Beginning
(++17

From Novice to Professional

Fifth Edition

lvor Horton
Peter Van Weert

ﬂi [C i
www.EBooksWorld.ir

Beginning C++17
From Novice to Professional

Fifth Edition

Ivor Horton
Peter Van Weert

Apress’

www.EBooksWorld.ir

Beginning C++17: From Novice to Professional

Ivor Horton Peter Van Weert
Stratford-upon-Avon, Warwickshire, United Kingdom Kessel-Lo, Belgium
ISBN-13 (pbk): 978-1-4842-3365-8 ISBN-13 (electronic): 978-1-4842-3366-5

https://doi.org/10.1007/978-1-4842-3366-5
Library of Congress Control Number: 2018936369
Copyright © 2018 by Ivor Horton and Peter Van Weert

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio
rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484233658. For more
detailed information, please visit waw.apress.com/source-code.

Printed on acid-free paper

www.EBookswWorld.ir

https://doi.org/10.1007/978-1-4842-3366-5
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:editorial@apress.com
bookpermissions@springernature.com
www.apress.com/bulk-sales
www.apress.com/9781484233658
www.apress.com/source-code

This is for Alexander and Henry who are both going to learn programming soon.
Iftheir amazing expertise with Minecraft is anything to go by,
they will be brilliant at it.

—Ivor Horton
For my wonderful family. For all your love and support. For putting up with

me never having the time to help out around the house or to play
with the train set I got you for Christmas.

—Peter Van Weert

www.EBooksWorld.ir

Contents

ADOUT the AUTNOLS......ciirremeiirrnnnssrrsnnssssssnnsssssssnsssssssnsssssnsnnssssssnnnssssssnnssssnsnnnnssnnnns XXiii

About the Technical REVIEWETccurrrrrremmmmsssssssssssssssnssssssssssssssssnssssssssnssssnnnnnssnnnns XXV

Introduction.........cccccesnisnnsm s ————=_—=——=—S—=——=————— Xxvii
Chapter 1: BasiC 1deas......cuueurrmmsssnnmmmssssnssmsssssssnssssssssssssssssssssssssnssssssssnssssssssnnnssss 1
LT LT g 0 SRS 1
Standard LiDraries ... s 2
C++ Program CONCEPIS.......cccerererrrirerisesss e s sn e sas s e sne e s e snensnnens 3

Source Files and Header FIlES ... ssssens 3
CommENtS AN WRITESPACEccvevvreerreerrerirresersesessessesessessssesassessssessesessesessssassessssessssessensssesssessenessensnnen 4
Preprocessing Directives and Standard Library HEadersccccvrrerernnnienessnnsesssssssesessssssesesessssenes 4
FUNCHIONS ..ot s 5
STALBMENTS ... 5
Data INPUt aNd QULPUL........eoeeeeecc et a e sa e a e e s e s e e s e e e a e e ae e e e sa e e nae e nnen 6
FELUMN STALEMENTS......c.vcccet s 7

N BT LTS 0 (-SSRSO 7
NaMES ANA KEYWOIUS.....ccveeieecereciresie e e s e s a e s r e a e n e e p e p e ne e nnas 8
Classes and ODJECTScceveverererere e sr e sa e s r e nn e sn e nn e n e n s 9
L]0 0T 0] L= 9
Code Appearance and Programming STYle........ccccvreeriernierenniesnsese s ses e ssesessens 9
Creating an EXECULADIEcceeueeeererece et s e sn e sn e sn e nnen s 10
Procedural and Object-Oriented Programmingccoccvvrverrenrennensensessessessessessessessenens 12
A\

www.EBookswWorld.ir

vi

CONTENTS

Representing NUMDEIS........cccveeierenriesne e s se s snssesssns 13
BiNary NUMDEIS ...ttt n s 13
Hexadecimal NUMDELS ... 14
Negative Binary NUMDEIS.........cccerereererireeses s e s ses s sss s ssssssssnnes 16
OCTAI VAIUBS ... e 17
Bi-Endian and Little-Endian SYStEMSccccviuriererireeeririsesesesise s sessssens 18
Floating-Point NUMDEIS......ccou e 19

Representing CharaClers.........cccvvvvrvensensinnensesses s se e e snssnssnssnsnes 20
L B 0 N 21
UCS @N0 UNICOUEevvriririrseicsssss s 21

C++ SoUrce Characters........c.cuerrinersmss s 22
ESCAPE SEOUBNCESceeueireerieeriesese s e sss s se e ae e sa s sae s et e s b e b e e se e ae b e e e et e ae e enenennenennens 22

SUMMAIY ...t e s e s a e Re e s er e e s ne e s e nnennnnnas 24

Chapter 2: Introducing Fundamental Types of Datacccevnnnmnnnnnssssnnnnssssnnnns 27

Variables, Data, and Data TYPESccceererererereereeseesse e ssessesssssesessessssssssssssssssssssssssssnns 27
Defining INteger VariabIEs. ..o s 28
T 0 LT L2 o 31
Defining Variables With FIXeA VAIUESccceeeirieecerreceres e 32

1T T [e g Y T 1S 32
DeCimal INTEQET LITEIalS.......cciveeeeererererereeersesessesesaesessesassessesessesessessssessssessssessessssessssesassessesessesssseansens 32
HexadeCimal LIHEIalS ... 33
0T L 34
BiNAry LItBralS.......cccvuruviirsriirisisiiiisss s 34

Calculations With INTEQErS.......cceeeeeeece e e nas 35
Compound Arithmetic EXPreSSIONS........covciieririresesesisse s se s sss e sss s ss e sss e ssssessssessssesnsssssens 36

AsSIgNMENt OPEIALIONScceceeeeerererereses e se s re s nr e 37
The 0p= ASSIgNMENT OPEIATOISccviveeeerirreeererir e nnnnns 40

B (LI 0 L0 0T - (0 42

www.EBookswWorld.ir

CONTENTS

Incrementing and Decrementing INtEGErS........ccoceverenriersnesesesse e 42
Postfix Increment and Decrement OPerations..........coovceeerenencnnenesesessese s ssesenes 43
Defining Floating-Point Variablesccccvvrvrverrrinsen e ses s 44
Floating-Point LItEralScccoeeeeererece e sse s e s ssesnesne s s s sns s sns s nnas 45
Floating-Point CalCUIAtioNSccoeeiiennniresnesesnse e s 46
PIHFAIIS.......ceeeeeeeeeeeeces et R e R e e R e R e e e R s 46
Invalid Floating-Point RESUIScccoeeeerireescrieec e 47
Mathematical FUNCLIONSccoucceeeirieccrire et 48
Formatting Stream OULPUL..........cocvvririerrr e 51
Mixed Expressions and Type CONVEISION.........cccceeeererressessessessesssssesssssssssssssssssssssssssssnes 53
EXPIICit TYPE CONVEISION.......cocerererer ittt n e 54
OIU-STYIE CASLSecveuereerreeeresseeseses e sss e se et a s e e s s e e b s e e e e s pe e e e s s e e nn e nnennaes 56
Finding the LIMItS.......ccoccviiiririrerirerer s sessnsse e s e snssnssnssnsees 57
Finding Other Properties of FUNAamental TYPES........cccvrrerererereriereseresersesessesessesessesassessesessssessesensens 58
Working with Character Variablesc..cccverrrrriessrssssses s ses s snssnssnssnsnnns 59
Working with Unicode CharaClerscccicicrnesnc e sns s senes 60
The QUL0 KBYWOITooereeeeercee s n e 61
E3 1111 1P S 62
Chapter 3: Working with Fundamental Data Types.......cccusemmmmmsssnnnmnssssnsnsssssnnnnns 65
Operator Precedence and ASSOCIALIVILY........ccocvrererereersesersen s s see e sesses e sessessesnes 65
BitwWiSe OPErators.......ccccveeriereriersirre s sn s nn s nn e nnenenan 67
The Bitwise Shift OPErators..........ccovverereieiere e sa e sa e sa e sa e e sa e a e sa e sa e e e e e na s 68
Logical Operations on Bit PAtterns ... 4l
Enumerated Data TYPES.......ccocvorrierrrreeer e 77
Aliases fOr DAt TYPEScceverererererrrse s raeree e seesaesaeseesaesaesaesaesassassassaesaesassassassassassnnns 80
The Lifetime of @aVariable..........ccoiirrni s 81
GIODAI VANIADIESccveereereeseeesse e ss s se s s s e s sn s snesn s sns e ssesnssssssnnnens 82
E3 1111 P2 S 85
vii

www.EBookswWorld.ir

CONTENTS

Chapter 4: Making DeCiSions.........cccsmmsssmnnmmsssssnnssssssssnsssssssssssssssssnssssssssnssssssannses 89

Comparing Data VAIUESccovverereriereriresis s sse s sss s sns e snssennens 89
Applying the Comparison OPEratOrS..........cccuiveerererierrssersse s se e sr s sr s s s re e nennnes 90
Comparing Floating-Point VAIUESccecereeienre e se e snnnens 92

The if StateMENt ... ————— 92
Nested if STAtBMENTS ... s 96
Character Classification and CONVEISION ... 97

The if-else Statement..........coinn s ——— 99
Nested if-else Statements........c i —————— 101
Understanding NESIEU ifSccceeererererererrrere e re s s s s ree e se s e s s s e s e e sae e saesasaesaesesaenenes 102

LOGICAl OPEIALOrScc.cceiuerercriereree et r e n s a e n e e s n e s 103
LOGICAI AND ...ttt r e e bR e Re e e R e R e e R e e Re e e e R e e R e e 104
LT Tz L] SR POSPS R SRR 104
LOGICAI NEGALION.......cuccececereeir e s e e b a e e r e e e en e r e e 105
Combining LogiCal OPEratorsc.cccceirreriniesesere s s sss s sn e ss s s s se s e snssesssnenns 105
Logical Operators on Integer OPerands...........covcveeresnesniesssese s ses e ssssesssesns 107
Logical Operators vs. Bitwise OPEratorsccccceeienncsnicsssc s sss e sne s 108

The Conditional OPErator...........cocvcrierierss s e n s 110

The switch Statement ... ——— 112
L 1111010 | S RSSSRS S S 116

Statement Blocks and Variable SCOPE........cccccveeriererrennrse e sessens 118
Initialization StateMENts........c.covvnnnnn s ————————— 119

1111 11T SRS 120

Chapter 5: Arrays and LOOPS «...cucuiesrmsssnsmsssnsmsssssssssnsssssssesssnsesssnsesssnsssssnnssssnnssss 123

4 1SS 123
USING QN AITAY ...oevveeeeeriesesesesesse s s seses s e e e s e e e sasss e e s s se e se s sbase e s e s s ese e neessne e sessnsesnsensnsannnsnens 123

UNderstanding LOOPScoceeerererrereerersessesssssessnns 125

LI LT3R {0 o S 126

Avoiding MagiC NUMDEISc.coeeererieree e snesne s e sne s snesns s snssnssnssnssnn s 128

Defining the Array Size with the Braced Initializer............ccccvvrvrvrvervrsnserrerserses s 130

viii

www.EBookswWorld.ir

CONTENTS

Determining the Size of @n Arraycoovcveniiennnsesr e 130
Controlling a for Loop with Floating-Point ValUEScccceeerevrrrnssessessesses s sessenenns 132
More Complex for Loop Control EXPreSSioNscccueeeersessessessssssssssssssssssssssssssssssnnenns 135
The CommMa OPEIALON........ccceierirerie e e a s s r e b e e e e p e e r e ne e nnis 136
The Range-Based fOr LOOP.......cccucerererrerenseresissessesssesessessssessesss s ssesesssssssesssssssssssssnens 137
LTI 0o o S 138
L (0T T LN 0o oSSR 140
NESEEA LOOPS....ciceeiirererircre s s s s sn e ene s n e s n e s n e s n e s n e s ne s 142
SKipping LOOP HErations.........cccvveeververierser st ses s e e s e se s s sassnssnssnsnnns 145
Breaking Out 0f @ LOOP.....cccvveririerririr et e e e s s ne s 146
1T (e T TE G 00 0SS 146
Controlling a for Loop with Unsigned INTEJersccouvrerrierenesiesnsesesnsesee s 150
Arrays Of CharaCters.........cvveverererereresse s sse s sse s saessesaesaesaesassaesassassassassassassassannes 152
MultidimenSIONAl AFTAYS.......ccceeeerrerrersessesses s s s s e s e s e s ses e s e s srssrssrssnssnssnssnssnesnsssansans 155
Initializing MultidimensSional ArTAYS........ccccvriererernsre s sr e e se s e sas e sre s 158
Multidimensional CharaCler AITayScccreirnninesre s s sa s sre s 160
Allocating an Array at RUNTIME...........ccoeeiiienniinenrere e 161
Alternatives t0 USING @n ArTaYccccvererereersessesssssesssasssnses 164
USing array<T,N> CONTAINEISccceerereererererrerserersesersesessesassessssessesessesessessssessssessesessessssessssesassessenenes 164
Using std::vector<T> CONTAINEIS.......cccceverereererereresere e res s e rsesessesessesassesas e ssesesassessesassesassesssnenes 169
SUMMAIY ...t cee e s s s e s s s s s s s s snssn s s e s s srssr e nr s e e nnenn e e e e e nnennennennennenrnnnanrnnnen 174
Chapter 6: Pointers and Referencesuusssmsssmmmmsmmssssssssssssssssssssssssssssssssssnns 177
What IS @ POINTEI? ... 177
The Address-0f OPErator...........cccvcvrrrrserrersr s e n s 180
The Indirection OPErator..........ccocvvrrerrerserser s e sn e sa e 181
Why USE POINEEIS? ..ot sn s 183
POINters 10 TYPE Char........cccieieeircrcsrresire e 183
Arrays OF POINTEIScceeecceirirc et 186
Constant Pointers and Pointers to COnStants............cocucerrenerrenesesesesessseseseseseseenes 188
ix

www.EBookswWorld.ir

CONTENTS

POINTErS @NG AITAYSccceeeererresisesee e sn s s nn s sa s nnas 190
POINTEr AFTNMETIC ... 191
Using Pointer Notation with an Array NaMEccccerreiennneesesese s sesssseenens 193

Dynamic Memory AlIOCAEION.........ccocvverrrrerserer s sn s sn s sn e sn e 196
The Stack and the Free STOre ... 196
Using the new and delete OPEIatOrscvvcevrerererererere s eres e rse e se e ra s e ras e ssesesaesesaesassesassesassenes 197
Dynamic AllOCAtION OF AITAYSccceerererereressersesersesersesessessssessssessesessessssessssessssessesessessssessssessssessenenes 199

Member Selection Through @ POINEErccocvcrcrier s 203

Hazards of Dynamic Memory AlloCation...........c.ccevereeenienesmsesessesesessesesse s sssennes 203
Dangling Pointers and Multiple DealloCations............covureeererereieseririeese s seens 204
Allocation/Deallocation MiSMALCH ..o 204
MEMOPY LEAKScovveeecereeeecresisse s e s sas e e e s se e e s e se e b s s se e e essse e e nensnnnnees 204
Fragmentation 0f the FIrEe STOrE..........ecceeeireeieereeeee e 205

Golden Rule of Dynamic Memory AllOCALiONccceveveereerenrsres s ses e e ses e saesesseens 206

Raw Pointers and Smart POINEErS ... 206
Using unique_ptr<T> POINTEIS ..o s r e e e p s 208
Using shared_ptr<T> POINTEIS ..o sn s e 211

Understanding REfEreNCES........c.coeeiiierrieresirere e 214
DefiNiNg RETEIBINCEScoveeeeerireecer et s e npnse e e 214
Using a Reference Variable in a Range-Based fOr LOOPcooveeererereeenesesenenesesesesesesessesesesessseeens 216

E3 1111 1P 7 217

Chapter 7: Working with Stringsccsccmmmmmsesmmmnsssnnmmmssssnmmssssmmmsssnmssanm 219

A Better Class 0f STriNGccccvevererererererse s sse s sse s s sssssessssssssssssssssassasssssassasses 219
L) T LT a 10 T T 0o [=T o 220
Operations With String ODJECES.......ccuvererererrrere e a e ae e sa e e es 223
Accessing Characters i @ SIriNG.......ccoevveevrrerererererererereserssressesessesessesasesassessesessessssesassessssessenssaes 228
ACCESSING SUDSIINYS ...veereeereererereesere e res e res e rse e sese s e sa s rae e ssesesaesasaesassesae e saenesaesasaesassesannensensnaes 230
L0 T o LT TR (] 230
LT T 11T T (3T O 237
1T T3 T T S o 243
std::String vS. StA::VECIOr<CRAI>ccoveereece e a e sa e e aenanaens 248

www.EBookswWorld.ir

CONTENTS

Converting Strings into NUMDErS ... e 248
STrING STrEAMS ... sa e e sn e a e n e n s 249
Strings of International Characterscccverceercecscs s 250
Strings of Wehar_t CharaCters........o i neaen 251
Objects That Contain Unicoe STHNGScceceeireriieierreecre e 252
RaW SEring LItEralS........ccoceeriereriicrisss s se s sns e 252
31111 P2 7P 254
Chapter 8: Defining FUNCLIiONSccccvvsnmmmmnssssnsnmmssssssnmmssssssnmsssssssssssssssnssssssnnnnns 257
Segmenting YOUr Programs.........cccvevveenersessessessessessns 257
FUNCEIONS iN ClASSES.....cirrriiisesrisiissssssisissss s 258
Characteristics 0f @ FUNCHON.........cooviins s 258
Defining FUNCHIONScocerirrr st nn e nn 258
The FUNCEION BOOYcoveeieiiicrirc e s e s s a e e et e n e 260
REtUrN VAIUES.......cciiiiiciiiiicii s 262
FUNction DECIarations..........covvnnmnininninnis s ———— 263
Passing Arguments t0 @ FUNCHON..........ccovcereiicec s 264
PaSS-DY-VAIUE.......coceeeeeerteecrerire e e s snne e e ne e e 265
PaSS-DY-RETEIENCEcveeeeeerirtccerir et s e pnse e e 273
String Views: The New Reference-t0-Const-Stringcovveeerrsienenesnesesessese e sesessssenes 280
Default Argument ValUEScccvererierrenerserense s ses s se e sn e e e s sessassnssasnns 283
Multiple Default Parameter VAIUEScocveverererererererereresersssessesessesessessssessssessssessesssssssssessssessenenes 283
Arguments 10 MAIN()....cceeeeerererererere s e sre e e sse e sre e sre s e sresresresresresresrssresresnnsnnnes 285
Returning Values from @ FUNCLION ..o 286
REtUINING @ POINTET......ccveeeceteee et 286
Returning @ REEIENCE.........ccoururueererirecrcr ettt 290
Returning vs. OUIPUL PArameterscccoeurueerererreesenisiseeseses e nens 291
Return TYPE DEUUCTION. ...ttt 292
Working with Optional ValUEs..........cccvvrverrerienrerrersirser s ses e e sesnes 293
Y 0 B0]] PR 294
Static Variables. ... —————— 297
xi

www.EBookswWorld.ir

CONTENTS

ININE FUNCHIONScieeiicee e 297
Function OVerloadingc.ccocvververiensnninerserses s se e se e snssnssnssassassnsnnns 298
Overloading and Pointer Parameters.........ccvvcevererrrersrerereserssseseesessesessesessesasessssessssessssessessssesssnenes 300
Overloading and Reference Parameters.........ccvvvverrerereresseresresesessesessessssessssessssessssessssassessssessenenes 301
Overloading and CONSt PArametersccccvererererernerereseressersssessesessesessesassesassessesessessssssassesassessenenes 302
Overloading and Default Argument VAIUESccceererererereriererrereesersesessesessesssessesessesessssessessssesssnenes 304
RECUISION ...ttt 305
BaSIC EXAMPIEScueeveeirerirerinc st a e s st b e e s e b AR e p e R e 306
Recursive AlgOMTNMS.........cc e s e p s p e 307
1111 11 SRRSO 314
Chapter 9: Function Templates.......ccccummmmmmmsssnsnmmssssnsnmsssssssnmssssssssssssssssssssssnnnns 319
Function TEmMPIALeS ... e sn e 319
Creating Instances of a Function Templateccocevevrrrrrrcrssr e 320
Template Type Parameters.........cccocvcrcrcrcsssss s 322
Explicit Template Arguments.........cocvcrvrcrsrrrsr e 323
Function Template Specialization...........c.ccevvrvririnsnrs s seeseens 323
Function Templates and Overloadingcccvevceriersrsnsnsssses s ses e sennns 324
Function Templates with Multiple Parameters.........c.ccocvvrvervrnrnnsnsesses s ses s sessenenns 326
Return Type Deduction for Templates.........cccvverirrrrinnencer s 328
decltype() and Trailing RETUIN TYPES.....coecererererererererrerertesesseses e sessesssesaesessesessesassessssesssssssssessesassens 328
decltype(auto) and decltype() VS. QUL0........cecirerereire s s s se e e s saesae s sa e saesn s saennens 330
Default Values for Template Parameterscccocvevvrcrcssscssesses s snssennns 330
Nontype Template Parameters ... 331
Templates for Functions with Fixed-Size Array ArgUMENTS..........coovrrererressssesesesesesesesesesesesesesenes 332
E3 1111 1P 7 334
Chapter 10: Program Files and Preprocessing Directives.........cccsusssennssssssnnnnas 337
Understanding Translation UNitS..........ccoceverennnnnnnnsnses s ses s sesssssessssssssesssssssssssenns 337
The One DEfiNition RUIE ... nenes 338
Program FileS and LINKAQGEcecverererereresrersesersesersesessesessessssessssessesessessssessssessssessenssssssssessssesssnenes 339

xii

www.EBookswWorld.ir

CONTENTS

Determining Linkage for @ NAME.........ccccevirininininine s sse e sse s sas s s s sssssssss s s 339
EXternal FUNCHIONS ..o 339
External Variables ... ————————————— 341
INEEINAI NAMES ... ———————— 343
Preprocessing YOUr SOUrCe COUEcoovcereereeriercesses s e ses e e sns e ses s s snsnns 344
Defining PreproCeSSOr MACK0Sccvvereereereereersessessessessesssssssssssssessssssssssssssssssssssssssnns 345
Defining FUNCHION-LIKE MACKOS........ccoveerererrrisesesssesesesesseesessssesessssssssesesssssssssssssssssssssssssssssssssasnens 346
UNAETINING IMACKOS......ceveveeeerereereesesrsssesesesssssesesss s e e s s e e e s sesssse e e s ssass e ssssssnsesessnsssesnsssensnssns 349
Including Header Files.........oceveiernirienree s ss e s sn s sne s sne s 350
Preventing Duplication of Header File CONtENESccccoveveriererrererere s esse s e e sessesssnenes 350
Your FirSt Header File ... ssssssssssnenes 352
NAMESPACES.....cererererersesse s s s s s e s e s e s e s e s e s e s e s e s e s e s sr s e s e e nnsnr e e e e e nnennennennennnnnans 353
The Global NamMESPACEccceerererirrire et se s e e a e ae e eas 353
Defining @ NAMESPACE.........ccorurueerererreereririe e s e e e ne e e e 354
Applying uSiNG DECIArAtiONSccoceureeirirrccrr e 356
Functions and NAmMESPACEScccoerereririernierssere et a e e s e sa s s r e 357
UNNAmMEd NAMESPACES.......cccvrerreererire et se e e s e s b et e s b et b et b e e s e sb e b e e 359
NESTEA NAMESPACES.......ceererercririrerir ettt b e e e e a e e b e b e e e b e s 360
NAMESPACE AlIASESccuerereerireririre ettt s b e e e e A b e b e b e p e e e e 362
Logical Preprocessing DIir€CHVEScccoveererrsereniresessessesns s sense s 362
The LogiCal #if DIFECTIVEceveveeeererereesesrseese s e se s se s se s se s se s s e s s e nesnns 362
Testing for Specific 1dentifier VAIUEScoccceereenerreesesis e sessns 363
Multiple-ChoiCe COde SEIECHION..........ceceeererreerererreese e se e sas s ne s sesnnnens 363
Standard PreproCesSing MACKOScoceueererereresesessrsesesesessssesssessssssessesenes 365
Testing for Available HEAUEScvueeeerireerirreeses e 366
Debugging Methods ... 367
LY G0 LCTo I TST o oo T OSSR 367
Preprocessing Directives in DEDUGUING......cocvveverirerene e ssessssss s ssssassessssssssss s 368
USing the @SSErt() MACKOcccevererirerire e e sa e s s a e st a e b e et e e e a e e e na e e s 371
STALIC ASSEITIONSeeceiecci e ————————— 373
31111 P2 7SS 375
xiii

www.EBookswWorld.ir

CONTENTS

Chapter 11: Defining Your Own Data TYPesccccrmrmsssenmmmsssssnnssssssssnsssssssssssssssnnes 319

Classes and Object-Oriented Programming..........ccocceerrerenniesnnensesnsesessssessssessesessenns 379
Loz oL U] 0] S 380
INNEITANCE. ... ————————————————— 383
POIYMOIPRISM....cuciiii i ————————————— 384

L 01410 0 2SSOSR 385

DEfiNiNgG @ ClaSSovvvireciiriririrssssssse s 386

CONSTIUCTONS ... 388
Default CoNSTIUCTONS.......covvirisisisisiisi s ————————————— 388
Defining a Class CONSITUCTONccveeierriernerre e e n e 389
Using the default KEBYWOITccoiieiiernere e sse e sn e sn e sns e sna s 391
Defining Functions and Constructors Qutside the Class.........cccccvrrerrennsennnesssesesese e 391
Default Constructor Parameter ValUES...........coovnnnninnnnnnssssssssssssssssss s 393
Using a Member INItAliZer LiSt ... s 394
Using the eXpliCit KEBYWOITccoiiieiierinerie e sss s sn e sns e sns s s 394
Delegating CoONSIIUCIONScouvcciicre e n e r s 397
The COPY CONSIIUCTONcoueeererircrie e a s s r e a e e e n e p e e nenrnns 398

Accessing Private Class MEMDErSccccceeevererener e sse s s e s e e e 400

The thiS POINTEN ... 402
Returning this from @ FUNCHON.........cccoe et ae e sa e sn e 402

const Objects and const Member FUNCHIONSccccvvrvervenrensennes e see e 404
€onSt Member FUNCHIONS ... 404
CONSE COMBCINESS. ...vvviririsirirssissss bbb bbb bbb er s 406
0Verloading 0N CONSL.........ccoieiererre e r e b s e a e e ae e sr e r e e 407
Casting AWAY CONSLcoieriicrecreir e b e b p e e p e e ae e nn e r e e 409
Using the mutable KEYWOI..........ccoeieirerncne e sn e s sn e 409

1] 10 SR 410
The Friend FUNCLIONS Of @ CIASScocvererereririrernirisisisse s 411
FEENA CIASSES ... 413

Arrays 0f Class ODJECLScccvevererererere e ree e sae s sae e saesassnssas e sassassaesae s 413

xiv

www.EBookswWorld.ir

CONTENTS

The Size 0f @ Class ODJECT..........ccoeeicreer e 415
Static Members 0f @ CIASS ..o 416
Static MembEr VariabIEs...........ccueeeereerreecccrseesereese s ss s sss s s sssssssssssnnnnas 416
Accessing Static Member VariabIEsccovvvrrerererererereseressessesessesesessssessssessssesssssssessssessssessenssses 420

R3] 2 LT 00T e T 421
Static Member Variables 0of the Class TYPE......ccevrerrrerrrererererereresersssersesessesessesessessssessssessssessenassens 422
Static MeMDEr FUNCLIONS..........ceueeeeeeceeecececeeieeeeese s s s s s s s s ssnsnnnnnas 423
LTS (10 (0 424
Using Pointers as Class MEMDEIS........cccccveeirerenmniesnsesesesse s ssess s ssesessens 427
The Truckload EXAMPIE.......coceerererierererirerer s as e s sa e sa s e s e e e sa s sae e ae e enes 427
NESTEA ClASSES......covrueererrecrerseeressese e e sesas e srs e sas s s sensnae s 440
Nested Classes With PUDIIC ACCESScocvcererererererereresesesesesesesesesesesesese e sesssessssssssssssssssssssssssssaeas 441
SUMMANY ...ttt cre e s ss s e s sn e r s s s sn s s s r e sn s s e sn e s s e s nrsnn e s e nnesnennennennennennesnennnnnannnnnan 445
Chapter 12: Operator Overloading.........cccsrrssssennsnssssnsnssssssnsnssssssnssssssssnnssssssnnnnss 449
Implementing Operators for @ Class..........cceveeeeereresesesesse e s see e seesnessesnssnssnssnsnnnns 449
Operator OVErIOAAING.ccoceerueeeerere e e s seene e 450
Implementing an Overloaded OPerator............cccvieiirniernie s 450
Nonmember 0perator FUNCHIONScocci e ss e sa e sn e sr e sn e sn e sa e sn e nne s 453
Implementing Full Support for an Operator ... 453
Implementing All Comparison Operators in @ Class..........ccoovvnernnnesnnsssssesssese s sssessssens 456
Operators That Can Be Overloadedcocceeeeeevereseseseesse e see e e ssssessesssssssenns 458
Restrictions and KeY GUIAEIINEceceererreieeeririeesesisise e 459
Operator FUNCHION [dIOMS......cccevieererec s s s ss e s s s s ssnesanssnesanesnenns 461
Overloading the << Operator for Qutput Streams.........cccceeeeereeecece s 462
Overloading the Arithmetic OPeratorscocucverirernnenessse s 463
Implementing One Operator in Terms 0f ANOTHE ..o 467
Member vs. Nonmember FUNCHIONSccvecererrerecreseese e 469
Operator Functions and Implicit CONVEISIONS.........cccvererereriereerersesessesesessssersssessssessesssssssssessssessenees 470
Overloading Unary OPeratorscccoceeeeesesressessessessessesssssssssssssssssssssssssssssssssssssssnsnns 471
Overloading the Increment and Decrement Operators.........ccocceceveveeeseesensessensessensenns 473
XV

www.EBookswWorld.ir

CONTENTS

Overloading the Subscript OPerator...........ccceeeeeererere s 474
Modifying the Result of an Overloaded Subscript Operator...........cooeeeerrnenesnnese e 478
U310 (0 B0 0 =T SR 480
Overloading Type CONVEISIONSccccceererrerrersessesssssessessessessssssssesssssssssssssssssssssssssssssans 482
Potential Ambiguities With CONVEISIONS ... s 483
Overloading the Assignment OPerator............cccoverrernnerennsesss s 483
Implementing the Copy ASSIgNMENt OPErator...........ccovureeererreiererree e 483
Copy Assignment vS. COPY CONSTIUCTIONcceerereeeienirinccseres e 487
AsSigNINg DIfferENt TYPES ..c.coveveeeeririrecrerisee s nesp e ne s 488
E3 1111 1P 7 488
Chapter 13: INheritance.......cccuummmmmmmnmmmmmmmsssssssssmmmesssssssssssssssesssssssssssssssesssnns 491
Classes and Object-Oriented Programmingcccoceveveersssneesnsessessessessessesssssessessenns 491
HIBFAICHIES ...vvvvvsiccs i 492
INNEritance iN ClaSSES........curieirmicins s 493
Inheritance vS. AQOregation..........ccoeiiennicnn e e 493
DErIVING ClIASSESccveeiueirerirerie et s b e e e e b bR e e e e e p e e 494
protected Members 0f @ ClaSScccccerererereserere e s e ses s s e sassassseenns 497
The Access Level of Inherited Class MEMDEXS........cccvivnmnennnnssee s 498
Access Specifiers and Class HIErarchies........oouvvererererreresreresseseseresessessssessssessssessesssessssessesessesssses 499
Choosing Access Specifiers in Class HIErarChiesccocvevrrererrererereresesessersssessesessesessssessessssesssenes 500
Changing the Access Specification of Inherited MEMDEIScccveeeeerriererrerrrere e saeees 501
Constructors in @ Derived CIass ..o 502
The Copy Constructor in @ Derived Class..........couererereieiererieesesesse e se s 506
The Default Constructor in @ Derived Class..........coninninnisss s 508
INREriting CONSIIUCIONSccueic e e e 508
Destructors Under INNErtancecoccevcerenncnnscresress e 509
The Order in Which Destructors Are Called.............covrerrereresereseseseriresesesesesesesese s 511
Duplicate Member Variable NAmESccccevirieriirneeniessesssssesssessesssessesssssssssssssssssssas 511
XVi

www.EBookswWorld.ir

CONTENTS

Duplicate Member FUNCLION NAMES........ccccevcerveerrerrerrerre e see e ssee s sse s ssnessessnesnes 512
Multiple INNEIILANCEccecereriererir st se e sa e sn e sn e sn e snenens 513
MUIEIPIE BASE CIASSES.....couruereererrerersererserersersssersesessesssssssssessssessssessessssessssessssesssssssenessensessssssessssessenees 513
Inherited Member AMDIGUITYcccereverererrereerereserseserereseres e rsssessesessesessesassesassessesessesessesassesassesssnenes 514
Repeated INNEITANGCEccccoveereeere et a e e sae e s e s e e e ae e ae e ae e e e sa e e es 519
VirtUu@l BaSE CIASSEScucussreiisssssisisssssssssssss s s 520
Converting Between Related Class TYPESccccceeerrerrereessessessessessessessssssssssssssssssssssnns 521
SUMMEAIY ...ttt a s s ae e s e r e e s a e e ne e s nnnnnnnnas 522
Chapter 14: PolymorphisSm........ccccccmmmmmmmmssssssssssmmmmmssssssssssssssssesssssssssssssnsssessssnns 525
Understanding PolymorphiSm ... 525
USiNg @ Base Class POINTETcccovurueererinieieesrreese s sss e e sessssssens 525
Calling INherited FUNCLIONS........ccoceeereecrtriee e 527
VirtUal FUNCLIONS ..ot 530
Default Argument Values in Virtual FUNCLIONS.........cccocorreienirreescserieeses s 539
Using References to Call Virtual FUNCHONS ..o 541
POlyMOIPhiC COHBCLIONScoerveeecererieccririee e s ne s e e 542
Destroying Objects Through @ POINTENccceeeieeeerrc e 543
Converting Between Pointers t0 Class ODJECTS........cccvrurererereneienerrieese e 546
DYNAMIC CASTS....cviveueeereeeecresisseseses s e s e e e s e e sese e e s sae e e e s se e e nensennnnes 548
Calling the Base Class Version of @ Virtual FUNCHION...........ccccoieiennncescnreeese e 552
Calling Virtual Functions from Constructors or DeStructorscccoveeerrnesessseseseses e 553
The Cost of POIYMOIPRISIMccocevvririrer e 555
Determining the Dynamic TYPEccecvvereersrserser s sn s snesna e 557
Pure Virtual FUNCLIONScccoccieeierenseresnsese e sss s s sss s e snsnssnas 561
L0 s TR T LT 561
Abstract Classes as INTEITACEScovrrerrriririrrrr e 564
31111 P2 7 567
xvii

www.EBookswWorld.ir

CONTENTS

Chapter 15: Runtime Errors and Exceptions.........cccccunmmmmsssssnnnsssssssssssssssssssssssss 371

