

ASP.NET Core 2 and Vue.js

Full Stack Web Development with Vue, Vuex, and ASP.NET Core 2.0

Stuart Ratcliffe

BIRMINGHAM - MUMBAI

 ASP.NET Core 2 and Vue.js

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Amarabha Banerjee

Acquisition Editor: Siddharth Mandal

Content Development Editor: Aishwarya Gawankar

Technical Editor: Prajakta Mhatre

Copy Editor: Safis Editig

Project Coordinator: Sheejal Shah

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Coordinator: Arvindkumar Gupta

First published: July 2018

Production reference: 1270718

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78883-946-4

www.packtpub.com

I would like to dedicate this book to everyone who helped and supported me in writing this book: to my partner, Laura, for her unconditional support and encouragement, especially when my motivation was at its lowest; to my parents, Liz and Brian, for always being there when I needed them; to my dogs, Jack and Miska, for putting up with a severe lack of daily walks while this book was being written; to all the Packt editors and technical reviewers who made this possible in the first place; and finally, to my late grandmother, May, who passed away just a few short months before this book could be published.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	
Improve your learning with Skill Plans built especially for you

	
Get a free eBook or video every month

	
Mapt is fully searchable

	
Copy and paste, print, and bookmark content

 PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Contributors

 About the author

Stuart Ratcliffe is a professional software developer who lives and works in the East Midlands, UK. He has held positions at some of the largest IT companies in the world, working on high-profile projects for the UK government. Currently, he has been working on track-and-trace systems for medical instruments that undergo sterilization. He holds a Tech Lead position on the digital side of a healthcare company, building both web and mobile applications to support the clinical side of the business. He is a full-stack .NET developer who loves to learn new technologies.

 About the reviewer

Daniel Jiménez García is a software developer with more than 12 years of experience. His journey began with C# and VB6, continued with several iterations of Microsoft technologies and web frameworks such as Backbone, and finished with Node, Vue, Docker, and ASP.NET Core.

Nowadays, he is working as a tech lead for Oliver Wyman Labs, building web and mobile applications, mentoring fellow team members, and driving their common stack, tools, and architecture for web development.

Being a regular contributor to the DotNetCurry magazine, he has written 18 articles on a range of topics including ASP.NET Core and Vue.js.

I would like to thank my friends and family for their support, love, and friendship, especially my parents, who always encouraged and inspired me to become a better person. Thanks to my colleagues for the hours of joy, frustration, debate, and learning, not always about code or near a computer! Finally, my thanks to everyone who shared their knowledge and passion, so others could learn and enjoy our profession, and be inspired.

 Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Table of Contents

 	
 Title Page

	
 Copyright and Credits

 	
 ASP.NET Core 2 and Vue.js

	
 Dedication

	
 Packt Upsell

 	
 Why subscribe?

	
 PacktPub.com

	
 Contributors

 	
 About the author

	
 About the reviewer

	
 Packt is searching for authors like you

	
 Preface

 	
 Who this book is for

	
 What this book covers

	
 To get the most out of this book

 	
 Download the example code files

	
 Conventions used

	
 Get in touch

 	
 Reviews

	
 Understanding the Fundamentals

 	
 Thinking in components

 	
 What is a component?

	
 UI composition

	
 Introduction to Vue

 	
 The Vue instance

 	
 Attaching to the DOM

	
 Defining data properties

	
 Rendering data into the DOM using expressions

	
 Building component trees

	
 Reactivity

	
 Component behavior

 	
 State

	
 Props

	
 Methods

	
 Computed properties

	
 Watchers

	
 Lifecycle hooks

	
 Component presentation

 	
 Directives

 	
 Attribute binding with v-bind

	
 Conditional display with v-show

	
 Control flow with v-if and v-else

	
 Rendering lists with v-for

	
 Event handling with v-on

	
 Form input binding with v-model

	
 Parent-child component communication

	
 ASP.NET Core – what's new?

 	
 Middleware pipeline

	
 Application startup

	
 DI is a first-class citizen

	
 EF Core – what's new?

 	
 Configuring relationships

	
 Global query filters

	
 Compiled queries

	
 In-memory provider for testing

	
 Summary

	
 Setting Up the Development Environment

 	
 Choosing a web browser

	
 Installing frontend tools and dependencies

 	
 Installing Node and npm

	
 Installing Vue

	
 npm or Yarn?

	
 Installing backend tools and dependencies

 	
 Installing ASP.NET Core

	
 Installing PostgreSQL

	
 Choosing and installing an IDE

	
 Productivity tools

 	
 Installing VS Code extensions

	
 Installing the Vue.js Chrome devtools extension

	
 Installing a Terminal Emulator on Windows (optional)

	
 Summary

	
 Getting Started with the Project

 	
 ASP.NET Core SPA templates versus CLI tools

	
 An introduction to webpack

 	
 What is webpack?

	
 How does it work?

	
 Basic webpack configuration

	
 Bundle splitting

	
 Production bundles

	
 Scaffolding a project with the dotnet CLI

	
 Refactoring the frontend setup

 	
 Removing TypeScript

	
 Replacing the default components

	
 Refactoring the backend setup

 	
 Refactoring to a feature folder structure

	
 Setting up the database

 	
 Creating a database context

	
 Registering the database context for DI

	
 Creating the database

	
 Creating an initial migration

	
 Creating and seeding the database on start-up

	
 Testing the completed setup

	
 Summary

	
 Building Our First Vue.js Components

 	
 Displaying a list of products

	
 Conditional rendering

	
 Component composition

	
 Client-side routing

	
 Fetching data from an API

	
 Summary

	
 Building a Product Catalog

 	
 Improving the existing UX

 	
 Choosing a UX framework

	
 What is Bootstrap-Vue?

	
 Installing additional required dependencies

	
 Modifying the webpack configuration to support SASS

	
 Updating the webpack vendor configuration

	
 Rebuilding the vendor bundle

	
 Adding application-wide layout elements

	
 Adding application-wide styles

	
 Styling the product list and product details components

	
 Fetching data before navigation

	
 Adding a page loading indicator

	
 Adding a transition on page change

	
 Extending the existing data model

 	
 Dropping the existing database

	
 Adding new/updating existing entities

	
 Updating the DbContext class

	
 Creating a migration to reflect the model changes

	
 Updating the application's seed data

	
 Filtering on the server

 	
 Updating controller actions to support filtering

	
 Testing our filtering logic

	
 Filtering on the client

 	
 Installing additional dependencies

 	
 Installing Font Awesome

	
 Installing additional npm packages

	
 Building an accordion component

 	
 Defining the accordion template structure

	
 Defining the accordion behavior

	
 Styling the accordion component

	
 Building the filters component

 	
 Scaffolding the filters component template

	
 Adding a brand filter

	
 Adding a price filter

	
 Adding a screen size filter

	
 Adding the remaining color, OS, and feature filters

	
 Scaffolding the filters component behavior

	
 Defining the filters component computed properties

	
 Defining the filters component methods

	
 Styling the filters component

	
 Adding the filters component to the catalog page

 	
 Updating the catalog page template

	
 Adding the catalog page filter behavior

	
 Tidying up our existing components

	
 Testing the completed filtering logic

	
 Refactoring the filters component

 	
 Highlighting duplication in our existing implementation

	
 Extracting a common multi-select filter component

	
 Extracting a common range filter component

	
 Rendering the new multi-select and range filter components

	
 Testing that everything still works

	
 Client-side sorting

 	
 Building a sort component

	
 Adding the sort component to the catalog page

	
 Creating a search bar component

 	
 Triggering API requests using watchers

	
 Debouncing API requests to limit how often they fire

	
 Summary

	
 Building a Shopping Cart

 	
 Evaluating our options

 	
 Persisting to the database

	
 Persisting to session state

	
 Persisting to local storage

	
 Finishing the product details page

 	
 Creating the gallery component

	
 Adding variants to the product details component

	
 Introduction to Vuex

 	
 What is Vuex?

	
 How does Vuex work?

 	
 Mutations

	
 Actions

	
 Getters

	
 Putting it all together

	
 Installing and configuring Vuex

	
 Adding products to the cart

 	
 Creating the mutations

	
 Creating an action

	
 Creating a shopping cart page

 	
 Creating a CartItem component

	
 Displaying the list of cart items

	
 Creating a currency filter

	
 Removing products from the cart

	
 Updating cart items

	
 Adding a getter to display the cart total

	
 Creating a cart summary component

	
 Persisting the cart to local storage

	
 Improving the UX with add to cart feedback

	
 Summary

	
 User Registration and Authentication

 	
 Adding JWT authentication to the API

 	
 Why JWTs?

	
 Configuring JWT authentication

	
 Issuing JWTs

	
 Adding user role support

	
 Testing JWT authentication

	
 User registration

	
 Authentication and user registration in the client app

 	
 Vuex state properties for authentication

	
 Vuex mutations for managing authentication state

	
 Vuex authentication getters

	
 Vuex login, register, and logout actions

	
 Authentication modal component

 	
 Login form component

	
 Register form component

	
 Auth navigation item component

	
 Wiring up the new components in App.vue

	
 Protecting pages with navigation guards

	
 Setting the authentication state on app startup

	
 Summary

	
 Processing Payments

 	
 Why use Stripe?

 	
 Simple PCI compliance

	
 Easy integration

	
 Excellent dashboard

	
 Getting started with Stripe and client-side validation

 	
 Registering for a Stripe account

	
 Including the Stripe checkout JavaScript library

	
 Installing VeeValidate for client-side validation

	
 Building the checkout components

 	
 Building a cart summary component

	
 Building a checkout form component

 	
 First look at client-side validation

	
 Finishing the delivery address form fields

	
 Capturing payment information

	
 Initializing Stripe elements

	
 Validating form input state

	
 Verifying payment details with Stripe

	
 Submitting the order to the API

	
 Adding basic Bootstrap styling to Stripe elements

	
 Building a checkout success component

	
 Building a my account page

 	
 Building the OrderList component

	
 Formatting dates with a reusable date filter

	
 Linking to the my account page

	
 Fixing the register form component

	
 Server-side payment processing

 	
 Adding orders to the data model

	
 Owned entity types in EF Core 2.0

 	
 Why use owned entity types?

	
 Defining an owned type

	
 Configuring owned types

	
 Creating the orders migration

	
 Installing and configuring the Stripe.net NuGet package

 	
 Configuring Stripe

	
 Processing orders and payments

 	
 Persisting the order object

	
 Calculating the total order price

	
 Processing the payment with Stripe

	
 Adding an order list API endpoint

	
 Summary

	
 Building an Admin Panel

 	
 Extending the authentication endpoint with user roles

	
 Client-side role-based authorization

 	
 Adding role checks to client-side routes

	
 Server-side role-based authorization

	
 Hiding UI elements based on role

	
 Building the admin panel components

 	
 Configuring nested route definitions

	
 Refactoring components for reuse

 	
 Product list component

	
 Creating a product form component

	
 Creating an add variant modal component

	
 Vue component inheritance

 	
 Defining a form input base component

	
 Inheriting from a base component

	
 Building custom input controls

 	
 Building a custom typeahead control

	
 Building a multi-select control

	
 Persisting new products to the database

 	
 Creating a slug generator

	
 Creating the API endpoint

	
 Remote validation with Vee-Validate

 	
 Making our app aware of the new custom validation rule

	
 Creating the validation API endpoint

	
 Tidying things up

 	
 Linking to the admin panel

	
 Fixing a logout bug

	
 Fixing a bug by selecting a product variant

	
 Summary

	
 Deployment

 	
 Registering for an Azure account

	
 Setting up an Azure environment

 	
 Understanding Azure subscriptions and resources

	
 Creating a subscription and resource group

	
 Creating a database

	
 Creating an app service

	
 Configuring environment variables

	
 Preparing the application for deployment

 	
 Configuring multiple database providers

	
 Tweaking the post-publish build steps

	
 Configuring Git deployments

	
 Finalizing the apps configuration

 	
 Enabling logging in Azure

	
 Forcing HTTPS connections only

	
 Summary

	
 Authentication and Refresh Token Flow

 	
 Understanding refresh tokens

 	
 What are refresh tokens used for?

	
 What are refresh tokens?

	
 Why use refresh tokens?

	
 Adding refresh token support to the backend

 	
 Extending the AppUser model

	
 Generating refresh tokens

	
 Refreshing JWT access tokens

	
 Finishing up

	
 Adding refresh token support to the frontend

 	
 Extracting router configuration into separate files

	
 Refreshing access tokens with axios interceptors

	
 Finishing up

	
 Summary

	
 Server-Side Rendering

 	
 Why use SSR in the first place?

 	
 Search engine optimization

	
 Performance

	
 How does SSR work?

	
 The easy way – Nuxt.js

	
 Preparing the application for SSR

 	
 Installing npm packages required for SSR

	
 Adding Vuex actions and mutations for all API requests

 	
 Defining additional Vuex actions

	
 Defining the additional Vuex mutations

	
 Defining the additional store state properties

	
 Updating existing pages to use Vuex

 	
 Refactoring the catalog page

	
 Refactoring the product details page

	
 Refactoring the account page

	
 Refactoring the orders admin page

	
 Refactoring the products admin page

	
 Refactoring the create product admin page

	
 Changing the way we persist user authentication state

 	
 Changing our approach of persisting state to local storage

	
 Storing authentication state in cookies

	
 Setting up and configuring SSR

 	
 Defining the shared boot logic

	
 Defining the client-specific boot logic

 	
 Hydrating the client-side store

	
 Loading shopping cart data from local storage

	
 Pre-fetching component data

	
 Remembering our promises

	
 Defining the server-specific boot logic

 	
 Deleting the old boot file

	
 Making webpack aware of the client/server boot files

 	
 Defining a shared webpack configuration object

	
 Defining client- and server-specific webpack configuration objects

	
 Updating the vendor webpack configuration to include SSR libraries

	
 Enabling SSR

	
 Conditionally rendering elements that rely on the browser

 	
 Fixing the range filter component

	
 Fixing the checkout form component

	
 Fixing page transition animations in the router

	
 Fixing the store subscription to persist cart items to local storage

	
 Testing our server-rendered application

	
 Summary

	
 Continuous Integration and Continuous Deployment

 	
 CI/CD – why bother?

 	
 Continuous integration

	
 Continuous deployment

	
 Disabling Azure app service Git deployments

	
 Getting started with VSTS

 	
 Creating a VSTS account

	
 Setting up a team services project

	
 Building a CI/CD pipeline

 	
 Setting up a VSTS build

	
 Enabling CI

	
 Setting up a VSTS release

	
 Enabling CD

	
 Summary

	
 Other Books You May Enjoy

 	
 Leave a review - let other readers know what you think

 Preface

These days, it is rare to see a standard web application with little to no client-side code involved. Developers are usually burdened with writing masses and masses of JavaScript, often using libraries such as jQuery, to create rich and responsive user interfaces. As an application like this grows, it is incredibly easy for this client-side code to become unwieldy and a nightmare to maintain. This style of web application also relies on the DOM to store the application's current state, and we end up writing a lot of code to micromanage and manipulate the DOM in order to correctly display that state.

Imagine a web application using nothing but jQuery on the client, where we have a single piece of data that we need to display in multiple places within a UI. Now think about how we'd need to go about changing that piece of data, and ensuring that the DOM represents the correct value in every location where we are displaying it. Up to a handful of places is perhaps not a big deal; we could write a bunch of similar lines of jQuery that manually go and update each UI element currently displaying that piece of data, and just make sure we don't forget any.

By now, you should be able to see the problem we're trying to solve. This way of developing web applications is incredibly error-prone for anything but the most simple user interfaces. However, this is 2018 and we aren't limited to writing our client applications with jQuery any more. There are countless SPA frameworks dedicated to building UIs for our web applications that automatically react to data changes and handle the displaying of that data in the DOM for us. We no longer need to write countless lines of code with a single purpose of changing the value of a DOM element.

We don't manipulate the DOM with these frameworks. Instead, we manipulate the data. The DOM simply acts as a means of displaying that data to our users. Let's go back to the preceding example, where we have a single piece of data being displayed in 10 different UI elements. When that piece of data changes, instead of manually updating all 10 DOM elements to reflect the change, we simply store it in a JavaScript object and update the value whenever we like. The SPA framework then reacts to these changes, and handles all the heavy lifting for us by updating any DOM element that cares about that piece of data; one simple data change rather than 10 separate DOM manipulation calls.

As with choosing a technology for the frontend of a modern web app, there are also plenty of options when it comes to building a backend. Some of the most popular choices currently include Node.js, PHP, Rails, Golang, and ASP.NET. Node.js is incredibly popular for a number of reasons, most notably for being able to use JavaScript for the whole application. The Laravel framework is arguably one of the only reasons PHP is still a viable option, else it would likely be fading into the background the way Rails is. Golang is a fairly new language that is getting some very good reviews, particularly in the performance benefits it provides over Node. However, due to how new Golang is, there are far fewer packages and frameworks to assist us in building more complex applications. ASP.NET is older than both Node.js and Golang, and, as such, there is no such shortage of packages and frameworks like there is with Go. In fact, the .NET framework has a lot of functionality already built in where you'd normally be reaching for an external package in other languages and frameworks. Even when you do need an external package, there is usually one made by Microsoft themselves, which helps avoid a well-known issue with Node.js applications referred to as "dependency hell". ASP.NET is also based around strongly-typed compiled languages that can provide a number of performance and security benefits over a weakly typed language, such as JavaScript.

ASP.NET has been around since January 2002 when version 1.0 of the .NET framework was released as the successor to Microsoft Active Server Pages. Since then, there have been a multitude of major versions released, the current being version 4.7 at the time of writing. In 2016, Microsoft changed their game entirely, with the release of ASP.NET Core. For the first time in over 14 years, ASP.NET was made both open source and cross-platform in a complete rewrite from the ground up. When version 1.0 of ASP.NET Core was released, there was one potentially significant downside depending on the size and complexity of your application. If you have a requirement to host on a platform other than Windows, you can't target the full .NET framework. The issue with this was a potential lack of necessary APIs that had not yet been ported over to the core CLR. However, version 2.0 has recently been released, and with it comes a compatibility shim that enables .NET Core apps to reference any .NET framework library.

If you've been avoiding the move to ASP.NET Core, then now is a great time to change that. Version 2.0 has added a number of other improvements aside from backward compatibility with .NET framework APIs and libraries: Simplified configuration setup, simplified NuGet package references, and additional SPA project templates, to name but a few. One of Microsoft's most well-known developers, Steve Sanderson (creator of the very popular KnockoutJS framework), has made it his goal to make ASP.NET Core the best backend choice for single-page applications. To achieve that goal; his team has implemented some amazing features to seamlessly integrate frontend and backend builds using ASP.NET Core middleware. These features, along with the latest improvements released in version 2.0, really do make ASP.NET Core a fantastic choice for any web application.

With so many SPA frameworks to choose from, why should we bother with Vue? Most developers with any kind of interest in modern web application development have probably heard of React and Angular, but far fewer will have heard of Vue. Initially created by a single developer, Evan You, and currently developed by a relatively small international team, you could be forgiven for ignoring it in favor of its main competition. After all, React and Angular are developed by the tech giants that are Facebook and Google, respectively.

However, after working at both Google and the Meteor Development Group, Evan You knows a little something about SPA frameworks. Vue was created after both React and AngularJS had some time to be battle tested by thousands of developers around the world. In the eyes of its creators, Vue incorporates the best parts that either of these frameworks had to offer, while also trying to avoid the pitfalls that caused common grievances throughout the community. The result is a very lightweight and focused library dedicated to building UIs only. However, the Vue team has always intended for this library to be incrementally adoptable in any web project, and has provided several supporting libraries that make Vue a fantastic choice for building fully fledged SPAs as well.

In my opinion, Vue is far simpler to learn than most of the alternatives, which makes it a great choice for experienced backend .NET developers looking to branch out into the world of frontend frameworks and modern SPAs. If you already know enough HTML and jQuery to make a standard MVC application, then the template syntax used by Vue won't be much of a problem, and a lot of the syntax can be directly compared to that of Razor. The barrier to entry may be low, and the library itself may be incredibly lightweight, but Vue can be every bit as powerful as any other SPA framework that exists today.

 Who this book is for

This book is aimed at ASP.NET developers who are looking for an entry point in learning how to build a modern client-side SPA with Vue.js, or those with a basic understanding of Vue.js who are looking to build on their knowledge and apply it to a real-world application. Knowledge of JavaScript is not necessary, but would be an advantage.

 What this book covers

Chapter 1, Understanding the Fundamentals, starts by looking at the fundamentals of Vue.js to give readers a basic understanding of the techniques used to build the sample applications later in the book. It discusses some of the benefits of Vue.js, as well as some of the reasons why we'd bother to choose it for building our applications. Finally, it looks at how ASP.NET Core / EF Core differ from their previous counterparts, focusing on the very latest versions of the frameworks, and putting the emphasis on the newest features that you may not know about yet.

Chapter 2, Setting Up the Development Environment, walks you through the process of installing and configuring the tools that you'll need to build and run an ASP.NET Core and Vue.js SPA. It takes the cross-platform nature of ASP.NET Core into consideration while evaluating some of the options available to us when selecting a client-side package manager, an IDE, and an RDBMS. Finally, it shows you how to install some productivity tools that make our lives far easier while building Vue.js applications with Google Chrome.

Chapter 3, Getting Started with the Project, looks at the options available to you when starting and scaffolding a brand new project with ASP.NET Core and Vue.js. It introduces the basics of what webpack is and how it works, before scaffolding an application that will form the foundations that will be built on for the rest of the book. Finally, it looks at how to refactor the default application structure to meet your own needs and preferences.

Chapter 4, Building Our First Vue.js Components, jumps into building a basic product list component, before composing a component structure based on the standard master-details pattern to display more information about a selected product. It then introduces client-side routing by refactoring the UI into separate pages for the product list and details components, before replacing the hardcoded product data with dynamic data fetched from the backend API.

Chapter 5, Building a Product Catalog, expands the existing components into a fully featured product catalog, including filtering, sorting, and searching. It also improves the existing look and feel of the application by introducing the Bootstrap CSS framework, as well as adding animations and loading indicators in between page changes. The reader will learn how to identify and extract duplication into common reusable components, as well as how to import and render components from third-party libraries.

Chapter 6, Building a Shopping Cart, starts by evaluating the options available to us for persistent shopping cart items. It then introduces Vuex for centralizing client-side state and enabling access to it from multiple components. Readers will then learn how to consume Vuex state by building a shopping cart component, as well as a shopping cart summary component to display it. They will also learn how to create custom Vue.js filters to reduce duplication in presentation logic, as well as how to provide feedback to users by displaying toast messages. Finally, we will see how to quickly and easily persist Vuex state to local storage to make sure that it is available on subsequent visits to the application.

Chapter 7, User Registration and Authentication, looks at how to add access control using JWT-based authentication. You will learn how to protect API routes using ASP.NET Core middleware and action filters, as well as how to prevent access to client-side pages using Vue.js router navigation guards. You will also extend the existing Vuex store to include register and login functionality, as well as building the necessary components for consuming it.

Chapter 8, Processing Payments, completes the user journey of the customer by implementing a fully functioning checkout page, including payment processing with Stripe. You will learn why Stripe is the perfect library for payment processing in any type of e-commerce website, as well as how to integrate it into a Vue.js client application and ASP.NET Core API. You will also learn how to add rich client-side validation to a custom checkout form component, which provides immediate feedback to the user as they start typing in each field.

Chapter 9, Building an Admin Panel, adds the ability to manage the existing product catalog, and add new products to the database. Readers will learn how to reduce duplication by extracting common functionality into a base component and then using component inheritance to extend it. You will build a collection of reusable form input components and then refactor the existing forms to make use of them.

Chapter 10, Deployment, completes the first iteration of the application by deploying it to a production cloud environment. We start by registering for a Microsoft Azure account, before learning how to set up and configure our environment to include an app and database server. Readers will then learn how to prepare the application for deployment, including the configuration of multiple database providers to support SQL servers in production, and PostgreSQL in development. They will also learn how to enable logging within Azure, as well as how to force HTTPS connections to increase the security of the application. Finally, we will enable automated Git deployments to publish the application on every push to a specific Git repository.

Chapter 11, Authentication and Refresh Token Flow, builds on the existing authentication mechanism by adding refresh token support. You will learn how and why this increases the security of the application, as well as how to implement refresh token flow in an ASP.NET Core API. You will then learn how to add a client-side API request interceptor to automatically refresh users' access tokens as and when they expire, allowing them to remain logged in permanently.

Chapter 12, Server-Side Rendering, begins by discussing some of the reasons why you would want to initially render a client-side SPA on the server. It then provides a detailed explanation of how to refactor the application to prepare it for SSR, before showing you how to set up and configure SSR. Finally, it looks at some of the limitations of SSR and how to fix them by conditionally rendering components that are not SSR-compatible, before looking at how to test that everything is working as it should be.

Chapter 13, Continuous Integration and Continuous Deployment, introduces a far more robust way of automating the application build and release pipeline using VSTS rather than the existing Azure Git deployment feature. It discusses the reasons, why you would want to use a CI/CD pipeline, and very briefly why VSTS is the perfect choice when building ASP.NET Core applications hosted within Azure. It walks you through the process of setting up a VSTS account, build and release, as well as enabling triggers to automatically build and deploy the application on every push to the existing Git repository.

 To get the most out of this book

It is assumed that you are already a reasonably competent ASP.NET web developer, familiar with building MVC web applications. Although not required, you will appreciate the benefits of Vue.js more if you are also familiar with incorporating a moderate amount of jQuery, or vanilla JavaScript, into your MVC applications. It is also assumed that you are familiar and comfortable with basic CSS and SCSS, with knowledge of the Bootstrap framework being desirable. It is not required to have any pre-existing knowledge of .NET Core or ASP.NET Core, but again, it would be beneficial to have explored ASP.NET Core and how it differs from previous versions of the framework. Finally, it is assumed that you are familiar with source control using Git, and will have access to a cloud-based Git repository to use for deployment in Chapter 10, Deployment, and Chapter 13, Continuous Integration and Continuous Deployment.

All software requirements necessary for completing the sample application are introduced as and when required, including links to instructions on how to install them on your native OS. It is possible to build and run the sample application on any OS supported by ASP.NET Core, including both Windows and macOS. However, the application has only been tested by myself on a Windows machine, as it is assumed that this is what the vast majority of readers will be using, based on the assumption that they are experienced ASP.NET developers.

 Download the example code files

You can download the example code files for this book from your account at www.packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

	Log in or register at www.packtpub.com.

	Select the SUPPORT tab.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Hands-On-ASP.NET-Core-2-and-Vue.js. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "In this case, we return a simple object with a single name property."

A block of code is set as follows:

<style lang="scss">
html,
body {
 height: 100vh;
}
div.app,
div.page {
 height: 100% !important;
}
</style>

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

vendor: [
 "event-source-polyfill",
 "isomorphic-fetch",
 "vue",
 "vue-router",
 "bootstrap/dist/css/bootstrap.min.css",
 "bootstrap-vue",
 "nprogress/nprogress.css"
]

Any command-line input or output is written as follows:

webpack --config webpack.config.vendor.js

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "To do so, click on the Resource groups link in the main menu on the left."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

 Understanding the Fundamentals

Many modern web applications are now built as client-rendered Single-Page Applications (SPAs) rather than traditional server-rendered multipage applications. An SPA is a web application that only contains a single physical HTML page. This single page then uses JavaScript within a web browser to dynamically rewrite parts of the HTML, usually based on JSON data that's retrieved from API calls to the server. By doing so, after the initial page load, the application has no need to request full HTML pages from the server, which helps make it as fast and responsive as a native desktop application.

When it comes to building SPAs in 2018, we are absolutely spoiled for choice in frameworks and technologies that we could potentially use to help us build our apps. Regardless of their chosen technology stack, most web developers will probably have extensively used jQuery for their client-side JavaScript needs, and there is no reason why it couldn't be used to build SPAs as well. However, there are far better frameworks that are specifically designed to help us build modern SPAs.

Vue.js is a JavaScript framework for building the view layer of your applications. However, it differs from other large frameworks because it's designed to be incrementally adoptable. That is, with a single CDN script reference, you can plug Vue into a small portion of an existing application in much the same way as you would with jQuery. On the other hand, you could opt to use the modern tooling and supporting libraries in Vue's ecosystem to build a fully-fledged SPA from scratch. Vue really is one of the most simple yet powerful frameworks, with very little compromise in return.

ASP.NET Core is the latest version of Microsoft's ASP.NET web development framework. It has been completely rewritten to be more lightweight and modular, as well as to offer official cross-platform support for the first time. If you are reading this book, it is reasonably safe to assume that you are most likely already an experienced ASP.NET developer, with minimal experience of frontend frameworks and technologies. However, if you already have a basic understanding of Vue.js, then you may be able to skip this chapter, as it will be aimed primarily at those with no experience at all. Regardless of your level of experience with Vue, if you are already familiar with ASP.NET Core, then at the very least you can skip the ASP.NET Core sections near the end of this chapter. That being said, I'll only be focusing on areas where ASP.NET Core differs from previous versions of ASP.NET.

In summary, we'll cover the following topics:

	What are components?

	How do we compose a UI using components?

	Client-side application state

	Fundamental Vue concepts such as props, methods, computed properties, and directives

	What's new in ASP.NET Core?

	What's new in EF Core?

 Thinking in components

Building web applications using Vue or any other JavaScript SPA framework revolves around the concept of breaking the UI down into the smallest possible chunks of functionality. These chunks are referred to as components, and can be likened to Razor view components, tag helpers, and partial views in ASP.NET Core MVC. However, in most SPAs, you'll end up breaking the UI down into far more pieces than you would in a traditional MVC application.

 What is a component?

We can think of components as the building blocks of a UI. Each one is a self-contained piece of functionality, usually combined with a host of other components in a tree-like structure to form the UI of the entire web application. These components are also often reusable, and can be simply dropped into any part of the application where required.

A component in Vue is made up of two fundamental parts: presentation and behavior. The presentation part is simply the HTML template that is used to represent the data we are trying to display in the UI. The behavior part is a JavaScript object containing only the data relevant to that specific component, and any JavaScript functions necessary to manipulate that data and interact with the browser. This interaction includes handling the events raised by the browser, as well as refreshing certain portions of the UI depending on how the data has actually changed. Vue is smart enough to only refresh the parts of the UI that need to be, and doesn't bother refreshing the parts where the data hasn't changed.

In many SPA frameworks, this results in a single component being split into at least two, potentially three, separate physical files; a HTML file for the template; a JavaScript file for the data and behavioral functions; and an optional CSS file for styling the presentation of the component. In Vue, we have the concept of a single file component. We can use a custom file extension that allows us to combine these three aspects into a single file that contains three root elements: template, script, and style. In the following code snippet, we can see an example of a single file component:

<template>
 <div class="product">
 {{ name }}
 </div>
</template>

<script>
export default {
 name: 'product',
 data () {
 return {
 name: 'Hands on ASP.NET Core and Vue.js'
 }
 }
}
</script>

<style>
.product {
 font-size: 12px;
 font-weight: bold;
 color: teal;
}
</style>

The presentation part of this component, that is, the template and style sections, are incredibly simple. All we do is render a standard div element with a product class, and set the font size, weight, and color of that specific class using CSS. Inside the div element, we're using Vue's standard handlebar syntax to dynamically render a name variable. This variable is declared within the behavior part of the component, which again means the script section. Standard component data properties are declared inside a plain JavaScript object, which must be returned from a function named data. In this case, we return a simple object with a single name property, initialized with the Hands on ASP.NET Core and Vue.js value. This will subsequently be the text rendered inside the div element of template.

Each component should adhere to the SOLID principles of software design, and as such should only have a single responsibility. As soon as any single component starts to become overly complicated and difficult to see at a glance what its purpose is, it's probably time to refactor and extract a new component. Components are more often than not used in parent-child relationships, and Vue provides mechanisms for allowing related components to communicate with one another. Parents can pass data down into their children, and children can notify their parents of changes to their data. These parent-child relationships are the branches of our component tree, and there are many different ways that we could choose to break a UI down into this structure.

 UI composition

Let's look at an example that most web developers will be familiar with. Imagine a web page with the Holy Grail layout—that is Header, Footer, left and right sidebars, and Main Content in the middle. When architecting this layout with components, the obvious composition is to start by creating a component for each major section of this layout:

Holy Grail web layout

This is a good start, and in a typical MVC application, we might have done something similar using layout and partial views. However, we already know that a component is the smallest possible chunk of functionality that forms part of the UI. We need to break things down further, and be far more granular with our component boundaries. How we do this will obviously be highly dependent on the type of content we actually have contained within these major page sections. Let's expand on the previous layout with some standard UI features we'd expect in a typical e-commerce product listing page.

The header section would likely contain some kind of branding or Logo, along with a Navigation menu of some sorts and potentially a Search bar. The left sidebar is a common place to find any secondary navigation menus and some Filters to control which products are visible. The main content section will contain our Product List, along with some UI elements above to control the display order and maybe even switch between a grid and list view; there would also usually be a standard Pagination control at the bottom of the page. Finally, the right sidebar can hold a widget that displays a summary of the user's shopping cart contents, a widget to display a set of featured or most popular products, and a newsletter signup form. The following diagram shows how we could start composing this UI into a component tree:

Holy Grail layout in components

We could—and probably would—still break this down further as we were actually building these components; it's almost impossible to get things right the first time round. However, this is the beauty of component-based architectures. There is no right or wrong way of composing a UI; we simply try it one way, and if it doesn't work, we refactor our component tree until we find a way that does work!

 Introduction to Vue

Before we go much further, we really need to understand the basics of Vue, and how we go about using it to define and display our application's data on a web page.

 The Vue instance

Every Vue application must have at least one root Vue instance, which is created when we pass an options object into the new Vue() constructor. There are a number of properties that we can define on this object, many of which are optional. These properties describe what data the instance has access to, and what kind of actions and manipulations it can do with that data.

 Attaching to the DOM

Root Vue instances are attached directly to the DOM using the standard CSS selector syntax. In the following example, we specify an el property of #app on the options object, which instructs the instance to look for an element with an ID of app and attach to it:

var app = new Vue({
 el: '#app'
})

This forms a relationship between the Vue instance and a specific portion of the DOM, meaning we can start to display our dynamic data anywhere inside the specified element. However, if we tried to display our data outside of it, it wouldn't work as Vue is not managing the DOM at that level.

 Defining data properties

In order to render data into the DOM, we first need to define the data we want to display. Every Vue instance can define a data object to hold as many data properties as we wish:

var app = new Vue({
 el: '#app',
 data: {
 message: 'Hello World'
 }
})

 Rendering data into the DOM using expressions

To render our dynamic data properties into the DOM, Vue uses a very simple HTML template syntax which is inspired by the very popular handlebars templating library. This is why we refer to it as the handlebar syntax, which uses double curly braces, or mustaches, to render data within HTML elements:

<div id="app">
 {{ message }}
</div>

var app = new Vue({
 el: '#app',
 data: {
 message: 'Hello World'
 }
})

Anything placed within a pair of double curly braces is treated as an expression, which means it will be interpreted using JavaScript. As such, we can reference the properties we define in the data object as we've done earlier, but can also make use of any standard JavaScript concept. As an example, we could easily make use of the Date object for rendering the current timestamp:

<div id="app">
 {{ message }}
 <p>
 The current date is: {{ new Date() }}
 </p>
</div>

We can even use logical operators to perform math-based operations or concatenate strings:

<div id="app">
 {{ message }}
 <p>
 {{ currentDate + ': ' + new Date() }}
 </p>
</div>

var app = new Vue({
 el: '#app',
 data: {
 message: 'Hello World',
 currentDate: 'The current date is'
 }
})

Expressions allow us to perform any kind of operation on the data properties defined on the Vue instance, as well as built-in JavaScript objects and functions.

 Building component trees

If you are only interested in plugging Vue into a handful of pages in a traditional MVC web application, you would define as many root Vue instances as required, attaching each one to a different DOM element. However, when building a full SPA with Vue, you would instead define a single root Vue instance with a nested tree of components underneath it. This single root Vue instance would then be responsible for attaching the entire application to a single DOM element.

We've already discussed what components are at a very high level, but what exactly is a component within the context of a Vue SPA? The answer is simply another Vue instance, albeit this time not a root Vue instance. There are a few subtle differences between a root Vue instance and a non-root Vue instance—most notably that only the root Vue instances define el attributes. This is because nested Vue instances, or components in a component tree, are simply rendered within their parent root Vue instances template. They do not need to be told where to attach themselves.

The other main difference between a root Vue instance and a component Vue instance is that the latter must define their data property as a function rather than an object. We've already seen an example of this when we first looked at the basic structure of a Vue component, but to reiterate, it looked as follows:

<template>
 <div class="product">
 {{ name }}
 </div>
</template>

<script>
export default {
 name: 'product',
 data () {
 return {
 name: 'Hands on ASP.NET Core and Vue.js'
 }
 }
}
</script>

<style>
.product {
 font-size: 12px;
 font-weight: bold;
 color: teal;
}
</style>

Notice that the data property is a function that returns an object this time. This is because of the fact that every Vue component is a Vue instance. If we use a plain data object rather than a function returning an object, Vue cannot determine which component templates need to be refreshed when that property changes. This is a big issue when we render the same component multiple times when looping over lists of data, and then try and update a single list item's data property.

 Reactivity

Now that we've talked about the Vue instance, it's worth talking about reactivity. One of Vue's core concepts is its reactivity system, which is also one of the main differences between building applications with Vue and sticking with jQuery or even plain old JavaScript. With jQuery or plain JavaScript, when a piece of data needs to change, we have to manually ensure that any DOM element which references that data is updated to display its new value. How big a job this is depends entirely on how big the application is, and how well-written it is. However, it's an exceptionally error-prone way of working, regardless of those factors.

In Vue, we bind the DOM to data properties defined in JavaScript, and then when those data properties change, the DOM is automatically updated for us by the reactivity system. The application quite literally becomes reactive to data changes, so it really doesn't matter how big the application is since every DOM element that displays a specific piece of data will automatically refresh when that value changes—no more manual DOM updates!

 Component behavior

We've now seen how to define a Vue component, as well as how to declare data properties and render them into the DOM using component templates. However, this is just scratching the surface of what we can do with Vue components. We've already discussed how Vue components have two main aspects to them: presentation and behavior. Let's start to look at what else we can do with the behavior side of a component, starting by expanding on the data function and talking about state.

 State

When talking about the state of an application, what do we actually mean? As soon as we introduce complex client-side logic to a web application, we also introduce multiple meanings of the word state, or rather, we introduce an additional type of state to our application. State can mean different things depending on the type of state we are interested in.

Most backend .NET developers will probably understand state to be based on a snapshot of the applications database at any point in time. In terms of our e-commerce example from earlier, this would include the current list of products and categories that make up our catalog; a list of users or customers who have registered for an account; and a list of orders and associated order items. This form of state is based on the domain of the application, and can be extended to include things that don't necessarily persist into the database, such as authentication, validation, and business rules that control how the application behaves.

The type of state that we care about at the component level is known as UI state. Generally speaking, UI state and domain state are separate things, but it isn't impossible for the two to cross over. For example, keeping track of the current user isn't necessarily a UI concern, but most SPAs will use some form of JWT authentication where the user's tokens, and as such their authentication state, will be tracked by the SPA. Another example is where we display paginated lists of data in an SPA—keeping track of the currently displayed list items is a UI concern, but we are still displaying a subset of the database-persisted items that belong to the domain of the application.

Other examples of UI state include keeping track of the active menu item in a navigation component; controlling the visibility of a modal window or custom drop-down menu; keeping track of which panels are open/closed in an accordion; and showing and hiding loading spinners during AJAX operations. These are fairly simple examples, and there are a lot more complex things that we can do with client-side state such as transitions and animations, but it's enough to demonstrate what we are talking about for now.

Each of our components are only responsible for their own subset of the application UI state. For example, a component that contains the filters that we've applied to a product list is only concerned with the selected values of those filter controls. It isn't—and shouldn't be—concerned with which user is currently logged in, or how many items the user has added to their shopping cart. This is all part of adhering to the single responsibility principle, which makes our components much easier to debug and maintain.

Sooner or later, we're going to come across a situation where a single component is in violation of the SRP, and we want to break that component down into a parent-child relationship instead. A common pattern is where we have a list component as a parent that contains a collection of list-item components as its children. The original component was probably already fetching the data it displays, and it makes sense to leave that responsibility up to the new parent list component; after all, the only alternative is to have each list-item component fetch its own data, which would result in multiple trips to the server instead of just one.

 Props

We already know that components are self-contained, so how do the children get access to the data they need to display if the parent owns and controls it? The simple answer to that question is props. Props are a means of parent components passing data down into their children. The child component must explicitly declare the names of the props it expects to receive, and then these props can be referenced in much the same way that we do for any other piece of data that the component owns.

The following code demonstrates how we declare and reference a prop within a child component:

<template>
 <div class="product">
 {{ name }}
 </div>
</template>

<script>
export default {
 name: 'product',
 props: ['name']
}
</script>

We can render this child component from within its parent component template as follows:

<template>
 <div class="product">
 <child-component name="Hands on Vue.js and ASP.NET Core" />
 </div>
</template>

<script>
import ChildComponent from './ChildComponent.vue'
export default {
 name: 'parent',
 components: {
 ChildComponent
 }
}
</script>

At this stage, it is important to understand that this method of sharing data between components is strictly limited to one-way. It is impossible to send data back up the chain from a child to a parent using props. We'll look at how to communicate in the opposite direction later in this chapter.

The final point to mention about props is that Vue provides a means of validating the props being passed to a component. We can perform basic type checking; control whether props are required or optional; configure default values in the event that a prop is not provided; and even write custom validator functions in much the same way as we would with client-side validation libraries. The following code snippet shows an example of some of these validation rules and how we describe them in the component definition:

<script>
export default {
 name: 'validation',
 props: {
 name: {
 type: String,
 required: true
 },
 description: {
 type: String,
 required: true
 },
 price: {
 type: Number,
 required: true
 }
 }
}
</script>

 Methods

If the data we are displaying within our components never changes, it's probably a sign that we really don't need to be using an SPA framework such as Vue. We know that the data in a component is used for things such as showing and hiding modal windows, so how do we actually change the data so that the UI can become reactive? Vue components can declare methods in order to manipulate their data. These methods are standard JavaScript functions, and automatically have their function context (that is, the value of this) bound to the component instance so that they can access its data, props, and computed properties. The following code shows how we can increment a simple counter using a method on a Vue component. We can trigger this method by calling it from a UI element event handler, which we'll look at later in this chapter:

<script>
export default {
 name: 'methods',
 data () {
 return {
 counter: 1
 }
 },
 methods: {
 increment () {
 this.counter++
 }
 }
}
</script>

 Computed properties

As our applications grow in complexity, the chances are that sooner or later we'll need to perform some logic on one or more of our component data items and display it in a template. As a simple example, we may have data properties for a person's first and last name, but we are regularly required to concatenate them and display their full name. We could just use expressions inside the template as follows:

<template>
 <div>
 {{ firstName + ' ' + lastName }}
 </div>
</template>

<script>
export default {
 name: 'expressions',
 data () {
 return {
 firstName: 'Stu',
 lastName: 'Ratcliffe'
 }
 }
}
</script>

However, if we've duplicated this expression in multiple places throughout the template, and we then decide to change the way we display the person's full name, we have multiple places to find and update it. Even in a fairly small and simple example such as this one, this doesn't sound like much fun, and certainly isn't very maintainable.

Alternatively; we could use a computed property to achieve the same result. If you've ever used a computed column in SQL Server, then the concept will be familiar to you, and computed properties in Vue components behave in much the same way. In the following code snippet, we can see how we would declare a fullName computed property in our component declaration, and how we then render the value of that property into a template:

<template>
 <div>
 {{ fullName }}
 </div>
</template>

<script>
export default {
 name: 'computed-properties',
 data () {
 return {
 firstName: 'Stu',
 lastName: 'Ratcliffe'
 }
 },
 computed: {
 fullName () {
 return `${this.firstName} ${this.lastName}`
 }
 }
}
</script>

Although they are referred to and referenced in the same way as standard data properties, they are actually functions. As with the component data object and methods, if Vue detects that the returned value of a computed property has changed, it will automatically refresh the UI to reflect those changes.

 Watchers

Watch properties are similar in functionality to computed properties, and in most cases it is actually unnecessary to use one. However, there is a limitation in that computed properties are synchronous functions and always return a value that we can bind to. This makes them impossible to use alongside asynchronous operations such as AJAX calls. So, what should we do if we want to trigger an AJAX call to our API server and react to the data that is returned?

Say we wanted to automatically display search results as a user enters their search term into a text input. We could implement a simple event listener on the input and create a method that is triggered on the keyup event, which performs an AJAX request with its current value. This would work absolutely fine, and you may never need any more control than this. However, this piece of functionality is completely coupled with the text input, and as such our component will not react and refresh the UI if we change the data value of the input directly.

Watch properties are a solution to this problem, as they provide a far more generic way of reacting to data changes. In the following example, we are performing an AJAX request that queries an API to perform some sort of search. We'll discuss what v-model, v-show, and v-for mean shortly, but for now, just know that the text input has its value bound to the searchValue property, and we display each search result in the array as a list item element:

<template>
 <div>
 <h1>Watchers Example</h1>
 <input v-model="searchValue" />
 Loading...

 <li v-for="result in searchResults">{{ result }}

 </div>
</template>

<script>
export default {
 name: 'watchers',
 data () {
 return {
 searchValue: '',
 searchResults: [],
 loading: false
 }
 },
 watch: {
 searchValue (newValue) {
 let vm = this
 this.loading = true

 setTimeout(function () {
 vm.searchResults.push('some', 'search', 'results')
 vm.loading = false
 }, 500)
 }
 }
}
</script>

Note how we also have to declare a data property of the same name. The watch declaration instructs the component to quite literally watch the data property, and run the associated function each time it changes. The current value of the data property is passed to the function so that we can use it in any way that we please.

We also made use of this function to update a loading property to instruct the component that the AJAX call is in progress; this property can now be used to show a loading spinner in the UI each time the AJAX call is triggered. We could even extend this function to limit how often the AJAX call can take place by using a debounce or throttle function. None of this is possible with a computed property, and by using a watch property, it doesn't matter whether we update the data through a UI control or manually in another component method!

 Lifecycle hooks

Every Vue component goes through a number of steps to initialize it when it's created. Among other things, these steps are responsible for compiling and rendering the HTML template, setting up the component's data so it becomes reactive, and mounting the component into the DOM. In order to hook into this process, we're given a number of lifecycle hooks that we can use to run our own application-specific initialization code at each stage.

These lifecycle hooks are as follows, and named appropriately enough to make themselves fairly self-explanatory:

	beforeCreate

	created

	beforeMount

	mounted

	beforeUpdate

	updated

	beforeDestroy

	destroyed

beforeUpdate and updated run in a continuous loop for the duration of the component's lifetime. Every time Vue detects a data change within the component, these steps are run before and after the virtual DOM is re-rendered.

So, how do we actually make use of these function hooks? The following code shows an example of how we declare the hooks we wish to use within a component definition:

<script>
export default {
 name: 'lifecycle-hooks',
 beforeCreate () {
 console.log('before create')
 },
 created () {
 console.log('created')
 },
 beforeMount () {
 console.log('before mount')
 },
 mounted () {
 console.log('mounted')
 },
 beforeUpdate () {
 console.log('before update')
 },
 updated () {
 console.log('updated')
 },
 beforeDestroy () {
 console.log('before destroy')
 },
 destroyed () {
 console.log('destroyed')
 }
}
</script>

We simply add a root-level function with its key matching the name of the lifecycle hook we want to use. This is all very well and good, but if you've never used an SPA framework such as Vue before, you're probably wondering why we'd ever want to bother doing this. There are many reasons to use lifecycle hooks, the most common of which is probably to fetch the data the component needs from an API somewhere. A good place to do this is in the created hook because we don't need access to the DOM, so there is no need to wait until the mounted hook is run later. The other reason to use created instead of mounted is because created is the only hook that is run on both client- and server-rendered versions of the component. We'll look at server-side rendering in one of the final chapters in this book!

A few other examples include triggering animations as soon as the page is displayed, and dirty checking a form to give the user a chance to complete it before navigating away. We would need to use the mounted and beforeDestroy hooks for these actions, respectively.

So far, we've been focusing on the Vue instances and the different ways they help us manage the data that our components are responsible for, but this is only half of the story. We're yet to see how Vue can help us actually display that data. Let's start focusing on the template section of our components!

 Component presentation

We've now seen how a component can work with and manipulate the data of an application, so let's move on to look at how to actually display that data in the template section of our components.

 Directives

Out of the box, Vue provides a number of directives that help us display our data. A directive is a special token that we attach to the HTML element markup in order to instruct Vue to do something special with the DOM element that it renders. Let's look at a simple example to make this a little easier to understand:

<template>
 <input v-bind:value="message" />
</template>

<script>
export default {
 name: 'data-binding',
 data () {
 return {
 message: 'Hands on Vue.js and ASP.NET Core'
 }
 }
}
</script>

Here, we use the v-bind directive to bind the value of a standard HTML input element to the message property of the component's data object. In an MVC application, we can do something similar with Razor syntax to bind DOM elements to properties on a view model. We can also use Razor to do things like loop over a list and render the same output for each item, and use conditional rendering and control flow to render different groups of elements depending on runtime model conditions.

The default directives that Vue provides can do all if these things and more, all while using a much cleaner and easier to read syntax!

