey(intercept);

 entry = cki.KeyChar;

 cont = BasicValidation.ValidateYorN(entry.ToString());

 } while (!cont);

 return entry;

 }

 public int GetNumbersFromConsole() {

 ConsoleKeyInfo cki;

 bool cont = false;

 string numbers = string.Empty;

 int rtnVal = -1;

 do {

 cki = Console.ReadKey(true);

 if (cki.Key == ConsoleKey.Escape) {

 cont = true;

 numbers = "";

 }

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

160

 else if (cki.Key == ConsoleKey.Enter) {

 if (numbers.Length > 0) {

 cont = true;

 }

 else {

 Console.WriteLine("Please enter an ID that is at least 1 digit.");

 }

 }

 else if (cki.Key == ConsoleKey.Backspace) {

 Console.Write("\b \b");

 try {

 numbers = numbers.Substring(0, numbers.Length - 1);

 }

 catch (System.ArgumentOutOfRangeException) {

 // at the 0 position, can't go any further back

 }

 }

 else {

 if (char.IsNumber(cki.KeyChar)) {

 numbers += cki.KeyChar.ToString();

 Console.Write(cki.KeyChar.ToString());

 }

 }

 } while (!cont);

 rtnVal = Convert.ToInt32(numbers);

 return rtnVal;

 }

 �public string GetTextFromConsole(int minLength, bool allowEscape =

false) {

 ConsoleKeyInfo cki;

 bool cont = false;

 string rtnValue = string.Empty;

 do {

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

161

 cki = Console.ReadKey(true);

 if (cki.Key == ConsoleKey.Escape) {

 if (allowEscape) {

 cont = true;

 rtnValue = "";

 }

 }

 else if (cki.Key == ConsoleKey.Enter) {

 if (rtnValue.Length >= minLength) {

 cont = true;

 }

 else {

 �Console.WriteLine($"Please enter least {minLength}

characters.");

 }

 }

 else if (cki.Key == ConsoleKey.Backspace) {

 Console.Write("\b \b");

 try {

 rtnValue = rtnValue.Substring(0, rtnValue.Length - 1);

 }

 catch (System.ArgumentOutOfRangeException) {

 // at the 0 position, can't go any further back

 }

 }

 else {

 rtnValue += cki.KeyChar.ToString();

 Console.Write(cki.KeyChar.ToString());

 }

 } while (!cont);

 return rtnValue;

 }

 }

}

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

162

�Expression-Bodied Members

All of the methods except for WriteHeader are copies of the versions from Program.cs.

You do need to change them to public and remove the static. WriteHeader was a great

example of a different way that you can write what is called expression-bodied members.

You can use this form when your method or property consists of a single expression.

Some people claim they are easier to read; perhaps after I get used to it and use them

more I’ll agree, but for now I’ll probably stick with the older version. This feature was

introduced in C# 6 and was expanded in C# 7, so if you haven’t seen it before, that is

probably why. So there we have it, we now have a bunch of duplicated code. If you want

to clean up Program.cs, just search for the methods that we added in ConsoleHelper.cs

and delete them from Program.cs. Wherever you get an error, reference the new method.

If you aren’t used to using classes, the next example will show you how.

The new class for handling support ticket log entries will look pretty similar to

what you have done in the past, although it will be all grouped together in one place as

opposed to being littered throughout Program.cs. See Listing 4-19.

Listing 4-19.  SupportTicketLogEntry.cs

using System;

using System.Collections.Generic;

using ComputerInventory.Models;

using Microsoft.EntityFrameworkCore;

using ComputerInventory.Data;

using System.Linq;

namespace ComputerInventory {

 public class SupportTicketLogEntry {

 private ConsoleHelper cHelper = new ConsoleHelper();

 public SupportTicketLogEntry() {

 }

 public List<SupportLog> RetreiveLogEntries(int ticketId) {

 List<SupportLog> logEntries = new List<SupportLog>();

 using(MachineContext context = new MachineContext()) {

 logEntries = context.SupportLog

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

163

 .Where(x => x.SupportTicketId == ticketId)

 .OrderBy(x => x.SupportTicket).ToList();

 }

 return logEntries;

 }

 public List<SupportTicket> RetreiveOpenTickets() {

 List<SupportTicket> openTickets = new List<SupportTicket>();

 using (MachineContext context = new MachineContext()) {

 openTickets = context.SupportTicket

 .Include(m => m.Machine)

 .Where(x => x.DateResolved == null).ToList();

 }

 return openTickets;

 }

 public void UpdateSupportTicket() {

 Console.Clear();

 cHelper.WriteHeader("Update Support Ticket");

 �Console.WriteLine("\r\nPlease Select an Open Support Ticket from

the List\r\n");

 List<SupportTicket> openTickets = RetreiveOpenTickets();

 string logEntry;

 foreach (var ticket in openTickets) {

 �Console.WriteLine($"Ticket Number: {ticket.SupportTicketId}

Machine Name: {ticket.Machine.Name}\r\n Description:

{ticket.IssueDescription}");

 }

 int ticketId = cHelper.GetNumbersFromConsole();

 Console.WriteLine();

 bool validEntry = false;

 int errorCount = 0;

 do {

 if (openTickets.Exists(x => x.SupportTicketId == ticketId)) {

 validEntry = true;

 }

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

164

 else {

 �Console.WriteLine($"{ticketId} is not a valid SupportId,

please try again");

 ticketId = cHelper.GetNumbersFromConsole();

 Console.WriteLine();

 errorCount++;

 }

 if (errorCount > 2) {

 // 4 times should be enough, initial try plus 3

 break;

 }

 } while (!validEntry);

 if (validEntry) {

 List<SupportLog> logEntries = RetreiveLogEntries(ticketId);

 Console.Clear();

 cHelper.WriteHeader("Update Support Ticket");

 Console.WriteLine("\r\n");

 if (logEntries.Count > 0) {

 foreach(var log in logEntries) {

 �Console.WriteLine($"{log.SupportLogEntryDate}: {log.

SupportLogEntry}");

 Console.WriteLine($" Entered By: {log.SupportLogUpdatedBy}");

 Console.WriteLine("==============================");

 }

 }

 else {

 Console.WriteLine("There are currently no Log Entries");

 }

 �Console.WriteLine("Please enter your notes, when you are done

hit the Enter Key");

 logEntry = cHelper.GetTextFromConsole(10);

 Console.WriteLine("\r\nIs this ticket now closed? Y or N");

 bool closeTicket = false;

 char yOrN = cHelper.CheckForYorN(true);

 if (yOrN == 'y' | yOrN == 'Y') {

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

165

 closeTicket = true;

 }

 AddSupportLogEntry(logEntry, closeTicket, ticketId);

 }

 else {

 �Console.WriteLine("I'm sorry it looks like you are having

trouble, please try again later.");

 }

 Console.WriteLine("Hit any key to continue...");

 Console.ReadKey();

 }

 private void AddSupportLogEntry(string entry, bool close, int ticketId) {

 Console.WriteLine("Saving new log entry");

 using(MachineContext context = new MachineContext()) {

 SupportLog sLogEntry = new SupportLog() {

 SupportTicketId = ticketId,

 SupportLogEntry = entry,

 SupportLogUpdatedBy = Environment.UserName,

 SupportLogEntryDate = DateTime.Now

 };

 context.SupportLog.Add(sLogEntry);

 int res = context.SaveChanges();

 Console.WriteLine($"{res} record saved");

 }

 if (close) {

 CloseTicket(ticketId);

 }

 }

 private void CloseTicket(int ticketId) {

 Console.WriteLine("Closing ticket...");

 using(MachineContext context = new MachineContext()) {

 �SupportTicket sTicket = context.SupportTicket.Where(x =>

x.SupportTicketId == ticketId).FirstOrDefault();

 sTicket.DateResolved = DateTime.Now;

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

166

 context.Update(sTicket);

 context.SaveChanges();

 Console.WriteLine("Ticket is closed");

 }

 }

 }

}

We’ll just work our way down the class file from top to bottom since there is quite a

bit there, although the good thing is by this point you should have seen everything that is

in here. It’s just more practice to help it sink in a little better.

We start by adding three using statements. This is another habit I got into, which for

some reason I put a space between what I added and what the system added for me. The

one upside is at a quick glance, I can tell what I needed in order to do what I did with the

class. If I’m looking for borrow some code from another project, I can get a pretty good

idea what namespaces I’m going to need.

I made the class public, but for what we are doing we really don’t need to, so if you

missed that you will still be okay. We are going to be using our ConsoleHelper class

throughout this class so I created a private field (variable) to handle it. That way, I don’t

have to keep recreating it throughout the class. I also only want it to be accessible from

within this class, which is why it’s private. Lastly before we get into the methods, I have

created a default constructor for our class. This is one of those things that object oriented

programming says is a good thing and it really doesn’t take up much space, so why not?

RetreiveLogEntries() is pretty straightforward. We are going to return a

List<SupportLog> to whatever calls it. We use a using statement to encapsulate our

LINQ query, and we use a where clause as we are only looking for log entries for one

ticket. We need to do an OrderBy so we can be sure they are in the order we want.

Hopefully you are now able to write this type of query in your sleep, but if not, don’t

worry about it. With practice, you will be able to.

RetreiveOpenTickets() is virtually the same as RetreiveLogEntries(), except we

needed to do an include and well as our Where. Since we are looking for open tickets,

it would make sense that DateResolved would be null for these tickets. We could have

also created a field in our table that would act as a flag to tell us if the ticket was still open

or not.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

167

UpdateSupportTicket() by far caused the most stress on our fingers. We are doing

a lot of the same steps we have done in the past. We clear the console window and add a

title (header) by using the method from our ConsoleHelper class. We get our list of open

tickets and display them to the user. If you had a lot of tickets, your window would fill

up pretty quickly, although you could page your results if you needed to since you now

know how to do that. Once the user selects a ticket, which we do by again calling one of

our helper methods, we display any log entries for that ticket. If there aren’t any entries,

we tell the user that. The user then updates the ticket with the new information, lets us

know if it’s closed or not, and then saves their work.

AddSupportLogEntry() does what it says. This is where we add the entry to our

DBContext and save it to the database. Once that is done if the ticket is to be closed we

call CloseTicket(). Close ticket retrieves the SupportTicket we are working with and

updates DateResolved to the current date and time. It then updates DBContext and saves

it to the database. Figure 4-9 shows all of this in action.

Figure 4-9.  Using our new classes

I chose to leave the ticket open at this stage so we’ll have an open ticket for our next

part. Hopefully by now, you know how to get this working. If not, compare your code to

the chapter code on the website.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

168

�Validating Using a Class
Let’s say that we want to validate our data, but we don’t want to use the DataAnnotations

namespace for some reason, or we just want to have more control over what we are

doing. The obvious choice is to do it ourselves since we are the ones who want the

control. We will do this by creating a new class called ModelValidation. Why not put our

model validation with our regular validation (remember we created BasicValidation.cs)?

If we are using SOC as our guideline, we would want to keep them separated, as they are

doing two different things. That is why we are going to have two separate classes.

We will first do a simple validation for SupportLog. We will pass a SupportLog object

to our method and return a bool letting us know if the SupportLog object has valid data

in it and it’s safe to save or update. We could call this method before we try to save or

update our object.

Let’s think about what we need to do. If we are updating our object when we need

to have a SupportLogId, but if we are doing an initial save, then we don’t need to have

it. I think it would then make sense to know what we are trying to do. Along with having

an argument for our SupportLog object, we will also create a string argument called

UpdateOrSave.

Going down this list in SupportLog.cs, the next thing is a DateTime. We know we

need this, but do we care what the value is? I’m going to say that we do care, but how

can we do this? We have a couple of options—we can be sure that the value is within

x seconds of the time right now, but that’s not a good idea. Let’s say that the poor guy

using our application enters his log entry at 23:59:59 and our code doesn’t execute until

00:00:01. If we check that his log entry date is today it will actually fail. So I think for now

we’ll go with one that was created in the last 180 seconds. That should give plenty of time

for processing to take place.

The next is our actual log entry. We obviously want something here—the question

is how much of that something do we want? To make life easier, let’s go with a length of

at least 10. This way you can enter "It's fixed" and be okay. SupportLogUpdated is

similar, although we are just looking for a name, so let’s say 2 is a good number. This way,

Al can do his job.

Now for the last one, SupportTicketId. This one is technically tricky. Do we just care

that we have a SupportTicketId (option 1) or do we want to see if that SupportTicketId

is valid (option 2)? If you answered option 1, then you like to live life on the edge. Right

now it’s pretty safe to say that our SupportTicketId is going to be valid, but what about

in the future if your program is expanded to where the user could just enter all the

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

169

information manually for a “quick update” and the SupportTicketId is 8675309 and they

enter 8679309? Well, there is a chance that the second ticket hasn’t actually been created

yet and thus is not a valid ticket number. Now that we have some working notes, let’s

create our class to see how it could be implemented. The same could have been argued

for SupportLogId. Perhaps if we decide to let users modify support log entries, we can

add the validation then. See Listing 4-20.

Listing 4-20.  ModelValidation.cs

using System;

using System.Collections.Generic;

using System.Text;

using ComputerInventory.Models;

using ComputerInventory.Data;

using System.Linq;

namespace ComputerInventory {

 public class ModelValidation {

 public ModelValidation() {

 }

 �public bool ValidateSupportLog(SupportLog supportLog, string

updateOrSave) {

 bool valid = true;

 if(updateOrSave.ToLower() == "update") {

 valid = SupportTicketIdExists(supportLog.SupportTicketId);

 }

 if (supportLog.SupportLogEntryDate < DateTime.Now.AddSeconds(-180)) {

 valid = false;

 }

 if (supportLog.SupportLogEntry.Length < 10) {

 valid = false;

 }

 if (supportLog.SupportLogUpdatedBy.Length < 2) {

 valid = false;

 }

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

170

 return valid;

 }

 public bool SupportTicketIdExists(int supportTicketId) {

 bool exists = false;

 using (MachineContext context = new MachineContext()) {

 �exists = context.SupportTicket.Any(x => x.SupportTicketId.

Equals(supportTicketId));

 }

 return exists;

 }

 }

}

�LINQ Using .Any to Check for Existing Records

Let’s start by looking at SupportTicketIdExists(). You may recall that we checked

to see if a record existed in the database. This was at the same time we were checking

to see if the operating system or machine type existed. In those instances, we used a

pretty simple query where we checked to see if the IQueryable<T> had a count that was

greater than zero. That is fine and does work, but there is another way to get the same

functionality and will less overhead. By using .Any, we check to see if there is a record

that meets our criteria, and if so, let us know. If you hover over .Any, you will see that it

returns a type of bool, which is all we are looking for in this case. We just want a simple

yes or no.

The rest of the error checking for ValidateSupportLog is pretty rudimentary and I’m

sure if you put some thought into it, you could probably do a slightly better job. However,

what we are interested in is checking to see if our DateTime value is the value we want

versus just a DateTime. If we look at WarrantyProvider.cs, we see that we used a regular

expression to check SupportNumber. We could use the same regular expression in our

class as well, although we would need to make the appropriate reference in order to use

regular expressions in our class.

I guess we are going to need to test this. The simplest test we can do is to change our

SupportLogEntryDate to 2000 seconds before right now. Add a really short log entry

and change the SupportTicketId to a number you know doesn’t exist. We will start by

making the time 2000 seconds before right now, as shown in Listing 4-21.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

171

Listing 4-21.  Updates to AddSupportLogEntry()

private void AddSupportLogEntry(string entry, bool close, int ticketId) {

 bool modelIsValid = false;

 ModelValidation mv = new ModelValidation();

 Console.WriteLine("Saving new log entry");

 using(MachineContext context = new MachineContext()) {

 SupportLog sLogEntry = new SupportLog() {

 SupportTicketId = ticketId,

 SupportLogEntry = entry,

 SupportLogUpdatedBy = Environment.UserName,

 SupportLogEntryDate = DateTime.Now.AddSeconds(-2000)

 };

 modelIsValid = mv.ValidateSupportLog(sLogEntry, "save");

 if (modelIsValid) {

 context.SupportLog.Add(sLogEntry);

 int res = context.SaveChanges();

 Console.WriteLine($"{res} record saved");

 }

 }

 if (modelIsValid) {

 if (close) {

 CloseTicket(ticketId);

 }

 }

 else {

 �Console.WriteLine("There is a problem with your Entry, please try

again");

 Console.Write("Hit any key to continue...");

 Console.ReadKey();

 }

}

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

172

We added a bool called modelIsValid so we would have a way of knowing if we have

a valid object. Then we created our ModelValidation object so we can check our model

against the method we created in that class. We check to see if our model is valid. It’s

not valid, as we subtract 2000 seconds (you have to add a negative number to subtract).

Since our model isn’t valid, we tell the users that there is a problem. They are left

wondering what is wrong (see Figure 4-10).

Figure 4-10.  Testing our new code

As you can see, we didn’t try to save the invalid data back to the database. The

bad news is we have no idea what is wrong. You may have also noticed that the time is

12:00:00 AM. That is because in the database, our field type is Date and not DateTime.

Oops. Don’t worry, we planned that and are going to fix it in Chapter 5.

�Adding a Class to a Class File

Let’s fix the current issue. Right now we know we have an error, but we don’t know

what it is. To find it, we will add a class to ModelValidation.cs called ErrorList.

Now you could create an entirely new class file if you wanted, but since we are only

going to use ErrorList from within ModelValidation and with the object reference to

ModelValidation, we’ll put it in that file. Adding a class to an existing class file is quite

simple. Take a look at Listing 4-22 and you’ll see what we are adding and where.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

173

Listing 4-22.  Adding a Class to a Class

namespace ComputerInventory {

 public class Errors {

 public int Position { get; set; }

 public string FieldName { get; set; }

 public string Error { get; set; }

 }

 public class ModelValidation {

 public List<Errors> errorList;

 public ModelValidation() {

 errorList = new List<Errors>();

 }

 �public bool ValidateSupportLog(SupportLog supportLog, string

updateOrSave) {

 . . .

See, that was quite simple, wasn’t it? Now we have a way to track our errors

and we even created a List<Errors> to keep track of them. We created a position

variable when we validate against a list of objects. We added to our default

constructor an initialization of the errorList variable so it will be ready to go if we

need it. These default constructors can come in handy. Lastly, we added the start of

ValidateSupportLog so you know where you are in our code of ModelValidation.cs.

Now that you have a way of knowing where the issue is, let’s make some changes so

you can use it. The changes will be pretty simple and since we are not working against a

list, we will have our value of position be zero. See Listing 4-23.

Listing 4-23.  Updates to ValidateSupportLog()

public bool ValidateSupportLog(SupportLog supportLog, string updateOrSave) {

 bool valid = true;

 Errors error;

 if (updateOrSave.ToLower() == "update") {

 valid = SupportTicketIdExists(supportLog.SupportTicketId);

 error = new Errors {

 Position = 0,

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

174

 FieldName = "SupportTicketId",

 Error = "Not a valid SupportTicketId"

 };

 errorList.Add(error);

 }

 if (supportLog.SupportLogEntryDate < DateTime.Now.AddSeconds(-180)) {

 valid = false;

 error = new Errors {

 Position = 0,

 FieldName = "SupportLogEntryDate",

 Error = "Date is not valid"

 };

 errorList.Add(error);

 }

 if (supportLog.SupportLogEntry.Length < 10) {

 valid = false;

 error = new Errors {

 Position = 0,

 FieldName = "SupportLogEntry",

 Error = "Enter at least 10 characters."

 };

 errorList.Add(error);

 }

 if (supportLog.SupportLogUpdatedBy.Length < 2) {

 valid = false;

 error = new Errors {

 Position = 0,

 FieldName = "SupportLogUpdatedBy",

 Error = "Enter at least 2 characters"

 };

 errorList.Add(error);

 }

 return valid;

}

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

175

One thing that could be new to some is the following code:

error = new Errors {

 Position = 0,

 FieldName = "SupportLogUpdatedBy",

 Error = "Enter at least 2 characters"

};

It is a somewhat simpler version of this code:

error = new Errors();

error.Position = 0;

error.FieldName = "SupportLogEntryDate";

error.Error = "Date is not valid";

In the grand scheme of things, it really doesn’t save you a lot. However, I thought I

would bring it up in case you have been looking for a different way of handling that with

slightly fewer keystrokes.

Now we just need to make the changes to AddSupportLogEntry(). I include the

entire method, as I also “broke” SupportLogEntry and want to show you how I did that.

See Listing 4-24.

Listing 4-24.  AddSupportLogEntry() Updates

private void AddSupportLogEntry(string entry, bool close, int ticketId) {

 bool modelIsValid = false;

 ModelValidation mv = new ModelValidation();

 Console.WriteLine("Saving new log entry");

 using (MachineContext context = new MachineContext()) {

 SupportLog sLogEntry = new SupportLog() {

 SupportTicketId = ticketId,

 SupportLogEntry = "broke",

 SupportLogUpdatedBy = Environment.UserName,

 SupportLogEntryDate = DateTime.Now.AddSeconds(-2000)

 };

 modelIsValid = mv.ValidateSupportLog(sLogEntry, "save");

 if (modelIsValid) {

 context.SupportLog.Add(sLogEntry);

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

176

 int res = context.SaveChanges();

 Console.WriteLine($"{res} record saved");

 }

 }

 if (modelIsValid) {

 if (close) {

 CloseTicket(ticketId);

 }

 }

 else {

 Console.WriteLine("There is a problem with your Entry");

 foreach(var error in mv.errorList) {

 Console.WriteLine($"{error.FieldName} {error.Error}");

 }

 }

}

Even though I typed more than 10 characters, the value I passed to the validator

was not more than 10, and as a result it is now displaying two helpful error messages.

Figure 4-11 shows both errors. Before you forget, go back and change your code so it

passes the proper values.

SupportLog sLogEntry = new SupportLog() {

 SupportTicketId = ticketId,

 SupportLogEntry = entry,

 SupportLogUpdatedBy = Environment.UserName,

 SupportLogEntryDate = DateTime.Now

};

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

177

�Summary
If you are currently not using multiple classes in your applications, I hope that this has

helped to show you why it’s a good thing to do so. Just think if you have 150 different

methods in your application all in the class file and let’s say the average number of lines

per method was 30. That would mean that you would have around 4,500 lines of code in

that one file. I’m not saying that is a lot or a little, but if you can group them a little better

and put those 150 methods into five different classes, for example, you are only talking

about 900 or so lines of code for each. It would be a lot easier to sift through 900 lines

than 4,500 lines.

You should also have a better understanding of how to do some different types of

data validation in your application. When you do the ASP.NET MVC Core Application

starting in Chapter 6, you will see where using the DataAnnotations namespace is really

helpful and shines. We also added a new LINQ tool to our toolbox that I think some of

you will find useful in your daily programming.

At this point, you could go back through your code in Program.cs and start to move

things out to BasicValidation.cs and to ConsoleHelper.cs to see just how much of a

difference it makes. You could also create some other classes to hold the business logic

for the manipulation of your models, like we did with SupportTicketLogEntry.cs.

Figure 4-11.  Displaying both errors

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

178

One final tip about creating and maintaining classes. When you are working with

them, some people find it’s easier to keep all of your methods in alphabetical order.

However, I usually leave my constructors at the top. After making that change, the class

in Solution Explorer looks like Figure 4-12.

Figure 4-12.  Class viewed in Solution Explorer

This is just a small class but because of that it makes it easier to see the benefit. If I

want to go to my code for RetreiveOpenTickets(), I can just double-click on it in the

list and it will bring me to that section of code. I can also find it quicker, as I know that

my list is in alphabetical order, so I can quickly scan past all the letters I don’t need to

find the Rs.

One more thing we covered rather quickly was the use of expression-bodied

members. If this is something that interests you because you just love the look of lambda

expressions, then take some time to do some research on it. Also remember that you

can do this with more than just methods; you can also do this with property get and set

statements, constructors, finalizers, and indexers. Since it’s new, I’m sure some of you

may not have even known that it existed.