HaNAIiNG EITOFScoccecererecirses s se s sessn e sn s nn s nn s sn s sn e sn s nnsnn e nnsnnnnnns 571
Understanding EXCEPLIONS........coeeeeererenesere s sse s ssesnssnssnssnssnssnssnssnssssnnns 572
TRrOWING @N EXCEPLIONceerieeccirieece et 573
The EXception-Handling PrOCESS.........cccerureerererreenesesseesesesssssseses s e sssssssessssssssesssssssssssssssssssssens 576
Code That Causes an Exception t0 Be TRIOWNcccovreierirneieserireeses e seenens 577
NESTEU TrY BIOCKSceereeeecirieieeesisse e s s s e npnsa e e e 578
Class Objects as EXCEPLIONS........cccuvererererereerserseseesaessssasssssasssesessassassasssssassasssssssnsnns 581
Matching a Catch Handler t0 an EXCEPLION.........ccccevererererererer st rerse e e res e rse e sae e e e ssesassesaenenes 583
Catching Derived Class Exceptions with a Base Class Handler............cccvrverrrererereseneserereserennenns 586
Rethrowing EXCEPLIONS.........cccvereerieriensisessesse s se e e s e snssnssnssnssnssnnnns 589
Unhandled EXCEPLIONS........coceeeeeere e sse s s s sns s s s snssrssnesnesnssnesnesnnnns 591
Catching All EXCEPLIONScoevererreree e reereesss e seesse s sasssesassassasssssassassassassassassasssssssnsnns 593
Functions That Don’t Throw EXCEplioNSccocveriercrses s sennns 595
The NOEXCEPT SPECITIEN ..evi ettt a e e a e sa e e e e e e e e e e e nnen s 595
EXceptions and DeSITUCIONS. ... s r e a e a e sr e n e n e s 596
Exceptions and ReSoUrce LEaKs..........cccvcrrrrerrersernesssssessesses s sesses s ses e sessessnssnssssnnns 597
Resource Acquisition IS INItIAliZationccceereeiennnccss e 599
Standard RAIl Classes for Dynamic MEMOKYcoveererereenerinnesesesssse s sesessssssessssssenes 601
Standard Library EXCEPLIONScccvvvververrrrrrerrer st se e e e e e sneeas 602
The Exception Class DEfiNitioNnSccceveverierererererererereseresresee s sesassesas e saesessesessessssessssessenenaes 604
Using Standard EXCEPLIONS........cceccvueeerererererertererte s reererseses e sse e saesesaesessesasaesas e saesesassesassassesassesasnenes 606
SUMMEAIY ...ttt a e s b e s e e e e r e e s e a e e e Re e e e nernaeas 609
(P ToL (o gl I A T [T 117 0] P (O ——) I
Understanding Class TeMPIAtesccovcreeriersnnenncse s sss s e 614
Defining Class TEMPIALESccccvcrcrirircr e nns 615
Template Parameters.........cco e e 615
A SImple Class TEMPIALEceeeererireererereeserese s e nesr e sn e nsans 616
xviii

www.EBookswWorld.ir

CONTENTS

Defining Member Functions of a Class Templatec.ccccvvrvrvrsrcrsrcescescer s 618
CONSLIUCTOr TEMPIALES........ccceereeeeeererie e a e e ne e e 618
The Destructor TEMPIALE.........ceeceerreerer e 619
Subscript Operator TEMPIALESccoecerererirere e e s e e sae s ae e saeaens 620
The Assignment Operator TEMPIALE........ccovrrrrrrrrrr e 622

Instantiating @ Class TEMPIALEccccceverererencrr e sae e 627
Class Template Argument DEAUCTIONcccvveerrererr s ra e s ae e ae e sa e sr e e s 632

Nontype Class Template Parameters...........ccccvercrsrsnsessssesses s ses e snssesenns 634
Templates for Member Functions with Nontype Parameterscccooreiennnenennenesescseseesesenes 636
Arguments for Nontype Parameters ... sssssssssenes 641
Nontype Template Arguments vs. Constructor ArguMENtSccooreoenerernenesir e 641

Default Values for Template Parameterscccocvvvvrverirsescssesses s 642

Explicit Template Instantiationccccvvrvrvnnnirsr s 643

Class Template Specialization...........ccoeeeeereseseiese e snesrenens 643
Defining a Class Template Specialization..........c.cvvvvnrninnrrcrr s 644
Partial Template Specialization..............covevrirnnrnnresr e 644
Choosing Between Multiple Partial Specializations...........cccccvvvvrrrienniennicnncrs s 645

Using static_assert() in a Class Template.........c.ccccoverrnrennsensnnnensseseseseses s 645

Friends of Class TEMPIALES.........ccvvrrrieriersnrrser s se e sassnssns e 647

Class Templates with Nested ClasSesccceureeereresessessessesse e sss s ssesssssssnssnssssnnens 649
Function Templates for Stack MEMDErS ... 651
Disambiguating Dependent NAMES ... 656

SUMMEAIY ...ttt e s ae e a s s ae e s e r e e s a e e ne e s nnnnnnnns 658

Chapter 17: Move SemanticCs.........cccmvsmmsmmmmsmmsmsmmsssmsssssssssssssssssssssssnsnsassnsnsnsns 661

Lvalues and RVAIUES..........ccoeeererererercree s ses s e e e ses e sessessenns 662
RVAIUE REFEIEINCES.......cuccuccceieee e 663

O3 o T] (=T SRS 664
Traditional WOrkaroUnds ... sssssses 667
DefiNing MOVE MEMDELS......ccverererrerererereressersesessesessssessessssessssessesessesssssssssessssessesesssssssessssessssessenenes 668

Xix

www.EBookswWorld.ir

CONTENTS

Explicitly MOVEd ODJECTSoceeeeereeeercise e 672
MOVE-0NIY TYPES ..eoveeeereeeecserisseeses e s s e e b e s e se e e s sse e e e s se e e nansannnnnnes 672
Extended Use 0f MOVEA ODJECTEScoeueerererieierisieesesesese e sssss e sesssssnnens 673

A Barrel of ContradiCtions ..o 675
Std::mOVE() DOES NOL IMIOVE.......c.ciuieerierierie et sa e s r e s sn e st a e a e sa e sa e sa e saenaenrennennens 675
An Rvalue Reference IS an LVAIUE ... sssssssses 676

Defining FUNCtions ReVISIted...........ccocvercersrcrsersr s 676
Pass-by-RValUE-REFEIENCE..........coceerereeeirirte ettt 676
The Return of Pass-DY-ValUE...........c.cuerreeirereeese e 678
RETUIN-DY-VEIUE ...t 681

Defining Move Members ReViSited...........ccoeerernnerenrnsenesisesesse s 683
AIWAYS AU NOBXCEPL.....veeecererreeseresseesessssee s ss e e e e e s s e ss e e s s ss e e s se e e e ss e e e e nsennnnnensans 683
The “Move-and-SWap” IHIOMcooeeeerreerrree e 688

Special Member FUNCHIONS........ccovvieererieere e ses e sssssesssssessssssssssesssssssssssssessnessesns 689
Default Move MEMDEIS ... 690
The RUIE OF FIVE ...t 691
THE RUIE O ZBIO ...t bbb 692

BT 111 112 SRS 693

Chapter 18: First-Class FUNCLIONSccunmmmmmmmmmmmmmmmmmssssssssnsssssssssssssssssssssnnns 695

Pointers to FUNCHIONS ... 696
Defining Pointers t0 FUNCLIONS ..o sn e s 696
Callback Functions for Higher-Order FUNCHONS..........ccooiriciceeeese e 699
Type Aliases for FUNCLION POINTEIS........ccceiieiirccre s sn e sr e 701

FUNCLION ODJECLS ... s 703
BasiC FUNCHION ODJECTScceereeeeecririecer it nns 703
Standard FUNCHION ODJECTScoceviueecrercccr e 705
Parameterized FUNCHION ODJECES.......coeeeeririeeeririre e 706

Lambda EXPreSSIONScccvvvuerieererierreerseesaesssessesssesssssssssssssssssssssssessssssessssssssssssssssnsssesns 707
Defining a Lambda EXPreSSiONccveererererrerereresereesessesesessssessssessesessessssessssessssessesssssssssesassessenenes 708
Naming @ LamBAa CIOSUIEcceccverererereressersesersesessssessesessessssessssessessssessssessssessesssssssssessssessssessenenes 709

XX

www.EBookswWorld.ir

CONTENTS

Passing a Lambda Expression to a Function Template..........cccocvvevnvnnnnnnnnnnsssssnss s sessees 709
THE CAPIUIE CIAUSEeeveereeereererereesersesessessssesseessssessesessessssessssessesssssassessssessssessesssessssessesessensssesnnes 711
The std::function<> Template.........cccocvvrcrcrcrcrcr s 716
31111 P2 7SSOSR 718
Chapter 19: Containers and Algorithmsccccccinninnnssssssssnnnmnmmssssssssssseemmn.. 721
CONTAINETS ..cveescccce e ———————— 721
SEAUENCE CONTAINEIS......covrerreerererseesesesrssesesessssesesesssss e e e ssss e sasss s e s sessse e sssa e s ssnsasesessssssssnsnsnsenes 722
STACKS @NU QUEUES.........eeeecececeee e a s s s s s s sa s s s s s s s es s sseserssesssesessassnsensnnnas 725

£ P 727

1 0L SO SSRSSSR 730
REIALOrS ...t ———————————— 735
The Iterator Design Patiern ... e 735
Iterators for Standard Library CONTAINEIS........ccoeeevuererererereriersererresessesessesesessssessesesssssssssassessssesssnenes 737
LG s O] (0] A USSR 746

[10 1110 S 747
A FIrst EXAMPIE......coveceeiesir ettt st e s b a e bbb bt p e nns 748
FINAING EIBMENTS ...t 750
Outputting MUIIPIE VAIUES........coierieecectreris et re st e et p e 752
The ReMOVE-Erase ldiom..........cocovrrrrinininisinisssssis s 753

IS 10]] OO 755
Parallel AIOFTMSco.ouieiericccrir et eene e e 756
SUMMEAY ...ttt r s n e e s sae e s e re e s e an e ene e e e nnnnnnnnns 756
INA@X.ciieiiiesssnsssnsse s s s s s s —— 761
xxi

www.EBookswWorld.ir

About the Authors

Ivor Horton graduated as a mathematician and was lured into
information technology with promises of great rewards for very little
work. In spite of the reality being a great deal of work for relatively modest
rewards, he has continued to work with computers to the present day.
He has been engaged at various times in programming, systems design,
consultancy, and the management and implementation of projects of
considerable complexity.

Ivor has many years of experience in designing and implementing
systems for engineering design and manufacturing control. He
has developed occasionally useful applications in a wide variety of
programming languages and has taught primarily scientists and engineers
to do likewise. His currently published works include tutorials on C, C++,
and Java. At the present time, when he is not writing programming books
or providing advice to others, he spends his time fishing, traveling, and
enjoying life in general.

Peter Van Weert is a Belgian software engineer whose main interests and
expertise are application software development, programming languages,
algorithms, and data structures.

He received his master of science degree in computer science summa
cum laude with congratulations of the Board of Examiners from the
University of Leuven. In 2010, he completed his PhD thesis there on the
design and efficient compilation of rule-based programming languages at
the research group for declarative programming languages and artificial
intelligence. During his doctoral studies, he was a teaching assistant for
object-oriented programming (Java), software analysis and design, and
declarative programming.

After graduating, Peter worked at Nikon Metrology for more than
six years on large-scale, industrial application software in the area of 3D

laser scanning and point cloud inspection. He learned to master C++ and refactoring and debugging of
very large code bases, and he gained further proficiency in all aspects of the software development process,
including the analysis of functional and technical requirements, and agile and scrum-based project and

team management.

Today, Peter works for Danaher in its R&D unit for digital dentistry software, developing software for the

dental practice of tomorrow.

In his spare time, he has co-authored two books on C++ and two award-winning Windows 8 apps and is
aregular expert speaker at, and board member of, the Belgian C++ Users Group.

xxiii

www.EBooksWorld.ir

About the Technical Reviewer

Marc Gregoire is a software engineer from Belgium. He graduated from the University of Leuven, Belgium,
with a degree in “Burgerlijk ingenieur in de computer wetenschappen” (equivalent to a master of science
degree in computer engineering). The year after, he received the cum laude degree of master in artificial
intelligence at the same university. After his studies, Marc started working for a software consultancy
company called Ordina Belgium. As a consultant, he worked for Siemens and Nokia Siemens Networks on
critical 2G and 3G software running on Solaris for telecom operators. This required working on international
teams stretching from South America and the United States to Europe, the Middle East, and Asia. Currently,
Marc works for Nikon Metrology on industrial 3D laser scanning software.

XXV

www.EBookswWorld.ir

Introduction

Welcome to Beginning C++17. This is a revised and updated version of Ivor Horton’s original book called
Beginning ANSI C++. The C++ language has been extended and improved considerably since then, so

much so that it was no longer possible to squeeze detailed explanations of all of C++ into a single book. This
tutorial will teach the essentials of the C++ language and Standard Library features, which will be more than
enough for you to write your own C++ applications. With the knowledge from this book, you should have no
difficulty in extending the depth and scope of your C++ expertise.

We have assumed no prior programming knowledge. If you are keen to learn and have an aptitude for
thinking logically, getting a grip on C++ will be easier than you might imagine. By developing C++ skills,
you'll be learning a language that is already used by millions and that provides the capability for application
development in just about any context.

C++ is very powerful. Arguably, it'’s more powerful than most programming languages. So, yes, like with
any powerful tool you can wield some considerable damage if you use it without proper training. We often
compare C++ to a Swiss Army knife: age-old, trusted, incredibly versatile, yet potentially mind-boggling and
full of pointy things that could really hurt you. Once someone clearly explains to you what all the different
tools are meant for, however, and teaches you some elementary knife safety rules, then you'll never have to
look for another pocketknife again.

C++ does not need to be dangerous or difficult at all either. C++ today is much more accessible
than many people assume. The language has come a long way since its conception nearly 40 years ago.

In essence, we have learned how to wield all its mighty blades and tools in the safest and most effective

way possible. And, more importantly perhaps, the C++ language and its Standard Library have evolved
accordingly to facilitate this. The past decade in particular has seen the rise of what is now known as
“modern C++” Modern C++ emphasizes the use of newer, more expressive, safer language features,
combined with tried and tested best practices and coding guidelines. Once you know and apply a handful of
simple rules and techniques, C++ loses much of its complexity. Key is that someone properly and gradually
explains not simply what you can do with C++ but rather what you should do with C++. And that’s where this
book comes in!

In this latest revision of the book, we have gone through great lengths to bring it back in line with the
new, modern era of C++ programming we're living in. As before, we of course do so in the form of a gradual,
informal tutorial. We'll introduce to you all the shiny blades and pointy things C++ has to offer—both old
and new—using many hands-on coding samples and exercises. But that’s not all: more than ever before
we've made sure to always explain which tool is best to use for which purpose, why that is the case, and
how to avoid getting cut. We’'ve made sure that you will begin C++, from day one, using the safe, productive,
modern programming style that employers will expect from you tomorrow.

The C++ language in this book corresponds to the latest International Organization for Standardization
(ISO) standard, commonly referred to as C++17. Not everything of C++17 is covered, since many of the
extensions compared to previous versions of the language are targeted toward more advanced use. All the
examples in the book can be compiled and executed using C++17-conforming compilers that are available
now.

xxvii

www.EBookswWorld.ir

INTRODUCTION

Using the Book

To learn C++ with this book, you'll need a compiler that conforms to the C++17 standard and a text editor
suitable for working with program code. Several compilers are available currently that are C++17 compliant,
some of which are free.

The GCC and Clang compilers have comprehensive support for C++17 and are both open source and
free to download. Installing them and putting them together with a suitable editor can be a little tricky if
you are new to this kind of thing. An easy way to install GCC along with a suitable editor is to download
Code::Blocks or Qt Creator. Both are free integrated development environments (IDEs) for Linux, Apple
macOS, and Microsoft Windows. They support a complete program development for several compilers,
including GCC and Clang. This implies you get support for both C and C++.

Another possibility is to use Microsoft Visual C++ that runs under Microsoft Windows. It is nearly fully
compliant with C++17 as well; all examples in this book should compile with the latest version just fine. The
Community and Express editions are free for individual use or even small professional teams. With Visual
Studio you get a comprehensive professional editor and support for other languages such as C# and Basic.

There are other compilers that support C++17 as well, which you can find with a quick online search.
The online download section for this book also contains a list of further useful resources on how to get
started.

We've organized the material in this book to be read sequentially, so you should start at the beginning
and keep going until you reach the end. However, no one ever learned programming by just reading a book.
You'll only learn how to program in C++ by writing code, so make sure you key in all the examples—don’t
just copy them from the download files—and compile and execute the code that you've keyed in. This
might seem tedious at times, but it’s surprising how much just typing in C++ statements will help your
understanding, especially when you may feel you're struggling with some of the ideas. If an example doesn’t
work, resist the temptation to go straight back to the book to see why. Try to figure out from your code what
is wrong. This is good practice for what you'll have to do when you are developing C++ applications for real.

Making mistakes is a fundamental part of the learning process, and the exercises should provide you
with ample opportunity for that. It’s a good idea to dream up a few exercises of your own. If you are not
sure about how to do something, just have a go before looking it up. The more mistakes you make, the
greater the insight you'll have into what can, and does, go wrong. Make sure you attempt all the exercises,
and remember, don’t look at the solutions until you're sure that you can’t work them out yourself. Most of
these exercises just involve a direct application of what’s covered in a chapter—they’re just practice, in other
words—but some also require a bit of thought or maybe even inspiration.

We wish you every success with C++. Above all, enjoy it!

Ivor Horton
Peter Van Weert

xxviii

www.EBookswWorld.ir

CHAPTER 1

Basic Ideas

In this book we sometimes will use certain code in the examples before having explained it in detail. This
chapter is intended to help you when this occurs by giving presenting an overview of the major elements of
C++ and how they hang together. We’ll also explain a few concepts relating to the representation of numbers
and characters in your computer.

In this chapter, you'll learn:

e Whatis meant by modern C++

e Whatthe terms C++11, C++14, and C++17 mean

e What the C++ Standard Library is

e What are the elements of a C++ program

e How to document your program code

e How your C++ code becomes an executable program

¢ How object-oriented programming differs from procedural programming
e What binary, hexadecimal, and octal number systems are

e What floating-point numbers are

e How a computer represents numbers using nothing but bits and bytes

e What Unicode is

Modern C++

The C++ programming language was originally developed in the early 1980s by Danish computer scientist
Bjarne Stroustrup. That makes C++ one of the older programming languages still in active use—very old, in
fact, in the fast-paced world of computer programming. Despite its age, though, C++ is still standing strong,
steadily maintaining its top-five position in most popularity rankings for programming languages. There’s no
doubt whatsoever that C++ still is one of the most widely used and most powerful programming language in
the world today.

Just about any kind of program can be written in C++, from device drivers to operating systems and
from payroll and administrative programs to games. Major operating systems, browsers, office suites,
email clients, multimedia players, database systems—name one and chances are it’s written at least partly
in C++. Above all else, C++ is perhaps best suited for applications where performance matters, such as
applications that have to process large amounts of data, modern games with high-end graphics, or apps that
target embedded or mobile devices. Programs written in C++ are still easily many times faster than those

© Ivor Horton and Peter Van Weert 2018 1
1. Horton and P. Van Weert, Beginning C++17, https://doi.org/10.1007/978-1-4842-3366-5_1

www.EBookswWorld.ir

https://doi.org/10.1007/978-1-4842-3366-5_1

CHAPTER 1 * BASIC IDEAS

written in other popular languages. Also, C++ is far more effective than most other languages for developing
applications across an enormous range of computing devices and environments, including for personal
computers, workstations, mainframe computers, tablets, and mobile phones.

The C++ programming language may be old, but it’s still very much alive and kicking. Or, better yet:
it's again very much alive and kicking. After its initial development and standardization in the 1980s, C++
evolved slowly—until 2011, that is, when the International Organization for Standardization (ISO) released
a new version of the standard that formally defines the C++ programming language. This edition of the
standard, commonly referred to as C++11, revived C++ and catapulted the somewhat dated language right
back into the 21st century. It modernized the language and the way we use it so profoundly that you could
almost call C++11 a completely new language.

Programming using the features of C++11 and beyond is referred to as modern C++. In this book, we’ll
show you that modern C++ is about more than simply embracing the language’s new features—lambda
expressions, auto type deduction, and range-based for loops, to name a few. More than anything else,
modern C++ is about modern ways of programming, the consensus of what constitutes good programming
style. It's about applying an implicit set of guidelines and best practices, all designed to make C++
programming easier, less error-prone, and more productive. A modern, safe C++ programming style replaces
traditional low-level language constructs with the use of containers (Chapters 5 and 19), smart pointers
(Chapter 6), or other RAII techniques (Chapter 15), and it emphasizes exceptions to report errors (Chapter 15),
passing objects by value through move semantics (Chapter 17), writing algorithms instead of loops
(Chapter 19), and so on. Of course, all this probably means little to nothing to you yet. But not to worry: in
this book, we'll gradually introduce everything you need to know to program in C++ today!

The C++11 standard appears to have revived the C++ community, which has been actively working hard
on extending and further improving the language ever since. Every three years, a new version of the standard
is published. In 2014, the C++14 standard was finalized, and in 2017 the C++17 edition. This book relates to
C++ as defined by C++17. All code should work on any compiler that complies with the C++17 edition of the
standard. The good news is that most major compilers have been keeping up with the latest developments,
so if your compiler does not support a particular feature yet, it soon will.

Standard Libraries

If you had to create everything from scratch every time you wrote a program, it would be tedious indeed.
The same functionality is required in many programs—reading data from the keyboard, calculating a square
root, and sorting data records into a particular sequence are examples. C++ comes with a large amount of
prewritten code that provides facilities such as these so you don’t have to write the code yourself. All this
standard code is defined in the Standard Library.

The Standard Library is a huge collection of routines and definitions that provide functionality that is
required by many programs. Examples are numerical calculations, string processing, sorting and searching,
organizing and managing data, and input and output. We’ll introduce major Standard Library functionalities
in virtually every chapter and will later zoom in a bit more specifically on some key data structures and
algorithms in Chapter 19. Nevertheless, the Standard Library is so vast that we will only scratch the surface
of what is available in this book. It really needs several books to fully elaborate all the capabilities it provides.
Beginning STL (Apress, 2015) is a companion book that is a tutorial on using the Standard Template Library,
which is the subset of the C++ Standard Library for managing and processing data in various ways. For a
compact yet complete overview of everything the modern Standard Library has to offer, we also recommend
the book C++ Standard Library Quick Reference (Apress, 2016).

Given the scope of the language and the extent of the library, it’s not unusual for a beginner to find C++
somewhat daunting. It is too extensive to learn in its entirety from a single book. However, you don’t need
to learn all of C++ to be able to write substantial programs. You can approach the language step-by-step, in
which case it really isn’t difficult. An analogy might be learning to drive a car. You can certainly become a
competent and safe driver without necessarily having the expertise, knowledge, and experience to drive in

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_5
http://dx.doi.org/10.1007/978-1-4842-3366-5_19
http://dx.doi.org/10.1007/978-1-4842-3366-5_6
http://dx.doi.org/10.1007/978-1-4842-3366-5_15
http://dx.doi.org/10.1007/978-1-4842-3366-5_15
http://dx.doi.org/10.1007/978-1-4842-3366-5_17
http://dx.doi.org/10.1007/978-1-4842-3366-5_19
http://dx.doi.org/10.1007/978-1-4842-3366-5_19

CHAPTER 1 " BASIC IDEAS

the Indianapolis 500. With this book you can learn everything you need to program effectively in C++. By the
time you reach the end, you'll be confidently writing your own applications. You'll also be well equipped to
explore the full extent of C++ and its Standard Library.

C++ Program Concepts

There will be much more detail on everything we discuss in this section later in the book. We’ll jump straight
in with the complete, fully working C++ program shown in Figure 1-1, which also explains what the various
bits are. We'll use the example as a base for discussing some more general aspects of C++.

This is a statement.
Statements end with a semicolon.
There is also a comment on this line.

:// Ex1_01.cpp ; o .
§// A complete Ci+ program ;4— Single-line comments begin with //.

#include <iostream> <€ This line adds input/output capability.

int main() < This is the first line of the function main.

{ <«

int answer {42}; // Defines answer with value 42 <————

éstd::cout << "The answer to life, the universe, and everything is " All the code in a

: << answer .| function is enclosed
<< std::endl; ;| between braces.

... o

return 0; €«———

} <

This statement ends the function main. This statement is spread over three lines.

Figure 1-1. A complete C++ program

Source Files and Header Files

The file depicted in Figure 1-1, Ex1_01.cpp, is in the code download for the book. The file extension, .cpp,
indicates that this is a C++ source file. Source files contain functions and thus all the executable code in a
program. The names of source files usually have the extension . cpp, although other extensions such as
.CC, .CXX, or .C++ are sometimes used to identify a C++ source file.

C++ code is actually stored in two kinds of files. Next to source files, there’re also so-called header files.
Header files contain, among other things, function prototypes and definitions for classes and templates
that are used by the executable code in a . cpp file. The names of header files usually have the extension .h,
although other extensions such as . hpp are also used. You'll create your first very own header files in
Chapter 10; until then all your programs will be small enough to be defined in a single source file.

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_10

CHAPTER 1 * BASIC IDEAS

Comments and Whitespace

The first two lines in Figure 1-1 are comments. You add comments that document your program code to
make it easier to understand how it works. The compiler ignores everything that follows two successive
forward slashes on a line, so this kind of comment can follow code on a line. In our example, the first line is
a comment that indicates the name of the file containing this code. We'll identify the file for each working
example in the same way.

Note The comment with the file name in each header or source file is only there for your convenience.
In normal coding there is no need to add such comments; it only introduces an unnecessary maintenance
overhead when renaming files.

There’s another form of comment that you can use when you need to spread a comment over several
lines. Here’s an example:

/* This comment is
over two lines. */

Everything between /* and */ will be ignored by the compiler. You can embellish this sort of comment
to make it stand out. For instance:

JRkskkkkkkkokkkkokkokokokokok\

* This comment is *

* over two lines. *
********************/

Whitespace is any sequence of spaces, tabs, newlines, or form feed characters. Whitespace is generally
ignored by the compiler, except when it is necessary for syntactic reasons to distinguish one element from
another.

Preprocessing Directives and Standard Library Headers

The third line in Figure 1-1 is a preprocessing directive. Preprocessing directives cause the source code to
be modified in some way before it is compiled to executable form. This preprocessing directive adds the
contents of the Standard Library header file with the name iostream to this source file, Ex1_01.cpp. The
header file contents are inserted in place of the #include directive.

Header files, which are sometimes referred to just as headers, contain definitions to be used in a source
file. iostream contains definitions that are needed to perform input from the keyboard and text output to
the screen using Standard Library routines. In particular, it defines std: : cout and std: :end1 among many
other things. If the preprocessing directive to include the iostream header was omitted from Ex1_01.cpp,
the source file wouldn’t compile because the compiler would not know what std: : cout or std: :endl is. The
contents of header files are included into a source file before it is compiled. You'll be including the contents
of one or more Standard Library header files into nearly every program, and you'll also be creating and using
your own header files that contain definitions that you construct later in the book.

www.EBookswWorld.ir

CHAPTER 1 " BASIC IDEAS

Caution There are no spaces between the angle brackets and the standard header file name. With some
compilers, spaces are significant between the angle brackets, < and »>; if you insert spaces here, the program
may not compile.

Functions

Every C++ program consists of at least one and usually many more functions. A function is a named block of
code that carries out a well-defined operation such as “read the input data” or “calculate the average value”
or “output the results” You execute, or call, a function in a program using its name. All the executable code in
a program appears within functions. There must be one function with the name main, and execution always
starts automatically with this function. The main() function usually calls other functions, which in turn can
call other functions, and so on. Functions provide several important advantages:

e A program that is broken down into discrete functions is easier to develop and test.

e You canreuse a function in several different places in a program, which makes the
program smaller than if you coded the operation in each place that it is needed.

¢ You can often reuse a function in many different programs, thus saving time and
effort.

e Large programs are typically developed by a team of programmers. Each team
member is responsible for programming a set of functions that are a well-defined
subset of the whole program. Without a functional structure, this would be
impractical.

The program in Figure 1-1 consists of just the function main(). The first line of the function is as follows:
int main()

This is called the function header, which identifies the function. Here, int is a type name that defines
the type of value that the main() function returns when it finishes execution—an integer. An integer is a
number without a fractional component; that is, 23 and -2048 are integers, while 3.1415 and % are not. In
general, the parentheses following a name in a function definition enclose the specification for information
to be passed to the function when you call it. There’s nothing between the parentheses in this instance,
but there could be. You'll learn how you specify the type of information to be passed to a function when it
is executed in Chapter 8. We'll always put parentheses after a function name in the text—like we did with
main()—to distinguish it from other things that are code.

The executable code for a function is always enclosed between curly braces. The opening brace follows
the function header.

Statements

A statement is a basic unit in a C++ program. A statement always ends with a semicolon, and it’s the
semicolon that marks the end of a statement, not the end of the line. A statement defines something, such as
a computation, or an action that is to be performed. Everything a program does is specified by statements.
Statements are executed in sequence until there is a statement that causes the sequence to be altered. You'll
learn about statements that can change the execution sequence in Chapter 4. There are three statements in

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_8
http://dx.doi.org/10.1007/978-1-4842-3366-5_4

CHAPTER 1 * BASIC IDEAS

main() in Figure 1-1. The first defines a variable, which is a named bit of memory for storing data of some
kind. In this case, the variable has the name answer and can store integer values:

int answer {42}; // Defines answer with the value 42

The type, int, appears first, preceding the name. This specifies the kind of data that can be
stored—integers. Note the space between int and answer. One or more whitespace characters is essential
here to separate the type name from the variable name; without the space, the compiler would see the name
intanswer, which it would not understand. An initial value for answer appears between the braces following
the variable name, so it starts out storing 42. There’s a space between answer and {42}, but it’s not essential.
Any of the following definitions are valid as well:

int one{ 1 };
int two{2};
int three{

3
};

The compiler mostly ignores superfluous whitespace. However, you should use whitespace in a
consistent fashion to make your code more readable.

There’s a somewhat redundant comment at the end of the first statement explaining what we just
described, but it does demonstrate that you can add a comment to a statement. The whitespace preceding
the // is also not mandatory, but it is desirable.

You can enclose several statements between a pair of curly braces, { }, in which case they're referred
to as a statement block. The body of a function is an example of a block, as you saw in Figure 1-1 where the
statements in the main() function appear between curly braces. A statement block is also referred to as a
compound statement because in most circumstances it can be considered as a single statement, as you'll see
when we look at decision-making capabilities in Chapter 4, and loops in Chapter 5. Wherever you can put a
single statement, you can equally well put a block of statements between braces. As a consequence, blocks
can be placed inside other blocks—this concept is called nesting. Blocks can be nested, one within another,
to any depth.

Data Input and Output

Input and output are performed using streams in C++. To output something, you write it to an output stream,
and to input data, you read it from an input stream. A stream is an abstract representation of a source of data or
a data sink. When your program executes, each stream is tied to a specific device that is the source of data in the
case of an input stream and the destination for data in the case of an output stream. The advantage of having
an abstract representation of a source or sink for data is that the programming is then the same regardless

of the device the stream represents. You can read a disk file in essentially the same way as you read from the
keyboard. The standard output and input streams in C++ are called cout and cin, respectively, and by default
they correspond to your computer’s screen and keyboard. You'll be reading input from cin in Chapter 2.

The next statement in main() in Figure 1-1 outputs text to the screen:
std::cout << "The answer to life, the universe, and everything is "
<< answer
<< std::endl;

The statement is spread over three lines, just to show that it’s possible. The names cout and endl are
defined in the iostream header file. We'll explain about the std: : prefix a little later in this chapter. << is

the insertion operator that transfers data to a stream. In Chapter 2 you'll meet the extraction operator, >>,

6

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_4
http://dx.doi.org/10.1007/978-1-4842-3366-5_5
http://dx.doi.org/10.1007/978-1-4842-3366-5_2
http://dx.doi.org/10.1007/978-1-4842-3366-5_2

CHAPTER 1 " BASIC IDEAS

that reads data from a stream. Whatever appears to the right of each << is transferred to cout. Inserting endl
to std: :cout causes a new line to be written to the stream and the output buffer to be flushed. Flushing

the output buffer ensures that the output appears immediately. The statement will produce the following
output:

The answer to life, the universe, and everything is 42

You can add comments to each line of a statement. Here’s an example:

std::cout << "The answer to life, the universe, and everything is " // This statement
<< answer // occupies
<< std::endl; // three lines

You don’t have to align the double slashes, but it's common to do so because it looks tidier and makes
the code easier to read. Of course, you should not start writing comments just to write them. A comment
normally contains useful information that is not immediately obvious from the code.

return Statements

The last statement in main() is a return statement. A return statement ends a function and returns control
to where the function was called. In this case, it ends the function and returns control to the operating
system. A return statement may or may not return a value. This particular return statement returns 0 to the
operating system. Returning 0 to the operating system indicates that the program ended normally. You can
return nonzero values such as 1, 2, etc., to indicate different abnormal end conditions. The return statement
in Ex1_01.cpp is optional, so you could omit it. This is because if execution runs past the last statement in
main(), it is equivalent to executing return 0.

Note main() is the only function for which omitting return is equivalent to returning zero. Any other
function with return type int always has to end with an explicit return statement—the compiler shall never
presume to know which value an arbitrary function should return by default.

Namespaces

A large project will involve several programmers working concurrently. This potentially creates a problem
with names. The same name might be used by different programmers for different things, which could

at least cause some confusion and may cause things to go wrong. The Standard Library defines a lot of
names, more than you can possibly remember. Accidental use of Standard Library names could also cause
problems. Namespaces are designed to overcome this difficulty.

A namespace is a sort of family name that prefixes all the names declared within the namespace. The
names in the Standard Library are all defined within a namespace that has the name std. cout and endl
are names from the Standard Library, so the full names are std: :cout and std: :endl. Those two colons
together, : :, have a fancy title: the scope resolution operator. We'll have more to say about it later. Here, it
serves to separate the namespace name, std, from the names in the Standard Library such as cout and end1.
Almost all names from the Standard Library are prefixed with std.

www.EBookswWorld.ir

CHAPTER 1 * BASIC IDEAS

The code for a namespace looks like this:
namespace my space {

// A1l names declared in here need to be prefixed

// with my_space when they are reference from outside.