 Attribute binding with v-bind

We've already seen a simple example of v-bind, but there are many other uses for it. We can use v-bind to turn any standard HTML attribute into a reactive version that we can change the underlying data value of to cause the UI to refresh. For example, we can create a very basic image carousel by using v-bind on the src attribute of an HTML image tag, and then rotate through an array of data values to cause the image to refresh:

<template>

</template>

<script>
export default {
 name: 'v-bind',
 data () {
 return {
 imageSrc: '',
 images: [
 'path/to/image/1.jpg',
 'path/to/image/2.jpg',
 'path/to/image/3.jpg'
]
 }
 },
 mounted () {
 let vm = this
 let count = 0

 setInterval(function() {
 vm.imageSrc = vm.images[count++]
 if (count == vm.images.length)
 count = 0
 }, 1500)
 }
}
</script>

Notice how we're using the mounted lifecycle hook that we talked about earlier, which is a perfect example of triggering a UI transition/animation as the component is rendered and displayed in the DOM.

One of the most common usages that we'll see throughout the rest of this book is class bindings to change how an element is styled reactively. We can conditionally add or remove classes based on the component's state, and change that state in response to user interactions such as button clicks. Until now, we've been using the full v-bind:attr syntax, where the section after the : is the specific HTML attribute you wish to data bind. However, Vue also provides a shorthand syntax for a number of its directives. In the case of v-bind, we can simply omit the v-bind part and use :attr instead:

<template>
 <div :class="{ 'blue': isBlue }"></div>
</template>

<script>
export default {
 name: 'v-bind',
 computed: {
 isBlue () {
 return Math.random(0, 1) > 0.5
 }
 }
}
</script>

<style>
div {
 background: red;
}

div.blue {
 background: blue;
}
</style>

Notice how we shortened the directives syntax to :class rather than v-bind:class. This is a very simple example that changes the color of a div element. However, we could use the same techniques to add colored borders and other indicators to show that a piece of the UI has been selected by the user, or that a form input element contains an error after validation.

 Conditional display with v-show

Rich UIs usually require us to conditionally show and hide elements based on variables and user interactions. Vue gives us a couple of ways of achieving this with the v-show and v-if directives. We'll talk more about v-if in the next section, but ultimately, both options can be used for controlling the visibility of an element based on the component's state:

<template>
 <div v-show="show">
 v-show example
 </div>
</template>

In the preceding example, we're using v-show to control the visibility of a div element based on a simple Boolean property. This property is toggled by a simple method which is invoked by a button click.

 Control flow with v-if and v-else

If...else statements will need no introduction, as we often use them in both our backend C# code and our frontend Razor views. Usage in Vue is no different; we just use v-if and v-else in place of the Razor syntax:

<template>
 <div v-if="show">
 v-if example
 </div>
 <div v-else>
 v-else example
 </div>
</template>

It is also possible to control multiple elements at once with a single v-if statement to prevent duplication. Once rendered, the following template tag will not be included, as it acts as an invisible wrapper:

<template>
 <div>
 <template v-if="show">
 <div class="first"></div>
 <div class="second"></div>
 <div class="third"></div>
 </template>
 </div>
</template>

As of version 2.1.0 of Vue, a v-else-if directive has also been added, and it behaves exactly as you'd expect:

<template>
 <div>
 <div v-if="show">
 v-if example
 </div>
 <div v-else-if="show2">
 v-else-if example
 </div>
 <div v-else>
 v-else example
 </div>
 </div>
</template>

As with a normal if...else statement, it must follow a v-if directive, and similarly the v-else statement must follow either a v-if or v-else-if statement.

There's nothing stopping us from using a v-if directive by itself, without any associated v-else or v-else-if directives, in which case it has a very similar behavior to v-show. At this point, you're probably wondering why we need both if they do the same thing. There is one very big difference between v-if and v-show, and it's important to understand how that difference should influence the decision on which to use in a given scenario.

 An element with a v-show directive attached is always rendered into the DOM, and visibility is controlled via the CSS display property. On the other hand, elements controlled by a v-if directive are only rendered into the DOM if the conditional is truthy. This means that visibility is controlled by removing the element from the DOM entirely.

So, which one do we use and why? Generally speaking, v-show is more appropriate for use cases where we know the conditional is going to change frequently. This is because the overhead of toggling the element is much lower, as we have taken that performance hit by always rendering the element, regardless of the conditional. If the condition is unlikely to change at runtime, then we would prefer v-if, as there is a chance that the elements won't ever be rendered, saving us time upfront.

 Rendering lists with v-for

Rendering lists of items is a very common requirement of most web applications, so Vue has us covered on this one with the v-for directive. Again, the syntax is very similar to Razor, and we can assign an alias to the current item in the loop. We can then reference the alias to give us access to any or all of its properties:

<template>
 <div>
 <div v-for="item in items" :key="item">
 {{ item }}
 </div>
 </div>
</template>

It is also possible to access the index of the item within the array by using an optional second argument:

<template>
 <div>
 <div v-for="(item, index) in items" :key="item">
 {{ index }} - {{ item }}
 </div>
 </div>
</template>

Although we've been using the standard syntax—for example, item in items—it is also possible to use on rather than in. This is closer to the standard JavaScript syntax, so feel free to use this version if you feel more comfortable with it.

 Event handling with v-on

Vue gives us a really easy way to attach event handlers to elements using the v-on directive. With standard HTML elements, we can listen for any native DOM event:

<template>
 <div>
 <button v-on:click="clickHandler()">Click me!</button>
 <form v-on:submit="submitHandler()">
 <input type="text" />
 </form>
 </div>
</template>

Here, we are listening for a native click event on a standard HTML button, and invoking the clickHandler method each time it is clicked. We are also listening for the form's submit event to be fired, and intercepting it with the submitHandler method. You've probably noticed that we already saw some button click examples earlier when looking at some of the other directives in Vue. However, we didn't use the v-on syntax like we did here, and instead we used the @ shorthand notation. Here's the same example again using @click and @submit instead:

<template>
 <div>
 <button @click="clickHandler()">Click me!</button>
 <form @submit="submitHandler()">
 <input type="text" />
 </form>
 </div>
</template>

When writing event handler functions in jQuery, we often find ourselves needing to prevent the default event behavior or stopping the event from propagating up through the DOM. In order to do this, we would normally receive the native DOM event as an argument to the event handler function. This is also possible with Vue, as the native event is passed to the handling function, by default, as the only argument:

<template>
 <div>
 <button @click="clickHandler">Click me!</button>
 </div>
</template>
<script>
export default {
 name: 'events',
 methods: {
 clickHandler (event) {
 event.preventDefault()
 event.stopPropagation()
 }
 }
}
</script>

If you've written a lot of jQuery in the past, then this will feel right at home for you. However, it's not the only way to achieve the same result, and Vue gives us a much nicer way through the use of modifiers:

<template>
 <div>
 <button @click.prevent.stop="clickHandler">Click me!</button>
 </div>
</template>

It should be fairly self-explanatory as to what's happening here, but adding the .stop modifier is a shorthand way of calling event.stopPropagation(), and adding the .prevent modifier is a shorthand way of calling event.preventDefault(). There are a number of other modifiers available to us, including but not limited to the following:

	.native: This is used for listening to the native events on the component's root element

	.{keyCode}: This is used for listening to specific keyboard key presses, for example, @keyup.13

	.{keyAlias}: This is also used for listening to specific keyboard key presses, for example, @keyup.enter

	.left, .middle, or .right: This is used for listening to specific mouse button clicks

Notice how we also chained the prevent and stop modifiers in the preceding example. This is perfectly valid in Vue.

Event handling in Vue is incredibly flexible and powerful. We can attach as many v-on directives as we wish, but we can also attach multiple handlers using a single directive by making use of the object syntax:

<template>
 <div v-on="{ click: clickHandler, mouseover: hoverHandler }"></div>
</template>

Here, we are listening for both a click and hover event on a single div element. We can add as many properties to this object as we wish, depending on how many events we need to listen for.

 Form input binding with v-model

 When rendering the form input fields, it might seem obvious to make use of the v-bind directive that we've already looked at. We've already seen that binding an input element's value property can be done as follows:

<template>
 <input type="text" :value="value" />
</template>

Upon rendering of the component, you'll find that the textbox is displayed seemingly correctly with the data property prefilled. However, if you tried to change the value of the input by typing into the box, nothing would happen. This is because v-bind is a one-way binding. It is not possible to update the backing property using v-bind, and as such, the input will always display the initial value unless we change that value programmatically via some kind of component method. Following on from the preceding example, this would look like the following:

<template>
 <input type="text" :value="value" @input="onInputChange" />
</template>

<script>
export default {
 name: "form-input-binding",
 data() {
 return {
 value: "Some value"
 };
 },
 methods: {
 onInputChange(event) {
 this.value = event.target.value;
 }
 }
}
</script>

This is quite a lot of code for something as common, and simple, as binding a text input to a data property. Luckily for us, Vue has a much nicer way to create a two-way binding, and this is by using the v-model directive. Under the hood, it does a very similar job to what we've done earlier, but helps us keep our code much leaner and focused on more complicated functionality. It can also be used on all form input elements and text area elements, and automatically uses the correct way of updating the elements' values based on their types:

<template>
 <input type="text" v-model="value" />
</template>

By using v-model rather than the combination of v-on and v-bind, we completely negate the need to create a component method just to update the data property. The property is updated automatically for us by the v-model directive. As with the v-on directive, there are some modifiers that we can use to help us out in certain circumstances. These are as follows:

	.lazy: This is used to sync the input and data properties after a change event rather than an input event

	.number: This is used to automatically typecast the input value as a number rather than a string

	.trim: This is used to automatically trim the leading and trailing whitespace from the input value

 Parent-child component communication

Earlier in this chapter, we looked at composing parent-child component relationships, and without explicitly saying so, we also covered the basics of how two components in such a relationship can communicate with one another.

Firstly, for a parent component to pass data down to its children, props can be used. However, this is only suitable for a one-way flow of data from parent to child. If we need to send data in the opposite direction, that is, from child to parent, we must use event handling using the v-on directive that we saw earlier. More specifically, we fire events from the child component, and instruct the parent component to listen for those events using the v-on directive. Vue is smart enough to know that we are listening to an event on a custom HTML element, and as such, it is capable of listening for custom events as well as native DOM events:

<template>
 <person @name-changed="handleNameChange" />
</template>

In this example, we render a custom person element and listen for a custom name-changed event. In order to trigger this handler, the child component must manually emit the event:

<script>
export default {
 name: 'person',
 data () {
 return {
 name: 'Stu Ratcliffe'
 }
 },
 methods: {
 save () {
 this.$emit('name-changed', this.name)
 }
 }
}
</script>

This completes our overview of Vue and the main features that we'll be using throughout the rest of this book. Let's move on and take a whistle-stop tour of ASP.NET Core. Again, if you're already familiar with ASP.NET Core or, more specifically, how it differs from previous versions of ASP.NET, you can skip straight ahead to Chapter 2, Setting up the Development Environment, where we'll get stuck straight into setting up our development environment.

 ASP.NET Core – what's new?

ASP.NET Core is a complete rewrite of the ASP.NET framework, rather than a new version built on top of the existing one. It is much smaller and more modular, and is the first version of ASP.NET to have official cross-platform support. Covering everything that has changed in ASP.NET Core would require a whole book in itself, so we'll focus on the main parts that we need to know a little bit about to get us started.

 Middleware pipeline

ASP.NET Core apps are built on the principle of a middleware pipeline. But what exactly do we mean by this? Web applications are all about HTTP requests and responses; a middleware pipeline is simply a set of instructions for how the application should handle each HTTP request.

Ultimately, an ASP.NET Core middleware is just a function which is invoked as a result of a HTTP request. If we need multiple middleware functions, they can be chained together in a specific order to form a pipeline to process the request. After each function finishes processing, they may decide that the request should be terminated. In this instance, it sends a response back to the previous middleware, which in turn passes it back to the middleware before that, and so on until it eventually ends up back with the client that started the request. Alternatively, if everything is successful during processing, it can simply pass the request on to the next piece of middleware defined in the chain. Each middleware can essentially perform some kind of custom logic before the request, after the request, or both. As an example, you could easily create a request timing middleware that records a timestamp before and after every request, so that the total processing time of each HTTP request can be logged somewhere.

The following diagram shows how this works in an ASP.NET Core web application:

ASP.NET Core provides a number of middleware components for us to optionally make use of, and we'll see how we go about registering these with our application in the next section. The only other thing to note is that the order that we register our middleware in is extremely important. If one middleware depends on another one having processed the request before it receives it, we need to make sure that the dependent middleware is configured after the middleware it depends upon. Otherwise, our requests are likely to fail, or at least display some very strange results depending on what the middleware are designed to do.

Later in this book, we'll look at how we can build our own custom middleware and register them with the pipeline.

 Application startup

All ASP.NET Core applications must have a Startup.cs file that contains a class named Startup. There are two methods we need to be aware of, and these are Configure and ConfigureServices.

Configure is a required method that is used to, as the name suggests, configure the application, specifically by setting up the request pipeline, including any optional middleware that we may need. The following sample shows how we would configure a simple ASP.NET application that uses the StaticFiles, Authentication, RequestLocalization, and MVC middleware:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 app.UseStaticFiles();
 app.UseAuthentication();
 app.UseRequestLocalization();
 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
}

ConfigureServices is optional, although I've yet to find an application that doesn't implement it. It is used to configure the application's services and register them with the built-in dependency injection (DI) container. Most non-trivial applications will need to configure services such as Entity Framework (EF), ASP.NET Identity, RequestLocalization, and MVC. The following code shows a sample configuration of these services:

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseNpgsql(Configuration["ConnectionString"]));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.Configure<RequestLocalizationOptions>(options =>
 {
 options.DefaultRequestCulture = new RequestCulture("en-GB");
 });

 services.AddMvc();
}

You'll probably spend a fair bit of time in this class, tweaking configurations and such, so let's look into these two sections in a little more detail.

 DI is a first-class citizen

ASP.NET Core has been built from the ground up with DI in mind, and in fact DI is now a pattern that is strongly encouraged for use in every application. As such, it is no longer required to use an external library for DI, as there is a simple built-in container included out of the box. On top of this, the vast majority of official supporting libraries are registered as DI services when we install them, such as EF and ASP.NET Identity. That being said, the built-in container is fairly limited in functionality, and for more advanced requirements, Microsoft is still recommending that we bring in a more fully-featured container instead.

DI is not a technique that all ASP.NET developers will be familiar with if they've only ever built fairly simple applications. As it's a core technique used in ASP.NET Core apps, if you aren't particularly comfortable with it, then I strongly recommend you go and read up on it. The Microsoft documentation for ASP.NET Core is a great place to start! We've already seen how to configure some of the built-in framework services using the extension methods provided by each package, but how do we register our own services? The answer is via a set of extension methods that provide a way of registering dependencies with different lifetimes:

services.AddTransient<ICartService, CartService>();

The services.AddSingleton() extension method is fairly self-explanatory, and is used for registering services that have a single instance which is shared by all dependent classes. The other two are slightly less obvious: services.AddScoped() is used for registering dependencies that are scoped to the lifetime of a request, that is, they are created once per request and each dependent class receives the same copy until the request terminates; services.AddTransient() is probably the most common, and simply means that each service is instantiated every time it is requested.

This is pretty much the limit of what we can do with the built-in container, and as previously mentioned, if you need any more complicated features, such as property injection and/or convention-based registrations, you'll need to look at a more complete container such as StructureMap.

 EF Core – what's new?

These days, it is rare to see an ASP.NET application that doesn't make use of some kind of ORM, and even rarer to see one that uses anything other than EF. There are certainly other options, such as the much lighter Dapper and Marten, a library that takes the JSONB capabilities of PostgreSQL and uses them to turn it into a full-featured NoSQL document store. However, SQL Server is where most .NET developers' comfort lies, so we'll stick with what we know for the examples in this book.

 Configuring relationships

In older versions of EF, you could get away with leaving it to do its thing without manually intervening with the way it builds out the relationships between tables in the database. It could handle one-to-one, one-to-many, and many-to-many relationships out of the box, meaning that unless you had a super complicated domain model, you didn't need to do much to get a working database.

In EF Core, only one-to-one and one-to-many relationships can be inferred without manual configuration. I don't see this as a huge problem, as it is only a few extra lines of code to tell the fluent model builder how to configure many-to-many relationships:

protected override void OnModelCreating(ModelBuilder builder)
{
 builder.Entity<OrderItem>()
 .HasKey(x => new { x.OrderId, x.ProductId });

 base.OnModelCreating(builder);
}

Notice how we only have to instruct EF what to do with the join table. From these few lines of code, it can now go away and build the database for us without any problems.

 Global query filters

One of the features that other ORMs had that EF didn't was the concept of global query filters. These queries are a means of telling EF to automatically apply a LINQ statement to every query that's executed against the type of entity in the filter. A common use case for this kind of query is when an application uses the concept of soft deletes. Rather than actually deleting the data, it is marked with a Boolean flag instead.

The following image shows how we can register a global query filter on a DbContext entity to only include records where the IsDeleted flag is set to false:

protected override void OnModelCreating(ModelBuilder builder)
{
 builder.Entity<Order>()
 .HasQueryFilter(x => !x.IsDeleted);

 base.OnModelCreating(builder);
}

We could also use these global filters in multitenant applications, where each tenant should only be able to access the data associated with their tenancy. This is a much better solution than relying on applying these filters manually on every query, which is exceedingly error-prone, as it is too easy to forget.

 Compiled queries

EF now supports the concept of explicitly compiled queries. These provide a number of benefits, most notably by increasing the query's performance, but also making it easy to run the same query in multiple places within the code.

The idea is pretty simple; if we have a query that is run many times within our application, then we can instruct EF to compile it. It is compiled only once, but we can run it as many times as we like, with different parameters each time. The following code shows an example of how we can define a compiled query and then execute it:

public static class CompiledQueries
{
 public static Func<ApplicationDbContext, int, Order> OrderById =
 EF.CompileQuery((ApplicationDbContext db, int id) =>
 db.Orders
 .Single(c => c.Id == id));
}
[HttpGet]
public IActionResult CompiledQuery()
{
 var order = CompiledQueries.OrderById(_context, 147);
}

 In-memory provider for testing

It has always been exceptionally difficult to write tests around the code that was dependent on an EF DbContext. To make testing easier, developers often resorted to implementing different variations of the repository pattern so that the business layer could depend on a repository interface instead. This had the desired effect of making testing easier, but the general concept of a repository pattern over the top of EF was quite simply unnecessary, as the DbContext is already an implementation of both the repository and unit of work patterns.

EF Core has addressed this issue by providing us with an in-memory version that we can use for our tests. It is now a fairly simple task to create an in-memory database and seed it with test data before each test is run. This ensures that the database is in a known state for each test, without the complexity of attempting to mock the DbContext!

The following example shows how we can configure a test DbContext and fill it in with test data:

public static ApplicationDbContext GetDbContext(params object[] seedData)
{
 var connection = new SqliteConnection("DataSource=:memory:");
 connection.Open();

 var options = new DbContextOptionsBuilder<ApplicationDbContext>()
 .UseSqlite(connection)
 .Options;

 var context = new ApplicationDbContext(options);
 context.Database.EnsureCreated();
 if (seedData != null && seedData.Length > 0)
 {
 context.AddRange(seedData);
 context.SaveChanges();
 }
 return context;
}

We can then pass this DbContext to a dependent controller within the scope of our unit tests:

[Fact]
public async Task Test()
{
 using (var context = GetDbContext())
 {
 //arrange
 var controller = new ProductsController(context);

 //act
 var result = await controller.GetProducts();

 //assert
 Assert.NotEmpty(result);
 }
}

The only thing to note when using the in-memory provider is that it isn't a full relational database, and doesn't try to mimic one. I've noticed a few weird things when using it in my applications, and found that using an in-memory SQLite provider to be far more stable and predictable. There is plenty of documentation on both options on Microsoft's own ASP.NET Core documentation pages.

 Summary

In this chapter, we looked at the basic concepts that we'll need to build an application with Vue, as well as some of the most important changes to ASP.NET Core and EF Core. We also saw how Vue has a very similar syntax to that of Razor, and covers many of the same use cases where Razor and MVC views would be used in a traditional MVC-based application.

 Setting Up the Development Environment

By this point, you should already be comfortable with the basics of Vue.js and ASP.NET Core, or have read the previous chapter. Either way, we're not going to waste any more time on theory! In my eyes, the best way to learn about a new programming language or a framework is to get stuck in and build something.

Before we can do anything else, we need to install a few things that we'll need to build and run the application, and also a few tools to make our lives easier. In summary, in this chapter, we're going to cover the following:

	Choosing and installing a browser

	Installing frontend tools and dependencies, such as Node and npm

	Evaluating and choosing a frontend package manager

	Installing backend tools and dependencies, such as ASP.NET Core and PostgreSQL

	Choosing an IDE

	Installing productivity tools to make our lives easier

 Choosing a web browser

When building any web application, it is important to ensure that it is fully tested in all browsers that you need to support. At the very least, this is usually the latest version of all modern browsers. However, during the development phase, you'll most likely use a single browser, so it is important to choose the best one for our needs.

Google Chrome has been my choice of browser for many years now, but, more recently, it has been truly cemented as the best tool for the job (in my opinion) due to a number of extensions that we can install to help us while building the frontend of our application. There will be more on this later!

To install Google Chrome, navigate to the following URL and follow the instructions provided: https://www.google.co.uk/intl/en/chrome/.

As I'll only be using Chrome for the purposes of this book, it is the only browser that I can safely say is supported by the sample application that we're going to build. That being said, Vue is supported by all modern browsers, and we'll also be using Bootstrap for styling, which is also supported by all modern browsers. This is where we really see the benefits of using these kinds of frontend frameworks, as somebody else has already done most of the hard work of ensuring cross-browser compatibility for us.

 Installing frontend tools and dependencies

For any kind of modern frontend development, we're going to need Node and Node Package Manager (npm) installed. Node itself is a runtime built on top of Chrome's V8 engine, enabling us to run JavaScript on the server side of our applications. So, why do we need it if we're using ASP.NET Core?

Node and npm are both requirements of the tooling used to build and run medium-large scale Vue applications. We'll also be using npm to install a lot of client-side packages that we'll use within the application itself.

 Installing Node and npm

Head on over to the following URL and download the Node.js installer (https://nodejs.org/en/). The website should be smart enough to detect your OS and provide the right platform installer for you, which in my case is Windows (x64). You have two options to choose from, the LTS version or the Current version. I'll be sticking with the LTS version, which at the time of writing is version 8.9.3.

To test that Node has been installed properly, open up the Command Prompt or PowerShell if you are on Windows, or the Terminal if you are on Mac or Linux, and run the following commands:

PS C:\Users\stuar> node -v
v8.9.3
PS C:\Users\stuar> npm -v
5.5.1

If you receive any output other than the version number you currently have installed, then something has gone wrong. Check out the troubleshooting sections on the Node website, and if all else fails, chances are Google will have the answer!

If all is well so far, we can make sure that we have the latest version of npm installed by running the following command in our Terminal/Command Prompt of choice:

PS C:\Users\stuar> npm install -g npm
C:\Users\stuar\AppData\Roaming\npm\npm -> C:\Users\stuar\AppData\Roaming\npm\node_modules\npm\bin\npm-cli.js
C:\Users\stuar\AppData\Roaming\npm\npx -> C:\Users\stuar\AppData\Roaming\npm\node_modules\npm\bin\npx-cli.js
+ npm@5.6.0
added 27 packages, removed 11 packages and updated 38 packages in 15.399s

Yes, we're using npm to install/update itself, weird! If you're a Windows user building standard ASP.NET MVC applications, then you may have rarely ever needed to leave the comfort of Visual Studio. We're going to be using the command line a lot, so it's time to get used to it!

When installing npm packages, the syntax is as follows:

npm install <package-name>

This will install the package locally, and store it in a node_modules folder, which the tool will create if it doesn't already exist. However, when we updated npm before, we added the -g flag to the command. This installs packages globally on your machine. Global packages are usually ones which offer command-line interfaces, or CLIs. npm is an example of a CLI, as you can see by our previous usage of its install command.

 Installing Vue

Now, technically there is no installation for Vue. In its simplest form, Vue is a single JavaScript file that we can include in a web page as we would with any other file. However, we're going to be using it to build a fully-fledged SPA. In this instance, there are a lot of moving parts to configure, as we'll be building the application in a very modular fashion, with several libraries involved and a complex code structure involving multiple files and folders. We don't want to have to reference all of these files from the web pages manually, as it would be a nightmare to ensure they are referenced in the correct order.

We also want to make use of modern JavaScript syntax, which web browsers cannot understand; this means our files will need to be transpiled down into a format that they can understand. We'll be using a technology called webpack to help us solve both of these problems. webpack is a topic that needs a book of its own to understand, so we won't be covering it in too much detail, but for now just know that it bundles all of our client-side script files into a single file that we can include on our web page. It also handles transpilation for us, so we don't need to worry about whether our users' web browsers are modern enough to understand the latest syntax.

As we don't have anything else that we need to install from a Vue perspective, let's move on to evaluating our options for managing our client-side packages.

 npm or Yarn?

npm is a fantastic tool for managing JavaScript packages and dependencies, but it isn't our only option. Facebook have built their own package manager called Yarn, which offers a number of benefits over npm. If you're interested in what those benefits are, head over to the website for more details at https://yarnpkg.com/en/.

One of the main reasons why I chose to use Yarn was because it was so much faster than npm. Later versions of npm have definitely closed that gap, but they are still missing some of the other great features that Yarn offers, such as offline mode via local package caching. Yarn makes package installations faster the second time around because it caches every package it installs locally on your machine. The next time you install it, it doesn't need to download it again—this also means that you can work offline as long as you've installed the packages you need before hand!

I'll be using Yarn for the rest of this book, so let's get it installed! Head over to the following URL, which again should detect your OS and show you the installers that are relevant for your platform: https://yarnpkg.com/en/docs/install.

Once installed, we can check that everything is OK again by running the following command to detect which version is installed:

yarn --version

Be aware that if you're running PowerShell on Windows, this may well throw an error stating that Yarn is not a recognized command. You're not alone in this, and it seems to be an issue with the .msi installer at the time of writing this book. You can verify that Yarn was indeed installed by switching to a standard Command Prompt instead.

In order to fix this issue on PowerShell, the only way I have found that works is to install Yarn via npm. However, their website explicitly states that this is not the recommended approach, and in fact, they strongly recommend against installing it via npm. We're going to look at a nice Terminal Emulator for Windows later in this chapter, but if you really want to use PowerShell, then run the following command:

npm install –g yarn

Run the version detection command again; it will now work and in actual fact even if we uninstall Yarn via npm, it continues to work:

npm uninstall –g yarn

This is one of those things that I've yet to find an explanation for, but since the version detection command gets it working, this will do just fine for now. The syntax for installing packages with Yarn is slightly different to that of npm. Yarn uses the add function rather than install, as follows:

yarn add <package-name>

This covers everything we need to install for the frontend of our application, so let's move on to what we need for the backend.

 Installing backend tools and dependencies

Getting things ready for the backend of our application is very simple. There are only two things that we need to install: ASP.NET Core and PostgreSQL.

 Installing ASP.NET Core

To install ASP.NET Core, head over to the following URL, select your OS on the left-hand side and follow the instructions: https://www.microsoft.com/net/learn/get-started.

The preceding link will default to the Windows OS when you navigate to it. Make sure you select your own OS before following the download links and instructions.

As with everything else we've installed so far, a CLI tool is included, and as such, we can verify that everything is installed correctly by running the following command in our Terminal:

PS C:\Users\stuar> dotnet --version
2.1.3

If everything is OK, it should return the version number installed, which at the time of writing this book is version 2.1.3.

 Installing PostgreSQL

SQL Server is the standard database choice for most ASP.NET applications and is most likely what the majority of readers are used to. However, seeing as ASP.NET Core is cross-platform now, I don't want to introduce a barrier to those readers who may be running a Mac or Linux machine. SQL Server can be run on Mac or Linux, but requires the use of Docker, which adds a significant degree of complication that is beyond the scope of this book.

PostgreSQL is a fantastic open source RDBMS that runs on any platform and is fully compatible with ASP.NET Core, or more specifically, EF Core. During the development phase of most applications, you are fairly unlikely to notice any difference to when you are working with SQL Server, other than how you connect directly to the database and view your data.

To make use of PostgreSQL over SQL Server, all that is required is a simple one-line configuration change to instruct the application which provider we wish to use. Under the hood, EF Core uses this provider in the migrations files it generates to decide how to manage the creation of, and changes to our database. All of this is hidden from you as the developer, but it is worth knowing the basics of what happens behind the scenes.

To install Postgres, head to the following URL and download the binary packages for your OS: https://www.postgresql.org/download/.

As of the time of writing this book, version 10.1 has just been released, so that's the one I'm installing. I've left all the default options checked, including the use of port 5432 and the inclusion of pgAdmin4, which we can use later to browse the database.

This is all we need to build the backend of our application; the rest of the dependencies will be installed as we go along via the NuGet package manager.

 Choosing and installing an IDE

The obvious choice here is Visual Studio 2017. The community edition is free and offers all of the functionality we're likely to need. However, although Visual Studio is now available for Mac, I've not heard great things on how well it actually works. I don't own a Mac so I can't validate this for myself, but the safer bet for being truly cross-platform is to go with the much lighter weight VS Code.

VS Code is quickly becoming one of—if not the most—popular editor for frontend developers on both Mac and Windows. It is perfect for building the Vue side of our application, thanks to its excellent editing and debugging experience, but is also an exceptionally capable alternative to full-fat Visual Studio for our ASP.NET Core and C# backend. However, if you are on Windows, then you may still wish to use Visual Studio for more complex scenarios.

Now, technically VS Code is not a full IDE; it's a text editor with some IDE-like functionality baked in. For example, we can get IntelliSense, debugging, task running, and version control all builtin and ready to go. This isn't to say that VS Code is a total replacement for full-fat Visual Studio, or the two simply wouldn't need to co-exist. VS Code gives us all the functionality we need, works on any OS, and happens to be much, much faster than Visual Studio.

Let's get it installed. Head to the following URL and download the installer that's appropriate for your platform: https://code.visualstudio.com/Download.

Yet again, we can ensure that VS Code was installed properly by running the following command from your chosen command line or Terminal:

PS C:\Users\stuar> code -v
1.19.1
0759f77bb8d86658bc935a10a64f6182c5a1eeba
x64

At the time of writing this book, the current version is 1.19.1, and Microsoft recently released a 64-bit version, which is also confirmed by the preceding output.

 Productivity tools

VS Code already provides a number of built-in functions for navigating our code and performing basic refactoring. However, the one thing it can't do out of the box, which we'll need, is understand Vue's single-file components. These are files with a .vue extension, and as we've already seen, it contains HTML, JavaScript, and CSS all in a single file. This makes it difficult for text editors to know what type of file to treat them as, so we'll install a VS Code extension to help out.

 Installing VS Code extensions

There are a number of VS Code extensions that we could choose, but Vetur is by far the most advanced. It provides some very useful features for building Vue applications, such as syntax highlighting, error checking, IntelliSense, and code snippets. Vetur is also one of the major positives of using VS Code over Visual Studio for Vue application development.

To install it, we need to open VS Code, navigate to the extensions panel from the menu on the left, then search for vetur:

VS Code Extensions Panel - Installing Vetur

After clicking the Install button and waiting for a few moments, you should see a button to reload the VS Code window. After doing so, the extension will be installed and ready to go.

While we're here, we might as well repeat these steps and install the C# extension in the same way:

VS Code Extensions Panel - Installing C#

There are a few other VS Code extensions that we'll be using, and you can install them in exactly the same way as we've just done for Vetur and C#. These are the following:

	NuGet Package Manager

	C# extensions

	Prettier: A code formatter (optional)

Prettier is an opinionated code formatter that automatically formats your code each time you hit the save button in VS Code. It is entirely optional, but all of the examples within this book have been formatted by Prettier to ensure they are consistent and legible.

 Installing the Vue.js Chrome devtools extension

The Vue.js Chrome devtools extension is a plugin for Google Chrome that makes it much easier for us to debug our applications. We'll see how we can make use of it in later chapters, but for now, we just need to get it installed and ready to go. Navigate to the following URL and hit the Add to Chrome button near the top: http://bit.do/eoQJ9.

 Installing a Terminal Emulator on Windows (optional)

We've already seen that some frontend CLI tools don't work as well with PowerShell as they do with Mac/Linux-based Terminals. Unfortunately, Windows just isn't quite as nice to work with when it comes to developing applications using the command line. One thing we can do to improve this is by installing a Terminal Emulator.

ConEmu is one such emulator that works very well. It provides some nice-to-have features, such as tabbed windows, and usually does a good job of bringing Unix-based Terminal commands to Windows, so we don't have to keep googling for the Windows equivalent.

If you want to give it a try, head over to the following URL to download and install it: https://conemu.github.io/.

 Summary

We now have a development environment set up that includes everything we'll need to build and run both a frontend Vue.js application and a backend ASP.NET Core web API. We made the decision to use VS Code for building the application due to its versatility, speed, and the excellent Vue tooling available. Windows users have had the choice to stick with the standard Windows Command Prompt/PowerShell, or install the ConEmu Terminal Emulator.

 Getting Started with the Project

With our development environment set up and ready to go, it's time to start scaffolding the skeleton of an application. In summary, the topics we are going to cover in this chapter are as follows:

	Evaluating our options for generating a project

	A brief introduction to webpack

	Scaffolding a project with the dotnet CLI

	Refactoring the default template to meet our needs and preferences

	Setting up the database

	Testing the completed setup

Before we do anything else, we need to make a decision on how we want to generate the barebones structure of our project. We have a number of options available to us, including CLI tools from both Microsoft and Vue that have commands dedicated to generating default project structures. On the one hand, we can use each CLI tool independently to generate two separate applications, then try and modify the configuration of each in order to integrate them into a single application. Alternatively, we can make use of a Microsoft provided project template that already integrates an ASP.NET Core backend with a Vue frontend.

 ASP.NET Core SPA templates versus CLI tools

Until very recently, this decision was very simple as the SPA templates included with ASP.NET Core did not include a Vue frontend version. This forced our hand, and we had to rely on setting up the backend and frontend of our applications manually, then work out how to integrate them in a nice way. This was not an easy task, as the webpack configurations generated by the Vue CLI are very complicated and opinionated about the folder structure of our frontend code. Trying to tweak this configuration can cause a lot of headaches.

However, Microsoft has now created a Vue-based template. That being said, unfortunately, it is not quite as fully featured as its React or Angular counterparts. At the time of writing this book, it is missing a few core features, such as server-side rendering (SSR) and client-side state management. These features are both included in the React template or at least the React and Redux template. SSR is pretty complicated to set up and configure for ourselves, as you'll see later in this book, where we dedicate a full chapter to it.

This is not a deal breaker as, even with the Vue CLI-generated projects, we need to configure SSR ourselves anyway, and state management is very easy to add ourselves. For me, the biggest downside with the Microsoft template is the use of TypeScript. I'm by no means averse to the use of TypeScript if that's what you prefer, but the way it's been used in their template means that each component is broken down into three separate physical files: an HTML template file, a TypeScript file for the component's logic, and a CSS file for its styling. This means that we lose the benefits of Vue's single-file components (SFCs). We are also forced into using the component decorator syntax and class-based API when building our components, which is something that I personally am not a fan of.

It is still very early for official TypeScript support in Vue, and my experience with it so far could only be classed as unstable at best. For example, when scaffolding a sample application using the dotnet CLI template, I am unable to simply run the application without finding at least seven or eight errors relating to TypeScript in the console. This, along with the fact that there are currently far fewer blog posts or sample projects around that make use of TypeScript, means I'll be avoiding it in this book.

Neither of our options are perfect, and require some level of manual intervention into how they are configured. The amount of manual configuration changes needed to remove TypeScript from the dotnet template is far less than trying to integrate two entirely separate applications, so we'll go with that.

 An introduction to webpack

So far, we have made quite a few references to webpack without going into any kind of detail as to what it is and why we need to use it. As previously mentioned, we won't be going into too much detail here, but we'll cover enough of the basics to point you in the right direction when it comes to needing to branch away from the default configuration.

 What is webpack?

Webpack is what we call a module bundler, and acts as the middleman between our client-side source code and the JavaScript files that actually get run by the browser. Essentially, webpack allows us to build the frontend of a large and complex application as we would with a backend ASP.NET application using many different files and folders. If we think of each file as a module, they can reference other modules using import and export statements. webpack, then, quite literally bundles these modules together so we can reference a single output file in our HTML, as we would with any other JavaScript file.

On top of this, webpack is clever enough to be able to understand all kinds of client-side assets such as JavaScript, CSS, fonts, and images; they can all be imported into modules before being output within a single JavaScript bundle file. Furthermore, webpack can also take care of transpiling the latest ES6 JavaScript syntax down into a format that all browsers can understand. This means we get the added benefit of being able to use ES6 syntax in our Vue application, knowing that once our code hits the browser it will be perfectly executable, even on browsers which do not yet support that syntax.

 How does it work?

For webpack to work its magic, we must provide a configuration file which instructs it on where to start bundling our code. This is known as the entry point. Webpack will then traverse through our modules using the import and export statements that link them, building up a dependency graph of the entire application. This graph is how it knows what order to place our code in in the single output bundle file. The name and file location of the output bundle are also configurable using the same configuration file.

In order to work with such a wide variety of asset types, webpack uses the concept of loaders to evaluate and process our modules. For example, to process CSS modules, there is a corresponding css-loader, which we must add to the configuration before webpack will attempt to load CSS files. JavaScript files are handled by default without an explicit loader, but in order to transpile ES6 syntax, there is a loader called babel-loader, which does need configuring. Vue files are particularly interesting because they use a custom file extension, .vue, and they can contain HTML, JavaScript, and CSS all within a single file. There is no way webpack could know what to do with these files without a specific loader, which is where the vue-loader comes in.

 Basic webpack configuration

Webpack is entirely reliant upon configuration, or more specifically, a webpack.config.js file residing in the root directory of your application. To begin with, webpack configuration seems incredibly simple and straightforward. Here's an example:

const path = require('path');

module.exports = {
 entry: './src/index.js',
 output: {
 filename: 'main.js',
 path: path.resolve(__dirname, 'dist')
 }
};

We simply point webpack at the /src/index.js file as the entry point and tell it to output a main.js file in the /dist directory. If all we cared about were simple JavaScript files, this would be fine. However, the amount of configuration increases drastically just by configuring the Vue, CSS, and URL loaders:

const path = require('path');

module.exports = {
 entry: './src/index.js',
 module: {
 rules: [
 { test: /\.vue$/, include: /ClientApp/,
 loader: 'vue-loader' },
 { test: /\.css$/, use: isDevBuild ? ['style-loader',
 'css-loader'] : ExtractTextPlugin.extract
 ({ use: 'css-loader?minimize' }) },
 { test: /\.(png|jpg|jpeg|gif|svg)$/,
 use: 'url-loader?limit=25000' }
]
 },
 output: {
 filename: 'main.js',
 path: path.resolve(__dirname, 'dist')
 }
};

Add on top of that things such as additional loaders, different settings for production/development bundles, minification, and plugins for configuring bundle splitting. You can probably already see where this is going. Webpack is capable of doing some pretty amazing things, but to do so, the configuration can soon get wildly complicated compared to the basic example we started with earlier.

 Bundle splitting

One such configuration complication, which is worth doing, is to split your webpack output into at least two bundles. One bundle will contain all third-party code that our own application code depends upon, and the other will just contain our own application's code. There are a few reasons we'd choose to do this, but the most prominent are as follows:

	Faster development time bundling

	Updates to the production application don't require clients to re-download the third-party bundle if they already have it cached

Later in this chapter, we're going to see how a concept called Hot Module Replacement works, but essentially every time we make a change to one of our files, webpack will re-bundle the application for us. By using bundle splitting and moving all third-party libraries into a separate vendor bundle, webpack will only bundle the code that's changed, which is the much smaller application-specific bundle. This results in faster feedback when we make changes, ultimately increasing our productivity.

Typically, the vendor bundle will have a much larger file size than that of our application bundle. Once a client's web browser has downloaded both bundles when visiting our app for the first time, as long as we've enabled caching, these files won't need to be downloaded again on subsequent visits. However, when we inevitably release a new version of the app, we can re-bundle the application-specific code, adding a new hash to the end of the filename which forces the browser to download it again. As the vendor bundle has remained unchanged, the browser will use the cached version, which saves downloading the bigger file again.

To configure bundle splitting, we must provide a second configuration file in the same location as the first, which instructs webpack on which modules it should split into the vendor bundle. We'll see more on how this works later in this chapter.

 Production bundles

It is very common to separate production bundles from development bundles. When we're developing and debugging our application, in the event of an error, it is useful to know exactly which file has thrown it. Remembering that the browser is only executing one or two JavaScript files, how can we tell which of our many source files contained the code causing the bug? The answer is a concept called source maps, whereby webpack maintains references to the original source files so that the browser can tell us exactly which file is throwing the error. However, this isn't something we'd want to be enabled once our application is deployed into production, so we tend to have a production-specific bundle which disables it.

In addition, it is standard practice to uglify (or minify) our code in production to make it illegible to those who inspect it. We wouldn't want to do this in development or we'd find it very difficult to debug, so this is yet another difference that we tend to make between production and development bundles. There are often other differences between production and development bundles, but in my experience, these two are the most common and should be enough to demonstrate this concept. This is all we'll say about webpack for now, as you'll see some more advanced usage throughout the rest of this book. Let's move on to scaffolding our project.

 Scaffolding a project with the dotnet CLI

As we've made the choice to be truly cross-platform, we can't use our typically familiar Visual Studio project templates to scaffold the project. Instead, we'll be making use of the dotnet CLI, which gives us exactly the same result anyway.

As the Vue template is a fairly new addition to the CLI, it's not actually installed with the core CLI installer. So, the first step is to download and install it so that we can use it to scaffold our application. Luckily for us, this is as easy as running a single Terminal command:

dotnet new --install Microsoft.AspNetCore.SpaTemplates::*

Now, navigate into an empty directory with a name matching your project, and run the following command:

dotnet new vue

Note that this will not create a directory for you, and will name the application based on the folder you are inside.

If you now open this directory with VS Code, you will see a very familiar project setup, including the standard MVC application folder structure that includes controllers and views; it also includes a ClientApp folder that you won't be so familiar with, but we'll come to that later.

When first opening a new project in VS Code, you will be prompted to install missing required assets for building and debugging the application. Click Yes!

As mentioned earlier, chances are if you try and run the project now, you'll be hit by a number of TypeScript errors. As we won't be using TypeScript, we won't worry too much about this now and crack on with refactoring the frontend setup to meet our preferences and needs. Depending on whether newer versions of packages are released before you read this book, you may get lucky and it will actually work.

 Refactoring the frontend setup

All of our frontend Vue application's code is stored in the ClientApp folder. Eventually, this will include all of our application pages, components, client-side router setup, and client-side state management. In order to remove our dependency on TypeScript, there are a couple of things we need to do—remove all references to anything TypeScript-related from our package dependencies and configuration files, and remove or update the existing components to plain old JavaScript components.

 Removing TypeScript

We can start by opening up the package.json file and removing the following lines:

"@types/webpack-env": "^1.13.0",
"awesome-typescript-loader": "^3.0.0",
"bootstrap": "^3.3.6",
"jquery": "^3.1.1",
"typescript": "^2.2.1",
"vue-property-decorator": "^5.0.1"

This should leave the entire file looking as follows:

{
 "name": "ECommerce",
 "private": true,
 "version": "0.0.0",
 "devDependencies": {
 "aspnet-webpack": "^2.0.1",
 "css-loader": "^0.25.0",
 "event-source-polyfill": "^0.0.7",
 "extract-text-webpack-plugin": "^2.0.0-rc",
 "file-loader": "^0.9.0",
 "isomorphic-fetch": "^2.2.1",
 "style-loader": "^0.13.1",
 "url-loader": "^0.5.7",
 "vue": "^2.2.2",
 "vue-loader": "^11.1.4",
 "vue-router": "^2.3.0",
 "vue-template-compiler": "^2.2.2",
 "webpack": "^2.2.0",
 "webpack-hot-middleware": "^2.12.2"
 }
}

Next, we can delete the tsconfig.json file entirely, and then make some changes to the webpack.config.js file. This is quite tricky, as it's a fairly large and complicated file. The first thing to do is remove the following line, from right near the top of the file:

const CheckerPlugin = require('awesome-typescript-loader').CheckerPlugin;

Then, around the line 12 mark, there are two lines that look as follows:

resolve: { extensions: ['.js', '.ts'] },
entry: { 'main': './ClientApp/boot.ts' },

As we're not using TypeScript, we don't need to support the .ts extension, so we can tweak these lines as follows:

resolve: { extensions: ['.js'] },
entry: { 'main': './ClientApp/boot.js' },

Right beneath these two lines is a module: { } object section. Again, we can remove anything related to TypeScript, leaving it looking as follows:

module: {
 rules: [
 { test: /\.vue$/, include: /ClientApp/,
 loader: 'vue-loader' },
 { test: /\.css$/, use: isDevBuild ? ['style-loader',
 'css-loader'] : ExtractTextPlugin.extract(
 { use: 'css-loader?minimize' }) },
 { test: /\.(png|jpg|jpeg|gif|svg)$/,
 use: 'url-loader?limit=25000' }
]
}

A few sections lower down is a plugins: [] array section, where we can remove the new CheckerPlugin() line from the top. This completes our changes to the webpack configuration file, but as it's quite a fiddly process, if you have any problems, make sure to check out the source code for this chapter, which contains the fully completed file.

 Replacing the default components

If you open up the ClientApp/components folder, you'll find five subfolders, each containing a component generated by the template. These components are currently making use of TypeScript and the class-based API with decorators, rather than true SFCs. We could refactor these into standard JavaScript-based SFC's, but we'd be wasting our time as we'll end up deleting these unnecessary components later anyway.

Delete everything within the ClientApp/components directory, as well as the ClientApp/css directory itself. To replace the components we just deleted, for now, we'll create a simple ClientApp/components/App.vue component to act as the root level component of our application. The contents will look as follows:

<template>
 <div>
 <h1>Welcome to Hands on Vue.js with ASP.NET Core!</h1>
 <p>
 The time is: {{ time }}
 </p>
 </div>
</template>

<script>
export default {
 name: 'app',
 data () {
 return {
 time: new Date().toString()
 }
 }
}
</script>

Finally, we need to rename the ClientApp/boot.ts file to ClientApp/boot.js, and change its contents to reflect the following:

import Vue from 'vue';
import VueRouter from 'vue-router';

Vue.use(VueRouter);

const routes = [
];

new Vue({
 el: '#app-root',
 router: new VueRouter({ mode: 'history', routes: routes }),
 render: h => h(require('./components/App.vue'))
});

For now, we've removed all client-side route definitions as we only have a single component, but we've left the router setup intact to save us putting it back in again later. Run the application now and navigate to http://localhost:5000/. If you've got everything configured correctly, we should finally have a running application with a very simple home page:

Testing the initial project setup and App component

If you add some additional markup to the App.vue template, you'll notice that the browser updates and displays the new content immediately, without the need for a page refresh. This is thanks to a technology called Hot Module Replacement, which is configured for us using webpack-based middleware in ASP.NET Core.

This completes the changes we need to make to the frontend setup, so let's move on to the backend.

 Refactoring the backend setup

I'm a huge fan of the feature folder approach to structuring ASP.NET Core applications. As you will probably already know, in the default application folder structure of a typical MVC application, we have separate directories for controllers, models, and views. As our application grows and we add more and more features, we spend a lot of time switching between these folders in our IDE or editor. It can also become quite difficult to quickly find the specific files we're looking for, particularly in the Models folder, as you'll usually have a handful of different view models per database entity.

An alternative approach is to group these controllers, models, and views into a folder per feature of the application. For example, the Features/Products directory would contain the ProductsController, right alongside the views and view models that are necessary to display and manage the Product database entity:

Feature folder structure

This creates a far more cohesive file structure, where all the files that you are likely to be changing at once are located within the same directory of the project. In my opinion, this makes us more productive, as we don't waste time switching from folder to folder hunting for the files we need to modify. The preceding screenshot shows a feature folder in a Web API project where we don't have any views or static assets such as CSS and JavaScript, but the same concept applies in an MVC application. Place all the views, CSS, JavaScript, images, and other things that belong to a feature within its feature folder. I hope you'll be pleasantly surprised as to how much easier the project is to maintain just by making a simple folder structure change.

 Refactoring to a feature folder structure

There are a few steps that we need to take to achieve this desired outcome. The first thing to do is rename the Views folder to Features, then move the HomeController.cs file into the Features/Home directory. We can now delete the Controllers and Models directories entirely, including the obsolete SampleDataController.cs file that we're not using. If you try and run your application now, you'll see an exception page because ASP.NET can no longer find the index view that the controller is trying to render.

It doesn't matter where we put our controllers, as ASP.NET Core can locate them using the [Feature]Controller.cs naming convention. However, if we change the default name of the Views folder, we need to tell ASP.NET Core how to find them as by default, it only knows to look for a folder named Views. There are two steps to do this, the first of which is to create a class that instructs ASP.NET Core where we want to search for view files, which I'll name FeatureLocationExpander.cs:

namespace ECommerce.Infrastructure
{
 public class FeatureLocationExpander : IViewLocationExpander
 {
 public IEnumerable<string>
 ExpandViewLocations(ViewLocationExpanderContext
 context, IEnumerable<string> viewLocations)
 {
 return new[] { "/Features/{1}/{0}.cshtml",
 "/Features/Shared/{0}.cshtml" };
 }

 public void PopulateValues(ViewLocationExpanderContext
 context)
 {
 }
 }
}

It doesn't matter where you put this file, but I like to put configuration files like this in a folder called Infrastructure. Next, we need to register this class so that ASP.NET Core knows about it and can start looking for our views in the correct location. Find the ConfigureServices method in Startup.cs and modify it as follows:

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 services.Configure<RazorViewEngineOptions>(options =>
 {
 options.ViewLocationExpanders.Add(new
 FeatureLocationExpander());
 });
}

Restarting the application now should have everything working properly again.

 Setting up the database

If you're on Windows as I am, then your database server should already be up and running as a Windows service that starts automatically when your machine boots up. If you're on Mac/Linux, this may or may not be the case, so just ensure that the database server is running—the PostgreSQL website will have instructions on how to do this if necessary.