Chapter 4 Data Validation and POCOs

www.EBooksWorld.ir

179
© Derek J. Rouleau 2018
D. J. Rouleau, Beginning Entity Framework Core 2.0, https://doi.org/10.1007/978-1-4842-3375-7_5

CHAPTER 5

Stored Procedures,
Table Design,
and Modifications
Although it might sound like this is going to be a horribly long and tedious chapter, I’m

hopeful that you will find it to be the opposite. We aren’t going to dive deeply into theory,

as that would require an entire other book. What we are going to talk about is how to use

stored procedures and how you should try to structure your tables and thoughts about

them when working with Entity Framework Core 2.0.

�Stored Procedures
The first thing we cover is the use of stored procedures in Entity Framework Core 2.0. If

you aren’t familiar with stored procedures, they can be quite helpful. DBAs love them

because they give them a chance to be programmers. Stored procedures are groups of

one or more Transact-SQL statements that are saved and run on the database server.

Like the methods that we have been writing, stored procedures will accept input

parameters and return multiple values to the calling program, which are in the form of

output parameters.

It’s pretty simple when you think about it—input parameters for inputting data and

output parameters for returning or outputting data. Stored procedures can also have

programming statements that perform operations on the database or calls to other

stored procedures. What’s nice is that they will let you know if the procedure completed

successfully or not and can report why the procedure failed. One of the benefits of using

stored procedures is that they reduce the amount of network IO, as there is less traffic

www.EBooksWorld.ir

180

going between the DBMS (Database Management System) and the client. If you have

been doing this long enough, you can probably think of a few processes that are IO

intensive and on a web application that is really frowned upon.

Another benefit is code reuse. Let’s say you have a couple of applications that all

do something similar but different, but there are a handful of operations that are the

same for each application. Instead of having to write the same code multiple times or

having DLL files and remembering to maintain them, you can store the code in a stored

procedure. This also makes code maintenance easier, as you make changes in only one

place. Although you do need to be sure that it doesn’t break one of those many places.

We start with a simple stored procedure that mimics some code that we have

already written. The procedure returns a list of SupportLog entries based on the

SupportTicketId. Granted, this is something you can do with a class, but if you are new

to stored procedures, it’s helpful to start with something that is simple and easy to wrap

your head around. If you are a stored procedure guru, you’ll probably not find this overly

helpful.

One way you can create a stored procedure is to open SQL Server Management

Studio, navigate to your database (in our case, BegEfCore2), and then look for the

Programmability folder. Within that, find the Stored Procedures folder. Right-click it

and choose New ➤ Stored Procedure. See Figure 5-1.

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

181

When you create your new stored procedure, you should see something similar to

Listing 5-1.

Listing 5-1.  Stored Procedure Template

-- ==

-- Template generated from Template Explorer using:

-- Create Procedure (New Menu).SQL

--

-- Use the Specify Values for Template Parameters

-- command (Ctrl-Shift-M) to fill in the parameter

-- values below.

--

-- This block of comments will not be included in

-- the definition of the procedure.

-- ==

Figure 5-1.  SQL Server Management Studio

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

182

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Author: <Author,,Name>

-- Create date: <Create Date,,>

-- Description: <Description,,>

-- ===

CREATE PROCEDURE <Procedure_Name, sysname, ProcedureName>

 -- Add the parameters for the stored procedure here

 <�@Param1, sysname, @p1> <Datatype_For_Param1, , int> =

<Default_Value_For_Param1, , 0>,

 <�@Param2, sysname, @p2> <Datatype_For_Param2, , int> =

<Default_Value_For_Param2, , 0>

AS

BEGIN

 -- SET NOCOUNT ON added to prevent extra result sets from

 -- interfering with SELECT statements.

 SET NOCOUNT ON;

 -- Insert statements for procedure here

 SELECT <@Param1, sysname, @p1>, <@Param2, sysname, @p2>

END

GO

The first thing to note here is we have the SET ANSI_NULLS ON line, which may be a

bit confusing. What this is saying is that we are going to handle the equals (=) and not

equal to (<>) operators in an ISO-compliant way. There is a very good write up on the

Microsoft website if you search for SET ANSI_NULLS that explains just what that means.

The next line is SET QUOTED_IDENTIFIER ON, which is very similar to ANSI_NULLS in

that by setting it to on, you will be using quotation marks in an ISO-compliant manner.

We then come to the CREATE PROCEDURE line. I think the template is a bit confusing

the first time you look at it. All it’s saying is what are you going to name your procedure.

I generally add sp_ to the front of my stored procedure names so they jump out a little bit

more when I’m looking at my code.

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

183

The great thing about stored procedures is you can use parameters to pass values

into the stored procedure to make them a bit more useful. Since the point of stored

procedures is reusability, that makes a lot of sense. In this example, we aren’t using

a default value, but if you were, you would assign that value when you create the

parameter.

The template explains what SET NOCOUNT ON means, but if you want more of a

description, feel free to look it up. Lastly is the statement, which as you can see from the

example, isn’t too exciting.

If you use the Ctrl+Shift+M command, you can fill in the parameter values of the

procedure. Figure 5-2 shows the procedure all filled out. Of course, you can just enter the

same information manually.

Figure 5-2.  Stored procedure template parameters

This makes it a bit easier, but you still have to edit a few things or add them if you

need more parameters. Either way, just make sure your stored procedure looks like

Listing 5-1a before continuing.

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

184

Listing 5-1a.  Creating the Stored Procedure

-- ==

-- Template generated from Template Explorer using:

-- Create Procedure (New Menu).SQL

--

-- Use the Specify Values for Template Parameters

-- command (Ctrl-Shift-M) to fill in the parameter

-- values below.

--

-- This block of comments will not be included in

-- the definition of the procedure.

-- ==

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Author: Derek J Rouleau

-- Create date: 12-15-2017

-- Description: Retrieves Support Log Entries Based on SupportTicketID

-- ===

CREATE PROCEDURE sp_GetSupportLogEntries2

 -- Add the parameters for the stored procedure here

 @SupportTicketID int

AS

BEGIN

 -- SET NOCOUNT ON added to prevent extra result sets from

 -- interfering with SELECT statements.

 SET NOCOUNT ON;

 -- Insert statements for procedure here

 SELECT

 SupportLogID,

 SupportLogEntry,

 SupportLogEntryDate,

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

185

 SupportLogUpdatedBy,

 SupportTicketID

 FROM SupportLog

 WHERE SupportTicketID = @SupportTicketID

END

GO

I left some of the default text in there so you can see it. If you want to, you could fill

in the Author, Create Date, and Description. That is always a good idea in a production

environment or even a test environment so if you have any questions you know who

to blame (I mean go to). When you are ready, click Execute. It will create your stored

procedure and add it to your Stored Procedures folder.

As you can see, stored procedures are nothing more than SQL queries or statements

that are saved on the server that you can pass parameters to. In this case, we are passing

in one parameter called @SupportTicketID and it’s of type int. We then can use it in our

query like we would any other value or variable.

�Calling a Stored Procedure with One Parameter
Now that you have a stored procedure, what can you do with it? In this example, I’m

going to create a hidden menu item on the Main menu for testing. This way, we can just

do a quick test without having to dive into the menu. The key is remembering to remove

it when you get beyond the testing stage. Within our MainMenu() method, I added the

following, which is essentially a hidden menu for doing more testing:

else if(result == 7) {

 using(MachineContext context = new MachineContext()) {

 context.Database.OpenConnection();

 �List<SupportLog> lst = context.SupportLog.FromSql

("sp_GetSupportLogEntries @p0", 1).ToList();

 }

}

I put a breakpoint on the List line so that I can easily test it without having to output

anything to the console (although writing a simple loop would be fairly easy). Figure 5-3

shows you how I tested the code to be sure that the stored procedure and call are working.

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

186

It looks like it’s working, as we have one record in the table for SupportTicketId 1

and the data looks correct. I think we can call that a good first test and can assume that

our stored procedure is working correctly.

In Entity Framework Core, we have to use FromSQL in order to execute stored

procedures to get data and then use ExecuteSqlCommand for CRUD operations. In

our example, we have a parameter even though you could have a stored procedure

that doesn’t have parameters. In the first example (there will be more), we called our

parameter @p0. This is because we want to work the parameter at position 0 in the list of

parameters. If we had more parameters, they would be @p1, @p2, etc.

Let’s say you don’t like to use @p0, @p1, etc., and you want to use something a bit

more familiar. The good news is you can do that too.

else if(result == 7) {

 using(MachineContext context = new MachineContext()) {

 context.Database.OpenConnection();

 �List<SupportLog> lst = context.SupportLog.FromSql

("sp_GetSupportLogEntries {0}", 1).ToList();

 }

}

As you can see, we replaced @p0 with {0}, which will be familiar to most people

who have been programming in C# for any length of time. If you rerun the application

and choose the hidden/testing option, you should get the same results shown in

Figure 5-2.

Figure 5-3.  Testing the stored procedure

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

187

�Using Parameter Names

Both of these ways are great, but let’s say that for some reason, you need to pass your

parameter by name because you were told you have to, which is always a good reason. In

order to pass the parameter by parameter name, you have to create a DbParameter or in

this case a SqlParameter that inherits from DbParameter.

else if(result == 7) {

 using(MachineContext context = new MachineContext()) {

 context.Database.OpenConnection();

 var sTicketIdParam = new SqlParameter("@SupportTicketID", 1);

 �List<SupportLog> lst = context.SupportLog.FromSql("sp_

GetSupportLogEntries @SupportTicketID", sTicketIdParam).ToList();

 }

}

In order to do this, you either have to use the fully qualified name for SqlParameter

like this:

var sTicketIdParam = new System.Data.SqlClient.SqlParameter("@Support

TicketID", 1);

Or you can just add using System.Data.SqlClient; to your class file. If I’m going to

use something only one time in a class, I often just use the fully qualified name and don’t

add the namespace. Whichever method you use, try to be consistent. Figure 5-4 shows

that we are using our parameter and that we have received the same output.

Figure 5-4.  Output using parameters

One nice thing about using SQL parameters is that they help to shield you from SQL

Injection. DBContext is supposed to help protect us from SQL Injection attacks, but if you

are looking for that extra layer of protection, SQL parameters are the way to go.

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

188

�SQL Injection

If your job requires you to work with outside-facing databases or if you are just worried

that you may eventually have an employee who wants to cause harm to your business,

you should understand what SQL Injection is. This section explains one of the most

commonly given examples for SQL Injection and from there you can do some more

reading on your own (if it scares you enough).

Let’s say you have a simple login window for your application or website, whereby

the user enters their credentials. Your form or website may have something that looks

like the following:

Username: John Smith

Password: Password123

In your code, you would see something similar to this:

userName = username.Text();

userPassword = password.Text();

string sqlString = string.Format("SELECT * FROM Users WHERE uName = '{0}'

AND Pass = '{1}'", userName, password);

This would result in a query string that looks like this:

SELECT * FROM Users WHERE uName = "John Smith" AND Pass = "Password123"

Okay, everything looks good, right?

Now let’s say the person doesn’t enter their username or password, but enters the

following:

Username: “ or “”=”

Password: “ or “”=”

Now all of a sudden our SELECT statement is:

SELECT * FROM Users WHERE uName = "" or ""="" AND Pass ="" or ""=""

The bad news is that this is a valid statement and it will return all the rows from the

Users table.

Lastly, everyone’s favorite:

Username: John Smith

Password: Password123; DROP TABLE Accounts

SELECT * FROM Users WHERE uName = "John Smith" AND Pass = "Password123";

DROP TABLE Accounts

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

189

This will do the SELECT as normal, but it will also drop the table after the SELECT

query. That is going to result in you or someone else having a really bad day!

There are lots more fun and exciting ways for someone to perform SQL Injection.

These are just two of the most popular examples that are out there.

DBContext is supposed to provide a layer of protection as well as using SQL

parameters. When you are using stored procedures with Entity Framework Core, it’s

a good idea to use the parameters if you are concerned with these types of attacks.

Because you aren’t using DBContext directly to access the database, you are instead

interacting directly with the database. When in doubt, better safe than sorry.

�Inserting Into Multiple Tables
This next example is something that you are more likely to see in a database of stored

procedures. We are going to create a stored procedure to add a new support ticket and a

new log entry that simply says “Ticket Created”. Ticketing software often requires the first

log entry to indicate that the ticket was created by a certain user, for some reason. This is

also a great way to show you how this process works. See Listing 5-2.

Listing 5-2.  Sp_AddNewSupportTicket

USE [BegEFCore2]

GO

/****** Object: StoredProcedure sp_AddNewSupportTicket

 Script Date: 11/3/2017 10:19:04 PM ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE PROCEDURE sp_AddNewSupportTicket

 -- parameters for the stored procedure

 @UserName varchar(50),

 @EnteredOn date,

 @IssueDescription varchar(150),

 @IssueDetail varchar(MAX),

 @MachineId int,

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

190

 @NewSupportTicktId int = NULL Output

AS

BEGIN

 -- SET NOCOUNT ON added to prevent extra result sets from

 -- interfering with SELECT statements.

 SET NOCOUNT ON;

 -- Insert statements for procedure here

 �INSERT INTO dbo.SupportTicket (DateReported, IssueDescription,

IssueDetail, MachineId, TicketOpenedBy)

 �VALUES (@EnteredOn, @IssueDescription, @IssueDetail, @MachineId,

@UserName)

 SET @NewSupportTicktId = SCOPE_IDENTITY()

 �INSERT INTO dbo.SupportLog (SupportLogEntry, SupportLogEntryDate,

SupportLogUpdatedBy, SupportTicketID)

 VALUES ('Ticket Created', @EnteredOn, @UserName, @NewSupportTicktId)

END

Just like before, we create the parameters to use in our statements that are to follow.

As you can see, I gave them names in some cases that don’t match the field names in the

tables. The parameter names don’t need to be the same as the fields. The last one, called

@NewSupportTicketId, is used in our second statement and is one that your application

can get in return. SCOPE_IDENTITY gets the value that is inserted into an identity column

in the current session and within the current scope. So, when we do our INSERT, even

though someone else could be doing one at the same time, we should get the identity

value that we created by doing the INSERT and not someone else’s.

The two INSERT INTO statements are fairly straightforward, although keep in mind

that order is important, since you can’t insert your log entry before you create your ticket.

If you are new to working with SQL Server or any other DBMS, this is a good place to

mention that what we are doing here is something called a transaction. What that means

is that we have a group of one or more statements that we want to either work in their

entirety or fail and have no data written to the database. The great thing is you can set

up error checking and if you do get errors, you can roll back your transactions like they

never happened. If you’ll be doing a lot of work with databases, it will behoove you to

look into transactions.

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

191

�Multiple Properties

Just like with a single property, using multiple properties is pretty straightforward (see

Listing 5-3). The key is making sure that your properties and values match. Nine out of

ten times, if you’re going to have a problem when using multiple properties, it’s because

you messed up the order of your properties and values.

Listing 5-3.  Adding Multiple Properties

else if(result == 7) {

 using(MachineContext context = new MachineContext()) {

 context.Database.OpenConnection();

 var userNameParam = new SqlParameter("@UserName", "Derek");

 var enteredOnParam = new SqlParameter("@EnteredOn", DateTime.Now);

 �var issueDescriptionParam = new SqlParameter("@IssueDescription",

"Needs Office 2016");

 �var issueDetailParam = new SqlParameter("@IssueDetail", "Bob needs

Office 2016 installed so he can do his job.");

 var machineIdParam = new SqlParameter("@MachineId", 10);

 �context.Database.ExecuteSqlCommand("sp_AddNewSupportTicket @UserName,

@EnteredOn, @IssueDescription, @IssueDetail, @MachineId", userNameParam,

enteredOnParam, issueDescriptionParam, issueDetailParam, machineIdParam);

 }

}

Obviously, everything here is hardcoded to show how it works in a quick example.

However, you could do all of your work by validating your model and then use the model

values as your variable values. If you run your code, there isn’t a whole lot to look at, but

if you open SQL Server Management Studio, you can see that you have two new records

(see Figure 5-5).

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

192

In my case, the next SupportTicketID was 2. In one call, we have managed to update

two tables with similar data from property names that didn’t match either table’s field

names. I think it’s safe to say that the second stored procedure is slightly more helpful

than the first, although in both cases, you could have just as easily done the same thing

in your code.

If you can do this with code in your classes, why bother with stored procedures?

Years ago, stored procedures were a lot more useful, as there was a huge boost in

query performance when running large queries that way. But with improvements in

networking, server, and workstation performance and the database engines themselves,

a lot of these performance benefits aren’t as significant as they once were.

Recall that stored procedures do help keep your code centrally located, which makes

it easier to maintain. They also keep code more secure, as fewer users tend to have

access to the database than to file shares or other network locations. Essentially, how

much you use stored procedures has a lot to do with your work environment.

�Table and Entity Design
Up to this point, all of our models have a one-to-one mapping with data tables in the

database, but the beauty of Entity Framework Core is that you don’t need to follow that

design. As you learned in Chapter 4, when it comes down to it, we are basically working

with classes, so there is no reason that we can’t inherit from our “model” and handle it in

a different way for multiple classes.

Let’s say you have a table called Account that holds all of your account information.

You have business and personal accounts, but all of the data is stored in one table. You

can set it up so you have one class that handles business accounts and one that handles

personal accounts. Why have two classes? Generally, databases are designed with

Figure 5-5.  Results from sp_AddNewSupportTicket

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

193

performance, scalability, and maintainability in mind, but not with what developers may

need or have in mind. Sticking with our account example, a personal account may use

different fields than a business account, yet they are in the same table. By using different

classes, we can set it up so that we have access only to applicable fields.

We can also do the reverse with our entity classes. We could have one class that

maps to multiple tables. For example, we could have an Employee class that maps to

an Employee table, a Machine table (like in our Computer Inventory application), and

perhaps a Workgroup table. These are more advanced topics and if it’s something that

you would like to learn more about, there are resources out there for you.

Using the current application as an example, how could we create an entity that is

based on multiple tables? The first table that comes to mind is the Machine table, so let’s

use that for our fictitious entity. Think about what fields or properties you would have in

that entity:

•	 MachineID

•	 GeneralRole

•	 InstalledRoles

•	 Name

•	 MachineType/Description

•	 OperatingSystemName

•	 StillSupported

Because we still need access to them, we also need the ID fields for our joined tables,

so we still need OperatingSysID and MachineTypeID. As a good mental exercise, try

to implement the new class. Do you need to have interfaces to your existing models

in order to get this to work? Can you create a new machine successfully? What about

adding a new machine that has a new operating system?

If you get stuck on this, don’t worry, as it’s a bit more advanced than anything we

have looked at so far. Keep at it and you should be able to work through it. I can tell

you that you will have a slightly easier time doing it in Entity Framework 6.x than in

Entity Framework Core 2.0, so that might be a good place to start. Since EF Core 2.0 is a

lightweight version of EF 6.x, there is some functionality that you don’t have access to.

Sometimes doing something in EF 6.x and reverse-engineering it in EF Core 2.0 is helpful

if you get stuck.

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

194

�Making Changes to the Table
What happens if we have everything created and we need to make a change to the

database? As mentioned, we created our SupportTicket and SupportLog tables with

date fields instead of using datetime. I think it may be a good idea to change that. But

how do you do it?

Take a look at MachineContext.cs and specifically at the code for SupportLog,

shown in Listing 5-4.

Listing 5-4.  SupportLog in MachineContext.cs

modelBuilder.Entity<SupportLog>(entity => {

 entity.Property(e => e.SupportLogId).HasColumnName("SupportLogID");

 entity.Property(e => e.SupportLogEntry)

 .IsRequired()

 .IsUnicode(false);

 entity.Property(e => e.SupportLogEntryDate).HasColumnType("date");

 entity.Property(e => e.SupportLogUpdatedBy)

 .IsRequired()

 .HasMaxLength(50)

 .IsUnicode(false);

 entity.Property(e => e.SupportTicketId).HasColumnName("SupportTicketID");

 entity.HasOne(d => d.SupportTicket)

 .WithMany(p => p.SupportLog)

 .HasForeignKey(d => d.SupportTicketId)

 .OnDelete(DeleteBehavior.ClientSetNull)

 .HasConstraintName("FK_SupportTicket");

});

We need to change entity.Property(e => e.SupportLogEntryDate).

HasColumnType("date"); to entity.Property(e => e.SupportLogEntryDate).

HasColumnType("datetime");. Basically we are changing the type from date to

datetime.

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

195

Once we have done that, we need to open our pal, the Package Manager console. Go

to Tools ➤ NuGet Package Manager ➤ Package Manager Console to do so. From there,

type Add-Migration, as shown here.

PM> Add-Migration

cmdlet Add-Migration at command pipeline position 1

Supply values for the following parameters:

Name: SupportLogUpdate

You could also type this in one line, which would be Add-Migration

SupportLogUpdate. After you do this and press Enter, it should begin the scaffolding

process and you should get a warning message that says:

An operation was scaffolded that may result in the loss of data. Please

review the migration for accuracy.

To undo this action, use Remove-Migration.

If you look at the Solution Explorer, you should see a folder that is called Migrations,

and in it should be a file that starts off with the date followed by _SupportLogUpdate.cs.

My version looks like Listing 5-5, although yours could look a little different. If you get

an error telling you that “Add-Migration: the term Add-Migration is not recognized

as the name of a cmdlet, function, script file, or operable program,” then you probably

didn’t add the Microsoft.EntityFrameworkCore.Tools package when you set up your

application.

Listing 5-5.  20171113193945-SupportLogUpdate.cs

using Microsoft.EntityFrameworkCore.Migrations;

using System;

using System.Collections.Generic;

namespace ComputerInventory.Migrations

{

 public partial class SupportLogUpdate : Migration

 {

 protected override void Up(MigrationBuilder migrationBuilder)

 {

 migrationBuilder.AlterColumn<string>(

 name: "IssueDetail",

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

196

 table: "SupportTicket",

 type: "varchar(max)",

 unicode: false,

 nullable: false,

 oldClrType: typeof(string),

 oldUnicode: false,

 oldNullable: true);

 migrationBuilder.AlterColumn<DateTime>(

 name: "SupportLogEntryDate",

 table: "SupportLog",

 type: "datetime",

 nullable: false,

 oldClrType: typeof(DateTime),

 oldType: "date");

 }

 protected override void Down(MigrationBuilder migrationBuilder)

 {

 migrationBuilder.AlterColumn<string>(

 name: "IssueDetail",

 table: "SupportTicket",

 unicode: false,

 nullable: true,

 oldClrType: typeof(string),

 oldType: "varchar(max)",

 oldUnicode: false);

 migrationBuilder.AlterColumn<DateTime>(

 name: "SupportLogEntryDate",

 table: "SupportLog",

 type: "date",

 nullable: false,

 oldClrType: typeof(DateTime),

 oldType: "datetime");

 }

 }

}

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

197

Wait a minute, I thought we were changing from date to date time, but here it

says the old type was DateTime? That’s because there is no “date” data type in the C#

language, only DateTime and DateTimeOffset. Once you are happy that you aren’t going

to destroy your database, type Update-Database and press Enter.

Note I f you aren’t sure and you are doing this in a test environment or in
production, back it up first!

My results will be slightly different from yours due to the date and time, but you

should see something like the following:

PM> Update-Database

Applying migration '20171113193945_SupportLogUpdate'.

Done.

If you open SQL Server Management Studio and refresh your connection, you should

see that the table has been updated (see Figures 5-6 and 5-7).

Figure 5-6.  The table in SQL Server Management Studio

Figure 5-7.  New values in the table

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

198

As you would expect, the date portion of the SupportLogEntryDate value hasn’t

changed and it now has a time portion of 00:00:00.000. If you run the application and

want to update ticket number 2, which is Bob Needing Office Installed, you would see

something similar to Figures 5-8 and 5-9.

Figure 5-8.  Information displayed in the application

Figure 5-9.  Ticket updated

Currently, we don’t have a way to view our open tickets, so let’s take care of that so

we can view our changes.

Before we do anything, we are going to make a change to GetNumbersFromConsole()

in ConsoleHelper.cs. We need to catch what happens if someone presses the Esc key.

Right now, we are looking for positive numbers, so we will make the value -5 if they press

Esc. The end of that method should look like the following code, which is the addition of

the try/catch block.

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

199

try {

 rtnVal = Convert.ToInt32(numbers);

}

 catch (System.FormatException) {

 rtnVal = -5;

 }

return rtnVal;

You can now add the code to SupportTicketLogEntry.cs. We are going to add two

small methods, so I just add them both at one time, as shown in Listing 5-6.