// For example, a min() function defined in here

// would be referred to outside this namespace as my space::min()

Everything between the braces is within the my_space namespace. You'll find out more about defining
your own namespaces in Chapter 10.

Caution The main() function must not be defined within a namespace. Things that are not defined in a
namespace exist in the global namespace, which has no name.

Names and Keywords

Ex1_01.cpp contains a definition for a variable with the name answer, and it uses the names cout and endl
that are defined in the iostream Standard Library header. Lots of things need names in a program, and there
are precise rules for defining names:

e Aname can be any sequence of upper or lowercase letters A to Z or a to z, the digits
0to 9, and the underscore character, .

¢ Aname must begin with either a letter or an underscore.
e Names are case sensitive.

The C++ standard allows names to be of any length, but typically a particular compiler will impose
some sort of limit. However, this is normally sufficiently large that it doesn’t represent a serious constraint.
Most of the time you won’t need to use names of more than 12 to 15 characters.

Here are some valid C++ names:

toe_count shoeSize Box democrat Democrat numberi x2 y2 pValue out_of range

Uppercase and lowercase are differentiated, so democrat is not the same name as Democrat. You can see
a couple examples of conventions for writing names that consist of two or more words; you can capitalize
the second and subsequent words or just separate them with underscores.

Keywords are reserved words that have a specific meaning in C++, so you must not use them for
other purposes. class, double, throw, and catch are examples of keywords. Other names that you are not
supposed to use include the following:

e Names that begin with two consecutive underscores
e Names that begin with an underscore followed by an uppercase letter

e Within the global namespace: all names that begin with an underscore

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_10

CHAPTER 1 " BASIC IDEAS

While compilers often won’t really complain if you use these, the problem is that such names might
clash either with those that are generated by the compiler or with names that are used internally by your
Standard Library implementation. Notice that the common denominator with these reserved names is that
they all start with an underscore. Thus, our advice is this:

Tip Do not use names that start with an underscore.

Classes and Objects

A class is a block of code that defines a data type. A class has a name that is the name for the type. An item of
data of a class type is referred to as an object. You use the class type name when you create variables that can
store objects of your data type. Being able to define your own data types enables you to specify a solution to
a problem in terms of the problem. If you were writing a program processing information about students,
for example, you could define a Student type. Your Student type could incorporate all the characteristic of a
student—such as age, gender, or school record—that was required by the program.

You will learn all about creating your own classes and programming with objects in Chapters 11
through 14. Nevertheless, you'll be using objects of specific Standard Library types long before that.
Examples include vectors in Chapter 5 and strings in Chapter 7. Even the std: : cout and std: :cin streams
are technically objects. But not to worry: you'll find that working with objects is easy enough, much easier
than creating your own classes, for instance. Objects are mostly intuitive in use because they’re mostly
designed to behave like real-life entities (although some do model more abstract concepts, such as input or
output streams, or low-level C++ constructs, such as data arrays and character sequences).

Templates

You sometimes need several similar classes or functions in a program where the code differs only in the
kind of data that is processed. A template is a recipe that you create to be used by the compiler to generate
code automatically for a class or function customized for a particular type or types. The compiler uses a class
template to generate one or more of a family of classes. It uses a function template to generate functions.
Each template has a name that you use when you want the compiler to create an instance of it. The Standard
Library uses templates extensively.

Defining function templates is the subject of Chapter 9, and defining class templates is covered in
Chapter 16. But, again, you'll be using some concrete Standard Library templates throughout earlier
chapters, such as instantiations of the container class templates in Chapter 5 or certain elementary utility
function templates such as std: :min() and max().

Code Appearance and Programming Style

The way in which you arrange your code can have a significant effect on how easy it is to understand. There
are two basic aspects to this. First, you can use tabs and/or spaces to indent program statements in a manner
that provides visual cues to their logic, and you can arrange matching braces that define program blocks in

a consistent way so that the relationships between the blocks are apparent. Second, you can spread a single
statement over two or more lines when that will improve the readability of your program.

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_11
http://dx.doi.org/10.1007/978-1-4842-3366-5_14
http://dx.doi.org/10.1007/978-1-4842-3366-5_5
http://dx.doi.org/10.1007/978-1-4842-3366-5_7
http://dx.doi.org/10.1007/978-1-4842-3366-5_9
http://dx.doi.org/10.1007/978-1-4842-3366-5_16
http://dx.doi.org/10.1007/978-1-4842-3366-5_5

CHAPTER 1 * BASIC IDEAS

There are many different styles for code. The following table shows three of many possible options for
how a code sample could be arranged:

Style 1 Style 2 Style 3
namespace mine namespace mine { namespace mine {
{ bool has_factor(int x, int y) bool has factor(int x, int y) {
bool has factor(int x, int y) { int factor{ hcf(x, y) };
int factor{ hcf(x,y) }; if (factor » 1)
int factor{ hcf(x, y) }; if (factor>1) { return true;
if (factor > 1) return true; else
{ } else { return false;
return true; return false; }
} } }
else }
{ }
return false;
}
}
}

We will use Style 1 for examples in the book. Over time, you will surely develop your own, based either
on personal preferences or on company policies. It is recommended to, at some point, pick one style that
suits you and then use this consistently throughout your code. Not only does a consistent code presentation
style look good, but it also makes your code easier to read.

A particular convention for arranging matching braces and indenting statements is only one of
several aspects of one’s programming style. Other important aspects include conventions for naming
variables, types, and functions, and the use of (structured) comments. The question of what constitutes a
good programming style can be highly subjective at times, though some guidelines and conventions are
objectively superior. The general idea, though, is that code that conforms to a consistent style is easier to
read and understand, which helps to avoid introducing errors. Throughout the book we’ll regularly give you
advice as you fashion your own programming style.

Tip One of the best tips we can give you regarding good programming style is no doubt to choose clear,
descriptive names for all your variables, functions, and types.

Creating an Executable

Creating an executable module from your C++ source code is basically a three-step process. In the first step,
the preprocessor processes all preprocessing directives. One of its key tasks is to, at least in principle, copy the
entire contents of all #included headers into your . cpp files. Other preprocessing directives are discussed in
Chapter 10. In the second step, your compiler processes each . cpp file to produce an object file that contains
the machine code equivalent of the source file. In the third step, the linker combines the object files for a
program into a file containing the complete executable program.

Figure 1-2 shows three source files being compiled to produce three corresponding object files
(the preprocessing stage is not shown explicitly). The filename extension that’s used to identify object
files varies between different machine environments, so it isn’t shown here. The source files that make
up your program may be compiled independently in separate compiler runs, or most compilers will

10

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_10

CHAPTER 1 " BASIC IDEAS

allow you to compile them in a single run. Either way, the compiler treats each source file as a separate
entity and produces one object file for each . cpp file. The link step then combines the object files for a
program, along with any library functions that are necessary, into a single executable file.

The contents of header
files will be included
before compilation.

Source File
(.cpp File)

Source File
(.cpp File)

Source File
(.cpp File)

Each .cpp file will result in Compiler Compiler Compiler
one object file.

Object File Object File

Object File

(Machine Code) (Machine Code) (Machine Code)

The linker will combine all [————

the object files plus Library Linker

necessary library routines

to produce the executable
file.

Executable
(.exe File)

Figure 1-2. The compile and link process

In the first half of the book, your programs will consist of a single source file. In Chapter 10 we will show
you how to compose a larger program, consisting of multiple header and source files.

Note The concrete steps you have to follow to get from your source code to a functioning executable differ
from compiler to compiler. While most of our examples are small enough to compile and link through a series
of command-line instructions, it is probably easier to use a so-called integrated development environment (IDE)
instead. Modern IDEs offer a very user-friendly graphical user interface to edit, compile, link, run, and debug
your programs. References to the most popular compilers and IDEs as well as pointers on how to get started
are available from the Apress website (www.apress.com/book/download.html) together with the source code
of all examples and the solutions to all exercises.

In practice, compilation is an iterative process because you're almost certain to have made
typographical and other errors in the code. Once you've eliminated these from each source file, you can
progress to the link step, where you may find that yet more errors surface. Even when the link step produces
an executable module, your program may still contain logical errors; that is, it doesn’t produce the results
you expect. To fix these, you must go back and modify the source code and try to compile it once more. You
continue this process until your program works as you think it should. As soon as you declare to the world
at large that your program works, someone will discover a number of obvious errors that you should have
found. It hasn’t been proven beyond doubt so far as we know, but it’s widely believed that any program
larger than a given size will always contain errors. It’s best not to dwell on this thought when flying....

11

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_10
http://www.apress.com/book/download.html

CHAPTER 1 * BASIC IDEAS

Procedural and Object-Oriented Programming

Historically, procedural programming is the way almost all programs were written. To create a procedural
programming solution to a problem, you focus on the process that your program must implement to solve
the problem. Here is a rough outline of what you do, once the requirements have been defined precisely:

¢ You create a clear, high-level definition of the overall process that your program will
implement.

¢ Yousegment the overall process into workable units of computation that are, as
much as possible, self-contained. These will usually correspond to functions.

e You code the functions in terms of processing basic types of data: numerical data,
single characters, and character strings.

Apart from the common requirement of starting out with a clear specification of what the problem is,
the object-oriented approach to solving the same problem is quite different:

e From the problem specification, you determine what types of objects the problem
is concerned with. For example, if your program deals with baseball players, you're
likely to identify BaseballPlayer as one of the types of data your program will work
with. If your program is an accounting package, you may well want to define objects
of type Account and type Transaction. You also identify the set of operations that
the program will need to carry out on each type of object. This will result in a set of
application-specific data types that you will use in writing your program.

e You produce a detailed design for each of the new data types that your problem
requires, including the operations that can be carried out with each object type.

e You express the logic of the program in terms of the new data types you've defined
and the kinds of operations they allow.

The program code for an object-oriented solution to a problem will be completely unlike that for a
procedural solution and almost certainly easier to understand. It will also be a lot easier to maintain. The
amount of design time required for an object-oriented solution tends to be greater than for a procedural
solution. However, the coding and testing phase of an object-oriented program tends to be shorter and less
troublesome, so the overall development time is likely to be roughly the same in either case.

To get an inkling of what an objected-oriented approach implies, suppose you're implementing a
program that deals with boxes of various kinds. A feasible requirement of such a program would be to
package several smaller boxes inside another, larger box. In a procedural program, you would need to store
the length, width, and height of each box in a separate group of variables. The dimensions of a new box that
could contain several other boxes would need to be calculated explicitly in terms of the dimensions of each
of the contained boxes, according to whatever rules you had defined for packaging a set of boxes.

An object-oriented solution might involve first defining a Box data type. This would enable you to create
variables that can reference objects of type Box and, of course, create Box objects. You could then define an
operation that would add two Box objects together and produce a new Box object that could contain them.
Using this operation, you could write statements like this:

bigBox = box1 + box2 + box3;

12

www.EBookswWorld.ir

CHAPTER 1 " BASIC IDEAS

In this context, the + operation means much more than simple addition. The + operator applied to
numerical values will work exactly as before, but for Box objects it has a special meaning. Each of the
variables in this statement is of type Box. The statement would create a new Box object big enough to contain
box1, box2, and box3.

Being able to write statements like this is clearly much easier than having to deal with all the box
dimensions separately, and the more complex the operations on boxes you take on, the greater the
advantage is going to be. This is a trivial illustration, though, and there’s a great deal more to the power
of objects than you can see here. The purpose of this discussion is just to give you an idea of how readily
problems solved using an object-oriented approach can be understood. Object-oriented programming is
essentially about solving problems in terms of the entities to which the problems relates rather than in terms
of the entities that computers are happy with: numbers and characters.

Representing Numbers

Numbers are represented in a variety of ways in a C++ program, and you need to have an understanding
of the possibilities. If you are comfortable with binary, hexadecimal, and floating-point number
representations, you can safely skip this bit.

Binary Numbers

First, let’s consider exactly what a common, everyday decimal number, such as 324 or 911, means.
Obviously, what we mean here is “three hundred and twenty-four” or “nine hundred and eleven.” These are
shorthand ways of saying “three hundreds” plus “two tens” plus “four,” as well as “nine hundred” plus “one
ten” plus “one.” Putting this more precisely, we really mean this:

° 324is3 x 10>+ 2 x 10' +4 x 10°, whichis3x100+2 x 10 +4 x 1.
e 911is9x10%°4+1x10'+1x10° whichis9x100+1x10+1x1.

This is called decimal notation because it’s built around powers of 10. We also say that we are
representing numbers to base 10 here because each digit position is a power of 10. Representing numbers in
this way is handy for beings with ten fingers and/or ten toes, or indeed ten of any kind of appendage that can
be used for counting. Your PC is rather less handy, being built mainly of switches that are either on or off.
Your PC is OK for counting in twos but not spectacular at counting in tens. You're probably aware that this is
why your computer represents numbers using base 2, rather than base 10. Representing numbers using
base 2 is called the binary system of counting. Numbers in base 10 have digits that can be from 0 to 9. In
general, for numbers in an arbitrary base, n, the digit in each position in a number can be from 0 to n-1.
Thus, binary digits can be only 0 or 1. A binary number such as 1101 breaks down like this:

° 1x22+1x22+0x2'+1x2% whichis1x8+1x4+0x2+1x1

This is 13 in the decimal system. In Table 1-1, you can see the decimal equivalents of all the numbers
you can represent using eight binary digits. A binary digit is more commonly known as a bit.

13

www.EBookswWorld.ir

CHAPTER 1 * BASIC IDEAS

Table 1-1. Decimal Equivalents of 8-Bit Binary Values

Binary Decimal Binary Decimal
0000 0000 0 1000 0000 128
0000 0001 1 1000 0001 129
0000 0010 2 1000 0010 130
0001 0000 16 1001 0000 144
0001 0001 17 1001 0001 145
0111 1100 124 1111 1100 252
01111101 125 11111101 253
01111110 126 11111110 254
01111111 127 11111111 255

Using the first seven bits, you can represent positive numbers from 0 to 127, which is a total of 128
different numbers. Using all eight bits, you get 256, or 28, numbers. In general, if you have n bits available,
you can represent 2" integers, with positive values from 0 to 2" - 1.

Adding binary numbers inside your computer is a piece of cake because the “carry” from adding
corresponding digits can be only 0 or 1. This means that very simple—and thus excruciatingly fast—circuitry
can handle the process. Figure 1-3 shows how the addition of two 8-bit binary values would work.

Binary Decimal

0001 1101 29

+ 00101011 + 43
0100 1000 72
— A — —_—

carries
Figure 1-3. Adding binary values

The addition operation adds corresponding bits in the operands, starting with the rightmost. Figure 1-3
shows that there is a “carry” of 1 to the next bit position for each of the first six bit positions. This is because
each digit can be only 0 or 1. When you add 1 + 1, the result cannot be stored in the current bit position and
is equivalent to adding 1 in the next bit position to the left.

Hexadecimal Numbers
When you are dealing with larger binary numbers, a small problem arises with writing them. Look at this:
U 1111 0101 1011 1001 1110 0001

Binary notation here starts to be more than a little cumbersome for practical use, particularly when you
consider that this in decimal is only 16,103,905—a miserable eight decimal digits. You can sit more angels on
the head of a pin than that! Clearly you need a more economical way of writing this, but decimal isn’t always

14

www.EBookswWorld.ir

CHAPTER 1 " BASIC IDEAS

appropriate. You might want to specify that the 10th and 24th bits from the right in a number are 1, for example.
Figuring out the decimal integer for this is hard work, and there’s a good chance you'll get it wrong anyway. An
easier solution is to use hexadecimal notation, in which the numbers are represented using base 16.

Arithmetic to base 16 is a much more convenient option, and it fits rather well with binary. Each
hexadecimal digit can have values from 0 to 15 and the digits from 10 to 15 are represented by the letters A to
F (or a to), as shown in Table 1-2. Values from 0 to 15 happen to correspond nicely with the range of values
that four binary digits can represent.

Table 1-2. Hexadecimal Digits and Their Values in Decimal and Binary

Hexadecimal Decimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
Aora 10 1010
Borb 11 1011
Corc 12 1100
Dord 13 1101
Eore 14 1110
Forf 15 1111

Because a hexadecimal digit corresponds to four binary digits, you can represent any binary number in
hexadecimal simply by taking groups of four binary digits starting from the right and writing the equivalent
hexadecimal digit for each group. Look at the following binary number:

e 1111 0101 1011 1001 1110 0001

Taking each group of four bits and replacing it with the corresponding hexadecimal digit from the table
produces the following:

° F 5 B 9 E 1

You have six hexadecimal digits corresponding to the six groups of four binary digits. Just to prove that it
all works out with no cheating, you can convert this number directly from hexadecimal to decimal by again
using the analogy with the meaning of a decimal number. The value of this hexadecimal number therefore
works out as follows: F5B9E1 as a decimal value is given by the following:

e 15x16°+5x16*+11x16°+9x16*+14x16'+1 x 16°

15

www.EBookswWorld.ir

CHAPTER 1 * BASIC IDEAS

Thankfully, this adds up to the same number you got when converting the equivalent binary number to
a decimal value: 16,103,905. In C++, hexadecimal values are written with Ox or 0X as a prefix, so in code the
value would be written as OxF5B9E1. Obviously, this means that 99 is not at all the same as 0x99.

The other handy coincidence with hexadecimal numbers is that modern computers store integers in
words that are an even number of bytes, typically 2, 4, 8, or 16 so-called bytes. A byte is 8 bits, which is exactly
two hexadecimal digits, so any binary integer word in memory always corresponds to an exact number of
hexadecimal digits.

Negative Binary Numbers

There’s another aspect to binary arithmetic that you need to understand: negative numbers. So far, we've
assumed that everything is positive—the optimist’s view—and so the glass is still half-full. But you can’t
avoid the negative side of life—the pessimist’s perspective—that the glass is already half-empty. But how is
a negative number represented in a modern computer? You'll see shortly that the answer to this seemingly
easy question is actually far from obvious....

Integers that can be both positive and negative are referred to as signed integers. Naturally, you only
have binary digits at your disposal to represent numbers. At the end of the day, any language your computer
speaks shall consist solely of bits and bytes. As you know, your computer’s memory is generally composed
of 8-bit bytes, so all binary numbers are going to be stored in some multiple (usually a power of 2) of 8 bits.
Thus, you can also only have signed integers with 8 bits, 16 bits, 32 bits, or whatever.

A straightforward representation of signed integers therefore consists of a fixed number of binary digits,
where one of these bits is designated as a so-called sign bit. In practice, the sign bit is always chosen to be the
leftmost bit. Say we fix the size of all our signed integers to 8 bits; then the number 6 could be represented
as 00000110, and -6 could be represented as 10000110. Changing +6 to -6 just involves flipping the sign bit
from 0 to 1. This is called a signed magnitude representation: each number consists of a sign bit that is 0 for
positive values and 1 for negative values, plus a given number of other bits that specify the magnitude or
absolute value of the number (the value without the sign in other words).

While signed magnitude representations are easy to work with for humans, they have one unfortunate
downside: they are not at all easy to work with for computers! More specifically, they carry a lot of overhead
in terms of the complexity of the circuits that are needed to perform arithmetic. When two signed integers
are added, for instance, you don’t want the computer to be messing about, checking whether either or both
of the numbers are negative. What you really want is to use the same simple and very fast “add” circuitry
regardless of the signs of the operands.

Let’s see what happens when we naively add together the signed magnitude representations of 12 and -8.
You almost know in advance that it won’t work, but we’ll carry on regardless:

12 in binary is 00001100
-8 in binary (you suppose) is 10001000
If you now “add” these together, you get 10010100

This seems to give -20, which of course isn’t what you wanted at all. It’s definitely not +4, which you
know is 00000100. “Ah,” we hear you say, “you can’t treat a sign just like another digit” But that is just what
you do want to do to speed up binary computations!

Virtually all modern computers therefore take a different approach: they use the so-called 2’s
complement representation of negative binary numbers. With this representation, you can produce the
negative of any positive binary number by a simple procedure that you can perform in your head. At this
point, we need to ask you to have a little faith because we’ll avoid getting into explanations of why it works.

16

www.EBookswWorld.ir

CHAPTER 1 " BASIC IDEAS

Like a true magician, we won’t explain our magic. We’ll show you how you can create the 2’s complement
form of a negative number from a positive value, and you can prove to yourself that it does work. For this,
let’s return to the previous example, in which you need the 2’s complement representation of -8:

1. You start with +8 in binary: 00001000.

2. Youthen “flip” each binary digit, changing Os to 1s, and vice versa: 11110111.
This is called the I'’s complement form.

3. Ifyounow add 1 to this, you get the 2’s complement form of -8: 11111000.

Note that this works both ways. To convert the 2’s complement representation of a negative number
back into the corresponding positive binary number, you again flip all bits and add one. For our example,
flipping 11111000 gives 00000111, adding one to this gives 00001000, or +8 in decimal. Magic!

But of course, the proof of the pudding is in the eating. The 2’s complement representation would
just be a fun parlor trick if it didn’t facilitate binary arithmetic. So, let’s see how 11111000 fares with your
computer’s elementary add circuitry:

+12 in binary is 00001100
The 2’s complement representation of -8 is 11111000
If you add these together, you get 00000100

The answer is 4—it works! The “carry” propagates through all the leftmost 1s, setting them back to 0.
One fell off the end, but you shouldn’t worry about that—it’s probably compensating for the one you
borrowed from the end in the subtraction you did to get -8. In fact, what’s happening is that you're implicitly
assuming that the sign bit, 1 or 0, repeats forever to the left. Try a few examples of your own; you'll find it
always works, like magic. The great thing about the 2’s complement representation of negative numbers is
that it makes arithmetic—and not just addition, by the way—very easy for your computer. And that accounts
for one of the reasons computers are so good at crunching numbers.

Octal Values

Octal integers are numbers expressed with base 8. Digits in an octal value can only be from 0 to 7. Octal is
used rarely these days. It was useful in the days when computer memory was measured in terms of 36-bit
words because you could specify a 36-bit binary value by 12 octal digits. Those days are long gone, so why
are we introducing it? The answer is the potential confusion it can cause. You can still write octal constants
in C++. Octal values are written with a leading zero, so while 76 is a decimal value, 076 is an octal value that
corresponds to 62 in decimal. So, here’s a golden rule:

Caution Never write decimal integers in your source code with a leading zero. You'll get a value different
from what you intended!

17

www.EBookswWorld.ir

CHAPTER 1 * BASIC IDEAS

Bi-Endian and Little-Endian Systems

Integers are stored in memory as binary values in a contiguous sequence of bytes, commonly groups of 2, 4,
8, or 16 bytes. The question of the sequence in which the bytes appear can be important—it’s one of those
things that doesn’t matter until it matters, and then it really matters.

Let’s consider the decimal value 262,657 stored as a 4-byte binary value. We chose this value because in
binary each byte happens to have a pattern of bits that is easily distinguished from the others:

00000000 00000100 00000010 00000001

If you're using a PC with an Intel processor, the number will be stored as follows:

Byte address: 00 01 02 03
Data bits: 00000001 00000010 00000100 00000000

As you can see, the most significant eight bits of the value—the one that’s all 0s—are stored in the byte
with the highest address (last, in other words), and the least significant eight bits are stored in the byte with
the lowest address, which is the leftmost byte. This arrangement is described as little-endian. Why on earth,
you wonder, would a computer reverse the order of these bytes? The motivation, as always, is rooted in the
fact that it allows for more efficient calculations and simpler hardware. The details don’t matter much; the
main thing is that you're aware that most modern computers these days use this counterintuitive encoding.

Most, but not all computers, do, though. If you're using a machine based on a Motorola processor, the
same data is likely to be arranged in memory in a more logical manner, like this:

Byte address: 00 01 02 03
Data bits: 00000000 00000100 00000010 00000001

Now the bytes are in reverse sequence with the most significant eight bits stored in the leftmost byte,
which is the one with the lowest address. This arrangement is described as bi-endian. Some processors
such as PowerPC and all recent ARM processors are bi-endian, which means that the byte order for data is
switchable between bi-endian and little-endian.

Note Regardless of whether the byte order is bi-endian or little-endian, the bits within each byte are
arranged with the most significant bit on the left and the least significant bit on the right.

This is all very interesting, you may say, but when does it matter? Most of the time, it doesn’t. More often
than not, you can happily write a program without knowing whether the computer on which the code will
execute is bi-endian or little-endian. It does matter, however, when you're processing binary data that comes
from another machine. You need to know the endianness. Binary data is written to a file or transmitted over
a network as a sequence of bytes. It’s up to you how you interpret it. If the source of the data is a machine
with a different endianness from the machine on which your code is running, you must reverse the order of
the bytes in each binary value. If you don’t, you have garbage.

For those who collect curious background information, the terms bi-endian and little-endian are drawn
from the book Gulliver’s Travels by Jonathan Swift. In the story, the emperor of Lilliput commanded all his
subjects to always crack their eggs at the smaller end. This was a consequence of the emperor’s son having
cut his finger following the traditional approach of cracking his egg at the big end. Ordinary, law-abiding

18

www.EBookswWorld.ir

CHAPTER 1 " BASIC IDEAS

Lilliputian subjects who cracked their eggs at the smaller end were described as Little Endians. The Big
Endians were a rebellious group of traditionalists in the Lilliputian kingdom who insisted on continuing to
crack their eggs at the big end. Many were put to death as a result.

Floating-Point Numbers

All integers are numbers, but of course not all numbers are integers: 3.1415 is no integer, and neither is
-0.00001. Many applications will have to deal with fractional numbers at one point or another. So clearly
you need a way to represent such numbers on your computer as well, complemented with the ability to
efficiently perform computations with them. The mechanism nearly all computers support for handling
fractional numbers, as you may have guessed from the section title, is called floating-point numbers.

Floating-point numbers do not just represent fractional numbers, though. As an added bonus, they
are able to deal with very large numbers as well. They allow you to represent, for instance, the number
of protons in the universe, which needs around 79 decimal digits (though of course not accurate within
one particle, but that's OK—who has the time to count them all anyway?). Granted, the latter is perhaps
somewhat extreme, but clearly there are situations in which you’ll need more than the ten decimal digits you
get from a 32-bit binary integer, or even more than the 19 you can get from a 64-bit integer. Equally, there are
lots of very small numbers, for example, the amount of time in minutes it takes the typical car salesperson to
accept your generous offer on a 2001 Honda (and it’s covered only 480,000 miles...). Floating-point numbers
are a mechanism that can represent both these classes of numbers quite effectively.

We'll first explain the basic principles using decimal floating-point numbers. Of course, your computer
will again use a binary representation instead, but things are just so much easier to understand for us
humans when we use decimal numbers. A so-called normalized number consists of two parts: a mantissa
or fraction and an exponent. Both can be either positive or negative. The magnitude of the number is the
mantissa multiplied by 10 to the power of the exponent. In analogy with the binary floating-point number
representations of your computer, we’ll moreover fix the number of decimal digits of both the mantissa and
the exponent.

It’s easier to demonstrate this than to describe it, so let’s look at some examples. The number 365 could
be written in a floating-point form, as follows:

3.650000E02

The mantissa here has seven decimal digits, the exponent two. The E stands for “exponent” and precedes
the power of 10 that the 3.650000 (the mantissa) part is multiplied by to get the required value. That is, to get
back to the regular decimal notation, you simply have to compute the following product: 3.650000 x 102.
This is clearly 365.

Now let’s look at a small number:

-3.650000E-03

This is evaluated as -3.65 x 103, which is -0.00365. They're called floating-point numbers for the fairly
obvious reason that the decimal point “floats” and its position depends on the exponent value.

Now suppose you have a larger number such as 2,134,311,179. Using the same amount of digits, this
number looks like this:
2.134311E09

It’s not quite the same. You've lost three low-order digits, and you've approximated your original value
as 2,134,311,000. This is the price to pay for being able to handle such a vast range of numbers: not all these

numbers can be represented with full precision; floating-point numbers in general are only approximate
representations of the exact number.

19

www.EBookswWorld.ir

CHAPTER 1 * BASIC IDEAS

Aside from the fixed-precision limitation in terms of accuracy, there’s another aspect you may need to
be conscious of. You need to take great care when adding or subtracting numbers of significantly different
magnitudes. A simple example will demonstrate the problem. Consider adding 1.23E-4 to 3.65E+6. The
exact result, of course, is 3,650,000 + 0.000123, or 3,650,000.000123. But when converted to floating-point
with seven digits of precision, this becomes the following:

3.650000E+06 + 1.230000E-04 = 3.650000E+06

Adding the latter, smaller number to the former has had no effect whatsoever, so you might as well not
have bothered. The problem lies directly with the fact that you carry only seven digits of precision. The digits
of the larger number aren’t affected by any of the digits of the smaller number because they’re all further to
the right.

Funnily enough, you must also take care when the numbers are nearly equal. If you compute the
difference between such numbers, most numbers may cancel each other out, and you may end up with a
result that has only one or two digits of precision. This is referred to as catastrophic cancellation, and it's
quite easy in such circumstances to end up computing with numbers that are totally garbage.

While floating-point numbers enable you to carry out calculations that would be impossible without
them, you must always keep their limitations in mind if you want to be sure your results are valid. This
means considering the range of values that you are likely to be working with and their relative values. The
field that deals with analyzing and maximizing the precision—or numerical stability—of mathematical
computations and algorithms is called numerical analysis. This is an advanced topic, though, and well
outside the scope of this book. Suffice to say that the precision of floating-point numbers is limited and that
the order and nature of arithmetic operations you perform with them can have a significant impact on the
accuracy of your results.

Your computer, of course, again does not work with decimal numbers; rather, it works with binary
floating-point representations. Bits and bytes, remember? Concretely, nearly all computers today use
the encoding and computation rules specified by the IEEE 754 standard. Left to right, each floating-point
number then consists of a single sign bit, followed by a fixed number of bits for the exponent, and finally
another series of bits that encode the mantissa. The most common floating-point numbers representations
are the so-called single precision (1 sign bit, 8 bits for the exponent, and 23 for the mantissa, adding up to 32
bits in total) and double precision (1 + 11 + 52 = 64 bits) floating-point numbers.

Floating-point numbers can represent huge ranges of numbers. A single-precision floating-point
number, for instance, can already represent numbers ranging from 10-%® to 10*®. Of course, there’s a price
to pay for this flexibility: the number of digits of precision is limited. You know this already from before,
and it’s also only logical; of course not all 38 digits of all numbers in the order of 10** can be represented
exactly using 32 bits. After all, the largest signed integer a 32-bit binary integer can represent exactly is only
231 -1, which is about 2 x 10*. The number of decimal digits of precision in a floating-point number depends
on how much memory is allocated for its mantissa. A single-precision floating-point value, for instance,
provides approximately seven decimal digits accuracy. We say “approximately” because a binary fraction
with 23 bits doesn’t exactly correspond to a decimal fraction with seven decimal digits. A double-precision
floating-point value corresponds to around 16 decimal digits accuracy.

Representing Characters

Data inside your computer has no intrinsic meaning. Machine code instructions are just numbers: of course
numbers are just numbers, but so are, for instance, characters. Each character is assigned a unique integer
value called its code or code point. The value 42 can be the atomic number of molybdenum; the answer to
life, the universe, and everything; or an asterisk character. It all depends on how you choose to interpret it.
You can write a single character in C++ between single quotes, such as 'a’ or '?' or '*', and the compiler
will generate the code value for these.

20

www.EBookswWorld.ir

CHAPTER 1 " BASIC IDEAS

ASCII Codes

Way back in the 1960s, the American Standard Code for Information Interchange (ASCII) was defined for
representing characters. This is a 7-bit code, so there are 128 different code values. ASCII values 0 to 31
represent various nonprinting control characters such as carriage return (code 15) and line feed (code 12).
Code values 65 to 90 inclusive are the uppercase letters A to Z, and 97 to 122 correspond to lowercase a

to z. If you look at the binary values corresponding to the code values for letters, you'll see that the codes

for lowercase and uppercase letters differ only in the sixth bit; lowercase letters have the sixth bit as 0, and
uppercase letters have the sixth bit as 1. Other codes represent digits 0 to 9, punctuation, and other characters.

The original 7-bit ASCII is fine if you are American or British, but if you are French or German, you
need things like accents and umlauts in text, which are not included in the 128 characters that 7-bit ASCII
encodes. To overcome the limitations imposed by a 7-bit code, extended versions of ASCII were defined with
8-bit codes. Values from 0 to 127 represent the same characters as 7-bit ASCII, and values from 128 to 255 are
variable. One variant of 8-bit ASCII that you have probably met is called Latin-1, which provides characters
for most European languages, but there are others for languages such as Russian.

If you speak Korean, Japanese, Chinese, or Arabic, an 8-bit coding is totally inadequate. To give you an
idea, modern encodings of Chinese, Japanese, and Korean scripts (which share a common background)
cover nearly 88,000 characters—a tiny bit more than the 256 characters you're able to get out of 8 bits! To
overcome the limitations of extended ASCII, the Universal Character Set (UCS) emerged in the 1990s. UCS is
defined by the standard ISO 10646 and has codes with up to 32 bits. This provides the potential for hundreds
of millions of unique code values.

UCS and Unicode

UCS defines a mapping between characters and integer code values, called code points. It is important to
realize that a code point is not the same as an encoding. A code point is an integer; an encoding specifies

a way of representing a given code point as a series of bytes or words. Code values of less than 256 are
popular and can be represented in one byte. It would be inefficient to use four bytes to store code values that
require just one byte just because there are other codes that require several bytes. Encodings are ways of
representing code points that allow them to be stored more efficiently.

Unicode is a standard that defines a set of characters and their code points identical to those in UCS.
Unicode also defines several different encodings for these code points and includes additional mechanisms
for dealing with such things as right-to-left languages such as Arabic. The range of code points is more than
enough to accommodate the character sets for all the languages in the world, as well as many different sets of
graphical characters such as mathematical symbols, or even emoticons and emojis. Regardless, the codes are
arranged such that strings in the majority of languages can be represented as a sequence of single 16-bit codes.

One aspect of Unicode that can be confusing is that it provides more than one character encoding
method. The most commonly used encodings are referred to as UTF-8, UTF-16, and UTF-32, either of
which can represent all the characters in the Unicode set. The difference between them is in how a given
character code point is presented; the numerical code value for any given character is the same in either
representation. Here’s how these encodings represent characters:

e UTF-8represents a character as a variable-length sequence of between 1 and 4 bytes.
The ASCII character set appears in UTF-8 as single byte codes that have the same
codes values as ASCII. Most web pages use UTF-8 to encode text.

e UTF-16represents characters as one or two 16-bit values. UTF-16 includes UTF-8.
Because a single 16-bit value accommodates all of code plane 0, UTF-16 covers most
situations in programming for a multilingual context.

e UTF-32,you guessed it, simply represents all characters as 32-bit values.

You have four integer types that store Unicode characters. These are types char, wchar_t, char16_t, and
char32_t. You'lllearn more about these in Chapter 2.