 Creating a database context

EF Core will actually handle the creation of the database; we just need to tell it what kind of RDBMS we're using, and provide a connection string for its location and authentication credentials. Again, it doesn't really matter where we put the following files, but my preference is a Data folder for anything to do with EF setup/configuration, entity models, and seed data.

The first file we'll need to create is an EF database context class:

namespace ECommerce.Data
{
 public class EcommerceContext : IdentityDbContext<AppUser,
 AppRole, int>
 {
 public EcommerceContext(DbContextOptions<EcommerceContext>
 options) : base(options)
 { }
 }
}

Notice how our context inherits from IdentityDbContext, rather than the base DbContext class. We're using the ASP.NET Core Identity class because it will help us with user authentication and management later in this book. Here, we're instructing EF and Identity that we'll be using classes called AppUser and AppRole for our application's users and roles entities, respectively. We've also specified that we'll be using integers for the primary keys of all ASP.NET Core Identity-generated database tables.

These classes don't exist yet, so let's create them so that we can check if the application still builds. Again, my preference is to store my database entities in the Data/Entities directory, but this is entirely up to you. The AppUser class is, at least for now, as follows:

namespace ECommerce.Data.Entities
{
 public class AppUser : IdentityUser<int>
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }

 [NotMapped]
 public string FullName
 {
 get { return $"{FirstName} {LastName}"; }
 }
 }
}

Again, we're inheriting from an ASP.NET Core Identity class and instructing it to use an integer for the primary key. This is all pretty standard setup for ASP.NET Core applications that use EF Core and Identity Core, so I won't go into the details, but it's worth mentioning that if we don't inherit from this IdentityUser class, our database context class will complain.

The AppRole class also inherits from an Identity base class, and looks like this:

namespace ECommerce.Data.Entities
{
 public class AppRole : IdentityRole<int>
 {
 public AppRole() { }

 public AppRole(string name)
 {
 Name = name;
 }
 }
}

Our application should now build successfully, but we still have a way to go before we're finished.

 Registering the database context for DI

In order to make use of the database context class in our application, we need to register it with the built-in DI container. To do this, we first need to install the Npgsql.EntityFrameworkCore.PostgreSQL and Microsoft.EntityFrameworkCore.Design NuGet packages. You can do this using the VS Code extension we installed earlier, using the dotnet CLI, or by manually adding them to the projects .csproj file. We then need to drop back into the ConfigureServices method of the Startup.cs class, and modify it as follows:

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<EcommerceContext>(options =>
 options.UseNpgsql(Configuration.
 GetConnectionString("DefaultConnection")));

 services.AddIdentity<AppUser, AppRole>()
 .AddEntityFrameworkStores<EcommerceContext>()
 .AddDefaultTokenProviders();

 // rest of method as before...
}

The first section registers the database context with the DI container, while instructing it to use PostgreSQL with the options.UseNpgsql() statement. We are also passing in a reference to a connection string, which we'll create shortly.

The second section is preempting our use of ASP.NET Core Identity later in this book, and instructing it to use the database context we've just created, along with the default EF stores for Identity-related data.

We don't really need to worry about all this ASP.NET Core Identity setup just yet, but it's easier to configure it now than to come back later and make changes!

 Creating the database

There are a few different ways that we can choose to actually create the database, but regardless of which one we choose, we need to supply ConnectionString. We've already told the DI container to use Configuration to look for a connection string named DefaultConnection, so let's create one. Open the appsettings.json file in the project root, and modify it as follows:

{
 "ConnectionStrings": {
 "DefaultConnection": "host=localhost;database=ecommerce;
 username=postgres;password=postgres"
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
}

Make sure you use the appropriate username and password for your local database server. I'm keeping things simple and sticking with the defaults that the Windows installation provides. We are now ready to create the database, but there is one more NuGet package that we need to install. This is where it gets a little more complicated, as we can't rely on the VS Code extension because it places it in the wrong place within the project file.

This isn't the most user-friendly or streamlined process, but for now it will have to do. Open up the project file for your application and modify it as follows:

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All"
 Version="2.0.3" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design"
 Version="2.0.1" />
 <PackageReference
 Include="Npgsql.EntityFrameworkCore.PostgreSQL"
 Version="2.0.0" />
 </ItemGroup>
 <ItemGroup>
 <DotNetCliToolReference
 Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools"
 Version="2.0.1" />
 <DotNetCliToolReference
 Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="2.0.0" />
 </ItemGroup>
<!-- rest of file omitted for brevity... -->
</Project>

Notice that there is a difference between PackageReferences and DotNetCliToolReferences. If we use the VS Code extension to install packages, they all end up as package references, but the Microsoft.EntityFrameworkCore.Tools.DotNet package must be referenced as a CLI tool reference.

Make sure that you trigger package restoration, then with these changes we now have access to the dotnet ef CLI command, and can create our database by dropping into the Terminal and running the following command:

dotnet ef database update

All being well, you should see some output that ends with a statement such as the following:

No migrations were applied. The database is already up to date.
Done.

This is fine, as we have not yet told EF about any of our database tables, but if we open the pgAdmin 4 application that gets installed as part of the PostgreSQL installation, we can verify that the database has indeed been created:

pgAdmin 4 local database listing

 Creating an initial migration

In order to have EF generate our tables for us, we need to create a migration. Migrations are a way of keeping the database schema in sync with our C# application model. When we make changes to the model, we have to add a migration. Migrations are run when we instruct EF to update the database, where a history of previously run migrations is stored to prevent running them more than once.

We can create an initial migration by running the following Terminal command:

dotnet ef migrations add Initial

If we go and look at our project in VS Code again, you'll notice a new folder in the project root labelled Migrations. As these are database-related, my preference is to drag this folder under the Data directory, and then any future migrations will automatically follow. There should be three files generated, but the one we are interested in starts with a timestamp and ends with _Initial.cs. Its contents should look a little like this:

namespace ECommerce.Data.Migrations
{
 public partial class Initial : Migration
 {
 protected override void Up(MigrationBuilder
 migrationBuilder)
 {
 migrationBuilder.CreateTable(
 name: "AspNetRoles",
 columns: table => new
 {
 Id = table.Column<int>(nullable: false)

 .Annotation("Npgsql:ValueGenerationStrategy",
 NpgsqlValueGenerationStrategy.SerialColumn),
 ConcurrencyStamp = table.Column<string>
 (nullable: true),
 Name = table.Column<string>(maxLength: 256,
 nullable: true),
 NormalizedName = table.Column<string>
 (maxLength: 256, nullable: true)
 },
 constraints: table =>
 {
 table.PrimaryKey("PK_AspNetRoles", x => x.Id);
 });

 // rest of file omitted for brevity...
 }
 }
}

The code is quite readable, and it's easy to see what the generated SQL will do when it's run against the database. I'd recommend having a good look at each migration file before you run them, as it's much easier to remove one now than it is to remove it after it hits the database. If there is anything wrong with it, it is better to make some changes and regenerate it before applying it to the database.

With this in place, we can now run our update command again, but this time we should end up with a few more tables in our database:

dotnet ef database update

You can verify this using the pgAdmin application again.

 Creating and seeding the database on start-up

We could rely on manually creating and updating the database as and when we need it, but a better approach while we're in development is to have the application ensure that the database is created on application startup.

You may not wish to use this approach for production applications, but generally speaking, there is no issue with using this method in development/testing environments!

We'll use the built-in Migrate method on the database context class, as well as create a custom extension method to make sure it is populated with some seed data as it can make our lives easier if and when we need to drop and recreate the database in the future. Create the following DbContextExtentions class in the Data directory:

namespace ECommerce.Data
{
 public static class DbContextExtensions
 {
 public static UserManager<AppUser> UserManager
 { get; set; }

 public static void EnsureSeeded(this EcommerceContext
 context)
 {
 if (UserManager.FindByEmailAsync("stu@ratcliffe.io").
 GetAwaiter().GetResult() == null)
 {
 var user = new AppUser
 {
 FirstName = "Stu",
 LastName = "Ratcliffe",
 UserName = "stu@ratcliffe.io",
 Email = "stu@ratcliffe.io",
 EmailConfirmed = true,
 LockoutEnabled = false
 };

 UserManager.CreateAsync(user,
 "Password1*").GetAwaiter().GetResult();
 }
 }
 }
}

As this is a static class, we cannot instantiate it, and as such cannot make use of DI for the dependencies that we need. In order to gain access to an instance of the UserManager class, we need to tell the application to provide one at start up. Open up the Startup.cs class again, and add the following statement to the bottom of the ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 // rest of class removed for brevity...
 DbContextExtensions.UserManager =
 services.BuildServiceProvider().
 GetService<UserManager<AppUser>>();
}

Next, open up the Program.cs file in the root directory, locate the Main method, and modify it as follows:

public static void Main(string[] args)
{
 var host = BuildWebHost(args);

 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;
 var dbContext =
 services.GetRequiredService<EcommerceContext>();

 dbContext.Database.Migrate();
 dbContext.EnsureSeeded();
 }

 host.Run();
}

Note that without registering our database context class with the DI container earlier, it wouldn't be available to us in this way!

We can confirm that everything is now working by first dropping our current database with the following Terminal command:

dotnet ef database drop

And then we can run our application from the Debug tab of VS Code before checking pgAdmin again to make sure that the database has been created.

We can also run the application as we do in Visual Studio, by pressing F5. There is also a dotnet CLI command we can use: dotnet run.

 Testing the completed setup

Before we wrap up this chapter, let's quickly test that everything is configured correctly. A feature we'll most likely need later on is a users feature, so let's create a Features/Users/UsersController.cs file, and fill it in with the following contents:

namespace ECommerce.Features.Users
{
 [Route("api/[controller]")]
 public class UsersController : Controller
 {
 private readonly EcommerceContext _db;

 public UsersController(EcommerceContext db)
 {
 _db = db;
 }

 [HttpGet]
 public async Task<IActionResult> Get()
 {
 return Ok(await _db.Users.ToListAsync());
 }
 }
}

This is all we need to test the completed setup, so run the application again now and navigate to http://localhost:5000/api/users in your web browser. You should be presented with a JSON array containing a single object representing the user we seeded in the database earlier:

Users API request JSON response

In order to have Chrome format all JSON responses like in the preceding screenshot, install the JSONView extension!

So, what exactly are we validating here? For a start, the MVC middleware is registered and working properly, or the browser wouldn't know what to do with the URL we supplied. We also know that our DI container is functioning correctly and that our database context is registered with it; otherwise, the users controller we just created would not have received an instance in the constructor parameter we defined. Finally, we know that our database context has successfully created and seeded our database, and is able to query it for data.

To really finish off testing our application end-to-end, let's display some of this data in our frontend app component. Open up ClientApp/components/App.vue and modify the <template> section as follows:

<template>
 <div>
 <h1>Welcome to Hands on Vue.js with ASP.NET Core!</h1>
 <p>
 The time is: {{ time }}
 </p>
 <p>
 The current users of our system are:

 <li v-for="user in users" :key="user.userName>
 {{ user.fullName }} - {{ user.userName }}

 </p>
 </div>
</template>

Add a users property to the data object, and a mounted component hook to fetch the data from the API as follows:

<script>
export default {
 name: 'app',
 data () {
 return {
 time: new Date().toString(),
 users: []
 }
 },
 mounted () {
 fetch('/api/users')
 .then(response => {
 return response.json()
 })
 .then(data => {
 this.users = data
 })
 }
}
</script>

If the application isn't already running, start it up now! At the bottom of the homepage, you should see the user that we seeded into the database earlier.

 Summary

We've covered a lot of ground in this chapter, so let's have a quick recap.

Building SPA frontends is a complicated process with a lot of moving parts. Configuring everything ourselves manually is not only a very tedious and error-prone process, but also a very complicated one. In that sense, we evaluated our options for generating our project using the dotnet and Vue CLI tools, electing to go with the newly released dotnet CLI template with a Vue.js frontend.

We decided that using TypeScript with Vue was still a little too unstable, and as such refactored the frontend to remove TypeScript and tweak the configuration to expect plain old JavaScript instead. We also made some changes to the backend folder structure by implementing a feature folder approach, rather than the stereotypical Controllers/Models/Views folders.

We set up a database and the associated EF Core configuration files to interact with it, and instructed ASP.NET that we'll be using the Identity library for user accounts later in this book. We looked at how to run commands to manipulate the database directly from the command line, as well as how to have our application create and seed the database as part of its startup process.

Finally, we tested the entire application by adding a feature to query the database for all users, return them to the client, and display them in our client-side app component.

 Building Our First Vue.js Components

With our project set up and ready to go, it's time to start writing some more involved client-side code and build our first custom components. We'll start by creating a component to display a static list of products, with the option of selecting a product to view its full details. Then, we'll finish things off by creating some API endpoints to provide real data and hook our components up to them.

In summary, we'll be covering the following topics:

	Component composition

	Rendering collections of data with the v-for directive

	Data binding with the v-bind directive

	Event handling with the v-on directive

	Conditional rendering with the v-show and v-if directives

	Client-side routing

	Fetching data from an API

 Displaying a list of products

As we'll be building a full e-commerce application, it makes sense to start things off with a list of fictional products that we are going to sell. We'll keep things simple to start with and keep this component contained within our home page before we introduce the additional complexity of multiple pages.

When first starting out with Vue, it is very easy to just keep dropping all of our components in the ClientApp/components folder. However, it will soon get very difficult to find what we're looking for once we have more than a handful of components to maintain. Instead, I tend to group my components by page or feature, with a folder for each inside the components directory. It doesn't really matter what we name these features, as long as it's obvious to us which components belong to each one.

Create a ClientApp/components/products/List.vue file. The <template> section will eventually contain two sections, one for the list of products and one for showing the full details of the currently selected product. However, the product list template should currently look as follows:

<template>
 <div class="products">
 <h1>Products</h1>
 <div class="list">
 <div class="item" v-for="product in products"
 :key="product.slug">
 <h3 @click="select(product)">{{ product.name }}</h3>
 <img :src="product.thumbnail" :alt="product.name"
 @click="select(product)" />
 <p @click="select(product)">{{ product.shortDescription }}
 </p>
 <p @click="select(product)">{{ product.price }}</p>
 <hr />
 </div>
 </div>
 </div>
</template>

The first thing to note here is that all Vue components must only contain one root element. For most of our components, it is fairly safe to simply wrap everything in a div tag as we have done here. However, certain components intended to render specific tags, such as list items or table rows, would be wrapped in a single li or tr tag instead.

The next most important line is the following:

<div class="item" v-for="product in products" :key="product.slug">

Here, we are using the v-for directive to loop over a list called products, and render the contents of this div element for each item in the list. Also notice how we use the shorthand for the v-bind syntax to bind a key property to the element. This key property helps Vue to manage the ordering of items in dynamic lists that may change at runtime. It isn't required, and the component will work perfectly fine without it. However, it certainly can't hurt to provide it, and it can seriously improve the performance of the application in certain circumstances, so there really isn't a reason not to.

If you're using VS Code and you followed along in Chapter 2, Setting Up the Development Environment, you'll have installed the Vetur extension, in which case you'll notice that if you fail to provide a key property, it will underline this line of code in red until you add it!

The last thing to know about the key property is that it has to be unique to the list item being rendered, or it won't do much good in helping to track the items in the list. The ideal value to use is some form of ID value if we are rendering items that are stored in a database; we aren't pulling this data from the API yet, so we have no real ID values, but we will be using a slug property as another unique identifier for a product so that we can use nice friendly URLs for our pages later in this chapter.

The v-for directive also binds a variable representing the list item to the context of the element. In this case, we bound a variable called product. We then made use of this variable in a bunch of other elements as follows:

<h3 @click="select(product)">{{ product.name }}</h3>
<p @click="select(product)">{{ product.shortDescription }}</p>
<p @click="select(product)">{{ product.price }}</p>

With the h3 and p elements, it is a simple case of data binding using string or text interpolation. Any expression placed between a pair of double curly braces, including the braces themselves, is replaced by the value of that expression. In this case, we simply bind the name, shortDescription, and price properties of the product variable to the associated HTML elements.

Where things get a little more complicated is with the img element that we rendered:

Again, we used the v-bind shorthand to data bind the src and alt attributes of the image. This is a great example of where we take a standard HTML attribute and use Vue to interpret it dynamically at runtime. If we hadn't included the colon before the attributes, they would have been treated as normal, that is, as plain text. Instead, we are able to bind the properties of our product variable, which includes a URL to an image that can be used as a thumbnail for the product.

Finally, on each of these elements we also attached a click event handler using the @ shorthand syntax. This click event handler is used to trigger a method, or function, that we'll see contained in the script section of the component shortly. As with data binding, we have access to the product variable declared in the loop, and can pass it as a parameter of this method. This enables us to perform any logic or operations based on the specific product that the user clicks on, such as adding a specific product to a shopping cart, or in this instance selecting a product to view more information about it.

Let's have a look at the script section of this component:

export default {
 name: "product-list",
 data() {
 return {
 products: [
 //products omitted for brevity
],
 selectedProduct: null
 };
 },
 methods: {
 select(product) {
 this.selectedProduct = product;
 }
 }
};

There are a few things going on in here, so let's go over this line by line.

First off, we have the export default { } declaration. In order to use this component within another component or page of our app, we need to declare it as a child component, and to do that we need to be able to import it. This line tells webpack that this is a module that can now be imported and used within other modules, or components, in our case. Without it, when we try and display this component within our main App.vue component, it will not be able to find anything to import and display.

Next up, we have the name declaration. This isn't a requirement, and the component would work perfectly fine if we omitted it. However, there are a few benefits to being vigilant and remembering to name each of our custom components. First of all, it makes debugging our components much nicer when using the Chrome DevTools extension that we installed earlier. We can inspect the application with the dev tools to see a nice component tree—if we don't name the component, then it shows up as <AnonymousComponent>, which makes it difficult for us to tell what's what. Secondly, it allows a component to recursively invoke itself from within its template section. However, this isn't a particularly common requirement apart from in tree-like structures.

The data section is next, which as we already know must be a function that returns an object. We have two simple properties in this component: a products array that, as its name suggests, is a collection of product objects; and a selectedProduct object, which again is fairly self-explanatory and holds the product that the user selects to display further details for. The only thing missing here is the actual product objects within the products array, as the actual data isn't particularly important or interesting to read. Considering these object definitions only differ very slightly in their property values, I chose to omit them to save space. However, as an example, here is one of those product objects:

{
 name: "Samsung Galaxy S8",
 slug: "samsung-galaxy-s8",
 thumbnail: "http://placehold.it/200x300",
 shortDescription:
 "Samsung Galaxy S8 Android smartphone with
 true edge to edge display",
 price: 499.99,
 description:
 "Lorem ipsum dolor sit amet consectetur adipisicing elit. Perferendis tempora ad cum laudantium, omnis fugit amet iure animi corporis labore repellat magnam perspiciatis explicabo maiores fuga provident a obcaecati tenetur nostrum, quidem quod dignissimos, voluptatem quasi? Nisi quaerat, fugit voluptas ducimus facilis impedit quod dicta, laborum sint iure nihil veniam aspernatur delectus officia culpa, at cupiditate? Totam minima ut deleniti laboriosam dolores cumque in, nesciunt optio! Quod recusandae voluptate facere pariatur soluta vel corrupti tenetur aut maiores, cumque mollitia fugiat laudantium error odit voluptas nobis laboriosam quo, rem deleniti? Iste quidem amet perferendis sed iusto tempora modi illo tempore quibusdam laborum? Dicta aliquam libero, facere, maxime corporis qui officiis explicabo aspernatur non consequatur mollitia iure magnam odit enim. Eligendi suscipit, optio officiis repellat eos quis iure? Omnis, error aliquid quibusdam iste amet nihil nisi cumque magni sequi enim illo autem nesciunt optio accusantium animi commodi tenetur neque eum vitae est."
}

The other five objects in the array are very similar; just make sure the slug property is unique or the component won't render! Each of these properties are referenced on one element or another in the template section, but we can only see the full description on the selected product.

We can scaffold out a UI with placeholder images from http://placehold.it/ by passing the size of the image in the query string as we did just now!

The final section is the methods object, which contains a single method for selecting a product to view further details about it. We've already seen how this method is triggered using click events on each of the elements within the list item, passing the product currently in the loop context to this method for processing. All it does is simply set the product that's been clicked on as the selectedProduct within the data function of the component. As our component stands currently, triggering this method will have no impact.

 Conditional rendering

We need to modify the template section to add a section that is only displayed once a product is selected from the list:

<template>
 <div class="products">
 <h1>Products</h1>
 <div class="list"></div> <!-- product list omitted
 for brevity -->
 <div v-if="selectedProduct" class="details">
 <h1>{{ selectedProduct.name }}</h1>
 <img :src="selectedProduct.thumbnail"
 :alt="selectedProduct.name" />
 <p>{{ selectedProduct.shortDescription }}</p>
 <p>{{ selectedProduct.description }}</p>
 <p>{{ selectedProduct.price }}</p>
 </div>
 </div>
</template>

With the addition of this div element, the select method now has a purpose. When the component is first rendered, the selectedProduct property is initialized as null which evaluates to false, and as such the section is not rendered. When the user clicks on an element within the list, the select method is fired with the selected product as an argument. The select method then assigns this product to the selectedProduct property, which is enough to cause the Vue reactivity system to perform a UI refresh. Now that the selectedProduct property has a value, the v-if directive on the div element we just added evaluates to true, and the product details section is rendered, showing the product the user selected.

Once a product is selected, selecting a different product still causes the UI to refresh as the reactivity system detects that the UI is bound to a property that has been changed; the details of the newly selected product overwrites the previously selected one. Finally, it is worth noting at this point that, as the state of this component is stored in memory in the browser, performing a browser refresh will clear the selected product and the details section will no longer be rendered.

The final section in the component declaration is the style block. This isn't a book about CSS, so we won't go over this in too much detail, but the styles for this component are as follows:

<style>
* {
 box-sizing: border-box !important;
}
.products {
 padding: 20px;
 max-width: 1200px;
 margin: 0 auto;
}
.list,
.details {
 width: 50%;
 float: left;
}
.list .item {
 width: 50%;
 float: left;
 padding: 20px 10px 20px 0;
}
.list img,
.list h3,
.list p {
 cursor: pointer;
}
.list img {
 width: 100px;
}
</style>

What all these styles do is add a little padding to the entire page to bring the content in off the sides of the screen; display the product list and details sections side by side with 50% of the width of the page each; and display the product list items in a two-column grid. This completes the definition of this component, but as yet we aren't actually displaying it anywhere!

 Component composition

The first thing to do is import this component into the ClientApp/components/App.vue file, and register it as a child component of our main App component. Replace the entire script block of the App component with the following:

<script>
import ProductList from "./products/List.vue";
export default {
 name: "app",
 components: {
 ProductList: ProductList
 }
};
</script>

The first thing to note here is the import line at the top of this block. If you're new to frontend frameworks, this might not make a lot of sense to you. In the modern JavaScript world, we break the application up into chunks, usually also splitting it into separate physical files, which are known as modules. A module will export some piece of functionality which can then be imported into another dependent module using a line of code like this one. This can loosely be thought of as a using statement in a C# application, where the object or function exported from a module is its interface defining the functionality that can be used from a dependent module.

Any parent component will have a number of these lines depending on how many child components it needs to import in order to make use of them in its template section. These imported components are then registered as children of this parent component using a components object. This is an object containing a collection of key/value pairs where the key is the name we want to reference the child component by, and the value is the object we imported from the child component definition we mentioned previously.

Generally speaking, the key and value of these properties will be the same as they are in the preceding example. Therefore, as our application supports modern ES6 syntax, we can shorten this property declaration as follows:

components: {
 ProductList
}

When this code is transpiled by webpack into standard syntax that the browser can understand, this will be expanded into the full key/value pair we had earlier.

Another bit of syntax specific to ES6 is our actual import line. This syntax is fairly simple:

import ComponentName from “./relative/component/location”

 The ComponentName part of this import line does not need to correspond to the name we gave the component earlier, as we are not using named exports from the child component definition. Instead, we are using export default {…}, which means that there is only a single export from the module, and as such we can use whatever name we wish when importing, as there is only a single object or function to import anyway. For example, we could use the following if we wanted:

import FooComponent from “./products/List.vue”

The only difference would be when we have to render the child component within the template section of the parent component. This is because the name we use while importing the child component is used to determine the HTML element name we use to render it. Regardless of whether we chose to use kebab case (component-name), camel case (componentName), or pascal case (ComponentName) for the import name, we must use the kebab case equivalent for the HTML element when we enter into the template section. In this instance, we used pascal case for our ProductList component import, and when rendering this, we do so as follows:

<template>
 <div>
 <product-list />
 </div>
</template>

On the other hand, if we had indeed named our component FooComponent when importing it, we would simply change the HTML element to the following:

<template>
 <div>
 <foo-component />
 </div>
</template>

As you can see, the only relevance the name we use to import a component has is when rendering it in the template section of the parent. In this instance, ProductList makes more semantic sense, so that's what I've stuck with! At this point, you can run the application and should be greeted with a product listing:

Basic product list component

And when clicking any of the elements within a single product, that product should be selected and displayed on the right:

Displaying the selected product details

A really useful way of generating placeholder text is by using VS Code built-in snippets! In the template section of a component, type lorem50 and press Enter—this will generate 50 words of lorem placeholder text, but can be adjusted to whatever length you need by changing the number 50.

As it currently stands, our ProductList component isn't really just a list of products, as it should be if we were sticking to SOLID principles. It is responsible for rendering the product list as well as the details of a selected product. In a very simple example like this, it isn't too much of an issue, as there is minimal HTML markup, JavaScript logic, and CSS styling involved. However, in my experience, more often than not these kinds of components will become more complicated, or certain parts of the UI will be moved or copied to another page, which is made more difficult when everything is bundled up into a single component.

Let's extract the selected product details section into its own component, and render it as a child of our existing ProductList component. Create a ClientApp/components/products/Details.vue file with a template section as follows:

<template>
 <div class="details">
 <h1>{{ product.name }}</h1>

 <p>{{ product.shortDescription }}</p>
 <p>{{ product.description }}</p>
 <p>{{ product.price }}</p>
 </div>
</template>

If you're using VS Code and followed along from earlier in this book when we installed the Vetur extension, you can quickly scaffold out an empty component definition by creating a new empty file and then typing scaffold at the top and pressing Enter.

This is a direct copy and paste from the ClientApp/components/products/List.vue component, but with a few tweaks to make it suitable to be its own component. Firstly, I removed the details class and the v-if="selectedProduct" directive from the enclosing div tag; we no longer need these as the component should not control when and if to display itself—the parent component will still control the visibility; and we have no CSS styles needing to make use of the old details class. I also renamed all instances of selectedProduct to product. We may use this component in other places within our UI in the future, so a more generic name for the product object that will be passed down via props made more sense for now.

The script section of this component looks as follows:

<script>
export default {
 name: "product-details",
 props: {
 product: {
 type: Object,
 required: true
 }
 }
};
</script>

There is nothing new here; we name the component as we usually do, then declare a single prop for the product we want to display to be passed in. The only stipulation is that this prop must be an object, and it is required—if we fail to provide one, we'll see errors in the browser console.

At this point, we are finished with the definition of this new details component. The only CSS styles specific to the display of the details section in the parent component are that it should only take up to 50% of the width of the screen. For this component to be truly reusable across multiple UI locations, we probably don't want to let it make its own decision about how much space it takes up. We'll leave that up to the parent components to decide, which means we can leave all of the current CSS styles in place in the parent list component.

In order to make use of this new component, we only have two very simple changes to make in the ClientApp/components/products/List.vue file. First of all, we need to import the new component and register it as a child:

<script>
import ProductDetails from './Details.vue'

export default {
 name: "product-list",
 components: {
 ProductDetails
 },
 // rest of script section as before...
}
</script>

We can then replace the following section of the component template:

<div v-if="selectedProduct" class="details">
 <h1>{{ selectedProduct.name }}</h1>
 <img :src="selectedProduct.thumbnail"
 :alt="selectedProduct.name" />
 <p>{{ selectedProduct.shortDescription }}</p>
 <p>{{ selectedProduct.description }}</p>
 <p>{{ selectedProduct.price }}</p>
</div>

With the following:

<product-details class="details" v-if="selectedProduct" :product="selectedProduct" />

There's a few things going on here that may not be immediately obvious, so let's quickly go over what this line is doing.

We already know that after importing our new ProductDetails component, we can render it using its kebab case equivalent name, which is what we've done here. However, once Vue has finished rendering this component, what the browser receives in place of this line is the full template section of the product details component, in other words a standard div element. By adding a class to this line, Vue automatically adds that class to the root element of the nested component, which means that we can write CSS styling in a parent component that targets the root element of a child component. This is how we control the width of the product details section of the UI, and don't need to move any styles into the details component itself.

The v-if=”selectedProduct” line has remained the same, and as before, simply controls the visibility of this component based on the user selecting a product in the list. The last part is the most interesting—we've used the shorthand v-bind directive syntax to bind an attribute called product to the selectedProduct property of the list components data object. Remembering back to when we created the product details component, we declared a single product prop, with a type of object and a required validation check. This is how we pass that product prop into the component using the v-bind directive with a reference to an appropriate piece of data within the parent component.

Now, you might be wondering why this isn't throwing any errors in the browser console, seeing as the product prop in the details component is required, and the selectedProduct property that we bind onto that prop in the list component is initialized as null until a user clicks on a product. The simple answer is that we chose to use the v-if directive rather than the v-show directive to control the visibility of the details component. We briefly touched on the differences in these directives back in Chapter 1, Understanding the Fundamentals, but to reiterate, using v-if means the section in question will not be rendered at all until the conditional statement becomes true. This means that until a user clicks on a product, and the selectedProduct property gets an object value assigned to it, the details component isn't even rendered in order for it to validate that its props have been passed in appropriately. This would not be the case with v-show, as it would be rendered from the start with its CSS visibility set to hidden, and prop validation would fail as the null value from the selectedProduct property would be passed in.

If you haven't already, check back in the browser to check everything still works as expected. There won't be any visible difference in how the app works after these changes, but we can still validate that the change has definitely taken effect. As long as you are using Chrome as your browser and have installed the Vue devtools extension as described back in Chapter 2, Setting Up the Development Environment, you can press F12 to open the Chrome developer tools window, then find the Vue tab at the far right of the tabs list across the top. Once inside this tab, a number of useful panes of information are displayed for us to validate what is going on under the hood of our running app. The default tab that's currently open should be the Components tab, and on the left-hand side of the developer tools window should be a GUI representation of our component tree, which looks something like this:

Chrome devtools extension - visual component tree

This proves that our new <ProductDetails> component has indeed been set up properly and is being used by the <ProductList> component! If you can only see the list component with no nested details component, make sure you've clicked on a product in the list and that the details component is visible.

On the right-hand side in the other half of the developer tools window should be another pane showing some detailed information about the component currently selected in the tree view that we've just seen. Make sure the <ProductDetails> component is highlighted in the component tree, and you should see some information as follows:

Chrome devtools extension - inspecting component data

This confirms that the product we selected in our list component is being passed down into the details component.

We've only just scratched the surface of what the Chrome dev tools extension can do to help us build and debug Vue applications, but you should already be able to see how much we can benefit from making use of it.

We now have a much better separation of concerns between the components of our UI, but it's not a very realistic example. In most online shops, there is a lot more functionality on a product details page, such as drop-down menus for customizing any potential product options, such as color or size; lists of related product suggestions based on previous user activity; comparisons with other similar products; and customer-based frequently asked question/answers and reviews. This amount of detail just wouldn't work with the master-detail pattern that we're currently using, so let's refactor again to move the details component onto a separate page, and have the user navigate to that page when clicking on one of the elements in the product list.

 Client-side routing

At this point, our single-page application is quite literally that—a single page. This is where things get a little more complicated, as we can't rely on the server for handling the routing as we would with a standard ASP.NET MVC application. We need a way of routing to the pages of our SPA on the client. Fortunately for us, Vue has an official client-side routing library called Vue-Router, which is already installed and configured for us seeing as we started out by using the Microsoft application template.

So, what exactly is a page in a Vue SPA? As with most questions that I've come across while building Vue applications, there is a very simple answer; a page is nothing more than a standard component! As such, when creating a page for our application, the process is exactly the same as we've been following to create new components throughout this chapter; the only exception is that we have some additional configuration to tell Vue-Router how handle and navigate to it.

That being said, I do like to differentiate between page components and the UI components that build up that page by creating a ClientApp/pages directory. We can then have subfolders underneath the ClientApp/components directory that correlate to the page that will consume the files inside of it. For application-wide components that don't belong to a specific page, I'll create a ClientApp/components/common folder. There is absolutely no reason why you have to follow this convention, as it's purely my personal preference. However, I would always strongly advise against dropping all of your pages and UI components straight into the ClientApp/components folder as it soon gets very difficult to locate what you're looking for when coming back to make changes later!

Let's start by creating the aforementioned ClientApp/pages directory, with two new components inside it.

The first component is ClientApp/pages/Catalogue.vue:

<template>
<product-list />
</template>

<script>
import ProductList from "../components/catalogue/ProductList.vue";

export default {
 name: "catalogue",
 components: {
 ProductList
 }
};
</script>

The second component is ClientApp/pages/Product.vue:

<template>
 <product-details :product="product" />
</template>

<script>
import ProductDetails from "../components/product/Details.vue";

export default {
 name: "product",
 components: {
 ProductDetails
 },
 data() {
 return {
 product: {
 name: "Samsung Galaxy S8",
 slug: "samsung-galaxy-s8",
 thumbnail: "http://placehold.it/200x300",
 shortDescription:
 "Samsung Galaxy S8 Android smartphone with
 true edge to edge display",
 price: 499.99,
 description:
 "Lorem ipsum dolor sit amet consectetur adipisicing elit. Perferendis tempora ad cum laudantium, omnis fugit amet iure animi corporis labore repellat magnam perspiciatis explicabo maiores fuga provident a obcaecati tenetur nostrum, quidem quod dignissimos, voluptatem quasi? Nisi quaerat, fugit voluptas ducimus facilis impedit quod dicta, laborum sint iure nihil veniam aspernatur delectus officia culpa, at cupiditate? Totam minima ut deleniti laboriosam dolores cumque in, nesciunt optio! Quod recusandae voluptate facere pariatur soluta vel corrupti tenetur aut maiores, cumque mollitia fugiat laudantium error odit voluptas nobis laboriosam quo, rem deleniti? Iste quidem amet perferendis sed iusto tempora modi illo tempore quibusdam laborum? Dicta aliquam libero, facere, maxime corporis qui officiis explicabo aspernatur non consequatur mollitia iure magnam odit enim. Eligendi suscipit, optio officiis repellat eos quis iure? Omnis, error aliquid quibusdam iste amet nihil nisi cumque magni sequi enim illo autem nesciunt optio accusantium animi commodi tenetur neque eum vitae est."
 }
 };
 }
};
</script>

You may have noticed that, even though we're still using the existing ProductList and ProductDetails components, the folder structure they reside in has changed slightly. As we now have our two pages, Catalogue and Product, I've added a ClientApp/components/Catalogue directory and moved the ProductList component into it, as well as renaming the ClientApp/components/products directory to ClientApp/components/product.

Now that we're no longer taking up 50% of the page with the product details component, we can make use of that space with the product list component instead. There are a few minor updates to make to the ClientApp/components/catalogue/ProductList.vue component, starting by removing the product details div element from the template section. After doing so, the template section should look as follows:

<template>
 <div class="products">
 <h1>Products</h1>
 <div class="list">
 <div class="item" v-for="product in products"
 :key="product.slug">
 <h3 @click="select(product)">{{ product.name }}</h3>
 <img :src="product.thumbnail" :alt="product.name"
 @click="select(product)" />
 <p @click="select(product)">{{
 product.shortDescription }}</p>
 <p @click="select(product)">{{ product.price }}</p>
 <hr />
 </div>
 </div>
 </div>
</template>

Next, we can update the script section to remove the child component import and declaration, as well as modify the select(product) method to navigate to our newly created product page:

<script>
export default {
 name: "product-list",
 data() {
 return {
 products: [
 // products array as before...
]
 };
 },
 methods: {
 select(product) {
 this.$router.push(`/products/${product.slug}`);
 }
 }
};
</script>

This is the first time we've seen any code specific to client-side routing with Vue-Router, so this will probably look a little alien to you. As mentioned previously, Vue-Router is already configured for us, which gives us access to the $router property in every component. One of the methods on this property is the push method, which takes the URL path to navigate to as a parameter. We're yet to set up this route to actually go anywhere, but the general idea is that we want nice, clean, "friendly" URLs based on the product name for SEO purposes. As an example, the URL for the first product in the list would look like this: http://localhost:5000/products/samsung-galaxy-s8.

The only other change in this component is to tweak the styling. As we no longer have the details component on this page, we can remove the 50% width limitation on the product list, and also display four products side by side rather than two. The updated style block looks like this:

<style>
* {
 box-sizing: border-box !important;
}

.products {
 padding: 20px;
 max-width: 1200px;
 margin: 0 auto;
}

.list .item {
 width: 25%;
 float: left;
 padding: 20px 10px 20px 0;
}

.list img,
.list h3,
.list p {
 cursor: pointer;
}

.list img {
 width: 100px;
}
</style>

The changes we need to make to the ClientApp/components/product/Details.vue component are even simpler; the only thing we need to do is add a style block to the bottom of the component with a little padding to bring the content off the sides of the screen now that it's being displayed on its own page:

<style>
.details {
 padding: 20px;
}
</style>

To make these style changes take effect, I've added the details class back on to the root div element in the template section as well.

As we now have Catalogue and Product page components dedicated to displaying our list of products and product details, respectively, we can no longer rely on the ClientApp/components/App.vue root component to be directly tied to the ProductList and ProductDetails components. We need a way of deciding which page to display based on the route that has been matched by the router. Vue-Router contains a custom component called <router-view /> that does just that. All we need to do is render it in the template block of our ClientApp/components/App.vue component:

<template>
 <router-view />
</template>

<script>
export default {
 name: "app"
};
</script>

Notice how we've also removed the import lines for the two previously rendered components, as these are now imported and rendered within the page components we created earlier. The <router-view /> component renders a matched component from the route definitions we're about to define.

The final change we need to make is in the ClientApp/boot.js file. After the Vue.use(VueRouter); line, we need to add the following:

//import page components
import Catalogue from "./pages/Catalogue.vue";
import Product from "./pages/Product.vue";

const routes = [
 { path: "/products", component: Catalogue },
 { path: "/products/:slug", component: Product },
 { path: "*", redirect: "/products" }
];

The most important part of this block is the const routes = […] array definition. This array will eventually contain all of the route definitions for our application, much the same way that we can configure server-side routes in the Startup.cs class of an ASP.NET Core application. The array is a collection of objects, each having a minimum of a string path that defines the browser URL to look for, and a component object reference to one of our app components. As with nested parent-child relationships, in order to reference the page-level components of our app, we need to import them first before they can be used in the route definitions.

The second entry in the routes array is for our product details page. As this page needs to be able to individually display the details for every product in our system, it needs a way of dynamically matching a unique product. As with ASP.NET MVC routes, we can define dynamic route parameters. In Vue-Router, these are prefixed with a colon, for example, /products/:slug. A slug is a URL segment that is unique to a specific product, usually generated from the product name by replacing spaces and other special characters with dashes instead.

This convention allows us to navigate to products with a friendly URL, such as: http://localhost:5000/products/samsung-galaxy-s8, rather than using ID parameters such as: http://localhost:5000/products/1. We'll use this parameter later in this chapter to fetch a single product from our API.

The last entry in the routes array is a catch-all, or wildcard entry, that matches any URL that's not already been matched by the previous definitions. Again, like with ASP.NET MVC route definitions, the order that we define our Vue-Router routes in matters. If a URL matches multiple routes, the first one found within the array will take precedence over any others. By including a wildcard definition at the very end of the array, we ensure that any request to a path on the domain of our application will at the very least end up being redirected to our catalog page.

The complete ClientApp/boot.js should look like this:

import Vue from "vue";
import VueRouter from "vue-router";

Vue.use(VueRouter);

//import page components
import Catalogue from "./pages/Catalogue.vue";
import Product from "./pages/Product.vue";

const routes = [
 { path: "/products", component: Catalogue },
 { path: "/products/:slug", component: Product },
 { path: "*", redirect: "/products" }
];

new Vue({
 el: "#app-root",
 router: new VueRouter({ mode: "history", routes: routes }),
 render: h => h(require("./components/App.vue"))
});

At this point, we have finished refactoring, and the app should be working. If you left it running while making these changes, you may need to force the browser to refresh as the Hot Module Replacement plugin may not pick up on all the changes we've made. Notice how the app will now redirect to the /products route by default, and clicking on an element in the product list does a client-side redirect to a product listing URL based on the name of the product you clicked on.

If you didn't notice that we were hardcoding the product being displayed on the product page earlier, you'll have undoubtedly noticed now that it doesn't matter which product you click on in the list; we always receive the same details when taken to the product page. This is because we now have multiple pages to our application, but no way of sharing data between them as we did when they were both rendered by the root app component. There are ways that we could achieve this sharing of data if we wanted, but there's really no need yet as, sooner or later, we need to hook the frontend components up to our API anyway. This will solve our issue as each page can be in control of requesting only the data it needs as we navigate between pages.

 Fetching data from an API

We currently have no concept of a "product" on the server side of our application, so let's remedy that by creating a product entity and migration to start off with. Create a Data/Entities/Product.cs class with the following contents:

namespace ECommerce.Data.Entities
{
 public class Product
 {
 public int Id { get; set; }
 [Required]
 public string Name { get; set; }
 [Required]
 public string Slug { get; set; }
 [Required]
 public string Thumbnail { get; set; }
 [Required]
 public string ShortDescription { get; set; }
 [Required]
 public string Description { get; set; }
 [Required]
 public decimal Price { get; set; }
 }
}

The properties of this class match the properties that we've been rendering in our UI so far. We've also added Required attributes on all but the Id property to ensure that the database creates these columns with not null constraints. The Id property is required by default as it is used as the primary key for the table.

Next, we need to make EF aware of the entity by updating our Data/EcommerceContext.cs class:

namespace ECommerce.Data
{
 public class EcommerceContext : IdentityDbContext<AppUser,
 AppRole, int>
 {
 public EcommerceContext(DbContextOptions<EcommerceContext>
 options) : base(options)
 { }

 public DbSet<Product> Products { get; set; }

 protected override void OnModelCreating(ModelBuilder
 modelBuilder)
 {
 base.OnModelCreating(modelBuilder);

 modelBuilder.Entity<Product>()
 .HasIndex(b => b.Slug)
 .IsUnique();
 }
 }
}

We've added the public DbSet<Product> Products { get; set; } line as well as the OnModelCreating(…) method override at the bottom of the class. The DbSet declaration is what triggers EF to actually decide that we need a table to be created, as well as giving us a property on the context to access our product-related database queries. The overridden OnModelCreating method is used to add a unique index on the Slug property of our Products table, which can't be done using data annotations on the class itself.

We don't yet have a UI for saving new products, so we need to seed the database with some sample data to keep us going until that UI exists. Update the Data/DbContextExtensions.cs class to include the following static method:

private static void AddProducts(EcommerceContext context)
{
 if (context.Products.Any() == false)
 {
 var products = new List<Product>()
 {
 new Product
 {
 Name = "Samsung Galaxy S8",
 Slug = "samsung-galaxy-s8",
 Thumbnail = "http://placehold.it/200x300",
 ShortDescription = "Samsung Galaxy S8 Android
 smartphone with true edge to edge display",
 Description = "Lorem ipsum dolor sit amet consectetur adipisicing elit. Perferendis tempora ad cum laudantium, omnis fugit amet iure animi corporis labore repellat magnam perspiciatis explicabo maiores fuga provident a obcaecati tenetur nostrum, quidem quod dignissimos, voluptatem quasi? Nisi quaerat, fugit voluptas ducimus facilis impedit quod dicta, laborum sint iure nihil veniam aspernatur delectus officia culpa, at cupiditate? Totam minima ut deleniti laboriosam dolores cumque in, nesciunt optio! Quod recusandae voluptate facere pariatur soluta vel corrupti tenetur aut maiores, cumque mollitia fugiat laudantium error odit voluptas nobis laboriosam quo, rem deleniti? Iste quidem amet perferendis sed iusto tempora modi illo tempore quibusdam laborum? Dicta aliquam libero, facere, maxime corporis qui officiis explicabo aspernatur non consequatur mollitia iure magnam odit enim. Eligendi suscipit, optio officiis repellat eos quis iure? Omnis, error aliquid quibusdam iste amet nihil nisi cumque magni sequi enim illo autem nesciunt optio accusantium animi commodi tenetur neque eum vitae est.",
 Price = 499.99M
 },
 // rest of product list omitted for brevity…
 };

 context.Products.AddRange(products);
 context.SaveChanges();
 }
}

Then, in the same class, update the EnsureSeeded method to call this newly created method, as follows:

public static void EnsureSeeded(this EcommerceContext context)
{
 // …rest of file

 AddProducts(context);
}

With these changes in place, we can now add a migration and run the application to apply it to the database. Open your Terminal and run the following command:

dotnet ef migrations add ProductEntity

If you've followed along accurately, you shouldn't see any errors in the Terminal. However, if you receive errors stating that the application build failed, make sure you've stopped the app from running before trying to add the migration!

Running the application now should yield no visible changes to the application, which should work exactly the same as it did before. However, if you check the database in pgAdmin 4, there should be a newly created Products table containing our seed data. Inspecting further should also show a unique index on the Slug field.

Now that we have some data to query, we can create a controller to query and return it to our client app. Create a Features/Products/Controller.cs class with the following contents:

namespace ECommerce.Features.Products
{
 [Route("api/[controller]")]
 public class ProductsController : Controller
 {
 private readonly EcommerceContext _db;

 public ProductsController(EcommerceContext db)
 {
 _db = db;
 }
 }
}

There is nothing new going on here; it is very similar to the Features/Users/Controller.cs class that we created in the previous chapter. In terms of our current UI data needs, we will need to add two endpoints to this controller: a first HTTP get action to return a list of all of our products, and a second HTTP get action to request a single product based on its Slug property.

These two endpoints are defined as follows:

[HttpGet]
public async Task<IActionResult> Find()
{
 var products = await _db.Products.ToListAsync();
 return Ok(products);
}

[HttpGet("{slug}")]
public async Task<IActionResult> Get(string slug)
{
 var product = await _db.Products.SingleOrDefaultAsync(x =>
 x.Slug == slug);

 if (product == null)
 return NotFound();

 return Ok(product);
}

Rebuild and run the application again now and we should have two functioning API endpoints to fetch our data from. You can test these by testing the following URLs in your browser:

	http://localhost:5000/api/products

	http://localhost:5000/api/products/apple-iphone-x

With these in place, we can update our page components to fetch their data from the server, rather than hard coding it. The first thing we'll do is refactor our catalog page and product list component to follow the same pattern we're using on the product page and details component. The page component will be responsible for fetching its data on page load, before passing it down into the product list component as props.

In the ClientApp/components/catalogue/ProductList.vue file, remove the data() {…} function entirely, and replace it with the following props declaration:

props: {
 products: {
 type: Array,
 required: true
 }
}

Next, we need to actually provide this product array from the ClientApp/pages/Catalogue.vue component. First of all, we need to update the <product-list /> HTML element in the template section to bind a products prop:

<template>
 <product-list :products="products" />
</template>

Next, in the script section, we need to add a data object that contains a products array matching this prop reference:

data() {
 return {
 products: []
 };
}

And finally, we need to add a mounted life cycle hook to query our API and populate the products array:

mounted() {
 fetch("/api/products")
 .then(response => {
 return response.json();
 })
 .then(products => {
 this.products = products;
 });
}

Here, we use the fetch API to perform a HTTP GET request to the endpoint we just created, parse the response as JSON, then bind our products array to the response JSON array.

Finally, we need to make a similar change in the ClientApp/pages/Product.vue component. In the data object, clear out the hardcoded product object and replace it with null:

data() {
 return {
 product: null
 };
}

Then, add a mounted life cycle hook in this component as well, performing a similar HTTP GET request, albeit to fetch a single product rather than a list:

mounted() {
 const slug = this.$route.params.slug;

 fetch(`/api/products/${slug}`)
 .then(response => {
 return response.json();
 })
 .then(product => {
 this.product = product;
 });
}

We've already seen how the route definition that renders this page has a dynamic route parameter called slug. In this hook, we access this parameter from the built-in $route object, then use it to form the URL that we query for the product we're trying to view. When using Vue-Router, all components have access to the $route object by default.

With these changes in place, our application should be fully functioning. Clicking on a product now not only takes us to a separate product details page, but also loads the appropriate product details from the API and renders it dynamically based on the slug parameter in the URL.

 Summary

We've covered a lot of ground in this chapter, so let's quickly recap what we've achieved. We started out with a very simple component for displaying a static list of hard coded products. We then added an implementation of the master-detail pattern to allow the user to select a product to view additional details.

We looked at when and why to refactor our component structure, and how we can compose a UI of parent-child component relationships by breaking out a product details component. We then took this a step further by moving the product details component into its own separate page, and introducing a multipage setup using client-side routing with Vue-Router.

Finally, we created a Products table in our database, seeded it with sample data, and built two API endpoints to serve the data required by our UI to replace the static hard coded data we had been using. Thinking back to the earlier chapter on fundamentals of Vue.js, we have already covered a lot of topics outlined in that chapter. We've covered component composition, parent-child relationships, the data object/function, props, prop validation, life cycle hooks, the v-for/v-bind/v-on directives, and fetching data from an API.

There's still a long way to go, and our app is anything but "pretty," so in the next chapter, we'll carry on building out a functioning catalog and make things look a little nicer at the same time!