Listing 5-6.  Updates to SupportTicketLogEntry.cs

public void ViewSupportTickets() {

 Console.Clear();

 cHelper.WriteHeader("Open Support Tickets");

 List<SupportTicket> openTickets = RetreiveOpenTickets();

 foreach(var ticket in openTickets) {

 �Console.WriteLine($"Ticket Number: {ticket.SupportTicketId}

Machine Name: {ticket.Machine.Name}\r\n Description: {ticket.

IssueDescription}");

 }

 �Console.WriteLine("\r\nPlease Select an Open Support Ticket from the

List\r\nOtherwise hit the ESC key to exit");

 int ticketId = cHelper.GetNumbersFromConsole();

 if (ticketId > 0) {

 ViewTicketLog(ticketId);

 }

}

public void ViewTicketLog(int supportTicketId) {

 List<SupportLog> logEntries = RetreiveLogEntries(supportTicketId);

 Console.Clear();

 cHelper.WriteHeader("Support Ticket Log");

 foreach(var log in logEntries) {

 Console.WriteLine($"{log.SupportLogEntryDate}: {log.SupportLogEntry}");

 Console.WriteLine($" Entered By: {log.SupportLogUpdatedBy}");

 Console.WriteLine("==============================");

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

200

 }

 Console.WriteLine("Hit any key to continue...");

 Console.ReadKey();

}

Both methods are fairly straightforward. We are going to call ViewSupportTickets()

from Program.cs, so we have to add that code. ViewTicketLog() is very similar to the

code we wrote before, but this way it’s contained in its own method in case we need to

use it elsewhere. The biggest change to consider making is the part where we added the

break so the user has to press a key to continue. In Program.cs, you just have to change

your SupportMenu() method so it looks like the Listing 5-7.

Listing 5-7.  Update to SupportMenu()

try {

 result = Convert.ToInt16(cki.KeyChar.ToString());

 if (result == 1) {

 CreateSupportTicket();

 }

 else if (result == 2) {

 SupportTicketLogEntry oSupport = new SupportTicketLogEntry();

 oSupport.UpdateSupportTicket();

 }

 else if (result == 3) {

 SupportTicketLogEntry oSupport = new SupportTicketLogEntry();

 oSupport.ViewSupportTickets();

 }

 else if (result == 9) {

 // We are exiting so nothing to do

 cont = true;

 }

}

catch (System.FormatException) {

 // a key that wasn't a number

}

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

201

�Summary
This chapter doesn't delve into a lot about database table design, as that would be an

entire book to itself. However, I hope that you have a better understanding of what you

can do with Entity Framework Core 2.0 when it comes to interacting with your databases

and tables. We took a “10,000 foot view” of table and entity design that won’t get you any

new job or anything, but should at least get you going in the right direction.

We looked at how to create and call stored procedures. Hopefully in a future release,

Microsoft will give us more functionality in this department, although if they don’t, you

at least can handle and work with them. If you are told that you need to call a stored

procedure with parameters, you will have something that you can reference to get you

started. If you feel you need more practice, go through all of the queries and statements

written in this book up to this point and create stored procedures to replace them. That

will get you beyond “new guy” status when it comes to working with stored procedures.

We also touched a little bit on SQL Injection and the issues you can run into. If this

is something that you need to be concerned with, be sure to do more research on the

subject—it could save your job. Remember, data breaches are very expensive. If you can

be part of the solution in preventing them, all the better!

Figure 5-10.  Viewing the support ticket log with the correct date and time

If you run the code and choose Option 3 from the Support menu, you should see

results similar to Figure 5-10. Your date and timestamps will obviously be different.

Chapter 5 Stored Procedures, Table Design, and Modifications

www.EBooksWorld.ir

203
© Derek J. Rouleau 2018
D. J. Rouleau, Beginning Entity Framework Core 2.0, https://doi.org/10.1007/978-1-4842-3375-7_6

CHAPTER 6

ASP.NET MVC and
EF Core 2.0
A good reason to use Entity Framework Core 2.0 is for web development and that is what

we are going to look at starting in this chapter. If you have been developing websites or

web apps for a while now, you are going to be doing a lot of groaning during this chapter.

Since this isn’t a book on ASP.NET MVC, we are going to be using the wizards to do a lot of

the initial work. However, there is no reason that you can’t go back through and recreate

the application from scratch for practice, and I highly encourage you to do just that.

We are going to work on a simple MVC application that you can expand on later if

you want. We are going to create a web app to keep track of horses, horse shows, and

results. If you have no need for this, you can change it to work with just about anything,

from soccer games to that newest trading card game.

This isn’t a book on creating advanced and truly awesome ASP.NET MVC

applications, but you are going to get your feet wet and have a working application by

the time you are done. If you want to learn more about it, there are some good books

by Apress out there that cover this very topic. However, let’s make sure we are all on the

same page, as some readers are new to MVC.

MVC stands for Model-View-Controller, which is a design architecture that separates

the code into three major areas—the Model, the View, and the Controller. If you are new

to programming, this may not mean a lot to you. After the next two chapters, it will make

a lot more sense and help you in your future development projects. Up until now we

have been talking about entities, since we are dealing with Entity Framework Core 2.0. In

MVC, the models are just like the entities we have been working with. Views are used to

display information to the user via the user interface. In our new application that we’ll be

starting shortly, we are going to create a view that displays all the horses we own. It will

have some labels and some text boxes, plus a few other controls on the page to display

the contents of the database that we get from our model.

www.EBooksWorld.ir

204

Controllers are the part that took me a bit of time to get my head around, as they

handle the user interaction and work with the models, which end up selecting which

view is used. The one good thing about MVC applications is they make it easy to set up

unit tests to make testing your application much easier. Unit testing is a good thing and

something you should do, but people are lazy and sometimes it takes more time to set up

the unit test than it does to write the initial code.

�Setting Up the Application
We are going to create a new application that we’ll be using in this and the following

chapter. This time we are going to create an ASP.NET Core web application and call it

EquineTracker. Figure 6-1 shows you what it looks like in Visual Studio.

Figure 6-1.  Creating a new application

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

205

On the next screen, you need to make sure that a couple of things are correct. First

make sure that ASP.NET Core 2.0 is selected in the dropdown toward the top. If not,

select it. Second, make sure to select Web Application (Model-View-Controller). Lastly,

make sure that Authentication is set to No Authentication. Figure 6-2 shows how your

selections should look.

Figure 6-2.  Type of web application

After you click OK, your application is created and displayed in a window that you

can use to learn more about ASP.NET Core. Feel free to click around, as there is helpful

information in there. The great part is that we have a working web application that we

can run. Press F5 to start the debugger. Depending on how fast your computer is, a web

page should appear that looks similar to Figure 6-3.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

206

The application is not all that helpful at the moment, other than giving us a place to

find more information about ASP.NET Core. One quick note: Closing the browser of a

web application doesn’t stop the debugger; you have to manually close it. For now, we

are going to leave everything the wizard created for us and we’ll change it as needed.

Now we need to add a couple of NuGet packages to our application just like we did

for our console application. Go to the Project menu and select Manage NuGet Packages.

This time we’ll be adding five packages:

•	 Microsoft.AspNetCore.Mvc v2.0.0

•	 Microsoft.AspNetCore.Mvc.Core v2.0.0

•	 Microsoft.EntityFrameworkCore.SqlServer v2.0.0

•	 Microsoft.EntityFrameworkCore.Tools v2.0.0

•	 Microsoft.VisualStudio.Web.CodeGeneration.Design v2.0.0

Figure 6-3.  Our application

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

207

We have almost everything set up, so we can start making some modifications to our

application to make it a bit more useful. A lot of the packages now how a new release

(v2.0.1), which should work fine if you choose to use them. If you are using any preview

libraries, they will sometimes cause problems with regular libraries and cause errors. If

you run into problems, you may need to delete the directory that your NuGet packages

are stored in, which is your user directory under .nuget.

�Database-First Development
When we created our console application in Chapter 1, we created everything we needed

for our database in our code and then we created the database based on our entities.

This time, we are going to do the reverse. We are going to connect our application to an

existing database. This is called database-first development. Appendix A contains the

code for creating the database, or you can get it from the website (apress.com).

Once you have created the database, you need to connect to it, which sounds a

lot more difficult than it is. The first thing we need to do is open the NuGet Package

Manager Console: Tools ➤ NuGet Package Manager ➤ Package Manager Console.

Once you have that open, you need to type the following:

Scaffold-DbContext "Server=localhost;Database=BegEFCore; User ID=sa;

Password=********;" Microsoft.EntityFrameworkCore.SqlServer -OutputDir Models

Obviously, your connection string will be different, but the format is Scaffold-

DbContext Connection String. Using localhost for the server name will work as long

as you are working on the same computer that your database resides. After you press

Enter, if you entered everything correctly, you should now have six class files in your

Model folder in your application.

Figure 6-4 shows what mine looks like; yours should be similar. We have our

DBContext class file, which you should be somewhat familiar with, and then we have the

ErrorViewModel.cs file, which we’ll talk about later. Then we have four entity classes

or, in this case, models. That was less work than when we did it with code, but of course

we also don’t have quite the level of functionality either. But that’s okay, because we can

always fix that later.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

208

The first thing we need to do is fixe a couple of things before we set up our first

controller. If you look in BegEFCoreContext.cs, you’ll notice that there is a warning in

there and that is where we are going to start. The message is somewhat helpful and, if

you want, you can follow the link or you can do the following.

What we are going to do is move the code from OnConfiguring and

BegEFCoreContext.cs to Startup.cs, although if we were to follow best practices, we

would put this into a configuration file. For simplicity’s sake, we’ll use this method. I do

this part a little backwards than some, as I set up Startup.cs and then I remove the code

from (in this case) BegEFCoreContext.cs.

Let’s do that right now. If it’s not already open, open Startup.cs and add the

following using statements:

•	 using EquineTracker.Models;

•	 using Microsoft.EntityFrameworkCore;

Figure 6-4.  Models created by Scaffold-DBContext

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

209

We then need to make the changes to ConfigurationServices() shown in Listing 6-1.

Listing 6-1.  Updates to ConfigurationServices()

// This method gets called by the runtime. Use this method to add services

to the container.

public void ConfigureServices(IServiceCollection services){

 services.AddMvc();

 var connection = @"Server=localhost;Database=BegEFCore;User

ID=sa;Password=******;";

 services.AddDbContext<BegEFCoreContext>(options =>

options.UseSqlServer(connection));

}

Go back to BegEFCoreContext.cs and remove the OnConfiguring() method. We are

going to add the constructor in Listing 6-2. You could also comment out the code if you

want, but you really should delete it.

Listing 6-2.  Adding a Constructor to the DBContext Class

public BegEFCoreContext(DbContextOptions<BegEFCoreContext> options) :

base(options) {

}

This allows you to use dependency injection. If you are new to ASP.NET Core or MVC,

you should become familiar with it, as it’s one of the core concepts of ASP.NET Core.

�Creating Controllers and Views
We are now ready to create our first controller. We are going to use the wizards to do the

work for us since we aren’t as concerned with the ASP.NET aspect of the application and

it will give us something to look at a lot faster. I find that Visual Studio can sometimes

be a bit picky, so the first thing I do is click on the Controllers folder. Right-click on the

Controllers folder, choose Add, and then Controller. When the Add Controller window

opens, choose MVC Controller with views, using Entity Framework. Figure 6-5 shows

you what you should select from the Add Controller window.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

210

You can leave the layout page field blank, but make sure that you have all the

checkboxes checked. After you click Add, it will create the HorsesController, as well as

some View files. Figure 6-6 shows you the files created by Visual Studio.

Figure 6-5.  Filling in the Add Controller form

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

211

Let’s take a look at our page first and then we’ll take a look at the new files. Since

we haven’t created any navigation to get to our pages yet we’ll have to do some typing

to get there but nothing that we can’t handle. Press the F5 key to start debugging the

project. After your page loads, add /horses to the URL. In my case, it is http://

localhost:60101/horses, although your port number could be different. Once the

page loads, you should see results like in Figure 6-7.

Figure 6-6.  Files created when we create the controller

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

212

As you can see, the one horse that was already in the table is listed and it gives us

links to the Edit, Details, and Delete pages that have been created for us. Recall that

those pages are actually the views that were created. Click through the different pages;

just be sure you don’t change or delete anything at this point.

As you can see, with very little effort we have created a web application and

connected to a database to display information. We have a way to modify, delete, and

create new entries in that database. Next we need to create controllers for the other

models. Follow the previous directions to create controllers for the Event model.

After it finishes the scaffolding, you may notice that you have a couple of errors that

you need to take care of. The first thing you need to do is fix the code that looks like @ =>

@.Location. We are going to change all of these to x => x.Location. After you make

those changes, all of the errors should go away.

Once that is done, create the Location controller and then the Result controller. You

shouldn’t get any errors or warnings when you create these two controllers. If we had our

home page and index working, we could use this web application as is and have it work

relatively well. However, that would be a bit boring and as you add more information it

would be a bit difficult to navigate the information as well. Some other error handling

would need to be added, as there are currently places that will throw errors if you try

to do certain actions. After we take care of some basic formatting and some general

housekeeping, we’ll get to the error handling.

Figure 6-7.  The horses Index page

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

213

�Formatting Output

The first thing we need to do is to make one fix. The height of the horse is 15.10 but it should

be 15.1. The good thing is we only need to change it once in order to fix it everywhere. Open

the Horse model, Horse.cs, and make changes so it looks like Listing 6-3.

Listing 6-3.  Horse.cs

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace EquineTracker.Models {

 public partial class Horse {

 public Horse() {

 Result = new HashSet<Result>();

 }

 public int HorseId { get; set; }

 public string Name { get; set; }

 public string Breed { get; set; }

 [DisplayFormat(DataFormatString = "{0:N1}", ApplyFormatInEditMode = true)]

 public decimal? Height { get; set; }

 [DisplayFormat(DataFormatString = "{0:C}")]

 public decimal? Value { get; set; }

 public ICollection<Result> Result { get; set; }

 }

}

The changes are in bold. We have added a using statement and the DisplayFormat

lines. We need the using statement in order to reference the DisplayFormat attributes.

The DisplayFormat attribute displays the height with one decimal place, which is what

we want. Then we formatted the value to display as currency. The MVC approach would

have up put this at the view level, but since the data should always have just one decimal

and it should always be currency, I think it makes more sense to do it at the model level.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

214

One thing to keep in mind when you are doing something like this is the

maintainability of the code. A lot of developers will look to the View for this kind of

thing. You could always put a note/comment in your view to mention the location of

the formatting if you want to make it easier to find it later. To me, it comes down to

having to make only one change, which will make my life easier when it comes time to

maintaining my applications in the future. The important point to take away from this is

you can do any kind of formatting; it doesn’t have to be decimals and currency.

�Page Navigation
Now that we have taken care of some of the basics, let’s take care of some housekeeping

to make things a little bit neater before we continue to error handling.

The first thing we’ll do is update the navigation so we can get to the right pages.

Since we are using a layout, we only need to do our navigation once and the changes will

propagated to all of the pages since they all use the same layout. To adjust the Navigation

bar, you open _Layout.cshtml. Listing 6-4 shows the portion of _Layout.cshtml that we

are going to modify in order to update the navigation.

Listing 6-4.  _Layout.cshtml

<nav class="navbar navbar-inverse navbar-fixed-top">

 <div class="container">

 <div class="navbar-header">

 �<button type="button" class="navbar-toggle" data-toggle="collapse"

data-target=".navbar-collapse">

 Toggle navigation

 </button>

 �<a asp-area="" asp-controller="Home" asp-action="Index"

class="navbar-brand">EquineTracker

 </div>

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

215

 <div class="navbar-collapse collapse">

 <ul class="nav navbar-nav">

 �<a asp-area="" asp-controller="Home" asp-

action="Index">Home

 �<a asp-area="" asp-controller="Horses" asp-

action="Index">Horses

 �<a asp-area="" asp-controller="Events" asp-

action="Index">Events

 �<a asp-area="" asp-controller="Results" asp-

action="Index">Results

 �<a asp-area="" asp-controller="Locations" asp-

action="Index">Locations

 �<a asp-area="" asp-controller="Home" asp-

action="About">About

 �<a asp-area="" asp-controller="Home" asp-

action="Contact">Contact

 </div>

 </div>

</nav>

The good news is you can copy and paste most of this and then make the changes

you need. In the <ul class="nav navbar-nav"> section, we are going to add four

 items. The formatting for these lines is as follows: <a asp-area="" asp-

controller="Name Of The Controller" asp-action="View Name">Text To

Display. Because we have decided to show the Index view for each of the

controllers, they all have an asp-action=”Index” line.

As you can see, we have left the About and Contact items in there so you can get

a better understanding of how they work. As you can see, they both use the Home

controller. When you look in the Home View folder, you’ll see that there are three views—

Index, About and Contact. Now when we run our application, the Navigation bar should

be a bit more useful, as seen in Figure 6-8.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

216

Figure 6-8.  Working navigation

�The Home Page and Adding an Image
Now that the navigation is working, let’s clean up the Index page, as I’m pretty sure

anyone that is going to want to use this application really doesn’t care about all this

Visual Studio and ASP.NET Stuff that is currently on it. If you want to take a lot of time to

make the page pretty, have at it. We are simply going to put a picture on the page and call

it good. Listing 6-5 shows the code for the Home controllers Index page.

Listing 6-5.  Index.cshtml in Views ➤ Home

@{

 ViewData["Title"] = "Home Page";

}

<div class="body-content">

</div>

In order for this to work, you need a photo. You can download the one from the

website where you get the code and examples for this book, or you can use one you have.

The key is that you have to put the image in the images folder within the wwwroot folder.

Figure 6-9 shows the full path. To easily access it, right-click on the folder and choose

Open Folder in File Explorer.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

217

You can run the application again. It looks like something that’s related to a horse

application, as shown in Figure 6-10.

Figure 6-9.  Images folder with the photo in it

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

218

�Error Handling
Now that we have our page looking a little bit better, let’s take care of a couple of errors.

If you have tried to delete the one location that we have created in the database, even

though I told you not to, then you have probably already seen the error that we are going

to fix. If not, Figure 6-11 shows the error.

Figure 6-10.  Our new home page

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

219

The good news is we have seen this before when we created our console application

and tried to delete a record that was referenced by another. The other good news is we

really don’t have to do a ton here to get some relatively useful functionality out of our

application. We are going to add a simple try catch block and if that section of code is

reached, we are going to display a hardcoded error message to the users explaining that

they can’t delete the record, as it is being used by one or more events. You could create

a dynamic error page, but the experts recommend using a static page, so that is what

we are going to do here. Listing 6-6 shows the updated code for handling the error in

LocationsController.cs.

Listing 6-6.  Updated Code to Handle an Error When Deleting a Foreign Key Record

// POST: Locations/Delete/5

[HttpPost, ActionName("Delete")]

[ValidateAntiForgeryToken]

public async Task<IActionResult> DeleteConfirmed(int id) {

 �var location = await _context.Location.SingleOrDefaultAsync(m =>

m.LocationId == id);

Figure 6-11.  Error when trying to delete a location

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

220

 _context.Location.Remove(location);

 try {

 await _context.SaveChangesAsync();

 }catch (DbUpdateException) {

 return View(nameof(DbFkError));

 }

 await _context.SaveChangesAsync();

 return RedirectToAction(nameof(Index));

}

�Creating a New View to Display an Error

Before we continue, we need to create a new view to display the error message to the users.

As you can see in Figure 6-6, when we run into a DbUpdateException we are going

to display the view DbFkError. Creating the new view is quite simple. Right-click on

DbFkError and choose Add View. Change the View Name to DbFkError, choose Empty for the

template (without model), and under options choose Create as Partial View. Figure 6-12

shows what it should look like. Once you are done, click Add to create your new view.

Figure 6-12.  Creating a new view for the error

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

221

Note D epending on your version of Visual Studio, this may cause an error. If it
does, comment out the line return View(nameof(DbFkError)); and right-
click on the Locations folder under Views and add a new View that way. Once
you’re done, uncomment the line.

Once the view is created, you’ll have an empty view that can be modified in any way

you see fit. Listing 6-7 shows the contents of DbFkError.cshtml.

Listing 6-7.  DbFkError.cshtml

@{

 ViewData["Title"] = "Error";

}

<h3>Sorry but you are unable to delete the record as it is needed for one

or more events!</h3>

If you are still getting an error that DbFkError doesn’t exist, you need to add one

more bit of code to your Locations controller, as shown in Listing 6-7a.

Listing 6-7a.  Modifying LocationsController.cs

Public LocationsController(BegEFCoreContext context){

 _context = context;

}

Public ViewResult DbFkError(){

 Return View();

}

As you can see, you should have a ViewResult method for DbFkError and if you

don’t, you won’t be able to use it. If the error is gone, fire up the application and try to

delete that record again. Figure 6-13 shows you the new result instead of the not-so-nice

error message.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

222

As you can see, this is a better, more helpful message to show the users. We could do a

much better job of this than waiting for an error to happen, since we technically don’t know

what the error is. We simply assumed that the error was caused by trying to delete a record

that was associated with another record. In your application, this could be fine and I’ll leave

that up to you. The next section covers at another way we could handle this problem.

�Avoiding Errors

One of the best ways to handle errors is to not hit the error condition in the first place.

Obviously, we can’t think of every condition that we might hit, but we can try to be as

proactive as possible. If you work for a larger company, there is probably a group of

people who do this. However, if work for a small company or are working for yourself,

you are the group. The downside to doing this yourself is that you are more than likely

not going to think of all the problems until you have been doing this a while. But that’s

okay; that is where general error handling comes in to play, like we just did, although

you’d probably want to phrase the wording on your page a bit better.

The first thing we need to do is find out if the location we are trying to delete is

needed for any events. The question is, what are we trying to do here? When it comes

down to it, we are trying to retrieve a list of events where the location is used, so our code

for the retrieval of the list would go into the EventController.cs file. Let’s open that file

and create a new method for retrieving a list of events by LocationId.

Listing 6-8 shows the code that we’ll be using to retrieve our list. Right now, it’s not

being returned to a view but that could be changed easily enough.

Figure 6-13.  The new error page

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

223

Listing 6-8.  GetEventsByLocation()

// "Get" Events by LocationId

public List<Event> GetEventsByLocation(int locationId) {

 �List<Event> lEvent = _context.Event.Include(x => x.Location).Where(l =>

l.LocationId == locationId).ToList();

 return lEvent;

}

We don’t need to have the include in there but since we might want to display events

based on LocationId in the future, why not include it when we first create it? I put “get”

in double quotes here, as it’s not a true Get statement in the context of ASP.NET. Now we

can update the code in LocationsController.cs to capture this condition. Listing 6-9

shows the updated method.

Listing 6-9.  Update to Public Async Task<IActionResult> DeleteConfirmed(int id)

// POST: Locations/Delete/5

[HttpPost, ActionName("Delete")]

[ValidateAntiForgeryToken]

public async Task<IActionResult> DeleteConfirmed(int id) {

 EventsController ec = new EventsController(_context);

 List<Event> lEvent = ec.GetEventsByLocation(id);

 if(lEvent.Count != 0) {

 return View(nameof(DbFkError));

 }

 �var location = await _context.Location.SingleOrDefaultAsync(m =>

m.LocationId == id);

 _context.Location.Remove(location);

 try {

 await _context.SaveChangesAsync();

 }catch (DbUpdateException) {

 return View(nameof(DbFkError));

 }

 await _context.SaveChangesAsync();

 return RedirectToAction(nameof(Index));

}

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

224

If you run the application now and try to delete the record, you’ll see the same page.

However, if you were to put in a breakpoint, you would find that it never tries to delete

the record in the first place. This is the method I would use for this situation, as to me it

makes more sense compared to letting it try to delete the record and failing. If this was

a book on ASP.NET MVC I’d probably get tricky here and display a new page that shows

the user the events that the location is currently associated with. This would be good

practice for you to do that, and if you don’t know how to do it already, it will give you

something else you can work on to improve your skills.

�Displaying Events by Location
You didn’t think we were going to create a way to get a list of events by location and not

use it now did you? This process is a bit tricky if you are new to web programming with

ASP.NET and/or MVC. The method used here is the one that I know. However, there are

other ways to do it and I encourage you to take the time to find them and work them out.