21

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_2

CHAPTER 1 * BASIC IDEAS

C++ Source Characters

You write C++ statements using a basic source character set. This is the set of characters that you're allowed
to use explicitly in a C++ source file. The character set that you can use to define a name is a subset of this.
Of course, the basic source character set in no way constrains the character data that you work with in your
code. Your program can create strings consisting of characters outside this set in various ways, as you'll see.
The basic source character set consists of the following characters:

e Thelettersatozand Ato Z

e Thedigits0to9

e The whitespace characters space, horizontal tab, vertical tab, form feed, and newline
e Thecharacters_{}[]#()<>%:;.2%+-/ " &|~!=,\""’

This is easy and straightforward. You have 96 characters that you can use, and it’s likely that these will
accommodate your needs most of the time. Most of the time the basic source character set will be adequate,
but occasionally you'll need characters that aren’t in it. You can, at least in theory, include Unicode
characters in a name. You specify a Unicode character in the form of a hexadecimal representation of its
code point, either as \udddd or as \Udddddddd, where d is a hexadecimal digit. Note the lowercase u in the
first case and the uppercase U in the second; either is acceptable. Compiler support for Unicode characters
in names is limited, though. Both character and string data can include Unicode characters.

Escape Sequences

When you want to use character constants such as a single character or a character string in a program,
certain characters are problematic. Obviously, you can’t enter characters such as newline directly as
character constants, as they’ll just do what they’re supposed to do: go to a new line in your source code
file (the only exception to this rule are raw string literals, which are covered in Chapter 7). You can enter
these problem characters in character constants by means of an escape sequence. An escape sequence is
an indirect way of specifying a character, and it always begins with a backslash. Table 1-3 shows the escape
sequences that represent control characters.

Table 1-3. Escape Sequences That Represent Control Characters

Escape Sequence Control Character
\n Newline

\t Horizontal tab

\v Vertical tab

\b Backspace

\r Carriage return
\f Form feed

\a Alert/bell

There are some other characters that are a problem to represent directly. Clearly, the backslash
character itself is difficult because it signals the start of an escape sequence. The single and double
quote characters that are used as delimiters, as in the constant 'A" or the string "text", can also
be a problem (it depends on the context; more on this later). Table 1-4 shows the escape sequences
for these.

22

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_7

CHAPTER 1 " BASIC IDEAS

Table 1-4. Escape Sequences That Represent “Problem” Characters

Escape Sequence “Problem” Character
\\ Backslash

\' Single quote

\" Double quote

Because the backslash signals the start of an escape sequence, the only way to enter a backslash as a
character constant is by using two successive backslashes (\\).

This program that uses escape sequences outputs a message to the screen. To see it, you'll need to enter,
compile, link, and execute the code:

// Ex1_02.cpp
// Using escape sequences
#include <iostream>

int main()
{

std::cout << "\"Least \'said\' \\\n\t\tsoonest \'mended\'.\"" << std::endl;
}

When you manage to compile, link, and run this program, you should see the following output
displayed:

"Least 'said' \
soonest 'mended'."

The output is determined by what’s between the outermost double quotes in the following statement:
std::cout << "\"Least \'said\' \\\n\t\tsoonest \'mended\'.\"" << std::endl;

In principle, everything between the outer double quotes in the preceding statement gets sent to cout.
A string of characters between a pair of double quotes is called a string literal. The double quote characters
are delimiters that identify the beginning and end of the string literal; they aren’t part of the string. Each
escape sequence in the string literal will be converted to the character it represents by the compiler, so the
character will be sent to cout, not the escape sequence itself. A backslash in a string literal always indicates
the start of an escape sequence, so the first character that’s sent to cout is a double quote character.

Least followed by a space is output next. This is followed by a single quote character, then said,
followed by another single quote. Next is a space, followed by the backslash specified by \\. Then a newline
character corresponding to \n is written to the stream so the cursor moves to the beginning of the next line.
You then send two tab characters to cout with \t\t, so the cursor will be moved two tab positions to the
right. The word soonest is output next followed by a space and then mended between single quotes. Finally,
a period is output followed by a double quote.

Note If you're no fan of escape sequences, Chapter 7 will introduce a possible alternative to them called
raw string literals.

23

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_7

CHAPTER 1 * BASIC IDEAS

The truth is, in our enthusiasm for showcasing character escaping, we may have gone a bit overboard
in Ex1_02.cpp. You actually do not have to escape the single quote character, ', inside string literals; there’s
already no possibility for confusion. So, the following statement would have worked just fine already:

std::cout << "\"Least 'said' \\\n\t\tsoonest 'mended'.\"" << std::endl;
It's only when within a character literal of the form '\' ' that a single quote really needs escaping.

Conversely, double quotes, of course, won't need a backslash then; your compiler will happily accept both
"\""and '"'. But we're getting ahead of ourselves: character literals are more a topic of the next chapter.

Note The \t\t escape sequences in Ex1_02 are, strictly speaking, not required either—you could in
principle type tabs in a string literal as well (as in "\"Least 'said' \\\n soonest 'mended'.\"").
Using \t\t is nevertheless recommended; the problem with tabs is that one generally cannot tell the difference
between a tab, " ", and a number of spaces, " ", let alone properly count the number of tabs. Also,
some text editors tend to convert tabs into spaces upon saving. It's therefore not uncommon for style guides to
require the use of the \t escape sequence in string literals.

Summary

This chapter’s content has been a broad overview to give you a feel for some of the general concepts of
C++. You'll encounter everything discussed in this chapter again, and in much more detail, in subsequent
chapters. However, some of the basics that this chapter covered are as follows:

e A C++ program consists of one or more functions, one of which is called main().
Execution always starts with main().

e The executable part of a function is made up of statements contained between
braces.

e Anpair of curly braces is used to enclose a statement block.
e Astatement is terminated by a semicolon.

e Keywords are reserved words that have specific meanings in C++. No entity in your
program can have a name that coincides with a keyword.

e A C++ program will be contained in one or more files. Source files contain the
executable code, and header files contain definitions used by the executable code.

e The source files that contain the code defining functions typically have the extension
.cpp.

e Header files that contain definitions that are used by a source file typically have the
extension . h.

e Preprocessor directives specify operations to be performed on the code in a file. All
preprocessor directives execute before the code in a file is compiled.

e The contents of a header file are added into a source file by an #include
preprocessor directive.

24

www.EBookswWorld.ir

CHAPTER 1 " BASIC IDEAS

e The Standard Library provides an extensive range of capabilities that supports and
extends the C++ language.

e Access to Standard Library functions and definitions is enabled through including
Standard Library header files in a source file.

e Input and output are performed using streams and involve the use of the insertion
and extraction operators, << and >> . std: :cin is a standard input stream that
corresponds to the keyboard. std: : cout is a standard output stream for writing text
to the screen. Both are defined in the iostream Standard Library header.

¢ Object-oriented programming involves defining new data types that are specific to
your problem. Once you've defined the data types that you need, a program can be
written in terms of the new data types.

e Unicode defines unique integer code values that represent characters for virtually all
of the languages in the world as well as many specialized character sets. Code values
are referred to as code points. Unicode also defines how these code points may be
encoded as byte sequences.

EXERCISES

The following exercises enable you to try what you’ve learned in this chapter. If you get stuck, look back
over the chapter for help. If you're still stuck after that, you can download the solutions from the Apress
website (www.apress.com/book/download.html), but that really should be a last resort.

Exercise 1-1: Create, compile, link, and execute a program that will display the text
"Hello World" on your screen.

Exercise 1-2: Create and execute a program that outputs your name on one line and
your age on the next line.

Exercise 1-3: The following program produces several compiler errors. Find these
errors and correct them so the program can compile cleanly and run.

include <iostream>

Int main()

{

std:cout << "Hello World" << std:endl

)

25

www.EBookswWorld.ir

http://www.apress.com/book/download.html

CHAPTER 2

Introducing Fundamental
Types of Data

In this chapter, we'll explain the fundamental data types that are built into C++. You'll need these in every
program. All of the object-oriented capabilities are founded on these fundamental data types because all
the data types that you create are ultimately defined in terms of the basic numerical data your computer
works with. By the end of the chapter, you'll be able to write a simple C++ program of the traditional form:
input - process - output.

In this chapter, you'll learn

e What a fundamental data type is in C++

e Howyou declare and initialize variables

e Howyou can fix the value of a variable

e What integer literals are and how you define them

e How calculations work

e How to define variables that contain floating-point values
e How to create variables that store characters

e What the auto keyword does

Variables, Data, and Data Types

A variable is a named piece of memory that you define. Each variable stores data only of a particular type.
Every variable has a type that defines the kind of data it can store. Each fundamental type is identified by
a unique type name that consists of one or more keywords. Keywords are reserved words in C++ that you
cannot use for anything else.

The compiler makes extensive checks to ensure that you use the right data type in any given context.
It will also ensure that when you combine different types in an operation such as adding two values, for
example, either they are of the same type or they can be made to be compatible by converting one value to
the type of the other. The compiler detects and reports attempts to combine data of different types that are
incompatible.

Numerical values fall into two broad categories: integers, which are whole numbers, and floating-point
values, which can be nonintegral. There are several fundamental C++ types in each category, each of which
can store a specific range of values. We'll start with integer types.

© Ivor Horton and Peter Van Weert 2018 27
1. Horton and P. Van Weert, Beginning C++17, https://doi.org/10.1007/978-1-4842-3366-5_2

www.EBookswWorld.ir

https://doi.org/10.1007/978-1-4842-3366-5_2

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

Defining Integer Variables

Here's a statement that defines an integer variable:
int apple_count;

This defines a variable of type int with the name apple_count. The variable will contain some arbitrary
junk value. You can and should specify an initial value when you define the variable, like this:

int apple count {15}; // Number of apples

The initial value for apple_count appears between the braces following the name so it has the value 15.
The braces enclosing the initial value are called a braced initializer. You'll meet situations later in the book
where a braced initializer will have several values between the braces. You don’t have to initialize variables
when you define them, but it’s a good idea to do so. Ensuring variables start out with known values makes it
easier to work out what is wrong when the code doesn’t work as you expect.

The size of variables of type int is typically 4 bytes, so they can store integers from -2,147,483,648 to
+2,147,483,647. This covers most situations, which is why int is the integer type that is used most frequently.

Here are definitions for three variables of type int:

int apple_count {15}; // Number of apples
int orange_count {5}; // Number of oranges
int total fruit {apple_count + orange count}; // Total number of fruit

The initial value for total_fruit is the sum of the values of two variables defined previously. This
demonstrates that the initial value for a variable can be an expression. The statements that define the
two variables in the expression for the initial value for total_fruit must appear earlier in the source file;
otherwise, the definition for total fruit won’t compile.

The initial value between the braces should be of the same type as the variable you are defining. If
itisn’t, the compiler will try to convert it to the required type. If the conversion is to a type with a more
limited range of values, the conversion has the potential to lose information. An example would be if you
specified the initial value for an integer variable that is not an integer—1.5, for example. A conversion to a
type with a more limited range of values is called a narrowing conversion. If you use curly braces to initialize
your variables, the compiler will always issue either a warning or an error whenever it detects a narrowing
conversion.

There are two other ways for initializing a variable. Functional notation looks like this:

int orange_count(5);
int total fruit(apple count + orange count);

A second alternative is the so-called assignment notation:

int orange_count = 5;
int total_fruit = apple_count + orange count;

Both these possibilities are equally valid as the braced initializer form and mostly completely
equivalent. Both are therefore used extensively in existing code as well. In this book, however, we’ll adopt
the braced initializer syntax. This is the most recent syntax that was introduced in C++11 specifically to
standardize initialization. Its main advantage is that it enables you to initialize just about everything in the
same way—which is why it is also commonly referred to as uniform initialization. Another advantage is that
the braced initializer form is slightly safer when it comes to narrowing conversions:

28

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

int banana_count(7.5); // May compile without warning
int coconut_count = 5.3; // May compile without warning
int papaya_count{0.3}; // At least a compiler warning, often an error

All three definitions clearly contain a narrowing conversion. We’ll have more to say about
floating-point to integer conversions later, but for now believe us when we say that after these variable
definitions banana_count will contain the integer value 7, coconut_count will initialize to 5, and
papaya_count will initialize to 0—provided compilation does not fail with an error because of the third
statement, of course. It’s unlikely that this is what the author had in mind. Definitions with narrowing
conversions such as these are therefore almost always mistakes.

Nevertheless, as far as the C++ standard is concerned, our first two definitions are perfectly legal C++.
They are allowed to compile without even the slightest warning. While some compilers do issue a warning
about such flagrant narrowing conversions, definitely not all of them do. If you use the braced initializer
form, however, a conforming compiler is required to at least issue a diagnostic message. Some compilers
will even issue an error and refuse to compile such definitions altogether. We believe inadvertent narrowing
conversions do not deserve to go unnoticed, which is why we favor the braced initializer form.

Note To represent fractional numbers, you typically use floating-point variables rather than integers. We'll
describe these later in this chapter.

Prior to C++17, there was one relatively common case where uniform initialization could not be used.
We'll return to this exception near the end of this chapter when we discuss the auto keyword. But since this
quirk will soon be nothing more than a bad memory, we believe there’s little objective reason left not to
embrace the new syntax. Uniformity and predictability, on the other hand, are desirable traits—especially
for you, someone who'’s taking the first steps in C++. In this book, we’ll therefore consistently use braced
initializers.

You can define and initialize more than one variable of a given type in a single statement. Here’s
an example:

int foot count {2}, toe count {10}, head count {1};

While this is legal, it’s often considered best to define each variable in a separate statement. This makes
the code more readable, and you can explain the purpose of each variable in a comment.

You can write the value of any variable of a fundamental type to the standard output stream. Here’s a
program that does that with a couple of integers:

// Ex2_01.cpp
// Writing values of variables to cout
#include <iostream>

int main()

{
int apple_count {15}; // Number of apples
int orange count {5}; // Number of oranges

int total fruit {apple count + orange count}; // Total number of fruit
std::cout << "The value of apple_count is " << apple count << std::endl;
std::cout << "The value of orange count is " << orange count << std::endl;
std::cout << "The value of total fruit is " << total fruit << std::endl;

29

www.EBookswWorld.ir

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

If you compile and execute this, you'll see that it outputs the values of the three variables
following some text explaining what they are. The integer values are automatically converted to a
character representation for output by the insertion operator, <<. This works for values of any of the
fundamental types.

Tip The three variables in Ex2_o01.cpp, of course, do not really need any comments explaining what
they represent. Their variable names already make that crystal clear—as they should! In contrast, a lesser
programmer might have produced the following, for instance:

int n {15};
int m {5};
int t {n + m};

Without extra context or explanation, no one would ever be able to guess this code is about counting
fruit. You should therefore always choose your variable names as self-descriptive as possible. Properly
named variables and functions mostly need no additional explanation in the form of a comment at all,
by which we of course do not mean you should never add comments to declarations. You cannot always
capture everything in a single name. A few words or, if need be, a little paragraph of comments can
then do wonders in helping someone understand the code. A little extra effort at the time of writing can
considerably speed up future development!

Signed Integer Types

Table 2-1 shows the complete set of fundamental types that store signed integers—that is, both positive
and negative values. The memory allocated for each type, and hence the range of values it can store, may
vary between different compilers. Table 2-1 shows the sizes and ranges used by compilers for all common
platforms and computer architectures.

30

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

Table 2-1. Signed Integer Types

Type Name Typical Size (Bytes) Range of Values
signed char 1 -128to +127
short 2 -256 to +255
short int

signed short
signed short int

int 4 -2,147,483,648 to +2,147,483,647
signed

signed int

long 4o0r8 Same as either int or long long
long int

signed long
signed long int

long long 8 -9,223,372,036,854,775,808 to
long long int +9,223,372,036,854,775,807
signed long long

singed long long int

Type signed char is always 1 byte (which in turn nearly always is 8 bits); the number of bytes occupied
by the others depends on the compiler. Each type will always have at least as much memory as the one that
precedes it in the list, though.

Where two type names appear in the left column, the abbreviated name that comes first is more
commonly used. That is, you will usually see long used rather than long int or signed long int.

The signed modifier is mostly optional; if omitted, your type will be signed by default. The only
exception to this rule is char. While the unmodified type char does exist, it is compiler-dependant whether it
is signed or unsigned. We'll discuss this further in the next subsection. For all integer types other than char,
however, you are free to choose whether you add the signed modifier. Personally, we normally do so only
when we really want to stress that a particular variable is signed.

Unsigned Integer Types

Of course, there are circumstances where you don’t need to store negative numbers. The number of students
in a class or the number of parts in an assembly is always a positive integer. You can specify integer types that
only store non-negative values by prefixing any of the names of the signed integer types with the unsigned
keyword—types unsigned char or unsigned short or unsigned long long, for example. Each unsigned type
is a different type from the signed type but occupies the same amount of memory.

Type char is a different integer type from both signed char and unsigned char. The char type is
intended only for variables that store character codes and can be a signed or unsigned type depending on
your compiler. If the constant CHAR_MIN in the climits header is 0, then char is an unsigned type with your
compiler. We’ll have more to say about variables that store characters later in this chapter.

31

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

Tip Only use variables of the unmodified char type to store characters. For char variables that store other
data such as plain integer numbers, you should always add the appropriate sign modifier.

With the possible exception of unsigned char, increasing the range of representable numbers is rarely
the main motivator for adding the unsigned modifier—it rarely matters, for instance, whether you can
represent numbers up to +2,147,483,647 or up to +4,294,967,295 (the maximum values for signed and
unsigned int, respectively). No. Instead, you mostly add the unsigned modifier to make your code more
self-documenting, that is, to make it more predictable what values a given variable will or should contain.

Note You can also use the keywords signed and unsigned on their own. As Table 2-1 shows, the type
signed is considered shorthand for signed int. So naturally, unsigned is short for unsigned int.

Zero Initialization

The following statement defines an integer variable with an initial value equal to zero:
int counter {0}; // counter starts at zero

You could omit the 0 in the braced initializer here, and the effect would be the same. The statement that
defines counter could thus be written like this:

int counter {}; // counter starts at zero

The empty curly braces somewhat resemble the number zero, which makes this syntax easy to
remember. Zero initialization works for any fundamental type. For all fundamental numeric types, for
instance, an empty braced initializer is always assumed to contain the number zero.

Defining Variables with Fixed Values

Sometimes you’ll want to define variables with values that are fixed and must not be changed. You use the
const keyword in the definition of a variable that must not be changed. Such variables are often referred to
as constants. Here’s an example:

const unsigned toe_count {10}; // An unsigned integer with fixed value 10
The const keyword tells the compiler that the value of toe_count must not be changed. Any statement

that attempts to modify this value will be flagged as an error during compilation; cutting off someone’s toe is
a definite no-no! You can use the const keyword to fix the value of variables of any type.

Tip If nothing else, knowing which variables can and cannot change their values along the way makes
your code easier to follow. So, we recommend you add the const specifier whenever applicable.

32

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

Integer Literals

Constant values of any kind, such as 42, 2.71828, 'Z", or "Mark Twain", are referred to as literals. These
examples are, in sequence, an integer literal, a floating-point literal, a character literal, and a string literal.
Every literal will be of some type. We'll first explain integer literals and introduce the other kinds of literals in
context later.

Decimal Integer Literals

You can write integer literals in a very straightforward way. Here are some examples of decimal integers:
-123L +123 123 22333 98U -1234LL 12345ULL

Unsigned integer literals have u or U appended. Literals of types long and type long long have L or LL
appended, respectively, and if they are unsigned, they also have u or U appended. If there is no suffix, an
integer constant is of type int. The Uand L or LL can be in either sequence. You can use lowercase for the L
and LL suffixes, but we recommend that you don’t because lowercase L is easily confused with the digit 1.

You could omit the + in the second example, as it’s implied by default, but if you think putting it in
makes things clearer, that’s not a problem. The literal +123 is the same as 123 and is of type int because there
is no suffix.

The fourth example, 22333, is the number that you, depending on local conventions, might write
as either 22,333; 22 333; or 22.333 (though other formatting conventions exist as well). You must not use
commas or spaces in a C++ integer literal, though, and adding a dot would turn it into a floating-point literal
(as discussed later). Ever since C++14, however, you can use the single quote character, ', to make numeric
literals more readable. Here’s an example:

22'333 -1'234LL 12'345ULL

Here are some statements using some of these literals:
unsigned long age {99UL}; // 99ul or 99LU would be OK too
unsigned short price {10u}; // There is no specific literal type for short
long long distance {15'000'000LL}; // Common digit grouping of the number 15 million

Note that there are no restrictions on how to group the digits. Most Western conventions tend to group
digits per three, but this is not universal. Natives of the subcontinent of India, for instance, would typically write
the literal for 15 million as follows (using groups of two digits except for the rightmost group of three digits):
1'50'00"000LL

So far we have been very diligent in adding our literal suffixes—u or U for unsigned literals, L for literals
of type long, and so on. In practice, however, you'll rarely add these in variable initializers of this form. The
reason is that no compiler will ever complain if you simply type this:
unsigned long age {99};

unsigned short price {10}; // There is no specific literal type for short
long long distance {15'000'000}; // Common digit grouping of the number 15 million

33

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

While all these literals are technically of type (signed) int, your compiler will happily convert them to
the correct type for you. As long as the target type can represent the given values without loss of information,
there’s no need to issue a warning.

Note While mostly optional, there are situations where you do need to add the correct literal suffixes,
such as when you initialize a variable with type auto (as explained near the end of this chapter) or when calling
overloaded functions with literal arguments (as covered in Chapter 8).

An initializing value should always be within the permitted range for the type of variable, as well as from
the correct type. The following two statements violate these restrictions. They require, in other words, what
you know to be narrowing conversions:

unsigned char high score { 513U }; // The valid range for unsigned char is [0,255]
unsigned int high score { -1 }; // -1 is a literal of type signed int

As we explained earlier, depending on which compiler you use, these braced initializations will result in
at least a compiler warning, if not a compilation error.

Hexadecimal Literals

You can write integer literals as hexadecimal values. You prefix a hexadecimal literal with 0x or 0X, so 0x999
is a hexadecimal number of type int with three hexadecimal digits. Plain old 999, on the other hand, is a
decimal value of type int with decimal digits, so the value will be completely different. Here are some more
examples of hexadecimal literals:

Hexadecimal literals: OXx1AF 0x123U OXAL oxcad OxFF
Decimal literals: 431 291U 1oL 3245 255

A major use for hexadecimal literals is to define particular patterns of bits. Each hexadecimal digit
corresponds to 4 bits, so it’s easy to express a pattern of bits as a hexadecimal literal. The red, blue, and
green components (RGB values) of a pixel color, for instance, are often expressed as three bytes packed
into a 32-bit word. The color white can be specified as 0OxFFFFFF because the intensity of each of the three
components in white have the same maximum value of 255, which is 0xFF. The color red would be 0xff0000.
Here are some examples:

unsigned int color {oxofodoe}; // Unsigned int hexadecimal constant - decimal 986,382
int mask {0XFFOOFF00}; // Four bytes specified as FF, 00, FF, 00
unsigned long value {OXDEADlu}; // Unsigned long hexadecimal literal - decimal 57,005

Octal Literals

You can also write integer literals xas octal values—that is, using base 8. You identify a number as octal by
writing it with a leading zero.

Octal literals: 0657 0443V 012L 06255 0377
Decimal literals: 431 291U 10L 3245 255
34

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_8

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

Caution Don’t write decimal integer values with a leading zero. The compiler will interpret such values as
octal (base 8), so a value written as 065 will be the equivalent of 53 in decimal notation.

Binary Literals

Binary literals were introduced by the C++14 standard. You write a binary integer literal as a sequence of
binary digits (0 or 1) prefixed by either Ob or OB. As always, a binary literal can have L or LL as a suffix to
indicate it is type long or long long, and u or U if it is an unsigned literal. Here’s an example:

Binary literals: 0B110101111 0b100100011U ob1o1o0L 0B110010101101 Ob11111111
Decimal literals: 431 291U 1oL 3245 255

We have illustrated in the code fragments how you can write various combinations for the prefixes and
suffixes such as 0x or 0X and UL, LU, or Lu, but of course it’s best to stick to a consistent way of writing integer
literals.

As far as your compiler is concerned, it doesn’t matter which number base you choose when you write
an integer value. Ultimately it will be stored as a binary number. The different ways for writing an integer are
there just for your convenience. You choose one or other of the possible representations to suit the context.

Note You can use a single quote as a separator in any integer literal to make it easier to read. This
includes hexadecimal or binary literals. Here’s an example: 0xFF00' 00FF ' 0001UL Or 0b1100'1010'1101.

Calculations with Integers

To begin with, let’s get some bits of terminology out of the way. An operation such as addition or multiplication
is defined by an operator—the operators for addition and multiplication are + and *, respectively. The values
that an operator acts upon are called operands, so in an expression such as 2*3, the operands are 2 and 3.
Operators such as multiplication that require two operands are called binary operators. Operators that require
one operand are called unary operators. An example of a unary operator is the minus sign in the expression
-width. The minus sign negates the value of width, so the result of the expression is a value with the opposite
sign to that of its operand. This contrasts with the binary multiplication operator in expressions such as width
* height, which acts on two operands, width and height.

Table 2-2 shows the basic arithmetic operations that you can carry out on integers.

Table 2-2. Basic Arithmetic Operations

Operator Operation

+ Addition

- Subtraction

* Multiplication
/ Division

3R

Modulus (the remainder after division)

35

www.EBookswWorld.ir

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

The operators in Table 2-2 are all binary operators and work largely in the way you would expect. There
are two operators that may need a little word of explanation, though: the somewhat lesser-known modulus
operator, of course, but also the division operator. Integer division is slightly idiosyncratic in C++. When
applied to two integer operands, the result of a division operation is always again an integer. Suppose, for
instance, that you write the following:

int numerator = 11;
int quotient = numerator / 4;

Mathematically speaking, the result of the division 11/4 is of course 2.75 or 234, that is, 2 and three
quarters. But 2.75 is clearly no integer, so what to do? Any sane mathematician would suggest that you
round the quotient to the nearest integer, so 3. But, alas, that is not what your computer will do. Instead,
your computer will simply discard the fractional part, 0.75, altogether. No doubt this is because proper
rounding would require more complicated circuitry and hence also more time to evaluate. This means that,
in C++, 11/4 will always give the integer value 2. Figure 2-1 illustrates the effects of the division and modulus
operators on our example.

Integer Divide Operator

11/4 |:|'> 2 times 4 Remainder 3

Result =2 Discarded

Modulus Operator

11/4 |:|'> 2 times 4 Remainder 3

Discarded Result =3

Figure 2-1. Contrasting the division and modulus operators

Integer division returns the number of times that the denominator divides into the numerator. Any
remainder is discarded. The modulus operator, %, complements the division operator in that it produces the
remainder after integer division. It is defined such that, for all integers xand y, (x / y) * y+(x % y) equals x.
Using this formula, you can easily deduce what the modulus operand will do for negative operands.

The result of both the division and modulus operator is undefined when the right operand is zero—
what’ll happen depends, in other words, on your compiler and computer architecture.

Compound Arithmetic Expressions

If multiple operators appear in the same expression, multiplication, division, and modulus operations
always execute before addition and subtraction. Here’s an example of such a case:

long width {4};
long length {5};
long area { width * length }; // Result is 20
long perimeter {2*width + 2*length}; // Result is 18

36

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

You can control the order in which more complicated expressions are executed using parentheses. You
could write the statement that calculates a value for perimeter as follows:

long perimeter{ (width + length) * 2 }; // Result is 18

The subexpression within the parentheses is evaluated first. The result then is multiplied by two, which
produces the same end result as before. If you omit the parentheses here, however, the result would no
longer be 18. The result, instead, would become 14:

long perimeter{ width + length * 2 }; // Result is 14

The reason is that multiplication is always evaluated before addition. So, the previous statement is
actually equivalent to the following one:

long perimeter{ width + (length * 2) };

Parentheses can be nested, in which case subexpressions between parentheses are executed in
sequence from the innermost pair of parentheses to the outermost. This example of an expression with
nested parentheses will show how it works:

2*%(a + 3*(b + 4*(c + 5*d)))

The expression 5*d is evaluated first, and c is added to the result. That result is multiplied by 4, and b
is added. That result is multiplied by 3, and a is added. Finally, that result is multiplied by 2 to produce the
result of the complete expression.

We will have more to say about the order in which such compound expressions are evaluated in the
next chapter. The main thing to remember is that whatever the default evaluation order is, you can always
override it by adding parentheses. And even if the default order happens to be what you want, it never hurts
to add some extra parentheses just for the sake of clarity:

long perimeter{ (2*width) + (2*length) }; // Result is 18

Assignment Operations

In C++, the value of a variable is fixed only if you use the const qualifier. In all other cases, the value of a
variable can always be overwritten with a new value:

long perimeter {};
/] ...
perimeter = 2 * (width + length);

This last line is an assignment statement, and the = is the assignment operator. The arithmetic expression
on the right of the assignment operator is evaluated, and the result is stored in the variable on the left.
Initializing the perimeter variable upon declaration may not be strictly necessary—as long as the variable is
not read prior to the assignment, that is—but it’s considered good practice to always initialize your variables
nevertheless. And zero is often as good a value as any.

You can assign a value to more than one variable in a single statement. Here’s an example:

int a {}, b {}, ¢ {5}, d{a};
a=>b=c*c - d*d;

37

www.EBookswWorld.ir

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

The second statement calculates the value of the expression c*c - d*d and stores the result in b, so
b will be set to 9. Next the value of b is stored in a, so a will also be set to 9. You can have as many repeated
assignments like this as you want.

It's important to appreciate that an assignment operator is quite different from an = sign in an algebraic
equation. The latter implies equality, whereas the former is specifying an action—specifically, the act of
overwriting a given memory location. A variable can be overwritten as many times as you want, each time
with different, mathematically nonequal values. Consider the assignment statement in the following:

int y {5};
y=y+1

The variable y is initialized with 5, so the expressiony + 1 produces 6. This result is stored back in y, so
the effect is to increment y by 1. This last line makes no sense in common math: as any mathematician will
tell you, y can never equal y + 1 (except of course when y equals infinity...). But in programming languages
such as C++ repeatedly incrementing a variable with one is actually extremely common. In Chapter 5, you'll
find that equivalent expressions are, for instance, ubiquitous in loops.

Let’s see some of the arithmetic operators in action in an example. This program converts distances that
you enter from the keyboard and in the process illustrates using the arithmetic operators:

// Ex2_02.cpp
// Converting distances
#include <iostream> // For output to the screen

int main()

{

unsigned int yards {}, feet {}, inches {};

// Convert a distance in yards, feet, and inches to inches

std::cout << "Enter a distance as yards, feet, and inches
<< "with the three values separated by spaces:"
<< std::endl;

std::cin >> yards >> feet >> inches;

const unsigned feet per yard {3};
const unsigned inches per foot {12};

unsigned total inches {};
total inches = inches + inches per foot * (yards*feet per yard + feet);
std::cout << "The distances corresponds to " << total inches << " inches.\n";

// Convert a distance in inches to yards feet and inches
std::cout << "Enter a distance in inches: ";
std::cin >> total_inches;
feet total_inches / inches_per foot;
inches = total_inches % inches per foot;
yards = feet / feet_per_ yard;
feet = feet % feet_per yard;
std::cout << "The distances corresponds to
<< yards << " yards "
<« feet << " feet "
<< inches << " inches." << std::endl;

38

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_5

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

The following is an example of typical output from this program:

Enter a distance as yards, feet, and inches with the three values separated by spaces:
9211

The distances corresponds to 359 inches.

Enter a distance in inches: 359

The distances corresponds to 9 yards 2 feet 11 inches.

The first statement in main() defines three integer variables and initializes them with zero. They are
type unsigned int because in this example the distance values cannot be negative. This is an instance where
defining three variables in a single statement is reasonable because they are closely related.

The next statement outputs a prompt to std: : cout for the input. We used a single statement spread
over three lines, but it could be written as three separate statements as well:

std::cout << "Enter a distance as yards, feet, and inches";
std::cout << "with the three values separated by spaces:";
std::cout << std::endl;

When you have a sequence of << operators as in the original statement, they execute from left to right so
the output from the previous three statements will be the same as the original.

The next statement reads values from cin and stores them in the variables yards, feet, and inches. The
type of value that the >> operator expects to read is determined by the type of variable in which the value is
to be stored. So, in this case, unsigned integers are expected to be entered. The >> operator ignores spaces,
and the first space following a value terminates the operation. This implies that you cannot read and store
spaces using the >> operator for a stream, even when you store them in variables that store characters. The
input statement in the example could again also be written as three separate statements:

std::cin >> yards;
std::cin >> feet;
std::cin >> inches;

The effect of these statements is the same as the original.

You define two variables, inches_per_foot and feet_per yard, that you need to convert from yards,
feet, and inches to just inches, and vice versa. The values for these are fixed, so you specify the variables as
const. You could use explicit values for conversion factors in the code, but using const variables is much
better because it is then clearer what you are doing. The const variables are also positive values, so you
define them as type unsigned int. You could add U modifiers to the integer literals if you prefer, but there’s
no need. The conversion to inches is done is a single assignment statement:

total _inches = inches + inches per foot * (yards*feet per yard + feet);

The expression between parentheses executes first. This converts the yards value to feet and adds the
feet value to produce the total number of feet. Multiplying this result by inches_per foot obtains the total
number of inches for the values of yards and feet. Adding inches to that produces the final total number of
inches, which you output using this statement:

std::cout << "The distances corresponds to " << total_inches << " inches.\n";

The first string is transferred to the standard output stream, cout, followed by the value of total

inches. The string that is transferred to cout next has \n as the last character, which will cause the next
output to start on the next line.

39

www.EBookswWorld.ir

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

Converting a value from inches to yards, feet, and inches requires four statements:

feet = total_inches / inches_per_foot;
inches = total_inches % inches_per foot;
yards = feet / feet_per yard;
feet = feet % feet per yard;

You reuse the variables that stored the input for the previous conversion to store the results of this
conversion. Dividing the value of total_inches by inches_per foot produces the number of whole feet,
which you store in feet. The % operator produces the remainder after division, so the next statement
calculates the number of residual inches, which is stored in inches. The same process is used to calculate
the number of yards and the final number of feet.

Notice the use of whitespace to nicely outline these assignment statements. You could’ve written the
same statements without spaces as well, but that simply does not read very fluently:

feet=total inches/inches_per foot;
inches=total_inches%inches per foot;
yards=feet/feet_per yard;
feet=feet%feet per yard;

We generally add a single space before and after each binary operator, as it promotes code readability.
Adding extra spaces to outline related assignments in a semitabular form doesn’t harm either.

There’s no return statement after the final output statement because it isn’t necessary. When the
execution sequence runs beyond the end of main(), it is equivalent to executing return 0.