 Building a Product Catalog

In the last chapter, we got off to a good start with building our very first custom Vue.js components. We covered a lot of the fundamentals that we'll be using throughout the rest of this book, such as data-binding, looping over, and rendering lists of data; conditional rendering, component composition with props and event handlers; client-side routing between multiple pages, and fetching data from our server-side API. These are the kinds of things that will become the bread and butter of building applications with Vue.js, so it was important to make sure we understand them before moving forward.

In this chapter, we are going to build on what we already have and start to transform it into a proper e-commerce application. We'll begin by improving the overall look and feel using Bootstrap, as well as adding transitions and loading indicators on page changes to improve the User Experience (UX). We'll then move on to flesh out the existing product list to become a fully featured catalog with filtering and sorting. We're going to cover a lot of ground, including topics such as the following:

	Styling with Bootstrap and SASS

	Pre-fetching data with Vue-Router

	Transitions, animations, and loading indicators

	Manipulating the URL query object to store user selections

	Triggering API calls when the URL query object changes

	Server-side filtering

	Client-side sorting

	Searching for text using the EF.Functions.Like operator

	Triggering search API requests in real time using watchers

	Limiting expensive operations with debounce functions

 Improving the existing UX

As we move into building a real-world application, it's time to start making things look a little nicer by introducing some CSS styling. However, this isn't a book about CSS or web design, so we'll rely on the very popular Bootstrap CSS framework to handle 99% of our styling needs.

 Choosing a UX framework

Back in Chapter 2, Setting Up the Development Environment, we removed the default Bootstrap installation included with the project template, and you may now be wondering why. We removed the default installation for three reasons:

	It had a dependency on jQuery, which in my opinion shouldn't be necessary when creating SPAs with a modern frontend framework such as Vue

	It was referencing Bootstrap 3, which at the time of writing has just been replaced by Bootstrap 4, which we'll be using instead

	Rather than reference Bootstrap directly, we're going to be using a Bootstrap-based Vue component library called Bootstrap-Vue

There is nothing wrong with jQuery, and I use it a lot in projects that don't utilize a frontend SPA framework, but it simply isn't necessary when we are using one. For SPA projects, my personal preference is to make use of a CSS-only framework such as Bulma (http://bulma.io), or to remove the jQuery dependency from Bootstrap and add the interactivity using Vue components. This can be pretty time-consuming, but luckily for us the creators of Bootstrap-Vue have already done it for us, which is why we'll use it for this project.

 What is Bootstrap-Vue?

Bootstrap-Vue is a component library based entirely on the hugely popular Bootstrap frontend CSS framework. It provides a number of Vue.js components that ultimately render Bootstrap HTML markup decorated with the correct classes to be styled by the Bootstrap CSS files. However, they also add the necessary JavaScript behavior without taking a dependency on jQuery.

Rendering Bootstrap-Vue components is often far more simple and concise than rendering the full Bootstrap syntax for a given component. It is easy to determine the components we use from the Bootstrap-Vue library, because they all come prefixed with a b-. For example, to render a modal component, we'd use the following syntax:

<b-modal title="Bootstrap-Vue">
 <p>Modal content</p>
</b-modal>

Bootstrap-Vue includes the unmodified original CSS files from Bootstrap itself, so if needs be we can even fall back to using standard Bootstrap HTML markup instead, which will still be styled appropriately as long as we include the correct classes:

<div class="modal" role="dialog">
 <div class="modal-dialog" role="document">
 <div class="modal-content">
 <div class="modal-header">
 <h5 class="modal-title">Bootstrap-Vue</h5>
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close">
 ×
 </button>
 </div>
 <div class="modal-body">
 <p>Modal content</p>
 </div>
 <div class="modal-footer">
 <button type="button" class="btn btn-primary">Save
 changes</button>
 <button type="button" class="btn btn-secondary" data-
 dismiss="modal">Close</button>
 </div>
 </div>
 </div>
</div>

We can already see how much easier it is to render a Bootstrap-Vue component than it is to render all the HTML markup required by Bootstrap itself. However, we still have the flexibility of falling back to this markup if we need it, which we'll demonstrate in a later chapter.

 Installing additional required dependencies

First things first, we need to install a handful of npm modules that we'll be making use of to improve the UX of our app. Open a Terminal and run the following two commands:

yarn add node-sass sass-loader –dev

yarn add bootstrap-vue nprogress

The first line is necessary for adding the node-sass and sass-loader modules to the devDependencies section of the package.json file. Out of the box, the project template we are using does not support SASS for our styles. We won't be writing all that much custom styling, but what we do write will use SASS due to the added benefits it provides over plain old CSS. These two modules are required to instruct webpack how to handle the style blocks of our components when we start making use of SASS.

The second line is adding the Bootstrap-Vue and NProgress libraries to our project. We've already covered what Bootstrap-Vue is and why we're using it, but NProgress may not be quite so obvious. It's a fairly simple library for adding progress indicators to our app, which we'll use for adding a loading animation on page changes while data fetching is in progress.

 Modifying the webpack configuration to support SASS

With these dependencies installed, we need to update our webpack configuration to make use of them. Open up the webpack.config.js file and find the module section, which currently looks like this:

module: {
 rules: [
 { test: /\.vue$/, include: /ClientApp/, loader: 'vue-loader' },
 { test: /\.css$/, use: isDevBuild ? ['style-loader', 'css-
 loader'] : ExtractTextPlugin.extract(
 { use: 'css-loader?minimize' }) },
 { test: /\.(png|jpg|jpeg|gif|svg)$/, use: 'url-loader?
 limit=25000' }
]
}

This section needs to be updated to look like this:

module: {
 rules: [
 {
 test: /\.vue$/,
 include: /ClientApp/,
 loader: "vue-loader",
 options: {
 loaders: {
 scss: "vue-style-loader!css-loader!sass-loader",
 sass: "vue-style-loader!css-loader!sass-loader?
 indentedSyntax"
 }
 }
 },
 {
 test: /\.css$/,
 use: isDevBuild
 ? ["style-loader", "css-loader"]
 : ExtractTextPlugin.extract({ use: "css-loader?minimize" })
 },
 { test: /\.(png|jpg|jpeg|gif|svg)$/, use: "url-loader?limit=25000" }
]
}

Apart from expanding these lines to make them more readable, the only changes are to the first object in the rules array section. Specifically, we've added the options object, which utilizes the sass-loader that we installed earlier. We can now specify a lang attribute on the style blocks of our components in order to write our styles in SASS instead of CSS; we'll see how to do that shortly.

 Updating the webpack vendor configuration

One of the perks of using the Microsoft project template is that it splits the webpack configuration, and therefore our JavaScript bundle, into two parts. One of these parts is for third-party code and one is for our own custom code. This provides a huge benefit to the speed at which our custom code is processed and bundled by webpack, because it doesn't need to process 3rd party code such as the Vue and VueRouter libraries, or any other 3rd party libraries such as those we've just installed. If it did, our on-the-fly code changes would take a lot longer to be pushed to the browser by the HMR plugin.

Open up the webpack.config.vendor.js file, find the vendor array, and update it as follows:

vendor: [
 "event-source-polyfill",
 "isomorphic-fetch",
 "vue",
 "vue-router",
 "bootstrap/dist/css/bootstrap.min.css",
 "bootstrap-vue",
 "nprogress/nprogress.css"
]

We're simply adding the Bootstrap, Bootstrap-Vue, and NProgress libraries to our vendor bundle.

The next thing we need to do is to register the Bootstrap-Vue plugin in our app entry point, the ClientApp/boot.js file, like so:

import Vue from "vue";
import VueRouter from "vue-router";
import BootstrapVue from "bootstrap-vue";

Vue.use(VueRouter);
Vue.use(BootstrapVue);

//rest of file unchanged...

With this done, all of the components included in the Bootstrap-Vue library are now globally accessible to any of our custom components, without the need to import them specifically as we've seen with our parent-child relationships so far.

 Rebuilding the vendor bundle

We're now finished with the changes to our app's overall configuration, and usually we would simply need to restart the application for those changes to take effect. However, due to an issue with the project template we're using, the vendor bundle does not automatically rebuild itself when we restart the application. We have to explicitly instruct it to do so, by running the following command in a Terminal window:

webpack --config webpack.config.vendor.js

In order for this command to work, you need webpack installed globally on your machine. You can install it by running the following command:

npm install -g webpack

However, rather than relying on all of your developers having webpack installed globally, we can add an npm script that makes use of the local copy of webpack installed along with the other project dependencies, which is stored inside the node_modules directory. Open the package.json file, and add a scripts block like so:

"scripts": {
 "webpack": "webpack --config webpack.config.vendor.js && webpack"
}

We can now simply run yarn webpack from a Terminal, and both of our webpack bundles will be processed and rebuilt; better still, we don't need to remember to install webpack globally before doing so.

If you haven't already, run the yarn webpack command, and your vendor bundle will now contain all of the scripts and style sheets needed for the new libraries we've just added to our project.

 Adding application-wide layout elements

We're now ready to start adding some global components and styles to our application. We'll start by adding a Bootstrap navbar to all of our pages, which we can easily do by adding to the ClientApp/components/App.vue file. You can think of this file like the _Layout.cshtml file from the server side of our application, which contains all of the global HTML markup included on every page of an MVC application.

Open the ClientApp/components/App.vue file and update the template section to look like this:

<template>
 <div class="app">
 <b-navbar toggleable="md" type="dark" variant="dark">
 <b-container>
 <b-navbar-toggle target="nav_collapse"></b-navbar-toggle>
 <b-navbar-brand to="/">PhoneShop</b-navbar-brand>
 <b-collapse is-nav id="nav_collapse">
 <b-navbar-nav>
 <b-nav-item to="/products">Products</b-nav-item>
 </b-navbar-nav>
 </b-collapse>
 </b-container>
 </b-navbar>

 <router-view />
 </div>
</template>

As we now have more than one element being rendered in this template, we've had to add a <div class="app"></div> wrapper element. We've then made use of the Bootstrap-Vue library by using a number of its components, namely the b-navbar component and its related sub-components. If you're at all familiar with Bootstrap, it should be fairly easy to see what each of these components is doing. Essentially, each one is like rendering a div element with appropriate class attributes to apply Bootstrap styling.

All we really need to know about these components is that they're used to display a list of menu items in a responsive way. We constrain the navbar contents to a fixed width with the b-container component, and the menu items are hidden on small screen sizes until the b-navbar-toggle component is clicked to have them animate into view. You can try this now by running the application, then reducing the width of your browser and seeing how the navbar responds to the reduced width.

If this component was likely to get much bigger, it would be a good idea to extract the navigation menu part of this template into a separate Navbar component. You can try this for yourself now as a learning exercise!

One of the most important lines is the b-nav-item component line. Under the hood, this component renders a standard HTML a tag, so it would be easy to use a href attribute to instruct the browser where to navigate to when the link is clicked. However, although it is perfectly OK to use a href attribute instead of the to attribute that we've used here, doing so would cause a full page load when loading the next page. Instead, if we're navigating to an internal page, we can use the to attribute, which will utilize Vue-Router and client-side navigation. The next page will then be rendered by the client, which will be much faster than a full round trip to the server.

Finally, the existing router-view component that was previously the only element in this template is now rendered beneath our navbar. As such, the navbar will be displayed on every page of our application, without needing to explicitly include it in each page's template.

 Adding application-wide styles

The ClientApp/components/App.vue file is also the recommended place to put our global styles, either directly in the style section, or imported from an external style sheet. Styles that are only applicable in a single component should be included in said component's style section, and set as scoped to prevent them affecting any other components—we'll see how to do that shortly.

Open up the ClientApp/components/App.vue file and add a style section at the bottom like so:

<style lang="scss">
html,
body {
 height: 100vh;
}
div.app,
div.page {
 height: 100% !important;
}
</style>

As we're using Bootstrap, there are already a load of base styles applied by default, so for now all we need to do is force the html and body elements to stretch to the full height of the screen. We can then force our root <div class="app"></div> element, and each <div class="page"></div> element, to also stretch to 100% height. Normally this wouldn't be necessary, but we'll see why we need these styles shortly.

 Styling the product list and product details components

As we did with the navbar, we're going to make use of some of the components from the Bootstrap-Vue library. Open up the ClientApp/components/catalogue/ProductList.vue file and modify the template section:

<template>
 <div class="products">
 <b-container>
 <h1 class="mt-4 mb-4">Products</h1>
 <b-row>
 <b-col class="mb-4" sm="6" v-for="product in products"
 :key="product.id">
 <b-media class="product">
 <img slot="aside" :src="product.thumbnail"
 :alt="product.name" @click="view(product)" />
 <h2 class="mt-2" @click="view(product)">{{ product.name }}
 </h2>
 <p class="mt-4 mb-4">
 {{ product.shortDescription }}
 </p>
 <p class="mt-4 mb-4">{{ product.price }}</p>
 <b-button variant="primary">Add to cart</b-button>
 </b-media>
 </b-col>
 </b-row>
 </b-container>
 </div>
</template>

Again, the names of these components should be fairly familiar if you've used Bootstrap before, and as such it will be fairly easy to work out what's going on. However, if you aren't familiar with Bootstrap, please do check the documentation for the Bootstrap-Vue library which provides a full description of each component: https://bootstrap-vue.js.org/docs.

We're also making heavy use of Bootstrap utility classes to add spacing between elements. Specifically the mt and mb classes, which add margin to the top and bottom of the associated element respectively. These classes can take a numeric modifier between 0 and 5 to control how much margin is applied, for example, mt-1 and mt-5.

The only functional change that's been made to this component is the name of the function called when the user clicks the product name or image. As we are no longer selecting a product, I renamed the function view instead:

methods: {
 view(product) {
 this.$router.push(`/products/${product.slug}`);
 }
}

Finally, replace the entire style section with the following:

<style lang="scss" scoped>
.product {
 border: 3px solid #eee;
 img,
 h2 {
 cursor: pointer;
 }
}
</style>

As previously mentioned, we will be writing as little custom CSS as possible, and relying heavily on Bootstrap to make things look nice. That being said, it is important to understand how scoped component styles work, and how you can utilize SASS in your own projects.

We already did all of the setup required to make use of SASS, which means the only thing we need to do at the component level is add the lang="scss" attribute. We can then make full use of SASS, including nested selectors as we have here, as well as variables, mixins, and other SASS goodies. Note how we also added the scoped attribute to this style block. By scoping the styles in this way, they will only apply to the HTML markup in the template section of this component. You can try this out now by hovering your mouse over a product image in the catalog page, then clicking on a product and hovering over the image on the product details page. The cursor should not indicate that the image is clickable on the product details page, but it should on the catalog page.

Adding the lang="scss" attribute may require a full page refresh before the styles take effect properly!

Next, open the ClientApp/components/product/Details.vue file and update the template section like this:

<template>
 <b-container class="pt-4">
 <b-media>

 <h2>{{ product.name }}</h2>
 <p class="mt-4 mb-4">
 {{ product.shortDescription }}
 </p>
 <p class="mt-4 mb-4">{{ product.price }}</p>
 <b-button variant="primary">Add to cart</b-button>
 </b-media>
 <h3 class="mt-4">Product details</h3>
 <p class="mt-4 mb-4">
 {{ product.description }}
 </p>
 </b-container>
</template>

Nothing new here except the pt-4 class, which, as you might expect, works very similarly to the mt-4 class, except it applies padding instead of margin. There are no component-specific styles needed for this component, so you can delete the style section entirely.

This completes the layout and style updates, so feel free to run the application now and see how it looks, which should be something like this:

Styled product list component

 Fetching data before navigation

As it stands, both of our pages are configured to fetch the data they require after navigating to the page, by triggering the API calls in the mounted lifecycle hook of the page-level component. While working locally, it is very hard to notice the side effects to this setup, because the API calls complete so quickly that we can barely tell that the page wasn't rendered instantly. However, when accessing the application over the internet, the network latency will be far more apparent, and you will notice a brief time when the page is first displayed where there is a blank screen while the API call is still in progress.

We can combat this and improve the UX of our application in one of two ways: we can continue to fetch page data after navigation, but display some kind of loading indicator while the API call is in progress; or we can configure the component to fetch its data before navigation, so that the page will not change until the API call completes. Either way, there is still a need for displaying progress indicators, as even if we fetch data before navigation there will be a brief period where the API call is in progress and nothing appears to be happening.

We've already seen how to fetch data after navigation, so let's now update both of our page components to fetch their data before navigation so you have a comparison. Open up ClientApp/pages/Catalogue.vue and remove the mounted() life cycle hook function entirely. In its place, we need to add the following:

beforeRouteEnter(to, from, next) {
 fetch("/api/products")
 .then(response => {
 return response.json();
 })
 .then(products => {
 next(vm => vm.setData(products));
 });
}

This is the first time we've seen this method, as it isn't a standard life cycle hook. We gain access to this hook by using VueRouter, and, as the name of the function suggests, it will run before we try to navigate to this component. We also have access to three arguments: a to object that models the route that we are navigating to; a from object that models the route we are navigating from; and a next callback function that we can invoke to allow the navigation to complete.

In this instance, we perform an API call to fetch our list of products from the server like we did in the mounted() hook before, but this time we call the next function after the API call is complete. We also pass it a lambda function to invoke once the page has been loaded. At this point, navigation hasn't happened yet, so we can't simply assign the products we receive from the server straight onto the component's products array. Instead, we instruct VueRouter, in this case, to call a setData() function on the component, passing it the list of products we just received from the API. This function does not exist yet, so let's add it by creating a methods object like so:

methods: {
 setData(products) {
 this.products = products;
 }
}

The last change we need to make in this page component is to update the template section to look like the following:

<template>
 <div class="page">
 <product-list :products="products" />
 </div>
</template>

The only thing we've done is wrap the product-list component with a div element that has a class of page. This class picks up the global styles we applied earlier to force the page to fill 100% of the browser's height.

This is everything we need to change on this page, but we need to make similar changes to the ClientApp/pages/Product.vue file. Update its template section like so:

<template>
 <div class="page">
 <product-details :product="product" />
 </div>
</template>

Then, add a methods object to the script section like so:

methods: {
 setData(product) {
 this.product = product;
 }
}

Finally, replace the mounted() life cycle hook with the following beforeRouteEnter hook:

beforeRouteEnter(to, from, next) {
 fetch(`/api/products/${to.params.slug}`)
 .then(response => {
 return response.json();
 })
 .then(product => {
 next(vm => vm.setData(product));
 });
}

The only difference here is that we make use of the to object argument, extracting the slug parameter from its params object. This is similar to how we extracted the slug parameter from the $route.params object before, as both objects represent the query string parameters on the current route.

Start the application up again now and everything should still be working as before, except that the very slight API call delay occurs before the page changes rather than after.

 Adding a page loading indicator

As we already discussed, the delay while the API calls are in progress will be far more noticeable when our app is live on the internet. We need to provide some feedback to assure our users that something is happening, and the page they are expecting to view is loading—this is where the NProgress library we installed earlier comes into play.

There are two ways that we could achieve the desired result. Firstly, on each page on which we wish to show a loading indicator, we could utilize the same beforeRouteEnter hook that we've just been using to start the loading animation, then utilize the next function call to stop the animation after navigation completes. This would look something like this:

beforeRouteEnter(to, from, next) {
 NProgress.start();
 fetch(`/api/products/${to.params.slug}`)
 .then(response => {
 return response.json();
 })
 .then(product => {
 next(vm => {
 vm.setData(product)
 NProgress.done();
 });
 });
}

This would work perfectly fine, and achieve the desired result in a fairly clean way. However, we would potentially need to repeat this code in quite a few places, depending on how many pages we have in our application. It would be much better if we could achieve the desired result without so much repetition by adhering to DRY principles.

Fortunately, we can intercept all route changes and display the loading animation very easily using global route hooks. To do so, we need to open up ClientApp/boot.js and make a few modifications. Firstly, we need to import the NProgress library like so:

import Vue from "vue";
import VueRouter from "vue-router";
import BootstrapVue from "bootstrap-vue";
import NProgress from "nprogress";

//rest of file unchanged

Next, instead of initializing the VueRouter object inline like we do here:

new Vue({
 el: "#app-root",
 router: new VueRouter({ mode: "history", routes: routes }),
 render: h => h(require("./components/App.vue"))
});

We need to initialize it separately so that we can add our navigation hooks to it before we attach it to the root component Vue instance:

const router = new VueRouter({ mode: "history", routes: routes });

router.beforeEach((to, from, next) => {
 NProgress.start();
 next();
});

router.afterEach((to, from) => {
 NProgress.done();
});

new Vue({
 el: "#app-root",
 router: router,
 render: h => h(require("./components/App.vue"))
});

The router.beforeEach() hook is used to call the NProgress start function before every page change, and similarly the router.afterEach() hook is used to call the done function. That's all there is to it, and we now have a subtle loading bar and spinner displayed across the top of the page while navigation is in progress. Because we set our page data to be loaded before the page changes, this animation will occur for the full duration of the API request and subsequent page render.

 Adding a transition on page change

The final step in updating the UX of our existing application is to add a transition on page change. Thankfully, Vue makes this task incredibly easy, and we can achieve what we want with just a few lines of HTML and CSS.

Open up the ClientApp/components/App.vue file, find the <router-view> component in the template section, and wrap it in a <transition> component like this:

<transition name="fade" mode="out-in">
 <router-view />
</transition>

This <transition> component is a built-in Vue component that, as its name suggests, provides a way of transitioning elements as they are hidden and displayed again. There are a number of ways we can control the type of transition that occurs, including a comprehensive set of functions that we can hook into (we'll see how to do this later). However, for now, we'll keep things simple and use CSS class-based transitions. Add the following CSS styles to the App.vue style section:

.fade-enter-active,
.fade-leave-active {
 transition: opacity 0.3s ease-in-out;
}

.fade-enter,
.fade-leave-to {
 opacity: 0;
}

The names of these classes must match the names we used in the preceding <transition> component. As we set a name="fade" attribute on the transition element, we had to use "fade" as the first part of each of the preceding CSS classes. The second part of these class names, for example, enter-active, ties in with the hooks that fire at different stages of the transition.

In this instance, by setting the opacity to zero for .fade-enter and .fade-leave-to, we are telling the transition component that, before the child component is rendered, and at the end of its life when it is being hidden again, it has an opacity of zero. The default opacity value is one, which will be used while the component is shown, and the transition property in .fade-enter-active and .fade-leave-active will be added while the component is being displayed and hidden, respectively.

The only other thing to note on the <transition> component is the mode attribute that we set to out-in. If we omit this attribute, the page being hidden will fade out smoothly, but the new page that loads will simply appear without the fade. By adding this attribute, we ensure that the old page fades out, and the new page fades in.

Finally, this is where the 100% height CSS classes we added earlier take effect. If the page being transitioned out does not fill the full height of the screen, the new page appears at the bottom of the screen briefly before being displayed properly. By forcing all pages to fill the height of the screen, we no longer get this problem—we just need to remember to add the page class to each root page-level component.

 Extending the existing data model

Our database model is currently extremely basic. Before we can implement a fully functioning catalog, we need to extend it considerably to store more information about our products. In our fictional phone shop, this includes things such as screen size, battery life, brand, operating system, features, colors, and storage options.

 Dropping the existing database

As we're going to be adding quite a few new required fields to the Product entity, unless we specify default values for these properties, the changes will fail when they hit our existing database. At this point in the development cycle, there is absolutely no harm in dropping and recreating the database as often as is required until we get the structure exactly how we want it. This wouldn't be the case if our application was already live, as we would want to ensure that any changes we make can be successfully applied to an existing database.

Before doing anything else, open a Terminal and run the following command:

dotnet ef database drop

After a few seconds, you should see a console message asking if you really do wish to delete the database, which you can confirm by pressing Y followed by Enter. Just be aware that the webpack middleware will be the last thing to run, so it's easy to miss this message as it won't be the last thing printed to the console. On my machine, it looks like this:

Are you sure you want to drop the database 'ecommerce' on server 'tcp://localhost:5432'? (y/N)
infowebpack built 71bacf76d35cf420b3c3 in 1417ms
: Microsoft.AspNetCore.NodeServices[0]
 webpack built 71bacf76d35cf420b3c3 in 1417ms

 Adding new/updating existing entities

In order to store these things, we need a number of new entities, which will have the following relationships in the database:

Product catalog database structure

The first of these new entities is the Brand entity, which looks like this:

namespace ECommerce.Data.Entities
{
 public class Brand
 {
 public int Id { get; set; }
 [Required]
 public string Name { get; set; }

 public List<Product> Products { get; set; } = new List<Product>();
 }
}

These entities are very simple and self-explanatory, and, seeing as we have a lot to cover in this chapter, we'll scoot over these pretty quickly. The next one we need is a Colour entity:

namespace ECommerce.Data.Entities
{
 public class Colour
 {
 public int Id { get; set; }
 [Required]
 public string Name { get; set; }

 public List<ProductVariant> ProductVariants { get; set; } =
 new List<ProductVariant>();
 }
}

At this point, you'll notice we're referencing an entity that does not yet exist. Don't worry, just don't try to build the app until we're finished with the remaining entities. Next up, we have the Feature entity:

namespace ECommerce.Data.Entities
{
 public class Feature
 {
 public int Id { get; set; }
 [Required]
 public string Name { get; set; }

 public List<ProductFeature> ProductFeatures { get; set; } =
 new List<ProductFeature>();
 }
}

We need to store a collection of images that we can display in a gallery, so we'll need an Image entity:

namespace ECommerce.Data.Entities
{
 public class Image
 {
 public int Id { get; set; }
 public int ProductId { get; set; }
 [Required]
 public string Url { get; set; }

 public Product Product { get; set; }
 }
}

We also need an OS entity to store the operating system of our phones:

namespace ECommerce.Data.Entities
{
 public class OS
 {
 public int Id { get; set; }
 [Required]
 public string Name { get; set; }

 public List<Product> Products = new List<Product>();
 }
}

We will need somewhere to store the different storage capacity options of our phones, which we'll use a Storage entity for:

namespace ECommerce.Data.Entities
{
 public class Storage
 {
 public int Id { get; set; }
 [Required]
 public string Capacity { get; set; }

 public List<ProductVariant> ProductVariants { get; set; } =
 new List<ProductVariant>();
 }
}

This completes the additional entities we need, but we still need a way of linking up these options with the products they relate to, so let's start with a ProductFeature table:

namespace ECommerce.Data.Entities
{
 public class ProductFeature
 {
 public int ProductId { get; set; }
 public int FeatureId { get; set; }

 public Product Product { get; set; }
 public Feature Feature { get; set; }
 }
}

This is a standard join table between the Product and Feature entities to create a many-to-many relationship. We need a similar, albeit more complicated, join table between a Product and a unique combination of Colour and Storage. We'll call this table our ProductVariant table:

namespace ECommerce.Data.Entities
{
 public class ProductVariant
 {
 public int ProductId { get; set; }
 public int ColourId { get; set; }
 public int StorageId { get; set; }
 [Required]
 public decimal Price { get; set; }

 public Product Product { get; set; }
 public Colour Colour { get; set; }
 public Storage Storage { get; set; }
 }
}

This is a pretty standard data model for an e-commerce application, where a product may have a number of configurable options that may alter the base cost of the product. Each unique combination of options is stored as a ProductVariant with an associated cost, and when a user places an order, we link the order to the specific variant they selected.

The final change we need to make to our entities is to tie all this together by updating the root Product entity to link to all of these new entities. Update it like so:

namespace ECommerce.Data.Entities
{
 public class Product
 {
 public int Id { get; set; }
 [Required]
 public string Name { get; set; }
 [Required]
 public string Slug { get; set; }
 [Required]
 public string Thumbnail { get; set; }
 [Required]
 public string ShortDescription { get; set; }
 [Required]
 public string Description { get; set; }
 [Required]
 public decimal ScreenSize { get; set; }
 [Required]
 public decimal TalkTime { get; set; }
 [Required]
 public decimal StandbyTime { get; set; }
 [Required]
 public int BrandId { get; set; }
 [Required]
 public int OSId { get; set; }

 public List<Image> Images { get; set; }
 public Brand Brand { get; set; }
 public OS OS { get; set; }
 public List<ProductFeature> ProductFeatures { get; set; } =
 new List<ProductFeature>();
 public List<ProductVariant> ProductVariants { get; set; } =
 new List<ProductVariant>();
 }
}

We've added a number of EF navigational properties for the new entities we just created, and also added a few extra decimal fields for the screen size, talk time, and standby time of the handsets.

 Updating the DbContext class

We now need to update our context to make EF aware of the changes we've made so that we can reflect them in the database. Open up the Data/EcommerceContext.cs class and update the list of DbSet<> properties like so:

public DbSet<Brand> Brands { get; set; }
public DbSet<Colour> Colours { get; set; }
public DbSet<Feature> Features { get; set; }
public DbSet<Image> Images { get; set; }
public DbSet<OS> OS { get; set; }
public DbSet<Product> Products { get; set; }
public DbSet<ProductFeature> ProductFeatures { get; set; }
public DbSet<ProductVariant> ProductVariants { get; set; }
public DbSet<Storage> Storage { get; set; }

Next, we need to instruct EF on how to configure our many-to-many relationships by adding to our overridden OnModelCreating method:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 base.OnModelCreating(modelBuilder);

 modelBuilder.Entity<Product>()
 .HasIndex(b => b.Slug)
 .IsUnique();

 modelBuilder.Entity<ProductFeature>()
 .HasKey(x => new { x.ProductId, x.FeatureId });

 modelBuilder.Entity<ProductVariant>()
 .HasKey(x => new { x.ProductId, x.ColourId, x.StorageId });
}

 Creating a migration to reflect the model changes

With these changes in place, we're now in a position to create a migration to apply these changes to the database. As we did before, open up a Terminal window and run the following command:

dotnet ef migrations add Catalogue

If all is well, the migration should be created successfully and two new files will have been created in the Data/Migrations directory. As usual, it's highly recommended to give them a brief glance over to make sure everything looks OK. Now, the next time we run the application, this migration will be run automatically, but if you'd rather be explicit and run it yourself, then execute the following command in your Terminal:

dotnet ef database update

You can then browse the new database structure using pgAdmin4 if you're interested.

pgAdmin4 was installed along with PostgreSQL back in Chapter 2, Setting Up the Development Environment. As we've done before, you can use it to browse your local databases and check the structure/data in much the same way as you would with SQL Server Management Studio if that's what you're used to.

 Updating the application's seed data

We still don't have a UI or API endpoints to create this data, so we need to extend our seed methods to create some sample data that we can consume from the frontend. In the Data/DbContextExtensions.cs class, we'll need two new methods that we'll call from the EnsureSeeded method. The first will be called AddColoursFeaturesAndStorage, and looks like this:

private static void AddColoursFeaturesAndStorage(EcommerceContext context)
{
 if (context.Colours.Any() == false)
 {
 var colours = new List<string>() { "Black", "White", "Gold",
 "Silver", "Grey", "Spacegrey", "Red", "Pink" };

 colours.ForEach(c => context.Add(new Colour
 {
 Name = c
 }));

 context.SaveChanges();
 }

 // rest of method omitted for brevity…
}

As these seed methods are pretty long and fairly uninteresting, I've omitted all but an example of how to seed the data we need. You can download the source code for this chapter, which contains the entire methods, but I've basically just made up a load of fake company and product names.

The next new method is the AddOperatingSystemsAndBrands method:

private static void AddOperatingSystemsAndBrands(EcommerceContext context)
{
 if (context.OS.Any() == false)
 {
 var os = new List<string>() { "Android", "iOS", "Windows" };

 os.ForEach(o => context.OS.Add(new OS
 {
 Name = o
 }));

 context.SaveChanges();
 }
 // rest of method omitted for brevity…
}

The AddProducts method has remained unchanged in structure, but we do need to update the data we're seeding on each product object to include the additional fields we added earlier. I won't show every product that we're seeding as they are all much the same. However, as an example, we need to add the ScreenSize, TalkTime, and StandbyTime decimal fields:

new Product
{
 //...
 ScreenSize = 5M,
 TalkTime = 8M,
 StandbyTime = 36M
 //...
}

We then need Brand and OS objects, as well as a list of Image objects, which we will display in our new gallery component on the product details page:

new Product
{
 //...
 Brand = context.Brands.Single(b => b.Name == "Acme"),
 OS = context.OS.Single(os => os.Name == "Android"),
 Images = new List<Image>
 {
 new Image { Url = "/assets/images/gallery1.jpeg" },
 new Image { Url = "/assets/images/gallery2.jpeg" },
 new Image { Url = "/assets/images/gallery3.jpeg" },
 new Image { Url = "/assets/images/gallery4.jpeg" },
 new Image { Url = "/assets/images/gallery5.jpeg" },
 new Image { Url = "/assets/images/gallery6.jpeg" }
 }
 //...
}

Next is a list of product feature objects:

new Product
{
 //...
 ProductFeatures = new List<ProductFeature>
 {
 new ProductFeature
 {
 Feature = context.Features.Single(f => f.Name == "3G")
 },
 new ProductFeature
 {
 Feature = context.Features.Single(f => f.Name == "Bluetooth")
 },
 new ProductFeature
 {
 Feature = context.Features.Single(f => f.Name == "WiFi")
 },
 new ProductFeature
 {
 Feature = context.Features.Single(f => f.Name == "GPS")
 }
 }
 //...
}

The final thing we need is a list of product variant objects:

new Product
{
 //...
 ProductVariants = new List<ProductVariant>
 {
 new ProductVariant
 {
 Colour = context.Colours.Single(c => c.Name == "Black"),
 Storage = context.Storage.Single(s => s.Capacity == "32GB"),
 Price = 299M
 },
 new ProductVariant
 {
 Colour = context.Colours.Single(c => c.Name == "Black"),
 Storage = context.Storage.Single(s => s.Capacity == "64GB"),
 Price = 349M
 },
 new ProductVariant
 {
 Colour = context.Colours.Single(c => c.Name == "Gold"),
 Storage = context.Storage.Single(s => s.Capacity == "32GB"),
 Price = 319M
 },
 new ProductVariant
 {
 Colour = context.Colours.Single(c => c.Name == "Gold"),
 Storage = context.Storage.Single(s => s.Capacity == "64GB"),
 Price = 369M
 }
 }
}

Again, all I've done is make up a number of fake product names and a bunch of different variants with different prices, as well as added a local URL to a selection of images that I downloaded from a free stock image website. You can grab these from the source code for this chapter, or simply download your own images and modify the URLs as necessary.

In order to make these image URLs work, I created a wwwroot/assets/images directory and dropped all of the product images in there. In a real application, I'd most likely make use of some kind of cloud file storage such as Microsoft Azure or Amazon S3, but that is beyond the scope of this book.

At this point, our data changes are complete, and, if you haven't already, you can run the application again now and you will be greeted with exactly the same application as before, but with our newly updated seed data.

 Filtering on the server

As it stands, we have no way of filtering our list of products, which will soon become a problem when we have more than a handful of them. Users of our shop will expect to be able to filter down the list to help them find exactly what they are looking for, without scrolling through pages and pages of results.

With the data model we just set up, we can filter the list by brand, price, screen size, capacity, color, operating system, and feature. We have a few changes to make to achieve this as our API does not yet support filtering on the product list query, and we have no filter components in our client app. We'll start by making the changes we need to the API.

 Updating controller actions to support filtering

The first thing we need to do is update our products controller action to support some optional filter parameters. Open up Features/Products/Controller.cs, locate the Find action, and change its method signature to the following:

[HttpGet]
public async Task<IActionResult> Find(string brands, int? minPrice, int? maxPrice, int? minScreen, int? maxScreen, string capacity, string colours, string os, string features)
{
 //method body omitted for brevity…
}

Here, we are specifying that the client needs to send string values for the brand, capacity, colors, and features filters. Multiple selections can be concatenated with some kind of delimiter value, which we will see in a moment. In addition to these, we are accepting optional min/max price integers, as well as optional min/max screen size integers. If no values are provided for any of these filters, they will be ignored and we simply return all products.

With these parameters in place, we need to do some processing of the strings. We'll say that multiple filter items will be concatenated with a | character, meaning we'll need to use the built-in C# String.Split() method to turn the string parameters into lists:

var Brands = string.IsNullOrEmpty(brands) ? new List<string>() : brands.Split('|').ToList();
var Capacity = string.IsNullOrEmpty(capacity) ? new List<int>() : capacity.Split('|').ToList();
var Colours = string.IsNullOrEmpty(colours) ? new List<string>() : colours.Split('|').ToList();
var OS = string.IsNullOrEmpty(os) ? new List<string>() : os.Split('|').ToList();
var Features = string.IsNullOrEmpty(features) ? new List<string>() : features.Split('|').ToList();

First, we check if the string is null or empty, and if it is, we create a new empty list of string objects. Alternatively, if the string is passed a value, we call the Split method followed by the ToList method to return a new list of the individual filter items from the client.

Finally, we can update the database query to take these filters into consideration:

var products = await _db.Products
 .Where(x => Brands.Any() == false || Brands.Contains(x.Brand.Name))
 .Where(x => minPrice.HasValue == false || x.ProductVariants.Any(v => v.Price >= minPrice.Value))
 .Where(x => maxPrice.HasValue == false || x.ProductVariants.Any(v => v.Price <= maxPrice.Value))
 .Where(x => minScreen.HasValue == false || x.ScreenSize >= Convert.ToDecimal(minScreen.Value))
 .Where(x => maxScreen.HasValue == false || x.ScreenSize <= Convert.ToDecimal(maxScreen.Value))
 .Where(x => Capacity.Any() == false || x.ProductVariants.Any(v => Capacity.Contains(v.Storage.Capacity)))
 .Where(x => Colours.Any() == false || x.ProductVariants.Any(v => Colours.Contains(v.Colour.Name)))
 .Where(x => OS.Any() == false || OS.Contains(x.OS.Name))
 .Where(x => Features.Any() == false || Features.All(f => x.ProductFeatures.Any(pf => pf.Feature.Name == f)))
 .Select(x => new ProductListViewModel
 {
 Id = x.Id,
 Slug = x.Slug,
 Name = x.Name,
 ShortDescription = x.ShortDescription,
 Thumbnail = x.Thumbnail,
 Price = x.ProductVariants.OrderBy(v => v.Price).First().Price
 })
 .ToListAsync();

Note how I've chained multiple LINQ Where clauses in this query. This is an entirely personal preference, but I prefer to chain multiple Where clauses rather than use a whole load of logical operators within a single Where clause. I find it much easier to read, but feel free to change this if you don't.

Essentially, I've added a single Where clause per filter parameter being passed into the controller action. On each clause, if no value is passed to that particular filter, the first half of the logical OR operator will return true, and so the filter will have no effect on the resultant list of products. If a value is passed, we use it to return only those products that match based on the specific properties being filtered against.

For example, look at the following Where clause:

Where(x => Brands.Any() == false || Brands.Contains(x.Brand.Name))

This will limit the query results to those products whose associated brand name is contained within the list of brands passed to the controller action.

The final thing to note here is that we are no longer returning domain model entities directly to the client. Doing so is generally a bad idea and is frowned upon, so, instead, we'll use a LINQ Select call to project each returned product to an associated ProductListViewModel, which contains only the data we need to display in our catalog list page. This new view model class lives in the Features/Products folder and looks like this:

namespace ECommerce.Features.Products
{
 public class ProductListViewModel
 {
 public int Id { get; set; }
 public string Slug { get; set; }
 public string Name { get; set; }
 public string ShortDescription { get; set; }
 public decimal Price { get; set; }
 public string Thumbnail { get; set; }
 }
}

In a real application, we'd normally take our best practices to another level by removing this kind of logic from the controller entirely, and maybe even throw in a tool such as AutoMapper to make our lives a little easier when mapping domain models to view models in this way. However, to keep things simple and concise, I'm sticking to raw EF queries directly in controller actions for now.

My personal favorite approach to structuring .NET Core applications is using the excellent MediatR library to separate data access into distinct commands and queries. It also provides very useful ways of handling cross-cutting concerns such as error handling and logging.

 Testing our filtering logic

This is all we need to do on the server side to handle filtering in our product catalog. You can test this out by using your browser to navigate to URLs such as http://localhost:5000/api/products, followed by http://localhost:5000/api/products?brands=Acme|Soylent to see how the list of products returned changes based on the query string filters.

 Filtering on the client

This is where things get a little trickier. We need to come up with a simple but powerful UI that provides suitable filter controls for each of our server-side filter parameters. Most of these are lists of string values concatenated with the pipe character, for which we can simply display a list or grid containing the available options that the users can click on to select. However, we also have a couple of numeric filters accepting a min/max value for each. It would be nice to include some kind of slider control for these range-based inputs. Finally, we need a way of clearing the selected filters.

The following screenshot is what we are aiming to build:

Product catalog filters component

Each filter will be in an accordion section so that the user can collapse them to save space, and the results panel should update in real time as they change their filters.

 Installing additional dependencies

In order to build this UI, we'll need a few additional libraries installed and/or configured. First up, we can see that we need some icons for the reset button and the filter accordions; we'll make use of Font Awesome for these as it's so easy to install and use, and has become the standard for web icons.

 Installing Font Awesome

We have a few options here. First and foremost, we should head over to the Font Awesome website at https://fontawesome.com/ and check out their Get Started page. The recommended way of using Font Awesome via a CDN just happens to be the easiest, which is why we'll stick with it for the purposes of this book.

Installing Font Awesome using the CDN is as easy as opening up the Features/Shared/_Layout.cshtml file and adding the following link element at the very bottom of the head section:

<link href="https://use.fontawesome.com/releases/v5.0.6/css/all.css" rel="stylesheet" />

Now, if we follow the instructions on the Font Awesome website, they tell us to add a script reference to a JavaScript file rather than this CSS file. This is what I initially did until I noticed a strange bug whereby icons being conditionally rendered using the v-if directive didn't work properly. The resolution I found was to use a CSS file reference instead, which is why we've ignored the installation instructions here.

If you're interested, there are other Vue-specific ways of installing Font Awesome, which you can find on their website under the Advanced Options section of the Get Started page. Specifically, they have a couple of npm packages that we could have installed and made use of, but we'd need to make a few more changes than our one simple change so far.

 Installing additional npm packages

With Font Awesome installed, we can look at our next requirement: accordions and sliders. Building a custom slider component would be fairly involved, and just not worth the effort when there are pre-built components on npm that we can leverage instead. However, it is pretty simple to build our own accordions, and this will also leave us with full control over how they are displayed.

For basic animation, we could make use of CSS transitions, but sooner or later we'll hit the limits of what we can easily do with CSS. Instead, we'll install the Velocity.js library which provides accelerated JavaScript animations, and is much more powerful than CSS alone. In addition to this, we'll install the vue-slider-component library which, as the name suggests, provides us with a ready-made slider component.

Open a Terminal in the project root directory and run the following commands:

yarn add velocity-animate

yarn add vue-slider-component

While we're here, we're going to change the library that we use for making API requests. The reason will become more apparent later, but essentially, there are some annoying limitations with isomorphic-fetch. We are going to replace it with a library called axios, which is an alternative HTTP client that works both in the browser and on the server.

Run the following commands in your Terminal:

yarn remove isomorphic-fetch

yarn add axios

There is just one last change we need to make to completely replace isomorphic-fetch with axios, so open up the webpack.config.vendor.js file, locate the vendor array within the entry object, and replace the isomorphic-fetch line with axios. The completed vendor array should then look like this:

vendor: [
 "event-source-polyfill",
 "axios",
 "vue",
 "vue-router",
 "bootstrap/dist/css/bootstrap.min.css",
 "bootstrap-vue",
 "nprogress/nprogress.css"
]

Recalling the last time we changed this file, we need to force a webpack rebuild before these changes take effect, so run the following command in your Terminal:

yarn webpack

 Building an accordion component

We now have everything we need to start making our filter components. We already stipulated that each filter component will be rendered as a collapsible accordion, but, with each filter having different contents, how do we achieve what we want without replicating the accordion logic for each filter? We need to build a reusable accordion component with enough flexibility to change what content we display in the collapsible sections. Luckily for us, Vue provides slots for doing just that.

 Defining the accordion template structure

First of all, create a new component file in the ClientApp/components/catalogue directory, which I've named FilterAccordion.vue. The template section of this component looks like this:

<template>
 <b-list-group-item>
 <div :class="{ 'header': true, 'open': open }" @click="open =
 !open">
 <slot name="header"></slot>
 <i class="fas fa-chevron-down float-right"></i>
 </div>
 <transition @enter="onEnter" @leave="onLeave">
 <div class="body mt-3 pt-2" v-if="open">
 <slot name="body"></slot>
 </div>
 </transition>
 </b-list-group-item>
</template>

The root element we're using for this component is the b-list-group-item element from the Bootstrap-Vue library, and is used for rendering nicely formatted lists. We then have two div elements: one for the header of the accordion, and one for the body.

On the div header, we're using the v-bind directive to bind a dynamic open class based on a data property, also called open. We also include an @click event handler to toggle the open property when the user clicks on the header section of the accordion. As they click, the event handler fires and toggles the open property, which in turn toggles the open class on the header. We'll see why this is important shortly. The last thing to note in the header section is the i element that we're using. This is how we make use of the Font Awesome icons that we installed earlier. We can place an i element anywhere in our application, and provide appropriate class names to tell Font Awesome which icon we actually want to display. In this case, we're using the fa-chevron-down class to render a down arrow.

As this is an accordion, we know that the body section will not always be visible. As such, we use the v-if directive to control the visibility of it, based on the open data property that we've already discussed. This is all we need to do to get a basic accordion working, but it won't be the nicest UX without a nice transition to make it less jarring when toggled. To achieve this, we're wrapping the body section with a transition component, just like we saw around the router-view component earlier in this chapter. However, rather than passing a name prop to the transition component like we did before, we're attaching @enter and @leave event handlers, which will trigger a pair of JavaScript hooks instead. This is because we want to make use of Velocity for JavaScript-based animation, rather than the CSS animation we used before.

Finally, we're making use of the slot component in both the header and body sections of this template. This is how we create a placeholder, as it were, so that, when we call this component from a parent, we can insert different content into each accordion that we render. As we have multiple slots, we need to be able to differentiate between them and specify which slot we want to place our content into. To do so, we simply add a name prop to each slot.

 Defining the accordion behavior

The script section of our accordion component looks like this:

<script>
import * as Velocity from "velocity-animate";

export default {
 name: "filter-accordion",
 data() {
 return {
 open: true
 };
 },
 methods: {
 onEnter(el, done) {
 Velocity(el, "slideDown", {
 duration: 200,
 easing: "ease-in-out",
 complete: done
 });
 },
 onLeave(el, done) {
 Velocity(el, "slideUp", {
 duration: 250,
 easing: "ease-in-out",
 complete: done
 });
 }
 }
};
</script>

This may look a little complicated at first, but when we break it down, it's really quite simple.

We start by importing the Velocity library that we installed earlier, and providing it with an alias of Velocity. We then have our standard export default{} object declaration that we've seen so many times before, containing a data() function and a methods: {} object—also just like we've seen many times before.

The data function is very simple, and only returns an object containing the open property that we saw being toggled and used to bind classes in the preceding template section. The methods object is a little more complicated, but essentially just contains the two JavaScript animation hooks that we referenced in the transition component in the template. The onEnter method will be called as the accordion is opened, and its body section will become visible; similarly, the onLeave method will be called as the accordion is closed. Each method receives an el argument, which is a reference to the element that is being transitioned, as well as a done argument which is a callback function we need to invoke at the end of the animation. If you've ever used jQuery animate before, the Velocity syntax will look very familiar to you. We call the Velocity function and pass an element reference, the name of the animation we want to apply, and an object containing any options we want to apply to the animation. In this case, we use either the slideUp or slideDown animation, and specify a duration value and an easing value, and pass the done function to be invoked as the animation completes.

 Styling the accordion component

Our accordion component is now functionally complete, but there are just a few simple styles that we need to apply to get it looking the way we want it to. The style block for this component looks like this:

<style lang="scss" scoped>
.header {
 font-weight: bold;
 cursor: pointer;

 .fa-chevron-down {
 position: relative;
 top: 5px;
 transition: all 0.2s ease-in-out;
 }

 &.open {
 .fa-chevron-down {
 transform: rotate(180deg);
 }
 }
}

.body {
 border-top: 1px solid #ccc;
}
</style>

There is nothing overly complicated going on here, but it's worth noting the transform style near the middle. Remember how we dynamically apply the open class to the accordion header depending on whether it's open or closed? We hook into that dynamic class here and rotate the Font Awesome icon 180 degrees to become an up arrow. Just above this line, there is also a transition style—this makes the icon rotation a nice smooth animation rather than being just an instant flicker between states.

 Building the filters component

With a functioning accordion, we can now build the actual filters component that will make use of it. There will be a lot going on here, so we'll need to break things down to make sure we can see what's going on. As a reminder, the section on the left of the following screenshot shows the filters component we are about to build:

Product catalog filters component

 Scaffolding the filters component template

Create a ClientApp/components/catalogue/Filters.vue file and add a barebones template section as follows:

<template>
 <div class="filters mb-4">
 <h5 class="mt-4">Filters</h5>
 <b-btn variant="outline-secondary" @click.prevent="reset">
 <i class="fas fa-sync mr-2"></i> Reset</b-btn>
 <b-list-group class="mt-4">
 // our list of filter accordions will go here...
 </b-list-group>
 </div>
</template>

We start with a small title and a reset button—we'll look at the reset method later, but note how we're making use of the Font Awesome library again by including the sync icon within the reset button. Apart from this, it's a fairly simple template so far.

Where it will get complicated is within the b-list-group element, which is another custom element from the Bootstrap-Vue library. This should now make things clearer as to why we used the b-list-group-item element as the root-level element for the accordion component. Now, we have a number of accordions to insert, but as they're not all exactly the same, we'll go over them one by one.