The first part of this is going to be the same as before, since the first step is to create our

view. So, let’s get started. If you don’t have EventsController.cs open, open it and add

the code shown in Listing 6-10.

Listing 6-10.  EventController.cs

// GET: Events by LocationID

public ViewResult EventByLocation(int locationId) {

 List<Event> lEvent = GetEventsByLocation(locationId);

 return View(lEvent);

}

Nothing too out of the ordinary here. We get our list of events and we pass the list as

an argument to our view. Like before, right-click on EventByLocation and choose Add

View. This time, we aren’t going to create an empty view; we are going to create a “list”

so we are going to choose that as the template. Once you have done that, choose Event

(EquineTracker.Models) as the Model class. Figure 6-14 shows the wizard window. Once

you are done, click Add to create the new view.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

225

Figure 6-14.  Creating our EventByLocation view

That was the easy part to figure out if this is new. Now comes the relatively difficult

part, or at least it is the first time you do it. For now we’ll put the “link” to this in the

Details view for the location. Open Details.cshtml in the Locations View folder and

make the change at the bottom of the page, as shown in Listing 6-11.

Listing 6-11.  Changes to Details.cshtml

<div>

 <a asp-action="Edit" asp-route-id="@Model.LocationId">Edit |

 <a asp-action="Index">Back to List |

 �@Html.ActionLink("View Events Held At This Location", "EventByLocation",

"Events", new { @LocationId = @Model.LocationId }, null)

</div>

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

226

We added a pipe character after the Back To List line and then added the

Html.ActionLink. Don’t forget to add the @ before Html.ActionLink; otherwise, you’ll

get an error. Let’s take a quick look at this line to get a better idea of what is going on. The

arguments we are using are as follows: string linkText, string actionName, string

controllerName, object routeValues, and object htmlAttributes. The linkText =

"View Event Held At This Location" is the text we see on the page for the link. The

actionName = "EventByLocation" is the one we just created. We then have to tell it

what controller we want to use, so the controllerName = "Events" does this.

The next part is where it tends to get a little confusing. We are going to create a

new object for routeValues that we are going to be passing, so we have to use the new

keyword. I have also found that it seems to work with @Model.LocationId and Model.

LocationId. Lastly, we set htmlAttributes, which is null in this case. If you want a more

in-depth explanation of how this works, check out the MSDN documentation.

When you run the application and go to the details of the location, you should now

see something similar to Figure 6-15.

Figure 6-15.  The new Details page for locations

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

227

Figure 6-16 shows you the new page.

Figure 6-16.  Events by location

That looks exactly like the Events Index page, since we only have the one show. Now

we’ll fix that so we can see the difference.

Figure 6-17 shows the locations I added. Feel free to add anything you want here, but

add two or three more locations than the initial entry we created.

Figure 6-17.  Index of locations

Now we’ll create a couple more events so we can get a better idea of how displaying

events by location works, and to prove that it’s working. Again, just make sure you create

a couple of events in different locations (see Figure 6-18).

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

228

Now that we have multiple locations and events, we can verify whether we are

seeing the correct data when we try to view the events by location. Figure 6-19 shows

that it is working.

Figure 6-18.  Multiple events created

Figure 6-19.  Displaying events by location

As you can see, it did in fact work, as we are only seeing the two results for that one

location. Hopefully, this will give you some ideas as to how you could use this in existing

or future projects.

�Sorting Results
This section shows you how to display the events in a user-friendly manner. To do this,

we’ll add a couple more events in random order. For example, create more weekly shows

and enter the dates out of order. Figure 6-20 shows the current view with more data

entered in random order.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

229

As you can see, we entered a couple more results. To determine if there is a show on

August 6 is difficult. Imagine if you had 40 or 50 shows listed in some random order by

date. We are going to take care of that so it’s not a problem. Open EventsController.cs.

Without looking at Listing 6-12 first, try to figure how you can achieve the results you

want. Remember that you are attempting to sort the results of the Index page for events

by the event date.

Listing 6-12.  Changes to EventsController.cs.

// GET: Events

public async Task<IActionResult> Index() {

 �var begEFCoreContext = _context.Event.Include(x => x.Location).OrderBy

(m => m.EventDate);

 return View(await begEFCoreContext.ToListAsync());

}

Were you able to come up with the code shown in Listing 6-12, or something similar?

I decided to use .OrderBy to achieve my ordered list. I order by EventDate and I’m done.

Figure 6-20.  Displaying unsorted results

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

230

Now if I wanted to sort it in descending order, I could just as easily change it to

.OrderByDescending(m => m.EventDate). Since we have done it in the index, we might as

well sort our results by location as well. Change your query line so it looks like the following:

List<Event> lEvent = _context.Event.Include(x => x.Location).Where(l =>

l.LocationId == locationId).OrderBy(d => d.EventDate).ToList();

Figure 6-21 shows the results from the Index page.

Figure 6-21.  Sorted results

As you can see, sorting this way makes it easier to find certain shows. The next

chapter covers some more ways of getting the information to the user that may be a little

more useful as this application grows year to year.

�ASP.NET MVC Basics
Now that the application has basic functionality and you can fix some of the common

issues, it’s time to make the application look a little better. If you look at Figure 6-21, note

that the name of the page is Index. Although that may not bother you, the person using

it might have a different opinion. The good news is it’s a simple fix, so let’s take care of

it. Since we are talking about Figure 6-21, we’ll start with that view. If you don’t already

have it open, open Index.cshtml from within the Events View folder. Listing 6-13 shows

the code for the first couple of lines that you should see in the file.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

231

Listing 6-13.  Index.cshtml (Event)

@model IEnumerable<EquineTracker.Models.Event>

@{

 ViewData["Title"] = "Index";

}

<h2>Index</h2>

<p>

 <a asp-action="Create">Create New

</p>

We will cover the first line in a moment, but the two lines we are concerned with

right now are the ViewData and the <h2>Index</h2> lines. This is where we set the title

for the page as well as the label in the browser. If we change Index in both places to

Events, the program will make the appropriate changes when we re-launch the browser.

Figure 6-22 shows you these changes.

Figure 6-22.  Changes to the Title and Label for the page

Now you can go to your other views and make similar changes. I will leave it up to

you. You don’t have to make these changes, but a little practice isn’t a bad thing. Don’t

forget to make the changes to EventByLocation.cshtml as well.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

232

�Strongly Typed Views
Look back at Listing 6-13, where the first line is @model IEnumerable<EquineTracker.

Models.Event>. This tells us that we have a strongly typed view. What does that mean?

We use strongly typed views to render a specific domain type, which in this case is the

Events model. Since we want to know about multiple events, we use an IEnumerable. If

you look in Details.cshtml in our Events views, you will see that the line is different. It

is: @model EquineTracker.Models.Event. That is because we are only working with a

single event, so we don’t need a list of events. If you look back at Figure 6-14, you will see

that we created a strongly typed view when we created EventByLocation.cshtml. We

told the wizard that we wanted to use the Event model and that we wanted to use the List

template.

Does this mean that you must have all strongly typed views? No, you can create views

that aren’t strongly typed. Had we not specified a model in Figure 6-14, we would not

have had a strongly typed view. So what would something like this look like? The Index

page in the Home view is a great example.

�Passing Data to a View Using ViewBag

Let’s take a look at the example and then we’ll explain what is going on. Listing 6-14

shows the code that’s updating HomeController.cs and Listing 6-15 shows the changes

to Index.cshtml from the Home Views folder.

Listing 6-14.  HomeController.cs

public IActionResult Index() {

 int hour = DateTime.Now.Hour;

 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good afternoon";

 return View();

}

We added a variable to track the hour of the day and then we created our ViewBag

object called Greeting. A ViewBag is a dynamic object that you can assign any value to

and pass it along to a view. We are going to add a greeting to the top of the home page

and we’ll change it based on the time. Listing 6-15 shows how it’s used in the view.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

233

Listing 6-15.  Index.cshtml

@{

 ViewData["Title"] = "Equine Tracker Home Page";

}

<html>

<body>

 <div class="page-header">

 <h3>@ViewBag.Greeting, Welcome To Equine Tracker!</h3>

 </div>

 <div class="body-content">

 </div>

</body>

</html>

As you can see, we added a few lines to our view. If you are new to web

programming, this could take a little bit to get used to. We have our ViewBag object right

around the middle of our code. What may look strange to Web Form programmers is

the comma right after the object. Under the covers, the compiler knows that we want

to render the page to read (if it’s before noon) “Good Morning, Welcome To Equine

Tracker!”. If you run the code, you should see a page that looks like Figure 6-23.

Figure 6-23.  The home page when viewed before noon

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

234

�Why Use MVC?
So why take all this time to create models, views, and controllers when you could just

get your application up and running in half the time by creating a Smart UI? I’m sure

everyone reading this book has created one or more Smart UI applications and perhaps

that is all you have ever done. I’m not going to tell you that you should never create a

Smart UI application, as I just created a new one the other day. We have a legacy system

that can’t talk to a new one that we implemented recently so we created an application

to be able to modify some data when needed. It’s a simple form with a couple of labels,

text boxes, and an Enter button. I could have created a couple of class files or I could just

put everything in the form code. Since the entire project was under 100 lines I went with

everything in the form.

Now if this were an application with several forms and tens of thousands of lines of

code, it would obviously make more sense to use something more along the lines of a

MVC Pattern application.

We have talked about this briefly before but let’s look at it again. What are we talking

about when we say model? The model is the data that the user is working with. They can

be view models that we use to move data between the views and the controllers. In larger

applications, you need to learn more about domain models, which are beyond the scope

of this book.

When we talk about views, we are talking about what we are using to render some

aspect of the model to the user through a user interface. For example, we created a view

to display events only for specific locations. I think the view is probably the easiest of the

three to understand.

Lastly we have the controller. This is the one that I think is the hardest to understand,

mainly because it’s technically so simple. All a controller does is process incoming

requests, perform some sort of action on the model if needed, and then decide which

view to render to the user. The biggest mistake programmers make is putting logic into

the controller, as that belongs in the model.

So we have these three separate things that we are supposed to use to do specific

operations. This is important because of separation of concerns (SOC), which we

mentioned before, and maintenance. If you have to go back to an application months or

years later to fix something or make some changes, this method makes it easier.

If you have a properly set up application and stick to the pattern, it should be easier

to fix and maintain down the line. If we do have to make changes, it’s more likely that you

will only have to make a change in one place.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

235

The other thing that MVC helps you do is unit test. The ASP.NET MVC Framework

lends itself well to unit testing and it’s something that you really should do.

In the next chapter, we set up a unit test to illustrate the benefits of doing them. Some

people complain that setting up these tests takes longer than writing the code. Writing

good unit tests does take practice. While it’s true that some unit tests I have written took

about four times the amount of code than I was actually testing, it still helped me make

sure things were working properly, especially compared to testing against a live or semi-

live database.

�Summary
Although we really didn’t do a lot in the way of Entity Framework Code in this chapter,

by now you should be comfortable with the everyday aspects of Entity Framework

Core. I hope you were able to anticipate the changes we made to our Entity Framework

Core code before you read the examples. If not, don’t worry. It can take a while to learn

something new.

We covered database first development and how to connect to an existing database

in an application. You should be able to work with models and controllers as well

as modify and create views in an ASP.NET MVC application. You also learned about

strongly typed views and how to create and work with them.

You should be able to do some page-to-page navigation and be able to pass data

dynamically to a view. The passing of data to views will be very helpful in the future, so if

you still aren’t sure how to do it, you may want to pick up a book on MVC programming.

The next chapter covers more Entity Framework Core programming as well as

ASP.NET MVC programming to make your applications better.

Chapter 6 ASP.NET MVC and EF Core 2.0

www.EBooksWorld.ir

237
© Derek J. Rouleau 2018
D. J. Rouleau, Beginning Entity Framework Core 2.0, https://doi.org/10.1007/978-1-4842-3375-7_7

CHAPTER 7

Finishing Our ASP.NET
MVC .NET Core 2.0 Project
Now that we have a basic application, let’s make it a bit more functional for the end

users. Right now we have five controllers; Event, Home, Horse, Location, and Result.

We have some data in our tables that we can work with and we have some pages for

displaying, editing, creating, and deleting data from our models. This is a good start but

we can do better. This chapter focuses on one model at a time and hopefully by the time

we get to the last one, you’ll be able to do the work without my help. We start with the

Location model, as that is where we did a little bit of work in Chapter 6.

�Data Validation
A good place to start is by validating the data in our model. After all, if we allow

garbage into our database, we’ll get garbage out of our database. Let’s start by opening

Location.cs. Other than the ID field, we have the name, street address, city, state, and

zip fields. Of these fields, what makes the most sense to have them as required? I think

it would make sense to have the name, address, city, and state be required, so let’s make

that change first. Listing 7-1 shows the model with the new changes.

Listing 7-1.  Location.cs

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

www.EBooksWorld.ir

238

namespace EquineTracker.Models

{

 public partial class Location

 {

 public Location()

 {

 Event = new HashSet<Event>();

 }

 public int LocationId { get; set; }

 [Required]

 public string Name { get; set; }

 [Required]

 public string StreetAddress { get; set; }

 [Required]

 public string City { get; set; }

 [Required]

 public string State { get; set; }

 public string ZipCode { get; set; }

 public ICollection<Event> Event { get; set; }

 }

}

As I hope you remember, we added the using statement so we can use the Required

attribute. Then we added the [Required] attribute above the field that we wanted to

make required. What happens now if we try to create a new location with the required

fields missing? Let’s fire up our application and find out. Figure 7-1 shows an example of

what you can expect to see.

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

239

As you can see, with very little effort we are able to have some very basic data

validation. It even tells the user what the problem is. Since we let the wizard do a lot of

the work for us, there is already some built-in validation functionality. Had we not used

the wizard, we would be doing a lot of this work ourselves. If you decide to learn more

about ASP.NET MVC, this is something that you will want to look into, as it can help

make your web applications look professional.

For now I hope you’ll be happy with knowing that this is working because of lines

like: within

create.cshtml. This is a good start, but what if someone tried to enter Conn for

Connecticut instead of CT? The good news is that’s easy to fix too. Before we do that,

lets think of what else we need to do so we can do it all at one time. We know that name,

Figure 7-1.  Required fields

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

240

street address, and city all have a maximum of 50 characters; do we want to have a

minimum? We also know that ZIP code, even though it’s not required, can only hold 10

characters. Listing 7-2 shows the changes that we made to reflect these requirements.

Listing 7-2.  Changes Made to Location.cs

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace EquineTracker.Models {

 public partial class Location {

 public Location() {

 Event = new HashSet<Event>();

 }

 public int LocationId { get; set; }

 [Required, StringLength(50, MinimumLength = 3)]

 public string Name { get; set; }

 [Required, StringLength(50, MinimumLength = 6)]

 public string StreetAddress { get; set; }

 [Required, StringLength(50, MinimumLength = 3)]

 public string City { get; set; }

 [Required, StringLength(2, MinimumLength = 2)]

 public string State { get; set; }

 [StringLength(10, MinimumLength = 5)]

 public string ZipCode { get; set; }

 public ICollection<Event> Event { get; set; }

 }

}

We set some arbitrary values here for minimum lengths, so feel free to adjust them

as you see fit. We made the ZIP code field a minimum of five characters and a maximum

of 10. We made it 10 characters so the users can add a dash if they want. We also haven’t

limited them to numbers only, because you may need to accept a foreign address and

Canada uses letters in their postal codes.

At this point, we performed basic validation only. You could still enter 15 as a state,

for example. Let’s take care of that part next.

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

241

�Using a Regular Expression to Validate a Property
What’s nice here is we don’t need to add any more using statements and we are going to

use a regular expression to accomplish this. This might seem a bit odd for some of you,

but once you see it, it should make sense. Once you do it a few times, it will make a lot of

sense to you. Listing 7-3 shows the updates we made to Location.cs.

Listing 7-3.  Updated Location.cs

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace EquineTracker.Models {

 public partial class Location {

 private string _state;

 public Location() {

 Event = new HashSet<Event>();

 }

 public int LocationId { get; set; }

 [Required, StringLength(50, MinimumLength = 3)]

 public string Name { get; set; }

 [Required, StringLength(50, MinimumLength = 6)]

 public string StreetAddress { get; set; }

 [Required, StringLength(50, MinimumLength = 3)]

 public string City { get; set; }

 �[RegularExpression("[a-zA-Z][a-zA-Z]", ErrorMessage ="Must Be 2 Alpha

Characters"),Required]

 public string State {

 get { return _state; }

 set {

 _state = value.ToUpper();

 }

 }

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

242

 [StringLength(10, MinimumLength = 5)]

 public string ZipCode { get; set; }

 public ICollection<Event> Event { get; set; }

 }

}

In case you missed it, we added a private string variable called _state. We changed

the validation to the State field and removed the min and max length, as we are taking

care of that in the regular expression. We left it as a required field. We also gave it a

custom error message so it’s a bit more user friendly. If we didn’t use the custom error

message, you would see something like Figure 7-2.

I’m thinking that most users would be a little confused by that error message, but

perhaps it’s just me? If we run our application with our custom error message you see a

result like in Figure 7-3. The other good thing about our custom error messages is that

you can create localized error messages to accommodate people who speak English,

French, or Spanish, for example. This is a feature of Data Annotations and not ASP.NET

MVC so you can use it in other applications as well. If this is something that you will

need, there are some good examples on the web.

Figure 7-2.  No custom error message

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

243

Your users will appreciate the custom message and you could include an example if

you wanted, but try to keep it as compact as possible.

Now that we have this cool new skill, what else could we do? If you were only going

to allow U.S. state abbreviations, you could write a regular expression that would accept

only the U.S. States. A quick Internet search should give you a couple of examples if you

aren’t familiar with RegEx. You could write something to validate that the ZIP code, or

postal code depending on where you live, is in the correct format. If you want, you could

also change the error messages for your other properties. It really comes down to how

much custom work you want in your application.

We will leave our Locations.cs file alone for now as I think we performed validation

for our model.

�Validating the Rest of Our Models
Let’s next look at Event.cs and see what we need to do to get some basic validation

done. We are concerned with Name, Description, and Event Date. We know Name and

Description are both required fields and our table has a max length of 50, so we will

make those changes and we also know that our Event Date is nullable (perhaps you

know there is an event next year, but not sure the date yet, sounds good right) but we

want to be sure it’s a DateTime property. Let’s make those changes and check out the

results. Listing 7-4 shows the changes to Event.cs.

Figure 7-3.  Custom error message

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

244

Listing 7-4.  Changes to Event.cs

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace EquineTracker.Models

{

 public partial class Event

 {

 public Event()

 {

 Result = new HashSet<Result>();

 }

 public int EventId { get; set; }

 [Required, StringLength(50, MinimumLength = 3)]

 public string Name { get; set; }

 public int LocationId { get; set; }

 [Required, StringLength(50, MinimumLength = 3)]

 public string Description { get; set; }

 [DataType(DataType.DateTime)]

 public DateTime? EventDate { get; set; }

 public Location Location { get; set; }

 public ICollection<Result> Result { get; set; }

 }

}

There isn’t much new here except we now have a property that isn’t required. In this

case, we are saying that it has to be a data type of DateTime. To test this, we’ll start up the

application and try to create a new event without entering any data. Figure 7-4 shows

how it looks.

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

245

We have the two errors we expect and nothing for the Event Date field, as it’s not

required. Now I hope you can see two small details that we need to fix. Right now the

labels are LocationId and EventDate, which isn’t correct. We could fix this in different

places and sometimes it might make sense to do that, but the good news is for our

application we don’t need to. However, I’ll show you where you could do it in case you

ever need to. First, let’s fix EventDate so it reads Event Date. We will do this in Event.cs

so if you don’t have it already open, make sure you open it. We are going to change it so it

looks like the following:

[Display(Name = "Event Date"), DataType(DataType.DateTime)]

public DateTime? EventDate { get; set; }

Display followed by name is a bit misleading but what we are saying is we want to

display this as the label text. Here is the best part—any place that there is a label for this

Figure 7-4.  Creating a new event and testing our our validation

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

246

property, it will display it as Event Date and not EventDate. Think of all the work you

just saved yourself; you have just reduced the chance of missing one of the labels to

virtually zero. We are going to do the same thing for LocationId:

[Display(Name = "Location")]

public int LocationId { get; set; }

Now every place that you saw LocationId you now will see Location (see Figure 7-5).

Let’s say for the sake of argument that you wanted one of your labels to be different for

some reason. How would you do this? Since we have been looking at the create method

for our Event model, let’s look there. Open Create.cshtml in the Event Views folder.

Within that file you will find the following section of code:

<div class="form-group">

 <label asp-for="LocationId" class="col-md-2 control-label"></label>

 <div class="col-md-10">

 �<select asp-for="LocationId" class ="form-control"

asp-items="ViewBag.LocationId"></select>

 </div>

</div>

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

247

The part that we want is, shockingly enough, the label tag. As you can see, there

is nothing between the opening and closing tags, so as a result it uses the name of the

property. If you were to change it, even though you already changed the model, it would

reflect the change in the view, as that takes precedence. You don’t need to do this unless

you want it to be some other text, I have changed it so the line now reads:

<label asp-for="LocationId" class="col-md-2 control-label">Some Text

</label>

You would see that your page now looks like Figure 7-6.

Figure 7-5.  Our labels updated from the model

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

248

The method of choice is to set the text in the model and then, if you do need to

change it in only one or two locations, make those changes in the appropriate view.

�Setting Minimum and Maximum Values for a Property

Let’s work on our horse model next, as this is a good place to set a minimum and

maximum value for a property. If you don’t have it open, open the Horse.cs file. Let’s

take a look at what we have to work with. If we were to also look at our table we would

see that, of the fields we can populate, the only one that is required is the name. The

rest can be empty or null, so we will take that into account when we validate our input.

Listing 7-5 shows the code that we are going to use. What can you come up with before

taking a look at the listing?

Figure 7-6.  Changing the label in the view

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

249

Listing 7-5.  Horse.cs

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace EquineTracker.Models {

 public partial class Horse {

 public Horse() {

 Result = new HashSet<Result>();

 }

 public int HorseId { get; set; }

 [Required]

 public string Name { get; set; }

 public string Breed { get; set; }

 �[RegularExpression(@"([1-2]|1[0-9])\.[123]", ErrorMessage = "Enter The

Height In Hands, for example: 14.0 between 1.0 and 20.3")]

 [DisplayFormat(DataFormatString = "{0:N1}", ApplyFormatInEditMode = true)]

 public decimal? Height { get; set; }

 �[Range(0.0, double.MaxValue, ErrorMessage = "Value Must Be Positive"),

DisplayFormat(DataFormatString = "{0:C}")]

 public decimal? Value { get; set; }

 public ICollection<Result> Result { get; set; }

 }

}

How did you do with yours? You may have come up with some things I didn’t add to

the application and perhaps you missed the height issue. Horses are measured in a unit

called hands, which is based on 4 inches. So a horse that is 15.2 hands tall is 62” inches

tall. That is why we are looking for a number between 1.0 and 20.3. Horses aren’t going to

be 4 inches tall, but in an effort to not create an overly complicated regular expression, I

kept it easy. Feel free to make it equal to or greater than 3.2 hands and less than or equal

to 20.3 hands (which are the shortest to tallest recorded horses in the world as of the

writing of this book).

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

250

We also added a range for the value of the horse of 0.0 to the max value of a double.

I’m not going to say that the person using this is going to have a horse worth a few billion

dollars, but I wanted to show you that you don’t have to use a number and that you can

use a constant like double.MaxValue. This is something you may find useful in another

application. As before, we created some custom error messages. The ones that they

would receive otherwise would not be that helpful. If you want to see what I mean, see

Figure 7-7, which shows the original error message.

As with most of the other default error messages, it’s not overly helpful to a regular

person/end user. We now have two different ways of handling a range of numbers to

have a minimum and maximum value—one using a regular expression and the other

using the Range attribute.

We saved the easiest one for last and that is Result.cs (see Listing 7-6). The three

properties that we are concerned about are all required. We aren’t going to do any fancy

formatting, though you can if you want.