The op= Assignment Operators

In Ex2_02.cpp, there was a statement that you could write more economically:
feet = feet % feet_per_yard;

This statement could be written using an op= assignment operator. The op= assignment operators,
or also compound assignment operators, are so called because they're composed of an operator and an
assignment operator =. You could use one to write the previous statement as follows:

feet %= feet_per yard;

This is the same operation as the previous statement.
In general, an op= assignment is of the following form:

lhs op= rhs;

1hs represents a variable of some kind that is the destination for the result of the operator. rhs is any
expression. This is equivalent to the following statement:

lhs = lhs op (rhs);

The parentheses are important because you can write statements such as the following:
X *=y + 1;

This is equivalent to the following:

X =x*(y+1);

40

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

Without the implied parentheses, the value stored in x would be the result of x * y + 1, which is quite
different.

You can use a range of operators for op in the op= form of assignment. Table 2-3 shows the complete set,
including some operators you'll meet in Chapter 3.

Table 2-3. op= Assignment Operators

Operation Operator Operation Operator
Addition += Bitwise AND &=
Subtraction -= Bitwise OR |=
Multiplication *= Bitwise exclusive OR A=
Division /= Shift left KL=
Modulus %= Shift right >>=

Note that there can be no spaces between op and the =. If you include a space, it will be flagged as an
error. You can use += when you want to increment a variable by some amount. For example, the following
two statements have the same effect:

The shift operators that appear in the table, << and >>, look the same as the insertion and extraction
operators that you have been using with streams. The compiler can figure out what << or >> meansin a
statement from the context. You'll understand how it is possible that the same operator can mean different
things in different situations later in the book.

SIDEBAR: USING DECLARATIONS AND DIRECTIVES

There were a lot of occurrences of std: :cin and std: : cout in Ex2_02.cpp. You can eliminate the
need to qualify a name with the namespace name in a source file with a using declaration. Here’s an
example:

using std::cout;

This tells the compiler that when you write cout, it should be interpreted as std: : cout. With this
declaration before the main() function definition, you can write cout instead of std: : cout, which saves
typing and makes the code look a little less cluttered.

You could include two using declarations at the beginning of Ex2_02.cpp and avoid the need to qualify
cin and cout:

using std::cin;
using std::cout;

Of course, you still have to qualify endl with std, although you could add a using declaration for that
too. You can apply using declarations to names from any namespace, not just std.

41

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_3

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

A using directive imports all the names from a namespace. Here’s how you could use any name from
the std namespace without the need to qualify it:

using namespace std; // Make all names in std available without qualification

With this at the beginning of a source file, you don’t have to qualify any name that is defined in the std
namespace. At first sight this seems an attractive idea. The problem is it defeats a major reason for
having namespaces. It is unlikely that you know all the names that are defined in std, and with this
using directive you have increased the probability of accidentally using a name from std.

We’ll use a using directive for the std namespace occasionally in examples in the book where the
number of using declarations that would otherwise be required is excessive. We recommend that you
make use of using directives only when there’s a good reason to do so.

The sizeof Operator

You use the sizeof operator to obtain the number of bytes occupied by a type, by a variable, or by the result
of an expression. Here are some examples of its use:

int height {74};
std::cout << "The height variable occupies " << sizeof height << " bytes." << std::endl;
std::cout << "Type \"long long\" occupies " << sizeof(long long) << " bytes." << std::endl;
std::cout << "The result of the expression height * height/2 occupies "

<< sizeof(height * height/2) << " bytes." << std::endl;

These statements show how you can output the size of a variable, the size of a type, and the size of
the result of an expression. To use sizeof to obtain the memory occupied by a type, the type name must
be between parentheses. You also need parentheses around an expression with sizeof. You don’t need
parentheses around a variable name, but there’s no harm in putting them in. Thus, if you always use
parentheses with sizeof, you can’t go wrong.

You can apply sizeof to any fundamental type, class type, or pointer type (you'll learn about pointers
in Chapter 5). The result that sizeof produces is of type size_t, which is an unsigned integer type that is
defined in the Standard Library header cstddef. Type size_t is implementation defined, but if you use
size_t, your code will work with any compiler.

Now you should be able to create your own program to list the sizes of the fundamental integer types
with your compiler.

Incrementing and Decrementing Integers

You've seen how you can increment a variable with the += operator and we’re sure you've deduced that you
can decrement a variable with -=. There are two other operators that can perform the same tasks. They’re
called the increment operator and the decrement operator, ++ and - -, respectively.

These operators are more than just other options. You'll see a lot more of them, and you'll find them to
be quite an asset once you get further into C++. In particular, you'll use them all the time when working with
arrays and loops in Chapter 5. The increment and decrement operators are unary operators that you can
apply to an integer variable. The following three statements that modify count have exactly the same effect:

int count {5};
count = count + 1;
count += 1;
++count;

42

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_5
http://dx.doi.org/10.1007/978-1-4842-3366-5_5

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

Each statement increments count by 1. Using the increment operator is clearly the most concise. The
action of this operator is different from other operators that you've seen in that it directly modifies the
value of its operand. The effect in an expression is to increment the value of the variable and then to use
the incremented value in the expression. For example, suppose count has the value 5 and you execute this
statement:

total = ++count + 6;

The increment and decrement operators execute before any other binary arithmetic operators in an
expression. Thus, count will be incremented to 6, and then this value will be used in the evaluation of the
expression on the right of the assignment. total will therefore be assigned the value 12.

You use the decrement operator in the same way:
total = --count + 6;

Assuming count is 6 before this statement, the - - operator will decrement it to 5, and then this value
will be used to calculate the value to be stored in total, which will be 11.

You've seen how you place a ++ or - - operator before the variable to which it applies. This is called the

prefix form of these operators. You can also place them after a variable, which is called the postfix form. The
effect is a little different.

Postfix Increment and Decrement Operations

The postfix form of ++ increments the variable to which it applies after its value is used in context. For
example, you can rewrite the earlier example as follows:

total = count++ + 6;
With an initial value of 5 for count, total is assigned the value 11. In this case, count will be
incremented to 6 only after being used in the surrounding expression. The preceding statement is thus

equivalent to the following two statements:

total = count + 6;
++count;

In an expression such as a++ + b, or even a+++b, it’s less than obvious what you mean, or indeed what
the compiler will do. These two expressions are actually the same, but in the second case you might have
meanta + ++b, which is different—it evaluates to one more than the other two expressions. It would be
clearer to write the preceding statement as follows:
total = 6 + count++;

Alternatively, you can use parentheses:

total = (count++) + 6;

The rules that we've discussed in relation to the increment operator also apply to the decrement
operator. For example, suppose count has the initial value 5 and you write this statement:
total = --count + 6;

43

www.EBookswWorld.ir

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

This results in total having the value 10 assigned. However, consider this statement:
total = 6 + count--;

In this instance, total is set to 11.
You should take care applying these operators to a given variable more than once in an expression.
Suppose count has the value 5 and you write this:

total = ++count * 3 + count++ * 5;

The result of this statement is undefined because the statement modifies the value of count more than
once using increment operators. Even though this expression is undefined according to the C++ standard,
this doesn’t mean that compilers won’t compile them. It just means that there is no guarantee at all of
consistency in the results.

The effects of statements such as the following used to be undefined as well:

k = k++ + 1;

Here you're incrementing the value of the variable that appears on the left of the assignment operator in
the expression on the right, so you're again modifying the value of k twice. Starting with C++17, however, the
latter expression has become well-defined. Informally, the C++17 edition of the standard added the rule that
all side effects of the right side of an assignment (and this includes compound assignments, increments, and
decrements) are fully committed before evaluating the left side and the actual assignment. Nevertheless, the
precise rules of when precisely an expression is defined or undefined remain subtle, even in C++17, so our
advice remains unchanged:

Tip Modify a variable only once as a result of evaluating a single expression and access the prior value of
the variable only to determine its new value—that is, do not attempt to read a variable again after it has been
modified in the same expression.

The increment and decrement operators are usually applied to integers, particularly in the context of
loops, as you'll see in Chapter 5. You'll see later in this chapter that you can apply them to floating-point
variables too. In later chapters, you'll explore how they can also be applied to certain other data types, in
some cases with rather specialized (but very useful) effects.

Defining Floating-Point Variables

You use floating-point variables whenever you want to work with values that are not integral. There are three
floating-point data types, as shown in Table 2-4.

Table 2-4. Floating-Point Data Types

Data Type Description

float Single precision floating-point values

double Double precision floating-point values

long double Double-extended precision floating-point values
44

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_5

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

Note You cannot use the unsigned or signed modifiers with floating-point types; floating-point types are
always signed.

As explained in Chapter 1, the term precision refers to the number of significant digits in the mantissa.
The types are in order of increasing precision, with float providing the lowest number of digits in the
mantissa and long double the highest. The precision only determines the number of digits in the mantissa.
The range of numbers that can be represented by a particular type is determined by the range of possible
exponents.

The precision and range of values aren’t prescribed by the C++ standard, so what you get with each
type depends on your compiler. And this, in turn, will depend on what kind of processor is used by your
computer and the floating-point representation it uses. The standard does guarantee that type long double
will provide a precision that’s no less than that of type double, and type double will provide a precision that
is no less than that of type float.

Today, virtually all compilers and computer architectures use floating-point numbers and arithmetic as
specified by the IEEE standard we introduced in Chapter 1. Typically, float thus provides 7 decimal digits
of precision (with a mantissa of 23 bits), double nearly 16 digits (52 bit mantissa), and long double provides
about 18 to 19 digits of precision (64-bit mantissa). With some major compilers, however, long double only
has the same precision as double. Table 2-5 shows typical ranges of values that you can represent with the
floating-point types on an Intel processor.

Table 2-5. Floating-Point Type Ranges

Type Precision (Decimal Digits) Range (+ or -)

float 7 +1.18 x 10 to 3.4 x 10%
double 15 (nearly 16) 12.22 x 10°% to +1.8 x 10%%
long double 18-19 +3.65 x 10492 to +1.18 x 10%%2

The numbers of digits of precision in Table 2-5 are approximate. Zero can be represented exactly with
each type, but values between zero and the lower limit in the positive or negative range can’t be represented,
so the lower limits are the smallest possible nonzero values.

Here are some statements that define floating-point variables:

float pi {3.1415926f}; // Ratio of circle circumference to diameter
double inches to mm {25.4};
long double root2 {1.4142135623730950488L}; // Square root of 2

As you see, you define floating-point variables just like integer variables. Type double is more than
adequate in the majority of circumstances. You typically use float only when speed or data size is truly
of the essence. If you do use float, though, you always need to remain vigilant that the loss of precision is
acceptable for your application.

Floating-Point Literals

You can see from the code fragment in the previous section that float literals have f (or F) appended and
long double literals have L (or 1) appended. Floating-point literals without a suffix are of type double.

A floating-point literal includes either a decimal point or an exponent, or both; a numeric literal with neither
is an integer.

45

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_1
http://dx.doi.org/10.1007/978-1-4842-3366-5_1

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

An exponent is optional in a floating-point literal and represents a power of 10 that multiplies the value.
An exponent must be prefixed with e or E and follows the value. Here are some floating-point literals that
include an exponent:

5E3 (5000.0) 100.5E2 (10050.0) 2.5e-3 (0.0025) -0.1E-3L (-0.0001L) .345e1F (3.45F)
The value between parentheses following each literal with an exponent is the equivalent literal without

the exponent. Exponents are particularly useful when you need to express very small or very large values.
As always, your compiler will happily initialize floating-point variables with literals that lack a proper

F or L suffix, or even with integer literals. If the literal value falls outside the representable range of the
variable’s type, though, your compiler should at least issue a warning regarding a narrowing conversion.

Floating-Point Calculations

You write floating-point calculations in the same way as integer calculations. Here’s an example:

const double pi {3.141592653589793}; // Circumference of a circle divided by its diameter

double a {0.2}; // Thickness of proper New York-style pizza (in inches)
double z {9}; // Radius of large New York-style pizza (in inches)
double volume {}; // Volume of pizza - to be calculated

volume = pi*z*z*a;

The modulus operator, %, can’t be used with floating-point operands, but all the other binary arithmetic
operators that you have seen, +, -, *, and /, can be. You can also apply the prefix and postfix increment and
decrement operators, ++ and --, to a floating-point variable with essentially the same effect as for an integer;
the variable will be incremented or decremented by 1.0.

Pitfalls

You need to be aware of the limitations of working with floating-point values. It’s not difficult for the unwary
to produce results that may be inaccurate or even incorrect. As you'll recall from Chapter 1, common sources
of errors when using floating-point values include the following:

e Many decimal values don’t convert exactly to binary floating-point values. The small
errors that occur can easily be amplified in your calculations to produce large errors.

e Taking the difference between two nearly identical values will lose precision. If
you take the difference between two values of type float that differ in the sixth
significant digit, you'll produce a result that will have only one or two digits of
accuracy. The other digits in the mantissa will be garbage. In Chapter 1, we already
named this phenomenon catastrophic cancellation.

e Working with values that differ by several orders of magnitude can lead to errors. An
elementary example of this is adding two values stored as type float with 7 digits of
precision where one value is 10° times larger than the other. You can add the smaller
value to the larger as many times as you like, and the larger value will be unchanged.

46

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_1
http://dx.doi.org/10.1007/978-1-4842-3366-5_1

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

Invalid Floating-Point Results

So far as the C++ standard is concerned, the result of division by zero is undefined. Nevertheless, floating-
point operations in most computers are implemented according to the IEEE 754 standard (also known as
IEC 559). So in practice, compilers generally behave quite similarly when dividing floating-point numbers by
zero. Details may differ across specific compilers, so consult your product documentation.

The IEEE floating-point standard defines special values having a binary mantissa of all zeroes and
an exponent of all ones to represent +infinity or -infinity, depending on the sign. When you divide
a positive nonzero value by zero, the result will be +infinity, and dividing a negative value by zero will
resultin -infinity.

Another special floating-point value defined by this standard is called not-a-number, usually
abbreviated to NaN. This represents a result that isn't mathematically defined, such as when you divide zero
by zero or infinity by infinity. Any operation in which either or both operands are NaN results in NaN. Once an
operation results in +infinity, this will pollute all subsequent operations in which it participates as well.
Table 2-6 summarizes all the possibilities.

Table 2-6. Floating-Point Operations with NaN and tinfinity Operands

Operation Result Operation Result
tvalue / 0 tinfinity 0/0 NaN
tinfinity + value tinfinity tinfinity / infinity NaN
tinfinity * value tinfinity infinity - infinity NaN
tinfinity / value tinfinity infinity * 0 NaN

value in the table is any nonzero value. You can discover how your compiler presents these values by
plugging the following code into main():

double af{ 1.5 }, b{}, <{};
double result { a / b };

std::cout << a << "/" << b << " =" << result << std::endl;

std::cout << result << " + " << a << " =" < result + a << std::endl;
result = b / c;

std::cout << b << "/" << c << " =" << result << std::endl;

You'll see from the output when you run this how +infinity and NaN look. One possible outcome is this:

1.5/0 = inf
inf + 1.5 = inf
0/0 = -nan

Tip The easiest way to obtain a floating-point value that represents either infinity or NaN is using the
facilities of the 1imits header of the Standard Library, which we discuss later in this chapter. That way you do
not really have to remember the rules of how to obtain them through divisions by zero. To check whether a given
number is either infinity or NaN, you should use the std: :isinf() and std: :isnan() functions provided by the
cmath header—what to do with the results of these functions will only become clear in Chapter 4, though.

47

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_4

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

Mathematical Functions

The cmath Standard Library header file defines a large selection of trigonometric and numerical functions
that you can use in your programs. In this section, we’ll only discuss some of the functions that you are likely
to use on a regular basis, but there are many, many more. The functions defined by cmath today truly range
from the very basic to some of the most advanced mathematical functions (in the latter category, the C++17
standard, for instance, has recently added beauties such as cylindrical Neumann functions, associated
Laguerre polynomials, and the Riemann zeta function). You can consult your favorite Standard Library
reference for the complete list.

Table 2-7 presents some of the most useful functions from this header. As always, all the function names
defined are in the std namespace. Unless otherwise noted, all functions of cmath accept arguments that can
be of any floating-point or integral type. The outcome will always be of the same type as the given floating-
point arguments and of type double for integer arguments.

Table 2-7. Numerical Functions in the cmath Header

Function Description

abs(arg) Computes the absolute value of arg. Unlike most cmath functions, abs () returns an
integer type if arg is integer.

ceil(arg) Computes a floating-point value that is the smallest integer greater than or equal to
arg, so std::ceil(2.5) produces 3.0 and std: :ceil(-2.5) produces -2.0.

floor(arg) Computes a floating-point value that is the largest integer less than or equal to arg, so
std::floor(2.5) resultsin 2.0 and std: : floor(-2.5) results in -3.0.

exp(arg) Computes the value of earg.

log(arg) Computes the natural logarithm (to base €) of arg.

log10(arg) Computes the logarithm to base 10 of arg.

pow(argl, arg2) Computes the value of argl raised to the power arg2, or arglarg2. argl and
arg2 can be integer or floating-point types. The result of std: :pow(2, 3)is 8.0,
std::pow(1.5f, 3) equals3.375f, and std: :pow(4, 0.5) isequalto 2.

sqrt(arg) Computes the square root of arg.

round(arg) Rounds arg to the nearest integer. The result is a floating-point number though,
even for integer inputs. The cmath header also defines 1round() and 11round() that
evaluate to the nearest integer of type long and long long, respectively. Halfway
cases are rounded away from zero. In other words, std: :1round(0.5) gives 1L,
whereas std: :round(-1.5f) gives -2.0f.

Besides these, the cmath header provides all basic trigonometric functions (std: :cos(), sin(), and
tan()), as well as their inverse functions (std: :acos(), asin(), and atan()). Angles are always expressed
in radians.

Let’s look at some examples of how these are used. Here’s how you can calculate the cosine of an angle
in radians:

double angle {1.5}; // In radians
double cosine value {std::cos(angle)};

48

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

If the angle is in degrees, you can calculate the tangent by using a value for n to convert to radians:
float angle deg {60.0f}; // Angle in degrees
const float pi { 3.14159265f };
const float pi_degrees {180.0f};
float tangent {std::tan(pi * angle deg/pi degrees)};

If you know the height of a church steeple is 100 feet and you're standing 50 feet from its base, you can
calculate the angle in radians of the top of the steeple like this:

double height {100.0}; // Steeple height- feet
double distance {50.0}; // Distance from base
double angle {std::atan(distance / height)}; // Result in radians

You can use this value in angle and the value of distance to calculate the distance from your toe to the
top of the steeple:

double toe to tip {distance / std::sin(angle)};
Of course, fans of Pythagoras of Samos could obtain the result much more easily, like this:

double toe to tip {std::sqrt(std::pow(distance,2) + std::pow(height, 2))};

Tip The problem with an expression of form std: :atan(a / b) is that by evaluating the divisiona / b,
you lose information about the sign of a and b. In our example this does not matter much, as both distance
and height are positive, but in general you may be better off calling std: :atan2(a, b).The atan2() function
is defined by the cmath header as well. Because it knows the signs of both a and b, it is capable of properly
reflecting this in the resulting angle. You can consult a Standard Library reference for the detailed specification.

Let’s try a floating-point example. Suppose that you want to construct a circular pond in which you will
keep fish. Having looked into the matter, you know that you must allow 2 square feet of pond surface area for
every 6 inches of fish length. You need to figure out the diameter of the pond that will keep the fish happy.
Here’s how you can do it:

// Ex2_03.cpp

// Sizing a pond for happy fish

#include <iostream>

#include <cmath> // For square root function

int main()
{
// 2 square feet pond surface for every 6 inches of fish
const double fish factor { 2.0/0.5 }; // Area per unit length of fish
const double inches per foot { 12.0 };
const double pi { 3.141592653589793238 };

double fish count {}; // Number of fish
double fish_length {}; // Average length of fish

49

www.EBookswWorld.ir

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

std::cout << "Enter the number of fish you want to keep: ";
std::cin >> fish_count;

std::cout << "Enter the average fish length in inches: ";
std::cin >> fish_length;

fish_length /= inches_per foot; // Convert to feet

// Calculate the required surface area
const double pond_area {fish _count * fish length * fish factor};

// Calculate the pond diameter from the area
const double pond_diameter {2.0 * std::sqrt(pond_area/pi)};

std::cout << "\nPond diameter required for
<< pond_diameter << " feet.\n";

<< fish_count << " fish is

With input values of 20 fish with an average length of 9 inches, this example produces the following
output:

Enter the number of fish you want to keep: 20
Enter the average fish length in inches: 9
Pond diameter required for 20 fish is 8.74039 feet.

You first define three const variables in main() that you'll use in the calculation. Notice the use of a
constant expression to specify the initial value for fish_factor. You can use any expression for an initial
value that produces a result of the appropriate type. You specify fish_factor, inches_per foot, and pi as
const because their values are fixed and should not be altered.

Next, you define the fish_count and fish_length variables in which you'll store the user input. Both
have an initial value of zero. The input for the fish length is in inches, so you convert it to feet before you use
itin the calculation for the pond. You use the /= operator to convert the original value to feet.

You define a variable for the area for the pond and initialize it with an expression that produces the
required value:

const double pond_area {fish_count * fish_length * fish_factor};

The product of fish_count and fish_length gives the total length of all the fish in feet, and multiplying
this by fish_factor gives the required area for the pond in square feet. Once computed and initialized, the
value of pond_area will and should not be changed anymore, so you might as well declare the variable const
to make that clear.

The area of a circle is given by the formula nr?, where r is the radius. You can therefore calculate the
radius of the circular pond by dividing the area by = and calculating the square root of the result. The
diameter is twice the radius, so the whole calculation is carried out by this statement:

const double pond_diameter {2.0 * std::sqrt(pond_area / pi)};

You obtain the square root using the sqrt () function from the cmath header.
Of course, you could calculate the pond diameter in a single statement like this:

const double pond diameter {2.0 * std::sqrt(fish_count * fish_length * fish_factor / pi)};

50

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

This eliminates the need for the pond_area variable so the program will be smaller and shorter. It's
debatable whether this is better than the original, though, because it’s far less obvious what is going on.

The last statement in main() outputs the result. Unless you're an exceptionally meticulous pond
enthusiast, however, the pond diameter has more decimal places than you need. Let’s look into how you
can fix that.

Formatting Stream Qutput

You can change how data is formatted when it is written to an output stream using stream manipulators,
which are declared in the iomanip and ios Standard Library headers. You apply a stream manipulator to an
output stream with the insert operator, <<. We'll just introduce the most useful manipulators. You should
consult a Standard Library reference if you want to get to know the others.

All manipulators declared by ios are automatically available if you include the familiar iostream
header. Unlike those of the iomanip header, these stream manipulators do not require an argument:

std: :fixed Output floating-point data in fixed-point notation.

std::scientific Output all subsequent floating-point data in scientific notation, which always
includes an exponent and one digit before the decimal point.

std: :defaultfloat Revert to the default floating-point data presentation.

std::dec All subsequent integer output is decimal.

std: thex All subsequent integer output is hexadecimal.

std::oct All subsequent integer output is octal.

std: :showbase Outputs the base prefix for hexadecimal and octal integer values. Inserting
std: :noshowbase in a stream will switch this off.

std::left Output is left-justified in the field.

std::right Output is right-justified in the field. This is the default.

The iomanip header provides useful parametric manipulators as well, some of which are listed next. To
use them, you need to include the iomanip header in your source file first.

std: :setprecision(n) Sets the floating-point precision or the number of decimal places to n digits.
If the default floating-point output presentation is in effect, n specifies the
number of digits in the output value. If fixed or scientific format has
been set, n is the number of digits following the decimal point. The default
precision is 6.

std: :setw(n) Sets the output field width to n characters, but only for the next output data
item. Subsequent output reverts to the default where the field width is set to
the number of output character needed to accommodate the data.

std: :setfill(ch) When the field width has more characters than the output value, excess
characters in the field will be the default fill character, which is a space. This
sets the fill character to be ch for all subsequent output.

When you insert a manipulator in an output stream, it normally remains in effect until you change it.
The only exception is std: : setw(), which only influences the width of the next field that is output.

51

www.EBookswWorld.ir

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

Let’s see how some of these work in practice. Replace the output statement at the end of Ex2_03.cpp
with the following, and enter, for instance, 20 and 9 as input again:

std::cout << "\nPond diameter required for " << fish_count << " fish is
<< std::setprecision(2) // Output value is 8.7
<< pond_diameter << " feet.\n";

You'll get the floating-point value presented with 2 digits of precision, which will correspond to 1
decimal place in this case. Because the default handling of floating-point output is in effect, the integer
between the parentheses in setprecision() specifies the output precision for floating-point values, which
is the total number of digits before and after the decimal point. You can make the parameter specify the
number of digits after the decimal point—the number of decimal places in other words—by setting the
mode as fixed. For example, try this in Ex2_03.cpp:

std::cout << "\nPond diameter required for " << fish _count << " fish is
<< std::fixed << std::setprecision(2)
<< pond_diameter << " feet.\n"; // Output value is 8.74

Setting the mode as fixed or as scientific causes the setprecision() parameter to be interpreted as
the number of decimal places in the output value. Setting scientific mode causes floating-point output to
be in scientific notation, which is with an exponent:

std::cout << "\nPond diameter required for " << fish_count << " fish is
<< std::scientific << std::setprecision(2)
<< pond_diameter << " feet.\n"; // Output value is 8.74e+00

In scientific notation there is always one digit before the decimal point. The value set by
setprecision() is still the number of digits following the decimal point. There’s always a two-digit exponent
value, even when the exponent is zero.

The following statements illustrate some of the formatting possible with integer values:

int a{16}, b{e6};

std::cout << std::setw(5) << a << std::setw(5) << b << std::endl;

std::cout << std::left << std::setw(5) << a << std::setw(5) << b << std::endl;

std::cout << " a = " << std::setbase(16) << std::setw(6) << std::showbase << a
<< " b =" < std::setw(6) << b << std::endl;

std::cout << std::setw(10) << a << std::setw(10) << b << std::endl;

The output from these statements is as follows:

16 66

16 66

a =0x10 b = 0x42
0x10 0x42

It's a good idea to insert showbase in the stream when you output integers as hexadecimal or octal so
the output won’t be misinterpreted as decimal values. We recommend you try various combinations of these
manipulators and stream constants to get a feel for how they all work.

52

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

Mixed Expressions and Type Conversion

You can write expressions involving operands of different types. For example, you could have defined the
variable to store the number of fish in Ex2_03 like this:

unsigned int fish_count {}; // Number of fish

The number of fish is certainly an integer, so this makes sense. The number of inches in a foot is also
integral, so you would want to define the variable like this:

const unsigned int inches_per foot {12};

The calculation would still work OK in spite of the variables now being of differing types. Here’s an
example:

fish_length /= inches_per foot; // Convert to feet
double pond_area{fish_count * fish_length * fish_factor};

Technically, all binary arithmetic operands require both operands to be of the same type. Where this is
not the case, however, the compiler will arrange to convert one of the operand values to the same type as the
other. These are called implicit conversions. The way this works is that the variable of a type with the more
limited range is converted to the type of the other. The fish_length variable in the first statement is of type
double. Type double has a greater range than type unsigned int, so the compiler will insert a conversion for
the value of inches_per foot to type double to allow the division to be carried out. In the second statement,
the value of fish_count will be converted to type double to make it the same type as fish_length before the
multiply operation executes.

With each operation with operands of different types, the compiler chooses the operand with the type
that has the more limited range of values as the one to be converted to the type of the other. In effect, it ranks
the types in the following sequence, from high to low:

1. long double 2. double 3. float
4. unsigned long long 5. long long 6. unsigned long
7. long 8. unsigned int 9. int

The operand to be converted will be the one with the lower rank. Thus, in an operation with operands
of type long long and type unsigned int, the latter will be converted to type long long. An operand of type
char, signed char, unsigned char, short, or unsigned short is always converted to at least type int.

Implicit conversions can produce unexpected results. Consider these statements:

unsigned int x {20u};
int y {30};
std::cout << x - y << std::endl;

You might expect the output to be -10, but it isn’t. The output will most likely be 4294967286! This is
because the value of y is converted to unsigned int to match the type of x, so the result of the subtraction is
an unsigned integer value. And - 10 cannot be represented by an unsigned type. For unsigned integer types,
going below zero always wraps around to the largest possible integer value. That is, for a 32-bit unsigned int
type, -1 becomes 232 - 1 or 4294967295, -2 becomes 23 - 2 or 4294967293, and so on. This of course means
that -10 indeed becomes 23? - 10, or 4294967286.

53

www.EBookswWorld.ir

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

Note The phenomenon where the result of a subtraction of unsigned integers wraps around to very large
positive numbers is sometimes called underflow. In general, underflow is something to watch out for (we’ll
encounter examples of this in later chapters). Naturally, the converse phenomenon exists as well and is called
overflow. Adding the unsigned char values 253 and 5, for instance, will not give 258—the largest value a
variable of type unsigned char can hold is 255! Instead, the result will be 2, or 258 modulo 256. The outcome
of overflow and underflow with signed integer types is undefined—that is, it depends on the compiler and
computer architecture you are using.

The compiler will also insert an implicit conversion when the expression on the right of an assignment
produces a value that is of a different type from the variable on the left. Here’s an example:

int y {};
double z {5.0};
y = z; // Requires an implicit narrowing conversion

The last statement requires a conversion of the value of the expression on the right of the assignment to
allow it to be stored as type int. The compiler will insert a conversion to do this, but since this is a narrowing
conversion, it may issue a warning message about possible loss of data.

You need to take care when writing integer operations with operands of different types. Don’t rely on
implicit type conversion to produce the result you want unless you are certain it will do so. If you are not
sure, what you need is an explicit type conversion, also called an explicit cast.

Explicit Type Conversion

To explicitly convert the value of an expression to a given type, you write the following:
static_cast<type to convert to>(expression)

The static_cast keyword reflects the fact that the cast is checked statically, that is, when the code
is compiled. Later, when you get to deal with classes, you'll meet dynamic casts, where the conversion is
checked dynamically, that is, when the program is executing. The effect of the cast is to convert the value that
results from evaluating expression to the type that you specify between the angle brackets. The expression
can be anything from a single variable to a complex expression involving lots of nested parentheses. You
could eliminate the warning that arises from the assignment in the previous section by writing it as follows:

y = static_cast<int>(z); // Never a compiler warning this time...

By adding an explicit cast, you signal the compiler that a narrowing conversion is intentional. If
the conversion is not narrowing, you'd rarely add an explicit cast. Here’s another example of the use of
static_cast<>():
double valuel {10.9};

double value2 {15.9};
int whole number {static_cast<int>(valuel) + static_cast<int>(value2)};

54

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

The initializing value for whole_number is the sum of the integral parts of valuel and value2, so they're
each explicitly cast to type int. whole_number will therefore have the initial value 25. Note that as with
integer division, casting from a floating-point type to an integral type uses truncation. That is, it simply
discards the entire fractional part of the floating-point number.

Tip As seen earlier in this chapter, the std: : round(), 1round(), and 11round() functions from the cmath
header allow you to round floating-point numbers to the nearest integer. In many cases, this is better than
(implicit or explicit) casting, where truncation is used instead.

The casts do not affect the values stored in valuel and value2, which will remain as 10.9 and 15.9,
respectively. The values 10 and 15 produced by the casts are just stored temporarily for use in the calculation
and then discarded. Although both casts cause a loss of information, the compiler always assumes you know
what you're doing when you explicitly specify a cast.

Of course, the value of whole_number would be different if you wrote this:

int whole number {static_cast<int>(valuel + value2)};

The result of adding valuel and value2 will be 26. 8, which results in 26 when converted to type int.
As always with braced initializers, without the explicit type conversion in this statement, the compiler will
either refuse to insert or at least warn about inserting implicit narrowing conversions.

Generally, the need for explicit casts should be rare, particularly with basic types of data. If you have to
include a lot of explicit conversions in your code, it’s often a sign that you could choose more suitable types
for your variables. Still, there are circumstances when casting is necessary, so let’s look at a simple example.
This example converts a length in yards as a decimal value to yards, feet, and inches:

// Ex2_04.cpp
// Using explicit type conversions
#include <iostream>

int main()

{
const unsigned feet_per yard {3};
const unsigned inches per foot {12};

double length {}; // Length as decimal yards
unsigned int yards{}; // Whole yards

unsigned int feet {}; // Whole feet

unsigned int inches {}; // Whole inches

std::cout << "Enter a length in yards as a decimal: ";
std::cin >> length;

// Get the length as yards, feet, and inches
yards = static_cast<unsigned int>(length);
feet = static_cast<unsigned int>((length - yards) * feet per yard);
inches = static_cast<unsigned int>
(length * feet per yard * inches per foot) % inches per foot;

55

www.EBookswWorld.ir

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

std::cout << length << " yards converts to
<< yards << " yards "
<< feet << " feet "

<< inches << " inches." << std:: endl;

This is typical output from this program:

Enter a length in yards as a decimal: 2.75
2.75 yards converts to 2 yards 2 feet 3 inches.

The first two statements in main() define conversion constants feet_per yard and inches _per foot
as integers. You declare these as const to prevent them from being modified accidentally. The variables that
will store the results of converting the input to yards, feet, and inches are of type unsigned int and initialized
with zero.

The statement that computes the whole number of yards from the input value is as follows:

yards = static_cast<unsigned int>(length);

The cast discards the fractional part of the value in length and stores the integral result in yards. You
could omit the explicit cast here and leave it to the compiler to take care of, but it’s always better to write an
explicit cast in such cases. If you don't, it’s not obvious that you realized the need for the conversion and the
potential loss of data. Many compilers will then issue a warning as well.

You obtain the number of whole feet with this statement:

feet = static_cast<unsigned int>((length - yards) * feet_per_yard);

Subtracting yards from length produces the fraction of a yard in the length as a double value. The
compiler will arrange for the value in yards to be converted to type double for the subtraction. The value
of feet_per_yard will then be converted to double to allow the multiplication to take place, and finally the
explicit cast converts the result from type double to type unsigned int.

The final part of the calculation obtains the residual number of whole inches:

inches = static_cast<unsigned int>
(length * feet per yard * inches per foot) % inches per foot;

The explicit cast applies to the total number of inches in length, which results from the product of
length, feet_per_yard, and inches_per foot. Because length is type double, both const values will be

converted implicitly to type double to allow the product to be calculated. The remainder after dividing the
integral number of inches in length by the number of inches in a foot is the number of residual inches.

Old-Style Casts

Prior to the introduction of static_cast<> into C++ around 1998—so a very, very long time ago—an explicit
cast of the result of an expression was written like this:

(type_to_convert to)expression

56

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

The result of expression is cast to the type between the parentheses. For example, the statement to
calculate inches in the previous example could be written like this:

inches = (unsigned int)(length * feet per yard * inches_per foot) % inches per foot;

This type of cast is a remnant of the C language and is therefore also referred to as a C-style cast. There
are several kinds of casts in C++ that are now differentiated, but the old-style casting syntax covers them all.
Because of this, code using the old-style casts is more prone to errors. It isn’t always clear what you intended,
and you may not get the result you expected. Therefore:

Tip You'll still see old-style casting used because it’s still part of the language, but we strongly recommend
that you use only the new casts in your code. One should never use C-style casts in C++ code anymore. Period.
That is why this is also the last time that we mention this syntax in this book....