 Adding a brand filter

The first accordion we need is the brands filter:

<filter-accordion>
 Brand
 <b-row slot="body">
 <b-col cols="6">
 <div :class="{ 'filter-item': true,
 'active': brands.length === 0 }" @click="clearBrands">All</div>
 </b-col>
 <b-col cols="6" v-for="item in filters.brands" :key="item">
 <div :class="{ 'filter-item': true, 'active':
 brands.indexOf(item) > -1 }" @click="filterBrand(item)">
 {{ item }}</div>
 </b-col>
 </b-row>
</filter-accordion>

As our custom FilterAccordion.vue component made use of slots, we can insert content between its opening and closing HTML tags. Furthermore, we added two different slots: one for the header and one for the body. In order to specify which slot we're targeting, we include the slot prop on any standard or custom HTML element within the template.

We're starting off by simply inserting a span element into the header slot in order to provide the text that displays as the title of the accordion panel. Next, we're inserting a bootstrap b-row element into the body slot, including a number of columns for each of the available brands that the user can filter by. We start the list of brands off with a hardcoded All filter item, with a dynamic active class binding based on whether or not we've selected any brands to filter on. We're also attaching a click handler to this item to call into a clearBrands method, which we'll see later on. We then use the v-for directive to loop over the filters.brands property, rendering the same HTML markup as we used for the preceding All item. However, this time, we base the active class binding on whether or not our list of selected brands contains the specific brand being rendered. The click handler also calls a different method called filterBrand, which we will use later to add or remove the brand depending on whether it has already been selected or not.

This is probably the most complex template code we've seen so far, so it is definitely worth taking the time to understand what is going on here before moving on. That being said, until we see what the script section looks like, it probably won't make complete sense.

 Adding a price filter

The next accordion we need is the price filter:

<filter-accordion>
 Price
 <div class="slider" slot="body">
 <vue-slider
 :value="price"
 formatter="£{value}"
 :min=0
 :max=1000
 :interval=50
 :lazy=true
 width="90%"
 @callback="filterPrice">
 </vue-slider>
 </div>
</filter-accordion>

Thankfully, it is a lot easier to see what's going on straight away. We start the same way we did with the brands accordion: by inserting a span element into the header slot. The body slot in this instance is a lot simpler, and only contains a single div element, which we use to wrap an instance of the vue-slider component that we installed earlier in this chapter. The slider component can optionally take many more props than we are using here, which makes it incredibly versatile. For our needs, though, this is all we need.

We're binding the value of the slider to a price property from our component state, and the min, max, and interval values to arbitrary values that make sense for the price of a phone. The formatter prop is used to specify the template of the labels at each end of the slider. As we are working with currency, we simply prefix the value passed with a £ symbol.

For the purposes of this demonstration, I am not including any kind of localization of things such as currencies and date formats. For production apps that may be used in multiple locales, it is worth looking into a localization npm package such as globalizejs or vue-globalize.

The @callback event handler is used to call our filterPrice method as the user interacts with the slider and changes its value. Now, if we omit the lazy prop, the @callback event handler would fire each time the slider detects the value changing, even if the user hasn't let go of their mouse to signify the final position of their choice. By setting lazy to true, we're instructing the slider to wait until the mouse click is released before firing the @callback event, and thus preventing more API calls than we need to make.

 Adding a screen size filter

The next filter in the list is the screen size filter:

<filter-accordion>
 Screen size
 <div class="slider" slot="body">
 <vue-slider
 :value="screenSize"
 formatter="{value} in"
 :min=0
 :max=7
 :lazy=true
 width="90%"
 @callback="filterScreenSize">
 </vue-slider>
 </div>
</filter-accordion>

This is almost identical to the price filter, so we won't dwell on it for long, but just note the slightly different formatter prop, as well as triggering a different method in the @callback event handler.

 Adding the remaining color, OS, and feature filters

The next three filters, for color, operating system, and feature, are also almost identical to each other, along with the brand filter that we defined in the preceding section. The color filter looks like this:

<filter-accordion>
 Colour
 <b-row slot="body">
 <b-col cols="6">
 <div :class="{ 'filter-item': true,
 'active': colours.length === 0 }" @click="clearColours">
 All</div>
 </b-col>
 <b-col cols="6" v-for="item in filters.colours" :key="item">
 <div :class="{ 'filter-item': true, 'active':
 colours.indexOf(item) > -1 }" @click="filterColour(item)">
 {{ item }}</div>
 </b-col>
 </b-row>
</filter-accordion>

The operating system filter looks like this:

<filter-accordion>
 Operating system
 <b-row slot="body">
 <b-col cols="6">
 <div :class="{ 'filter-item': true,
 'active': os.length === 0 }" @click="clearOS">All</div>
 </b-col>
 <b-col cols="6" v-for="item in filters.os" :key="item">
 <div :class="{ 'filter-item': true, 'active': os.indexOf(item)
 > -1 }" @click="filterOS(item)">{{ item }}</div>
 </b-col>
 </b-row>
</filter-accordion>

And, finally, the feature filter looks like this:

<filter-accordion>
 Features
 <b-row slot="body">
 <b-col cols="6">
 <div :class="{ 'filter-item': true, 'active': features.length
 === 0 }" @click="clearFeatures">All</div>
 </b-col>
 <b-col cols="6" v-for="item in filters.features" :key="item">
 <div :class="{ 'filter-item': true, 'active':
 features.indexOf(item) > -1 }"
 @click="filterFeature(item)">{{ item }}
 </div>
 </b-col>
 </b-row>
</filter-accordion>

The only differences in these filters are the data properties being looped over, the methods being called by the event handlers, and the properties being used for class binding. If you can understand one of them, you can understand all of them, so we won't say any more about these.

 Scaffolding the filters component behavior

The script block of this template is equally long and complex, so we'll go over it in sections again! As an overview, this is what it looks like:

<script>
import FilterAccordion from "./FilterAccordion.vue";
import vueSlider from "vue-slider-component";

export default {
 name: "filters",
 props: {
 filters: {
 type: Object,
 required: true
 }
 },
 components: {
 FilterAccordion,
 vueSlider
 },
 computed: {
 // computed props omitted for brevity...
 },
 methods: {
 // methods omitted for brevity...
 }
};
</script>

First, we need to import the necessary child components that we'll make use of, including our own FilterAccordion component as well as the vue-slider component that we installed from npm earlier. Then, we will declare a standard component definition named "filters", register the child components we just imported, and specify a required filters prop of type Object. This filters object prop will contain the collections of filters that we've been looping over in the preceding template sections, and we'll pass it in from the parent component after we retrieve the filter options from an API call later in this chapter.

 Defining the filters component computed properties

The computed properties section will be where we store the selected filter items the user clicks on, as well as the current values of the price and screen size sliders. However, as we'll see in a moment, it is a little more complicated than that, as we'll also be keeping these values in sync with the browser URL query string.

Update the computed section to look like this:

computed: {
 brands() {
 return this.$route.query.brands || "";
 },
 price() {
 return [
 this.$route.query.minPrice || 0,
 this.$route.query.maxPrice || 1000
];
 },
 screenSize() {
 return [
 this.$route.query.minScreen || 0,
 this.$route.query.maxScreen || 7
];
 },
 capacity() {
 return this.$route.query.capacity || "";
 },
 colours() {
 return this.$route.query.colours || "";
 },
 os() {
 return this.$route.query.os || "";
 },
 features() {
 return this.$route.query.features || "";
 }
}

If you haven't done much JavaScript before, this syntax may look a little strange, but in actual fact it maps pretty closely back to a similar concept in C#. For each of our filters, we're returning either a string or an array, based on query parameters from the current page route. If no query parameter is found matching that name, we default to either an empty string or a specific integer value. In essence, this:

return this.$route.query.brands || "";

Is very similar to writing this in C#:

return object.property ?? defaultValue;

We already saw that our filters API endpoint is expecting a single string value per filter, which is why we default to empty strings rather than empty arrays. Also, seeing as these are computed properties, if we update the query parameters at any point, Vue will detect the change in these computed properties and trigger a UI refresh wherever necessary.

This is all very well and good, but couldn't we make this a lot simpler and just store the users filter selections in standard component state using arrays? In short, we definitely could, and this is a perfectly acceptable approach for a lot of online shops that I've visited in the past. However, if we rely on local component state to store the user's selections, they will be lost if and when they force the browser to refresh the page. There are a few different ways that we can combat this, including pushing the selections into the browser's local storage, then retrieving them if they exist on page load, and pushing the selections to the URL query string. There are definitely pros and cons to each solution, but the deciding factor for me is that, if we make use of the query parameters, our users can share their search results with others by copying the URL.

 Defining the filters component methods

So, we can populate our component state from the URL, but as it stands we can't update it. We're missing the methods section of the component that will fill in that gap. To get us started, add the following methods section:

methods: {
 reset() {
 this.$router.push({ query: {} });
 }
}

Recall the top of the template for this component; we have the reset button, which has a click event handler invoking a reset method. This is all we need to do to clear all the filters and have the list reset. Our computed properties that contain the selected filter items are directly tied to the query parameters in the URL. By pushing an empty query object without specifying a new URL, vue-router will overwrite the query parameters with this empty object. All of our computed properties will then update and the UI will refresh back to the default state.

For each filter, we need two methods to manipulate the URL and refresh the filter results. We need a method that takes a filter item and pushes it to the URL if it hasn't already been selected, or removes it if it has, and a method that removes all selected items for this filter. The following methods show how we do this for the brands filter:

clearBrands() {
 if (this.brands.length) {
 let query = Object.assign({}, this.$route.query);
 delete query.brands;

 this.$router.push({ query: query });
 }
},
filterBrand(brand) {
 let query = Object.assign({}, this.$route.query);
 let split = query.brands ? query.brands.split("|") : [];

 if (split.indexOf(brand) > -1) {
 let index = split.indexOf(brand);
 split.splice(index, 1);
 } else {
 split.push(brand);
 }

 if (split.length) {
 let joined = split.join("|");
 query.brands = joined;
 } else {
 delete query.brands;
 }

 this.$router.push({ query: query });
}

Again, there's quite a lot going on here, so we'll go through it line by line, starting with the clearBrands method.

First, we check if we've actually selected any brands or not. If we have, we use the Object.assign function to clone the $route.query object into a new local method variable, then delete the brands property from it before pushing the newly updated query object into the query string like we did in the preceding reset method. If we haven't selected any brands, we do nothing. But why do we need to bother cloning the query object rather than modifying it directly? The answer isn't entirely obvious, but essentially it just boils down to how the reactivity system works in Vue. If we were to try and modify the query object directly, and then push it back into vue-router, the component would not detect the change, and as such we would see no change in the UI. By taking a clone of the query object and pushing that back into vue-router, there is no dispute that we've changed something, and the reactivity system kicks in as we'd expect it to.

Moving on to the filterBrand method, we can see that it takes a brand parameter which is the specific filter item the user just clicked on. We start by taking a similar approach as before and taking a clone of the $route.query object. Now, we know that any selected brands will have been concatenated into a single string, so we call the split function on the brands property, but default to an empty array if it doesn't exist. We can now check to see if the brand parameter already exists in the array we just created, and either remove it or add it, depending on the outcome. To remove it, we first need to find its index within the array, then call the splice method to remove it based on that index. To add it, all we need to do is call the push method and pass it as a parameter. Next, we do another check to see if we still have any items in the array before deciding what to do next. If we do still have some selected brands, we concatenate them back together using the join method, passing the | character as the delimiter to use, before overwriting the brands property on our clone of the query object. Alternatively, if we no longer have any brands selected, we simply delete the brands property from the query object. Finally, we push the final version of the cloned query object back into the current URL using vue-router.

The methods for updating the slider-based numeric values are much simpler. The filterPrice method looks like this:

filterPrice(prices) {
 let query = Object.assign({}, this.$route.query);
 query.minPrice = prices[0];
 query.maxPrice = prices[1];

 this.$router.push({ query: query });
}

The slider in the filter component emits an array containing the current min and max values selected by the user. This array is what is passed to the filterPrice method as the prices parameter, as shown in the preceding code. As before, we clone the current $route.query object before setting the minPrice and maxPrice properties based on the two elements in the prices array, then push the new query object onto the current URL.

The filterScreenSize method looks almost identical:

filterScreenSize(sizes) {
 let query = Object.assign({}, this.$route.query);
 query.minScreen = sizes[0];
 query.maxScreen = sizes[1];

 this.$router.push({ query: query });
}

There is nothing new here, so we'll move on to the remaining filter methods, and in actual fact there is nothing new in any of them. The rest are almost identical to the preceding clearBrands and filterBrands methods, starting with the clearCapacity and filterCapacity methods:

clearCapacity() {
 if (this.capacity.length) {
 let query = Object.assign({}, this.$route.query);
 delete query.capacity;

 this.$router.push({ query: query });
 }
},
filterCapacity(capacity) {
 let query = Object.assign({}, this.$route.query);
 let split = query.capacity ? query.capacity.split("|") : [];

 if (split.indexOf(parsed) > -1) {
 let index = split.indexOf(parsed);
 split.splice(index, 1);
 } else {
 split.push(parsed);
 }

 if (split.length) {
 let joined = split.join("|");
 query.capacity = joined;
 } else {
 delete query.capacity;
 }

 this.$router.push({ query: query });
}

Next up are the clearColours and filterColour methods:

clearColours() {
 if (this.colours.length) {
 let query = Object.assign({}, this.$route.query);
 delete query.colours;

 this.$router.push({ query: query });
 }
},
filterColour(colour) {
 let query = Object.assign({}, this.$route.query);
 let split = query.colours ? query.colours.split("|") : [];

 if (split.indexOf(colour) > -1) {
 let index = split.indexOf(colour);
 split.splice(index, 1);
 } else {
 split.push(colour);
 }

 if (split.length) {
 let joined = split.join("|");
 query.colours = joined;
 } else {
 delete query.colours;
 }

 this.$router.push({ query: query });
}

The following are the clearOS and filterOS methods:

clearOS() {
 if (this.os.length) {
 let query = Object.assign({}, this.$route.query);
 delete query.os;

 this.$router.push({ query: query });
 }
},
filterOS(os) {
 let query = Object.assign({}, this.$route.query);
 let split = query.os ? query.os.split("|") : [];

 if (split.indexOf(os) > -1) {
 let index = split.indexOf(os);
 split.splice(index, 1);
 } else {
 split.push(os);
 }

 if (split.length) {
 let joined = split.join("|");
 query.os = joined;
 } else {
 delete query.os;
 }

 this.$router.push({ query: query });
}

And, finally, the following are the clearFeatures and filterFeature methods:

clearFeatures() {
 if (this.features.length) {
 let query = Object.assign({}, this.$route.query);
 delete query.features;

 this.$router.push({ query: query });
 }
},
filterFeature(feature) {
 let query = Object.assign({}, this.$route.query);
 let split = query.features ? query.features.split("|") : [];

 if (split.indexOf(feature) > -1) {
 let index = split.indexOf(feature);
 split.splice(index, 1);
 } else {
 split.push(feature);
 }

 if (split.length) {
 let joined = split.join("|");
 query.features = joined;
 } else {
 delete query.features;
 }

 this.$router.push({ query: query });
}

 Styling the filters component

With these methods in place, our script block is complete. To finish this component off, we have some basic styles to complement the default Bootstrap styling:

<style lang="scss" scoped>
.filter-item {
 margin: 10px 0;
 border: 1px solid #ccc;
 border-radius: 5px;
 padding: 10px;
 text-align: center;
 cursor: pointer;

 &.active {
 font-weight: bold;
 color: #17a2b8;
 border-color: #17a2b8;
 }
}

.slider {
 padding: 35px 0 10px 10px;
}
</style>

 Adding the filters component to the catalog page

We now have the capability of pushing our filter selections into the URL query string, and reacting to the changes to highlight the selected items using CSS. However, we're not actually displaying our filter component anywhere, let alone using the selected filters in an API call to the server. To tie everything together, we need to make some changes in the ClientApp/pages/Catalogue.vue file.

 Updating the catalog page template

We need to start by updating the template section to look like this:

<template>
 <b-container fluid class="page">
 <b-row>
 <b-col cols="3">
 <filters :filters="filters" />
 </b-col>
 <b-col cols="9">
 <product-list :products="products" />
 </b-col>
 </b-row>
 </b-container>
</template>

Instead of a standard div element, we're now wrapping this template in a bootstrap fluid container which will make use of the full width of the screen. We then define a row with two columns: one for our new filters component, which is allocated a quarter of the screen width, and one for the existing product list component, which is allocated the other three quarters. We already know that the filters component has a required filters prop, so we are passing in an object that we will see defined in a moment.

 Adding the catalog page filter behavior

In the script section, we first need to import both axios and our newly created filters component:

import axios from "axios";

import Filters from "../components/catalogue/Filters.vue";

Next, we update the components object to register the filters component so that we can make use of it:

components: {
 Filters,
 ProductList
}

We then need to update the object returned from the data() function to include the filters object that we are passing into the filters component:

data() {
 return {
 products: [],
 filters: {
 brands: [],
 capacity: [],
 colours: [],
 os: [],
 features: []
 }
 };
}

Then we update the setData method to set this property following a successful API call:

methods: {
 setData(products, filters) {
 this.products = products;
 this.filters = filters;
 }
}

Finally, we need to update the beforeRouteEnter hook, as well as add an additional beforeRouteUpdate hook. We are currently still using isomorphic-fetch, and need to replace it with axios. We also need to perform an additional API call to fetch the filter items we are passing into the setData method. The updated beforeRouteEnter hook looks like this:

beforeRouteEnter(to, from, next) {
 axios
 .all([
 axios.get("/api/products", { params: to.query }),
 axios.get("/api/filters")
])
 .then(
 axios.spread((products, filters) => {
 next(vm => vm.setData(products.data, filters.data));
 })
);
}

This is where we see the benefits of using axios over isomorphic-fetch. When we have multiple API calls to make at once, like we do here, we can make use of the axios.all() function to kick off multiple requests at once. Furthermore, this still returns a single JavaScript promise, which will not resolve until all of the API requests have completed. If you aren't familiar with JavaScript promises, this simply means that the preceding .then() function will not be called until both API calls have returned. When they do, we must make use of the axios.spread() function to process the results of both API calls simultaneously. If we had a third or fourth API call to make, the spread function here would receive an additional parameter for each of them, too. In this instance, we just have the two: a products parameter containing the response from the products request, and a filters parameter containing the response from the filters request. We pass the data property from each of these parameters into our setData method, which binds the data onto the component state to be rendered into the UI.

Axios.all is very similar to using Promise.all, except the axios version is cross-browser compatible out of the box, without the need for a polyfill in older browsers such as IE11.

The final thing to note in this hook is the way we pass the current query parameters into the URL for the products API request. With the axios.get() function, we can pass an optional second argument, which must be an object. One of the properties this object can contain is the params property, which is yet another object that represents the query string parameters we want to pass to the request. Because of this params property, it is a simple case of assigning the to.query object, which contains all of the selected filter items that we've been pushing onto the URL from the filters component. This means that, when we select a couple of brands in the brands filter, we end up with a URL that looks like http://localhost:5000/products?brands=Acme%7CSoylent.

If we then open up Chrome DevTools, flip over to the network tab, and refresh the page, we can see that an API call is triggered with the following URL: http://localhost:5000/api/products?brands=Acme%7CSoylent.

The vue-router and axios libraries work perfectly with one another to quickly and easily map object-based representations of query string parameters onto the URLs of API requests and client-side routing requests alike. If we were still using isomorphic-fetch, we'd have to manually build up the query string instead.

The final piece to put in place is the new beforeRouteUpdate hook, which will look like this:

beforeRouteUpdate(to, from, next) {
 axios.get("/api/products", { params: to.query }).then(response => {
 this.products = response.data;
 next();
 });
}

This is pretty similar to the preceding beforeRouteEnter hook, except we only have a single API request to trigger, so there is no need to use the axios.all() or axios.spread() functions. This hook will get fired every time we make a change to the URL for this page. In other words, every time the user interacts with our filter components, or clicks the reset button, we push a new query object to the URL, which will cause this function to be invoked. Therefore, we can use this function to make a new API request for a list of products that match the current filter selections. As soon as we hit the this.products = response.data; line, Vue detects the change and propagates it down through our component tree, refreshing the UI and displaying the new list or products as it goes.

Currently, our API call to the /api/filters route will fail, as we have not yet created the controller that will serve it. To fix this, add a new Features/Filters/Controller.cs file, add a private readonly EcommerceContext _db; property as we've done before, and add the following action method:

[HttpGet]
public async Task<IActionResult> Get()
{
 var brands = await _db.Brands
 .Select(x => x.Name)
 .ToListAsync();

 var storage = await _db.Storage
 .Select(x => x.Capacity)
 .ToListAsync();

 var colours = await _db.Colours
 .Select(x => x.Name)
 .ToListAsync();

 var os = await _db.OS
 .Select(x => x.Name)
 .ToListAsync();

 var features = await _db.Features
 .Select(x => x.Name)
 .ToListAsync();

 return Ok(new FiltersListViewModel
 {
 Brands = brands,
 Storage = storage,
 Colours = colours,
 OS = os,
 Features = features
 });
}

Nothing too complicated here; we simply query the database for all of the filter options we need to allow our customers to select from, then combine them into a single view model, which we return in an Ok result. This view model belongs in the Features/Filters/FiltersListViewModel.cs file, and looks like this:

namespace ECommerce.Features.Filters
{
 public class FiltersListViewModel
 {
 public IEnumerable<string> Brands { get; set; }
 public IEnumerable<string> Storage { get; set; }
 public IEnumerable<string> Colours { get; set; }
 public IEnumerable<string> OS { get; set; }
 public IEnumerable<string> Features { get; set; }
 }
}

 Tidying up our existing components

We are very nearly ready to boot the application and test that everything is working as expected, but we just have a few more very minor changes to make. First of all, we need to utilize axios on the ClientApp/pages/Product.vue API call, then make some very subtle changes to a couple of component templates now that we're using a full-width container on the catalog page.

Open up ClientApp/pages/Product.vue and make the following changes:

	Add an import line for axios at the top of the script section:

import axios from "axios";

	 Update the beforeRouteEnter hook as follows:

beforeRouteEnter(to, from, next) {
 axios.get(`/api/products/${to.params.slug}`).then(response => {
 next(vm => vm.setData(response.data));
 });
}

	Add a v-if directive to the product details component declaration in the template section:

<template>
 <div class="page">
 <product-details v-if="product" :product="product" />
 </div>
</template>

Step 3 isn't crucial, but it does prevent some warnings being thrown in the browser console. Next, open up ClientApp/components/catalogue/ProductList.vue and update the template section to look like this:

<template>
 <div class="products">
 <b-row class="mt-4">
 <b-col class="mb-4" sm="6" v-for="product in products"
 :key="product.id">
 <b-media class="product">
 <img slot="aside" :src="product.thumbnail"
 :alt="product.name" @click="view(product)" />

 <h2 class="mt-2" @click="view(product)">{{ product.name }}
 </h2>

 <p class="mt-4 mb-4">
 {{ product.shortDescription }}
 </p>

 <p class="mt-4 mb-4">Prices from £{{ product.price }}</p>

 <b-button variant="primary">Add to cart</b-button>
 </b-media>
 </b-col>
 </b-row>
 </div>
</template>

All we've done is remove the title and container, then add a Prices from £ prefix to the price, seeing as we now have different prices based on which variant is selected.

Finally, open up ClientApp/components/App.vue and remove the <b-container> component from the template section. After doing so, it should look like this:

<template>
 <div class="app">
 <b-navbar toggleable="md" type="dark" variant="dark">
 <b-navbar-toggle target="nav_collapse"></b-navbar-toggle>
 <b-navbar-brand to="/">PhoneShop</b-navbar-brand>
 <b-collapse is-nav id="nav_collapse">
 <b-navbar-nav>
 <b-nav-item to="/products">Products</b-nav-item>
 </b-navbar-nav>
 </b-collapse>
 </b-navbar>

 <transition name="fade" mode="out-in">
 <router-view />
 </transition>
 </div>
</template>

We no longer need an app-wide container, seeing as we are specifying the container width on a page-by-page basis. For example, the catalog page is using 100% of the available screen width, whereas the product page is constrained to a maximum width.

 Testing the completed filtering logic

We have now finished making all of the changes necessary for catalog filtering, so, if you haven't done so already, start up the application and give everything a test to make sure it's working. Select a few filters and watch the products list update, then refresh the browser and make sure the same results are displayed after the refresh. You can even try selecting a product to go to its details page, then hit the back button in the browser, and you will see your previous filters still intact. Finally, hit the reset button and make sure that the URL is cleared of all filters, and that the product list returns to displaying all products.

 Refactoring the filters component

So, at this point, we have a perfectly acceptable solution for filtering our products, including persisting user selections across page refreshes and supporting the sharing of URLs among our customers. However, as it stands, the filters component is very large and responsible for handling every filter that we provide. There is also a vast amount of code duplication, or at the very least, code that is incredibly similar aside from naming conventions or object properties it relies on. Recall the first chapter, when we talked about UI composition; this is a fairly normal situation to be in, as it is no easy task to plan out a perfect component tree before writing any code. We can certainly make our current solution a lot cleaner and more maintainable if we take the time to refactor it, so let's see what we can do.

 Highlighting duplication in our existing implementation

Glancing over the current ClientApp/components/catalogue/Filters.vue file, most of our filters are based on the concept of selecting multiple values from a list. In the template section, we have quite a lot of repetition where we loop over different lists of filter items and render near enough the same HTML for each. As an example, in the brands filter accordion, we have this:

<b-row slot="body">
 <b-col cols="6">
 <div :class="{ 'filter-item': true,
 'active': brands.length === 0 }" @click="clearBrands">All</div>
 </b-col>
 <b-col cols="6" v-for="item in filters.brands" :key="item">
 <div :class="{ 'filter-item': true,
 'active': brands.indexOf(item) > -1 }" @click="filterBrand(item)">{{ item }}</div>
 </b-col>
</b-row>

Then, slightly lower down, in the colors filter accordion, we have this:

<b-row slot="body">
 <b-col cols="6">
 <div :class="{ 'filter-item': true, 'active': colours.length === 0
 }" @click="clearColours">All</div>
 </b-col>
 <b-col cols="6" v-for="item in filters.colours" :key="item">
 <div :class="{ 'filter-item': true, 'active': colours.indexOf(item)
 > -1 }" @click="filterColour(item)">{{ item }}</div>
 </b-col>
</b-row>

The only differences between these two template sections is the filters property we loop over for the items, the property we check for class binding, and the names of the methods we call to manipulate the query object. It would be much nicer if we could have something like this instead:

<multi-select-filter slot="body" :items="filters.brands" />

<multi-select-filter slot="body" :items="filters.colours" />

We can then reuse this element elsewhere in this component, passing different filter items depending on which filter accordion we are in.

 Extracting a common multi-select filter component

The first step in refactoring to extract a new component is to scaffold a new empty component. Create a ClientApp/components/catalogue/MultiSelectFilter.vue file and give it a template section that looks like this:

<template>
 <b-row>
 <b-col cols="6">
 <div :class="{ 'filter-item': true,
 'active': selected.length === 0 }" @click="clear">All</div>
 </b-col>
 <b-col cols="6" v-for="item in items" :key="item">
 <div :class="{ 'filter-item': true, 'active':
 selected.indexOf(item) > -1 }"
 @click="filter(item)">{{ item }}</div>
 </b-col>
 </b-row>
</template>

Note how similar this is to both of the template sections we just evaluated previously. All we've done is take a direct copy of that HTML, then tweaked some of the naming conventions to make them more generic. After all, this is going to be a reusable component rather than one specific to a type of filter, so there is no point in having variables with names such as brands or colors. Instead, we simply have items for the list we want to loop over, and selected for the computed property that maps to the URL query parameters containing our selected options.

Next, we need to add a script block to define the logic of the component:

<script>
export default {
 name: "multi-select-filter",
 props: {
 // props omitted for brevity...
 },
 computed: {
 // computed omitted for brevity...
 },
 methods: {
 // methods omitted for brevity...
 }
};
</script>

Based on the existing filters component, we know that each of our filters relies on a computed property and a couple of methods to manipulate the query object, so we've stubbed out those sections here ready for our generic implementations. We also know we'll need to pass in some data via props, so we've added that section ready as well.

Let's start with the computed section, whereby in this case I've copied the brands computed property directly from the filters component:

computed: {
 brands() {
 return this.$route.query.brands || "";
 }
}

Again, this is no good in a generic reusable component, as we are accessing a specific property from the query object. We need a way of accessing a different property depending on which filter is being rendered, which of course is another use case for props. But how do we access a JavaScript object property when we don't know what it's called until runtime? It's actually pretty easy:

return this.$route.query[“brands”] || "";

Accessing JavaScript object properties based on their name can also be done using a similar syntax to accessing a specific index in an array—$route.query[“brands”] is the same as $route.query.brands. This enables us to pass a string directly in here to access a different property based on a string prop from the calling component. The updated computed property looks like this:

computed: {
 selected() {
 return this.$route.query[this.queryKey] || "";
 }
}

We're now expecting a queryKey prop, and we've renamed the computed property to make it generic. Next, we need our two methods for manipulating the query object, starting with a generic clear method:

clear() {
 if (this.selected.length) {
 let query = Object.assign({}, this.$route.query);
 delete query[this.queryKey];

 this.$router.push({ query: query });
 }
}

Again, I copied and pasted one of the clear methods from the filters component, then generalized it by changing the name, accessing the new selected property, and making use of the queryKey prop to determine which key to delete from the query object. We can do a very similar thing with the filter method:

filter(item) {
 let query = Object.assign({}, this.$route.query);
 let split = query[this.queryKey] ?
 query[this.queryKey].split("|") : [];

 if (split.indexOf(item) > -1) {
 let index = split.indexOf(item);
 split.splice(index, 1);
 } else {
 split.push(item);
 }

 if (split.length) {
 let joined = split.join("|");
 query[this.queryKey] = joined;
 } else {
 delete query[this.queryKey];
 }

 this.$router.push({ query: query });
}

Nothing new here, really; we've made the method name and argument name more generic, and made use of the queryKey prop again to decide which query object properties to manipulate. The last piece to add is the props section, which looks like this:

props: {
 queryKey: {
 type: String,
 required: true
 },
 items: {
 type: Array,
 required: true
 }
}

We're declaring two required props, the queryKey string prop which we've already seen used, but also the items array which we're now looping over to render the filter items our users can select from. Finally, we can add the following style block to complete this component:

<style lang="scss" scoped>
.filter-item {
 margin: 10px 0;
 border: 1px solid #ccc;
 border-radius: 5px;
 padding: 10px;
 text-align: center;
 cursor: pointer;

 &.active {
 font-weight: bold;
 color: #17a2b8;
 border-color: #17a2b8;
 }
}
</style>

This is taken directly from the filters component, from which we will delete these styles later as they are no longer relevant.

 Extracting a common range filter component

This generic component will now work for all of the multi-select filters, drastically reducing how much code we need in the filters component. However, we still have some duplication in the numeric slider-based filters, so let's fix that up first. Create a ClientApp/components/catalogue/RangeFilter.vue file with a template section that looks like this:

<template>
 <div class="slider">
 <vue-slider
 :value="value"
 :formatter="formatter"
 :min="min"
 :max="max"
 :interval="interval || 1"
 :lazy=true
 width="90%"
 @callback="filter">
 </vue-slider>
 </div>
</template>

Essentially, this is another direct copy from the filters component, but we are now basing the props that we pass down into the slider component on the props that we receive into this component. The only exception is the interval prop, where we default to 1 if no value is passed to this optional prop.

The script section looks like this:

<script>
import vueSlider from "vue-slider-component";

export default {
 name: "range-filter",
 components: {
 vueSlider
 },
 props: {
 // props omitted for brevity...
 },
 computed: {
 // computed omitted for brevity...
 },
 methods: {
 // methods omitted for brevity...
 }
};
</script>

We start by importing the vue-slider component, and then scaffold another standard component definition including the slider as a child component. We need quite a few props on this component, but most of them simply map directly to the props required by the slider:

props: {
 min: {
 type: Number,
 required: true
 },
 max: {
 type: Number,
 required: true
 },
 interval: {
 type: Number
 },
 formatter: {
 type: String,
 required: true
 },
 minQueryKey: {
 type: String,
 required: true
 },
 maxQueryKey: {
 type: String,
 required: true
 }
}

The only exceptions are minQueryKey and maxQueryKey. You can probably already guess what these are for, but, like we did earlier, we're just passing in the query object keys we want to manipulate inside this component. The difference is that we need two of them, as this is a range slider with two values to push to the URL.

Like we did previously, I've generalized the name of the computed property:

computed: {
 value() {
 return [
 this.$route.query[this.minQueryKey] || this.min,
 this.$route.query[this.maxQueryKey] || this.max
];
 }
}

I've also generalized the name of the method and its arguments:

methods: {
 filter(values) {
 let query = Object.assign({}, this.$route.query);
 query[this.minQueryKey] = values[0];
 query[this.maxQueryKey] = values[1];

 this.$router.push({ query: query });
 }
}

To finish this component, add the following style block at the bottom:

<style lang="scss" scoped>
.slider {
 padding: 35px 0 10px 10px;
}
</style>

And there we have it: a generic range filter component that can replace the remainder of the duplicated code inside the filters component.

 Rendering the new multi-select and range filter components

The final step is to now update the ClientApp/components/catalogue/Filters.vue file to make use of these two new components, and remove any obsolete code.

In the template section, we need to make a few changes, starting by updating the brand filter accordion section to look like this:

<filter-accordion>
 Brand
 <multi-select-filter slot="body" query-key="brands" :items="filters.brands" />
</filter-accordion>

Then, update the price filter accordion to look like this:

<filter-accordion>
 Price
 <range-filter slot="body"
 :min=0
 :max=1000
 :interval=50
 formatter="£{value}"
 min-query-key="minPrice"
 max-query-key="maxPrice"
 />
</filter-accordion>

And, similarly, the screen size filter accordion should look like this:

<filter-accordion>
 Screen size
 <range-filter slot="body"
 :min=0
 :max=7
 formatter="{value} in"
 min-query-key="minScreen"
 max-query-key="maxScreen"
 />
</filter-accordion>

Finally, update the capacity, colour, operating system, and feature filter accordions to look like this:

<filter-accordion>
 Capacity
 <multi-select-filter slot="body" query-key="capacity" :items="filters.storage" />
</filter-accordion>
<filter-accordion>
 Colour
 <multi-select-filter slot="body" query-key="colours" :items="filters.colours" />
</filter-accordion>
<filter-accordion>
 Operating system
 <multi-select-filter slot="body" query-key="os"
 :items="filters.os" />
</filter-accordion>
<filter-accordion>
 Features
 <multi-select-filter slot="body" query-key="features" :items="filters.features" />
</filter-accordion>

Don't run the application just yet, as we still need to import these new components into the script block, as well as remove a whole load of obsolete methods and computed properties. Take a look at how long the script section is currently, because it's about to be reduced to this:

<script>
import FilterAccordion from "./FilterAccordion.vue";
import MultiSelectFilter from "./MultiSelectFilter.vue";
import RangeFilter from "./RangeFilter.vue";

export default {
 name: "filters",
 props: {
 filters: {
 type: Object,
 required: true
 }
 },
 components: {
 FilterAccordion,
 MultiSelectFilter,
 RangeFilter
 },
 methods: {
 reset() {
 this.$router.push({ query: {} });
 }
 }
};
</script>

We no longer need to import or declare the vue-slider component as a child, because the new RangeFilter component now takes that responsibility. Instead, we import the two new components we just created and declare them inside the components block. We've then removed the computed section entirely, and trimmed the methods section right down to a single reset method. Finally, we can remove the style block entirely, as those styles now belong in their respective child components style block.

 Testing that everything still works

At this point, our refactoring is complete, and if you start the app again now, it should be fully functioning as before. However, if you open your browser devtools, you'll likely see a Vue warning about a required prop being undefined. This is because there is a very brief time after our page-level API call returns where the filters property still has its default empty array values, which are being passed down into one of the new components we just created. To prevent this warning, open up the ClientApp/pages/Catalogue.vue file and modify the template section as follows:

<template>
 <b-container fluid class="page">
 <b-row>
 <b-col cols="3">
 <filters v-if="filters.brands.length" :filters="filters" />
 </b-col>
 <b-col cols="9">
 <product-list :products="products" />
 </b-col>
 </b-row>
 </b-container>
</template>

All we've done is add a v-if directive on the filters component, instructing it not to display until we have some items in filters object brands array.

And there we have it: fully functioning catalog filters using nice, clean, reusable components to minimize how much duplication we have.

 Client-side sorting

Most product catalogs won't just contain ways of filtering their product list, but also ways of sorting it as well. Luckily for us, the sorting side is a lot simpler than the filtering side. We're going to add a very simple sort component that follows the same theme of pushing the user's selected value into the URL query object. We'll then make sure our product list abides by the selected sort property and direction using computed properties.

 Building a sort component

Start by creating a ClientApp/components/catalogue/ProductSort.vue file, and add a template section with the following content:

<template>
 <div>
 Sort by
 <b-dropdown class="dropdown" right :text="items[selected]">
 <b-dropdown-item v-for="(item, index) in items" :key="index"
 @click="select(index)">{{ item }}</b-dropdown-item>
 </b-dropdown>
 </div>
</template>

It should be fairly easy to work out what we're doing here, but essentially we're just displaying a label and a drop-down element side by side. As this is a custom drop-down component rather than a standard select box, we're binding the text property to a value from an array named items. We're also looping over that same array to render out the drop-down items, and attaching a click handler to fire a select method based on the item being selected.

Scaffold out a standard component definition and add the following data() function:

data() {
 return {
 items: [
 "Cost (Low to high)",
 "Cost (High to low)",
 "Name (A - Z)",
 "Name (Z - A)"
]
 };
}

The only local component state we need here is the list of items to choose from, which we're keeping simple and only allowing price and name sorting in both ascending and descending directions.

As previously mentioned, we're going to be pushing the selected sort index into the URL query object so that we can maintain the selection after a page change, so add a computed object like this:

computed: {
 selected() {
 return this.$route.query.sort || 0;
 }
}

Now, we could push some kind of string value to make it more obvious what it is at a glance, but, for the purposes of this demo application, we'll keep it simple and just use the numeric index of the selected array item instead. Finally, add a methods object with a single select method like so:

methods: {
 select(index) {
 if (index === 0) {
 let query = Object.assign({}, this.$route.query);
 delete query.sort;

 this.$router.push({ query: query });
 } else {
 let query = Object.assign({}, this.$route.query);
 query.sort = index;

 this.$router.push({ query: query });
 }
 }
}

This is incredibly similar to the filter logic we've already seen, so we don't need to say too much. The index argument to this method is the numeric index of the array item the user just selected. All we do is either push it to the current URL query object using the same clone technique we've seen before, or, if the index is the first item in the array, we remove the sort property altogether, as the default sort values will take effect if we don't provide one.

To complete this component, add the following style block:

<style lang="scss" scoped>
.label,
.dropdown {
 vertical-align: middle;
}
</style>

This is a very simple style just to align the label with the middle of the drop-down box next to it.

 Adding the sort component to the catalog page

With the sorting component in place, we need to add it to the catalog page to make use of it. Open up the ClientApp/pages/Catalogue.vue file and insert the following HTML elements into the template section just above where we're already rendering the product list component:

<div class="mt-4 clearfix">
 <product-sort class="float-right" />
</div>

Next, in the script block, we need to add an import statement at the top to import our new component:

import ProductSort from "../components/catalogue/ProductSort.vue";

Next, we add the component declaration to the components object:

components: {
 Filters,
 ProductSort,
 ProductList
}

We now need to create two computed properties: one for listening to the sort property on the URL query object, and one to filter the product list based on that sort property. Add the following computed object to your component:

computed: {
 sort() {
 return this.$route.query.sort || 0;
 },
 sortedProducts() {
 switch (this.sort) {
 case 1:
 return this.products.sort((a, b) => {
 return b.price > a.price;
 });
 break;
 case 2:
 return this.products.sort((a, b) => {
 return a.name > b.name;
 });
 break;
 case 3:
 return this.products.sort((a, b) => {
 return b.name > a.name;
 });
 break;
 default:
 return this.products.sort((a, b) => {
 return a.price > b.price;
 });
 }
 }
}

The first of these computed properties is very simple, and exactly like those we've seen before which look for a specific property in the URL query object, but have a default value if it does not exist. However, the sortedProducts property is a little more involved. We're defining a switch statement based on the previously discussed sort computed property, then, depending on the value, we use a standard JavaScript Array.sort() function to sort the products array and return a new version of it. The default option in this switch statement corresponds to the "Cost (High to low)" sort value, and has the following logic:

return this.products.sort((a, b) => {
 return a.price > b.price;
});

The JavaScript Array.sort() function receives two arguments representing the two objects that are about to be compared. In this case, we simply compare the price values, but we could make this comparison based on any of the properties on our ProductListViewModel.

To finish wiring things up, we need to bind the product list component onto this newly computed property rather than the original products array:

<product-list v-if="products.length" :products="sortedProducts" />

After doing so, the final template section will look like this:

<template>
 <b-container fluid class="page">
 <b-row>
 <b-col cols="3">
 <filters v-if="products.length" :filters="filters" />
 </b-col>
 <b-col cols="9">
 <div class="clearfix">
 <product-sort />
 </div>
 <product-list v-if="products.length"
 :products="sortedProducts" />
 </b-col>
 </b-row>
 </b-container>
</template>

Run the application again now and check that everything is all working as expected.

 Creating a search bar component

To finish off our product catalog, we're going to add a basic search bar to give our users even more control over the product list they're browsing. Let's start by creating a new component named SearchBar.vue in the ClientApp/components/catalogue directory. The template section for this component is very simple:

<template>
 <div>
 <b-form-input
 :value="query"
 type="text"
 placeholder="Search..."
 @change="update"
 @keyup.enter.native="search">
 </b-form-input>
 </div>
</template>

All we're rendering is a text input field, with a few standard attributes such as a placeholder of "Search…". However, usually, we would use the v-model directive on text inputs, so why are we binding the value of the text input here instead? In order to transport whatever the user types into this search box to the server for processing, we'll need to push the value into the URL query object again. As such, we'll also want the search box value to persist if the user refreshes the page or navigates away to a product details page and back again. If we were to use a standard local component state variable and the v-model directive, we would not be able to achieve this goal without persisting to the browser's local storage. Instead, we bind the initial value of the text input to a property called query, which, as we'll see shortly is a computed property that is bound to a URL query object property. We then attach the @change event handler to the input, which calls a method called update—we'll see what this does in a moment. Finally, we also attach a second event handler, which fires on the keyup event of the Enter keyboard key, and calls a search method.

The script block of this component looks like this:

<script>
export default {
 name: "search-bar",
 data() {
 return {
 value: ""
 };
 },
 computed: {
 query() {
 return this.$route.query.q || "";
 }
 },
 methods: {
 update(newVal) {
 this.value = newVal;
 },
 search() {
 let query = Object.assign({}, this.$route.query);

 if (this.value.trim()) {
 query.q = this.value;
 } else {
 delete query.q;
 }

 this.$router.push({ query: query });
 }
 }
};
</script>

We're defining a local component state variable called value and initializing it with an empty string, as well as the query computed property which should look pretty familiar to you by now. The update method is the one which is fired every time the input changes value, and receives the new value as an argument which we simply assign to our local value variable. Finally, when the user hits the Enter key, the search method is invoked. Here, we do our usual trick of cloning the current URL query object before either pushing our search query onto it, or removing it if the text input is currently empty.

There are no styles for this component, so all we need to do now is import it and render it into the ClientApp/pages/Catalogue.vue file. Look at the template section and find the part that looks like this:

<div class="clearfix">
 <product-sort />
</div>
<product-list :products="sortedProducts" />

Now, update it to look like this:

<div class="mt-4 flex">
 <search-bar class="search" />
 <product-sort class="ml-4" />
</div>
<product-list :products="sortedProducts" />

It is important to note the class changes on the wrapping div element around the search bar and sort components. In a moment, we're going to add some CSS styles that display these components nicely side by side, with the search bar expanding to fill any remaining space.

In the script section, import the new SearchBar component and register it in the components object:

import SearchBar from "../components/catalogue/SearchBar.vue";

components: {
 Filters,
 SearchBar,
 ProductSort,
 ProductList
}

Finally, add the following flexbox-based CSS styles to position things nicely:

<style lang="scss" scoped>
.flex {
 display: flex;
 flex-direction: row;

 .search {
 flex: 1;
 }
}
</style>

At this point, you can run the application, type something in the search bar, and press the Enter key. Note how the URL changes, and if you refresh the page, the search bar will populate from your previously entered value in the query object. Similarly, if you hit the reset button, the search bar will be cleared. This is great, but as yet we aren't honoring the search query in our API calls on the server. Open the Features/Products/Controller.cs file and update the Find action declaration to include an additional q string parameter:

public async Task<IActionResult> Find(string q, string brands, int? minPrice, int? maxPrice, int? minScreen, int? maxScreen, string capacity, string colours, string os, string features)

Next, create a new string variable at the top of the method, above the existing filter variables:

var Query = $"%{q?.ToLower()}%";

We'll see what this is for in a moment, but the important part is the new null-conditional check, which prevents this line throwing an error if we don't provide a search term. Finally, add an additional LINQ Where clause to the top of the products query:

.Where(x =>
 string.IsNullOrEmpty(q) ||
 (
 EF.Functions.Like(x.Name.ToLower(), Query) ||
 EF.Functions.Like(x.ShortDescription.ToLower(), Query) ||
 EF.Functions.Like(x.Description.ToLower(), Query) ||
 EF.Functions.Like(x.Brand.Name.ToLower(), Query) ||
 EF.Functions.Like(x.OS.Name.ToLower(), Query) ||
 x.ProductFeatures.Any(f =>
 EF.Functions.Like(f.Feature.Name.ToLower(), Query)
)
)
)

Here, we check if the search query is empty, and if it is then we ignore the rest of this expression and move on. If it isn't empty, we use the variable we just created as an argument to the EF.Functions.Like() method. As the name suggests, this is one of the new features added in EF Core 2.0 and it allows us to use native SQL like statements directly in our data access code. In a native SQL query, we can use % characters either before, after, or before and after a piece of text to see if a column starts with, ends with, or contains the text we are looking for. This concept is exactly the same in the EF.Functions.Like() method, which is why we've declared our search query variable in the way that we have:

$"%{q?.ToLower()}%";

All we want to know is if either the product name, short or long description, brand name, operating system name, or any of its feature names contain the text that the user has searched for.

If you rerun the application now, everything should be working. Filtering, sorting, and searching should all be controlled via the URL query object.

 Triggering API requests using watchers

The last thing we are going to do with our product catalog is configure the search bar to react to the user's input in real time, without waiting for them to press the Enter key. To achieve this, we only need to make a couple of quick and simple changes, but it provides a nice UX for our users. Open the ClientApp/components/catalogue/SearchBar.vue file that we just created. The first thing we need to do is change the @change event handler on the input to an @input event handler instead:

<b-form-input
 :value="query"
 type="text"
 placeholder="Search..."
 @input="update"
 @keyup.enter.native="search">
</b-form-input>

The @change event handler only fires as the user navigates away from the input, or when they hit the Enter key while it's focused. Either way, we need our update method to be fired as soon as the user enters some text into the box so that we have access to that text straight away. The @input event handler fulfills this need as it fires on every keypress.

The only other change we need to add is a watch object at the bottom of the component:

watch: {
 value(newValue) {
 this.search();
 }
}

Recall Chapter 1, Understanding the Fundamentals, any function defined inside the watch object uses the function name as a convention for the data property it is watching for changes on. In this instance, with a function named value, we are watching the value data property, which now gets updated immediately after a user enters a value in the search box. We already have the search method defined, which takes the search value and pushes it to the URL query object, which in turn fires the API request to the server. Therefore, all we need to do when the search box value changes is to call the search method and leave it to do its thing.

 Debouncing API requests to limit how often they fire

As you can probably imagine already, with the current implementation, we are going to be making a vast amount of requests to the server, seeing as every key press invokes the search method. A better approach would be to debounce the requests to limit how often they actually fire. To do so, we'll install an npm package called lodash, which is a JavaScript utility library that provides some incredibly useful functions to save us the time of writing them ourselves.

Open a Terminal and run the following command:

yarn add lodash

Next, still in the search bar component, import lodash at the top of the script block:

import _ from "lodash";

Then, finally, update the existing search method to look like this:

search: _.debounce(function() {
 let query = Object.assign({}, this.$route.query);

 if (this.value.trim()) {
 query.q = this.value;
 } else {
 delete query.q;
 }

 this.$router.push({ query: query });
}, 500)

This may look a little strange at first, but all we've done is wrap our existing function with the debounce function from lodash, specifying a delay of 500 milliseconds. Now, when the user first types something into the search box, there will be a delay of half a second before the API request triggers, and, if they keep typing beyond that period, the API request will only ever fire twice every second at most.

 Summary

This has been by far the longest and most complex chapter yet, and we've covered an awful lot of ground. Let's have a quick recap before moving on to building a shopping cart.

We started out by installing and configuring some additional dependencies in order to add some styles to the existing application. We also looked at the difference between fetching data before and after navigation occurs, before refactoring our current pages to pre-fetch their data. To round off the UX improvements, we added a page-level loading indicator between page changes, as well as a nice fade transition to make things smoother.

We then dropped back to the server side of the application and extended our existing data model to include a number of additional entities and model properties to support our needs of filtering and sorting the product list. We also created a whole load of fake product seed data to start us off.

Sticking to the server side initially, we added support for filtering the product list based on a number of different product attributes such as brand, color, and price. Moving over to the client side, we built a custom accordion component to house our individual filters, before creating the actual filters themselves along with all of the logic that goes with them. We talked about the different ways we could store the selected filter items, but settled on pushing everything into the URL query object for the benefits it provides of state persistence and accessibility for our users wanting to share their search results with others. We saw a lot of duplication with our initial approach, so we looked at how we could refactor and extract common functionality into new and reusable components, drastically reducing the complexity and the amount of code in some of our existing components.