Figure 7-7.  Error not formatted

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

251

Listing 7-6.  Result.cs

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace EquineTracker.Models {

 public partial class Result {

 public int ResultId { get; set; }

 public int EventId { get; set; }

 public int HorseId { get; set; }

 [Required]

 public string Class { get; set; }

 [Required]

 public decimal Score { get; set; }

 [Required]

 public string Notes { get; set; }

 public Event Event { get; set; }

 public Horse Horse { get; set; }

 }

}

We could probably assume that all scores are going to be positive, but there could be

some show some place where the lowest score wins or perhaps the score is seconds from

a goal time, so you could have a score of -3.35. You could also set a minimum number of

characters for the Class name and the notes if you wanted to.

As you can see, basic validation is pretty easy to incorporate in an ASP.NET MVC

Entity Framework Core 2.0 application. In a desktop type application or a more custom

ASP.NET MVC application, I would probably put some code in the setter for the

properties as well. If you are already familiar with ASP.NET MVC programming, you may

already know how to do that. If it’s something you want to learn how to do, head out to

your local book store or go online and find a good MVC book.

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

252

�Adding Column Sorting to Results
The sorting of our results is pretty simple, but how do we add the ability to sort our

results on our page? We are going to take care of that for our Events page in this section.

In the next couple of examples, I’m going to make the changes on one page/view with

the thought being that you’ll be able to take the example you just did and apply it to

the other places within the site. For simplicity, we will sort our events by date and

location, and again hopefully with what you are learning here, you can also sort by the

other fields if you want to. If it’s not already open, open your events controller, which is

EventsController.cs. We will add code to our Index method and once we are done

with that, we’ll make some changes to our view. See Listing 7-7.

Listing 7-7.  Updating the Index of EventsController.cs

// GET: Events

public async Task<IActionResult> Index(string sortOrder) {

 ViewData["LocationSortParam"] = sortOrder == "loc" ? "loc_desc" : "loc";

 �ViewData["DateSortParam"] = string.IsNullOrEmpty(sortOrder) ?

"date_desc" : "";

 var events = _context.Event.Include(x => x.Location);

 switch (sortOrder) {

 case "loc_desc":

 e�vents = events.OrderByDescending(e => e.Location).Include(x =>

x.Location);

 break;

 case "loc":

 events = events.OrderBy(e => e.Location).Include(x => x.Location);

 break;

 case "date_desc":

 �events = events.OrderByDescending(e => e.EventDate).Include(x =>

x.Location);

 break;

 default:

 �events = events = events.OrderBy(e => e.EventDate).Include(x =>

x.Location);

 break;

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

253

 }

 return View(await events.AsNoTracking().ToListAsync());

}

I decided to go with a switch statement because people just don’t use them enough.

They do a good job of showing you at a quick glance what is going on. This also gives

you the ability to have a default value, which again is easy to recognize. First I’ll cover the

obvious thing, which is the two ViewData elements. Hopefully you have pieced together

that these have to do with the view that we’ll be working with. These will be used within

the view to configure our column headers, which will become hyperlinks. Note that we

did add a parameter to our method called sortOrder.

The first thing we are doing is creating an IIncludableQueryable<Event,

Location> that we called events. Because we hate ourselves and started with something

complex, we have a little extra work to do. For each case statement, we have to add

.Include(x => x.Location); otherwise, the compiler will tell us that we are trying

to do something we shouldn’t. Remove it from one of the lines and you’ll see what I

mean. If this wasn’t a query in which we did a join, you wouldn’t need that part. After

we get our object, we go through the switch statements and sort our results based on

sortOrder. Once we have our results in an ordered list, we pass the list along to the view

to be displayed. Before we run our code, however, we need to update our Index view

for events. Listing 7-8 shows the table header code for Index.cshtml in our Event Views

folder with the changes in bold.

Listing 7-8.  Index.cshtml

@model IEnumerable<EquineTracker.Models.Event>

@{

 ViewData["Title"] = "Events";

}

<h2>Events</h2>

<p>

 <a asp-action="Create">Create New

</p>

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

254

<table class="table">

 <thead>

 <tr>

 <th>

 @Html.DisplayNameFor(model => model.Name)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.Description)

 </th>

 <th>

 �<a asp-action="Index" asp-route-SortOrder=

"@ViewData["DateSortParam"]"> @Html.DisplayNameFor(model =>

model.EventDate)

 </th>

 <th>

 �<a asp-action="Index" asp-route-SortOrder=

"@ViewData["LocationSortParam"]"> @Html.DisplayNameFor(model =>

model.Location)

 </th>

 <th></th>

 </tr>

 </thead>

 <tbody>

 @foreach (var item in Model) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.Name)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Description)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.EventDate)

 </td>

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

255

 <td>

 @Html.DisplayFor(modelItem => item.Location.Name)

 </td>

 <td>

 <a asp-action="Edit" asp-route-id="@item.EventId">Edit |

 �<a asp-action="Details" asp-route-id="@item.EventId">

Details |

 �<a asp-action="Delete" asp-route-id="@item.EventId">Delete

 </td>

 </tr>

 }

 </tbody>

</table>

As I mentioned, we are using ViewData to set up our hyperlinks. If the user clicks

on them, it brings us back to the Index page; now it will be sorted in the order that they

selected. Figure 7-8 shows the page when you first enter it and Figure 7-9 shows it sorted

by the date field in descending order. I include the address bar in both examples so you

can see the difference there as well.

Figure 7-8.  Default view of the Index page

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

256

As you can see, the address changes to localhost:60101/Events?sortOrder=

date_desc. Now all the shows are sorted by the date in descending order. Don’t forget

that your port number may be different than mine, so don’t try to type in the address.

�Adding Search Capabilities
We’ll stick with our Events page for the time being so we can keep our code in one place,

which should hopefully make your life easier later if you choose to implement this is

other locations. Or if you are working on a separate project, you can look in one place to

find what you need. Another helpful thing we can offer the users is the ability to search

for data. Looking at the Events page, I think the most helpful thing to search for would be

the show name. We will be going back to our EventsController.cs file and the Index for

this. Listing 7-9 shows the Index method in EventsController.cs with the updates.

Figure 7-9.  Sorted by descending date

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

257

Listing 7-9.  Index Method in EventsController.cs

// GET: Events

public async Task<IActionResult> Index(string sortOrder, string

searchString) {

 ViewData["LocationSortParam"] = sortOrder == "loc" ? "loc_desc" : "loc";

 �ViewData["DateSortParam"] = string.IsNullOrEmpty(sortOrder) ?

"date_desc" : "";

 ViewData["SearchParam"] = searchString;

 var events = _context.Event.Include(x => x.Location);

 �// check if searchString is null, if not search the events for the name

of the event

 if (!string.IsNullOrEmpty(searchString)) {

 �events = events.Where(n => n.Name.Contains(searchString)).Include(x =>

x.Location);

 }

 switch (sortOrder) {

 case "loc_desc":

 �events = events.OrderByDescending(e => e.Location).Include(x =>

x.Location);

 break;

 case "loc":

 events = events.OrderBy(e => e.Location).Include(x => x.Location);

 break;

 case "date_desc":

 �events = events.OrderByDescending(e => e.EventDate).Include(x =>

x.Location);

 break;

 default:

 �events = events = events.OrderBy(e => e.EventDate).Include(x =>

x.Location);

 break;

 }

 return View(await events.AsNoTracking().ToListAsync());

}

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

258

The good news is we really didn’t have to do a whole lot here in order to add the

ability to search. We added another property to our method called searchString. We

then added another ViewData property with the same name. Then we needed to make a

decision—how are we going to handle our query? Since I don’t want to have a super long

declaration for my variable, I decided to query the database and then do my SELECT on

the results. You could create a variable first and then do your query using that variable,

which would look something like this:

Microsoft.EntityFrameworkCore.Query.IIncludableQueryable<Event, Location>

events;

if (!string.IsNullOrEmpty(searchString)) {

 �events = _context.Event.Where(n => n.Name.Contains(searchString)).

Include(x => x.Location);

} else {

 events = _context.Event.Include(x => x.Location);

}

There are occasions where this would be preferred, and perhaps eventually this

application will become large enough to warrant it. This is why I felt it would be good to

point it out to you. As I mentioned, if we weren’t doing a join on our tables, this would be

much shorter. I still prefer the var method for places I know should stay relatively small

or if performance isn’t much of an issue.

Now we just need to add our search box to our view and we are off to the races.

Open Index.cshtml from our Events views and add the code shown in Listing 7-10; the

changes are in bold.

Listing 7-10.  Changes to Index.cshtml

@model IEnumerable<EquineTracker.Models.Event>

@{

 ViewData["Title"] = "Events";

}

<h2>Events</h2>

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

259

<p>

 <a asp-action="Create">Create New

</p>

<form asp-action="Index" method="get">

 <div>

 <p>

 �Search by Event Name: <input type="text" name="searchString"

value="@ViewData["searchParam"]" />

 <input type="submit" value="Search" class="btn btn-default" />

 </p>

 </div>

</form>

<table class="table">

 <thead>

 <tr>

 <th>

 @Html.DisplayNameFor(model => model.Name)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.Description)

 </th>

 <th>

 �<a asp-action="Index" asp-route-SortOrder="@ViewData

["DateSortParam"]"> @Html.DisplayNameFor(model => model.

EventDate)

 </th>

 <th>

 �<a asp-action="Index" asp-route-SortOrder="@ViewData

["LocationSortParam"]"> @Html.DisplayNameFor(model => model.

Location)

 </th>

 <th></th>

 </tr>

 </thead>

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

260

 <tbody>

 @foreach (var item in Model) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.Name)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Description)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.EventDate)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Location.Name)

 </td>

 <td>

 <a asp-action="Edit" asp-route-id="@item.EventId">Edit |

 �<a asp-action="Details" asp-route-id="@item.EventId">

Details |

 <a asp-action="Delete" asp-route-id="@item.EventId">Delete

 </td>

 </tr>

 }

 </tbody>

</table>

That’s all there is to it. We create a form object in our code because it’s good form

to do so. I then create a div in case we later want to do some exciting formatting, plus

it keeps it grouped together nicely. We then create the text input field, which I named

searchString. I normally name them something similar to the variable that will be used

with the object. Most importantly, we have our ViewData object, which will be used in

the controller just like when we created our hyperlinks. We then have to create a button

so the users have something to click on to perform the search. Now let’s say we didn’t

have our handy navigation across the top of the screen and it was a bit harder to get to.

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

261

We could also create a hyperlink that would bring us back to the Index page with no

search being performed. Like before, you add a tag that would look something like this:

<a asp-action=”Index”>View Complete List

Figure 7-10 shows the Events index page when we search for State.

As you can see, it found the show called 41st Annual State Fair Show. If you were

to type state in lowercase, it would still find the fair. If you kept your browser open and

searched for week, you would then find that it loads all the shows named Weekly Show.

Something that you may have noticed is that we specified in our form tag that the

method is a GET method. By default it would be a POST, which means our parameters

would be passed in the HTTP message body and not in the URL as a query string. By

using the GET, the parameter is passed in the URL as a query string, which means we

could bookmark the page for that particular search. Another reason we did this is that

it’s considered good practice. Any time the action doesn’t result in an update, you

should use GET and not POST. If you spend more time working with ASP.NET MVC, you’ll

come across this. The bookmark will obviously work a lot better when you publish your

application rather than run it in debug mode like are doing.

Figure 7-10.  Searching for state in the events

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

262

�Adding Pagination: Version 1
Back in our console application, we enabled pagination in order to keep our console

looking neat and clean. We are going to do the same thing here for the same reasons.

The good news is the Entity Framework Core code is pretty much identical; the bad

news is this requires some work to get it working on a website. We are going to show two

different examples that page the results—one for a table with a join and one for a single

table. We will start with the more difficult one and then we’ll do the easier, single-table

method.

The first thing we are going to do is create a folder in our application called Helpers

and within that folder, we are going to create a new class called PagingInfo.cs. This will

be a helper class that we’ll use when we have a paged list that we want to display. See

Listing 7-11.

Listing 7-11.  PagingInfo.cs

using System;

namespace EquineTracker.Models {

 public class PagingInfo {

 public int TotalObjects { get; set; }

 public int ObjectsPerPage { get; set; }

 public int CurrentPage { get; set; }

 public int TotalPages {

 get {

 �return (int)Math.Ceiling((decimal)TotalObjects /

ObjectsPerPage);

 }

 }

 public bool HasPreviousPage {

 get {

 return (CurrentPage > 1);

 }

 }

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

263

 public bool HasNextPage {

 get { return (CurrentPage < TotalPages); }

 }

 }

}

Nothing too complicated here; just a couple of properties that are pretty self-

explanatory and a couple of methods to let us know if we have a previous or next page

available or how many total pages we are going to have. If you aren’t familiar with Math.

Ceiling, it’s pretty useful as well as a lot of the other Math.Somethings we have access to.

Before you can do the next part, we need to add a new model to our Models folder

called EventListViewModel. Right-click on the Models folder and add a new class called

EventListViewModel, as shown in Listing 7-12.

Listing 7-12.  EventListViewModel

using System.Collections.Generic;

using EquineTracker.Helpers;

namespace EquineTracker.Models {

 public class EventListViewModel {

 public IEnumerable<Event> Events { get; set; }

 public PagingInfo PagingInfo { get; set; }

 }

}

Next we are going to update our code in EventsController.cs for our Index. I’m

going to tell you right now that because of how we handled our events by location, that

paging isn’t going to work right. Instead, you could add it to the index and check to see if

you have a LocationId and if so your query text would be x; otherwise, it would be y. Or

you could add the paging logic to EventsByLocation().

With that, let’s take a look at the Index method. Before you start, you’ll need to add a

variable to this class:

public int PageSize = 4;

As well as another using statement:

using EquineTracker.Helpers;

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

264

This way, if you need to access paging from somewhere else within the class, it will

be available. See Listing 7-13.

Listing 7-13.  Index() in EventsController.cs

// GET: Events

public ViewResult Index(string sortOrder, string searchString, string

currentFilter, int page = 1) {

 ViewData["CurrentSort"] = sortOrder;

 ViewData["LocationSortParam"] = sortOrder == "loc" ? "loc_desc" : "loc";

 �ViewData["DateSortParam"] = string.IsNullOrEmpty(sortOrder) ?

"date_desc" : "";

 if (searchString == null) {

 searchString = currentFilter;

 }

 ViewData["CurrentFilter"] = searchString;

 EventListViewModel model = new EventListViewModel();

 var events = _context.Event.Include(x => x.Location);

 �// check if searchString is null, if not search the events for the name

of the event

 if (!string.IsNullOrEmpty(searchString)) {

 �events = events.Where(n => n.Name.Contains(searchString)).Include(x =>

x.Location);

 }

 switch (sortOrder) {

 case "loc_desc":

 model = new EventListViewModel {

 Events = events.Include(x => x.Location)

 .OrderByDescending(e => e.Location)

 .Skip((page - 1) * PageSize)

 .Take(PageSize)

 };

 break;

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

265

 case "loc":

 model = new EventListViewModel {

 Events = events.Include(x => x.Location)

 .OrderBy(e => e.Location)

 .Skip((page - 1) * PageSize)

 .Take(PageSize),

 };

 break;

 case "date_desc":

 model = new EventListViewModel {

 Events = events.Include(x => x.Location)

 .OrderByDescending(e => e.EventDate)

 .Skip((page - 1) * PageSize)

 .Take(PageSize),

 };

 break;

 default:

 model = new EventListViewModel {

 Events = events.Include(x => x.Location)

 .OrderBy(e => e.EventDate)

 .Skip((page - 1) * PageSize)

 .Take(PageSize),

 };

 break;

 }

 model.PagingInfo = new PagingInfo {

 CurrentPage = page,

 ObjectsPerPage = PageSize,

 TotalObjects = events.ToList().Count()

 };

 return View(model);

}

We did quite a few things in this listing. The first thing that you may have missed is

that we changed Index to be a ViewResult, which we did so we can return the model

that we create to our Index view. We are maintaining our var called events, which we

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

266

are going to use to query against instead of going back to the database. We are also going

to use this in order to calculate our total pages by knowing how many total objects there

are in our set.

One of the more annoying things is that you must have .Include(x => x.Location)

in all of your queries or you’ll get an error. Since we are paging our results, we have to

be sure that we use an OrderBy. Otherwise, we could get some pretty whacky results.

The .Skip and .Take should look familiar. They are doing the paging from a query

standpoint. Once we create our “model” variable, we need to populate the model.

PagingInfo property. If we didn’t have this, the paging work wouldn’t work in our view.

You’ll see where it’s used in our view in just a moment. The last thing we did is change

our return to simply be return View(model);.

We now need to update our view. Then we will be ready to run our code and get

some paged results for our events. See Listing 7-14.

Listing 7-14.  Index.cshtml

@*@model IEnumerable<EquineTracker.Models.Event>*@

@model EquineTracker.Models.EventListViewModel

@{

 ViewData["Title"] = "Events";

}

<h2>Events</h2>

<p>

 <a asp-action="Create">Create New

</p>

<form asp-action="Index" method="get">

 <div>

 <p>

 �Search by Event Name: <input type="text" name="searchString"

value="@ViewData["SearchParam"]" />

 <input type="submit" value="Search" class="btn btn-default" />

 </p>

 </div>

</form>

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

267

<table class="table">

 <thead>

 <tr>

 <th>

 Name

 </th>

 <th>

 Description

 /th>

 <th>

 �<a asp-action="Index" asp-route-sortOrder="@ViewData

["DateSortParam"]" asp-route-currentFilter="@ViewData

["CurrentFilter"]"> Event Date

 </th>

 <th>

 �<a asp-action="Index" asp-route-sortOrder="@ViewData

["LocationSortParam"]" asp-route-currentFilter="@ViewData

["CurrentFilter"]"> Location

 </th>

 <th></th>

 </tr>

 </thead>

 <tbody>

 @foreach (var item in Model.Events) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.Name)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Description)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.EventDate)

 </td>

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

268

 <td>

 @Html.DisplayFor(modelItem => item.Location.Name)

 </td>

 <td>

 <a asp-action="Edit" asp-route-id="@item.EventId">Edit |

 <a asp-action="Details" asp-route-id="@item.EventId">Details |

 <a asp-action="Delete" asp-route-id="@item.EventId">Delete

 </td>

 </tr>

 }

 </tbody>

</table>

@{

 var prevPageDisabled = !Model.PagingInfo.HasPreviousPage ? "disabled" : "";

 var nextPageDisabled = !Model.PagingInfo.HasNextPage ? "disabled" : "";

}

<a asp-action="Index" asp-route-sortOrder="@ViewData["CurrentSort"]"

 asp-route-page="@(Model.PagingInfo.CurrentPage - 1)"

 �asp-route-currentFilter="@ViewData["CurrentFilter"]" class="btn

btn-default @prevPageDisabled">Previous

<a asp-action="Index" asp-route-sortOrder="@ViewData["CurrentSort"]"

 asp-route-page="@(Model.PagingInfo.CurrentPage + 1)"

 �asp-route-currentFilter="@ViewData["CurrentFilter"]" class="btn

btn-default @nextPageDisabled">Next

As you can see, we made quite a few changes to our page. The most important is

right at the top—we commented out the first line and we added a new model declaration:

@model EquineTracker.Models.EventListViewModel.

We need to let the view know that we are going to be using our EventListViewModel

and not the Event model. This way we can access our PageInfo properties. We could

have put this in our original model, but many would say that it’s not good form to do

so. We statically named our table headers that are not hyperlinks and didn’t change

anything in the body of the table. We then have our code to check to see if we have a

previous or next page and as a result decide if the button with be disabled. If the button

needs to be disabled, which means we don’t have a previous or next page, I need to set

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

269

the value to be disabled. We are using the class property within the tag to add disabled

to the class so the button is grayed out and can’t be clicked.

It’s a little hard to tell in the figures, but the Next button is enabled and the Previous

button is disabled in Figure 7-11. Conversely, the Previous button is enabled and the Next

button is disabled in Figure 7-12. If you were to search for Weekly and do the same thing,

you would find that on page 2, you only have the two results (the two Weekly Show entries).

Figure 7-11.  Displaying four records with the Next button enabled

Figure 7-12.  Displaying the remaining three records with the Previous button
enabled

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

270

�Adding Paging: Version 2
That was the more difficult one, and the main reason it’s more difficult is the table join

that we are dealing with. Let’s try paging results that come from only one table. The first

thing we are going to have to do is add some more horses to our table. I’m going to add

the following horses to my database:

Name Breed Height Value

Remy Quarter Horse 15.1 800.00

Abby Quarter Horse 15.1 1200.00

Cheyenne Appaloosa 15.2 500.00

Misty Morgan 14.2 3500.00

Magic Gypsy Vanner 16.1 2600.00

As you might have guessed, we needed to add horses so we have something to page.

Now that we have a decent amount, we can get started. This time we’ll create a helper

class called PagedList.cs that we’ll put in our Helpers folder. This will be very similar to

the PagingInfo.cs file that we created before, although it’ll work a little bit different as

you’ll see. See Listing 7-15.

Listing 7-15.  PagedList.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.EntityFrameworkCore;

namespace EquineTracker.Helpers {

 public class PagedList<T> : List<T> {

 public int CurrentPage { get; set; }

 public int TotalPages { get; set; }

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

271

 �public PagedList(List<T> items, int count, int currentPage, int

pageSize) {

 CurrentPage = currentPage;

 TotalPages = (int)Math.Ceiling(count / (double)pageSize);

 this.AddRange(items);

 }

 public bool HasPreviousPage {

 get { return (CurrentPage > 1); }

 }

 public bool HasNextPage {

 get { return (CurrentPage < TotalPages); }

 }

 �public static async Task<PagedList<T>> CreateAsync(IQueryable<T>

source, int pageIndex, int pageSize) {

 var count = await source.CountAsync();

 �var items = await source.Skip((pageIndex - 1) * pageSize).

Take(pageSize).ToListAsync();

 return new PagedList<T>(items, count, pageIndex, pageSize);

 }

 }

}

Hopefully, you can see what is going on in this class by this point. This time we have

two properties one for our current page and one for the total pages in our result set.

This time we are passing a List<T> to our class to get our paging instead of doing it in

the model like we did in the last example. This is the method I normally use. Once it’s

working, it does make your life easier. However, I wanted to show you both options so

you know what you can do. The other good thing here is we can do it with any List<T> so

that is why we called our IQueryable<T> variable source, as it’s the source object. I felt

that this would help point that out. Feel free to give it a name that means more to you.

Just like before, we need to add this functionality to our Index method. This time

we’ll be opening HorsesController.cs. Just like before, you’ll need to add the following

using statement to the controller: using EquineTracker.Helpers;. Once you have done

that, we can make the changes shown in Listing 7-16 to Index.

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

272

Listing 7-16.  HorsesController.cs

// GET: Horses

public async Task<IActionResult> Index(int? page) {

 int pageSize = 5;

 var horses = from h in _context.Horse orderby h.HorseId select h;

 �return View(await PagedList<Horse>.CreateAsync(horses.AsNoTracking(),

page ?? 1, pageSize));

 //return View(await _context.Horse.ToListAsync());

}

Since we have a lot less going on here, I decided to leave in the old return statement

but comment it out so you can see the difference. Feel free to delete yours. We create

our IQueryable<Horse> called horses and we pass that with AsNoTracking() so the

change tracker won’t be trying to track any changes to our entity. Not that we are going

to be making any changes, but it’s always a good idea to do it for read-only type queries

like this one, as it reduces the overhead. Lastly, we are checking to see if our nullable int

page has a value. If not, it passes along a value of 1.

Now we just need to modify our Index.cshtml page and we are ready to test. Again

make sure you are modifying the Index.cshtml file within our Horses Views folder

(see Listing 7-17). In order to make my life easier, I usually keep my folders collapsed

until I need to use them. I only keep the files open that I’m using since a lot of them tend

to have similar names.