Finding the Limits

You have seen typical examples of the upper and lower limits for various types. The 1imits Standard Library
header makes this information available for all the fundamental data types so you can access this for your
compiler. Let’s look at an example. To display the maximum value you can store in a variable of type double,
you could write this:

std::cout << "Maximum value of type double is " << std::numeric_limits<double>::max();

The expression std: :numeric_limits<double>: :max() produces the value you want. By putting
different type names between the angled brackets, you can obtain the maximum values for other data
types. You can also replace max() with min() to get the minimum value that can be stored, but the meaning
of minimum is different for integer and floating-point types. For an integer type, min() results in the true
minimum, which will be a negative number for a signed integer type. For a floating-point type, min() returns
the minimum positive value that can be stored.

Caution std::numeric_limits<double>::min() typically equals 2.225e-308, an extremely tiny
positive number. So, for floating-point types, min() does not give you the complement of max (). To get the
lowest negative value a type can represent, you should use lowest() instead. For instance, std: :numeric_
limits<double>::lowest() equals -1.798e+308, a hugely negative number. For integer types, min() and
lowest() always evaluate to the same number.

The following program will display the maximums and minimums for some of the numerical data types:
// Ex2_05.cpp
// Finding maximum and minimum values for data types

#include <limits>
#include <iostream>

57

www.EBookswWorld.ir

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

int main()
{
std::cout << "The range for type short is from
<< std::numeric_limits<short>::min() << " to
<< std::numeric_limits<short>::max() << std::endl;
std::cout << "The range for type int is from "
<< std::numeric_limits<int>::min() << " to "
<< std::numeric_limits<int>::max() << std::endl;
std::cout << "The range for type long is from "
<< std::numeric_limits<long>::min()<< " to "
<< std::numeric_limits<long>::max() << std::endl;
std::cout << "The range for type float is from "
<< std::numeric_limits<float>::min() << " to
<< std::numeric_limits<float>::max() << std::endl;
std::cout << "The positive range for type double is from "
<< std::numeric_limits<double>::min() << " to
<< std::numeric_limits<double>::max() << std::endl;
std::cout << "The positive range for type long double is from
<< std::numeric_limits<long double>::min() << " to "
<< std::numeric_limits<long double>::max() << std::endl;

You can easily extend this to include unsigned integer types and types that store characters. On our test
system, the results of running the program are as follows:

The range for type short is from -32768 to 32767

The range for type int is from -2147483648 to 2147483647

The range for type long is from -9223372036854775808 to 9223372036854775807
The range for type float is from 1.17549e-38 to 3.40282e+38

The positive range for type double is from 2.22507e-308 to 1.79769e+308

The positive range for type long double is from 3.3621e-4932 to 1.18973e+4932

Finding Other Properties of Fundamental Types

You can retrieve many other items of information about various types. The number of binary digits, or bits,
for example, is returned by this expression:

std::numeric_limits<type name>::digits

type_name is the type in which you're interested. For floating-point types, you'll get the number of bits
in the mantissa. For signed integer types, you'll get the number of bits in the value, that is, excluding the sign
bit. You can also find out what the range of the exponent component of floating-point values is, whether a
type is signed or not, and so on. You can consult a Standard Library reference for the complete list.

Before we move on, there are two more numeric_limits<> functions we still want to introduce. We
promised you earlier that we would. To obtain the special floating-point values for infinity and not-a-
number (NaN), you should use expressions of the following form:

float positive infinity = std::numeric_limits<float>::infinity();
double negative_infinity = -std::numeric_limits<double>::infinity();
long double not_a number = std::numeric_limits<long double>::quiet NaN();

58

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

None of these expressions would compile for integer types, nor would they compile in the unlikely
event that the floating-point types that your compiler uses do not support these special values. Besides
quiet NaN(), there’s a function called signaling NaN()—and not loud NaN() or noisy NaN().The
difference between the two is outside the scope of this brief introduction, though: if you're interested, you
can always consult your Standard Library documentation.

Working with Character Variables

Variables of type char are used primarily to store a code for a single character and occupy 1 byte. The C++
standard doesn’t specify the character encoding to be used for the basic character set, so in principle this is
down to the particular compiler, but it’s usually ASCII.

You define variables of type char in the same way as variables of the other types that you've seen. Here’s
an example:

char letter; // Uninitialized - so junk value
char yes {'Y'},no {'N'}; // Initialized with character literals
char ch {33}; // Integer initializer equivalent to '!'

You can initialize a variable of type char with a character literal between single quotes or by an integer.
An integer initializer must be within the range of type char—remember, it depends on the compiler whether
itis a signed or unsigned type. Of course, you can specify a character as one of the escape sequences you saw
in Chapter 1.

There are also escape sequences that specify a character by its code expressed as either an octal or a
hexadecimal value. The escape sequence for an octal character code is one to three octal digits preceded
by a backslash. The escape sequence for a hexadecimal character code is one or more hexadecimal digits
preceded by \x. You write either form between single quotes when you want to define a character literal. For
example, the letter 'A' could be written as hexadecimal '\x41" in ASCII. Obviously, you could write codes
that won't fit within a single byte, in which case the result is implementation defined.

Variables of type char are numeric; after all, they store integer codes that represent characters. They can
therefore participate in arithmetic expressions, just like variables of type int or long. Here’s an example:

char ch {'A'};

char letter {ch + 5}; // letter is 'F'
++ch; // ch is now 'B'
ch += 3; // ch is now 'E'

When you write a char variable to cout, it is output as a character, not as an integer. If you want to see it
as a numerical value, you can cast it to another integer type. Here’s an example:

std::cout << "ch is << ch
<< "' which is code " << std::hex << std::showbase

<< static_cast<int>(ch) << std::endl;

This produces the following output:

ch is 'E' which is code 0x45

When you use >> to read from a stream into a variable of type char, the first nonwhitespace character
will be stored. This means you can’t read whitespace characters in this way; they’re simply ignored. Further,
you can’t read a numerical value into a variable of type char; if you try, the character code for the first digit
will be stored.

59

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_1

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

Working with Unicode Characters

ASCII is generally adequate for national language character sets that use Latin characters. However, if you
want to work with characters for multiple languages simultaneously or if you want to handle character sets
for many non-English languages, 256 character codes doesn’t go nearly far enough, and Unicode is the
answer. You can refer to Chapter 1 for a brief introduction on Unicode and character encodings.

Type wchar_t is a fundamental type that can store all members of the largest extended character set
that’s supported by an implementation. The type name derives from wide characters because the character
is “wider” than the usual single-byte character. By contrast, type char is referred to as “narrow” because of
the limited range of character codes that are available.

You define wide-character literals in a similar way to literals of type char, but you prefix them with L.
Here’s an example:

wchar_t wech {L'Z'};

This defines wch as type wchar_t and initializes it to the wide-character representation for Z.
Your keyboard may not have keys for representing other national language characters, but you can still
create them using hexadecimal notation. Here’s an example:

wchar t wch {L'\x0438'}; // Cyrillic u

The value between the single quotes is an escape sequence that specifies the hexadecimal
representation of the character code. The backslash indicates the start of the escape sequence, and x or X
after the backslash signifies that the code is hexadecimal.

Type wchar_t does not handle international character sets very well. It's much better to use type
char16_t, which stores characters encoded as UTE-16, or char32_t, which stores UTF-32 encoded
characters. Here’s an example of defining a variable of type char16_t:

char16_t letter {u'B'}; // Initialized with UTF-16 code for B
char16_t cyr {u'\x0438'}; // Initialized with UTF-16 code for cyrillic u

The lowercase u prefix to the literals indicates that they are UTF-16. You prefix UTF-32 literals with
uppercase U. Here’s an example:

char32_t letter {U'B'}; // Initialized with UTF-32 code for B
char32_t cyr {U'\x044f'}; // Initialized with UTF-32 code for cyrillic a

Of course, if your editor and compiler have the capability to accept and display the characters, you can
define cyr like this:

char32_t cyr {U's'};
The Standard Library provides standard input and output streams wcin and wcout for reading and

writing characters of type wchar_t, but there is no provision with the library for handling char16_t and
char32_t character data.

Caution You should not mix output operations on wcout with output operations on cout. The first output
operation on either stream sets an orientation for the standard output stream that is either narrow or wide,
depending on whether the operation is to cout or wcout. The orientation will carry forward to subsequent output
operations for either cout or wcout.

60

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_1
http://www.cplusplus.com/cout

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

The auto Keyword

You use the auto keyword to indicate that the compiler should deduce the type. Here are some examples:

auto m {10}; // m has type int
auto n {200UL}; // n has type unsigned long
auto pi {3.14159}; // pi has type double

The compiler will deduce the types for m, n, and p1i from the initial values you supply. You can use
functional or assignment notation with auto for the initial value as well:

auto m = 10; // m has type int
auto n = 200UL; // n has type unsigned long
auto pi(3.14159); // pi has type double

Having said that, this is not really how the auto keyword is intended to be used. Typically, when
defining variables of fundamental types, you might as well specify the type explicitly so you know for sure
what it is. You'll meet the auto keyword again later in the book where it is more appropriately and much
more usefully applied.

Caution You need to be careful when using braced initializers with the auto keyword. For example,
suppose you write this (notice the equal sign!):

auto m = {10};

Then the type deduced for m will not be int, but instead will be std: :initializer list<int>.To give you
some context, this is the same type you would get if you'd use a list of elements between the braces:

auto list = {1, 2, 3}; // list has type std::initializer list<int»

You will see later that such lists are typically used to specify the initial values of containers such as

std: :vector<>. To make matters worse, the type deduction rules have changed in C++17. If you are using
an older compiler, the type the compiler deduces in place of auto may not at all be what you’d expect in many
more cases. Here’s an overview:

/* C++11 and C++14 */

auto i {10}; // 1 has type std::initializer list<int> I!!
auto pi = {3.14159}; // pi has type std::initializer list<double>
auto listi1{1, 2, 3}; // 1listl has type std::initializer list<int>

auto list2 = {4, 5, 6}; // list2 has type std::initializer list<int>

/* C++17 and later */

auto i {10}; // i has type int
auto pi = {3.14159}; // pi has type std::initializer list<double>
auto listi{i, 2, 3}; // error: does not compile!

auto list2 = {4, 5, 6}; // list2 has type std::initializer list<int>

61

www.EBookswWorld.ir

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

To summarize, if your compiler properly supports C++17, you can use braced initialization to initialize any
variable with a single value, provided you do not combine it with an assignment. This also is the guideline we’ll
follow in this book. If your compiler is not fully up-to-date yet, however, you should simply never use braced
initializers with auto. Instead, either explicitly state the type or use assignment or functional notation.

Summary

In this chapter, we covered the basics of computation in C++. You learned about most of the fundamental
types of data that are provided for in the language. The essentials of what we’ve discussed up to now are as
follows:

¢ Constants of any kind are called literals. All literals have a type.
¢ You can define integer literals as decimal, hexadecimal, octal, or binary values.

e Afloating-point literal must contain a decimal point or an exponent or both. If there
is neither, you have specified an integer.

e The fundamental types that store integers are short, int, long, and long long. These
store signed integers, but you can also use the type modifier unsigned preceding any
of these type names to produce a type that occupies the same number of bytes but
stores unsigned integers.

e The floating-point data types are float, double, and long double.

e Uninitilized variables generally contain garbage values. Variables may be given
initial values when they’re defined, and it’s good programming practice to do so.
A braced initializer is the preferred way of specifying initial values.

e Avariable of type char can store a single character and occupies one byte. Type
char may be signed or unsigned, depending on your compiler. You can also use
variables of the types signed char and unsigned char to store integers. Types char,
signed char, and unsigned char are different types.

e Typewchar_t stores a wide character and occupies either two or four bytes,
depending on your compiler. Types char16_t and char32_t may be better for
handling Unicode characters in a cross-platform manner.

¢ You can fix the value of a variable by using the const modifier. The compiler will
check for any attempts within the program source file to modify a variable defined as
const.

e The four main mathematic operations correspond to the binary +, -, *, and /
operators. For integers, the modulus operator % gives you the remainder after integer
division.

e The ++and - - operators are special shorthand for adding or subtracting one from a
numeric variable. Both exist in postfix and prefix forms.

62

www.EBookswWorld.ir

CHAPTER 2 * INTRODUCING FUNDAMENTAL TYPES OF DATA

¢ You can mix different types of variables and constants in an expression. The compiler
will arrange for one operand in a binary operation to be automatically converted to
the type of the other operand when they differ.

e The compiler will automatically convert the type of the result of an expression on the
right of an assignment to the type of the variable on the left where these are different.
This can cause loss of information when the left-side type isn’t able to contain the
same information as the right-side type—double converted to int, for example, or
long converted to short.

¢ You can explicitly convert a value of one type to another using the static_cast<>()
operator.

EXERCISES

The following exercises enable you to try what you’ve learned in this chapter. If you get stuck, look back
over the chapter for help. If you're still stuck after that, you can download the solutions from the Apress
website (www.apress.com/book/download.html), but that really should be a last resort.

Exercise 2-1. Write a program that will compute the area of a circle. The program
should prompt for the radius of the circle to be entered from the keyboard, calculate the
area using the formula area = pi * radius * radius, and then display the result.

Exercise 2-2. Using your solution for Exercise 2-1, improve the code so that the user
can control the precision of the output by entering the number of digits required. To
really show off how accurate floating-point numbers can be, you can perhaps switch
to double-precision floating-point arithmetic as well. You’ll need a more precise
approximation of x. 3.141592653589793238 will do fine.

Exercise 2-3. Create a program that converts inches to feet and inches. In case
you’re unfamiliar with imperial units: 1 foot equals 12 inches. An input of 77 inches,
for instance, should thus produce an output of 6 feet and 5 inches. Prompt the user
to enter an integer value corresponding to the number of inches and then make the
conversion and output the result.

Exercise 2-4. For your birthday you’ve been given a long tape measure and an
instrument that measures angles (the angle between the horizontal and a line to the top
of a tree, for instance). If you know the distance, d, you are from a tree, and the height,
h, of your eye when peering into your angle-measuring device, you can calculate the
height of the tree with the formula h + d*tan(angle). Create a program to read h in
inches, d in feet and inches, and angle in degrees from the keyboard, and output the
height of the tree in feet.

Note There is no need to chop down any trees to verify the accuracy of your program. Just check the
solutions on the Apress website!

63

www.EBookswWorld.ir

http://www.apress.com/book/download.html

CHAPTER 2 © INTRODUCING FUNDAMENTAL TYPES OF DATA

Exercise 2-5. Your body mass index (BMI) is your weight, w, in kilograms divided by
the square of your height, h, in meters (w/ (h*h)). Write a program to calculate the BMI
from a weight entered in pounds and a height entered in feet and inches. A kilogram is
2.2 pounds, and a foot is 0.3048 meters.

Exercise 2-6. Here’s an extra exercise for puzzle fans. Write a program that will prompt
the user to enter two different positive integers. Identify in the output the value of the
larger integer and the value of the smaller integer. Using the decision-making facilities
of Chapter 5, this would be like stealing a piece of cake from a baby while walking in
the park. What makes this a brain teaser, though, is that this can be done solely with
the operators you’ve learned about in this chapter!

64

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_5

CHAPTER 3

Working with Fundamental
Data Types

In this chapter, we expand on the types that we discussed in the previous chapter and explain how variables
of the basic types interact in more complicated situations. We also introduce some new features of C++ and
discuss some of the ways that these are used.

In this chapter, you'll learn

e How the execution order in an expression is determined
e What the bitwise operators are and how you use them

e Howyou can define a new type that limits variables to a fixed range of possible
values

e Howyou can define alternative names for existing data types
e What the storage duration of a variable is and what determines it

e What variable scope is and what its effects are

Operator Precedence and Associativity

You already know that there is a priority sequence for executing arithmetic operators in an expression. You'll
meet many more operators throughout the book, including a few in this chapter. In general, the sequence in
which operators in an expression are executed is determined by the precedence of the operators. Operator
precedence is just a fancy term for the priority of an operator.

Some operators, such as addition and subtraction, have the same precedence. That raises the question
of how an expression such as a+b-c+d is evaluated. When several operators from a group with the same
precedence appear in an expression, in the absence of parentheses, the execution order is determined by the
associativity of the group. A group of operators can be left-associative, which means operators execute from
left to right, or they can be right-associative, which means they execute from right to left.

Nearly all operator groups are left-associative, so most expressions involving operators of equal
precedence are evaluated from left to right. The only right-associative operators are the unary operators,
assignment operators, and conditional operator. Table 3-1 shows the precedence and associativity of all the
operators in C++.

© Ivor Horton and Peter Van Weert 2018 65
1. Horton and P. Van Weert, Beginning C++17, https://doi.org/10.1007/978-1-4842-3366-5_3

www.EBookswWorld.ir

https://doi.org/10.1007/978-1-4842-3366-5_3

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

Table 3-1. The Precedence and Associativity of C++ Operators

Precedence Operators Associativity
1 HY Left
2 O i -» . Left
postfix ++ and - -
3 I~ Right
unary +and -

prefix ++ and - -
address-of & indirection *
C-style cast (type)

sizeof

new new[] delete delete[]
4 K ->* Left
5 * /% Left
6 + - Left
7 < > Left
8 < K= > »>= Left
9 = = Left
10 & Left
11 A Left
12 | Left
13 && Left
14 [Left
15 ?: (conditional operator) Right

= *= /= Y%= 4= -= &= "= |= <= >>=

throw
16 , (comma) Left

You haven’t met most of these operators yet, but when you need to know the precedence and
associativity of any operator, you'll know where to find it. Each row in Table 3-1 is a group of operators of
equal precedence, and the rows are in precedence sequence, from highest to lowest. Let’s see a simple
example to make sure that it’s clear how all this works. Consider this expression:

x*y/z -b+c-d

The * and / operators are in the same group with precedence that is higher than the group containing +
and -, so the expression x*y/z is evaluated first, with a result of r, say. The operators in the group containing
* and / are left-associative, so the expression is evaluated as though it was (x*y)/z. The next step is the
evaluation ofr - b + c - d. The group containing the + and - operators is also left-associative, so this will
be evaluated as ((r - b) + c¢) - d.Thus, the whole expression is evaluated as though it was written as
follows:

((((x*y)/z) - b) +¢) - d

66

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

Remember, nested parentheses are evaluated in sequence from the innermost to the outermost. You
probably won’t be able to remember the precedence and associativity of every operator, at least not until you
have spent a lot of time writing C++ code. Whenever you are uncertain, you can always add parentheses to
make sure things execute in the sequence you want. And even when you are certain (because you happen to
be a precedence guru), it never hurts to add some extra parentheses to clarify a complex expression.

Bitwise Operators

As their name suggests, bitwise operators enable you to operate on an integer variable at the bit level. You can
apply the bitwise operators to any type of integer, both signed and unsigned, including type char. However,
they’re usually applied to unsigned integer types. A typical application is to set individual bits in an integer
variable. Individual bits are often used as flags, which is the term used to describe binary state indicators. You
can use a single bit to store any value that has two states: on or off, male or female, true or false.

You can also use the bitwise operators to work with several items of information stored in a single
variable. For instance, color values are usually recorded as three 8-bit values for the intensities of the red,
green, and blue components in the color. These are typically packed into 3 bytes of a 4-byte word. The fourth
byte is not wasted either; it usually contains a value for the transparency of the color. This transparency value
is called the color’s alpha component. Such color encodings are commonly denoted by letter quadruples
such as RGBA or ARGB. The order of these letters then corresponds to the order in which the red (R), green
(G), blue (B), and alpha (A) components appear in the 32-bit integer, with each component encoded as a
single byte. To work with individual color components, you need to be able to separate out the individual
bytes from a word, and the bitwise operators are just the tool for this.

Let’s consider another example. Suppose you need to record information about fonts. You might
want to store the style and the size of each font and whether it’s bold or italic. You could pack all of this
information into a 2-byte integer variable, as shown in Figure 3-1.

Not Used
Style = 6 Point Size =12

r A A f—%
[0]0jojofof1]1]o] [1]ofo]1]1]o]0]

Italic Not Bold

Using Bits to Store Font Data

Figure 3-1. Packing font data into 2 bytes

67

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

Here one bit records whether the font is italic—1 signifies italic, and 0 signifies normal. Another bit
specifies whether the font is bold. One byte selects one of up to 256 different styles. Five bits could record the
point size up to 31 (or 32, if you disallow letters of size zero). Thus, in one 16-bit word you have four separate
pieces of data. The bitwise operators provide you with the means of accessing and modifying the individual
bits and groups of bits from an integer very easily so they provide you with the means of assembling and
disassembling the 16-bit word.

The Bitwise Shift Operators

The bitwise shift operators shift the contents of an integer variable by a specified number of bits to the left or
right. These are used in combination with the other bitwise operators to achieve the kind of operations we
described in the previous section. The >> operator shifts bits to the right, and the << operator shifts bits to the
left. Bits that fall off either end of the variable are lost.

All the bitwise operations work with integers of any type, but we’ll use type short, which is usually
2 bytes, to keep the illustrations simple. Suppose you define and initialize a variable, number, with this
statement:

unsigned short number {16387};
You can shift the contents of this variable with this statement:

auto result{ static_cast<unsigned short>(number << 2) }; // Shift left two bit positions

Caution The static_cast<> part of the previous statement is required because the expression number
<< 2 evaluates to a value of type int. This despite the fact that both number is of type short. The reason is that
there are technically no mathematical or bitwise operators for integer types smaller than int. If their operands
are either char or short, they are always implicitly converted to int first. Signedness is not preserved during
this conversion either. Without static_cast<>, your compiler would issue at least a compiler warning to signal
the narrowing conversion, or it might even refuse to compile the assignment altogether.

The left operand of the left shift operator, <<, is the value to be shifted, and the right operand specifies
the number of bit positions by which the value is to be shifted. Figure 3-2 shows the effect.

68

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

Decimal 16,387 in binary is: {0[1[0|0/o[o[o[o]o|o|o]o]o]0|1]1]

0] 1]ofo]o]ofofofo]o]o]o]ojo]1] 1] *FEr "

Shift left 2:

These two bits are |0|0|0|0|0|0|0|0|0|0|0|0|1|1|0|0|

shifted out and lost.

from the left.

Zerosareshiftedin|0|1|0|0|0|0|0|0|0|0|0|0|0|0|1|1|

Shift right 2:

|0|0|0|1|0|0|0|0|0|0|0|0|0|0|0|0 These two bits are

shifted out and lost.

Figure 3-2. Shift operations

Asyou can see from Figure 3-2, shifting 16,387 two positions to the left produces the value 12. The
rather drastic change in the value is the result of losing the high order bit. This statement shifts the value
right two bit positions:

result = static_cast<unsigned short>(number >> 2); // Shift right two bit positions

The result is 4,096, so shifting right two bits effectively divides the value by 4. As long as bits aren’t
lost, shifting 7 bits to the left is equivalent to multiplying by 2, » times. In other words, it’s equivalent to
multiplying by 2. Similarly, shifting right n bits is equivalent to dividing by 27. But beware: as you saw with
the left shift of number, if significant bits are lost, the result is nothing like what you would expect. However,
this is not different from the “real” multiply operation. If you multiplied the 2-byte number by 4, you would
get the same result, so shifting left and multiplying are still equivalent. The incorrect result arises because
the result of the multiplication is outside the range of a 2-byte integer.

When you want to modify the original value of a variable using a shift operation, you can do so by using
a >>=or <<= operator. Here’s an example:

number >>= 2; // Shift right two bit positions

This is equivalent to the following:
number = static_cast<unsigned short>(number >> 2); // Shift right two bit positions

There’s no confusion between these shift operators and the insertion and extraction operators for input
and output. As far as the compiler is concerned, the meaning is clear from the context. If it isn’t, the compiler
will generate a message in most cases, but you do need to be careful. For example, to output the result of

shifting number left by two bits, you could write this:

std::cout << (number << 2) << std::endl; // Prints 65548
69

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

The parentheses are essential here. Without them, the compiler would interpret the shift operator as a
stream insertion operator, so you wouldn’t get the result that you intended:

std::cout << number << 2 << std::endl; // Prints 163872 (16387 followed by 2)

Note that if number starts out as 16,387 like before in Figure 3-2, the former statement does not print out 12.
Instead, it prints 65,548, which happens to be 16,387 times 4. The reason again is that number is implicitly
promoted to a value of type int prior to shifting its bits to the left by two positions, and int is more than
large enough to represent the exact result: 65,548. To obtain 12 instead, you could add static_cast<> to
explicitly cast the result back to unsigned short:

std::cout << static_cast<unsigned short>(number << 2) << std::endl;

Shifting Signed Integers

You can apply the bitwise shift operators to signed and unsigned integers. However, the effect of the right
shift operator on signed integer types depends on your compiler and computer architecture. In some cases,
a right shift on negative integers will introduce “0” bits at the left to fill vacated bit positions. In other cases,
the sign bit is propagated, so “1” bits fill the vacated bit positions to the left. Which of the two happens
depends on the binary encoding that your compiler uses for negative integers (the most common encoding
schemes were discussed in Chapter 1).

The reason for propagating the sign bit, where this occurs, is to maintain consistency between a right
shift and a divide operation. We can illustrate this with a variable of type signed char, just to show how it
works. Suppose you define value like this:

signed char value {-104}; // Value is 10011000

104 in binary is 01101000, so assuming your computer employs a two’s complement notation for
negative integers, -104 becomes 10011000 (remember, to obtain the two’s complement binary encoding,
you have to first flip all bits of the positive binary value and then add one). You can shift value two bits to the
right with this operation:

value >>= 2; // Result is 11100110

The binary result when the sign is propagated is shown in the comment. Two Os are shifted out at the
right end, and because the sign bit is 1, further 1s are inserted on the left. The decimal value of the result is
-26 (flipping the bits of 11100110 and adding one gives 00011010 in binary, which is 26 in decimal notation).
And -26 is the same as if you had divided by 4, as you would expect. With operations on unsigned integer
types, of course, the sign bit isn’t propagated, and 0s are always inserted on the left.

As we said, what actually happens when you right-shift negative integers is implementation defined.
Because for the most part you'll be using these operators for operating at the bit level —where maintaining
the integrity of the bit pattern is important—you should always use unsigned integers to ensure that you
avoid the high-order bit being propagated.

70

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_1

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

Logical Operations on Bit Patterns

Table 3-2 shows the four bitwise operators that modify bits in an integer value.

Table 3-2. Bitwise Operators

Operator Description

~ The bitwise complement operator is a unary operator that inverts the bits in its operand,
so 1 becomes 0, and 0 becomes 1.

& The bitwise AND operator ANDs corresponding bits in its operands. If the corresponding
bits are both 1, then the resulting bit is 1; otherwise, it’s 0.

A The bitwise exclusive OR operator or XOR operator exclusive-ORs corresponding
bits in its operands. If the corresponding bits are different, then the result is 1. If the
corresponding bits are the same, the result is 0.

The bitwise OR operator ORs corresponding bits in its operands. If either bit is 1, then
the result is 1. If both bits are 0, then the result is 0.

The operators appear in Table 3-2 in order of precedence, so the bitwise complement operator has the
highest precedence, and the bitwise OR operator has the lowest. The shift operators << and >> are of equal
precedence, and they’re below the ~ operator but above the & operator.

Using the Bitwise AND

You'll typically use the bitwise AND operator to select particular bits or groups of bits in an integer value.
Suppose you are using a 16-bit integer to store the point size, the style of a font, and whether it is bold and/or
italic, as we illustrated in Figure 3-1. Suppose further that you want to define and initialize a variable to
specify a 12-point, italic, style 6 font (in fact, the very same one illustrated in Figure 3-1). In binary, the style
will be 00000110 (binary 6), the italic bit will be 1, the bold bit will be 0, and the size will be 01100 (binary 12).
Remembering that there’s an unused bit as well, you need to initialize the value of the font variable to the
binary number 0000 0110 0100 1100. Because groups of four bits correspond to a hexadecimal digit, the
most compact way to do this is to specify the initial value in hexadecimal notation:

unsigned short font {0x064C}; // Style 6, italic, 12 point

Of course, ever since C++14 you also have the option to simply use a binary literal instead:
unsigned short font {0b00000110'0'10'01100}; // Style 6, italic, 12 point

Note the creative use of the digit grouping character here to signal the borders of the style, italic/bold,
and point size components.

To work with the size afterward, you need to extract it from the font variable; the bitwise AND operator
will enable you to do this. Because bitwise AND produces 1 bit only when both bits are 1, you can define a
value that will “select” the bits defining the size when you AND it with font. You need to define a value that
contains 1s in the bit positions that you're interested in and 0s in all the others. This kind of value is called a
mask, and you can define such a mask with one of these statements (both are equivalent):
unsigned short size mask {0x1F};

// unsigned short size mask {ob11111};

71

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

The five low-order bits of font represent its size, so you set these bits to 1. The remaining bits are 0, so
they will be discarded. (Binary 0000 0000 0001 1111 is hexadecimal 1F.)
You can now extract the point size from font with the following statement:

auto size {static_cast<unsigned short>(font & size mask)};

Where both corresponding bits are 1 in an & operation, the resultant bit is 1. Any other combination of
bits results in 0. The values therefore combine like this:

font 0000 0110 0100 1100
size_mask 0000 0000 0001 1111
font & size mask 0000 0000 0000 1100

We have shown the binary values in groups of four bits just to make it easy to identify the hexadecimal
equivalent; it also makes it easier to see how many bits there are in total. The effect of the mask is to separate
out the five rightmost bits, which represent the point size.

You can use the same mechanism to select the font style, but you'll also need to use a shift operator to
move the style value to the right. You can define a mask to select the left eight bits as follows:

unsigned short style mask {0xFF00}; // Mask for style is 1111 1111 0000 0000
You can obtain the style value with this statement:
auto style {static_cast<unsigned short>((font & style mask) >> 8)};

The effect of this statement is as follows:

font 0000 0110 0100 1100
style mask 1111 1111 0000 0000
font & style mask 0000 0110 0000 0000

(font & style mask) >> 8 0000 0000 0000 0110

You should be able to see that you could just as easily isolate the bits indicating italic and bold by
defining a mask for each. Of course, you still need a way to test whether the resulting bit is 1 or 0, and you'll
see how to do that in the next chapter.

Another use for the bitwise AND operator is to turn bits off. You saw previously that a 0 bit in a mask will
produce 0 in the result of the AND operator. To just turn the italic bit off in font, for example, you bitwise-
AND font with a mask that has the italic bit as 0 and all other bits as 1. We’ll show you the code to do this
after we've shown you how to use the bitwise OR operator, which is next.

Using the Bitwise OR

You can use the bitwise OR operator for setting one or more bits to 1. Continuing with your manipulations
of the font variable, it’s conceivable that you would want to set the italic and bold bits on. You can define
masks to select these bits with these statements:

unsigned short italic {o0x40}; // Seventh bit from the right
unsigned short bold {0x20}; // Sixth bit from the right
72

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

Naturally, you could again use binary literals to specify these masks. In this case, however, using the left-
shift operator is probably easiest:

auto italic {static_cast<unsigned short>(1u << 6)}; // Seventh bit from the right
auto bold {static_cast<unsigned short>(1u << 5)}; // Sixth bit from the right

Caution Do remember, though, that, to turn on the nth bit, you have to shift the value 1 to the left by n-1!
To see this, it’s always easiest to think about what happens if you shift with smaller values: shifting by zero
gives you the first bit, shifting by one the second, and so on.

This statement then sets the bold bit to 1:
font |= bold; // Set bold

The bits combine like this:

font 0000 0110 0100 1100
bold 0000 0000 0010 0000
font | bold 0000 0110 0110 1100

Now font specifies that the font is bold as well as italic. Note that this operation will set the bit on
regardless of its previous state. If it was on, it remains on.

You can also OR masks together to set multiple bits. The following statement sets both the bold and
italics bits:

font |= bold | italic; // Set bold and italic

Caution [t's easy to fall into the trap of allowing language to make you select the wrong operator. Because
you say “Set italic and bold,” there’s a temptation to use the & operator, but this would be wrong. ANDing the
two masks would result in a value with all bits 0, so you wouldn’t change anything.

Using the Bitwise Complement Operator

As we said, you can use the & operator to turn bits off—you just need a mask that contains 0 at the bit
position you want to turn off and 1 everywhere else. However, this raises the question of how best to specify
such a mask. To specify it explicitly, you need to know how many bytes there are in the variable you want to
change (not exactly convenient if you want the program to be in any way portable). However, you can obtain
the mask that you want using the bitwise complement operator on the mask that you would use to turn the
bit on. You can obtain the mask to turn bold off from the bold mask that turns it on:

bold 0000 0000 0010 0000
~bold 1111 1111 1101 1111

73

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

The effect of the complement operator is to flip each bit, 0 to 1 or 1 to 0. This will produce the result
you're looking for, regardless of whether bold occupies 2, 4, or 8 bytes.

Note The bitwise complement operator is sometimes called the bitwise NOT operator because for every
bit it operates on, what you get is not what you started with.

Thus, all you need to do to turn bold off is to bitwise-AND the complement of the bold mask with font.
The following statement will do it:

font &= ~bold; // Turn bold off

You can set multiple bits to 0 by combining several inverted masks using the & operator and bitwise-
ANDing the result with the variable you want to modify:

font &= ~bold & ~italic; // Turn bold and italic off

This sets both the italic and bold bits to 0 in font. No parentheses are necessary here because ~ has a
higher precedence than & However, if you're ever uncertain about operator precedence, put parentheses in
to express what you want. It certainly does no harm, and it really does good when they’re necessary. Note
that you can accomplish the same effect using the following statement:

font &= ~(bold | italic); // Turn bold and italic off

Here the parentheses are required. We recommend you take a second to convince yourself that both
statements are equivalent. If this doesn’t come natural yet, rest assured: you'll get more practice working
with similar logic when learning about so-called Boolean expressions in the next chapter.

Using the Bitwise Exclusive OR

The outcome of the bitwise exclusive OR operator—or XOR operator for short—contains a 1 if and only if
precisely one of the corresponding input bits is equal to 1, while the other equals 0. Whenever both input
bits are equal, even if both are 1, the resulting bit is 0. The latter is where the XOR operator differs from the
regular OR operator. Table 3-3 summarizes the effect of all three binary bitwise operators:

Table 3-3. Truth Table of Binary Bitwise Operators

X y x 8y x|y x "y
0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 1 0

One interesting property of the XOR operator is that it may be used to foggle or flip the state of
individual bits. With the font variable and the bold mask defined as before, the following toggles the bold
bit—that is, if the bit was 0 before, it will now become 1, and vice versa:

font "= bold; // Toggles bold

74

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

This implements the notion of clicking the Bold button in a typical word processor. If the selected text
is not bold yet, it then simply becomes bold. If the selection is already bold, however, its font reverts to the
regular, nonbold style. Let’s take a closer look at how this works:

font 0000 0110 0100 1100
bold 0000 0000 0010 0000
font * bold 0000 0110 0010 1100

If the input is a font that is not bold, the result thus contains 0 * 1, or 1. Conversely, if the input already
would be bold, the outcome would contain1 " 1, or 0.