Next, we added simple sort and search bar components to finish off the standard functionality that we would expect from most e-commerce product catalogs. We carried on the existing trend and made the decision to push the sort field and search query text into the URL query object as well, meaning the entire catalog state can be reset with the click of a single button.

Finally, we added a Vue watch function to configure our search bar to respond to the user's input in real time, triggering API requests on every keypress. We decided that this wasn't the best approach, and installed the lodash utility library so that we could make use of its debounce function in order to limit the API requests to one every half a second.

In the next chapter, we'll spend some time finishing off the product details page with an image gallery and variant selection drop-down menus. This will prepare us to move on to the main focus of the chapter—building out a fully featured shopping cart for our users to begin the process of placing an order.

 Building a Shopping Cart

With the product catalog complete, it's time to build a shopping cart so that our customers can store the products they intend to purchase. There are a number of ways we can decide to implement a shopping cart, so we'll start by evaluating these options before we start building one. In summary, the topics we'll cover in this chapter are as follows:

	Installing and configuring Vuex for client-side state management

	Vuex actions, mutations, and getters

	Binding component state to a centralized Vuex store

	Creating custom filters

	Persisting state to local storage

	Providing feedback with toast messages

 Evaluating our options

Before we can start building a shopping cart, we need to decide how we're going to do it. We have a number of options available to us, each with their own respective pros and cons. We need a way of storing selected products somewhere until the user is ready to complete their purchase and we can persist their order in the database. Without including any additional technologies in our stack, we have three main options to choose from—one of which is client-side only, and the other two require API calls to the server.

 Persisting to the database

Persisting to the database is probably the most obvious option, but is also the most complicated. On the face of it all, what we need to do is add a couple of new tables for shopping carts and associated cart items, and provide the API endpoints necessary to store and retrieve the data in those tables. However, generally speaking, most e-commerce websites do not force users to create an account before adding items to their cart, and as such, how do we identify which cart in the database we want to retrieve for a specific user?

This is by no means an insurmountable problem, but it does require adding additional complexity to our application, and so we should try and avoid it unless there is a significant benefit to going down this route. The solution would be to provide unauthenticated users with an anonymous user ID, most likely a GUID to ensure uniqueness, and link the shopping cart to that ID. We'd then need to return this ID to the client so that it can use it later to identify the shopping cart that belongs to the user who stored it. We could either use a cookie or local storage to store this ID, but as it stands we're not using cookies for any other purpose, so it would make more sense to use local storage instead.

The main benefit of storing shopping cart data in the database is for reporting purposes. If we only store cart data on the client side of our application, we have no knowledge of it and as such cannot report on it. If this is an important factor for your application, then it is certainly worth exploring this approach in more detail for your own use case. However, for the sample application in this book, we have no requirement for reporting, and as such the overhead of managing anonymous user IDs and making additional API requests is not worth it.

 Persisting to session state

The next approach we could follow still requires a round trip to the server, but does not require any changes to our current database structure. Rather than pushing shopping carts into database tables, we could store them in session state instead. This approach does reduce the complexity of the previous option, as we have no need to try and provide IDs for unauthenticated users. Session state is automatically associated with a cookie, which gets stored on the user's computer by the web browser.

However, this approach forces us to introduce session state and cookies to our application, which breaks the stateless nature of our current API setup. The configuration involved with setting up session state is also more tricky than you would expect. You are likely to find problems with AJAX requests having different session ID values for subsequent requests, meaning previously stored session data is lost. Combine this with the overhead of needing to perform API requests to store and retrieve shopping cart data, and this approach simply isn't worth the additional complexity and setup time. Session state is also time limited, meaning it will only exist for a short period of time—usually around 30 minutes or so. It would be pretty frustrating for our customers to spend hours browsing our catalog and filling their shopping cart, only to have their items discarded because their session timed out before they could finish the checkout process.

 Persisting to local storage

Finally, we could avoid involving the server at all and simply persist shopping cart data into local storage within the user's browser. This approach is by far the simplest to implement, and only has a couple of minor downsides. Firstly, users are able to clear their browser cache, which could potentially delete their cart data from local storage depending on the settings they choose. However, the same issue applies to both of the previously discussed options, which use either cookies or local storage for one reason or another. Secondly, we cannot report on the shopping cart data unless users actually proceed to the checkout and place an order. As reporting is not a concern for this application, we'll keep things simple and make use of local storage.

 Finishing the product details page

Before we can let users add products to their shopping carts, we have some work to do to finish off the product details page. For a start, we have an Add to cart button, which doesn't do anything, and we have no way of determining which product variant to add to the cart even when it does.

Our products also have an array of associated images, which we aren't doing anything with, so let's start off by displaying those on the page before creating a basic image gallery component. The first step is to modify the existing controller action to return a view model for the same reasons as with the product list action. This means we'll need the following new ProductDetailsViewModel.cs class in the Features/Products folder:

namespace ECommerce.Features.Products
{
 public class ProductDetailsViewModel
 {
 public int Id { get; set; }
 public string Slug { get; set; }
 public string Name { get; set; }
 public string ShortDescription { get; set; }
 public string Thumbnail { get; set; }
 public IEnumerable<string> Images { get; set; }
 public IEnumerable<string> Features { get; set; }
 public decimal Price { get; set; }
 public string Description { get; set; }
 public IEnumerable<SelectListItem> Colours { get; set; }
 public IEnumerable<SelectListItem> Storage { get; set; }
 public IEnumerable<ProductVariantViewModel> Variants { get; set; }
 }
}

As you may have spotted already, this class depends on another new class, ProductVariantViewModel.cs, which belongs in the same folder:

namespace ECommerce.Features.Products
{
 public class ProductVariantViewModel
 {
 public int ProductId { get; set; }
 public string Name { get; set; }
 public string Thumbnail { get; set; }
 public int ColourId { get; set; }
 public string Colour { get; set; }
 public int StorageId { get; set; }
 public string Capacity { get; set; }
 public decimal Price { get; set; }
 }
}

We'll see why we need this additional view model shortly. With these in place, we can update the query in the Get action of the Features/Products/Controller.cs controller:

var product = await _db.Products.Select(x => new ProductDetailsViewModel
{
 Id = x.Id,
 Slug = x.Slug,
 Name = x.Name,
 ShortDescription = x.ShortDescription,
 Description = x.Description,
 Price = x.ProductVariants.OrderBy(v => v.Price).First().Price,
 Thumbnail = x.Thumbnail,
 Images = x.Images.Select(i => i.Url),
 Features = x.ProductFeatures.Select(f => f.Feature.Name),
 Colours = x.ProductVariants.Select(v => new SelectListItem
 {
 Value = v.ColourId.ToString(),
 Text = v.Colour.Name
 }).Distinct(),
 Storage = x.ProductVariants.Select(v => new SelectListItem
 {
 Value = v.StorageId.ToString(),
 Text = v.Storage.Capacity.ToString() + "GB"
 }).Distinct(),
 Variants = x.ProductVariants.Select(v => new ProductVariantViewModel
 {
 ProductId = x.Id,
 Name = x.Name,
 Thumbnail = x.Thumbnail,
 ColourId = v.ColourId,
 Colour = v.Colour.Name,
 StorageId = v.StorageId,
 Capacity = $"{v.Storage.Capacity}GB",
 Price = v.Price
 })
})
.FirstOrDefaultAsync(x => x.Slug == slug);

With this in place, we can now make some changes to the template section of the ClientApp/components/product/Details.vue component. First of all, we need a way of returning to the list of products so that it doesn't reset any filters we may have applied. Navigating using the browser's back button does exactly this, but there's also a Products link in the navbar, which will reset the filters if it's used. To encourage our users not to use the link from this page, we'll add the following button as the first element within the existing b-container element (above the existing b-media element):

<b-button variant="outline-secondary" @click.prevent="back">
 <i class="fas fa-arrow-left"></i>
 Back to results
</b-button>

This is a simple use of the b-button component from Bootstrap-Vue, with an @click.prevent event handler attached, which prevents the default action and instead invokes the back method, which we'll define in just a moment. The only other thing to note is another use of the Font Awesome icons library, specifically the fa-arrow-left icon.

Next, we're going to replace the existing b-media element with a b-row element and two nested b-col elements:

<b-row class="pt-4">
 <b-col cols="5">
 // first column
 </b-col>
 <b-col cols="7">
 // second column
 </b-col>
</b-row>

Inside the first column, we're going to display the product images in a grid layout, where the first image fills the full width of this column, and the remaining images are displayed underneath it in rows of three:

<b-row>
 <b-col class="mb-2" v-for="(image, index) in product.images"
 :key="index" :cols="index === 0 ? 12 : 4">
 <img class="img-fluid"
 :src="image"
 :alt="product.name"
 @click="openGallery(index)" />
 </b-col>
</b-row>

We start off with another b-row element, then loop over all of the images in the product.images array and render a b-col element for each one. Rather than specifying a static value for the cols prop, we use the v-bind directive to specify a width of 12 columns if this is the first image in the array, and a width of four columns for the rest. It is then a simple case of rendering a standard img element and binding the src attribute to the image URL in the array, as well as attaching an @click event handler to invoke an openGallery method, which we'll define later.

The second column holds the remainder of the content from the b-media element we're replacing, with the exception of some minor formatting changes and the addition of a list of the features this product has:

<h2>{{ product.name }}</h2>
<p class="mt-4 mb-4">
 {{ product.shortDescription }}
</p>
<h5>Features</h5>

 <li v-for="feature in product.features" :key="feature">{{ feature }}

<p class="mt-4 mb-4">£{{ product.price }}</p>
<b-button variant="primary">Add to cart</b-button>

In order to make sure everything lines up properly, we need to wrap the final Product details heading and paragraph in another b-row and b-col element:

<b-row>
 <b-col cols="12">
 <h3 class="mt-4">Product details</h3>
 <p class="mt-4 mb-4">
 {{ product.description }}
 </p>
 </b-col>
</b-row>

Finally, we know that we want to include some sort of image gallery, which will display our product images at full size, so we'll add the following transition element to the bottom of the template section, right before the closing b-container tag:

<transition name="fade" mode="out-in">
 <gallery v-if="open" :images="product.images" :initial="index"
 @close="open = false" />
</transition>

The gallery component does not yet exist, and as such we'll need to create it and reference it before we can run the application. However, when building a component-based UI in Vue, sometimes it helps to define the "interface" of new components before actually creating them. In other words, we mock out how we expect to consume the component from a parent, as we've just done here.

We know we only want to display this component after a user clicks on one of the images, so we conditionally display it based on an open property that we're yet to define. We also know we'll need to close the gallery at some point, so we're binding an @close event handler, which will set the same open property back to false. A gallery is not much use without a list of images to display, so we're binding an images prop to the product.images array, as well as an initial prop to the index of the image array we wish to display when the gallery opens. Finally, we wrap this component in a transition component to make it fade nicely in and out as we toggle the open property.

In the script section, we need to define the methods and data properties we've just made use of in the template. Let's start with the data function, which looks like this:

data() {
 return {
 open: false,
 index: 0
 };
}

The open property, which toggles the rendering of the gallery, is initially set to false and we default the index array to display 0. Next, we need the methods object with the following two functions defined:

methods: {
 back() {
 this.$router.go(-1);
 },
 openGallery(index) {
 this.index = index;
 this.open = true;
 }
}

The back method simply invokes the go function on the Vue-Router object, instructing it to navigate backwards by one step. We can pass any number to this function, either positive or negative, to move backwards and forwards through the browser's URL history. For example, if we were to pass -2 instead of -1, we would navigate two steps backwards, whereas passing 2 would navigate two steps forwards.

The openGallery method receives the index of the image array the user just clicked on and sets it to the index property, which will be passed into the gallery component via props. It also sets the open property to true in order to actually display the gallery.

To finish our changes on this component, we just need to add a simple style section in order to make it obvious to our users that the images are clickable, by giving them a pointer when they hover over them:

<style lang="scss" scoped>
img {
 cursor: pointer;
}
</style>

 Creating the gallery component

Now that we know how the gallery component will be consumed, we can start to build it. Create a new ClientApp/components/product/Gallery.vue component and add a template section like this:

<template>
 <div class="gallery" @click="close">

 <i class="fas fa-chevron-circle-left fa-3x prev" />

 <div class="slide" @click.stop="next">
 <transition name="fade" mode="out-in">
 <img class="img-fluid"
 :src="images[index]"
 :key="images[index]"
 :alt="images[index]"
 />
 </transition>
 </div>

 <i class="fas fa-chevron-circle-right fa-3x next" />

 </div>
</template>

First, we declare a wrapping div element, which we will style with CSS to cover the entire screen with a semi-transparent black background. We're also attaching an @click event handler to this element to invoke a close method that is yet to be defined. This will ultimately enable our users to close the gallery by clicking anywhere other than the image on display and the two buttons that will rotate between the images in the gallery.

Next, we render a span element, which contains a Font Awesome fa-chevron-circle-left icon to act as the button to go to the previous image in the gallery. Due to an issue where click events do not get fired from the i element directly, the span element is only necessary so that we can attach a @click.stop event handler to it to invoke the prev method, which we'll define shortly.

The main element inside the gallery component is a div element with a class of slide, which we'll use to horizontally and vertically center the nested img element on any screen size. We will also attach a @click.stop event handler to invoke the next method, which is still to be defined. We're also using the v-bind directive to bind the src, key, and alt attributes to the URL of the image at the currently displayed index of the array. We need the key attribute so that when we change the active gallery image, Vue can detect that the element inside the wrapping transition component has changed, and the associated fade animation is applied.

Finally, we have another span element housing a Font Awesome icon. However, this time it is the fa-chevron-circle-right icon that will invoke the next method, rather than the prev method as in the previous icon. Notice how on both of these left and right icons, and on the main div class="slide" element itself, we use the .stop modifier on the @click event handler declarations. We need this modifier to stop the event from propagating up to the parent div class="gallery" element, which also has a @click event handler that is used to close the gallery. Without it, even though the image would change as we want it to, the click would also cause the parent event handler to fire and call the close method, which is not what we want to happen.

Moving on to the script section of the component, start by defining a standard component definition with props, data, and methods sections, as well as a created life cycle hook. The props object contains the two items we defined earlier when looking at how we'd render this component, and ultimately looks like this:

props: {
 images: {
 type: Array,
 required: true
 },
 initial: {
 type: Number,
 required: true
 }
}

The data function is very simple, and the returned object only has a single index property, which is used to instruct the gallery as to which image in the array to display:

data() {
 return {
 index: 0
 };
}

The created lifecycle hook is used to copy the initial prop value onto the local index data property in order to display a specific image as the gallery is opened, as well as invoke the window.addEventListener method to add a global keyup event listener:

created() {
 this.index = this.initial;
 window.addEventListener("keyup", this.onKeyup);
}

As we're adding a global event listener here, we need to make sure that we remove it again to avoid memory leaks. To do so, we'll use another life cycle hook, which is fired as the component is removed from the DOM. The beforeDestroy life cycle hook needs to look like this:

beforeDestroy() {
 window.removeEventListener("keyup", this.onKeyup);
}

And finally, the methods object contains the onKeyup, next, prev, and close methods, which we've already attached to event handlers at one point or another:

methods: {
 onKeyup(event) {
 switch (event.keyCode) {
 case 27:
 this.close();
 break;
 case 37:
 this.prev();
 break;
 case 39:
 this.next();
 break;
 }
 },
 next() {
 if (this.index < this.images.length - 1) {
 this.index++;
 } else {
 this.index = 0;
 }
 },
 prev() {
 if (this.index > 0) {
 this.index--;
 } else {
 this.index = this.images.length - 1;
 }
 },
 close() {
 this.$emit("close");
 }
}

The onKeyup method is what we invoke from the global event listener that we registered as soon as the gallery is displayed, and is used to enable our users to move between images or close the gallery altogether using their keyboards. We use the event.keyCode property in a switch statement to detect the Escape, left, and right arrow key presses, and invoke the close, prev, and next methods, respectively. This is all very well and good, but why can't we use the v-on directive as we've done before for attaching event listeners?

The keyup event is not one that is usually fired from the HTML elements we're using in this component, the div and img elements. As such, we don't actually have anything to add the v-on directive to. There are ways to trick them into firing the keyup event, such as adding a tabindex property. However, this still wouldn't work as the event wouldn't fire until the element in question had received focus from the browser. The only way to guarantee the element would get that focus is to make use of the created life cycle hook to force it as soon as the component is rendered. This is a lot of unnecessary hacking around, so instead, we'll simply attach and remove a global event listener, as we've done here.

The next method compares the current index value with the length of the images array and either increments the value to move to the next image, or resets it back to 0 if there are no more images to display. These changes to the index property cause the image src attribute binding value to change, which in turn changes the image currently displayed in the gallery. The back method is identical to the next method, but in reverse.

The close method is used to emit the custom close event we are listening for in the parent component in order to hide the gallery.

To complete the gallery component, we need to add a fair few CSS styles to get things displaying nicely. Add a style section with the following styles:

<style lang="scss" scoped>
.gallery {
 position: fixed;
 top: 0;
 left: 0;
 right: 0;
 bottom: 0;
 background: rgba(0, 0, 0, 0.8);
 z-index: 15000;

 .prev,
 .next {
 position: absolute;
 color: white;
 cursor: pointer;
 }

 .prev,
 .next {
 top: 50%;
 transform: translateY(-50%);
 }

 .prev {
 left: 20px;
 }

 .next {
 right: 20px;
 }

 .slide {
 position: relative;
 width: 750px;
 max-width: 90%;
 height: 422px;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 overflow: hidden;

 img {
 position: relative;
 top: 50%;
 transform: translateY(-50%);
 }
 }
}
</style>

Again, this isn't a book about CSS so I won't go into detail here, and most of these are fairly self-explanatory. However, a nice way of vertically aligning content is with the following three lines of CSS, which I've used a few times before:

position: relative;
top: 50%;
transform: translateY(-50%);

This essentially positions the top of the element in question to 50% of the screen height away from the top of the screen, then uses the transform property to shift the whole element up by 50% of its height—perfect vertical alignment in three lines of CSS!

With this, our new gallery component is complete. The last thing we need to do is go back into the ClientApp/components/product/Details.vue file and import it at the top of the script section:

import Gallery from "./Gallery.vue";

Then, we need to add a components object to declare it for use:

components: {
 Gallery
}

And we are done. Restart the application now and click through in to the details page for any of the products to see the gallery in action.

 Adding variants to the product details component

Before we can allow users to add products to their shopping cart, we need a way of telling which variant they are interested in buying. The actual price of a product is dictated by the combination of the color and storage capacity options, so we need to add these options to the product details component.

We only have a couple of easy changes to make, so open up the ClientApp/components/product/Details.vue file and let's get started. In the template section, right beneath the Features heading in the ul element, we need to add the following:

<h5>Variants</h5>
<b-form-group label="Colour">
 <b-form-select :options="product.colours" v-model="colour" />
</b-form-group>

<b-form-group label="Capacity">
 <b-form-select :options="product.storage" v-model="capacity" />
</b-form-group>

All we're doing here is rendering two standard Bootstrap form groups with a label and select element in each. As part of our product details query on the server side, we're already returning a list of SelectListItem objects for both the available colors and capacity options. As such, we can bind the options prop of each b-form-select component to these lists, and the properties from our model are already compatible with what the select component expects. However, in each case, we need to provide a data property to bind the selected value of the dropdown to. In this case, we need to add the colour and capacity properties to our local component state:

data() {
 return {
 open: false,
 index: 0,
 colour: null,
 capacity: null
 };
}

These won't do much good with null as their value, so we'll default each one to the first item in their respective options list using a created life cycle hook:

created() {
 this.colour = this.product.colours[0].value;
 this.capacity = this.product.storage[0].value;
}

The variant dropdowns will now be working just fine, but changing the values will have no effect on anything at all. To change this, we're going to add a computed property, which tracks which variant from the product.variants array matches the selected values. We can then use this computed property to show a dynamic price based on the selected options, as well as determine which variant to push to the shopping cart when the user clicks the Add to cart button. This computed property looks like this:

computed: {
 variant() {
 return this.product.variants.find(
 v => v.colourId == this.colour && v.storageId == this.capacity
);
 }
}

We simply invoke the Array.find function using fat arrow syntax to look for and return a variant where the colourId property matches our selected color value and the storageId property matches our selected capacity value. With this computed property in place, we can now make use of it in the template section by displaying the variant price, rather than the minimum price from the product object that we've been using so far:

<p class="mt-4 mb-4">
 Price: £{{ variant.price }}
</p>

I also added the b element to make it stand out a little more, but this is all that's required, and we are now ready to add products to a shopping cart.

 Introduction to Vuex

We talked about state back in Chapter 1, Understanding the Fundamentals, and until now we've only had the need for local component state, which we sometimes pass to related components via props. However, with the introduction of our shopping cart feature, we will need to display the same state in multiple components that have no direct relationship with one another. Think about almost any e-commerce website you've ever purchased something from; typically, you'll have a dedicated page for your shopping cart items, as well as some kind of cart summary widget, which will be displayed in the sidebar of every page. These two locations have no direct connection to one another without traversing all the way up the component tree to the very top, to the root level App component.

Do we really need to store our shopping cart state in the App component, then pass it all the way down to those components that care about it using props? Think about how tedious this would be, and how much of a maintenance nightmare it would be each time we refactor the component tree. We'd need to make sure that we add the same props and event handlers to every component to ensure we don't break the chain. This is where Vuex comes in.

 What is Vuex?

According to the official Vuex documentation (https://vuex.vuejs.org/), "Vuex is a state management pattern + library for Vue.js applications. It serves as a centralized store for all the components in an application, with rules ensuring that the state can only be mutated in a predictable fashion."

As with all of the official Vue.js documentation, this is already a great explanation of what Vuex is, but let's break it down to make sure it makes perfect sense, as follows:

	Vuex is a centralized store: This means that we have one central place to put state, and every component in the application has direct access to it if they need it. There's no need to pass it around using props, and no need to attach event handlers to listen to changes on it. We can bind data directly to the store, and every time the underlying state changes, the UI will be kept in sync just as if the state were local to the component.

	It has rules that ensure that state changes, or mutations, are predictable: This means that we should always know exactly how and why a change in state occurred. Vuex enforces the concept of a one-way flow of data, where the only way of manipulating the state of the store is using a mutation. These mutations are tracked using the official devtools extension that we installed earlier, so we can always tell how and why the data is changing.

 How does Vuex work?

Vuex contains four main concepts: actions, mutations, state, and getters. We've already discussed state at length, but actions, mutations, and getters will all be new concepts to you. We'll come back to getters shortly, but along with state and components, which we already know about, actions and mutations feed directly into the one-way data flow paradigm that we touched on earlier. Take a look at the following diagram:

Actions are functions that can be dispatched from our existing components, which then commit mutations. Mutations are also functions, but have the sole purpose of mutating the state, and are the only way of doing so. When the state changes, any component that is bound to the store will be rendered again, which completes the cycle of data flow.

At first glance, it may seem unnecessary to have both actions and mutations. However, there is a very big difference between the two, which gives both a very specific purpose within the application.

 Mutations

A mutation is like an event, whereby we define a handler function to perform state modifications when we receive a specific type of mutation. They should not contain any kind of logic or update more than a single piece of state to ensure there is no ambiguity in our history of state changes. Mutation handler functions are the only way to manipulate state in Vuex, and the only way to invoke these handler functions is to commit a mutation of the appropriate type—they cannot be invoked directly. Mutations are also always run synchronously, so cannot contain any kind of asynchronous operation, such as API calls.

 Actions

Actions can contain asynchronous operations, making them the perfect place for interacting with our backend API if we need them to. They can also contain logic to decide which mutations, if any, they need to commit. You can think of actions as functions that can orchestrate multiple mutations in a single operation. This will make more sense when we look at an example shortly!

 Getters

Getters are like computed properties for store state, and can be used at times when we need to derive state based on the state within the store. This helps eliminate duplication, where the same derived state is needed in multiple components. As an example, we might have an array of shopping cart items, each with their own price and quantity values. To work out the total shopping cart cost, we need to iterate over each cart item and multiply the price by the quantity, the sum of which gives us the total cost. Rather than store this value in the state and recalculate it each time the cart items change, we can define a getter function that computes it for us. We can then data bind onto this function, and it will behave exactly like a standard component-level computed property, whereby the UI will update every time Vue detects a change to the computed value of the function.

 Putting it all together

Let's look at an example to help explain the concepts we've been talking about so far. To define a Vuex store, it is a simple case of calling the Vuex.Store constructor function, and passing an object with the state, mutations, actions, and getters that you wish to define:

const store = new Vuex.Store({
 strict: true,
 state: {
 cart: []
 },
 mutations: {
 addProductToCart (state, product) {
 state.cart.push(product);
 },
 incrementProductQuantity (state, product) {
 state.cart.find(p => p.id === product.id).quantity++;
 }
 },
 actions: {
 addToCart({ state, commit }, product) {
 if (state.cart.some(p => p.id === product.id)) {
 commit('incrementProductQuantity', product);
 } else {
 commit('addProductToCart', product);
 }
 }
 },
 getters: {
 cartTotal(state) {
 const reducer = (accumulator, cartItem) =>
 accumulator + cartItem.price * cartItem.quantity;

 return state.cart.reduce(reducer, 0);
 }
 }
});

In this example, we define a simple store that is keeping track of a single state property: an array of cart items. If we think about how we'd expect a shopping cart to work, when we click the Add to cart button on a product details page, one of two things should happen. If we have already added this product to our cart, it should increment the quantity of that cart item rather than add a duplicate entry. Otherwise, it should simply add the product to the cart. From this, we can determine that we need two mutations, which we've defined in the preceding store. The addProductToCart mutation simply pushes the product in question to the cart array, and the incrementProductQuantity mutation finds the existing product in the cart based on its id property, then increments its quantity value.

We know that mutations can't contain any logic, which is why we can't have a single mutation that decides whether to push the product to the array or increment its quantity if it already exists. This is where the addToCart action comes in, which we use to perform the required logic and decide which mutation to commit. We first check to see whether any of the existing cart items match the product in question and commit the incrementProductQuantity mutation if they do. Otherwise, we commit addProductToCart instead. Finally, we define a single cartTotal getter function, which computes the total cost of the cart items using a reducer function.

In the preceding store initialization, we also set the strict property to true. With strict mode on, if we try to mutate the store state outside of a mutation, an error will be thrown. However, don't leave this on in production as the performance hit can be quite high!

With a store this small, we could easily leave its definition in a single file to keep things simple. However, as we start to add additional actions, mutations, and getters, this single file can rapidly increase in size and become difficult to manage. A better idea is to break the actions, mutations, and getters out into their own separate files, and then import them back into the main store file to add them to the definition. This is what we'll do when we build the real store for our sample application shortly.

 Installing and configuring Vuex

As Vuex is an official companion library made by the Vue team, it is very quick and easy to install and configure. We need to install a single npm package, then create a handful of new files, most of which will be empty until we add our store functionality. Start by running the following command in your Terminal:

yarn add vuex

Then, as this is another third-party library, we need to add it to the vendor array in the webpack.config.vendor.js file:

vendor: [
 "event-source-polyfill",
 "axios",
 "vue",
 "vue-router",
 "vuex",
 "bootstrap/dist/css/bootstrap.min.css",
 "bootstrap-vue",
 "nprogress/nprogress.css"
]

And because we've made another change to this file, we need to run the following command from the Terminal again:

yarn webpack

With Vuex installed, we now need to configure our application to use it. Create a new store folder in the ClientApp directory, and add a ClientApp/store/index.js file to it. At the top of this file, add the following three lines:

import Vue from "vue";
import Vuex from "vuex";

Vue.use(Vuex);

The Vue.use function is how we install plugins that extend the default functionality of the Vue instance. Vuex is one of these plugins, so by adding the preceding code, we have done all we need to do to install it in our application. This only works because of how the Node module system treats the import statements in our files. After an npm module is imported for the first time, every other import statement receives the same copy of that module. You can think of this like registering singletons with a .NET DI framework. This means that the Vue instance that we receive in this file is the same instance that we initialized after importing it into our application entry point, that is, ClientApp/boot.js.

Next, we need three more new files in the ClientApp/store directory for defining the actions, mutations, and getters of our Vuex store. We need to create the following empty files:

	ClientApp/store/actions.js

	ClientApp/store/mutations.js

	ClientApp/store/getters.js

We can now import these files from the index.js file as we discussed earlier, right beneath the line where we installed Vuex previously:

import * as actions from "./actions";
import * as mutations from "./mutations";
import * as getters from "./getters";

This looks a little different to our previous import statements, so what exactly is going on here? When we start adding our individual actions, mutations, and getters to these files, each one will be an individually exported function. This means that each of these files will have multiple export statements, and as such we need to import multiple exports from a single file. We can do this using the * wildcard character as we've done here, then provide an alias for the imported items using the as keyword. We can now use these aliased imports in the object we export from this file:

const store = new Vuex.Store({
 strict: true,
 actions,
 mutations,
 getters,
 state: {
 cart: []
 }
});

export default store;

Here, we initialize a new Vuex store object, passing it the references to our actions, mutations, and getters. We could make things simpler and define these functions directly within this file, but sooner or later we'll have a lot of functions in one place, which become hard to manage and maintain. It is a much better idea to separate the different aspects of the store into separate files. We also set the strict property to true, which will cause our store to raise console errors if we try to change its state outside of any mutations we define. Finally, we add a state object, which is where we actually store any centralized state that we can't—or don't want to—store in local component state. In this instance, we are defining a cart array where we will push the items the user wants to add to their shopping cart.

The last thing we need to do is import this store object in our entry point file, then register it with our application's Vue instance. Open the ClientApp/boot.js file and add the following import statement somewhere near the top where we imported Vue and Vue-Router:

import store from "./store";

Finally, update the Vue instance initialization at the bottom of the file to include this store object:

new Vue({
 el: "#app-root",
 router: router,
 store,
 render: h => h(require("./components/App.vue"))
});

This completes our Vuex installation and configuration.

 Adding products to the cart

The first piece of functionality our cart needs is to allow users to add their chosen product variants to it. Thinking about how this will be invoked from the UI, there are two things that could happen when a user clicks the Add to cart button from the product details page. First, if the chosen product variant does not yet exist in the cart, a new cart item is pushed to the array; second, if there is already a matching variant in the cart, we need to increment its quantity.

 Creating the mutations

Now, we could create a single mutation that contains the logic required to work out whether the selected product variant already exists in the cart or not, then either push a new item or update an existing one as necessary. However, mutations should be very small and focused functions that only update a single piece of state. They certainly shouldn't contain any logic. Mutations are tracked by the Vue devtools extension so that we can see which mutations were fired. However, if those mutations have different outcomes depending on some business logic, we have no record of that outcome and as such lose all the benefits of tracking the mutations in the first place.

Based on this knowledge, there are two mutations we need to create: addProductToCart and updateProductQuantity. These are very simple and need to be added to the ClientApp/store/mutations.js file:

export const addProductToCart = (state, product) => {
 product.quantity = 1;
 state.cart.push(product);
};

export const updateProductQuantity = (state, index) => {
 let cartItem = Object.assign({}, state.cart[index]);
 cartItem.quantity++;

 state.cart.splice(index, 1, cartItem);
};

Both of these functions receive a state property as their first argument. All mutations in Vuex are passed this same object as their first argument to provide access to state so that it can be mutated. The second argument to any mutation function is always the object that we pass to it when invoking it from an action or directly from a component. In the addProductToCart mutation, we simply add an additional quantity property with a value of 1 to the product object that we receive as an argument, then push it straight into the cart array in the store.

The updateProductQuantity mutation is far more complicated. We start by cloning the cart item we wish to update using the passed in array index and the Object.assign function before we increment its quantity property. We then need to explicitly modify the cart array in such a way that Vue can tell we've changed it. This is why we make use of the Array.splice function again, as we know from prior experience that it will be detected and propagated down to our components. If we didn't clone the original object before passing it to the splice function, it still wouldn't be enough to trigger a UI update.

At this point, we still have the problem of two mutations to fire and a single Add to cart button to trigger them. We have no logic to decide which mutation to fire when the button is clicked; this is where actions come into play.

 Creating an action

Vuex actions are where we should place any logic or asynchronous operations, such as API requests, that don't belong in mutations. As such, they are perfect for enforcing the business rules of our application, such as whether to add a new cart item or update the quantity of an existing item. In the ClientApp/store/actions.js file, add the following exported function:

export const addProductToCart = ({ state, commit }, product) => {
 const index = state.cart.findIndex(
 i =>
 i.productId === product.productId &&
 i.colourId === product.colourId &&
 i.storageId === product.storageId
);

 if (index >= 0) {
 commit("updateProductQuantity", index);
 } else {
 commit("addProductToCart", product);
 }
};

Actions always receive a context object as their first argument. The context object provides an API similar to the store object itself, so we can access the state property or commit mutations using context.state and context.commit, respectively. Alternatively, we can use ES6's argument destructuring to extract only the parts of the context object we wish to use. This is what we've done here using the { state, commit } syntax. The second argument is an optional object parameter that we can pass when dispatching the action from our component(s), which in this case is the product variant the user wants to add to their cart.

We start by checking to see whether the product variant already exists, based on the ID values that make up its composite key in our database, and then commit a mutation depending on that outcome. If the product already exists, we commit the updateProductQuantity mutation, or alternatively the addProductToCart mutation if it does not.

The only thing left to do is to actually dispatch this action from our product details page. Open up the ClientApp/components/product/Details.vue file, then add the following function to the methods object in the script section:

addProductToCart() {
 this.$store.dispatch("addProductToCart", this.variant);
}

By installing Vuex earlier, we are now given access to the $store property on the Vue instance, and therefore to each component's this context. We can use this property to access the dispatch function as we have here, passing the name of the action we want to dispatch, as well as the optional object parameter that we discussed earlier. In this case, we pass the computed variant property.

The final step is to invoke this method from the Add to cart button in the template section:

<b-button variant="primary" @click="addProductToCart">Add to cart
</b-button>

We can now add products to our cart, and if the selected product already exists, then its quantity is incremented instead. However, as we don't yet have a shopping cart page to display these cart items, the only way we can verify that everything is working correctly is by using the Chrome devtools extension that we installed way back in Chapter 2, Setting Up the Development Environment.

One thing to note here is that when we make changes to the files in the store directory, the webpack HMR functionality will not work. As such, in order to see our changes to these files, we must force a full browser refresh before they'll take effect. If you haven't already, make sure you are viewing the application in Chrome; press F12 to open the developer tools page and then perform a full browser refresh. Next, navigate to the Vue tab in the developer tools window, then locate the Switch to Vuex button inside it. If you're not sure where to find it, it's shown in the following screenshots.

The following screenshot shows what the Vuex page of the devtools extension looks like before we add any products to our cart:

After finding a product we wish to buy and clicking the Add to cart button for that product, we get a single cart item with a quantity value of 1. We can also see that an addProductToCart mutation is listed:

If we then click the Add to cart button again for the same product variant, instead of the addProductToCart mutation that we saw before, we get an updateProductQuantity mutation added to the list. In the state section, we can also see that we still only have one cart item in the array, and that item now has a quantity value of 2:

Finally, if we change one of the variant dropdowns on the details page and click the Add to cart button again, a new cart item is pushed to the array. We can see this is the case as another addProductToCart mutation was fired, and our state object now contains two items in the cart array:

 Creating a shopping cart page

Now that we have the ability to add products to a shopping cart, we need a page for viewing what we've added before deciding whether to proceed to the checkout or not. Create an empty component called Cart.vue in the ClientApp/pages directory, then open the ClientApp/boot.js file and import it along with the other page components:

import Cart from "./pages/Cart.vue";

In the same file, we'll also need to add a route definition to the routes array:

{ path: "/cart", component: Cart }

And finally, we'll need a link to this new page from our navbar that's defined in the ClientApp/components/App.vue file. Find the existing b-navbar-nav element and add the following additional right-aligned b-navbar-nav element directly preceding it:

<b-navbar-nav class="ml-auto mr-4">
 <b-nav-item to="/cart">Cart</b-nav-item>
</b-navbar-nav>

Before we build the ClientApp/pages/Cart.vue page itself, we're going to build a ClientApp/components/cart/CartItem.vue component instead. If we think about what functions we're going to want for the cart page, they include updating and deleting individual cart items. These functions could reside in the cart page itself, and take a reference to the specific cart item we want to update or delete, but we can also simplify that logic by extracting a CartItem component, which is only responsible for displaying a single cart item record. If the update and delete functions reside in this nested CartItem component, they can only update or delete an individual item, and as such the logic is simpler. We also gain the other standard benefits of child components, such as reducing the amount of code in a single file and making sure each component only has a single responsibility.

 Creating a CartItem component

Create the ClientApp/components/cart/CartItem.vue component and add a template section that looks like this:

<template>
 <tr>
 <td>
 <b-row align-v="center">
 <b-col cols="auto">

 </b-col>
 <b-col class="align-middle">
 <h5>{{ item.name }}</h5>
 <div>
 Colour: {{ item.colour }}
 </div>
 <div>
 Capacity: {{ item.capacity }}
 </div>
 </b-col>
 </b-row>
 </td>
 <td>
 £{{ item.price }}
 </td>
 <td>
 <b-form-input type="number" :value="item.quantity">
 </b-form-input>
 </td>
 <td>
 £{{ item.price * item.quantity }}
 </td>
 <td>
 <b-button variant="danger">
 <i class="fas fa-trash-alt"></i>
 </b-button>
 </td>
 </tr>
</template>

There is nothing new here, and the majority of this HTML is only necessary to get things presented and arranged nicely. We'll use a standard HTML table element for our shopping cart when we create the parent component, so for each individual cart item, we're using a tr element as its root. We're defining five columns within this table row: one for the product name, one for the price, one for the quantity, one for the calculated subtotal, and one for any actions that can be performed on this row.

The product name column is the most complicated, but only because we're nesting a Bootstrap grid row with two columns to position the product thumbnail side by side with its name, selected color, and capacity options. For the price, we just render the raw value prefixed with a £ sign as we did in the product details component, and for the quantity, we're using a simple HTML number input. For the calculated subtotal, we're keeping things simple for now and rather than using a computed property, we're just using a string interpolation expression. Finally, in the actions column, we have a single button, which will eventually be used to remove the item from the cart.

The script section for this component is incredibly simple, and only defines a single item prop to represent the cart item being displayed:

<script>
export default {
 name: "cart-item",
 props: {
 item: {
 type: Object,
 required: true
 }
 }
};
</script>

And finally, the style section is mainly used for specifying the minimum widths of each column:

<style lang="scss" scoped>
td {
 vertical-align: middle;
}

td:nth-child(1) {
 width: auto;
 min-width: 350px;

 img {
 width: 100px;
 }
}

td:nth-child(2) {
 width: 75px;
}

td:nth-child(3) {
 width: 75px;
}

td:nth-child(4) {
 min-width: 150px;
}

td:nth-child(5) {
 width: 125px;
}
</style>

This is all we need for the CartItem component, so let's finish off the shopping cart page itself.

 Displaying the list of cart items

Back in the ClientApp/pages/Cart.vue file, we need to add a template section that renders a HTML table element and loops over the items in our cart to render an instance of the CartItem component that we just created. Modify the template section like this:

<template>
 <b-container class="pt-4 page">
 <h1 class="pb-4">Shopping cart</h1>
 <p v-if="!items.length" class="mt-4 text-center">
 You don't have anything in your cart yet!
 </p>
 <div v-else class="table-responsive">
 <table class="table">
 // shopping cart items will be rendered here...
 </table>
 </div>
 </b-container>
</template>

As with our other pages, we will start with a b-container element with a class of page to make sure transitions to and from this page display correctly. After the h1 element, we use the v-if and v-else directives to conditionally display either a p element or a div element, depending on whether a data property called items has any array elements or not. If it does, we display a Bootstrap responsive table to hold our cart items, and if not, we just display a message to state that there are no items in the user's cart.

Inside the table element, we'll need a thead section with column headers matching those we defined in the CartItem component earlier:

<thead>
 <tr>
 <th>Product</th>
 <th>Price</th>
 <th>Quantity</th>
 <th>Subtotal</th>
 <th></th>
 </tr>
</thead>

We'll also need a tbody element to loop over the items property that we're about to define:

<tbody>
 <cart-item v-for="(item, index) in items" :key="index"
 :item="item" />
</tbody>

As we have no single unique value for a cart item due to the composite key that identifies a product variant, we're using the index of the items array as the key prop for each cart item. We then use the v-bind directive to pass the item reference down into the cart item component to be displayed.

Finally, we need a tfoot section to display the total of the items in the cart, as well as two buttons for returning to the catalog or proceeding to the checkout:

<tfoot>
 <tr>
 <td>
 <b-button variant="secondary" @click="continueShopping">
 <i class="fas fa-chevron-left"></i>
 Continue shopping
 </b-button>
 </td>
 <td colspan="2"></td>
 <td>
 Total: £0.00
 </td>
 <td>
 <b-button variant="success">
 Checkout
 <i class="fas fa-chevron-right"></i>
 </b-button>
 </td>
 </tr>
</tfoot>

The script section for this page component is relatively simple, but does involve fetching data from our centralized Vuex store, which we've never done before:

<script>
import CartItem from "../components/cart/CartItem.vue";

export default {
 name: "cart",
 components: {
 CartItem
 },
 computed: {
 items() {
 return this.$store.state.cart;
 }
 },
 methods: {
 continueShopping() {
 this.$router.go(-1);
 }
 }
};
</script>

We start by importing and declaring the CartItem component in the components object. We then have the computed items property, which we already know needs to hold our list of cart items from the store, and this is where we deviate from any computed property that we've seen before. As we now have access to the $store property in the component's this context, we can directly access the state of our store. In this instance, we simply return the cart array. Finally, in the methods object, we have a single function to go back a page in our router history when the user clicks on the Continue shopping button.

Our shopping cart page is now complete. Restart the application now and add a few different product variants to your cart, then follow the Cart link on the right of your navbar to see what the shopping cart looks like.

 Creating a currency filter

At this point, we have multiple places within our UI where we want to display a price. Currently, we're simply printing the raw string value of the number representing that price and prefixing it with the £ character. Apart from repeating the logic of prefixing the value with a currency character, there is another limitation here in that unless the number already has decimal places, that is, it's a decimal rather than an integer, the value we render won't have decimal places either. When we see prices, we expect to not only see the currency of that price, but also the value after the decimal place, even if it's zero. For example, if the price of a phone is 99 GBP, we'd expect to see this rendered like this: £99.00.

We could repeat this rendering logic everywhere that we display a price, but we already have three or four occurrences already, and that number is only ever going to increase. Instead, we should try and find some reusable way of defining this logic so that we can use it anywhere we need to. The answer to how we do this in Vue is filters. A filter is a simple function that takes an arbitrary list of arguments, does some processing on those arguments, and returns a value. The returned value is what ends up being rendered in the UI of the application.

Let's create a simple currency filter to demonstrate how this works. Create a new filters folder in the ClientApp directory and add an index.js file to it. Within this file, we can add as many filter functions as we like, exporting each one individually like we did with the actions and mutations of our Vuex store. The currency function looks like this:

export const currency = value => {
 return "£" + parseFloat(value).toFixed(2);
};

This function takes a single value argument, passes it through the parseFloat function to ensure we're working with a float value with decimal places, then chains the toFixed function on the end to limit the number of those decimal places to two. Finally, we return this newly parsed value as a string with the £ prefix.

We're hard-coding a currency prefix again here, but just remember that in a real application you may need to localize this prefix if you support users from multiple locales.

We now need to register this filter function with our global Vue instance so that we can make use of it anywhere in our application, without needing to manually import it into every file. Open up the ClientApp/boot.js file and add the following code right below the line where we install Bootstrap-Vue:

// rest of file as before...

Vue.use(VueRouter);
Vue.use(BootstrapVue);

// filters
import { currency } from "./filters";

Vue.filter("currency", currency);

// rest of file as before...

We will import the currency function using named imports, then register it with the Vue instance as a filter using the Vue.filter function. This is all we need to do. Now, we have access to this filter in all of our components, but how do we use it? To demonstrate, in the ClientApp/components/cart/CartItem.vue component, we have a line that looks like this:

£{{ item.price }}

We can use the currency filter by removing the £ character, and use the filter syntax, which uses the pipe character and looks like this:

{{ value | filter }}

In our case, the updated item price rendering looks like this:

{{ item.price | currency }}

A little lower down in the same template, we have a slightly more complex expression:

£{{ item.price * item.quantity }}

This is no problem, and our currency filter can be used here as well:

{{ item.price * item.quantity | currency }}

Essentially, this filter can now be used anywhere that we're rendering a price in a template string expression. There are a few more places to make this change, which I won't go into detail about here as it's exactly the same process, but these files are:

	ClientApp/components/catalogue/ProductList.vue

	ClientApp/components/product/Details.vue

 Removing products from the cart

We already have the UI elements we need to trigger the removal of products from the cart, so all we need to do now is create the necessary mutation and action in our store and wire everything up. In the ClientApp/store/mutations.js file, add the following exported function:

export const removeProductFromCart = (state, index) => {
 state.cart.splice(index, 1);
};

This mutation is a simple case of calling the Array.splice function and passing it the index argument as the position to start deleting from, and instructing it to only delete a single item by passing 1 as the second parameter. Again, by modifying the cart array using the splice function, Vue can detect the change and react to it. This causes any components that are observing this array to update and refresh their UI automatically, the same way they do if a local component's state changes.

The associated action for this mutation is quite simple, and simply finds the index of the item we wish to remove, then commits the mutation and passes it as an argument:

export const removeProductFromCart = ({ commit }, product) => {
 const index = state.cart.findIndex(
 i =>
 i.productId === product.productId &&
 i.colourId === product.colourId &&
 i.storageId === product.storageId
);

 commit("removeProductFromCart", index);
};

This action may seem fairly pointless as we could have found the array index within the mutation itself. In that instance, we could actually just commit the mutation directly from a component as well, which ultimately makes the action unnecessary. The idea behind Vuex is that components dispatch actions, and actions commit mutations, which update the state in the store. However, there is a difference of opinion among Vue developers that I've spoken to around whether actions are 100% necessary if they don't add any kind of value.

If we aren't performing any kind of asynchronous operation or committing multiple mutations based on some kind of business logic, my opinion is that there is no harm in committing mutations directly from our components, and this is exactly what I do in a lot of cases. However, it is important to avoid the temptation of putting any kind of logic, or starting to update multiple pieces of state, in your mutations. For this reason, we will make sure to always use actions for the purposes of this sample application.

The final step in wiring up the remove from cart functionality is to dispatch this action in our ClientApp/components/cart/CartItem.vue component. In the template section, locate the final td element in the row and update the b-button element inside to include an @click event handler, like this:

<b-button variant="danger" @click="removeProductFromCart">
 <i class="fas fa-trash-alt"></i>
</b-button>

Finally, in the script section, add a methods object that includes the following function:

methods: {
 removeProductFromCart() {
 this.$store.dispatch("removeProductFromCart", this.item);
 }
}

Refresh the application and test out the remove from cart functionality by adding a couple of items to you cart, then clicking the trash icon on one of the rows to ensure that the correct item is deleted. You can also verify that the correct mutations were fired as we did before, using the Chrome devtools extension.

 Updating cart items

The last function we need to perform with our cart items is manually updating the item quantity. As we've just done with removing cart items, we'll need a mutation and an action, and we'll have to perform some minor updates on the CartItem component to wire everything up.

In the ClientApp/store/mutations.js file, add the following new mutation:

export const setProductQuantity = (state, payload) => {
 let cartItem = Object.assign({}, state.cart[payload.index]);
 cartItem.quantity = payload.quantity;

 state.cart.splice(payload.index, 1, cartItem);
};

This mutation is another fairly complicated one due to how the reactivity system in Vue works, but it is virtually identical to the updateProductQuantity mutation we saw earlier, so I won't explain it again this time around. I'm conscious that I've made the same statement about the reactivity system a few times now, and it may be coming across as though I'm suggesting there are some fundamental flaws with it. However, this isn't the case, as the reason why the reactivity system has to work the way it does is down to limitations in JavaScript itself, rather than with the Vue or Vuex libraries.

The only thing to note is that instead of an explicitly named argument such as product, like we've seen before, we're receiving an object called payload. We're using an object here because we can only pass a single user-defined argument to a mutation, and we need multiple pieces of data. On this object, we're expecting another integer property called index, which represents the array index of the item we wish to update, and another integer property specifying the quantity to set.

In the ClientApp/store/actions.js file, add the following new action:

export const setProductQuantity = ({ state, commit }, payload) => {
 const index = state.cart.findIndex(
 i =>
 i.productId === payload.product.productId &&
 i.colourId === payload.product.colourId &&
 i.storageId === payload.product.storageId
);

 if (payload.quantity > 0) {
 payload.index = index;
 commit("setProductQuantity", payload);
 } else {
 commit("removeProductFromCart", index);
 }
};

We use the payload.product object to find the array index of the cart item we wish to update, then interrogate the payload.quantity property to decide which mutation to commit. If the quantity is more than zero, we commit the mutation we just created, passing the payload object after assigning the index property we just found. However, if the user has entered zero or less into the quantity field, we commit the removeProductFromCart mutation instead, passing just the index of the item we wish to remove.

Open ClientApp/components/cart/CartItem.vue and find the b-form-input element that we're using for the quantity number input. Modify it and add a @change event handler like so:

<b-form-input type="number" :value="item.quantity" @change="setProductQuantity"></b-form-input>

Finally, in the methods object, add the following new function:

setProductQuantity(quantity) {
 const payload = { product: this.item, quantity: parseInt(quantity) };
 this.$store.dispatch("setProductQuantity", payload);
}

All we need to do here is create a new payload object, including the properties and values we're expecting in the action and the mutation we just created, then pass this new object as the argument to the dispatch call. The only other thing to note is that we need to parse the quantity value passed in to ensure it goes through the pipeline as an integer rather than a string.

Refresh the application and make sure everything is still working. You should be able to change the quantity value either by typing a new value in and tabbing away from the field, or clicking the buttons inside the field to increase or decrease its value. Either way, the subtotal will update to represent the new value based on the quantity entered.