Listing 7-17.  Index.cshtml in Views ➤ Horses

@*@model IEnumerable<EquineTracker.Models.Horse>*@

@model EquineTracker.Helpers.PagedList<EquineTracker.Models.Horse>

@{

 ViewData["Title"] = "Index";

}

<h2>Index</h2>

<p>

 <a asp-action="Create">Create New

</p>

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

273

<table class="table">

 <thead>

 <tr>

 <th>

 Name

 </th>

 <th>

 Breed

 </th>

 <th>

 Height

 </th>

 <th>

 Value

 </th>

 <th></th>

 </tr>

 </thead>

<tbody>

@foreach (var item in Model) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.Name)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Breed)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Height)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Value)

 </td>

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

274

 <td>

 <a asp-action="Edit" asp-route-id="@item.HorseId">Edit |

 <a asp-action="Details" asp-route-id="@item.HorseId">Details |

 <a asp-action="Delete" asp-route-id="@item.HorseId">Delete

 </td>

 </tr>

}

 </tbody>

</table>

@{

 var prevPageDisabled = !Model.HasPreviousPage ? "disabled" : "";

 var nextPageDisabled = !Model.HasNextPage ? "disabled" : "";

}

<a asp-action="Index" asp-route-page="@(Model.CurrentPage - 1)"

 class="btn btn-default @prevPageDisabled">Previous

<a asp-action="Index" asp-route-page="@(Model.CurrentPage + 1)"

 class="btn btn-default @nextPageDisabled">Next

The biggest difference with this listing is that we are using PagedList as our model

and our buttons require less, as we currently aren’t doing any sorting or searching on

this page. In the future if you were to add sorting and searching, then you would have to

modify it in a similar way as we did in Version 1. We used the same logic for determining

if we have a previous or next page and replicated a little bit of code, but I think we’ll be

able to live through it. See Figure 7-13.

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

275

As we would expect, we have five of our six horses listed on the page and the Next

button is enabled. If you grew up working on Windows Forms applications, web pages

and sites might seem a bit tedious and painful at times. Once you get the hang of it and

do it a couple of times, it’s really not too bad.

�Grouping Results
Right now if we look at our results page, it does just what we asked it to do—it displays

all of the results on one page in one giant list. We have only one result in there at the

moment, but I think you get what I’m saying. The first thing we are going to do is add a

couple more results so that we have some data to work with. This will also act as a way

to test the data entry form. Figure 7-14 shows you one issue we currently have with the

form.

Figure 7-13.  Our paged horses index page

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

276

Think about how we want to handle this problem. Let’s say we decide that we are

going to put the shows in a dropdown list that the users can pick from. With only seven

shows, that’s not a big deal. However, what’s going to happen in 4 or 5 years when we

have 50+ shows? That is going to be quite the list to sift through. What makes the most

sense in this case is to create a show result from the show itself. So let’s take care of that

real quick and then we’ll group our results.

To start, we need to open our Results controller and change the Create method that

we are using with our GET, as shown in Listing 7-18. We are going to leave the POST one

alone, as we don’t need to make any changes at this point.

Listing 7-18.  Modifying Create in the ResultsController.cs File

// GET: Results/Create

public IActionResult Create(int EventId) {

 �ViewData["EventId"] = new SelectList(_context.Event.Where(e =>

e.EventId == EventId), "EventId", "Description");

 ViewData["HorseId"] = new SelectList(_context.Horse, "HorseId", "Name");

 return View();

}

Figure 7-14.  Which show are we picking?

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

277

We added an argument called EventId so we know which event we are looking for.

We then modified our ViewData code for EventId in order to select the right one using

a where clause. Didn’t think we’d be able to do this without adding a little bit of EF Core

code, did you? All we are doing with this code is passing a list of one to our view so it can

display the proper information as well as maintain the EventId.

We then have to change our Results Create view as a little bit of housekeeping. As you

may have noticed when you ran your code, or if you looked at Figure 7-14, it’s listed as

EventId and our horse is listed as HorseId. This time we’ll change the view. Listing 7-19

shows the portion of the view we are concerned with. I removed the rest of the code from

the example in an effort to save some space and to make it easier to see the changes.

Listing 7-19.  Create.cshtml (Results)

@model EquineTracker.Models.Result

@{

 ViewData["Title"] = "Create";

}

<h2>Create</h2>

<form asp-action="Create">

 <div class="form-horizontal">

 <h4>Result</h4>

 <hr />

 <div asp-validation-summary="ModelOnly" class="text-danger"></div>

 <div class="form-group">

 �<label asp-for="EventId" class="col-md-2 control-label">Event

</label>

 <div class="col-md-10">

 �<select asp-for="EventId" class ="form-control" asp-items=

"ViewBag.EventId"></select>

 </div>

 </div>

 <div class="form-group">

 �<label asp-for="HorseId" class="col-md-2 control-label">Horse

</label>

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

278

 <div class="col-md-10">

 �<select asp-for="HorseId" class ="form-control" asp-items=

"ViewBag.HorseId"></select>

 </div>

 </div>

 <div class="form-group">

 <label asp-for="Class" class="col-md-2 control-label"></label>

 <div class="col-md-10">

 <input asp-for="Class" class="form-control" />

 </div>

 </div>

. . .

All we did was add text to the Event and Horse labels. The changes are in bold and the

code continues on after this section, but I included it so you could find it easier.. When

you run your code, it will now display correctly. We just need a way to call our method and

to do that we are going to open Details.cs from our Events view. We are going to do this

just like we did in our previous example, although you can add a button if you really want

to make it look nice. Listing 7-20 shows the very bottom of the code in Details.cshtml.

Listing 7-20.  Details.cshtml in the Events View Folder

<div>

 <a asp-action="Edit" asp-route-id="@Model.EventId">Edit |

 <a asp-action="Index">Back to List |

 �@Html.ActionLink("Add a Result for this Show", "Create", "Results",

new { @EventId = @Model.EventId }, null)

</div>

Let’s do one last thing to help our application work a little bit better. We are going

to remove our Create link from the results Index view. We want our users to be able to

add results only from the Details view for the event. Remove or comment out (I prefer

remove) the following from the view:

<p>

 <a asp-action="Create">Create New

</p>

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

279

Once you do that, you can run the code to be sure it works (see Figure 7-15). This

is a great spot for unit testing, but like a lot of people like to say, “everyone has a test

environment; it’s just some of us are lucky enough to have it separate from production.”

The show in Figure 7-16 is the one we are going to add a result to first. When you

choose that Hyperlink you should see an empty version of Figure 7-17. Your Event field

should read Weekly Show and it should display the first horse in the Horse field. I chose a

different horse for this show.

Figure 7-15.  Look mom, no create in our Index view

Figure 7-16.  Selecting the 8/6/17 weekly show and viewing the details

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

280

The full note is: Way too wide on barrel 2. Did finish 3rd though so I’m happy.

When we click the Create button, we are brought to the Results Index view. It should

look like Figure 7-18.

Now that we have a way to add results, let’s add some so we can group our results

together, which after all is the point of this section.

Figure 7-18.  Results Index view

Figure 7-17.  Adding a result entry

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

281

Event Horse Class Score Notes

Weekly 8/6/17 Abby 3D Pole Bending 24.21 Slipped on the way back

Weekly 8/20/17 Remy Training 1 68.34 Spooked at the judge

Weekly 8/20/17 Remy Training 2 67.62 Car alarm went off at first canter

transition

State Fair Cheyenne 3’3” Low Schooling 0 Didn’t touch anything, great round

State Fair Cheyenne 3’6” High Schooling 4 Came down on 8b

Once we add this information, it will give us some data to work with and show us

that it’s working. Figure 7-19 shows what the Results Index view will show us before we

do any grouping. As you can see, with so few shows, it’s not too bad. Imagine how 100+

results and would look. It’s true that we could eventually have well over 100 shows listed,

but if you were to do two classes per show, that would be 200 results, so I think you can

see why we want to group this.

Let’s start by creating a class to help. In our Helpers folder, we are going to add

another class called ResultGroup.cs. Listing 7-21 shows the very brief class code.

Listing 7-21.  ResultGroup.cs

using System;

using EquineTracker.Models;

namespace EquineTracker.Helpers {

 public class ResultGroup {

 public Event _Event { get; set; }

 public int ResultCount { get; set; }

 }

}

We have an Event property and a ResultCount property, which we’ll display

on our new Index page. The next thing we need to do is make some changes to

ResultsController.cs. We are going to use our Index method to display the individual

results for the events and we are going to create a new method to display our grouped list

of events for displaying results. This is a bit backwards, but since most of the code was

already in place, changing it seemed to be a waste. Listing 7-22 shows the added method

and the change to Index in our controller.

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

282

Listing 7-22.  ResultsController.cs

// Get: Results grouped together by Event

public ViewResult GroupedResults() {

 var events = _context.Result

 .GroupBy(e => e.EventId)

 .Select(g => new { id = g.Key, count = g.Count() });

 List<ResultGroup> lRg = new List<ResultGroup>();

 foreach(var gRes in events) {

 �Event e2 = _context.Event.Where(x => x.EventId == gRes.id).

FirstOrDefault();

 �ResultGroup rg = new ResultGroup() { _Event = e2, ResultCount =

gRes.count };

 lRg.Add(rg);

 }

 return View(lRg);

}

// GET: Results

public async Task<IActionResult> Index(int EventId) {

 �var begEFCoreContext = _context.Result.Include(r => r.Event).Include(r =>

r.Horse).Where(e=> e.EventId == EventId);

 return View(await begEFCoreContext.ToListAsync());

}

If you’ll recall, we talked about the joys of grouping before. When we are dealing with

MVC, it’s just as friendly. The easiest way to accomplish what we need is to create an

anonymous type variable and have it hold the EventId and a count of Results for that

particular event. We can then use that object to create a List<ResultGroup> variable

that we will use to pass to the view. We then loop through our set adding ResultGroup

variables to our list that have an event and a count associated with them into our list.

Once that is done, we pass our list to our view. For the Index method, we added an

argument for the EventId and we changed the query by adding a where clause to look for

results that are associated with the specific event.

The next thing we need to do in order to get this to work is create an empty view for

GroupedResults, which is our new index page/view. In case you forgot how to do that,

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

283

right-click on the return View(lRg); line (I usually do it on the word view, but so long

as it’s on the line you’ll be okay) and choose Add View. You should then see a window

that looks like Figure 7-19.

You can leave the defaults as long as they look like Figure 7-19 and click Add.

You will then be presented with an empty view, which we will populate with the code in

Listing 7-23.

Listing 7-23.  GroupedResults.cshtml

@model List<EquineTracker.Helpers.ResultGroup>

@{

 ViewData["Title"] = "Events With Results";

}

Figure 7-19.  Creating our GroupedResults view

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

284

<h2>Event Result Details</h2>

<table class="table">

 <thead>

 <tr>

 <th>

 Name

 </th>

 <th>

 Event Date

 </th>

 <th>

 Show Results

 </th>

 <th></th>

 </tr>

 </thead>

 <tbody>

 @foreach (var eventReults in Model) {

 <tr>

 <td>

 @Html.DisplayFor(mi => eventReults._Event.Name)

 </td>

 <td>

 @Html.DisplayFor(mi => eventReults._Event.EventDate)

 </td>

 <td>

 @Html.DisplayFor(mi => eventReults.ResultCount)

 </td>

 <td>

 �@Html.ActionLink("View Results", "Index", "Results",

new { @EventId = eventReults._Event.EventId }, null)

 </td>

 </tr>

 }

 </tbody>

</table>

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

285

The good news is that there is nothing new that you haven’t seen here. The bad news

is you have to type it all. The one note is that, as you can see, the model is a List<T>.

If you were to just try to pass along just the ResultGroup, it wouldn’t work. The other

important part is Html.ActionLink, which we use to pass our EventId to the controller

so we can display the view and see the results for the event.

Now we just have to make one last change to our program. Can you guess what that

is? If you said we need to fix the link to our Results Index page, you would be correct.

We need to open _Layout.cshtml, which his found in the View folder, and then in the

shared folder. All you have to do is modify:

<a asp-area="" asp-controller="Results" asp-action="Index">Results

To read:

<a asp-area="" asp-controller="Results" asp-action="GroupedResults">

Results

That’s it. When you click on Results in the menu bar from any of the pages, you’ll

now see something that looks similar to Figure 7-20.

Now if you click on View Results for the 41st Annual State Fair Show, you should see

something that looks like Figure 7-21.

Figure 7-20.  Our grouped results

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

286

Since we didn’t change anything in our view, which we can tell as it still says Index,

you’ll see that if we click on the Edit hyperlink for 3’3” Low Schooling, it will open the

Edit page shown in Figure 7-22.

Now you may notice that we do need to fix one thing. If you were to click on the Back

to List hyperlink, you would get a blank page (empty results is more like it). The good

thing is you can fix that in a jiffy. Open Edit.cshtml from the Results View folder. At the

bottom of the page, you should see the following code:

Figure 7-21.  Results for just one show

Figure 7-22.  Editing the show result

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

287

<div>

 <a asp-action="Index">Back to List

</div>

All you have to do is change it to:

<div>

 � @Html.ActionLink("Back to List", "Index", "Results", new { @EventId =

Model.EventId }, null)

</div>

Now if you click on Back to List, it will bring you right back where you were. Keep in

mind that if you were doing paging, it would require a little bit more effort, but not a ton

more. You would just need to keep track of what page you were on.

�Summary
We created a very rudimentary website that isn’t overly pretty, but has some basic

functionality. With a little bit more tweaking, you could use it on a daily basis. If you

or someone who lets you spend lots of money of computers and servers (or a monthly

cloud hosting bill) isn’t into horses, you could easily change it to just about any other

sport or hobby and be on your way. We covered basic CRUD (didn’t think we could get

through the chapter without using that acronym now did you?) operations for our site.

You now have a way to validate properties and do some basic error handling when the

values aren’t correct. You should be able to sort your results, search for values in a table,

page your results, and group your results to make it easier to sift through.

Although it’s not related to Entity Framework Core 2.0, you should also be able to

create classes to help your entities/models and create a custom view to go along with it.

By using Entity Framework Core and ASP.NET MVC Core, you should be able to navigate

through pages and end up back where you were.

Chapter 7 Finishing Our ASP.NET MVC .NET Core 2.0 Project

www.EBooksWorld.ir

289
© Derek J. Rouleau 2018
D. J. Rouleau, Beginning Entity Framework Core 2.0, https://doi.org/10.1007/978-1-4842-3375-7_8

CHAPTER 8

Wrap Up and Where
to Go Next
We managed to cover quite a bit of information in the previous chapters, and in very few

pages. I hope you found the brief explanations with examples more than sufficient to

get you started on your path to working with Entity Framework Core 2.0. We managed to

create a database from the code, which I’m sure many of you have never even thought

about doing before. When I first learned Entity Framework, the thought of doing a code-

first project was daunting, yet that is where we started in Chapter 1. If you can figure

out how to do the hard one, then doing the easier one is a snap. When we created our

ASP.NET MVC Core Application in Chapter 6, we got our first glimpse of database-first

development. As you saw from a getting started perspective, that was a lot easier and

required a lot less thought.

Chapters 2 and 3 got you comfortable with LINQ and lambda expressions. If you

used just this book to learn those two subjects, you could get by, but you can really do

some amazing things if you put in some more time and study the subject. LINQ will

make your life a lot easier in many respects once you get the hang of it.

Before you read Chapter 4, you might have wondered what POCOs were. When I

started learning Entity Framework and Entity Framework Core, I was a bit disappointed

to learn that they are really nothing more than classes. However, you learned a couple of

different ways to handle validating your data, which you used again in Chapter 6.

�Not Just C# Anymore
One of the features that was added was the ability to not just use C# anymore for your

applications. As of now you can only create console applications with Visual Basic and

I’m not sure if they are going to extend that out to ASP.NET or not in the future. I’m

not much into writing Visual Basic console applications any more, but if you were so

www.EBooksWorld.ir

290

inclined, you would be able to do so now. If you want to write something in Visual Basic,

I strongly recommend using Entity Framework 6.x instead of Core. If you know a VB

programmer who wants to learn Entity Framework, that will be a much easier path.

To show you what I mean, we’ll create a Visual Basic application that connects to the

database we created in Chapter 1 in a few short steps.

Step 1. Create a new Visual Basic console application called VBTestApp, as shown in

Figure 8-1.

Step 2. Right-click on VBTestApp and choose Add ➤ New Item.

Step 3. From the Wizard, choose Data and then ADO.NET Entity Data Model. Call it

MachineModel, as shown in Figure 8-2.

Figure 8-1.  Creating VBTestApp

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

291

Step 4. Choose the EF Designer from the database option on the next window. The

next thing you will do is choose your data connection. If the one you want isn’t in the list,

choose New Connection and follow the wizard prompts. Once you find it, click on the

Next button. Since I’m not going to use this application, I chose the unsafe option, which

is Include the Sensitive Data in the Connection String (see Figure 8-3).

Figure 8-2.  Adding the model

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

292

Step 5. Choose Entity Framework 6.x and click Next. In the next window, choose the

Tables and Stored Procedures and Functions options. Since we don’t have any views, we

don’t need to check the Views box.

Figure 8-3.  Creating the connection string

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

293

Step 6. Click on Finish and wait a couple of seconds for everything to be scaffolded.

You are done.

It should open up to MachineModel.edmx [Diagram1], which should look similar to

Figure 8-5 (although I have moved mine around a little bit to make it easier to follow the

links between the tables).

Figure 8-4.  Selecting database objects

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

294

Let’s take it for a test drive. Go to Module1.vb and type the following. Figure 8-6

shows the output.

Module Module1

 Sub Main()

 Using context As New BegEFCore2Entities()

 For Each os In context.OperatingSys

 �Console.WriteLine("{0} still supported: {1}", os.Name,

os.StillSupported)

 Next

 End Using

 Console.WriteLine("Hit any key to continue...")

 Console.ReadKey()

 End Sub

End Module

Figure 8-5.  Graphical representation of the model

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

295

As you can see, that is a lot easier. Nothing against Visual Basic programmers, but that

is a bit easier to work with and probably a better place to start. After all, I think many of

us started with Basic or Visual Basic in school and then moved onto some variant of C or

Java. You also have a couple more options open to you as well, which will also make things

easier. But this is a book on Entity Framework Core, so we’ll leave it at that for EF 6.x.

For those who are interested in learning something else, you can also create

applications in F#. F# has been supported since .Net Core 1.0, so it’s not new. However,

they have made some more improvements when it comes to using F#.

�Cross Platform
One of the main reasons to use .Net Core and Entity Framework Core is that it is cross

platform. You are no longer stuck having to write and use your application on just

Windows any more. When you created your Entity Framework Core/.Net Core 2.0

application, you didn’t create an EXE file. You created a DLL file. This isn’t an apples-to-

apples comparison, but Figure 8-7 shows you the Debug folder for our ComputerInventory

application and Figure 8-8 shows you the VBTest application we created.

Figure 8-6.  Output from the application

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

296

As you can see, another reason to use EF Core and .Net Core is that you can run

your application on Linux and MacOS. There is also a development environment for

those operating systems. Microsoft has been doing a lot recently in the open source

marketplace, which might come to a shock to some of you. I have read that Red Hat is

working on something too, which should hopefully be out soon, so those who are on

RHEL (Red Hat Enterprise Linux) or have it in your environment, that is a plus for you.

So what’s the big deal? We could run C# using mono before. The upside here is it doesn’t

require any third-party repositories in order to run. I work in a strictly Windows shop

and all of my knowledge of Linux could probably fit in a paragraph. But for those of you

who use it a lot but also like programming in C#, this could be very helpful.

Figure 8-7.  Entity Framework Core/.Net Core Debug folder

Figure 8-8.  Entity Framework 6.x application

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

297

�Unit Testing
It’s time for everyone’s favorite thing in the whole wide world—unit testing. I bet some

of you were hoping I’d forget this part. But it’s something that is important and they did

a pretty good job of making it easier for us. I’m sure some of you are thinking, “Why do I

want to do this? I can just run my code and test it with breakpoints and message boxes or

Console.WriteLines().” Those methods are okay to an extent, but what happens when

you want to start testing your database? Do you want to delete a bunch of records that

are either just test data or corrupted data? This is where unit testing helps you, although

it’s also good for testing general functionality as well. Once you see it in action, I think it

will help you understand why.

There is a downside to unit testing and it’s the reason people grumble about it. In

some cases, it will take you much longer to write the unit test than to write the code you

are going to be testing. However, that shouldn’t dissuade you from doing it. I’m going to

show you the way that I do it, which is only one of many. This was the first way I learned

and haven’t had the time to learn another method. See how you like it. If you don’t,

I suggest looking into one of the many other options.

We are going to use the built-in unit testing support that comes with Visual Studio.

For more information about the kind of testing capabilities that are available, check

out https://www.visualstudio.com/vs/compare/. To use it, you need to create a unit

testing project, which we are going to add to the ComputerInventory project. To do

this, you need to right-click on the project in Solution Explorer and choose Add ➤ New

Project. Figure 8-9 shows this process.

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

https://www.visualstudio.com/vs/compare/

298

Once you click on New Project, you should get the Add New Project wizard. From

there, choose Visual C# ➤ .NET Core and then choose Unit Test Project (.NET Core).

You can use the name UnitTestProject1 for this example. With future projects, you

should probably give it a better name (see Figure 8-10).

Figure 8-9.  Creating a new project for unit testing

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

299

We are almost done. Just add a reference to our application so our unit test project

can access the classes. Right-click on the UnitTestProject1 project in the Solution

Explorer and choose Add ➤ Reference. Then, under Projects ➤ Solution, choose

ComputerInventory (see Figure 8-11).

Figure 8-10.  Creating the unit test project

Figure 8-11.  Adding a reference to the original project

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

300

One thing I should mention: if you know you are going to be doing unit testing ahead

of time—and some might say it’s good to do anyway—it is a much cleaner approach to

put the majority of your code in one or more .Net Core class libraries.

Note also that a lot of people use interfaces instead of directly using classes. As you

know, we created everything without using interfaces. If you were to use interfaces in the

future, you would unit test against the interface.

Let’s test our BasicValidation method called ValidateYorN();.

If you don’t have UnitTest.1.cs open, open it now. Once you have it open, make

changes to your project so it looks similar to Listing 8-1.

Listing 8-1.  Our First Unit Test

using Microsoft.VisualStudio.TestTools.UnitTesting;

using ComputerInventory;

using ComputerInventory.Models;

namespace UnitTestProject1 {

 [TestClass]

 public class UnitTest1 {

 [TestMethod]

 public void Validate_Y_or_N() {

 // Arrange - method is static so no object needed

 // If you needed an object you would do the following:

 BasicValidation validation = new BasicValidation();

 // Act - Test if ValidateYorN works

 bool bY = BasicValidation.ValidateYorN("Y");

 bool bN = BasicValidation.ValidateYorN("N");

 bool by = BasicValidation.ValidateYorN("y");

 bool bn = BasicValidation.ValidateYorN("n");

 bool bAnyOtherChar = BasicValidation.ValidateYorN("G");

 bool bNumToString = BasicValidation.ValidateYorN(9.ToString());

 // Assert

 Assert.IsTrue(bY, "Validating Y");

 Assert.IsTrue(bN, "Validating N");

 Assert.IsTrue(by, "Validating y");

 Assert.IsTrue(bn, "Validating n");

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

301

 Assert.IsFalse(bAnyOtherChar, "Validating G");

 Assert.IsFalse(bNumToString, "Validating 9");

 }

 }

}

As you can see, I added two using statements so we have access to our original project.

We haven’t used the models yet, but we’ll get there, so why not just do it all at once? Each

test will start with a [TestMethod] attribute and about 99.9% of the time, they will be voids.

I am in the habit of naming my tests the same as the method they are testing, but adding

underscores between the logical break. So ValidateYorN becomes Validate_Y_or_N. This

is just a personal preference of mine. As you can see, the test is broken into three sections—

Arrange, Act, and Assert. In the Arrange section, we are getting everything ready. If we need

to create objects, we do so here. We set up variables and values for said variables, basically

everything you are going to need to act upon. The Act section is where you do the test; in our

case, we passed a string value (one character) to the method and got a value back.

According to the dictionary assert means “to state a fact of belief confidently and

forcefully”. That is basically what we are doing at this stage—we are saying we expect to

get this value. If not, let us know so we can figure out what the heck is going on. There are

quite a lot of Assert methods, but the ones I tend to use the most are listed in Table 8-1.

Table 8-1.  Common Assert Methods

Method Description

AreEqual<T>(T, T) Verifies that two specific generic type data are equal by using

the equality operator. Fails if they are not equal.

AreEqual<T>(T, T, string)

AreEqual(String, String,

Boolean)

Verifies that two specified strings are equal, ignoring care or

not. Fails if they are not equal.

AreSame(T, T) Verifies that two variables refer to the same object.