The XOR operator is used less frequently than the & and | operators. Important applications arise,
however, in for instance cryptography, random number generation, and computer graphics. XOR is also
used for the backup of hard disk data by certain RAID technologies. Suppose you have three similar hard
drives, two with data and one to serve as backup. The basic idea is to ensure that the third drive at all times
contains the XOR’ed bits of all contents of the two other drives, like so:

Drive one ... 1010 0111 0110 0011 ..
Drive two ... 0110 1100 0010 1000 ...
XOR drive (backup) ... 1100 1011 0100 1011 ..

If either of these three drives is then lost, its contents can be recovered by XOR’ing that of both other
drives. Suppose, for instance, that you lose your second drive because of some critical hardware failure.
Then its contents are easily recovered as follows:

Drive one ... 1010 0111 0110 0011 ...
XOR drive (backup) ... 1100 1011 0100 1011 ...
Recovered data (XOR) ... 0110 1100 0010 1000 .

Notice that even with such a relatively simple trick, you already need only one extra drive to back up two
others. The naive approach would be to simply copy the contents of each drive onto another, meaning you'd
need not three but four drives. The XOR technique is thus already a tremendous cost saver!

Using the Bitwise Operators: An Example

It's time we looked at some of this stuff in action. This example exercises bitwise operators:

// Ex3_01.cpp

// Using the bitwise operators
#include <iostream>

#include <iomanip>

int main()
{
unsigned int red {0xFFooOOu}; // Color red
unsigned int white {OXFFFFFFu}; // Color white - RGB all maximum

75

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

std::cout << std::hex // Hexadecimal output

<< std::setfill('o'); // Fill character 0
std::cout << "Try out bitwise complement, AND and OR operators:";
std::cout << "\nInitial value: red = " << std::setw(8) << red;
std::cout << "\nComplement: red = " << std::setw(8) << ~red;
std::cout << "\nInitial value: white = " << std::setw(8) << white;
std::cout << "\nComplement: ~“white = " << std::setw(8) << ~white;
std::cout << "\nBitwise AND: red & white = " << std::setw(8) << (red & white);
std::cout << "\nBitwise OR: red | white = " << std::setw(8) << (red | white);
std::cout << "\n\nNow try successive exclusive OR operations:";

unsigned int

mask {red " white};

std::cout << "\nmask = red * white = " << std::setw(8) << mask;
std::cout << "\n mask ~ red = " << std::setw(8) << (mask " red);
std::cout << "\n mask * white = " << std::setw(8) << (mask " white);
unsigned int flags {OxFF}; // Flags variable
unsigned int bitimask {ox1}; // Selects bit 1
unsigned int bitémask {0b100000}; // Selects bit 6
unsigned int bit2omask {1u << 19}; // Selects bit 20
std::cout << "\n\nUse masks to select or set a particular flag bit:";
std::cout << "\nSelect bit 1 from flags : " << std::setw(8) << (flags & bitimask);
std::cout << "\nSelect bit 6 from flags : " << std::setw(8) << (flags & bitémask);
std::cout << "\nSwitch off bit 6 in flags: " << std::setw(8) << (flags &= ~bitémask);
std::cout << "\nSwitch on bit 20 in flags: " << std::setw(8) << (flags |= bit20mask)
<< std::endl;
}

If you typed the code correctly, the output is as follows:

Try out bitwise complement, AND and OR operators:

Initial value: red = 00ff0000
Complement: ~red = ffooffff
Initial value: white = 00ffffff
Complement: ~“white = ff000000
Bitwise AND: red & white = 00ff0000
Bitwise OR: red | white = OOffffff

Now try successive

mask = red » white = 0000ffff
mask * red = ooffffff
mask * white = 00ff0000

exclusive OR operations:

Use masks to select or set a particular flag bit:
: 00000001
: 00000020
Switch off bit 6 in flags:
Switch on bit 20 in flags:

Select bit 1 from flags
Select bit 6 from flags

76

000000df
000800df

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

There’s an #include directive for the iomanip header because the code uses manipulators to control the
formatting of the output. You define variables red and white as unsigned integers and initialize them with
hexadecimal color values.

It will be convenient to display the data as hexadecimal values, and inserting std: : hex in the output
stream does this. The hex is modal, so all subsequent integer output will be in hexadecimal format. It will be
easier to compare output values if they have the same number of digits and leading zeros. You can arrange
for this by setting the fill character as 0 using the std: : setfill() manipulator and ensuring the field width
for each output value is the number of hexadecimal digits, which is 8. The setfill() manipulator is modal,
so it remains in effect until you reset it. The std: : setw() manipulator is not modal; you have to insert it into
the stream before each output value.

You combine red and white using the bitwise AND and OR operators with these statements:

std::cout << "\nBitwise AND red & white = " << std::setw(8) << (red & white);
std::cout << "\nBitwise OR red | white = " << std::setw(8) << (red | white);

The parentheses around the expressions are necessary here because the precedence of << is higher than
& and |. Without the parentheses, the statements wouldn’t compile. If you check the output, you'll see that
it’s precisely as discussed. The result of ANDing two bits is 1 if both bits are 1; otherwise, the result is 0. When
you bitwise-OR two bits, the result is 1 unless both bits are 0.

Next, you create a mask to use to flip between the values red and white by combining the two values
with the XOR operator. The output for the value of mask shows that the exclusive OR of two bits is 1 when the
bits are different and 0 when they’re the same. By combining mask with either color values using exclusive
OR, you obtain the other. This means that by repeatedly applying exclusive OR with a well-chosen mask, you
can toggle between two different colors. Applying the mask once gives one color, and applying it a second
time reverts to the original color. This property is often exploited in computer graphics when drawing or
rendering using a so-called XOR mode.

The last group of statements demonstrates using a mask to select a single bit from a group of flag bits.
The mask to select a particular bit must have that bit as 1 and all other bits as 0. To select a bit from flags,
you just bitwise-AND the appropriate mask with the value of flags. To switch a bit off, you bitwise-AND
flags with a mask containing 0 for the bit to be switched off and 1 everywhere else. You can easily produce
this by applying the complement operator to a mask with the appropriate bit set, and bitémask is just such a
mask. Of course, if the bit to be switched off was already 0, it would remain as 0.

Enumerated Data Types

You'll sometimes need variables that have a limited set of possible values that can be usefully referred to by
name—the days of the week, for example, or the months of the year. An enumeration provides this capability.
When you define an enumeration, you're creating a new type, so it’s also referred to as an enumerated data
type. Let’s create an example using one of the ideas we just mentioned—a type for variables that can assume
values corresponding to days of the week. You can define this as follows:

enum class Day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};
This defines an enumerated data type called Day, and variables of this type can only have values from
the set that appears between the braces, Monday through Sunday. If you try to set a variable of type Day to a

value that isn’t one of these values, the code won’t compile. The symbolic names between the braces are
called enumerators.

7

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

Each enumerator will be automatically defined to have a fixed integer value of type int by default. The
first name in the list, Monday, will have the value 0, Tuesday will be 1, and so on, through to Sunday with the
value 6. You can define today as a variable of the enumeration type Day with the following statement:

Day today {Day::Tuesday};

You use type Day just like any of the fundamental types. This definition for today initializes the variable
with the value Day: : Tuesday. When you reference an enumerator, it must be qualified by the type name.

To output the value of today, you must cast it to a numeric type because the standard output stream will
not recognize the type Day:

std::cout << "Today is " << static_cast<int>(today) << std::endl;

This statement will output "Today is 1".

By default, the value of each enumerator is one greater than the previous one, and by default the values
begin at 0. You can make the implicit values assigned to enumerators start at a different integer value,
though. This definition of type Day has enumerator values 1 through 7:

enum class Day {Monday = 1, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};

Monday is explicitly specified as 1, and subsequent enumerators will always be 1 greater than the
preceding one. You can assign any integer values you like to the enumerators, and assigning these values
is not limited to the first few enumerators either. The following definition, for instance, results in weekdays
having values 3 through 7, Saturday having value 1, and Sunday having value 2:

enum class Day {Monday = 3, Tuesday, Wednesday, Thursday, Friday, Saturday = 1, Sunday};

The enumerators don’t even need to have unique values. You could define Monday and Mon as both
having the value 1, for example, like this:

enum class Day {Monday = 1, Mon = 1, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday };

You can now use either Mon or Monday as the first day of the week. A variable, yesterday, that you've
defined as type Day could then be set with this statement:

yesterday = Day::Mon;

You can also define the value of an enumerator in terms of a previous enumerator. Throwing everything
you've seen so far into a single example, you could define the type Day as follows:

enum class Day { Monday, Mon = Monday,
Tuesday = Monday + 2, Tues = Tuesday,
Wednesday = Tuesday + 2, Wed = Wednesday,
Thursday = Wednesday + 2, Thurs = Thursday,
Friday = Thursday + 2, Fri = Friday,
Saturday = Friday + 2, Sat = Saturday,
Sunday Saturday + 2, Sun = Sunday

};

Now variables of type Day can have values from Monday to Sunday and from Mon to Sun, and the matching
pairs of enumerators correspond to the integer values 0, 2, 4, 6, 8, 10, and 12. Values for enumerators must
be compile-time constants, that is, constant expressions that the compiler can evaluate. Such expressions

78

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

include literals, enumerators that have been defined previously, and variables that you've specified as const.
You can’t use non-const variables, even if you've initialized them using a literal.

The enumerators can be an integer type that you choose, rather than the default type int. You can also
assign explicit values to all the enumerators. For example, you could define this enumeration:

enum class Punctuation : char {Comma = ',', Exclamation = '!', Question='?'};

The type specification for the enumerators goes after the enumeration type name and is separated from
it by a colon. You can specify any integral data type for the enumerators. The possible values for variables of
type Punctuation are defined as char literals and will correspond to the code values of the symbols. Thus,
the values of the enumerators are 44, 33, and 63, respectively, in decimal, which also demonstrates (again)
that the values don’t have to be in ascending sequence.

Here’s an example that demonstrates some of the things you can do with enumerations:

// EX3_02.cpp

// Operations with enumerations
#include <iostream>

#include <iomanip>

int main()

{
enum class Day { Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday };
Day yesterday{ Day::Monday }, today{ Day::Tuesday }, tomorrow{ Day::Wednesday };
const Day poets_day{ Day::Friday };
enum class Punctuation : char { Comma = ',', Exclamation =
Punctuation ch{ Punctuation::Comma };

', Question = '?' };

std::cout << "yesterday's value is " << static_cast<int>(yesterday)
<< static_cast<char>(ch) << " but poets day's is " << static_cast<int>(poets day)
<< static_cast<char>(Punctuation::Exclamation) << std::endl;

today = Day::Thursday; // Assign new ...
ch = Punctuation::Question; // ... enumerator values
tomorrow = poets_day; // Copy enumerator value

std::cout << "Is today's value(" << static_cast<int>(today)
<< ") the same as poets_day(" << static_cast<int>(poets_day)
<< ')' << static_cast<char>(ch) << std::endl;

// ch = tomorrow; // Uncomment ...

// tomorrow = Friday; // ... any of these ...
// today = 6; // ... for an error.

}

The output is as follows:

yesterday's value is 0, but poets_day's is 4!
Is today's value(3) the same as poets_day(4)?

We'll leave you to figure out why. Note the commented statements at the end of main(). They are all
illegal operations. You should try them to see the compiler messages that result.

79

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

Note The enumerations we have just described make obsolete the old syntax for enumerations. These are
defined without using the class keyword. For example, the Day enumeration could be defined like this:

enum Day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};

Your code will be less error prone if you stick to enum class enumeration types, though. For one, old-style
enumerators convert to values of integral or even floating-point types without a cast, which can easily lead to
mistakes. The more strongly typed enum classes are always the better choice over old-style enum types.

Aliases for Data Types

You've seen how enumerations provide one way to define your own data types. The using keyword enables
you to specify a type alias, which is your own data type name that serves as an alternative to an existing
type name. Using using, you can define the type alias BigOnes as being equivalent to the standard type
unsigned long long with the following statement:

using BigOnes = unsigned long long; // Defines BigOnes as a type alias

It's important you realize this isn’t defining a new type. This just defines BigOnes as an alternative name
for type unsigned long long. You could use it to define a variable mynum with this statement:

BigOnes mynum {}; // Define & initialize as type unsigned long long

There’s no difference between this definition and using the standard type name. You can still use the
standard type name as well as the alias, but it’s hard to come up with a reason for using both.

There’s an older syntax for defining an alias for a type name as well, which uses the typedef keyword.
For example, you can define the type alias BigOnes like this:

typedef unsigned long long BigOnes; // Defines BigOnes as a type alias

Among several other advantages,' however, the newer syntax is more intuitive, as it looks and feels like
aregular assignment. With the old typedef syntax you always had to remember to invert the order of the
existing type, unsigned long long, and the new name, BigOnes. Believe us, you would have struggled with
this order each time you needed a type alias—we certainly have! Luckily, you'll never have to experience
this, as long as you follow this simple guideline:

Tip Always use the using keyword to define a type alias. In fact, if it weren’t for legacy code, we’d be
advising you to forget the keyword typedef even exists.

'The other advantages of the using syntax over the typedef syntax manifest themselves only when specifying aliases
for more advanced types. Using using, for instance, it’s much easier to specify aliases for function types. You’ll see this
in Chapter 18. The using keyword moreover allows you to specify so-called type alias templates, or parameterized type
aliases, something that is not possible using the old typedef syntax. We’ll show you an example of an alias template in
Chapter 18 as well.

80

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_11
http://dx.doi.org/10.1007/978-1-4842-3366-5_11

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

Because you are just creating a synonym for a type that already exists, this may appear to be a bit
superfluous. This isn’t the case. A major use for this is to simplify code that involves complex type names.
For example, a program might involve a type name such as std: :map<std: :shared_ptr<Contact>,
std: :string>. You'll discover what the various components of this complex type mean later in this book,
but for now it should already be clear that it can make for verbose and obscure code when such long types
are repeated often. You can avoid cluttering the code by defining a type alias, like this:

using PhoneBook = std::map<std::shared ptr<Contact>, std::string>;

Using PhoneBook in the code instead of the full type specification can make the code more readable.
Another use for a type alias is to provide flexibility in the data types used by a program that may need to be
run on a variety of computers. Defining a type alias and using it throughout the code allows the actual type
to be modified by just changing the definition of the alias.

Still, type aliases, like most things in life, should be used with moderation. Type aliases can surely make
your code more compact, yes. But compact code is never the goal. There are plenty of times where spelling
out the concrete types makes the code easier to understand. Here’s an example:

using StrPtr = std::shared ptr<std::string>;

StrPtr, while compact, does not help at all in clarifying your code. On the contrary, such a cryptic and
unnecessary alias just obfuscates your code. Some guidelines therefore go as far as forbidding type aliases
altogether. We certainly wouldn’t go that far; just use common sense when deciding whether an alias either
helps or obfuscates, and you'll be fine.

The Lifetime of a Variable

All variables have a finite lifetime. They come into existence from the point at which you define them, and at
some point they are destroyed—at the latest, when your program ends. How long a particular variable lasts is
determined by its storage duration. There are four different kinds of storage duration:

e Variables defined within a block that are not defined to be static have automatic
storage duration. They exist from the point at which they are defined until the end
of the block, which is the closing curly brace, }. They are referred to as automatic
variables or local variables. Automatic variables are said to have local scope or block
scope. All the variables you have created so far have been automatic variables.

e Variables defined using the static keyword have static storage duration. They are
called static variables. Static variables exist from the point at which they are defined
and continue in existence until the program ends. You'll learn about static variables
in Chapters 8 and 11.

e Variables for which you allocate memory at runtime have dynamic storage duration.
They exist from the point at which you create them until you release their memory to
destroy them. You'll learn how to create variables dynamically in Chapter 5.

e Variables declared with the thread_local keyword have thread storage duration.
Thread local variables are an advanced topic, though, so we won'’t be covering them
in this book.

Another property that variables have is scope. The scope of a variable is the part of a program in which
the variable name is valid. Within a variable’s scope, you can refer to it, set its value, or use it in an expression.
Outside of its scope, you can’t refer to its name. Any attempt to do so will result in a compiler error message.
Note that a variable may still exist outside of its scope, even though you can’t refer to it. You'll see examples of
this situation later, when you learn about variables with static and dynamic storage duration.

81

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_8
http://dx.doi.org/10.1007/978-1-4842-3366-5_11
http://dx.doi.org/10.1007/978-1-4842-3366-5_5

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

Note Remember that the lifetime and scope of a variable are different things. Lifetime is the period of
execution time over which a variable survives. Scope is the region of program code over which the variable
name can be used. It’s important not to get these two ideas confused.

Global Variables

You have great flexibility in where you define variables. The most important consideration is what scope
the variables need to have. You should generally place a definition as close as possible to where the variable
is first used. This makes your code easier for another programmer to understand. In this section, we’ll
introduce a first example where this is not the case: so-called global variables.

You can define variables outside all of the functions in a program. Variables defined outside of all blocks
and classes are also called globals and have global scope (which is also called global namespace scope). This
means they’re accessible in all the functions in the source file following the point at which they’re defined.
If you define them at the beginning of a source file, they'll be accessible throughout the file. In Chapter 10,
we'll show how to declare variables that can be used in multiple files.

Global variables have static storage duration by default, so they exist from the start of the program until
execution of the program ends. Initialization of global variables takes place before the execution of main()
begins, so they’re always ready to be used within any code that’s within the variable’s scope. If you don’t
initialize a global variable, it will be zero-initialized by default. This is unlike automatic variables, which
contain garbage values when uninitialized.

Figure 3-3 shows the contents of a source file, Example. cpp, and illustrates the extent of the scope of
each variable in the file.

Program File Example.cpp

long value1l; <

The arrows indicate the
int main() scope of each variable
within the source file.

int value2{}; <

{ .

int value3{}; < | value2

value3

} < J valuel

} <

int value4; <«

int function(int)

{

value4

long value5{}; <
int valuei{}; < | ‘

value5
valuel

} |

< «—

Figure 3-3. Variable scope
82

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_10

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

The variable value1 at the beginning of the file is defined at global scope, as is value4, which appears
after the definition of main(). They will be initialized with zero by default. Remember, only global variables
have default initial values, not automatic variables. The lifetime of global variables is from the beginning of
program execution to when the program ends. Global variables have a scope that extends from the point
at which they're defined to the end of the file. Even though value4 exists when execution starts, it can’t be
referred to in main() because main() isn’t within its scope. For main() to use value4, you would need to
move the definition of value4 to the beginning of the file.

The local variable called valuel in function() will hide the global variable of the same name. If you use
the name valuel in the function, you are accessing the local automatic variable of that name. To access the
global value1, you must qualify it with the scope resolution operator, : :. Here’s how you could output the
values of the local and global variables that have the name value1:

std::cout << "Global valuel = " << ::valuel << std::endl;
std::cout << "Local valuel = " << valuel << std::endl;

Because global variables continue to exist for as long as the program is running, you might be
wondering, “Why not make all variables global and avoid messing around with local variables that
disappear?” This sounds attractive at first, but there are serious disadvantages that completely outweigh any
advantages. Real programs are composed of a huge number of statements, a significant number of functions,
and a great many variables. Declaring all at global scope greatly magnifies the possibility of accidental,
erroneous modification of a variable. It makes it hard to trace which part of the code is responsible for
changes to global variables. It also makes the job of naming them sensibly quite intractable. Global variables,
finally, occupy memory for the duration of program execution, so the program will require more memory
than if you used local variables where the memory is reused.

By keeping variables local to a function or a block, you can be sure they have almost complete protection
from external effects. They’ll only exist and occupy memory from the point at which they’re defined to the end
of the enclosing block, and the whole development process becomes much easier to manage.

Tip Common coding and design guidelines dictate that global variables are typically to be avoided, and
with good reason. Global constants are a noble exception to this rule. That is, global variables that are declared
with the const keyword. It is recommended to define all your constants only once, and global variables are
perfectly suited for that.

Here’s an example that shows aspects of global and automatic variables:

// Ex3_03.cpp
// Demonstrating scope, lifetime, and global variables
#include <iostream>

long count1{999L}; // Global count1
double count2{3.14}; // Global count2
int count3; // Global count3 - default initialization
int main()
{ 7* Function scope starts here */
int count1{10}; // Hides global count1
int count3{50}; // Hides global count3

std::cout << "Value of outer countl =
std::cout << "Value of global count1
std::cout << "Value of global count2

<< countl << std::endl;
<< ::countl << std::endl;
<< count2 << std::endl;

83

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

{ /* New block scope starts here... */

int count1{20}; // This is a new variable that hides the outer counti
int count2{30}; // This hides global count2

std::cout << "\nValue of inner countl = "<< countl << std::endl;
std::cout << "Value of global countl = " << ::countl << std::endl;
std::cout << "Value of inner count2 = " << count2 << std::endl;
std::cout << "Value of global count2 = " << ::count2 << std::endl;
countl = ::countl + 3; // This sets inner countl to global counti+3
++::countl; // This changes global count1

std::cout << "\nValue of inner countl = " << countl << std::endl;
std::cout << "Value of global countl = " << ::countl << std::endl;
count3 += count2; // Increments outer count3 by inner count2;

int count4 {};
} /* ...and ends here. */

// std::cout << count4 << std::endl; // count4 does not exist in this scope!
std::cout << "\nValue of outer countl = "<< countl << std::endl
<< "Value of outer count3 = " << count3 << std::endl;
std::cout << "Value of global count3 = " << ::count3 << std::endl;

std::cout << "Value of global count2
} /* Function scope ends here */

<< count2 << std::endl;

The output from this example is as follows:

Value of outer countl = 10
Value of global countl = 999
Value of global count2 = 3.14

Value of inner countl = 20
Value of global count1 = 999
Value of inner count2 = 30
Value of global count2 = 3.14

Value of inner counti = 1002
Value of global count1 = 1000

Value of outer countl = 10
Value of outer count3 = 80
Value of global count3 =0
Value of global count2 = 3.14

We've duplicated names in this example to illustrate what happens—it’s of course not a good approach
to programming at all. Doing this kind of thing in a real program is confusing and totally unnecessary, and it
results in code that is error prone.

84

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

There are three variables defined at global scope, count1, count2, and count3. These exist as long as
the program continues to execute, but the names will be masked by local variables with the same name. The
first two statements in main() define two integer variables, count1 and count3, with initial values of 10 and
50, respectively. Both variables exist from this point until the closing brace at the end of main(). The scope
of these variables also extends to the closing brace at the end of main(). Because the local count1 hides
the global count1, you must use the scope resolution operator to access the global count1 in the output
statement in the first group of output lines. Global count2 is accessible just by using its name.

The second opening brace starts a new block. count1 and count2 are defined within this block with
values 20 and 30, respectively. count1 here is different from count1 in the outer block, which still exists, but
its name is masked by the second count1 and is not accessible here; global count1 is also masked but is
accessible using the scope resolution operator. The global count2 is masked by the local variable with that
name. Using the name count1 following the definition in the inner block refers to count1 defined in that
block.

The first line of the second block of output is the value of the count1 defined in the inner scope—that is,
inside the inner braces. If it was the outer count1, the value would be 10. The next line of output corresponds
to the global count1. The following line of output contains the value of local count2 because you are using
just its name. The last line in this block outputs global count2 by using the : : operator.

The statement assigning a new value to count1 applies to the variable in the inner scope because the
outer count1 is hidden. The new value is the global count1 value plus 3. The next statement increments the
global count1, and the following two output statements confirm this. The count3 that was defined in the
outer scope is incremented in the inner block without any problem because it is not hidden by a variable
with the same name. This shows that variables defined in an outer scope are still accessible in an inner
scope as long as there is no variable with the same name defined in the inner scope.

After the brace ending the inner scope, count1 and count2 that are defined in the inner scope cease
to exist. Their lifetime has ended. Local count1 and count3 still exist in the outer scope, and their values
are displayed in the first two lines in the last group of output. This demonstrates that count3 was indeed
incremented in the inner scope. The last lines of output correspond to the global count3 and count2 values.

Summary

These are the essentials of what you've learned in this chapter:

¢ Youdon't need to memorize the operator precedence and associativity for all
operators, but you need to be conscious of it when writing code. Always use
parentheses if you are unsure about precedence.

e The type-safe enumerations type are useful for representing fixed sets of values,
especially those that have names, such as days of the week or suits in a pack of
playing cards.

e The bitwise operators are necessary when you are working with flags—single bits
that signify a state. These arise surprisingly often—when dealing with file input and
output, for example. The bitwise operators are also essential when you are working
with values packed into a single variable. One extremely common example thereof is
RGB-like encodings, where three to four components of a given color are packed into
one 32-bit integer value.

e Theusing keyword allows you to define aliases for other types. In legacy code, you
might still encounter typedef being used for the same purpose.

85

www.EBookswWorld.ir

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

By default, a variable defined within a block is automatic, which means that it
exists only from the point at which it is defined to the end of the block in which its
definition appears, as indicated by the closing brace of the block that encloses its
definition.

Variables can be defined outside of all the blocks in a program, in which case they
have global namespace scope and static storage duration by default. Variables with
global scope are accessible from anywhere within the program file that contains
them, following the point at which they’re defined, except where a local variable
exists with the same name as the global variable. Even then, they can still be reached
by using the scope resolution operator (: :).

EXERCISES

86

The following exercises enable you to try what you’ve learned in this chapter. If you get stuck, look back
over the chapter for help. If you’re still stuck, you can download the solutions from the Apress website
(www.apress.com/source-code/), but that really should be a last resort.

Exercise 3-1. Create a program that prompts for input of an integer and store it

as an int. Invert all the bits in the value and store the result. Output the original
value, the value with the bits inverted, and the inverted value plus 1, each in
hexadecimal representation and on one line. On the next line, output the same
numbers in decimal representation. These two lines should be formatted such that
they look like a table, where the values in the same column are right aligned in

a suitable field width. All hexadecimal values should have leading zeros so eight
hexadecimal digits always appear.

Note: Flipping all bits and adding one—ring any bells? Can you perhaps already deduce
what the output will be before you run the program?

Exercise 3-2. Write a program to calculate how many square boxes can be contained
in a single layer on a rectangular shelf, with no overhang. The dimensions of the shelf
in feet and the dimension of a side of the box in inches are read from the keyboard.
Use variables of type double for the length and depth of the shelf and type int for the
length of the side of a box. Define and initialize an integer constant to convert from feet
to inches (1 foot equals 12 inches). Calculate the number of boxes that the shelf can
hold in a single layer of type 1ong and output the result.

Exercise 3-3. Without running it, can you work out what the following code snippet will
produce as output?

auto k {430u};
auto j {(k >> 4) & ~(~ou << 3)};
std::cout << j << std::endl;

Exercise 3-4. Write a program to read four characters from the keyboard and pack
them into a single integer variable. Display the value of this variable as hexadecimal.
Unpack the four bytes of the variable and output them in reverse order, with the low-
order byte first.

www.EBookswWorld.ir

http://www.apress.com/source-code/

CHAPTER 3 © WORKING WITH FUNDAMENTAL DATA TYPES

Exercise 3-5. Write a program that defines an enumeration of type Color where the
enumerators are Red, Green, Yellow, Purple, Blue, Black, and White. Define the type
for enumerators as an unsigned integer type and arrange for the integer value of each
enumerator to be the RGB combination for the color it represents (you can easily find
the hexadecimal RGB encoding of any color online). Create variables of type Color
initialized with enumerators for yellow, purple, and green. Access the enumerator value
and extract and output the RGB components as separate values.

Exercise 3-6. We’ll conclude with one more exercise for puzzle fans (and exclusively
s0). Write a program that prompts for two integer values to be entered and store them
in integer variables, a and b, say. Swap the values of a and b without using a third
variable. Output the values of a and b.

Hint: This is a particularly tough nut to crack. To solve this puzzle, you exclusively need
one single compound assignment operator.

87

www.EBookswWorld.ir

CHAPTER 4

Making Decisions

Decision-making is fundamental to any kind of computer programming. It’s one of the things that
differentiates a computer from a calculator. It means altering the sequence of execution depending on the
result of a comparison. In this chapter, you'll explore how to make choices and decisions. This will allow you
to validate program input and write programs that can adapt their actions depending on the input data. Your
programs will be able to handle problems where logic is fundamental to the solution.

In this chapter, you'll learn:

e How to compare data values
e How to alter the sequence of program execution based on the result of a comparison
e Whatlogical operators and expressions are and how you apply them

e How to deal with multiple-choice situations

Comparing Data Values

To make decisions, you need a mechanism for comparing things, and there are several kinds of
comparisons. For instance, a decision such as “If the traffic signal is red, stop the car” involves a comparison
for equality. You compare the color of the signal with a reference color, red, and if they are equal, you stop
the car. On the other hand, a decision such as “If the speed of the car exceeds the limit, slow down” involves
a different relationship. Here you check whether the speed of the car is greater than the current speed limit.
Both of these comparisons are similar in that they result in one of two values: they are either true or false.
This is precisely how comparisons work in C++.

You can compare data values using some new operators called relational operators. Table 4-1 lists the
six operators for comparing two values.

Table 4-1. Relational Operators

Operator Meaning
< Less than
<= Less than or equal to
Greater than
>= Greater than or equal to
== Equal to
= Not equal to
© Ivor Horton and Peter Van Weert 2018 89

1. Horton and P. Van Weert, Beginning C++17, https://doi.org/10.1007/978-1-4842-3366-5_4

www.EBookswWorld.ir

https://doi.org/10.1007/978-1-4842-3366-5_4

CHAPTER 4 © MAKING DECISIONS

Caution The equal-to operator, ==, has two successive equal signs. It’s a common mistake to use one
equal sign instead of two to compare for equality. This will not necessarily result in a warning message from the
compiler because the expression may be valid but just not what you intended, so you need to take particular
care to avoid this error.

Each of these operators compares two values and results in a value of type bool. There are only two
possible bool values, true and false. true and false are keywords and are literals of type bool. They are
sometimes called Boolean literals (after George Boole, the father of Boolean algebra).

You create variables of type bool just like other fundamental types. Here’s an example:

bool isValid {true}; // Define and initialize a logical variable

This defines the variable isValid as type bool with an initial value of true. If you initialize a bool
variable using empty braces, {}, its initial value is false:

bool correct {}; // Define and initialize a logical variable to false

While explicitly using {false} here could arguably improve the readability of your code, it is good
to remember that where numeric variables are initialized to zero, for instance, when using { }, Boolean
variables will be initialized to false.

Applying the Comparison Operators

You can see how comparisons work by looking at a few examples. Suppose you have integer variables i and
j, with values 10 and -5, respectively. Consider the following expressions:

i>j il=j j> -8 i<=73+ 15

All of these expressions evaluate to true. Note that in the last expression, the addition, j + 15, executes
first because + has a higher precedence than <=.
You could store the result of any of these expressions in a variable of type bool. Here’s an example:

isvalid = i > j;

If i is greater than j, true is stored in isValid; otherwise, false is stored. You can compare values
stored in variables of character types, too. Assume that you define the following variables:

char first {'A'};
char last {'2'};

You can write comparisons using these variables:
first < last 'E' <= first first I= last

Here you are comparing code values (recall from Chapter 1 that characters are mapped to integral
codes using standard encoding schemes such as ASCII and Unicode). The first expression checks whether
the value of first, whichis 'A', is less than the value of 1last, whichis 'Z". This is always true. The result
of the second expression is false because the code value for 'E' is greater than the value of first. The last
expression is true, because 'A" is definitely not equal to 'Z".

90

www.EBooksWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_1

CHAPTER 4 © MAKING DECISIONS

You can output bool values just as easily as any other type. Here’s an example that shows how they look
by default:

// Ex4_01.cpp
// Comparing data values
#include <iostream>

int main()

{
char first {}; // Stores the first character
char second {}; // Stores the second character

std::cout << "Enter a character: ";
std::cin >> first;

std::cout << "Enter a second character: ";
std::cin >> second;

std::cout << "The value of the expression " << first << '<' << second
<« " is: " << (first < second) << std::endl;
std::cout << "The value of the expression " << first << "==" << second

<<« " is: " << (first == second) << std::endl;

Here’s an example of output from this program:

Enter a character: ?

Enter a second character: H

The value of the expression ?<H is: 1
The value of the expression ?==H is: 0

The prompting for input and reading of characters from the keyboard is standard stuff that you have
seen before. Note that the parentheses around the comparison expressions in the output statement are
necessary here. If you omit them, the compiler outputs an error message (to understand why you should
review the operator precedence rules from the beginning of the previous chapter). The expressions compare
the first and second characters that the user entered. From the output you can see that the value true is
displayed as 1, and the value false is displayed as 0. These are the default representations for true and
false. You can make bool values output as true and false using the std: :boolalpha manipulator. Just add
this statement somewhere before the last four lines of the main() function:

std::cout << std::boolalpha;

If you compile and run the example again, you get bool values displayed as true or false. To return
output of bool values to the default setting, insert the std: :noboolalpha manipulator into the stream.

91

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

Comparing Floating-Point Values

Of course, you can also compare floating-point values. Let’s consider some slightly more complicated
numerical comparisons. First, define variables with the following statements:

int i {-10};

int j {20};

double x {1.5};
double y {-0.25E-10};

Now consider the following logical expressions:
1<y j < (10 - 1) 2.0%x >= (3 +y)

The comparison operators are all of lower precedence than the arithmetic operators, so none of the
parentheses are strictly necessary, but they do help make the expressions clearer. The first comparison
evaluates to true because y has a very small negative value (-0.000000000025), which is greater than -1. The
second comparison results in false because the expression 10 - 1i has the value 20, which is the same as j.
The third expression is true because 3 + y is slightly less than 3.

You can use relational operators to compare values of any of the fundamental types. When you learn
about classes, you'll see how you can arrange for the comparison operators to work with types that you
define, too. All you need now is a way to use the result of a comparison to modify the behavior of a program.
Let’s look into that immediately.

The if Statement

The basic if statement enables you to choose to execute a single statement, or a block of statements, when a
given condition is true. Figure 4-1 illustrates how this works.

if (condition) condition

statement; : 0
Next statement; is true?
or
Statement
if (condition) or Block of
{ Statements
statement; l
}
Next statement;
> Next Statement

The statement or block of statements that follows
the if is only executed if condition is true.