 Adding a getter to display the cart total

The final change we need to make to the shopping cart itself is to display the calculated grand total at the bottom. As it stands, we have no means of calculating it, so we're just displaying a hardcoded £0.00 value instead. To fix this, we'll add a Vuex getter to our store, which will calculate the total in a reusable function that we can use anywhere in our application.

Getters have a similar use case as computed properties: creating derived state for specific display purposes. In this case, the grand total of the shopping cart is the sum of a specific calculation on each cart item. We could store the grand total as a state property, but we'd then have the overhead of remembering to keep it up to date after any mutation has run that could alter that value. Instead, we derive the value from the cart items, and as they change, the getter will update automatically.

In the ClientApp/store/getters.js file, add the following exported function:

export const shoppingCartTotal = state => {
 const reducer = (accumulator, cartItem) =>
 accumulator + cartItem.price * cartItem.quantity;

 return state.cart.reduce(reducer, 0);
};

As we did with our actions and mutations, we export each getter function individually, and each one receives the store state object as its first argument. There are multiple ways of calculating this value, but the most concise is probably to use the Array.reduce function, as we have here. However, if this function is new to you, it may look incredibly strange at first. The reduce function executes another function against each element in the array, accumulating the result and passing it to the next iteration. In our getter, we define a reducer function, which takes two arguments: accumulator and cartItem. As the names would suggest, the accumulator argument tracks the accumulated value and cartItem represents the array item currently being processed. The actual function is simple: take the accumulated value and add the cart item subtotal (price * quantity) to it. To make use of this function, we must pass it to the Array.reduce function as we have here, which causes each element of the array to be reduced in turn, each down to a single value. As our cart may be empty, we have to provide the optional second argument, which is the starting value to use.

 To make use of this getter from our cart page, we need to make two very simple changes. We'll add a computed property, which retrieves the value from the getter, then bind the UI to that computed property. Open the ClientApp/pages/Cart.vue file and add the following computed property:

total() {
 return this.$store.getters.shoppingCartTotal;
}

Finally, find the Total: £0.00 line in the template section and change it to an expression that makes use of the currency filter we made earlier:

Total: {{ total | currency }}

Refresh the application now and test that everything works as expected. The total at the bottom of the cart should update whenever you update an item's quantity or remove an item from the cart.

 Creating a cart summary component

To further demonstrate the benefits of centralized store state and getters, we're going to add a cart summary component that displays in a popup when a user hovers over the cart link in the navbar. We'll add another getter that calculates the total number of items in the cart, then use it along with the one we already have inside the popover to show how useful it is to have reusable calculated properties like this.

Add the following exported function to the ClientApp/store/getters.js file:

export const shoppingCartItemCount = state => {
 const reducer = (accumulator, cartItem) => accumulator +
 cartItem.quantity;
 return state.cart.reduce(reducer, 0);
};

This is very similar to the previous getter we created, so it should look fairly familiar, but ultimately we're doing the equivalent of a Sum calculation on a LINQ collection in C#. The total number of items in the cart is equal to the sum of the cart item quantity values.

Next, create a new empty component called CartSummary.vue in the ClientApp/components/cart directory. The template section of this component looks like this:

<template>
 <b-nav-item id="Cart" to="/cart">
 <i class="fas fa-shopping-cart"></i>
 Cart ({{ count }})

 <b-popover target="Cart" triggers="hover">
 <div>
 Items: {{ count }}
 </div>
 <div>
 Total: {{ total | currency }}
 </div>
 </b-popover>
 </b-nav-item>
</template>

 As we'll be replacing the navbar link to the cart page with this component, we're using a b-nav-item element as the root element, with the same to prop of the cart page's relative URL. To make things look a little nicer, I've added a Font Awesome shopping cart icon before the link text, as well as a count variable displayed in brackets at the end. Note that I also added an id attribute, which we'll use as the target of the popover component we're about to add.

Bootstrap-Vue has a built-in popover component called b-popover, which we're using here. We're passing a target prop equal to the id attribute of b-nav-item above it, and passing hover as the triggers prop to cause the popover to display when the link is hovered over. Inside the popover, we can render whatever content we wish, and could even render a reduced-size table of cart items like the one on the cart page itself. However, to keep things simple for the sake of this demonstration, all we're rendering is the item count and total cost of the items in our cart.

The script section of this component is very simple, and only contains two computed properties that map to the store getters we defined earlier:

<script>
export default {
 name: "cart-summary",
 computed: {
 total() {
 return this.$store.getters.shoppingCartTotal;
 },
 count() {
 return this.$store.getters.shoppingCartItemCount;
 }
 }
};
</script>

Rather than creating a computed property each time we wish to data bind to a Vuex getter or state property, we could utilize some helper functions that come baked into Vuex itself. If you're interested, look up the mapState and mapGetters functions to see how they work. However, we won't be using them in the interests of keeping things simple!

The last step is to make use of this new component in the ClientApp/components/App.vue file by replacing this line:

<b-nav-item to="/cart">Cart</b-nav-item>

With this line:

<cart-summary />

Then, import and declare the new component for use in the script section:

<script>
import CartSummary from "./cart/CartSummary.vue";

export default {
 name: "app",
 components: {
 CartSummary
 }
};
</script>

That's all there is to it. By abstracting certain pieces of functionality away into a centralized store, we can reuse them across any component in the entire application with very little effort or complexity involved. If we were to carry on using props to pass data down from parent components to their children, we'd have to declare all of our shared application state in the root App.vue component and pass it down through the tree of components as far as it needs to go. Each time we add new components to the tree, we'd need to remember to pass those props on again, which is very repetitive and error-prone. By centralizing shared application state, we alleviate these issues.

Now, test the application again to make sure everything is still working, and remember that as we've made changes to the ClientApp/store/getters.js file, a full browser refresh is required before the changes will take effect. Add some products to your cart, then hover over the cart link to see the summary component we just created.

 Persisting the cart to local storage

As you will have noticed already, every time we refresh the browser, our shopping cart's contents are lost. Both component- and application-level state are only stored in memory, apart from the catalog filter selections, which we pushed into the browser URL. As such, as soon as the browser is refreshed, that memory is cleared and we lose the state of our shopping cart.

There are a number of ways that we could solve this problem, including persisting the state into the browser's local storage, or pushing the state up to our API and persisting it in the database. Both of these options are completely acceptable and widely used approaches, but they also have their own pros and cons. Persisting to local storage in the browser is simple and effective, but if the user clears their browser cache, then they will still lose their cart items. On the other hand, persisting to the database via the API is permanent, and unless they explicitly clear their cart, then its contents are safe from browser memory loss. However, it is a far more complicated approach, as unless we enforce user registration and authentication before adding items to a shopping cart, we have to put additional measures in place to allow anonymous user access so that we can identify which cart belongs to which user session.

Generally speaking, it is normally acceptable to allow the shopping cart's contents to be wiped if a user explicitly clears their browser cache, so this usually isn't a reason to avoid using local storage. One of the main benefits of persisting a shopping cart into the database is for reporting purposes. Companies will find information about how many carts actually result in a completed sale highly valuable, and this information is only available if the cart is stored on the server side of the application. For this reason, and to keep things simple, we'll be persisting the cart items to local storage for this demo application.

If you prefer to store the cart in the database, you can write ASP.NET Core middleware that attaches a GUID to unauthenticated response headers in order to identify an anonymous user. Link the cart to this GUID in the database, then transfer it to a real user account when they register!

You might think this is going to be a fairly tricky process of extending every mutation to also persist the changes into local storage. However, thanks to the use of Vuex, we only have three simple changes to make. First, open the ClientApp/store/index.js file, and right before the export line at the bottom, we need to add the following:

store.subscribe((mutation, state) => {
 localStorage.setItem("store", JSON.stringify(state));
});

As the store.subscribe function name suggests, we are subscribing to any changes in the store and firing a callback that uses the localStorage.setItem function to persist the entire store object. Note that the browser's local storage is only capable of storing key/value pairs, where the values are strings. In order to store a complex object like our state object, we have to convert it to a JSON string by using the JSON.stringify function.

Next, we need an additional mutation, which will check whether we have anything stored in local storage, and initialize our state with it if we do. Add the following exported function to the ClientApp/store/mutations.js file:

export const initialise = state => {
 const store = localStorage.getItem("store");
 if (store) {
 Object.assign(state, JSON.parse(store));
 }
};

If we find a key named store in local storage, we use the Object.assign function that we've used so many times before to copy the values from the local storage onto the state object from our Vuex store. As we had to convert this object to a string on the way into the local storage, here we have to do the opposite and call JSON.parse to convert it back into an object. Note that we must use the Object.assign function here or the application will not react to the state change.

Finally, in the ClientApp/components/App.vue file, we need to add a beforeCreate life cycle hook to commit this new mutation:

export default {
 name: "app",
 components: {
 CartSummary
 },
 beforeCreate() {
 this.$store.commit("initialise");
 }
};

Notice how we haven't bothered to define an action this time, as like we previously discussed, there really is no need for such a simple mutation.

Refresh the application again now and the next time you add products to your cart and refresh the browser, they should remain in your cart. You can also verify that the mutation is firing by checking the devtools extension, like we did earlier.

 Improving the UX with add to cart feedback

Our cart is now fully functional, and as such we could leave it as is. However, when clicking the Add to cart button, there is no feedback as to whether or not something happened. Some online shops take you to the shopping cart page as and when you add a product to your cart, and if that's your preferred approach, then it should be a fairly simple change for you to add a page change as part of the button click handler. However, to demonstrate a different approach, we'll use a library called toastr to provide instant feedback to the user that something positive happened.

This section is completely optional, and will have no negative effects on the rest of the application if you choose to skip it for any reason!

First, we need to download a new npm module. The original toastr library has a dependency on jQuery, so instead we'll use another open source alternative that is built specifically for use with Vue instead. Open Terminal and run the following command:

yarn add @deveodk/vue-toastr

Next, in the ClientApp/boot.js file, we need to install and configure this module like we did before with other Vue plugins. At the top of the file with the rest of the import statements, add the following two lines:

import VueToastr from "@deveodk/vue-toastr";
import "@deveodk/vue-toastr/dist/@deveodk/vue-toastr.css";

Then, after the Vue.use(BootstrapVue); line, add the following:

Vue.use(VueToastr, {
 defaultPosition: "toast-top-right"
});

This is similar to what we've done before, but this particular installation has an optional second argument where we can override some default settings. In this case, we just specify that the toast dialogs should appear at the top-right of the screen by default.

Finally, in the ClientApp/components/product/Details.vue file, locate the addProductToCart function in the methods object of the script section, and right after committing the mutation, add the following line:

this.$toastr("success", "Product added to cart successfully.");

Refresh the page and add another product to your cart to check that the toast messages appear as expected.

The last thing I'm going to do is remove the Add to cart button from the catalog list page, as it currently doesn't do anything and there is no way for our users to specify a product variant until they enter the details page anyway. For reference, this is in the template section of the ClientApp/components/catalogue/ProductList.vue file.

 Summary

It was another long and fairly complicated feature to implement in this chapter, so let's take a minute to review what we've achieved. We started out by looking at our options for persistent shopping cart data, both on the client side and server side, before settling on using the local storage feature of the web browser.

We then prepared our product details page by creating a custom image gallery component and adding drop-down lists to provide our users with a way of specifying which variant of the product they wish to purchase. We then installed and configured Vuex for centralized client-side state management, before adding the selection of actions, mutations, and getters required to provide the basic functionality of a shopping cart.

We also added a new shopping cart page to our application and looked at how we can fetch data from the Vuex store inside our components. We also built a cart summary component to show how easily we can reuse store logic from anywhere in our application. We saw how custom filters can reduce duplication by building a currency filter, and how easy it is to add toast notifications to improve the UX of the application.

Finally, with just a few lines of code, we saw how we can persist the entire centralized state of the application into local storage, and retrieve it again each time the application loads or the browser refreshes.

 User Registration and Authentication

We now have a functional product catalog that our users can browse, as well as a shopping cart that they can utilize to store their chosen products before making a purchase. However, before we allow them to proceed to the checkout page and place their orders, we need to make sure they have a user account to link the order to in the database. In this chapter, we're going to add authentication and user registration to the app, by making use of the latest features of ASP.NET Core 2.0 to issue and validate JWT tokens.

In this chapter, we're going to look at the following topics:

	Configuring JWT authentication in ASP.NET Core 2.0

	Issuing and validating JWTs

	Persisting authentication state with Vuex and local storage

	Configuring global HTTP headers with axios

	Creating login/register UI components

We have a fair bit of ground to cover, so let's dive right in.

 Adding JWT authentication to the API

In previous versions of ASP.NET Core, configuring authentication was far more cumbersome and not particularly intuitive. However, with the 2.0 release, Microsoft did a lot of work to refactor how authentication works in ASP.NET Core, and it's now a very simple process to add it to an ASP.NET Core web app.

 Why JWTs?

For standard server-side web applications built with MVC, we'd most likely use cookies rather than JWTs, which is the default option if we don't specify one. However, as we're building a stateless web API with an SPA frontend, it makes much more sense to use JWTs in order to maintain the stateless nature of the application.

In traditional MVC applications, when a user logs in, a session is created on the server and a cookie is returned to the user's browser, which identifies that session on subsequent HTTP requests. This is a stateful authentication mechanism that doesn't really fit in with modern applications that use JavaScript SPA frameworks for the UI. The sample application we're building throughout this book is based on the simple approach of hosting both frontend and backend on a single web server, accessed via a single domain. However, it is fairly common with modern applications to use multiple web servers to completely separate the frontend from the backend, and access each from different domains or subdomains. For example, we could host the frontend of our e-commerce application at http://app.phoneshop.com, and the backend at http://api.phoneshop.com. With cookie-based authentication, this isn't necessarily possible, depending on the configuration of the server and the way it sets cookies. It certainly isn't at all possible if we want to use an entirely different domain, or allow access to our API for other applications or services on different domains.

In comparison, when a user logs in to an application using JWT authentication, no server-side session is required. All the server needs to do is generate a JWT and return it to the client. It doesn't matter what type of client it is, such as web applications versus mobile applications; as long as the JWT is included with any HTTP request to the API, it can be verified and used to authenticate the user. We also lose the restriction on how we host our applications and the domains we use, and we can easily allow access to external applications or services.

There are a number of other benefits to using JWTs, such as scalability and performance, but these are beyond the scope of this book. Generally speaking, it is safe to say that any application that makes use of a JavaScript SPA framework with a backing API is far better suited to using JWTs rather than cookies.

 Configuring JWT authentication

Now that we know why we're using JWTs, we need to make a few configuration changes to enable authentication and specify the mechanism we wish to use. We'll start by opening the Startup.cs file, and finding the following piece of code within it:

services.AddIdentity<AppUser, AppRole>()
 .AddEntityFrameworkStores<EcommerceContext>()
 .AddDefaultTokenProviders();

Directly beneath this section, add the following:

services.AddAuthentication(options =>
{
 options.DefaultAuthenticateScheme =
 JwtBearerDefaults.AuthenticationScheme;
 options.DefaultChallengeScheme =
 JwtBearerDefaults.AuthenticationScheme;
})

If we were using cookie-based authentication, we wouldn't need this code at all, but since we're using JWTs, we need to override the default authentication mechanism by specifying the JWT bearer authentication scheme as the default challenge and authentication schemes. With this in place, we need to finish off the configuration by chaining on the following code directly:

.AddJwtBearer(options =>
{
 options.RequireHttpsMetadata = false;
 options.SaveToken = true;
 options.ClaimsIssuer = Configuration["Authentication:JwtIssuer"];

 options.TokenValidationParameters = new TokenValidationParameters
 {
 ValidateIssuer = true,
 ValidIssuer = Configuration["Authentication:JwtIssuer"],

 ValidateAudience = true,
 ValidAudience = Configuration["Authentication:JwtAudience"],

 ValidateIssuerSigningKey = true,
 IssuerSigningKey = new
 SymmetricSecurityKey(Encoding.UTF8.GetBytes
 (Configuration["Authentication:JwtKey"])),

 RequireExpirationTime = true,
 ValidateLifetime = true,
 ClockSkew = TimeSpan.Zero
 };
});

Most of these options are fairly self-explanatory, and Microsoft's own documentation is pretty good for setting up authentication, so we won't dwell too long on this. Essentially, we are just defining what the standard JWT claim values should be set to, such as the iss and aud claims, as well as overriding some of the defaults, such as disabling the HTTPS requirement. As previously discussed, our sample app is running from a single domain URL, so the issuer and audience values will be the same, but we could just as easily have different URLs for these values. We also make sure that the JWT middleware will validate the issuer, audience, and signing key in order to ensure that the JWTs haven't been tampered with in any way, or been issued from a different application.

Quite a few of these settings are making use of the Configuration object of the class, but the properties we're trying to access don't actually exist yet, so let's add those in next. Open up the appsettings.json file, and, just before the closing curly brace at the bottom of the file, add the following JSON key/value pair:

"Authentication": {
 "JwtKey": "ECOMMERCE_SUPER_SECRET_KEY",
 "JwtIssuer": "http://localhost:5000",
 "JwtAudience": "http://localhost:5000",
 "JwtExpireDays": 30
}

The JwtKey value is used here as the issuer signing key, and can be any string you like. However, if malicious users were to find out what this key was, they could forge tokens that would give them authenticated access to the system. Therefore, it is recommended to make this value fairly random and hard to guess, and some suggestions even go as far as to recommend changing it on a fairly frequent basis. At the very least, it should be stored in a secure fashion on any production environment—we'll see how to do this in a later chapter where we'll use environment variables to override it in production.

We've already discussed the JwtIssuer and JwtAudience values, but to reiterate, this is how we ensure that only tokens that were issued from our trusted domain are valid, as well as ensuring that client requests originate from the domain URL we set for the audience claim.

Finally, we set the expiration window of our JWTs to 30 days. You can obviously set this to whatever you like, depending on your preferences, but it's worth noting that, once a JWT has been issued, it cannot be invalidated. The longer the expiration, the bigger the risk if a malicious user gained access to a JWT that didn't belong to them, as they have a much longer period of time they can access the system for. The simple way of reducing that risk is to go the opposite way and reduce the length of the expiration period, but the trade-off is that users then have to log in more frequently.

A better, albeit more complicated, approach is to introduce an additional token called a refresh token, which as its name suggests is used to refresh an access token. The idea is that access tokens (what we're using currently) should have a short expiration value, usually measured in minutes, and once it expires, we use the refresh token to get a new one. Refresh tokens can have much longer expiration values, because they are stored in the database, and as such can be invalidated at will. We then have more control and can minimize the window in which a compromised access token can be used to access the system. We'll look at this in more detail in a later chapter when we introduce refresh tokens to make our API far more secure.

With these settings in place, the last step is to actually make use of the JWT bearer middleware by adding it to our middleware pipeline. Back in the Startup.cs file, locate the Configure method and add the following line:

//...rest of file as before
app.UseStaticFiles();

app.UseAuthentication();

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapSpaFallbackRoute(
 name: "spa-fallback",
 defaults: new { controller = "Home", action = "Index" });
});

Remember that ordering matters when configuring the middleware pipeline, so make sure you add it before adding the MVC middleware. At this point, we have everything we need to start preventing unauthenticated access to specific endpoints within our API, but we can't test it properly until we're also able to actually issue a JWT to use on authenticated endpoints.

 Issuing JWTs

Ultimately, we need an endpoint for new users to register, as well as an endpoint for existing users to authenticate and retrieve a JWT in return. We already added a test user into the database as part of our seed data, so we can jump right into issuing JWTs to make sure our authentication configuration is working properly. Under the Features directory, create a new folder called Authentication, and then add a Controller.cs file with the following contents:

namespace ECommerce.Features.Authentication
{
 [Route("api/[controller]")]
 public class TokenController : Controller
 {
 private readonly SignInManager<AppUser> _signInManager;
 private readonly UserManager<AppUser> _userManager;
 private readonly IConfiguration _configuration;

 public TokenController(SignInManager<AppUser> signInManager,
 UserManager<AppUser> userManager, IConfiguration configuration)
 {
 _signInManager = signInManager;
 _userManager = userManager;
 _configuration = configuration;
 }
 }
}

All we've done so far is to declare the dependencies we'll need, namely the ASP.NET Identity SignInManager<T> and UserManager<T> classes for loading users from the database and validating the supplied password, as well as an instance of the IConfiguration interface, which we'll use for reading the app settings we need to create a JWT if authentication is successful. These classes are all available using the built-in DI container so we simply declare them as parameters to the controllers constructor.

Directly beneath this constructor, we'll add the one and only action method that we need on this controller, which will respond to a HttpPOST request containing the email address and password of the user attempting to log in, and return a JWT if successful. This action method looks like this:

[HttpPost]
public async Task<IActionResult> GetToken([FromBody]
LoginViewModel model)
{
 var errorMessage = "Invalid e-mail address and/or password";

 if (!ModelState.IsValid)
 return BadRequest(errorMessage);

 var user = await _userManager.FindByEmailAsync(model.Email);

 if (user == null)
 return BadRequest(errorMessage);

 if (await _userManager.IsLockedOutAsync(user))
 return BadRequest(errorMessage);

 var result = await _signInManager.PasswordSignInAsync(user,
 model.Password, true, true);

 if (!result.Succeeded)
 return BadRequest(errorMessage);

 var token = await GenerateToken(user);

 return Ok(token);
}

Web app security best practices suggest that, regardless of what the actual error is, if authentication fails, we should always return a standard error message to tell the user their email or password was incorrect. Therefore, we start this action method off by defining this error message variable before checking whether the model state is valid or not, and returning the error if validation fails. Next, we use the UserManager<T> class to look for a user in the database based on the supplied email address, returning our generic error message if we fail to find one. If a user is found, we have two different checks to make: we first check if the user is locked out, which occurs when they enter the wrong password five times in a row; and we use the SignInManager<T> class to validate the supplied password. If either check fails, we return the same generic error message in a BadRequest response. Finally, if all is well, we call a GenerateToken method, which we're yet to define, returning the generated token model within an Ok response.

Before we look at the GenerateToken method, you may have noticed the LoginViewModel class we're expecting as a parameter to this action method. This view model class looks like this:

namespace ECommerce.Features.Authentication
{
 public class LoginViewModel
 {
 [Required]
 public string Email { get; set; }

 [Required]
 public string Password { get; set; }
 }
}

The GenerateToken method we're using to create the JWT after a successful login attempt also belongs in the Features/Authentication/Controller.cs class and looks like this:

private async Task<TokenViewModel> GenerateToken(AppUser user)
{
 var claims = new List<Claim>
 {
 new Claim(JwtRegisteredClaimNames.Sub, user.UserName),
 new Claim(JwtRegisteredClaimNames.Jti,
 Guid.NewGuid().ToString()),
 new Claim(ClaimTypes.NameIdentifier, user.Id.ToString()),
 new Claim(ClaimTypes.Name, user.UserName)
 };

 var roles = await _userManager.GetRolesAsync(user);

 foreach (var role in roles)
 {
 claims.Add(new Claim(ClaimTypes.Role, role));
 }

 var key = new SymmetricSecurityKey(Encoding.UTF8.GetBytes
 (_configuration["Authentication:JwtKey"]));
 var creds = new SigningCredentials(key,
 SecurityAlgorithms.HmacSha256);
 var expires = DateTime.Now.AddDays(Convert.ToDouble
 (_configuration["Authentication:JwtExpireDays"]));

 var token = new JwtSecurityToken(
 _configuration["Authentication:JwtIssuer"],
 _configuration["Authentication:JwtAudience"],
 claims,
 expires: expires,
 signingCredentials: creds
);

 return new TokenViewModel
 {
 AccessToken = new JwtSecurityTokenHandler().WriteToken(token),
 AccessTokenExpiration = expires,
 FirstName = user.FirstName,
 LastName = user.LastName
 };
}

We start by creating a new list of Claim objects containing the standard claims that are expected in most JWT authentication implementations. We use the AppUser.UserName property for the Sub claim, and a GUID value for the Jti claim, which is used as a unique identifier for the token itself. We also use the AppUser.Id and AppUser.UserName properties for the NameIdentifier and Name claims, respectively.

Next, we retrieve a list of roles the user belongs to using the UserManager<T> class, then loop over these, and add them to the list of claims we just created. We're not yet using roles in our app, but we will be soon, so we'll cover more on roles shortly.

The next few lines are used to create an instance of the SigningCredentials class, which is required to generate a JWT. First up, we create an instance of the SymmetricSecurityKey class using the signing key from the configuration that we discussed earlier, by converting it to a byte[] array using the System.Encoding.UTF8 static class. We then pass this object into the constructor of the SigningCredentials class, specifying the SecurityAlgorithms.HmacSha256 algorithm as the signature algorithm to apply.

The last piece of information we need to generate a JWT is the expiry date of the token. We determine this date by using the JwtExpireDays configuration setting that we defined earlier, adding the variable amount of days to the current timestamp. With this in place, we create an instance of the JwtSecurityToken class, passing in the JwtIssuer and JwtAudience configuration settings as discussed earlier, as well as the list of claims, expiry date, and signing credentials we just defined. Finally, we return an instance of a TokenViewModel class, which we are about to define, using the JwtSecurityTokenHandler.WriteToken method to write the JwtSecurityToken object we just created to a string. We also add the expiry date to this view model to make it easier for the client application to determine if a token is expired without needing to perform a HTTP request to the server. We could decode the token on the client and take the expiry from there, but this method is far simpler for now, and there are no downsides to doing it this way either.

The TokenViewModel class we just used is another simple class, and looks like this:

namespace ECommerce.Features.Authentication
{
 public class TokenViewModel
 {
 [JsonProperty("access_token")]
 public string AccessToken { get; set; }
 [JsonProperty("access_token_expiration")]
 public DateTime AccessTokenExpiration { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 }
}

You'll notice that we've used the JsonProperty attribute to override the JSON serializer settings for these properties. If you've ever used OAuth or Open ID Connect before, you'll probably have noticed that they tend to use the underscore naming convention for variables, rather than camel case as we do with JSON generated by C# and .NET. In this instance, we're simply demonstrating how to override the default generated JSON property names should you wish to follow the OAuth naming conventions—feel free to omit these if you prefer, but remember to change the frontend appropriately as well.

 Adding user role support

Before we can properly test our JWT setup, we need to introduce user roles into our system. Any roles a user is assigned to are included in the claims that we bake into the JWT itself, so we need to add a role to the test user we seeded earlier in order to properly test that our JWTs contain all the information we expect them to.

The first step is to modify our seed data to include the roles we'll need, which will simply be Admin and Customer. Open up the Data/DbContextExtensions.cs file, and right at the top, add the following new property:

public static RoleManager<AppRole> RoleManager { get; set; }

We then need to create a new static method to check if the roles we want already exist, and create them if they don't:

private static void AddRoles(EcommerceContext context)
{
 if (RoleManager.RoleExistsAsync("Admin").GetAwaiter()
 .GetResult() == false)
 {
 RoleManager.CreateAsync(new
 AppRole("Admin")).GetAwaiter().GetResult();
 }

 if (RoleManager.RoleExistsAsync("Customer")
 .GetAwaiter().GetResult() == false)
 {
 RoleManager.CreateAsync(new
 AppRole("Customer")).GetAwaiter().GetResult();
 }
}

This method now needs invoking from the EnsureSeeded method as we've done before, so update this as follows:

public static void EnsureSeeded(this EcommerceContext context)
{
 AddRoles(context);
 AddUsers(context);
 AddColoursFeaturesAndStorage(context);
 AddOperatingSystemsAndBrands(context);
 AddProducts(context);
}

Make sure this is invoked before the AddUsers method, as we're about to update this to add our existing user to the admin role. This will obviously fail if the roles haven't been added before the AddUsers method is invoked. The updated AddUsers method looks like this:

private static void AddUsers(EcommerceContext context)
{
 if (UserManager.FindByEmailAsync("stu@ratcliffe.io")
 .GetAwaiter().GetResult() == null)
 {
 var user = new AppUser
 {
 FirstName = "Stu",
 LastName = "Ratcliffe",
 UserName = "stu@ratcliffe.io",
 Email = "stu@ratcliffe.io",
 EmailConfirmed = true,
 LockoutEnabled = false
 };

 UserManager.CreateAsync(user,
 "Password1*").GetAwaiter().GetResult();
 }

 var admin = UserManager.FindByEmailAsync("stu@ratcliffe.io")
 .GetAwaiter().GetResult();

 if (UserManager.IsInRoleAsync(admin,
 "Admin").GetAwaiter().GetResult() == false)
 {
 UserManager.AddToRoleAsync(admin, "Admin");
 }
}

As our database and test user already exist, the first if statement here will not run. Therefore, we need to find the user by email address, and then add it to the admin role if it doesn't already belong to it. Seeing as we're not yet production-ready, we could easily drop the entire database and modify the original if statement to also add the new user to the admin role at the point it's originally created. This would keep things simple and make most of the code we just added unnecessary. However, if our application was already in production with a live database, we wouldn't be able to do this, so it's worth thinking about how to make these kinds of changes when the database can't be dropped.

Finally, as we now have a dependency on the RoleManager<T> class, we need to provide an instance as we did with the UserManager<T> class before. In the ConfigureServices method of the Startup.cs class, find the following line:

DbContextExtensions.UserManager = services.BuildServiceProvider().GetService<UserManager<AppUser>>();

And change it to the following:

var provider = services.BuildServiceProvider();
DbContextExtensions.UserManager = provider.GetService<UserManager<AppUser>>();
DbContextExtensions.RoleManager = provider.GetService<RoleManager<AppRole>>();

As we now have two dependencies to provide, we only build the service provider once and reuse it for both dependencies.

 Testing JWT authentication

Our JWT authentication setup and configuration is complete, so let's give our API endpoints a quick test and make sure everything is working properly. Currently, none of our controllers require authentication, so let's add an [Authorize] attribute to the Features/Users/UsersController.cs file and use it for testing our setup again. Modify the controller declaration as follows:

[Authorize]
[Route("api/[controller]")]
public class UsersController : Controller
{
 // rest of class unchanged
}

If we restart the application now, we can test that this is having the desired effect using Postman again. Performing a HTTP GET request to localhost:5000/api/users yields the following 401 HTTP response code:

Testing anonymous access with Postman

Now we'll try an invalid request to our token endpoint to make sure it doesn't return a JWT if we get the password wrong:

Testing invalid login credentials with Postman

Next, a valid request to the same endpoint to retrieve a JWT using a valid email/password combination based on the details we used in the seed data:

Testing valid login credentials with Postman

If we then copy the contents of the returned access_token property, we can paste it into the JWT checker at https://jwt.io to check that the contents are as we expect them to be:

Inspecting the returned access token using JWT.io

All looking good so far, so let's now attach this token to the Authorization header of the previously failing GET request to http://localhost:5000/api/users and see if we can now retrieve our list:

Testing authenticated access with Postman

And there we have it; JWT authentication is up and running.

 User registration

Being able to authenticate is all very well and good, but so far the only user account we have to authenticate is the admin account we seeded for ourselves. Let's change this by creating an API endpoint for our customers to register for new user accounts.

Create a new Features/Account directory and add a standard controller class like so:

namespace ECommerce.Features.Account
{
 [Route("api/[controller]")]
 public class AccountController : Controller
 {
 private readonly UserManager<AppUser> _userManager;

 public AccountController(UserManager<AppUser> userManager)
 {
 _userManager = userManager;
 }
 }
}

Within this controller, we need a single action method for registering new users:

[HttpPost]
public async Task<IActionResult> Register([FromBody]
RegisterViewModel model)
{
 if (!ModelState.IsValid)
 return BadRequest(ModelState);

 var user = await _userManager.FindByEmailAsync(model.Email);

 if (user != null)
 return BadRequest("A user with that e-mail address
 already exists!");

 user = new AppUser
 {
 FirstName = model.FirstName,
 LastName = model.LastName,
 Email = model.Email,
 EmailConfirmed = true,
 UserName = model.Email,
 LockoutEnabled = true
 };

 var registerResult = await _userManager.CreateAsync(user,
 model.Password);

 if (!registerResult.Succeeded)
 return BadRequest(registerResult.Errors);

 await _userManager.AddToRoleAsync(user, "Customer");

 return Ok();
}

There's nothing particularly new going on here. We use methods from the UserManager<T> class that we've used before to search for existing users by email address, and we do a number of validation checks along the way. The difference here from the token controller we just saw is that we actually return specific error messages depending on what's gone wrong. The only other thing to note is that we're setting the AppUser.EmailConfirmed property to true for all new users. In a real application, I'd always enable email verification, and leave this property set to its default false value, but to keep things simple we won't be going down that route here.

The RegisterViewModel class that we receive as a parameter looks like this:

namespace ECommerce.Features.Account
{
 public class RegisterViewModel
 {
 [Required]
 public string FirstName { get; set; }

 [Required]
 public string LastName { get; set; }

 [Required]
 [EmailAddress]
 public string Email { get; set; }

 [Required]
 public string Password { get; set; }

 [Required]
 [Compare(nameof(Password))]
 public string ConfirmPassword { get; set; }
 }
}

You can test this API endpoint in much the same way as we did with the previous one. Try sending requests with missing parameters, invalid data types, and finally with valid data to ensure everything is working correctly.

 Authentication and user registration in the client app

We now have fully functional API endpoints to enable users to register for an account, and then authenticate themselves using their email address and password. However, this is only half of the problem, as we still need to build a UI to perform these actions. We'll start by extending the Vuex store that we built in the last chapter to include the actions, mutations, and getters necessary to perform the API calls to the server, and store the authentication status of our users.

 Vuex state properties for authentication

The first step is very simple—we need a few additional properties added to the state object within our Vuex store. Open up the ClientApp/store/index.js file and modify the state object as follows:

state: {
 auth: null,
 showAuthModal: false,
 loading: false,
 cart: []
}

Starting at the top, we're going to use the auth property to store a simple object that will contain the JWT access token and expiry date properties that we return from the login action of our API. As its name suggests, the showAuthModal property has a Boolean value to control the display of a modal component that we're going to use for housing the login and register forms. Finally, we'll use the loading Boolean value to track when an API request is in progress so we can do things like disabling buttons, or showing loading icons.

 Vuex mutations for managing authentication state

The next thing we need is a set of Vuex mutations for manipulating the state properties we just created. All of the following mutation functions belong in the ClientApp/store/mutations.js file.

The first two mutations we need are for setting the visibility of the modal we'll be building later:

export const showAuthModal = state => {
 state.showAuthModal = true;
};

export const hideAuthModal = state => {
 state.showAuthModal = false;
};

Next, we need a set of mutations to track and store the status and outcome of a login API request:

export const loginRequest = state => {
 state.loading = true;
};

export const loginSuccess = (state, payload) => {
 state.auth = payload;
 state.loading = false;
};

export const loginError = state => {
 state.loading = false;
};

This is a common pattern in Vuex when performing API requests. Before performing the AJAX call, it's common to commit a mutation to signify the start of the request, which in this case sets the loading property to true. Then, depending on whether the API request returns a success or failure result, we commit a success/error mutation to signify the end of the request. In this case, if the API call is successful, we simply assign the response object to the auth property, and then set the loading property to false. If the request fails, all we do is set the loading property to false.

We'll also need a similar set of mutations to track the user registration API request:

export const registerRequest = state => {
 state.loading = true;
};

export const registerSuccess = state => {
 state.loading = false;
};

export const registerError = state => {
 state.loading = false;
};

It may seem like overkill to use three mutations here rather than two, seeing as both the registerSuccess and registerError mutations are identical. However, in a more complicated application, it is common to perform some additional state changes in each one, and it's also more explicit when we check the mutation history using the Vue devtools in Chrome.

Finally, we need a single mutation to commit when the user logs out, in order to clear the auth object:

export const logout = state => {
 state.auth = null;
};

 Vuex authentication getters

We only need a single Vuex getter to determine if the current user is authenticated or not. Open up the ClientApp/store/getters.js file and add the following exported function:

export const isAuthenticated = state => {
 return (
 state.auth !== null &&
 state.auth.access_token !== null &&
 new Date(state.auth.access_token_expiration) > new Date()
);
};

In order to tell if a user is authenticated, we first need to check that the auth property is not null, and that it has an access_token property set. Finally, we check that the access_token_expiration property is a valid date in the future. If any of these checks fail, either the user is unauthenticated, or their access token has expired.

 Vuex login, register, and logout actions

The final step in extending our Vuex store is to add the login and register actions that actually coordinate the API requests to the server, as well as committing the relevant mutations. These belong in the ClientApp/store/actions.js file, and the first of these is the login action:

export const login = ({ commit }, payload) => {
 return new Promise((resolve, reject) => {
 commit("loginRequest");
 axios
 .post("/api/token", payload)
 .then(response => {
 const auth = response.data;
 axios.defaults.headers.common["Authorization"] = `Bearer ${
 auth.access_token
 }`;
 commit("loginSuccess", auth);
 commit("hideAuthModal");
 resolve(response);
 })
 .catch(error => {
 commit("loginError");
 delete axios.defaults.headers.common["Authorization"];
 reject(error.response);
 });
 });
};

This action returns a promise, so that, when we dispatch it from a component, we can wait for it to resolve before performing any additional component-level operations. We start by committing the loginRequest mutation that we talked about earlier, before performing an HTTP POST request to the token controller using axios. axios requests also return promises, so we can wait for them to resolve successfully using a .then(response) block.

In the success block in this case, we retrieve the access_token from the response and attach it to the authorization header in the axios.defaults.headers.common property. From this point on, all HTTP requests performed using axios will have the bearer token set so that the request can be authenticated by our server-side API. After this, we commit the loginSuccess and hideAuthModal mutations, passing the auth object that we retrieved from the response as the payload for the former. We finish the success block by calling the resolve function of the returned promise, passing it the entire response object for maximum flexibility.

In order to handle request failures, we can use a .catch(error) block, which will be triggered by the reject function of the promise returned by the axios request. In this instance, we commit the loginError mutation, delete the authorization header from future axios requests, and then call our own reject method of the promise being returned by the action. The user registration action is very similar, albeit slightly simpler:

export const register = ({ commit }, payload) => {
 return new Promise((resolve, reject) => {
 commit("registerRequest");
 axios
 .post("/api/account", payload)
 .then(response => {
 commit("registerSuccess");
 resolve(response);
 })
 .catch(error => {
 commit("registerError");
 reject(error.response);
 });
 });
};

As with the login action, we return a promise, which we either resolve or reject based on the response of an API call performed using axios. We commit the registerRequest mutation before triggering the API call, the registerSuccess mutation if it succeeds, and the registerError mutation if it fails.

The final action we need is the logout action, which in comparison to the previous two is incredibly simple:

export const logout = ({ commit }) => {
 commit("logout");
 delete axios.defaults.headers.common["Authorization"];
};

All we need to do is commit the logout mutation in order to clear the authentication state, and then delete the authorization header from the default axios configuration used by any subsequent HTTP requests. This completes our Vuex store changes, so we are ready to start building out the components we need to trigger these actions.

 Authentication modal component

As previously discussed, rather than building out full login and register pages, including the VueRouter configuration that goes with them, we're going to put our login and register forms into separate tabs within a modal. As this component doesn't really belong to any single page, it doesn't belong in any of our sub-directories beneath ClientApp/components either. Instead, create a ClientApp/components/app directory to hold all of our app-level components, and then create an AuthModal.vue component file inside. The template section for this component looks like this:

<template>
 <b-modal v-model="show" hide-header hide-footer
 no-close-on-backdrop no-close-on-esc>
 <b-tabs v-model="index">
 <b-tab title="Login" active>
 <login-form :registered="registered" @close="close" />
 </b-tab>
 <b-tab title="Register" >
 <register-form @success="success" @close="close" />
 </b-tab>
 </b-tabs>
 </b-modal>
</template>

The root-level element here is the modal component from the Bootstrap-Vue library. To control visibility of this component, it expects a Boolean property to be bound to the v-model directive, so we're stating here that we'll need some kind of show property with a Boolean value. We're also passing a number of Boolean props to this component, such as hide-header and no-close-on-backdrop. All we're doing here is preventing the default Bootstrap modal header/footer sections from appearing, and preventing the modal from being closed if the user presses the Escape key or clicks away from the modal itself. We need full control over the closing of this modal so we can decide what to do based on the authentication status of the user.

Inside the modal component, we're nesting two more components from Bootstrap-Vue: the b-tabs and b-tab components. The tabs component optionally accepts an integer value for the v-model directive, which we can use to programmatically switch tabs—we'll need to do this after a user successfully registers and needs to log in. This doesn't prevent the user from manually switching tabs by clicking the headers; it just gives us extra flexibility.

We then render two b-tab components, one for the login form and one for the register form, each of which is rendered as a custom component that we're yet to define. By default, the login tab is active when the modal is first displayed. The login-form component takes a registered prop, which we'll use to show a success message to notify the user that their registration was successful. We also listen for a close event and invoke a close method, which we'll define in a moment. The register-form component emits a success event, which we'll listen for and programmatically switch to the login tab, and a close event that will also trigger the close method.

The script section of this component is a little more complicated, so we'll go over it in sections. We start by importing the login and register form components:

import LoginForm from "./LoginForm.vue";
import RegisterForm from "./RegisterForm.vue";

These don't actually exist yet, so don't worry if you start seeing errors in your Terminal or browser console. Next, we need to do our standard practice of exporting a default object which will be our component definition:

export default {
 name: "auth-modal",
 components: {
 LoginForm,
 RegisterForm
 }
}

All we've done so far is give the component a name, and declare the two custom components we just imported as child components of this one. We still need to add a fair few pieces of behavior though, starting with the show property, which controls the visibility of this modal. We'll use the following prop declaration for this:

props: {
 show: {
 type: Boolean,
 required: true
 }
}

We also need an index data property for controlling the active tab, and a registered Boolean property, which we pass down into the login-form component to show a success message after a user registers for an account:

data() {
 return {
 index: 0,
 registered: false
 };
}

And, finally, we need the success and close methods to manipulate these data properties:

methods: {
 success() {
 this.registered = true;
 this.index = 0;
 },
 close() {
 this.$store.commit("hideAuthModal");
 let query = Object.assign({}, this.$route.query);
 delete query.redirect;
 this.$router.push({ query: query });
 }
}

The success method is fairly self-explanatory. Remembering that this gets called after a new user successfully registers for an account, we set the registered property to true and the index property to 0 in order to switch tabs back to the login tab. The user will then be presented with a successful registration confirmation message and asked to log in to continue.

The close method is a little more complicated, but this is actually very similar to the code we've seen before, when building out the product catalog. We start by committing the hideAuthModal mutation to close the modal, and then use the Object.assign function to clone the current query string object representation. We then delete the redirect property if it exists, before pushing the modified query object back onto the query string, as we've done before. This won't make much sense yet, but, as we'll be preventing navigation to protected routes if the user isn't authenticated, we'll use the query string to track the URL to redirect to, just like we would with a full fat login page implementation. However, unlike with a full page for logging in, where the user would navigate back to their previous page if they didn't want to complete the login process, we need to manually delete the redirect parameter from the query string if they close out of the modal rather than proceeding to log in.

 Login form component

The LoginForm.vue component also lives under the ClientApp/components/app directory, and has the following template section:

<template>
 <form @submit.prevent="login" class="p-2">
 <b-alert variant="danger" :show="error !== null" dismissible
 @dismissed="error = null">
 {{ error }}
 </b-alert>
 <b-alert variant="success" :show="registered &&
 error === null">
 Registration successful. Please login to continue.
 </b-alert>
 <p>Login with your e-mail address and password.</p>
 <b-form-group label="E-mail">
 <b-form-input v-model.trim="email" />
 </b-form-group>
 <b-form-group label="Password">
 <b-form-input v-model.trim="password" type="password" />
 </b-form-group>
 <b-form-group>
 <b-button variant="primary" type="submit"
 :disabled="loading">Login</b-button>
 <b-button variant="default" @click="close"
 :disabled="loading">Cancel</b-button>
 </b-form-group>
 </form>
</template>

We start by rendering a form where we prevent the default submit action, choosing to invoke a login method instead. We then render two (initially hidden) alert boxes, one for displaying an error message if the form submission fails, and one that shows the successfully registered message if the registered prop is set to true. The error alert is configured as dismissible, which allows us to click a Close icon to hide the alert once we've seen it. As it's hidden, it emits a dismissed event, which we use to clear the error property. Both of these alert boxes have their visibility controlled by a show prop, which in the instance of the error alert only resolves to true if the error property is anything other than null, and for the success alert resolves to true if the registered prop is true and the error property is null.

The rest of this form is very simple, consisting of three Bootstrap form groups for the email address input, password input, and action buttons, respectively. The text and password inputs use the Bootstrap-Vue's b-form-input component, using the v-model.trim directive to bind the values to appropriate data properties, as well as automatically trimming any additional whitespace entered by mistake. Both of the action buttons have their disabled prop bound to a local loading property, which we'll bind up to our Vuex store state shortly.

Again, the script section for this component is more complicated, so we'll go over it one piece at a time:

<script>
export default {
 name: "login-form",
 props: {
 registered: {
 type: Boolean,
 required: false
 }
 }
}
</script>

As always, we've started with a default component export, specifying the component name and the props that we expect to be passed in. In this case, it's the single registered prop that controls the alert box visibility, as discussed previously. The local component state that we require includes the email and password properties that we bind to the form inputs, as well as an error property for any validation errors:

data() {
 return {
 email: "",
 password: "",
 error: null
 };
}

We're also binding the disabled state of the action buttons to a loading property, which we need to fetch from our Vuex store, so we'll use a computed property for this:

computed: {
 loading() {
 return this.$store.state.loading;
 }
}

We need two functions in the methods object of this component, the first of which is the login function, which performs the main action of the entire component:

login() {
 const payload = {
 email: this.email,
 password: this.password
 };

 this.$store
 .dispatch("login", payload)
 .then(response => {
 this.error = null;
 this.email = "";
 this.password = "";

 if (this.$route.query.redirect) {
 this.$router.push(this.$route.query.redirect);
 }
 })
 .catch(error => {
 this.error = error.data;
 });
}

We start by constructing a payload object consisting of the email and password properties, which we need on the API action method to authenticate the user. We then dispatch the Vuex login action that we defined earlier, passing it the payload object we just created. This is where we see the benefit of returning a promise from Vuex actions, as we can now wait for it to complete before doing different operations, depending on whether it succeeded or failed. If the action succeeds, the .then() block will be run, where we clear out the user input fields and error property, and then redirect to the URL in the query string if one exists. If the action fails, the .catch() block is run, where we simply assign the error data from the server to the local error property.

The second function we need is the close function, which gets called when the user exits the form rather than submitting it:

close() {
 this.$emit("close");
}

All we need to do here is emit the close event and let the parent AuthModal component handle the close logic.

 Register form component

The RegisterForm.vue component lives in the same directory, is very similar to the login form component we just discussed, and, as such, does not need much explanation. The template section looks like this:

<template>
 <form @submit.prevent="submit" class="p-2">
 <b-alert variant="danger" :show="errors !== null" dismissible
 @dismissed="errors = null">
 <div v-for="(error, index) in errors" :key="index">
 {{ error[0] }}
 </div>
 </b-alert>
 <b-form-group label="First Name">
 <b-form-input v-model.trim="firstName" />
 </b-form-group>
 <b-form-group label="Last Name">
 <b-form-input v-model.trim="lastName" />
 </b-form-group>
 <b-form-group label="E-mail">
 <b-form-input v-model.trim="email" />
 </b-form-group>
 <b-form-group label="Password">
 <b-form-input v-model.trim="password" type="password" />
 </b-form-group>
 <b-form-group label="Confirm Password">
 <b-form-input v-model.trim="confirmPassword"
 type="password" />
 </b-form-group>
 <b-form-group>
 <b-button variant="primary" type="submit"
 :disabled="loading">Register</b-button>
 <b-button variant="default" @click="close"
 :disabled="loading">Cancel</b-button>
 </b-form-group>
 </form>
</template>

As with the login form, we start with an alert box that will display if the form submission fails in order to feed back to the user what the validation errors were. At first glance, it looks like we're looping over an array of errors inside this alert box, but we're actually looping over the keys of an object. The value that corresponds to those keys is an array of error messages, so, in order to keep things simple, we just display the first message in the array. This error message structure is the default for ASP.NET Core MVC validation, which is why we need to handle things in this way. The rest of this template is much the same as the login form: a group of Bootstrap form input elements, and a pair of action buttons to submit the form or cancel and close the modal.

The bulk of the script section of this component is also very similar to the login form component we just looked at:

<script>
export default {
 name: "register-form",
 data() {
 return {
 firstName: "",
 lastName: "",
 email: "",
 password: "",
 confirmPassword: "",
 errors: null
 };
 },
 computed: {
 loading() {
 return this.$store.state.loading;
 }
 }
};
</script>

Where things get slightly different is in the main submit function within the methods object:

submit() {
 const payload = {
 firstName: this.firstName,
 lastName: this.lastName,
 email: this.email,
 password: this.password,
 confirmPassword: this.confirmPassword
 };

 this.$store
 .dispatch("register", payload)
 .then(response => {
 this.errors = null;
 this.firstName = "";
 this.lastName = "";
 this.email = "";
 this.password = "";
 this.confirmPassword = "";

 this.$emit("success");
 })
 .catch(error => {
 if (typeof error.data === "string" || error.data
 instanceof String) {
 this.errors = { error: [error.data] };
 } else {
 this.errors = error.data;
 }
 });
}

As we did with the login method, we construct a payload object to match the parameters we need for the user registration API action method, and pass it to a Vuex dispatch call. The success block is also very similar in that it clears out the local state properties, but also emits the success event so the parent component can switch tabs to the login form. The main difference is in the error block. As we've kept our API very simple, it can return either a single string value as the error message, or an object with a collection of arrays of error messages.