AreNotSame(T, T) Verifies that two variables refer to a different object.

IsTrue(bool) Verifies that a bool value is true.

IsFalse(bool) Verifies that a bool value is false.

IsNull(Object) Verifies that a variable is not assigned an object reference.

IsNotNull(Object) Verifies that a variable is assigned an object reference.

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

302

There are more Assert methods than listed here, and there are more choices for

each of these. In our code, we have Assert.IsTrue(bY, "Validating Y");, which

from Table 8-1 is closest to IsTrue(bool), but we have added a string. The string will be

displayed in our test output if it fails. I will force one of the tests to fail so you can see it in

use. Take some time to read up on MSDN about Assert methods, as they will help you

greatly during unit testing. Once you do check it out, you’ll see why I didn’t include the

entire list. It’s quite long.

Now that you know some basics, let’s run the test and see what happens. Before we can

do that though, we need to do one more thing. From the menu bar in Visual Studio, choose

Test ➤ Windows ➤ Test Explorer. When the Test Explorer opens, you’ll see a window similar

to the one shown in Figure 8-12. I normally keep mine open at the bottom of the screen.

To run the test, you can click on the Run All or on Run and Run Not Run Tests menu

options. See Figure 8-13.

Figure 8-13.  Running the test

Figure 8-12.  Test Explorer with the test in it

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

303

It’ll take a few seconds to do its thing, as it’s got quite a bit to load. Once the test

starts, it should be pretty quick. Figure 8-14 shows the test results.

As you can see in Figure 8-14, it only lists the test that ran and doesn’t list each Assert

statement. Now let’s say that we do our test, but we mess up. Change your code so it looks

like Listing 8-2. The text in bold shows what changed. Figure 8-15 shows the failed test.

Listing 8-2.  Forcing a Fail

// Act - Test if ValidateYorN works

bool bY = BasicValidation.ValidateYorN("Y");

bool bN = BasicValidation.ValidateYorN("N");

bool by = BasicValidation.ValidateYorN("y");

bool bn = BasicValidation.ValidateYorN("n");

bool bAnyOtherChar = BasicValidation.ValidateYorN("G");

bool bNumToString = BasicValidation.ValidateYorN(9.ToString());

// Assert

Assert.IsTrue(bY, "Validating Y");

Assert.IsTrue(bN, "Validating N");

Assert.IsTrue(by, "Validating y");

Assert.IsFalse(bn, message: "Validating n");

Assert.IsFalse(bAnyOtherChar, "Validating G");

Assert.IsFalse(bNumToString, "Validating 9");

Figure 8-14.  Test results

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

304

Now if we run it and we should see a window that looks like the following:

As you can see, we did fail but the information isn’t overly helpful. You need to click

on the failed test to see the results, as shown in Figure 8-16.

As you can see, Figure 8-16 is a bit more helpful. Not only did we change Assert.

IsTrue to Assert.IsFalse, we changed the way we tell the compiler we want a message

to be displayed. You can have added the text message: in there, which you can use to

remind yourself that it’s a message and not a value.

Let’s try a test against a method in Program.cs. Before we can do that, we need to make

two changes. First we need to make the class Program public and then we need to make the

method we are going to test public as well. Listing 8-3 shows the changes we made.

Figure 8-15.  Failed test

Figure 8-16.  Viewing more detail

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

305

Listing 8-3.  Changes to Program.cs for Unit Testing

namespace ComputerInventory {

 public class Program {

.

.

.

public static bool CheckForExistingOS(string osName) {

 bool exists = false;

 using (var context = new MachineContext()) {

 var os = context.OperatingSys.Where(o => o.Name == osName);

 if (os.Count() > 0) {

 exists = true;

 }

 }

 return exists;

}

Normally, we wouldn’t be testing against Program.cs, but in this case, we are going

to. That’s why we had to make those changes, as there would be a good chance that these

would already be public. Now we create a new test. I’m going to include the existing

code for this one example, so you can see how your UnitText1.cs file should look. The

remaining examples just add to the file. See Listing 8-4.

Listing 8-4.  Adding a New Test

public class UnitTest1 {

 [TestMethod]

 public void Validate_Y_or_N() {

 // Arrange - method is static so no object needed

 // If you needed an object you would do the following:

 BasicValidation validation = new BasicValidation();

 // Act - Test if ValidateYorN works

 bool bY = BasicValidation.ValidateYorN("Y");

 bool bN = BasicValidation.ValidateYorN("N");

 bool by = BasicValidation.ValidateYorN("y");

 bool bn = BasicValidation.ValidateYorN("n");

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

306

 bool bAnyOtherChar = BasicValidation.ValidateYorN("G");

 bool bNumToString = BasicValidation.ValidateYorN(9.ToString());

 // Assert

 Assert.IsTrue(bY, "Validating Y");

 Assert.IsTrue(bN, "Validating N");

 Assert.IsTrue(by, "Validating y");

 Assert.IsTrue(bn, message: "Validating n");

 Assert.IsFalse(bAnyOtherChar, "Validating G");

 Assert.IsFalse(bNumToString, "Validating 9");

 }

 [TestMethod]

 public void Check_For_Existing_OS() {

 // Arrange

 string osName = "Windows 7";

 // Act - Test for existing OSName in Database

 bool success = Program.CheckForExistingOS(osName);

 // Assert

 Assert.IsTrue(success);

 }

}

All you have to do is add your [TestMethod] attribute, followed by the test you want to

create and you are good to go. Click on Run All and see what happens (see Figure 8-17).

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

307

As you can see, we have validated that our database contains an OS named Windows 7.

Now let’s say we simply wanted to test a query or LINQ query. Well that’s pretty simple

too. We will do this two different ways. I’ll show a simple one first and then one that I

normally do. See Listing 8-5.

Listing 8-5.  Testing LINQ

[TestMethod]

public void Retreive_Support_Ticket_By_ID() {

 // Arrange

 int ticketId = 1;

 SupportTicket sTicket;

 // Act

 using (MachineContext context = new MachineContext()) {

 �sTicket = context.SupportTicket.Where(x => x.SupportTicketId ==

ticketId).FirstOrDefault();

 }

 //Assert

 Assert.AreEqual(1, sTicket.SupportTicketId);

}

Figure 8-17.  Running two unit tests

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

308

Before you can run this test, you need to add the following using statements and

change the visibility of the MachineContext class to public:

using ComputerInventory.Data;

using System.Linq;

This test does work, but are you 100% sure it’s correct? I’d argue yes, but if you want

to be sure, make the changes shown in Listing 8-6. You need to know what value you are

expecting, so SQL Server Management Studio will be your friend. When I look in SQL

Server Management Studio, I see that SupportTicketID 1 is associated with MachineID 5,

so let’s test for that and be sure we have what we think we have.

The updated test is shown in Listing 8-6, with the second Assert method added.

Listing 8-6.  Updating the Test

[TestMethod]

public void Retreive_Support_Ticket_By_ID() {

 // Arrange

 int ticketId = 1;

 SupportTicket sTicket;

 // Act

 using (MachineContext context = new MachineContext()) {

 �sTicket = context.SupportTicket.Where(x => x.SupportTicketId ==

ticketId).FirstOrDefault();

 }

 //Assert

 Assert.AreEqual(1, sTicket.SupportTicketId, message: "TicketId test");

 Assert.AreEqual(5, sTicket.MachineId, message: "MachineId test");

}

Running the test should succeed. If not, you either typed something wrong or your

entry for SupportTicketId 1 isn’t the same as mine, in which case make sure you are

testing for the right value. Another thing to keep in mind with testing is that you should

be doing it on a test database. So you can add the data you need for testing to be sure you

are getting the results you expect. However, if you aren’t working against a test database,

you need to be careful. But you’ll still need to use this approach and look in SSMS to be

sure it is correct.

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

309

Let’s say that we want to test our validation of our support log. We will do this in two

steps as well. First, we verify that the “correct” data will validate, then we test for correct

errors. See Listing 8-7.

Listing 8-7.  Testing the Validation Logic

[TestMethod]

public void Validate_Support_Log() {

 // Arrange

 SupportLog supportLog = new SupportLog() {

 SupportLogEntryDate = DateTime.Now,

 SupportLogEntry = "Filler text, just needs to be long enough",

 SupportLogUpdatedBy = "John Smith"

 };

 ModelValidation modelValidation = new ModelValidation();

 // Act

 bool valid = modelValidation.ValidateSupportLog(supportLog, "save");

 // Assert

 Assert.IsTrue(valid);

}

You need to add using System; in order to gain access to the datetime data type

(but you already knew that, didn’t you). We have created a SupportLog object that has

valid data in it. The thing with testing is you need to be sure you are testing correctly.

Otherwise your test is basically useless and you’ll spend a lot of time trying to figure out

why something is wrong when it may not be.

Here are two things that you could easily miss when setting up this type of test:

•	 Creating an invalid datetime by accident (outside of the bounds you

are looking for)

•	 Using update instead of save

If we choose to run the tests, we’ll get output that looks like Figure 8-18.

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

310

All of the other tests are grayed out because they didn’t run. Now let’s test for error

conditions. To make this easy, we’ll look for all of them in one test. We will modify the

last test, as shown in Listing 8-8.

Listing 8-8.  Testing for Errors

[TestMethod]

public void Validate_Support_Log() {

 // Arrange

 SupportLog supportLog = new SupportLog() {

 SupportLogEntryDate = DateTime.Now,

 SupportLogEntry = "Filler text, just needs to be long enough",

 SupportLogUpdatedBy = "John Smith"

 };

 SupportLog supportLog2 = new SupportLog() {

 SupportLogEntryDate = Convert.ToDateTime("2017-1-1 10:00"),

 SupportLogEntry = "fail",

 SupportLogUpdatedBy = "J"

 };

 ModelValidation modelValidation = new ModelValidation();

Figure 8-18.  Running just the latest test case

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

311

 // Act

 bool valid = modelValidation.ValidateSupportLog(supportLog, "save");

 bool invalid = modelValidation.ValidateSupportLog(supportLog2, "save");

 // Assert

 Assert.IsTrue(valid);

 Assert.IsFalse(invalid);

 �Assert.AreEqual("Date is not valid", modelValidation.errorList[0].Error.

ToString());

 �Assert.AreEqual("Enter at least 10 characters.", modelValidation.

errorList[1].Error.ToString());

 �Assert.AreEqual("Enter at least 2 characters", modelValidation.

errorList[2].Error.ToString());

}

The trick to getting this one to test correctly is making sure we are testing in the

right order. Since we are forcing all of our values to fail, we just test right down the line,

starting at position 0 going up through position 2, also known as the third value.

Note T his used to be more confusing for people who went between Visual Basic
and just about any other language, as it used to be one-based and not zero-based.
If you did a lot of programming in VB and in something else, you probably messed
that up more than a few times.

Another feature you can use is mock and mock repositories. Mock is a little confusing

at first, yet it works well with interfaces. I strongly suggest that if you do want to do a lot

more unit testing, you look into Mock—and using interfaces probably isn’t a bad idea

either. We didn’t use either in this book in the interest of focusing more on interacting

with the database through Entity Framework Core 2.0.

There are things to be careful about while unit testing. As you can see, we didn’t

insert anything, delete anything, or update anything in the database. If you wanted to

test that kind of functionality, you would need to, excuse the term, mock up an object to

be able to insert, update, or delete against. As you saw with the last example, you can test

against your models/entities, so you should be able to do most of your testing that way. At

some point, you’ll have to work with a database. The goal is to do that as little as possible.

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

312

I’m not going to get into unit testing an ASP .NET Core MVC application, as there are

many good sources out there that cover the subject and it’s pretty involved. The good

thing is you can unit test your views, which is quite helpful.

�More on LINQ
Throughout the book, we have used LINQ and we have covered quite a bit. Table 8-2 is a

list of the methods that I used most when I started using LINQ. I wrote them on a piece

of paper that I kept on the wall next to my desk so I could remember them. Once I had

used them enough, I noticed I was using that sheet less and less.

Table 8-2.  Common LINQ Extension Methods

Extension Method Description Deferred

All Returns true if all the elements in a collection match a specified

condition.

No

Any Returns true if a least one element in a collection matches a

specified condition.

No

Contains Returns true if a data source contains a specified value or item. No

Count Returns the number of items in a data source. No

First Returns the first item from a data source. No

FirstOrDefault Returns the first item from a data source or if there are no items,

you get the default value.

No

Last Returns the last item from a data source. No

LastOrDefault Returns the last item from a data source or if there are no items you

get the default value

No

Max Returns the largest value specified by a lambda expression. No

Min Returns the smallest value specified by a lambda expression. No

OrderBy Sorts the source data in ascending order (smallest to largest) based

on a lambda expression.

Yes

OrderByDescending Sorts the source data in descending order (largest to smallest)

based on a lambda expression.

Yes

(continued)

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

313

One important point that we need to cover with LINQ is that some of the methods

that we use have something called deferred execution. The best example of this is when

you have a query that iterates though a list. The query code isn’t actually run until you

start to iterate through the list. Even though you may have created the query and got past

that section of code, the query variable only holds the commands and not the results.

Let’s take a look at an example; it’ll start to make more sense once you see it.

We have used most of these at some point in this book, so you should have a pretty

good understanding of how most of them work. However, let’s take a look at an example

of a deferred LINQ query to give you a better idea of what’s going on.

Let’s say we have a product table and we want to get the sum of the table and list the

items in it. We might have something that looks like the following pseudocode:

Product Table

Name = “Widget1”, Price 200M

Name = “Widget2”, Price 300M

Table 8-2.  (continued)

Extension Method Description Deferred

Reverse Reverses the order of the items from the data source. Yes

Select Produces a result set from a query. If you return anything other than

a copy of the source element, it’s called a projection.

Yes

Single Returns the first match from a data source. If there are more than

one, it will throw an error.

No

SingleOrDefault Returns the first match from a data source or the default value. If

there are more than one, it will throw an error.

No

Skip Skips over a specified number of elements. No

Sum Totals the values that are selected by the predicate. No

Take Selects a specified number of elements from the start of a data

source.

Yes

ToArray Converts the data source to an array. No

ToList Converts the data source to a list. No

Where Filters items from the data source, removing those that don’t match

the predicate.

Yes

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

314

Name = "Widget3", Price 400M

var result = context.Products.OrderByDescending(e => e.Price)

 .Select(x => new {

 x.Name,

 x.Price

 };

var sumResult = products.Sum(e => e.Price);

Console.WriteLine(sumResult);

foreach (var p in result){

 Console.WriteLine($”{p.Name} {p.Price});

}

We would expect to see something along the lines of this:

900

Widget1 200

Widget2 300

Widget3 400

This seems reasonable. However, let’s say that just as you hit the line in which you

are writing the result, the finance department updates Widget3 to 500. Your results will

then be:

900

Widget1 200

Widget2 300

Widget3 500

This is because of the deferred execution of the query. The good and the bad part of

this is that the query is executed from scratch every time the results are enumerated.

One downside to using Entity Framework Core 2.0 is that it currently doesn’t provide

LINQ to XML capability. You could still read through an XML document using the

string properties of the columns, but none of the other LINQ functionality is available.

Hopefully, we’ll see that in an update or a later version.

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

315

�SQL Server Profiler
Depending on the version of SQL Server you are using, you may be able to use the SQL

Server Profiler (not available in SQL Server Express). One of the things you can do with

the SQL Server Profiler is see how your LINQ queries are being executed in SQL.

Think back to when we were listing the information about machines to the user. We

created the following query:

var mach = (from mac in context.Machine

 join mw in context.MachineWarranty on mac.MachineId equals mw.MachineId

 where mac.MachineId == machineId

 select new {

 �mac.Name, MacType = mac.MachineType.Description, osName =

mac.OperatingSys.Name, mac.OperatingSys.StillSupported,

mw.WarrantyProvider, mw.WarrantyExpiration, mac.MachineType.

Description }).FirstOrDefault();

If you were to look in SQL Server Profiler (see Figure 8-19), you would see that code

converted into the following SQL code:

exec sp_executesql N'SELECT TOP(1)

 mw.WarrantyProvider].[WarrantyProviderID],

 [mw.WarrantyProvider].[ProviderName],

 [mw.WarrantyProvider].[SupportExtension],

 [mw.WarrantyProvider].[SupportNumber], [mac].[Name] AS [Name0],

 [mac.MachineType].[Description] AS [MacType],

 [mac.OperatingSys].[Name] AS [osName],

 [mac.OperatingSys].[StillSupported], [mw].[WarrantyExpiration]

FROM [Machine] AS [mac]

INNER JOIN [OperatingSys] AS [mac.OperatingSys] ON [mac].[OperatingSysID] =

[mac.OperatingSys].[OperatingSysID]

INNER JOIN [MachineType] AS [mac.MachineType] ON [mac].[MachineTypeID] =

[mac.MachineType].[MachineTypeID]

INNER JOIN [MachineWarranty] AS [mw] ON [mac].[MachineID] = [mw].

[MachineID]

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

316

INNER JOIN [WarrantyProvider] AS [mw.WarrantyProvider] ON [mw].

[WarrantyProviderID] = [mw.WarrantyProvider].[WarrantyProviderID]

WHERE [mac].[MachineID] = @__machineId_0',N'@__machineId_0 int',

@__machineId_0=5

It’s hard to see in Figure 8-19, but you can get quite a lot of information out of the

profiler. If you are looking to tune your queries, this is the place to go. You can see

how things are working and the effect that making a change to your query has on the

execution of that query. If you are having problems with your database, look to the

Profiler to figure it out. If you haven’t used it before, the Microsoft website is a great place

to get information about how to use it and what you can do with it.

�Change Tracking
One of the things that we haven’t covered directly yet is change tracking in Entity

Framework Core. Any query that we run by default that returns an entity type is tracked.

So what does that mean? As you have seen in many instances, we have called some

form of DBContext.SaveChanges(). The reason that does anything is because of change

tracking. Any time we modify the entity that we are working with, those changes will

be pushed back to the database when we call .SaveChanges(). Why would we want to

change that since it seems to be pretty helpful?

If your goal is to retrieve a large amount of data that you are going to present to the

user in the form of a report, then you would probably be doing a read-only type query

since you aren’t going to be writing anything back to the database.

Figure 8-19.  SQL Server Profiler

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

317

In this case, why would you want to waste the overhead and setup time for the

system to get change tracking going if you aren’t going to use it? Throughout the code in

this book, we have used anonymous types instead of strongly typed objects because they

are generally easier and require less typing. Just because we are using an anonymous

type and not an entity object doesn’t mean that change tracking isn’t still on. Some

people think that by using the anonymous types, they don’t have to worry about it, but

think of all the times we used one and then called .SaveChanges().

So if you don’t want to use change tracking, how do you turn it off? I’m glad you

asked. Let’s take a look at some code we already created, shown in Listing 8-9.

Listing 8-9.  Change Tracking Enabled

static void DisplayMachineNameAndIdOnly() {

 using (var context = new MachineContext()) {

 var machines = (from m in context.Machine

 where m.MachineTypeId == 1

 select new { m.MachineId, m.Name });

 foreach (var m in machines) {

 Console.WriteLine($"{m.MachineId} {m.Name}");

 }

 }

}

This is a great example of a query where we aren’t doing anything with the results

other than displaying them to the user. In ASP .NET MVC, this is quite common. We have

two choices that we can use to turn off change tracking. For this example, we’ll turn it off

at the context-instance level, as shown in Listing 8-10.

Listing 8-10.  Turning Off Change Tracking at the Context Instance Level

static void DisplayMachineNameAndIdOnly() {

 using (var context = new MachineContext()) {

 �context.ChangeTracker.QueryTrackingBehavior = QueryTrackingBehavior.

NoTracking;

 var machines = (from m in context.Machine

 where m.MachineTypeId == 1

 select new { m.MachineId, m.Name });

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

318

 foreach (var m in machines) {

 Console.WriteLine($"{m.MachineId} {m.Name}");

 }

 }

}

That’s all there is to it. Now if we had multiple queries that we were running, none of

them would have change tracking enabled. That is pretty helpful, but what if you want to

turn off tracking only for a specific query. This could be because you need to retrieve two

sets of data—one that you want to make changes to and one you don’t. To do this, we’ll

take a look at the UpdateMachineDetails() method, , shown in Listing 8-11. Note that I

removed part of the method, as there were quite a few Console.WriteLines in there.

Listing 8-11.  UpdateMachineDetails().

static void UpdateMachineDetails() {

 Console.Clear();

 List<Machine> lMachine = GetListOfMachines();

 WriteHeader("Update Machine Details");

 �string machineId = DisplayAllMachines("Enter the MachineId followed by

the Enter Key for more information.");

 if (machineId.Length > 0) {

 int mId = Convert.ToInt32(machineId);

 Machine mach;

 MachineWarranty mWar;

 using (MachineContext context = new MachineContext()) {

 mach = context.Machine

 .Include(o => o.OperatingSys)

 .Include(t => t.MachineType)

 .Where(x => x.MachineId == mId).FirstOrDefault();

 mWar = context.MachineWarranty

 .Include(p => p.WarrantyProvider)

 .Where(x => x.MachineId == mach.MachineId).FirstOrDefault();

 }

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

319

 ...

 UpdateMachine(mach.MachineId);

 }

 Console.ReadKey();

}

In this example we update it outside of the context, but we can use our imaginations

here and pretend that we are doing it within. In this example, we only need to be able to

update mach. mWar is only used to display some information to the users, which we have

cut out in the interest of saving space. Listing 8-12 shows the update, which turns off

tracking for one query.

Listing 8-12.  Turning Off Change Tracking for One Query

static void UpdateMachineDetails() {

 Console.Clear();

 List<Machine> lMachine = GetListOfMachines();

 WriteHeader("Update Machine Details");

 �string machineId = DisplayAllMachines("Enter the MachineId followed by

the Enter Key for more information.");

 if (machineId.Length > 0) {

 int mId = Convert.ToInt32(machineId);

 Machine mach;

 MachineWarranty mWar;

 using (MachineContext context = new MachineContext()) {

 mach = context.Machine

 .Include(o => o.OperatingSys)

 .Include(t => t.MachineType)

 .Where(x => x.MachineId == mId).FirstOrDefault();

 mWar = context.MachineWarranty

 .Include(p => p.WarrantyProvider)

 �.Where(x => x.MachineId == mach.MachineId).AsNoTracking().

FirstOrDefault();

 }

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

320

 ...

 UpdateMachine(mach.MachineId);

 }

 Console.ReadKey();

}

We didn’t make any changes to mach, but we did add .AsNoTracking() to mWar. This

is all we have to do. As you start to work with bigger and bigger datasets and tables, it

will become important that you consistently use one of the two methods mentioned to

turn off change tracking. What does a query look like that doesn’t have change tracking

enabled by default? That would be an anonymous type that returns values from an

entity but not an instance of an entity. The good news is that we have already done

this, although it’s not the simplest of examples. You have been working with Entity

Framework Core 2.0 and LINQ long enough that this should be simple for an old pro like

you. See Listing 8-13.

Listing 8-13.  No Change Tracking by Default

static void GroupMachinesByOS() {

 using (var context = new MachineContext()) {

 var mli = (from m in context.Machine

 �join o in context.OperatingSys on m.OperatingSysId

equals o.OperatingSysId

 group new { m, o } by m.OperatingSysId into grouped

 �select new { grouped.Key, count = grouped.Select(x => x.m.Operating

SysId).Count(), Name = grouped.Select(ma => ma.o.Name) });

 foreach (var m in mli) {

 �Console.WriteLine($"OS ID: {m.Key} Machine Count W/OS: {m.count}

OS Name: {m.Name.ElementAt(0)}");

 }

 }

}

Even though we are using multiple entities, we aren’t using actual instances of those

entities in our query results. A simple example of what it looks like to have a query with a

SELECT statement is shown in Listing 8-14.

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

321

Listing 8-14.  Select That Has Change Tracking Enabled

using (var context = new SomeContext()){

 var prod = context.Products

 .Select(p =>

 new {

 Product = p,

 Items = p.Items.Count()

 });

}

As you can see in this pseudocode, we are working with instances of entities from the

table. I don’t normally use .Select for queries unless I have to, so that is why we don’t

have an example from earlier in the book.