Figure 4-1. Logic of the simple 1f statement
92

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

Here is an example of an if statement that tests the value of a char variable, letter:

if (letter == 'A")
std::cout << "The first capital, alphabetically speaking.\n"; // Only if letter equals 'A’

std::cout << "This statement always executes.\n";

If letter has the value 'A’, the condition is true, and these statements produce the following output:

The first capital, alphabetically speaking.
This statement always executes.

If the value of letter is not equal to 'A’, only the second line appears in the output. You put the
condition to be tested between parentheses immediately following the keyword, if. We adopt the
convention to add a space between the if and the parentheses (to differentiate visually from function calls),
but this is not required. As usual, the compiler will ignore all whitespace, so the following are equally valid
ways to write the test:

if(letter == 'A") if(letter == 'A")

The statement following the if is indented to indicate that it executes only as a result of the condition
being true. The indentation is not necessary for the program to compile, but it does help you recognize the
relationship between the if condition and the statement that depends on it. Sometimes, you will see simple

if statements written on a single line, like this:

if (letter == 'A") std::cout << "The first capital, alphabetically speaking\n.";

Caution Never put a semicolon (;) directly after the condition of the if statement. Unfortunately, doing
so compiles without errors (at best, the compiler will issue a warning), but it does not mean at all what was
intended:

if (letter == 'A'");
std::cout << "The first capital, alphabetically speaking.\n";

The semicolon on the first line results in a so-called empty statement or null statement. Superfluous
semicolons, and therefore empty statements, are allowed to appear pretty much anywhere within a series of
statements. The following, for instance, is legal C++:

int i = 0;; i += 5;; ; std::cout << i << std::endl ;;

Usually, such empty statements have no effect at all. But when added immediately after the condition of an if,
it binds the statement that is executed if the condition evaluates to true. In other words, writing a semicolon
after the if (letter == 'A") test has the same effect as writing this:

if (letter == 'A") { /* Do nothing */ }
std::cout << "The first capital, alphabetically speaking.\n"; // Always executes!

93

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

So this states, if 1etter equals 'A', then do nothing. But what is worse is that the second line is always
executed, unconditionally, even if letter is different from 'A'—precisely what the if statement intended to
prevent. Therefore, take care to never put a semicolon directly after a conditional test because it essentially
nullifies the test!

You could extend the code fragment to change the value of letter if it contains the value 'A".

if (letter == 'A")

{
std::cout << "The first capital, alphabetically speaking.\n";
letter = 'a’;

}

std::cout << "This statement always executes.\n";

All the statements in the block will be executed when the if condition is true. Without the braces,
only the first statement would be the subject of the if, and the statement assigning the value 'a’ to letter
would always be executed. Of course, each of the statements in the block is terminated by a semicolon.

No semicolon is necessary, though, after the closing brace of the block. You can have as many statements
as you like within the block; you can even have nested blocks. If and when letter has the value 'A’, both
statements within the block will be executed, so its value will be changed to 'a" after the same message as
before is displayed. Neither of these statements executes if the condition is false. The statement following
the block always executes.

If you cast true to an integer type, the result will be 1; casting false to an integer results in 0. Conversely,
you can also convert numerical values to type bool. Zero converts to false, and any nonzero value converts
to true. When you have a numerical value where a bool value is expected, the compiler will insert an implicit
conversion to convert the numerical value to type bool. This is useful in decision-making code.

Let’s try an if statement for real. This program will range check the value of an integer entered from the
keyboard:

// Ex4_02.cpp
// Using an if statement
#include <iostream>

int main()
{ n

std::cout << "Enter an integer between 50 and 100: ";

int value {};
std::cin >> value;

if (value)
std::cout << "You have entered a value that is different from zero." << std::endl;

if (value < 50)
std::cout << "The value is invalid - it is less than 50." << std::endl;

94

www.EBooksWorld.ir

CHAPTER 4 © MAKING DECISIONS

if (value > 100)
std::cout << "The value is invalid - it is greater than 100." << std::endl;

std::cout << "You entered " << value << std::endl;

}

The output depends on the value that you enter. For a value between 50 and 100, the output will be
something like the following:

Enter an integer between 50 and 100: 77
You have entered a value that is different from zero.
You entered 77

Outside the range 50 to 100, a message indicating that the value is invalid will precede the output
showing the value. If it is less than 50, for instance, the output will be as follows:

Enter an integer between 50 and 100: 27

You have entered a value that is different from zero.
The value is invalid - it is less than 50.

You entered 27

After prompting for and reading a value, the first if statement checks whether the value entered is
different from zero:

if (value)
std::cout << "You have entered a value that is different from zero." << std::endl;

Recall that any number is converted to true, except 0 (zero)—which is converted to false. So, value
always converts to true, except if the number you entered is zero. You will often find such a test written like
this, but if you prefer, you can easily make the test for zero more explicit as follows:

if (value != 0)
std::cout << "You have entered a value that is different from zero." << std::endl;

The second if statement then checks if your input is less than 50:

if (value < 50)
std::cout << "The value is invalid - it is less than 50." << std::endl;

The output statement is executed only when the if condition is true, which is when value is less than
50. The next if statement checks the upper limit in essentially the same way and outputs a message when
itis exceeded. Finally, the last output statement is always executed, and this outputs the value. Of course,
checking for the upper limit being exceeded when the value is below the lower limit is superfluous. You
could arrange for the program to end immediately if the value entered is below the lower limit, like this:

if (value < 50)

{

std::cout << "The value is invalid - it is less than 50." << std::endl;
return 0; // Ends the program

}
95

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

You could do the same with the if statement that checks the upper limit. You can have as many return
statements in a function as you need.

Of course, if you conditionally end the program like that, the code after both if statements is no longer
executed anymore. That is, if the user enters an invalid number and one of these return statements is
executed, then the last line of the program will no longer be reached. To refresh your memory, this line was
as follows:

std::cout << "You entered " << value << std::endl;

Later this chapter, we will see other means to avoid the upper limit test if value was already found to be
below the lower limit—means that do not involve ending the program.

Nested if Statements

The statement that executes when the condition in an if statement is true can itself be an if statement. This
arrangement is called a nested if. The condition of the inner if is tested only if the condition for the outer
ifistrue. An if thatis nested inside another can also contain a nested if. You can nest ifs to whatever
depth you require. We'll demonstrate the nested if with an example that tests whether a character entered is
alphabetic:

// Ex4_03.cpp
// Using a nested if
#include <iostream>

int main()

{
char letter {}; // Store input here
std::cout << "Enter a letter: "; // Prompt for the input

std::cin >> letter;

if (letter »= 'A")
// letter is 'A' or larger
if (letter <= 'Z")

{ // letter is 'Z' or smaller
std::cout << "You entered an uppercase letter." << std::endl;
return 0;

}

}
if (letter »= 'a') // Test for 'a' or larger

if (letter <= 'z")

{ // letter is >= 'a' and <= 'z’
std::cout << "You entered a lowercase letter." << std::endl;
return 0;

}

std::cout << "You did not enter a letter." << std::endl;
}
96

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

Here’s some typical output:

Enter a letter: H
You entered an uppercase letter.

After creating the char variable letter with initial value zero, the program prompts you to enter a letter.
The if statement that follows checks whether the character entered is 'A" or larger. If letter is greater than
orequal to 'A', the nested if that checks for the input being 'Z"' or less executes. If itis 'Z" or less, you
conclude that it is an uppercase letter and display a message. You are done at this point, so you execute a
return statement to end the program.

The next if, using essentially the same mechanism as the first, checks whether the character entered
is lowercase, displays a message, and returns. You probably noticed that the test for a lowercase character
contains only one pair of braces, whereas the uppercase test has two. The code block between the braces
belongs to the inner if here. In fact, both sets of statements work as they should—remember that if
(condition) {...}is effectively a single statement and does not need to be enclosed within more braces.
However, the extra braces do make the code clearer, so it’s a good idea to use them.

The output statement following the last if block executes only when the character entered is not a
letter, and it displays a message to that effect. You can see that the relationship between the nested ifs and
the output statement is much easier to follow because of the indentation. Indentation is generally used to
provide visual cues to the logic of a program.

This program illustrates how a nested if works, but it is not a good way to test for characters. Using the
Standard Library, you can write the program so that it works independently of the character coding. We'll
explore how that works in the next subsection.

Character Classification and Conversion

The nested ifs of Ex4_03 rely on these three built-in assumptions about the codes that are used to represent
alphabetic characters:

e The letters A to Z are represented by a set of codes where the code for 'A" is the
minimum and the code for 'Z" is the maximum.

e The codes for the uppercase letters are contiguous, so no nonalphabetic characters
lie between the codes for 'A' and 'Z".

e Alluppercase letters in the alphabet fall within the range A to Z.

While the first two assumptions will hold for any character encoding used in practice today, the third
is definitely not true for many languages. The Greek alphabet, for instance, knows uppercase letters such
as A, ©, and IT; the Russian one contains 7K, @, and III; and even Latin-based languages such as French
often use capital letters such as E and G whose encodings won't lie at all between 'A"' and 'Z". It is therefore
not a good idea to build these kinds of assumptions into your code because it limits the portability of your
program. Never assume that your program will be used only by fellow Anglophones!

To avoid making such assumptions in your code, the C and C++ Standard Libraries offer the concept of
locales. Alocale is a set of parameters that defines the user’s language and regional preferences, including
the national or cultural character set and the formatting rules for currency and dates. A complete coverage
of this topic is far beyond the scope of this book, though. We only cover the character classification functions
provided by the cctype header, listed in Table 4-2.

Table 4-2 lists the functions that the cctype header provides to classify characters. In each case, you
pass the function a variable or literal that is the character to be tested.

97

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

Table 4-2. Functions for Classifying Characters Provided by the cctype Header

Function Operation

isupper(c) Tests whether c is an uppercase letter, by default ‘A’ to 'Z".

islower(c) Tests whether c is a lowercase letter, by default 'a’ to 'z".

isalpha(c) Tests whether c is an uppercase or lowercase letter (or any alphabetic character
that is neither uppercase nor lowercase, should the locale’s alphabet contain such
characters).

isdigit(c) Tests whether c is a digit, '0' to '9".

isxdigit(c) Tests whether c is a hexadecimal digit, either '0' to '9", 'a' to 'f', or 'A" to 'F".

isalnum(c) Tests whether c is an alphanumeric character; same as isalpha(c) || isdigit(c).

isspace(c) Tests whether c is whitespace, by default a space (" '), newline (' \n"), carriage return
("\r"), form feed (' \f'), or horizontal (' \t") or vertical tab (' \v").

isblank(c) Tests whether c is a space character used to separate words within a line of text. By
default either a space (' ') or a horizontal tab (' \t").

ispunct(c) Tests whether c is a punctuation character. By default, this will be either a space or one
ofthefollowing: { } [J# () <>%:; . 2%+ -/~8& | ~1=,\""

isprint(c) Tests whether c is a printable character, which includes uppercase or lowercase letters,
digits, punctuation characters, and spaces.

iscntrl(c) Tests whether c is a control character, which is the opposite of a printable character.

isgraph(c) Tests whether c has a graphical representation, which is true for any printable

character other than a space.

Each of these functions returns a value of type int. The value will be nonzero (true) if the character is
of the type being tested for, and 0 (false) if it isn’t. You may be wondering why these functions don’t return
a bool value, which would make much more sense. The reason they don’t return a bool value is that they
originate from the C Standard Library and predate type bool in C++.

You could use cctype’s character classification functions to implement Ex4_03 without any hard-coded
assumptions about either the character set or its encoding. The character codes in different environments
are always taken care of by the Standard Library functions. An additional advantage is that these functions
also make the code simpler and easier to read:

if (std::isupper(letter))
{

std::cout << "You entered an uppercase letter." << std::endl;

return 0;

}

if (std::islower(letter))

{
std::cout << "You entered a lowercase letter." << std::endl;
return 0;

}

As cctype is part of the C++ Standard Library, it defines all its functions inside the std namespace. You
therefore normally should prefix their names with std: :. You'll find the adjusted program under the name
Ex4_03A.cpp.

98

www.EBooksWorld.ir

CHAPTER 4 © MAKING DECISIONS

To conclude, the cctype header also provides the two functions shown in Table 4-3 for converting
between uppercase and lowercase characters. The result will be returned as type int, so you need to
explicitly cast it if you want to store it as type char, for instance.

Table 4-3. Functions for Converting Characters Provided by the cctype Header

Function Operation
tolower(c) If ¢ is uppercase, the lowercase equivalent is returned; otherwise, c is returned.
toupper(c) If c is lowercase, the uppercase equivalent is returned; otherwise, c is returned.

Note All standard character classification and conversion functions except for isdigit() and isxdigit()
operate according to the rules of the current locale. All examples given in Table 4-2 are for the default, so-
called "C" locale, which is a set of preferences similar to those used by English-speaking Americans. The C++
Standard Library offers an extensive library for working with other locales and character sets. You can use these
to develop applications that work correctly irrespective of the user’s language and regional conventions. This
topic is a bit too advanced for this book, though. Consult a Standard Library reference for more details.

The if-else Statement

The if statement that you have been using executes a statement or block of statements if the condition
specified is true. Program execution then continues with the next statement in sequence. Of course, you
may want to execute one block of statements when the condition is true and another set when the condition
is false. An extension of the if statement called an if-else statement allows this.

The if-else combination provides a choice between two options. Figure 4-2 shows its general logic.

condition
is true?

if (condition)

{ L 4

// Statements when condition is true Statement Statement
} or Block of or Block of
else Statements for Statements for
{ false true

// Statements when condition is false
} v

// Next statement

Next Statement

Y

One of the two blocks in an if-else statement is always executed.

Figure 4-2. The if-else statement logic

99

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

The flowchart in Figure 4-2 shows the sequence in which statements execute, depending on whether
the if condition is true or false. You can always use a block of statements wherever you can put a single
statement. This allows any number of statements to be executed for each option in an if-else statement.

You could write an if-else statement that would report whether the character stored in the char
variable letter was alphanumeric:

if (std::isalnum(letter))

{
std::cout << "It is a letter or a digit." << std::endl;
}
else
{
std::cout << "It is neither a letter nor a digit." << std::endl;
}

This uses the isalnum() function from the cctype header you saw earlier. If letter contains a letter or
a digit, isalnum() returns a positive integer. This will be implicitly converted to a bool value, which will be
true, so the first message is displayed. If letter contains other than a letter or a digit, isalnum() returns 0,
which converts to false so the output statement after else executes. The braces are again not mandatory
here because they contain single statements, but it’s clearer if you put them in. The indentation in the blocks
is a visible indicator of the relationship between various statements. You can clearly see which statement is
executed for a true result and which is executed for false. You should always indent the statements in your
programs to show their logical structure.

Here’s an example of using if-else with a numerical value:

// Ex4_04.cpp
// Using the if-else statement
#include <iostream>

int main()

{
long number {}; // Stores input

std::cout << "Enter an integer less than 2 billion: ";
std::cin >> number;

if (number % 2) // Test remainder after division by 2
{ // Here if remainder is 1
std::cout << "Your number is odd." << std::endl;
}
else
{ // Here if remainder is 0
std::cout << "Your number is even." << std::endl;
}
}

Here’s an example of output from this program:

Enter an integer less than 2 billion: 123456
Your number is even.

100

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

After reading the input into number, the program tests this value in the if condition. This is an
expression that produces the remainder that results from dividing number by 2. The remainder will be 1 if
number is odd, or 0 if it even, and these values convert to true and false, respectively. Thus, if the remainder
is 1, the if condition is true, and the statement in the block immediately following the if executes. If the
remainder is 0, the if condition is false, so the statement in the block following the else keyword executes.

You could specify the if condition as number % 2 == 0, in which case the sequence of blocks would
need to be reversed because this expression evaluates to true when number is even.

Nested if-else Statements

You have already seen that you can nest if statements within if statements. You have no doubt anticipated
that you can also nest if-else statements within ifs, ifs within if-else statements, and if-else
statements within other if-else statements. This provides you with plenty of versatility (and considerable
room for confusion), so let’s look at a few examples. Taking the first case, an example of an if-else nested
within an if might look like the following:

if (coffee == 'y')
if (donuts == 'y")
std::cout << "We have coffee and donuts." << std::endl;
else
std::cout << "We have coffee, but not donuts." << std::endl;

This would be better written with braces, but it’s easier to make the point we want to make without.
coffee and donuts are variables of type char that can have the value 'y"' or 'n'. The test for donuts executes
only if the result of the test for coffee is true, so the messages reflect the correct situation in each case. The
else belongs to the if that tests for donuts. However, it is easy to get this confused.

If you write much the same thing but with incorrect indentation, you can be trapped into the wrong
conclusion about what happens here:

if (coffee == 'y")
if (donuts == "y")
std::cout << "We have coffee and donuts." << std::endl;
else // This is indented incorrectly...
std::cout << "We have no coffee..." << std::endl; // ...Wrong!

The indentation now misleadingly suggests that this is an if nested within an if-else, which is not the
case. The first message is correct, but the output as a consequence of the else executing is quite wrong. This
statement executes only if the test for coffee is true, because the else belongs to the test for donuts, not
the test for coffee. This mistake is easy to see here, but with larger and more complicated if structures, you
need to keep in mind the following rule about which if owns which else:

Caution An else always belongs to the nearest preceding if that’s not already spoken for by another
else. The potential for confusion here is known as the dangling else problem.

101

www.EBooksWorld.ir

CHAPTER 4 © MAKING DECISIONS

Braces will always make the situation clearer:

if (coffee == 'y")

{
if (donuts == 'y")
{
std::cout << "We have coffee and donuts." << std::endl;
}
else
{
std::cout << "We have coffee, but not donuts." << std::endl;
}
}

Now it’s absolutely clear. The else definitely belongs to the if thatis checking for donuts.

Understanding Nested ifs

Now that you know the rules, understanding an if nested within an if-else should be easy:

if (coffee == 'y')
{
if (donuts == "y")
std::cout << "We have coffee and donuts." << std::endl;

}
else if (tea == '"y')
{

std::cout << "We have no coffee, but we have tea." << std::endl;

}

Notice the formatting of the code here. When an else block is another if, writing else if on one line
is an accepted convention. The braces enclosing the test for donuts are essential. Without them the else
would belong to the if that’s looking out for donuts. In this kind of situation, it is easy to forget to include the
braces and thus create an error that may be hard to find. A program with this kind of error compiles without
a problem, as the code is correct. It may even produce the right results some of the time. If you removed the
braces in this example, you'd get the right results only as long as coffee and donuts were both 'y" so that
the check for tea wouldn’t execute.

Nesting if-else statements in other if-else statements can get very messy, even with just one level of
nesting. Let’s beat the coffee and donuts analysis to death by using it again:

if (coffee == "y")
if (donuts == 'y")
std::cout << "We have coffee and donuts." << std::endl;
else
std::cout << "We have coffee, but not donuts." << std::endl;
else if (tea == '"y')
std::cout << "We have no coffee, but we have tea, and maybe donuts..." << std::endl;
else
std::cout << "No tea or coffee, but maybe donuts..." << std::endl;

102

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

The logic here doesn’t look quite so obvious, even with the correct indentation. Braces aren’t necessary,
as the rule you saw earlier will verify, but it would look much clearer if you included them:

if (coffee == '"y")
{
if (donuts == 'y")
{

std::cout << "We have coffee and donuts." << std::endl;

}

else

{
std::cout << "We have coffee, but not donuts." << std::endl;
}
}

else

{
if (tea == '"y')

std::cout << "We have no coffee, but we have tea, and maybe donuts..." << std::endl;

}

else

{
std::cout << "No tea or coffee, but maybe donuts..." << std::endl;
}
}

There are much better ways of dealing with this kind of logic. If you put enough nested ifs together, you
can almost guarantee a mistake somewhere. The next section will help to simplify things.

Logical Operators

As you have seen, using ifs where you have two or more related conditions can be cumbersome. You have
tried your iffy talents on looking for coffee and donuts, but in practice, you may want to check much more
complex conditions. For instance, you could be searching a personnel file for someone who is older than
21, younger than 35, is female, has a bachelor’s or master’s degree, is unmarried, and speaks Hindi or Urdu.
Defining a test for this could involve the mother of all ifs.

The logical operators provide a neat and simple solution. Using logical operators, you can combine
a series of comparisons into a single expression so that you need just one if, almost regardless of the
complexity of the set of conditions. What’s more, you won'’t have trouble determining which one to use
because there are just the three shown in Table 4-4.

Table 4-4. Logical Operators

Operator Description

&& Logical AND
[Logical OR
! Logical negation (NOT)

103

www.EBooksWorld.ir

CHAPTER 4 © MAKING DECISIONS

The first two, 83 and | |, are binary operators that combine two operands of type bool and produce a
result of type bool. The third operator, !, is unary, so it applies to a single operand of type bool and produces
a bool result. In the following pages we’ll explain first how each of these is used; then we’ll demonstrate
them in an example. Finally, we’ll compare these logical operators with the bitwise operators you learned
about earlier.

Logical AND

You use the AND operator, &&, where you have two conditions that must both be true for a true result.

For example, you want to be rich and healthy. Earlier, to determine whether a character was an uppercase
letter, the value had to be both greater than or equal to 'A" and less than or equal to 'Z". The && operator
only produces a true result if both operands are true. If either or both operands are false, then the result is
false. Here’s how you could test a char variable, letter, for an uppercase letter using the 8& operator:

if (letter »>= 'A' 88 letter <= 'Z')
{

std::cout << "This is an uppercase letter." << std::endl;

}

The output statement executes only if both of the conditions combined by && are true. No parentheses
are necessary in the expression because the precedence of the comparison operators is higher than that of
&&. As usual, you're free to put parentheses in if you want. You could write the statement as follows:

if ((letter >= 'A") & (letter <= 'Z'))

std::cout << "This is an uppercase letter." << std::endl;

}

Now there’s no doubt that the comparisons will be evaluated first. Still, most experienced programmers
probably wouldn’t put these extra parentheses here.

Logical OR

The OR operator, | |, applies when you want a true result when either or both of the operands are true. The
result is false only when both operands are false.

For example, you might be considered creditworthy enough for a bank loan if your income was at least
$100,000 a year or if you had $1,000,000 in cash. This could be tested like this:

if (income >= 100'000.00 || capital >= 1'000'000.00)
{

std::cout << "Of course, how much do you want to borrow?" << std::endl;

}

The response emerges when either or both of the conditions are true. (A better response might be
“Why do you want to borrow?” It’s strange how banks will only lend you money when you don’t need it.)

Notice also that we've used digit separators to increase the readability of the integer literals: it is far
more obvious that 1'000'000.00 equals one million than that 2000000.00 does. Would you even spot
the difference between 100000.00 and 1000000. 00 without the separators? (Should the bank ever make
mistakes filling in either one of these numbers, you'd surely want it to be in your favor!)

104

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

Logical Negation

The third logical operator, !, applies to single bool operand and inverts its value. So, if the value of a bool
variable, test, is true, then !test is false;if test is false, then ! test results in the value true.

Like all logical operators, you can apply logical negation to any expressions that evaluate to true or
false. Operands can be anything from a single bool variable to a complex combination of comparisons and
bool variables. For example, suppose x has the value 10. Then the expression ! (x > 5) evaluates to false
because x > 5 is true. Of course, in that particular case, you may be better off simply writing x <= 5. The
latter expression is equivalent, but because it does not contain the negation, it is probably easier to read.

Caution Let foo, bar, and xyzzy be variables (or any expressions if you will) of type bool. Then beginning
C++ programmers, such as yourself, often write statements like this:

if (foo == true) ...
if (bar == false) ...
if (xyzzy != true) ...

While technically correct, it is generally accepted that you should favor the following equivalent yet shorter if
statements instead:

if (foo) ...
if (!bar) ...
if (Ixyzzy) ...

Combining Logical Operators

You can combine conditional expressions and logical operators to any degree to which you feel comfortable.
This example implements a questionnaire to decide whether a person is a good loan risk:

// Ex4_05.cpp
// Combining logical operators for loan approval
#include <iostream>

int main()

{
int age {}; // Age of the prospective borrower
int income {}; // Income of the prospective borrower
int balance {}; // Current bank balance

// Get the basic data for assessing the loan
std::cout << "Please enter your age in years: ";
std::cin >> age;

std::cout << "Please enter your annual income in dollars: ";
std::cin >> income;

std::cout << "What is your current account balance in dollars: ";
std::cin >> balance;

105

www.EBooksWorld.ir

CHAPTER 4 © MAKING DECISIONS

// We only lend to people who are over 21 years of age,
// who make over $25,000 per year,

// or have over $100,000 in their account, or both.

if (age >= 21 &3 (income > 25'000 || balance > 100'000))

// 0K, you are good for the loan - but how much?
// This will be the lesser of twice income and half balance

int loan {}; // Stores maximum loan amount
if (2*income < balance/2)
{
loan = 2*income;
}
else
{
loan = balance/2;
}
std::cout << "\nYou can borrow up to $" << loan << std::endl;
}
else // No loan for you...
{

std::cout << "\nUnfortunately, you don't qualify for a loan." << std::endl;

}
}

Here’s some sample output:

Please enter your age in years: 25
Please enter your annual income in dollars: 28000
What is your current account balance in dollars: 185000

You can borrow up to $56000

The interesting bit is the if statement that determines whether a loan will be granted. The if condition
is as follows:

age >= 21 8& (income > 25'000 || balance > 100'000)

This condition requires that the applicant’s age be at least 21 and that either their income is larger than
$25,000 or their account balance is greater than $100,000. The parentheses around the expression (income
> 25'000 || balance > 100'000) are necessary to ensure that the result of ORing the income and balance
conditions together is ANDed with the result of the age test. Without the parentheses, the age test would
be ANDed with the income test, and the result would be ORed with the balance test. This is because &8&
has a higher precedence than | |, as you can see from the table in Chapter 3. Without the parentheses, the
condition would have allowed an 8-year-old with a balance over $100,000 to get a loan. That’s not what was
intended. Banks never lend to minors or mynabhs.

If the if condition is true, the block of statements that determine the loan amount executes. The loan
variable is defined within this block and therefore ceases to exist at the end of the block. The if statement
within the block determines whether twice the declared income is less than half the account balance. If it is,
the loan is twice the income; otherwise, it is half the account balance. This ensures the loan corresponds to
the least amount according to the rules.

106

www.EBookswWorld.ir

http://dx.doi.org/10.1007/978-1-4842-3366-5_3

CHAPTER 4 © MAKING DECISIONS

Tip When combining logical operators, it is recommended to always add parentheses to clarify the code.
Suppose for argument’s sake that the bank’s condition for allowing a loan was as follows:

(age < 30 8% income > 25'000) || (age >= 30 &3 balance > 100'000)
That is, for younger clients, the decision depends entirely on their yearly salary—yes, even toddlers get a loan,

as long as they can submit proof of sufficient income, of course—whereas more mature clients must already
have sufficient savings. Then you could also write this condition as follows:

age < 30 &% income > 25'000 || age >= 30 && balance > 100'000

While both expressions are perfectly equivalent, you’ll surely agree that the one with parentheses is much
easier to read than the one without. When combining && and | |, it is therefore recommended to always clarify
the meaning of the logical expression by adding parentheses, even when it strictly speaking is not necessary.

Logical Operators on Integer Operands

In a way, logical operators can be—and actually fairly often are—applied to integer operands instead of
Boolean operands. For instance, earlier you saw that the following can be used to test whether an int
variable value differs from zero:

if (value)
std::cout << "You have entered a value that is different from zero." << std::endl;

Equally frequently, you will encounter a test of the following form:

if (!value)
std::cout << "You have entered a value that equals zero." << std::endl;

Here, logical negation is applied to an integer operand—not to a Boolean operand as usual. Similarly,
suppose you have defined two int variables, valuel and value2; then you could write the following:

if (value1l 8& value2)
std::cout << "Both values are non-zero." << std::endl;

Because these expressions are so short, they are popular among C++ programmers. Typical use cases
of such patterns occur if these integer values represent, for instance, the number of elements in a collection
of objects. It is therefore important that you understand how they work: every numeric operand to a logical
operator in expressions such as these is first converted to a bool using the familiar rule: zero converts to
false, and every other number converts to true. Even if all operands are integers, the logical expression still
evaluates to a bool, though.

107

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

Logical Operators vs. Bitwise Operators

It's important not to confuse the logical operators 88, | |, and ! that apply to operands that are convertible to
bool with the bitwise operators &, |, and ~ that operate on the bits within integral operands.

From the previous subsection, you'll remember that logical operators always evaluate to a value of type
bool, even if their operands are integers. The converse is true for bitwise operators: they always evaluate
to an integer number, even if both operands are of type bool. Nevertheless, because the integer result of a
bitwise operator always converts back to a bool, it may often seem that logical and bitwise operators can be
used interchangeably. The central test in Ex4_05 to test whether a loan is admissible, for instance, could in
principle be written like this:

if (age >= 21 & (income > 25'000 | balance > 100'000))

This will compile and have the same end result as before when && and | | were still used. In short, what
happens is that the bool values that result from the comparisons are converted to ints, which are then
bitwise combined into a single int using the bitwise operators, after which this single int is again converted
to abool for the if statement. Confused? Don’t worry, it’s not really all that important. Such conversions
back and forth between bool and integers are rarely a cause for concern.

What is important, though, is the second, more fundamental difference between the two sets of
operators; namely, unlike bitwise operators, the binary logical operators are so-called short-circuit
operators.

Short-Circuit Evaluation

Consider the following code snippet:

int x = 2;
if (x < 0 8% (x*x + 632*x == 1268))
{

std::cout << "Congrats: " << x << " is the correct solution!" << std::endl;

}

Quickly, is x = 2 the correct solution? Of course not, 2 is not less than 0! It does not even matter whether
2*2 + 632*2 equals 1268 or not (it does, actually...). Because the first operand of the AND operator is false
already, the end result will be false as well. After all, false && true remains false; the only case where the
AND operator evaluates to true is true 8& true.

Similarly, in the following snippet, it should be instantly clear that x = 2 is a correct solution:

int x = 2;
if (x == 2 || (x*x + 632*x == 1268))

std::cout << "Congrats: " << x << " is a correct solution!" << std::endl;

}

Why? Because the first operand is true, you immediately know that the full OR expression will evaluate
to true as well. There’s no need to even compute the second operand.

108

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

Naturally, a C++ compiler knows this as well. Therefore, if the first operand to a binary logical
expression already determines the outcome, the compiler will make sure no time is wasted evaluating the
second operand. This property of the logical operators 88 and | | is called short-circuit evaluation. The
bitwise operators & and |, on the other hand, do not short-circuit. For these operators, both operands are
always evaluated.

This short-circuiting semantics of logical operators is often exploited by C++ programmers:

e Ifyouneed to test for multiple conditions that are glued together with logical
operators, then you should put the cheapest ones to compute first. Our two examples
in this section already illustrate this to a point, but of course this technique only
really pays off if one of the operands is truly expensive to calculate.

e Short-circuiting is more commonly utilized to prevent the evaluation of right-hand
operands that would otherwise fail to evaluate—as in cause a fatal crash. This is
done by putting other conditions first that short-circuit whenever the other operands
would fail. As we will see later in this book, a popular application of this technique is
to check that a pointer is not null before dereferencing it.

We will see several more examples of logical expressions that rely on short-circuit evaluation in later
chapters. For now, just remember that the second operand of 88 is evaluated only after the first operand
evaluates to true, and the second operand of | | only after the first evaluates to false. For & and |, both
operands are always evaluated.

And, oh yes, in case you were wondering, the correct solution for the equation earlieris x = -634.

Logical XOR

There is no counterpart of the bitwise XOR—short for eXclusive OR—operator, #, among the logical
operators. This is in part, no doubt, because short-circuiting this operator makes no sense (both operands
must always be evaluated to know the correct outcome of this operator; perhaps take a second to think
about this). Luckily, the XOR operator, like any of the bitwise operators, can simply be applied to Boolean
operands as well. The following test, for instance, passes for most youngsters and millionaires. Adults with a
normal bank balance will not pass the cut, though, and neither will teenage millionaires:

if ((age < 20) ~ (balance >= 1'000'000))

In other words, this test is equivalent to either one of the following combinations of logical operators:

if ((age < 20 || balance »= 1'000'000) &% !(age < 20 && balance >= 1'000'000))

}

if ((age < 20 && balance < 1'000'000) || (age >= 20 && balance >= 1'000'000))

Convincing yourself that these three if statements are indeed equivalent makes for a nice little exercise
in Boolean algebra.

109

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

The Conditional Operator

The conditional operator is sometimes called the fernary operator because it involves three operands—the
only operator to do so. It parallels the if-else statement, in that instead of selecting one of two statement
blocks to execute depending on a condition, it selects the value of one of two expressions. Thus, the
conditional operator enables you to choose between two values. Let’s consider an example.

Suppose you have two variables, a and b, and you want to assign the value of the greater of the two to a
third variable, c. The following statement will do this:

c=a>b?a:b; // Set c to the higher of a and b

The conditional operator has a logical expression as its first operand, in this case a > b. If this
expression is true, the second operand—in this case a—is selected as the value resulting from the operation.
If the first operand is false, the third operand—in this case b—is selected as the value. Thus, the result of the
conditional expression is a if a is greater than b, and b otherwise. This value is stored in c. The assignment
statement is equivalent to the if statement:

if (a > b)
{
Cc = a;
}
else
{
Cc =b;
}

Of course, you can use the conditional operator to select the lower of two values. In the previous
program, you used an if-else to decide the value of the loan; you could use this statement instead:

loan = 2*income < balance/2? 2*income : balance/2;

This produces the same result. The condition is 2*income < balance/2. If this evaluates to true, then
the expression 2*income evaluates and produces the result of the operation. If the condition is false, the
expression balance/2 produces the result of the operation.

You don’t need parentheses because the precedence of the conditional operator is lower than that of
the other operators in this statement. Of course, if you think parentheses would make things clearer, you can
include them:

loan = (2*income < balance/2)? (2*income) : (balance/2);

The general form of the conditional operator, which is often represented by ?:, is as follows:
condition ? expressioni : expression2

As usual, all whitespace before or after both the ? or the : is optional and ignored by the compiler. If
condition evaluates to true, the result is the value of expressioni; if it evaluates to false, the result is the
value of expression2. If condition is an expression that results in a numerical value, then it is implicitly
converted to type bool.

Note that only one of expressioni or expression2 will be evaluated. Similar to the short-circuiting

evaluation of binary logical operands, this has significant implications for expressions such as the following:

divisor? (dividend / divisor) : 0;

110

www.EBookswWorld.ir

CHAPTER 4 © MAKING DECISIONS

Suppose both divisor and dividend are variables of type int. For integers, division by zero results
in undefined behavior in C++. This means that, in the worst case, dividing an integer by zero may cause a
fatal crash. If divisor equals zero in the previous expression, however, then (dividend / divisor) is not
evaluated. If the condition to a conditional operator evaluates to false, the second operand is not evaluated
at all. Instead, only the third operand is evaluated. In this case, this implies that the entire expression trivially
evaluates to 0. That is a much better outcome indeed than a potential crash!

You can use the con