�Summary
I hope that you have enjoyed this new way of learning about a new programming

method. I hope that got enough out of it to get you started and have a good foundation

with Entity Framework Core 2.0 and with using LINQ. When you head off to hone your

skills and you come across topics about DBContext, models, and creating interfaces for

your entities, you’ll have a basic understanding and not get caught up in the lingo.

I can’t even begin to tell you how many times I had to read the chapter on pointers

when I was first learning C++ because there was just so much there but not a lot of

examples. Or when I was first learning how to use something that called for delegates.

For some reason, that took a bit of time to click, which again was the result of way too

much talk and not a lot of examples.

Some people say the best way to learn is by doing, so getting some examples of what

something is, working on them for a while, and then learning the background (the how

and why) is a bit easier. I’ve probably forgotten more about Visual Basic in the last couple

of years than most of the new Visual Basic programmers out there know. However, if I

took a week or so to refresh my memory, I’d probably be able to pick most of it right back

up. The hope is that you can read past the parts you already know to learn the things that

you need to in order to expand your knowledge of Entity Framework Core 2.0 and, as a

result, your knowledge of LINQ.

Thank you for taking the time to read through this book. I hope you found it to be

interesting and I hope it’s helpful to your future programming endeavors.

Chapter 8 Wrap Up and Where to Go Next

www.EBooksWorld.ir

323
© Derek J. Rouleau 2018
D. J. Rouleau, Beginning Entity Framework Core 2.0, https://doi.org/10.1007/978-1-4842-3375-7_9

APPENDIX A

Database Script for
Chapter 6
This appendix lists the script for creating the database in Chapter 6. Keep in mind that

you may need to change the location of the mdf and ldf files.

/* ==Scripting Parameters==

 Source Server Version : SQL Server 2014 (12.0.2269)

 Source Database Engine Edition : Microsoft SQL Server Express Edition

 Source Database Engine Type : Standalone SQL Server

 Target Server Version : SQL Server 2017

 Target Database Engine Edition : Microsoft SQL Server Standard Edition

 Target Database Engine Type : Standalone SQL Server

*/

USE [master]

GO

/****** Object: Database [BegEFCore] Script Date: 1/8/2018 4:22:30 AM

******/

CREATE DATABASE [BegEFCore]

 CONTAINMENT = NONE

 ON PRIMARY

(NAME = N'BegEFCore', FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL12.MSSQLSERVER\MSSQL\DATA\BegEFCore.mdf' , SIZE = 3072KB ,

MAXSIZE = UNLIMITED, FILEGROWTH = 1024KB)

 LOG ON

www.EBooksWorld.ir

324

(NAME = N'BegEFCore_log', FILENAME = N'C:\Program Files\Microsoft SQL

Server\MSSQL12.MSSQLSERVER\MSSQL\DATA\BegEFCore_log.ldf' , SIZE = 1024KB ,

MAXSIZE = 2048GB , FILEGROWTH = 10%)

GO

ALTER DATABASE [BegEFCore] SET COMPATIBILITY_LEVEL = 120

GO

IF (1 = FULLTEXTSERVICEPROPERTY('IsFullTextInstalled'))

begin

EXEC [BegEFCore].[dbo].[sp_fulltext_database] @action = 'enable'

end

GO

ALTER DATABASE [BegEFCore] SET ANSI_NULL_DEFAULT OFF

GO

ALTER DATABASE [BegEFCore] SET ANSI_NULLS OFF

GO

ALTER DATABASE [BegEFCore] SET ANSI_PADDING OFF

GO

ALTER DATABASE [BegEFCore] SET ANSI_WARNINGS OFF

GO

ALTER DATABASE [BegEFCore] SET ARITHABORT OFF

GO

ALTER DATABASE [BegEFCore] SET AUTO_CLOSE OFF

GO

ALTER DATABASE [BegEFCore] SET AUTO_SHRINK OFF

GO

ALTER DATABASE [BegEFCore] SET AUTO_UPDATE_STATISTICS ON

GO

ALTER DATABASE [BegEFCore] SET CURSOR_CLOSE_ON_COMMIT OFF

GO

ALTER DATABASE [BegEFCore] SET CURSOR_DEFAULT GLOBAL

GO

ALTER DATABASE [BegEFCore] SET CONCAT_NULL_YIELDS_NULL OFF

GO

Appendix A Database Script for Chapter 6

www.EBooksWorld.ir

325

ALTER DATABASE [BegEFCore] SET NUMERIC_ROUNDABORT OFF

GO

ALTER DATABASE [BegEFCore] SET QUOTED_IDENTIFIER OFF

GO

ALTER DATABASE [BegEFCore] SET RECURSIVE_TRIGGERS OFF

GO

ALTER DATABASE [BegEFCore] SET DISABLE_BROKER

GO

ALTER DATABASE [BegEFCore] SET AUTO_UPDATE_STATISTICS_ASYNC OFF

GO

ALTER DATABASE [BegEFCore] SET DATE_CORRELATION_OPTIMIZATION OFF

GO

ALTER DATABASE [BegEFCore] SET TRUSTWORTHY OFF

GO

ALTER DATABASE [BegEFCore] SET ALLOW_SNAPSHOT_ISOLATION OFF

GO

ALTER DATABASE [BegEFCore] SET PARAMETERIZATION SIMPLE

GO

ALTER DATABASE [BegEFCore] SET READ_COMMITTED_SNAPSHOT OFF

GO

ALTER DATABASE [BegEFCore] SET HONOR_BROKER_PRIORITY OFF

GO

ALTER DATABASE [BegEFCore] SET RECOVERY SIMPLE

GO

ALTER DATABASE [BegEFCore] SET MULTI_USER

GO

ALTER DATABASE [BegEFCore] SET PAGE_VERIFY CHECKSUM

GO

ALTER DATABASE [BegEFCore] SET DB_CHAINING OFF

GO

ALTER DATABASE [BegEFCore] SET FILESTREAM(NON_TRANSACTED_ACCESS = OFF)

GO

ALTER DATABASE [BegEFCore] SET TARGET_RECOVERY_TIME = 0 SECONDS

GO

Appendix A Database Script for Chapter 6

www.EBooksWorld.ir

326

ALTER DATABASE [BegEFCore] SET DELAYED_DURABILITY = DISABLED

GO

USE [BegEFCore]

GO

/****** Object: Table [dbo].[Event] Script Date: 1/8/2018 4:22:30 AM ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[Event](

 [EventId] [int] IDENTITY(1,1) NOT NULL,

 [Name] [nvarchar](50) NOT NULL,

 [LocationId] [int] NOT NULL,

 [Description] [nvarchar](50) NOT NULL,

 [EventDate] [datetime] NULL,

 CONSTRAINT [PK_Event] PRIMARY KEY CLUSTERED

(

 [EventId] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

/****** Object: Table [dbo].[Horse] Script Date: 1/8/2018 4:22:30 AM ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[Horse](

 [HorseId] [int] IDENTITY(1,1) NOT NULL,

 [Name] [nvarchar](50) NOT NULL,

 [Breed] [nvarchar](50) NULL,

 [Height] [decimal](3, 1) NULL,

 [Value] [decimal](18, 0) NULL,

Appendix A Database Script for Chapter 6

www.EBooksWorld.ir

327

 CONSTRAINT [PK_Horse] PRIMARY KEY CLUSTERED

(

 [HorseId] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

/****** Object: Table [dbo].[Location] Script Date: 1/8/2018 4:22:30 AM ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[Location](

 [LocationId] [int] IDENTITY(1,1) NOT NULL,

 [Name] [nvarchar](50) NOT NULL,

 [StreetAddress] [nvarchar](50) NULL,

 [City] [nvarchar](50) NULL,

 [State] [varchar](2) NULL,

 [ZipCode] [varchar](10) NULL,

 CONSTRAINT [PK_Location] PRIMARY KEY CLUSTERED

(

 [LocationId] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

/****** Object: Table [dbo].[Result] Script Date: 1/8/2018 4:22:30 AM ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

Appendix A Database Script for Chapter 6

www.EBooksWorld.ir

328

CREATE TABLE [dbo].[Result](

 [ResultId] [int] IDENTITY(1,1) NOT NULL,

 [EventId] [int] NOT NULL,

 [HorseId] [int] NOT NULL,

 [Class] [nvarchar](50) NOT NULL,

 [Score] [decimal](18, 4) NOT NULL,

 [Notes] [nvarchar](max) NULL,

 CONSTRAINT [PK_Result] PRIMARY KEY CLUSTERED

(

 [ResultId] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

GO

SET IDENTITY_INSERT [dbo].[Event] ON

INSERT [dbo].[Event] ([EventId], [Name], [LocationId], [Description],

[EventDate]) VALUES (1, N'Weekly Show', 1, N'Fun Show', CAST(N'2017-10-

04T08:00:00.000' AS DateTime))

SET IDENTITY_INSERT [dbo].[Event] OFF

SET IDENTITY_INSERT [dbo].[Horse] ON

INSERT [dbo].[Horse] ([HorseId], [Name], [Breed], [Height], [Value]) VALUES

(1, N'Jack', N'Standardbred', CAST(15.1 AS Decimal(3, 1)), CAST(5 AS

Decimal(18, 0)))

SET IDENTITY_INSERT [dbo].[Horse] OFF

SET IDENTITY_INSERT [dbo].[Location] ON

INSERT [dbo].[Location] ([LocationId], [Name], [StreetAddress], [City],

[State], [ZipCode]) VALUES (1, N'Local Ring', NULL, NULL, NULL, NULL)

SET IDENTITY_INSERT [dbo].[Location] OFF

SET IDENTITY_INSERT [dbo].[Result] ON

Appendix A Database Script for Chapter 6

www.EBooksWorld.ir

329

INSERT [dbo].[Result] ([ResultId], [EventId], [HorseId], [Class], [Score],

[Notes]) VALUES (1, 1, 1, N'Intro A', CAST(68.0000 AS Decimal(18, 4)),

N'Circles left a lot to be desied, other than that he did well.')

SET IDENTITY_INSERT [dbo].[Result] OFF

ALTER TABLE [dbo].[Event] WITH CHECK ADD CONSTRAINT [FK_Event_Location]

FOREIGN KEY([LocationId])

REFERENCES [dbo].[Location] ([LocationId])

GO

ALTER TABLE [dbo].[Event] CHECK CONSTRAINT [FK_Event_Location]

GO

ALTER TABLE [dbo].[Result] WITH CHECK ADD CONSTRAINT [FK_Result_Event]

FOREIGN KEY([EventId])

REFERENCES [dbo].[Event] ([EventId])

GO

ALTER TABLE [dbo].[Result] CHECK CONSTRAINT [FK_Result_Event]

GO

ALTER TABLE [dbo].[Result] WITH CHECK ADD CONSTRAINT [FK_Result_Horse]

FOREIGN KEY([HorseId])

REFERENCES [dbo].[Horse] ([HorseId])

GO

ALTER TABLE [dbo].[Result] CHECK CONSTRAINT [FK_Result_Horse]

GO

USE [master]

GO

ALTER DATABASE [BegEFCore] SET READ_WRITE

GO

�Database Diagrams
Figures A-1 and A-2 show the database diagrams of the BegEFCore and BegEFCore2

tables, respectively.

Appendix A Database Script for Chapter 6

www.EBooksWorld.ir

330

Figure A-1.  Diagram of BegEFCore tables

Appendix A Database Script for Chapter 6

www.EBooksWorld.ir

331

Figure A-2.  Diagram of BegEFCore2 tables

Appendix A Database Script for Chapter 6

www.EBooksWorld.ir

333
© Derek J. Rouleau 2018
D. J. Rouleau, Beginning Entity Framework Core 2.0, https://doi.org/10.1007/978-1-4842-3375-7

Index

A, B
AddOperatingSystem() method, 59
ASP.NET Core 2.0

NuGet packages, 206–207
type of web application, 205

ASP.NET MVC
basics, 230–231
passing data to view, 232–233
strongly typed views, 232
ViewBag, 232–233

ASP.NET MVC .NET Core 2.0 Project
data validation, 237, 239–240

column sorting, 252–256
models, 243–246, 248
regular expression, 241–243

group results
Details.cshtml, 278
Event and Horse labels, 278
EventId, 277–278
GroupedResults view, 283, 285
Index view, 279–280
ResultGroup.cs, 281
ResultsController.cs, 282

pagination
version 1, 262–269
version 2, 270–274

search capabilities,
256, 258, 260–261

Assert methods, 301, 302

C
Change tracking

.AsNoTracking(), 320
enabling, 317, 321
.SaveChanges(), 316
SELECT statement, 320
turning off, 317, 319
UpdateMachineDetails()

method, 318, 319
Column sorting

default view, 255
descending date, 256
events, 253
EventsController.cs, 252–253
Index.cshtml, 253, 255
sortOrder, 253
switch statement, 253

Concurrency, 125
Controllers, 204, 234
Cross join, 109–110
Cross platform, 295–296

D
Data adding to table

additional machine data, 62
AddMachine()

coding, 59–60
DataEntryMenu(), 60

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-3375-7

334

initial code, 51
updation, 54–55, 57

AddMachineType(), 52–53
AddMachineWarrantyInfo, 68–70, 72
AddOperatingSystem(), 52, 57
CheckForExistingMachineType(), 52–53
cki = Console.ReadKey(true);, 66
context.SaveChanges(), 67
CreateNewWarrantyProvider(), 65, 67
DataEntryMenu(), 50, 72
DataEntry method, 66
DisplayMachineTypes, 54
extension variable, 64
GetListOfMachines(), 72
GetMachineTypes(), 51
getting information, user, 56–57
LINQ and lambda expressions, 56
lMachineType, 51, 56
machineType = lMachineType.

Find(x => x.MachineTypeId ==
idEntered), 56

MachineType/OperatingSystem
values, displaying, 60

MachineWarranty and
WarrantyProvider entities, 61

MachineWarranty objects, 75
ValidateYorN() method, 60
validation information, 73
void to ComputerInventory.Models.

OperatingSys, 59
warranty information, DC1POR, 73–74
warranty provider, creation, 62–64
WarrantyProviderId, 74

DataAnnotations namespace
add Required attribute, 140
CreateWarrantyProvider method, 142
Entity Framework Core 2.0 code, 141

MachineContext.cs, 140
ProviderName property, 139
recursion

call added, 143–144
CreateNewWarrantyProvider, 145
CreateSupportTicket(), 150
data type, 146–147
DisplayAllMachines(), 149
error, 150
fix error and saving, 151
SQL Server Management Studio, 153
successfully, 145
SupportMenu(), 147–148, 152
SupportTicket.cs, 145
textToDisplay, 150
validate support ticket, 151

using statement, 138
validation errors, 139
vResults, 139
WarrantyProvider.cs, 135–136
warranty provider support number, 137

Database diagrams
BegEFCore2 tables, 331
BegEFCore tables, 330

Database-first development
add image, 217
ConfigurationServices(), 209
creation, 207, 323
display events by location

create EventByLocation view, 224–225
Details.cshtml, 225
EventsController.cs, 224
events in different locations, 227–228
index of locations, 227
new page, 227

error
create new view for, 220–221
GetEventsByLocation(), 223

Data adding to table (cont.)

Index

www.EBooksWorld.ir

335

LocationsController.cs, 219–220
updated method, 223–224

Home controllers Index page, 216, 218
Horse.cs, 213
MVC (see Model-View-Controller

(MVC))
NuGet Package Manager

Console, 207
page navigation, 214–215
Scaffold-DBContext, 207–208
sorting results, 228–230
using statements, 208

Databases
deletion (see Data deletion)
retrieving, displaying data, 31

DisplayOperatingSystems(), 31
operating systems list, 32

table changes (see Table changes in
database)

updating data, 42
Data deletion

context variable, 39
data modification menu, 37–38
DeleteOperatingSystem(), 33–34, 37
helper methods, 35–36
MainMenu method, 38
multiple records, 40–41
SelectOperatingSystem, 37

Data Loader, 134
DataModificationMenu(), 45
Data validation

fields, 239
location.cs, 238, 240
models

change label, 248
Event.cs, 243–244
labels updated, 247

regular expression, 241

DBContext.SaveChanges(), 74
DefaultIfEmpty(), 103
Deferred execution, 313
DisplayAllMachines(), 81
DisplayMachineNameAndIdOnly(), 101
DisplayOperatingSystems(), 32

E, F
Entity Framework 6.x application, 296
Entity Framework Core/.Net Core Debug

folder, 296
Expression-bodied members, 162

G
GetListOfMachines(), 72
GetOperatingSystemById(), 37, 44
GetOperatingSystemById() helper

method, 42
Grouping

operating system, 113
query syntax, 114
type method syntax, 114–115

H
Hands, 249
Helper classes

BasicValidation.cs, 156
call method from, 157–158
ConsoleHelper.cs, 158
SOC, 158

Helper method, 156
Home controllers Index page, 216
Horse model setting, minimum and

maximum value, 248–251
Horses Index page, 212

Index

www.EBooksWorld.ir

336

I
Inner joins, 110–112

J, K
Joins

cross, 109–110
inner, 110–112
left outer, 102, 104
right outer, 104
visual representation, 102

L
Lazy loading, 76
Left outer join, 102, 104
LINQ, 170, 172

deferred execution, 313–314
extension methods, 312–313
product table, 313
SQL Server Profiler, 315–316

lMachineType, 56
Logical operators

AND operator, 116–117, 119
OR, 119–120

Logical OR, 119–120

M
Machines table, SSMS, 50
MachineWarranty table, 75, 80
Mock, 311
Model-View-Controller (MVC)

add controller form, 210
controllers, 204, 234
horses Index page, 212
models, 203, 234
unit test, 235

views, 203, 234
Visual Studio, 210–211

N
.NET core

creating entities
database creation (see Databases)
GeneralRole property, 18
MachineContext.cs, 12
Machine.cs, 8
MachineType.cs, 7
MachineType property, 18
MachineWarranty.cs, 10
new class creation, 5
OnModelCreating(), 17
OperatingSys, 6
SQL Server database, 17
SupportLog.cs, 11
SupportTicket.cs, 10
WarrantyProvider.cs, 7

data addition, table
application running, 29
DBContext, 28
EF Core, 25
helper methods, 24
methods, entering data, 26
Operating System Table

Entries, 30
setup menu, 21
validation, error handling, 28

definition, 1
setup, NuGet package manager, 2–3

NuGet packages, 206–207

O
OperatingSystem table, 49

Index

www.EBooksWorld.ir

337

P, Q
Pagination

version 1
EventListViewModel, 263
Index.cshtml, 266–268
Index() in Events

Controller.cs, 264–265
Next button enable, 269
PagingInfo.cs, 262–263
Previous button enable, 269

version 2
HorsesController.cs, 272
Index.cshtml in Views ➤

Horses, 272–274
PagedList.cs, 270–271

Paging and filtering results, 121
Plain Old CLR Objects (POCOs)

add class to class file
AddSupportLogEntry()

updates, 175–176
ErrorList, 172
errors, 176
ValidateSupportLog(), 173, 175

Entity Framework Core 2.0, 154
expression-bodied

members, 162
helper classes (see Helper classes)
helper method, 156
include statement, 155
Machine.cs, 154
MachineId, 154
using LINQ, 170, 172
validate using class

ModelValidation.cs, 169
SupportLog, 168
SupportTicketId, 168

Previous button enabled, 269

R
Regular expression

custom error message, 243
no custom error message, 242
updated location.cs, 241–242

Result.cs, 250
Retrieving data, multiple tables

DisplayAllMachines, 76, 80
displaying machine detail, 79
EF 6.x, 76
GetNumbersFromConsole, 77–78
results, 81
updated DisplayAllMachines, 77
using statement, 80

Right outer joins, 104

S
Search capabilities, 256
searchString, 258
Separation of concerns (SOC), 158, 234
sortOrder, 253
Specifying fields, 98–100
SQL Injection, 188
SQL Server Profiler, 315–316
Stored procedures

benefits, 179
calling, parameter

parameter names, 187
SQL injection, 188

creation, 184–185
inserting into multiple tables

adding multiple properties, 191
Sp_AddNewSupport

Ticket, 189–190, 192
parameter values, 183
SQL Server Management Studio, 181

Index

www.EBooksWorld.ir

338

SupportLog entries, 180
template, 181–182
testing, 186
Transact-SQL statements, 179

String interpolation, 28
switch statement, 253

T
Table and entity design, 192–193
Table changes in database

Add-Migration SupportLog
Update, 195

DateTime and DateTimeOffset, 197
GetNumbersFromConsole(), 198
SQL Server Management Studio, 197
SupportLog

MachineContext.cs, 194
SupportLogEntryDate value, 198
update, 195–196

SupportMenu() method, 200
SupportTicketLogEntry.cs, 199
Update-Database, 197

Transaction, 190

U
Unit testing, project creation, 235

adding reference, 299
assert methods, 301–302
BasicValidation method, 300
changes, Program.cs, 305
errors testing, 310–311
failed test, 303–304
LINQ testing, 307

mock and mock repositories, 311
running, 302, 307, 310
test explorer, 302
test results, 303
UnitText1.cs, 305–306
updation, 308
ValidateYorN(), 300–301
validation logic testing, 309

UpdateMachineDetails, 82
Updating tables

DataModificationMenu(), 83
helper methods, 85
list of machines, 89
MachineWarranty table, 83
multiple records, 91
prompt, changing machine name, 90
RDS1 and RDS2, 91
UpdateMachine, 86–87
UpdateMachineDetails, 82, 84, 88–89

V
ValidateYorN() method, 60
VBTestApp, 290
Visual Basic application

connection string creation, 292
database objects selection, 293
graphical representation of model, 294
MachineModel adding, 290–291
Module1.vb, 294–295
output, 295
VBTestApp, 290

W, X, Y, Z
WarrantyProvider table, 67

Stored procedures (cont.)

Index

www.EBooksWorld.ir

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	What Is .NET Core
	Setting Up Your Application
	Creating the Database and Tables (Entities)
	Creating the Database

	Adding Data to a Table
	Retrieving Data from a Database and Displaying It
	Deleting Data from a Database
	Deleting a Single Record
	Deleting Multiple Records

	Updating Data in a Table
	Summary

	Chapter 2: Working with Multiple Tables
	Adding Data to a Table That Has Foreign Keys
	Retrieving Data from Multiple Tables
	Updating Tables
	Updating Multiple Records

	Summary

	Chapter 3: Stepping Beyond the Basics
	Specifying Fields
	Joins
	Left Outer Join
	Right Outer Join
	Cross Join
	Inner Join: Method Syntax

	Grouping
	Query Syntax
	Method Syntax

	Logical Operators
	Logical OR

	Paging and Filtering Results
	Concurrency
	Summary

	Chapter 4: Data Validation and POCOs
	Validation Using DataAnnotations
	Using Recursion

	POCOs
	Helper Classes
	Expression-Bodied Members

	Validating Using a Class
	LINQ Using .Any to Check for Existing Records
	Adding a Class to a Class File

	Summary

	Chapter 5: Stored Procedures, Table Design, and Modifications
	Stored Procedures
	Calling a Stored Procedure with One Parameter
	Using Parameter Names
	SQL Injection

	Inserting Into Multiple Tables
	Multiple Properties

	Table and Entity Design
	Making Changes to the Table
	Summary

	Chapter 6: ASP.NET MVC and EF Core 2.0
	Setting Up the Application
	Database-First Development
	Creating Controllers and Views
	Formatting Output

	Page Navigation
	The Home Page and Adding an Image
	Error Handling
	Creating a New View to Display an Error
	Avoiding Errors

	Displaying Events by Location
	Sorting Results

	ASP.NET MVC Basics
	Strongly Typed Views
	Passing Data to a View Using ViewBag

	Why Use MVC?

	Summary

	Chapter 7: Finishing Our ASP.NET MVC .NET Core 2.0 Project
	Data Validation
	Using a Regular Expression to Validate a Property
	Validating the Rest of Our Models
	Setting Minimum and Maximum Values for a Property

	Adding Column Sorting to Results
	Adding Search Capabilities
	Adding Pagination: Version 1
	Adding Paging: Version 2
	Grouping Results
	Summary

	Chapter 8: Wrap Up and Where to Go Next
	Not Just C# Anymore
	Cross Platform
	Unit Testing
	More on LINQ
	SQL Server Profiler

	Change Tracking
	Summary

	Appendix A: Database Script for Chapter 6
	Database Diagrams

	Index