As such, we first determine if the response is a string or not, and then make sure the structure we assign to the local errors property is the same so that the UI displays the correct data. If the response is a single string value, we create an anonymous object with a single error key, where the value is an array containing the single error message returned in the error.data property.

As with the login form component, we also need a close method to emit the close event:

close() {
 this.errors = null;
 this.$emit("close");
}

 Auth navigation item component

Our AuthModal component is now complete, but we have no way of opening it to test it out. We're going to build a simple component that will reside in the navigation menu, and either display a login/register link, or a drop-down menu with account-specific links, depending on the authentication status of the user.

Create a ClientApp/components/app/AuthNavItem.vue file, and give it a template section that looks like this:

<template>
 <b-nav-item-dropdown v-if="isAuthenticated" right>
 <template slot="button-content">
 <i class="fas fa-user"></i>
 {{ fullName }}
 </template>
 <b-dropdown-item @click="logout">
 <i class="fas fa-sign-out-alt"></i>
 Logout
 </b-dropdown-item>
 </b-nav-item-dropdown>
 <b-nav-item v-else @click="login">
 <i class="fas fa-user"></i>
 Login / register
 </b-nav-item>
</template>

Note how we actually have two root-level elements in this template. Recall Chapter 1, Understanding the Fundamentals, where we looked at the fundamentals of Vue; we can only have a single root element in a component's template section. The trick here is that we're using the v-if and v-else directives on these elements, meaning only one will ever be rendered, which meets the requirements of the Vue template engine.

If the user is authenticated, we display a drop-down nav item, where the toggle button is a Font Awesome user icon, and if not, it simply contains a single logout link. If the user is not yet logged in, we display the login/register link, which we'll use to display the modal component we just created.

The script section for this component looks like this:

<script>
export default {
 name: "auth-nav-item",
 computed: {
 isAuthenticated() {
 return this.$store.getters.isAuthenticated;
 },
 fullName() {
 return `${this.$store.state.auth.firstName} ${
 this.$store.state.auth.lastName
 }`;
 }
 },
 methods: {
 login() {
 this.$store.commit("showAuthModal");
 },
 logout() {
 this.$store.dispatch("logout").then(() => {
 if (this.$route.meta.requiresAuth) {
 this.$router.push("/");
 }
 });
 }
 }
};
</script>

Most of this is fairly standard stuff by this point, so should be fairly self-explanatory. We have the isAuthenticated computed property, which hooks directly into the Vuex getter of the same name, and determines whether to show the login/register link or the user account drop-down menu in the preceding template. We also have the fullName computed property, which simply concatenates the logged-in user's first and last names to display in the navbar at the top of the page. We then specify two methods, one for each of the links we could be displaying, depending on authentication status.

The login method quite simply commits the showAuthModal mutation, which we defined earlier, to control the visibility of the login modal we just created. The logout method is a little more complex, and may not look particularly familiar yet. As we've done before, we dispatch a Vuex action, which we're expecting to return a promise (which it does) as we chain on a .then() block to process the successful response. We don't have to have a corresponding .catch() block unless we need to handle the error, so in this case we're keeping things simple. We also have no use for whatever parameter is passed to the success block, so we use a pair of empty parentheses for the first part of the fat arrow syntax callback function that we declare like this: .then(() => { //..process the response }).

The next part is where we've changed things quite a bit by checking the this.$route.meta.requiresAuth property. We'll see how to do this in a moment, but for now, you just need to know that we can assign any arbitrary values we'd like to the meta property of a VueRouter's route object. In this case, if a particular route requires authentication, we set the requiresAuth meta property to true. Now that we can tell if the page the user is currently on is locked down to authenticated users, we can decide whether or not to redirect them back to the home page after they've logged out.

 Wiring up the new components in App.vue

With these two new components in place, we need to wire them up so that they're actually displayed and can be interacted with. We have a few changes to make in the ClientApp/components/App.vue file, starting by importing our new components at the top of the script section:

import AuthNavItem from "./app/AuthNavItem.vue";
import AuthModal from "./app/AuthModal.vue";

Then we declare them as child components:

components: {
 AuthNavItem,
 AuthModal,
 CartSummary
}

We also need a computed property, which checks the visibility of the modal in the store:

computed: {
 showAuthModal() {
 return this.$store.state.showAuthModal;
 }
}

Finally, in the template section, we need to render the new components in the appropriate locations. Start by finding the <cart-summary /> element, and, directly beneath it, add the following:

<auth-nav-item />

Then, at the bottom of the template, before the final closing div tag, add the following:

<auth-modal :show="showAuthModal" />

This is enough to get us started with testing our UI changes. If you refresh the page now, you should see the login/register link in the upper-right corner of the screen. Try logging in with the credentials we used earlier, and make sure that, once you have logged in, the UI refreshes to show the drop-down menu item with a nested logout link. Similarly, try logging out and make sure that the UI refreshes back to showing the login/register link. You can also try registering for a new user account and make sure the login page is displayed with the appropriate success message if registration was successful.

 Protecting pages with navigation guards

At this point, we can open the login modal manually, but we don't yet have any protected routes to prevent access until the user has logged in. Let's remedy this by creating an empty checkout page ready for the next chapter, when we start processing payments. Create a ClientApp/pages/Checkout.vue component with a barebones template section as follows:

<template>
 <b-container class="page pt-4">
 <h1>Checkout</h1>
 </b-container>
</template>

Next, open up ClientApp/boot.js and, right beneath the other page component imports, add the following:

import Checkout from "./pages/Checkout.vue";

Finally, in the same file, change the routes array to include a route definition for this new checkout page:

const routes = [
 { path: "/products", component: Catalogue },
 { path: "/products/:slug", component: Product },
 { path: "/cart", component: Cart },
 { path: "/checkout", component: Checkout, meta:
 { requiresAuth: true } },
 { path: "*", redirect: "/products" }
];

As promised earlier, this is where/how we add meta properties to route definitions. We'll see how to actually prevent unauthorized access to this in just a moment, but with this convention all we need to do to prevent unauthorized access is to add the requiresAuth meta property to a route definition like this.

A little further down in this same file, we have a router.beforeEach function hook configured to start the page transition loading animation. We can hook into this same function to check the meta properties of the page being requested, and ensure that the user is authenticated if it's a page that requires it. Change this function to look like this:

router.beforeEach((to, from, next) => {
 NProgress.start();
 if (to.matched.some(route => route.meta.requiresAuth)) {
 if (!store.getters.isAuthenticated) {
 store.commit("showAuthModal");
 next({ path: from.path, query: { redirect: to.path } });
 } else {
 next();
 }
 } else {
 next();
 }
});

This might look pretty scary at first, but if we step through it, it should be fairly easy to grasp what's going on here. As previously discussed, in this hook we receive a to parameter, which corresponds to the route we're about to change to, and a from parameter for the current route we're navigating away from. What we've not talked about previously is that there could be multiple routes matched by the path we push to the router, and these are all available in the to.matched array. As such, we first use the built-in Array.some function to check if some of those matched routes have the requiresAuth meta property set to true. The syntax of this function probably looks pretty familiar, as it's similar to the LINQ Any function in C#, which performs the same action.

Once this first line makes sense, the rest of the function should as well. If none of the matched routes require authentication, or the user is already authenticated, we allow the navigation to continue by calling the next parameter function. Otherwise, we display the login modal by committing the showAuthModal mutation. Finally, we override the default call to next by instructing it to navigate to a route with the current URL path, as well as setting the redirect query parameter to the path of the route we were trying to access. This redirect parameter is what we then use after a successful login to decide where to send the user.

To test that everything is working correctly, open up the ClientApp/pages/Cart.vue file, locate the checkout button markup in the template section, and modify it to include a click handler like so:

<b-button variant="success" @click="checkout">
 Checkout
 <i class="fas fa-chevron-right"></i>
</b-button>

Then, add the following checkout function to the methods object in the script section:

checkout() {
 this.$router.push("/checkout");
}

Refresh the application again now. Ensure you are logged out and have at least one product added to your shopping cart, then navigate to the shopping cart page and click on the checkout button to make sure you are forced to log in.

 Setting the authentication state on app startup

At this point, you might think we are done. However, if you try refreshing the browser after navigating to the checkout page, you'll probably notice some unexpected behavior, as you'll be asked to log in again. There is also another far less obvious issue in that, after refreshing the page, the default axios headers will be cleared, including the bearer token we attached to the authorization header. Currently, the only way this header is set is after a successful login request—not something that the user should have to do after every page refresh. This also means that any future API requests would fail if those endpoints required authentication.

To fix the axios configuration issue, we need to check if the user is authenticated at the earliest point of the app startup, and set the authorization header if they are. This fix will also lead us onto the right path for solving the authentication state issue as well—the problem we're seeing is due to the current place that we're initializing our Vuex store if it already exists in local storage.

We can fix both of these issues in one go by adding the following block of code in the appropriate location of the ClientApp/boot.js file. Find the existing routes array, and then add the following code directly above it:

import axios from "axios";

const initialStore = localStorage.getItem("store");

if (initialStore) {
 store.commit("initialise", JSON.parse(initialStore));

 if (store.getters.isAuthenticated) {
 axios.defaults.headers.common["Authorization"] = `Bearer ${
 store.state.auth.access_token
 }`;
 }
}

As we'll be setting the default axios headers here, we first need to import axios itself. We then check local storage for any initial state that we configured to be persisted on every change to the store itself. If it exists, we commit the initialise mutation that sets this state. We can then use the isAuthenticated getter to check if the user is already authenticated, and if they are, we attach the access token in much the same way as we do after a successful login attempt.

You might be thinking that this code looks incredibly similar to what we originally put inside the initialise mutation itself, minus the axios configuration part, and you'd be right. However, we're not currently committing this mutation until the beforeCreate lifecycle hook of our main App.vue component. The issue is that the navigation guard we set up on our routes has already run before this hook does, so it thinks we're not authenticated when we actually are, and, as such, we get directed to the login modal when we shouldn't. By committing this mutation before the router navigation guard is even declared, we ensure that our store is initialized before the router decides if we're authenticated or not.

The mutation itself can now be simplified as well. It currently checks local storage for our initial state, and only performs an action if it finds it. Mutations shouldn't contain any logic, so if we check our mutation history it should be explicitly obvious what changes have been made. In this case, even though the mutation is always fired, it doesn't necessarily make a change to the state. We're now checking local storage for initial state outside of the mutation, and only commit it if we find it, so the mutation itself can be simplified to the following:

export const initialise = (state, payload) => {
 Object.assign(state, payload);
};

And, seeing as we're now committing it from the ClientApp/boot.js file, we no longer need the beforeCreate hook in ClientApp/components/App.vue, and as such it can be deleted.

This concludes our authentication and user registration feature, so make sure to give the application a good test to make sure everything is working properly. Refreshing the application should also no longer leave you as an unauthenticated user if you've previously logged in.

 Summary

Authentication is one area of building modern web applications that is made considerably more complicated by the separation of server-side API and client side SPA frontends. It's no longer a fairly simple case of using a cookie-based approach where the browser will automatically attach the appropriate cookies to every HTTP request by default. However, more and more applications are being developed in conjunction with other external applications and services, so moving down the route of token-based authentication using JWTs adds a great deal of flexibility to make the additional complications more beneficial to us.

In this chapter, we started out by looking at what's involved with setting up and configuring JWT-based authentication in an ASP.NET Core web application. We also added the necessary API endpoints for issuing JWTs when users successfully log in, as well as one for users to register for a new account. We then moved on to the client-side of the application and expanded our existing Vuex store to include the necessary actions, mutations, and getters necessary to consume these API endpoints and store the returned JWT in the user's browser for authenticating future requests.

We then built a custom authentication modal component that contains the HTML login and user registration forms that our users need to interact with the API. For now, we are leaving form validation to the server side of the application only, so we looked at a simple way of displaying server-side validation errors in our client-side components. We also built a second custom component for displaying either a login or logout link in the navbar, depending on the authentication state of the user.

We added an empty checkout page in preparation for the following chapter on payment processing, and locked it down to access by authenticated users only using VueRouter navigation guards and route meta properties. We also configured our application's router to trigger the login modal if an unauthenticated user attempts to access a protected page. Finally, we configured our app startup process to check if the user has already retrieved a valid access token before attempting to process a page request, so that they don't get forced to log in again every time they do a full browser refresh.

With authentication in place, we're now in a position to allow our users to start placing their orders and processing their payments. In the next chapter, we'll look at how to process payments using the brilliant Stripe payment service, which helps us to remain PCI-compliant with an incredibly simple-to-use library.

 Processing Payments

With our shopping cart and user registration/authentication features complete, we are now in a position to allow our users to complete their purchases and start processing their payment information using Stripe.

In this chapter, we're going to look at the following topics:

	Building a checkout form using Stripe elements

	Client-side form validation using VeeValidate

	Storing orders in the database

	Processing payments with Stripe's .NET client library

	Building a my account page with a list of previously placed orders

Let's start by discussing the reasons for using Stripe to process our payments.

 Why use Stripe?

Payment processing, or more specifically the handling of payment card data, is a very sensitive part of building an online shop of any kind. There are a lot of hoops to jump through to make sure you are PCI DSS compliant if you process payment card data on your own servers. However, luckily for us we don't need to, as we can make use of the Stripe online payment service to process that data on our behalf.

 Simple PCI compliance

By using Stripe, we make PCI compliance infinitely simpler, because our user's payment card data is sent to Stripe servers for processing rather than ours. Getting your head around how this works takes a little thought, but it is actually a pretty simple concept. Payment card details are first posted off to Stripe servers where they validate them and get pre-approval for the amount you wish to charge them. If all is successful, a token is returned, which can then be posted to our own server along with the rest of the order information, such as products, quantities, and delivery information. As part of our order creation process, we can call back the Stripe API and pass in the token we just received from the client in order to trigger the actual payment.

This begs the question, why don't we just charge the card on the first trip to the Stripe API instead of fetching a token? The answer is simply that the charge amount sent to Stripe from the client cannot be trusted due to the fact that it was calculated on the client side and could have been tampered with. Instead, we can recalculate the amount on our server to ensure its correctness, and then send this value to Stripe for the actual payment amount.

 Easy integration

PayPal is another very popular option for payment processing in online shops, and seeing as it's used so widely, you'd expect it to be fairly simple to set up and use. However, I've not found this to be the case when compared to how simply we can integrate Stripe into our apps. On top of this, unlike with PayPal, we don't need to redirect our users to an external website, or display a checkout form in a new modal window. With Stripe, we can build our checkout flow entirely within the boundaries of our own app domain; no redirects or modal windows required.

 Excellent dashboard

The Stripe API is fully featured and incredibly easy to use, and as such you can easily create pages in your app for all of your payment-related data, such as customers, charges, and refunds. However, the dashboard they provide is so good that there really is no need to if you don't explicitly have the requirement to do so. All the data you need is easily accessible, and the interface is very intuitive, making recurring payment management and issuing refunds an absolute breeze.

 Getting started with Stripe and client-side validation

Before we go any further, there are a few things that we need to do. We need to sign up for an account on the Stripe website and install a couple of third-party dependencies that we'll be using along the way as we build out the client-side payment processing feature.

 Registering for a Stripe account

This one's easy. Head over to https://stripe.com/ and click on the big green Create account button on their landing page. It's a simple signup form, so it doesn't really require any explanation.

Once you've registered and logged in, you'll be greeted with the Stripe dashboard where you'll have access to the Developers menu on the left-hand side, which contains an API Keys section beneath it. In here, you'll find both your public and secret Stripe API keys for testing. You'll need both eventually, but the public key belongs in your JavaScript code for the first part of the payment process, and the secret key belongs safely in the server-side C# code for the second part.

 Including the Stripe checkout JavaScript library

Unlike most client-side JavaScript packages, Stripe specifically recommends loading their library from their CDN. As they're the experts, we'll happily take their advice and add it to our Features/Shared/_Layout.cshtml file. It belongs at the bottom of the body tag like so:

<body>
 @RenderBody()

 <script src="https://js.stripe.com/v3/"></script>
 <script src="~/dist/vendor.js" asp-append-version="true"></script>
 @RenderSection("scripts", required: false)
</body>

 Installing VeeValidate for client-side validation

Finally, we need to install the VeeValidate npm package for performing client-side validation in our Vue components. Open up a Terminal in the root of your project and run the following command:

yarn add vee-validate

Next, we have a couple of changes to make to the ClientApp/boot.js file. At the top, beneath our list of import statements, add the following:

import VeeValidate from "vee-validate";

Then, just below the rest of the Vue.use(...) statements, add the following:

Vue.use(VeeValidate);

This installs VeeValidate for use in every one of our components, but we'll come back to this and discuss it in more detail later on in the next section.

 Building the checkout components

Enough theory! Let's start building our client-side checkout components to complete the checkout process of our phone shop. We'll start by making the modifications we need for the containing checkout page, which we'll use to control the display of the new child components we're about to create. Open up the ClientApp/pages/Checkout.vue file, then modify the template section as follows:

<template>
 <b-container class="page pt-4">
 <h1>Checkout</h1>
 <checkout-success v-if="success" :order="order" />
 <b-row v-else>
 <b-col cols="4" order="2">
 <cart-summary />
 </b-col>
 <b-col cols="8">
 <checkout-form @success="onSuccess" />
 </b-col>
 </b-row>
 </b-container>
</template>

At this point, everything we just added should be fairly self-explanatory. We're simply rendering three custom components (that we're yet to define), two of which are laid out in columns using Bootstrap-Vue layout components. We are also using the v-if and v-else directives to show either the <checkout-success /> component, or the <checkout-form /> and <cart-summary /> components side by side. To finish things off, we add a @success event handler on the checkout form component, and bind an order prop to the CheckoutSuccess component.

The script section for this component does not yet exist, but needs to look like this:

<script>
import CartSummary from "../components/checkout/CartSummary.vue";
import CheckoutForm from "../components/checkout/CheckoutForm.vue";
import CheckoutSuccess from "../components/checkout/CheckoutSuccess.vue";

export default {
 name: "checkout",
 components: {
 CartSummary,
 CheckoutForm,
 CheckoutSuccess
 },
 data() {
 return {
 success: false,
 order: null
 };
 },
 methods: {
 onSuccess(order) {
 this.success = true;
 this.order = order;
 window.scrollTo(0, 0);
 }
 }
};
</script>

Again, nothing particularly new here, but we start by importing the three new components we need before registering them with a standard component definition, just like we've done before. The local component state we need for this component includes a success boolean property to control which components to display, and an order property that will represent the successfully placed order object after a successful checkout request. Finally, we need a single onSuccess method that is invoked when the checkout form component emits the success event. All we do is set the success property to true in order to hide the checkout form and cart summary components, and show the success component, then set the order property to the object associated with that same event. As the checkout form will be quite long, we can also scroll back to the top of the page using window.scrollTo(0, 0).

 Building a cart summary component

We already created a cart summary component, which we're using in the navbar of every page. However, in the context of the checkout page, we need a more detailed view of the cart's contents. There is no issue with having multiple components with the same name, as long as they reside in different directories, so we can specify exactly which one to import. As such, create a ClientApp/components/checkout/CartSummary.vue file with a template section as follows:

<template>
 <div>
 <h4 class="d-flex justify-content-between align-items-center mb-3">
 Your cart

 {{ itemCount }}
 </h4>
 <ul class="list-group mb-3">
 <li v-for="(item, index) in items" :key="index" class="list-
 group-item d-flex justify-content-between lh-condensed">
 <div>
 <h6 class="my-0">{{ item.name }}
 ({{ item.quantity }})</h6>
 <small class="text-muted">{{ item.colour }},
 {{ item.capacity }}</small>
 </div>
 {{ item.price * item.quantity |
 currency }}

 <li class="list-group-item d-flex justify-content-between">
 Total:
 {{ total | currency }}

 </div>
</template>

There is quite a lot of markup here, but it looks far more complicated than it actually is due to the number of Bootstrap classes we need to apply to lay things out nicely. In fact, this is simply a slightly modified version of one of the official Bootstrap checkout page examples, which you can find here: https://getbootstrap.com/docs/4.0/examples/checkout/.

We will display a title that includes a Bootstrap badge containing the item count of the user's cart, then use a Bootstrap list group to loop over the items in the cart, and display some minimal information about each one. The last item in the list is the calculated total of the cart. The final thing to note is that we're making use of the currency filter that we created in the previous chapter. This just goes to show how useful Vue filters can be for following DRY principles and only writing this kind of presentation logic once before using it everywhere in our app.

The script section for this component is pretty simple:

<script>
export default {
 name: "cart-summary",
 computed: {
 itemCount() {
 return this.$store.getters.shoppingCartItemCount;
 },
 total() {
 return this.$store.getters.shoppingCartTotal;
 },
 items() {
 return this.$store.state.cart;
 }
 }
};
</script>

All we need are three computed properties to read the itemCount, total, and items properties from our central store, which we've already made use of in the preceding template.

 Building a checkout form component

As we saw from the checkout page template, side by side with the cart summary we just created sits the checkout form. The template section for this component is fairly long as there are quite a few fields for us to render. We'll go over it in sections, but first we need to create the ClientApp/components/checkout/CheckoutForm.vue file. As the name of the component suggests, it needs to contain our HTML form element, so let's start with that:

<template>
 <form @submit.prevent="submit">
 // ...rest of form omitted for brevity
 </form>
</template>

We prevent the default form submit action as we've done before, choosing to call a submit method instead, which we will define shortly. Delivery information is pretty important when selling physical products online, so we start by collecting the name of the customer we're delivering to:

<h4 class="mb-4">Delivery address</h4>
<b-row>
 <b-col>
 <b-form-group>
 <label>First name</label>
 <b-form-input v-model="firstName" data-vv-name="first name"
 v-validate="'required|min:3'" :state="state('first name')" />
 <b-form-invalid-feedback>
 {{ errors.first('first name') }}
 </b-form-invalid-feedback>
 </b-form-group>
 </b-col>
 <b-col>
 <b-form-group>
 <label>Last name</label>
 <b-form-input v-model="lastName" data-vv-name="last name"
 v-validate="'required|min:3'" :state="state('last name')" />
 <b-form-invalid-feedback>
 {{ errors.first('last name') }}
 </b-form-invalid-feedback>
 </b-form-group>
 </b-col>
</b-row>

When you read through this snippet, you'll notice we're only rendering two form fields, so it may look like a lot of markup for something so simple. However, there's quite a lot going on here that we've not seen before. Aside from Bootstrap grid components to lay these fields out in two columns, most of the preceding markup is validation-related.

 First look at client-side validation

So far, we've only dealt with two simple forms—login and user registration—both of which had their validation requirements handled entirely on the server. This isn't exactly making the most of a client-side UI framework such as Vue, so, seeing as this form is far more substantial, we'll add rich client-side validation using VeeValidate.

We've made use of the b-form-input component from Bootstrap-Vue before, but this time we've added a couple of extra directives:

<b-form-input v-model="firstName" data-vv-name="first name" v-validate="'required|min:3'" :state="state('first name')" />

The v-model directive is what we've used before to add two-way data binding to a local data property, but what we've not seen before are the data-vv-name and v-validate directives. These are both part of the VeeValidate library.

Let's start with the v-validate directive, seeing as the data-vv-name directive is entirely optional. We can use the v-validate directive to instruct VeeValidate on how to validate each individual form input. In this case, we use v-validate="'required|min:3'" to specify that this field is required, and has a minimum length of three characters. Each validation rule is delimited by a pipe character, and there are no limits as to how many rules can be applied to each field. There is a very comprehensive list of rules that we can use, and these are very similar to those builtin to the .NET framework via the System.ComponentModel.DataAnnotations namespace. The full list can be found at https://vee-validate.logaretm.com/index.html#available-rules.

As with validation in .NET, a set of sensible default validation messages come baked into the VeeValidate library; these will be used unless you explicitly specify a custom message. The only issue with these messages is that they use the data property name without any kind of modification. For example, in the preceding form field, we are validating the firstName property, and as such the default validation message will be something along the lines of The firstName field is required. This isn't ideal, but we can work around this by using the data-vv-name directive, like we did earlier. By using data-vv-name="first name", the error message is changed to The first name field is required.

Finally, we also made use of the state prop of the b-form-input component. We haven't used this prop before either, but it's simply used to set specific CSS classes to differentiate between different input states, for example, success and error. We're binding it to the result of a method that we'll define shortly, which takes the name of the form input to work out the state. Here, we are using state('first name') due to our usage of the data-vv-name directive, but, had we not overridden the name of the field, we'd need to use state('firstName') instead.

After each input field, we've used another component from Bootstrap-Vue that we've not used before—the b-form-invalid-feedback component:

<b-form-invalid-feedback>
 {{ errors.first('first name') }}
</b-form-invalid-feedback>

Here, we use the errors property, which is automatically added to the component by the VeeValidate library. More specifically, we use errors.first('first name') to find the first error message—if it exists—for the firstName field. Again, as we used the data-vv-name directive to override the default property name, we use first name rather than firstName. As we only show a single error message at a time, the order that we declare the validation rules in the v-validate directive matters. As we specified the required rule before the minimum length rule, the required field error message is displayed until at least one character is entered into the textbox. At this point, the minimum length rule kicks in until at least three characters are entered. Finally, once more than three characters have been entered, there are no error messages remaining and, as such, the field turns green to indicate its valid state.

The markup for the lastName field is almost identical, aside from the property name differences, so we won't spend any more time explaining it.

 Finishing the delivery address form fields

Directly beneath the closing </b-row> tag, we need a very similar form field rendering for the first line of the customer's delivery address:

<b-form-group>
 <label>Address</label>
 <b-form-input v-model="address" data-vv-name="address" v-
 validate="'required'" :state="state('address')" />
 <b-form-invalid-feedback>
 {{ errors.first('address') }}
 </b-form-invalid-feedback>
</b-form-group>

No need to explain any of this as it's exactly the same as the previous two fields, so we'll move straight on to the second line of the customer's delivery address:

<b-form-group>
 <label>Address 2 (Optional)</label>
 <b-form-input v-model="address2" data-vv-name="address 2"
 :state="state('address 2')" />
</b-form-group>

The address 2 field is optional, so there is no associated error component. Next up, we have the townCity field:

<b-form-group>
 <label>Town / city</label>
 <b-form-input v-model="townCity" data-vv-name="town / city" v-
 validate="'required'" :state="state('town / city')" />
 <b-form-invalid-feedback>
 {{ errors.first('town / city') }}
 </b-form-invalid-feedback>
</b-form-group>

This is followed by the county field:

<b-form-group>
 <label>County</label>
 <b-form-input v-model="county" data-vv-name="county"
 v-validate="'required'" :state="state('county')" />
 <b-form-invalid-feedback>
 {{ errors.first('county') }}
 </b-form-invalid-feedback>
</b-form-group>

Finally we have the postcode field:

<b-form-group>
 <label>Postcode</label>
 <b-form-input v-model="postcode" data-vv-name="postcode" v-
 validate="'required'" :state="state('postcode')" />
 <b-form-invalid-feedback>
 {{ errors.first('postcode') }}
 </b-form-invalid-feedback>
</b-form-group>

 Capturing payment information

The next field on our form isn't necessarily required, but it helps identify our customers in the Stripe dashboard when we're reviewing the list of payments we've received. The nameOnCard field is almost identical to those mentioned previously:

<h4 class="mb-4">Payment details</h4>
<b-form-group>
 <label>Name on card</label>
 <b-form-input v-model="nameOnCard" data-vv-name="name on card"
 v-validate="'required'" :state="state('name on card')" />
 <b-form-invalid-feedback>
 {{ errors.first('name on card') }}
 </b-form-invalid-feedback>
</b-form-group>

We could have assumed that the name of the purchaser is the same name that's entered as part of the delivery address, but that isn't always the case, so we've included this field to cover more bases. We'll send the value entered into this field to the Stripe API, which will embed it in the token we get back so it's included with the payment information when we submit it from the server.

The final field we need on the checkout form is the most important field—the card details field:

<b-form-group>
 <label>Credit/debit card details</label>
 <div ref="card" class="form-control"></div>
</b-form-group>

This is quite different from the previous fields we've defined. For a start, we don't use the b-form-input component as we've done for the others. Instead, we simply render an empty <div ref="card" class="form-control"></div> element. This is because we're going to configure the Stripe elements library to mount one of their custom credit card elements into this div—we'll see how to do this in the next subsection.

To finish the template section of this component, the last thing we need is the submit button to actually complete the checkout form:

<b-button :disabled="loading" type="submit" variant="primary"
size="lg" block class="mt-4 mb-4">
 Checkout

</b-button>

The only thing of note here is that we bind the disabled prop of the button to a loading property in our component, and we conditionally display a Font Awesome loading spinner based on the same property.

 Initializing Stripe elements

We have the containing div element that we wish to mount the credit card input to, but we've not yet done anything with it. We'll use a couple of life cycle hooks to set up and tear down the credit card input—add a script section to the checkout form component with the following contents:

<script>
import axios from "axios";

let stripe = Stripe(`PUBLIC_STRIPE_KEY_HERE`),
 elements = stripe.elements(),
 card = null,
 style = {
 base: {
 lineHeight: "24px"
 }
 };

export default {
 name: "checkout-form",
 mounted() {
 card = elements.create("card", { style: style });
 card.mount(this.$refs.card);
 this.firstName = this.$store.state.auth.firstName;
 this.lastName = this.$store.state.auth.lastName;
 },
 beforeDestroy() {
 card.destroy();
 }
}
</script>

We start by initializing some global variables outside of the component definition, the first of which is an instance of the Stripe object, which takes our public API key as an argument. You'll need to copy your own public key in here, which as we've already seen is available from the Developers | API Keys section of the Stripe dashboard. From this object, we can create an instance of the elements object using the stripe.elements() function. We can also create an empty card variable, as well as a style object, which we'll use to override the default styles applied to the credit card's input.

Inside the component definition, we define the mounted and beforeDestroy life cycle hooks. The mounted hook is used to call the elements.create() function, passing in card as the first argument to make sure we're creating a credit card input. As the second argument, we pass a new object with a style property, which references the style object we just declared. The output from this function is assigned to the empty card variable, before we call the card.mount() function in order to mount the element into the DOM. To do so, we have to pass a reference to the element we wish to mount to, which in this case is the empty div element that we rendered in the preceding template. Because we gave this element a ref="card" prop, we can access the reference to it using this.$refs.card. The beforeDestroy hook is more simple, and is only used to call the card.destroy() function to make sure that, the next time we reach the checkout page, we get a fresh credit card input created. We also retrieve the logged-in user's first and last names from our Vuex store to pre-fill the appropriate fields on the form.

 Validating form input state

The local component state we need includes a data property for each form field, as well as the loading property that we use to track when an API request is in progress to disable the submit button:

data() {
 return {
 nameOnCard: "",
 firstName: "",
 lastName: "",
 address: "",
 address2: "",
 townCity: "",
 county: "",
 postcode: "",
 loading: false
 };
}

VeeValidate will automatically validate our form fields as their values change based on the rules we applied using the v-validate directive. As errors are found, they will be picked up by our validation messages in the template and displayed automatically. However, we've also bound the state prop of each input to a method that determines that state based on whether there are any errors or not. This method looks like this:

methods: {
 state(field) {
 if (this.errors.has(field)) {
 return false;
 } else {
 return this.fields[field] && this.fields[field].dirty ?
 true : null;
 }
 }
}

There are three potential values that we are interested in passing as the state prop to a b-form-input component. If the input is in an error state, we need to pass false; if it is in a valid state, we need to pass true; and if it's in a neutral or untouched state, we need to pass null. Bearing this in mind, the preceding method takes the name of a field based on the data-vv-name directive we've been using, and then does a number of checks to determine which of the three states to apply.

If the errors property from VeeValidate contains any errors for this field, our decision is easy and we simply return false to set the input as invalid and give it a red border. However, if there are no errors for this field, our checks become slightly more complicated. We need a way of determining if the field is dirty or not—that is, whether it has been interacted with by our users. We can do this using another VeeValidate property called fields. This keeps track of all the fields that have validation rules applied, and also sets a dirty boolean property as soon as a user focuses on the input. This means that, to determine whether to set the input state as valid or not, we can check whether the field we are interested in is dirty or not. If it is, we return true to set the input as valid and apply a green border. Otherwise, we return null as the field has not yet been touched, so we leave it with the default border color.

At this point, our validation will be firing in real time as our users enter data into the form fields, and they will be presented with immediate feedback as to whether or not their input is valid. However, we still need to prevent the form from submitting if there are any errors, which we will do now as we define the submit method that we fire as the form is submitted. Add the following function to the methods object we just defined:

submit() {
 this.$validator.validateAll().then(result => {
 if (result) {
 this.loading = true;
 //...rest of function omitted for brevity
 }
 }
}

When we installed VeeValidate earlier, the $validator object was added to every component within the application. As such, we can use it to force the validation of all input fields in the component using the validateAll function, which returns a promise. When that promise resolves, we get a Boolean result that we can check to see if the form was valid or not. In this case, we set the loading property to true if it is, as we'll be performing an API request that we want to provide feedback to the user on. We don't need to do anything if the form is invalid, as all of the errors that have occurred will already be on display to the user due to the real-time feedback that we get out of the box with VeeValidate.

 Verifying payment details with Stripe

After we've checked that the form is valid, we can submit the details to Stripe's API and validate the card details. As previously discussed, if they are valid, we'll receive a token in return that we can process from our own server-side API later. Immediately after we set the loading property to true, add the following code:

submit() {
 this.$validator.validateAll().then(result => {
 if (result) {
 this.loading = true;
 const details = {
 name: this.nameOnCard
 };

 stripe.createToken(card, details).then(result => {
 if (result.error) {
 this.loading = false;
 } else {
 //...submit order here
 }
 }
 }
 }
}

We start by creating a new details object with a single name property to which we assign the value from the nameOnCard form field. We then call the stripe.createToken function, passing the card object that we initialized earlier, along with the details object that we just created. The second argument is optional, but by passing these additional details, they show up in the Stripe dashboard, making it easier to identify which customer the payment belongs to.

The createToken function returns a promise, so we wait for it to resolve by chaining a call to .then, before determining if the card details were valid or not by interrogating the result.error property. If it evaluates as a truthy value, the card details were invalid, so we stop the loading animation by setting the loading property back to false. The Stripe elements card component will already be highlighting the details in red to signify an error, so there is nothing more we need to do. Otherwise, if the result.error property is not a truthy value, we are ready to submit the order details to our API for processing.

 Submitting the order to the API

At this point, we've successfully performed our own client-side validation of the checkout form, and validated the payment card details with the Stripe API. Therefore, we are ready to submit the order to our API for processing. The first thing we need to do is construct an object to represent the order using a mixture of data from the local checkout form component state, and the cart items array from the global store. Add the following object declaration:

stripe.createToken(card, details).then(result => {
 if (result.error) {
 this.loading = false;
 } else {
 const order = {
 stripeToken: result.token.id,
 firstName: this.firstName,
 lastName: this.lastName,
 address1: this.address,
 address2: this.address2,
 townCity: this.townCity,
 county: this.county,
 postcode: this.postcode,
 items: this.$store.state.cart.map(item => {
 return {
 productId: item.productId,
 colourId: item.colourId,
 storageId: item.storageId,
 quantity: item.quantity
 };
 })
 };
 }
}

Most of the properties on this order object are self-explanatory, as we're just mapping the local form data that we're collecting for the delivery address of the customer. The stripeToken property is pretty important as, without this, we can't actually trigger the payment when we receive the order on the server. We get it by accessing the result.token.id property, which in this instance is the only piece of information we're interested in from Stripe's response. It could be argued that it's worth sending the full response object back to the server so that we can persist it in our database if we ever need additional information, but, to keep things simple, for now, we're only interested in the token.

As the name suggests, the items array contains the items the user has placed in their shopping cart. We loop over these using the built-in Array.map function, where we can use a lambda expression as the argument to access the properties of each item object within the array. The only properties we need are those required to identify the specific product variant being ordered, namely the productId, colourId, and storageId properties, as well as the quantity they wish to order. As such, we return a new object containing these properties, which ultimately results in a new array of objects containing only the properties we care about on the server. This is a common pattern in JavaScript that can be likened to performing a LINQ Select operation on a C# collection in order to project it to a different data structure. This is exactly what we've been doing with our EF database operations when we project our entity models to view models.

With our order object constructed and ready to go, the last piece of the puzzle is to actually send this off to our API for processing. Directly beneath the order object declaration, add the following API call:

axios
 .post("/api/orders", order)
 .then(response => {
 this.$store.commit("clearCartItems");
 this.$emit("success", response.data);
 this.loading = false;
 })
 .catch(error => {
 //process server errors
 console.log(error.response);
 this.loading = false;
 });

As always, we're making use of Axios to perform the API request, but this time we're doing it directly from a component method rather than using a Vuex action. There is nothing wrong with this approach, as the Vuex store is intended for global application state and functionality that is reused in multiple components. We don't need to reuse the state or methods in this component anywhere else in the application, so there is no need to add the additional overhead of writing Vuex actions and mutations. However, it can also be argued that we should be consistent and perform all API requests in the same fashion, that is, using Vuex actions. This also means we'd be using mutations as well, and as such we'd be able to use the Chrome devtools to see the history of everything that's happened. I don't feel particularly strongly either way so I'm happy to keep things simple, but if you'd rather use Vuex, then feel free to take the time to refactor things at this point.

After posting the order object to the /api/orders endpoint, we wait for the promise to resolve, then, as long as it was successful, we have a number of things to do. First of all, we commit the clearCartItems mutation (which we're yet to define), which as the name suggests will empty the user's shopping cart. We then emit a custom success event, passing the server's response.data property as its argument—recall that we listen for this event in the parent component to hide the checkout form and display a success message containing the order number. Finally, we stop the loading animation by setting the loading property to false. The clearCartItems mutation belongs in the ClientApp/store/mutations.js file and looks like this:

export const clearCartItems = state => {
 state.cart = [];
};

If the API call fails, we handle the failure by chaining the .catch block to the request. Even though we've done some client-side form validation, we should always be validating on the server as well. We've already seen how to handle server-side validation errors so we're leaving it out here, but it's worth noting that if this were a real app, we'd need to handle any server-side validation errors at this point too. All we do for now is log the response to the console so that we can see it easily, and then stop the loading animation, just like we did in the success block.

 Adding basic Bootstrap styling to Stripe elements

The very last thing we need to do with this component is override the styles of the Stripe card element so that it fits in with the styling of our other form fields. We've already fixed the height of the textbox, but if we focus it, we don't get the same outline as we do with the rest. Add the following style section to fix this:

<style lang="scss" scoped>
.StripeElement--focus {
 border-color: #80bdff;
 outline: 0;
 box-shadow: 0 0 0 0.2rem rgba(0, 123, 255, 0.25);
 transition: border-color 0.15s ease-in-out,
 box-shadow 0.15s ease-in-out;
}
</style>

 Building a checkout success component

The last component we need is a checkout success component to notify the user that their order has been placed, and provide them with the order number. We've already wired up the logic in the parent checkout page component to display this component after a successful API request has been made to place an order. Create the ClientApp/components/checkout/CheckoutSuccess.vue file, and add a template section as follows:

<template>
 <b-alert :variant="variant" show>
 <h3>Order placed successfully.</h3>
 <p>
 Your order number is {{ order.orderId }}.

 However, your payment card was declined -
 we will not ship your order until payment has been made.

 </p>
 <p>
 Click <router-link to="/account">here</router-link>
 to see your orders.
 </p>
 </b-alert>
</template>

All we're displaying here is a standard Bootstrap alert box, but even though the order has been placed, the payment could still have failed. As such, we bind the variant prop of the alert to a variant computed property, which will change the style of the box depending on the result. If the payment was successful, we display a success alert, which has a green background and border, and if the payment failed, we display a warning alert, which has a pale yellow background and border.

The rest of the template is simple—we have a heading to confirm the order was placed, as well as some text containing the new order number which we get from an order object which we will receive as a prop. As well as the order number, this object also contains the payment status of the order, which we then use to conditionally display a message stating that the order will not be shipped until payment has been taken. Finally, we display a link to an account page, which we'll build later to include a list of all the orders we have placed. The router-link component that we're using here ultimately renders a standard a tag with the appropriate href attribute. As such, it might make far more sense for us to use standard HTML elements wherever possible. However, seeing as we're using HTML5 history mode for client-side routing, we should always use the router-link component instead, as it intercepts the click event on the a element in order to prevent full page refreshes.

The script section for this component looks like this:

<script>
export default {
 name: "checkout-success",
 props: {
 order: {
 type: Object,
 required: true
 }
 },
 computed: {
 variant() {
 return this.order.paymentStatus === "Paid" ?
 "success" : "warning";
 }
 }
};
</script>

This is another standard component definition with a single order prop and variant computed property. We've already talked about these so we won't dwell on them for too long, but to reiterate, the order prop is the response we receive from the server after successfully placing an order. We use the paymentStatus property from this object to decide which variant to use for the alert box, giving success if payment was successful, and a warning if not.

 Building a my account page

Now that we're allowing our users to place orders, we should really give them a page to view all of their previously placed orders as well. You'd normally find this information somewhere within a My Account section of most online shops, so we'll build a my account page here as well. The following template section belongs in a new ClientApp/pages/Account.vue file:

<template>
 <b-container class="page pt-4">
 <h1>My Account</h1>
 <order-list :orders="orders" />
 </b-container>
</template>

Nothing special here, just the My Account heading and a new order-list component, which we'll define shortly. Note that we're binding an orders prop to a component property of the same name, which will eventually be populated with the list of orders that we'll retrieve from our backend API.

The script section for this page component is a little more involved, so we'll build it up in stages. Start by adding the following standard component definition:

<script>
import axios from "axios";
import OrderList from "../components/account/OrderList.vue";

export default {
 name: "account",
 components: {
 OrderList
 }
};
</script>

We know that we'll be making an API call to fetch our list of orders, so we'll start by importing the axios object. We also know that we've included the order-list component element in the preceding template section, so we will also import the OrderList component (again, that we're yet to define), and then register it as a child in the components object of our default export. Next, we'll define the data properties that we need for this component:

data() {
 return {
 orders: null
 };
}

As this is a simple component, we just need the single orders property, which will hold our list of orders from the server, which we then pass down into the order list component via props. As we've done with our previous page-level components, which require data from the server, we're going to add the following setData method:

methods: {
 setData(orders) {
 this.orders = orders;
 }
}

Finally, we need the following beforeRouteEnter hook to trigger our API request and call the setData method when it resolves:

beforeRouteEnter(to, from, next) {
 const vm = this;
 axios.get("/api/orders").then(response => {
 next(vm => vm.setData(response.data));
 });
}

Before we can use this page, we need to register it with our router configuration in the ClientApp/boot.js file. Find the section where we import our list of page components and add the following line:

//import page components
import Catalogue from "./pages/Catalogue.vue";
import Product from "./pages/Product.vue";
import Cart from "./pages/Cart.vue";
import Checkout from "./pages/Checkout.vue";
import Account from "./pages/Account.vue";

Next, find the routes array and add the following line:

const routes = [
 { path: "/products", component: Catalogue },
 { path: "/products/:slug", component: Product },
 { path: "/cart", component: Cart },
 { path: "/checkout", component: Checkout, meta:
 { requiresAuth: true } },
 { path: "/account", component: Account, meta:
 { requiresAuth: true } },
 { path: "*", redirect: "/products" }
];

Remember that ordering matters here, so make sure that this line sits above the catch-all wildcard route.

 Building the OrderList component

The only component we need for our basic My Account section is the order list component, which we're trying to render from the main page. Create a ClientApp/components/account/OrderList.vue file, and then add the following template section:

<template>
 <div>
 <h3 class="mt-4">Orders</h3>
 <table class="table table-striped table-hover">
 <thead>
 <tr>
 <th>Order #</th>
 <th>Placed</th>
 <th>Items</th>
 <th>Total</th>
 <th>Payment status</th>
 </tr>
 </thead>
 <tbody>
 <tr v-if="orders && orders.length > 0"
 v-for="order in orders" :key="order.id">
 <td>{{ order.id }}</td>
 <td>{{ order.placed | date }}</td>
 <td>{{ order.items }}</td>
 <td>{{ order.total | currency }}</td>
 <td>{{ order.paymentStatus }}</td>
 </tr>
 <tr v-else>
 <td colspan="5">You haven't placed any orders yet!</td>
 </tr>
 </tbody>
 </table>
 </div>
</template>

This might look quite long, but all it is is a simple div element containing a heading and a table. The tbody section of the table contains the only really interesting things that we need to look at, so we'll ignore the rest, as it's just standard HTML. We start by using the v-if and v-else directives on two table rows to display one or the other, depending on whether the user has placed any orders yet or not. If they have, we loop over the orders array, and for each one, we render a table row containing a number of columns describing the order. If they haven't, we just display a single table row with one column, which spans the full width of the table and contains a simple message to show that there are no orders to display.

In the row that we repeat for each of the user's orders, notice how we're making use of the currency filter that we created earlier for the order total column. You may have also noticed that we're using a new date filter that we've not seen before. We'll come back and see what this looks like shortly, but for now, let's look at the very simple script section of this component:

<script>
export default {
 name: "order-list",
 props: {
 orders: {
 type: Array,
 required: false
 }
 }
};
</script>

All we need to do is define the orders prop, which we specify is of type array and is not required for the case where a user has not yet placed any orders.

 Formatting dates with a reusable date filter

It is very common in web applications to need to display dates in a user-friendly format. We could format the dates on the server side of our application using the C# ToString overloads where we can specify the exact format we want. However, formatting data for display purposes is really a concern for the client-side applications that are consuming REST APIs. It would be very difficult for an API to start catering to all of the needs of any client application consuming it, so it is best to leave this type of logic for the clients to provide themselves. You could also be consuming an external API that you have no control over, so it is worth knowing how to handle this use case in JavaScript anyway.

In this sample application, our requirement is extremely simple, as all we want to do is display dates in the dd/MM/yyyy format. The following filter function, which belongs in the ClientApp/filters/index.js file, will do just that:

export const date = value => {
 const date = new Date(value);
 const dd = (date.getDate() < 10 ? "0" : "") + date.getDate();
 const MM = (date.getMonth() + 1 < 10 ? "0" : "") +
 (date.getMonth() + 1);
 const yyyy = date.getFullYear();

 return dd + "/" + MM + "/" + yyyy;
};

Unfortunately, this isn't anywhere near as simple as doing the same thing in C#, but at least this logic is now reusable across the whole of our application. Fundamentally, what we're doing here is extracting the day, month, and year parts of the date in order to put them back together in the right order.

We start by passing the argument value into the constructor of JavaScript's built-in Date object in order to make sure we are definitely dealing with a valid date, and to enable us to use some of the functions defined on that object. Next, we extract the day and month values, using the getDate and getMonth functions, which JavaScript gives us on Date objects. However, if the day or month is less than 10, these functions will return a single-digit value. When displaying dates, we expect that both the day and month values are always two digits long, that is, they get prefixed with a zero if they only have a single digit. As such, we start by checking if these values are less than 10, and prefix the value with a zero if they are. For the year, all we need to do is call the getFullYear function, which returns the four-digit value that we expect. Finally, we build our date string back up in the correct order, delimiting each part with a / character.

We still need to register this filter for use in our application, so open up the ClientApp/boot.js file and find and modify the following section where we configured our currency filter, as follows:

// filters
import { currency, date } from "./filters";

Vue.filter("currency", currency);
Vue.filter("date", date);

 Linking to the my account page

At this point, our my account page is complete, but the only link to it is only visible after a user successfully places an order. Let's add a link to it in the navbar so that our users can access it whenever they like. Open up the ClientApp/components/app/AuthNavItem.vue file, and then add the following b-dropdown-item:

<b-nav-item-dropdown v-if="isAuthenticated" right>
 <template slot="button-content">
 <i class="fas fa-user"></i>
 </template>
 <b-dropdown-item to="/account">
 <i class="fas fa-user"></i>
 My Account
 </b-dropdown-item>
 <b-dropdown-item @click="logout">
 <i class="fas fa-sign-out-alt"></i>
 Logout
 </b-dropdown-item>
</b-nav-item-dropdown>

 Fixing the register form component

Now that we've installed VeeValidate globally in our application, all of our components have an errors property by default. This has now broken the user registration form component, as we defined a local state property called errors, which now conflicts with the VeeValidate version. There are some open pull requests with the library creators on GitHub to prevent this kind of property declaration on components where we don't actually need validation. However, for now, we just need to deal with this by changing our property names.

Start by opening up the ClientApp/components/app/RegisterForm.vue file, and then modify the b-alert element at the top of the form tag in the template section as follows:

<b-alert variant="danger" :show="regErrors !== null"
dismissible @dismissed="regErrors = null">
 <div v-for="(error, index) in regErrors" :key="index">{{ error[0] }}</div>
</b-alert>

Next, in the data function of the script section, make the following changes:

data() {
 return {
 email: "",
 password: "",
 confirmPassword: "",
 regErrors: null
 };
}

In the submit method, we have a couple of changes to make, starting by making the following changes after dispatching the register action:

this.$store
 .dispatch("register", payload)
 .then(response => {
 this.regErrors = null;
 this.email = "";
 this.password = "";
 this.confirmPassword = "";
 this.$emit("success");
 })

Next are the following changes in the corresponding catch block of the same dispatch call:

.catch(error => {
 if (typeof error.data === "string" || error.data instanceof String)
 {
 this.regErrors = { error: [error.data] };
 } else {
 this.regErrors = error.data;
 }
});

Finally, we need to make the following changes to the close method:

close() {
 this.regErrors = null;
 this.$emit("close");
}

This completes the changes we need to make to fix this component, as well as completing all of our client-side changes for processing payments, so let's move on to the backend.

 Server-side payment processing

As part of our server-side payment processing, we're going to actually persist the user's orders into the database, and to do that we need to make some changes to our data model. We have a couple of new entities to create, and a few minor tweaks for our existing ones. We'll also be looking at some of the new features introduced in EF Core 2.0 such as owned entity types.

 Adding orders to the data model

The first and most obvious new entity we need is the Order entity. Create a new Data/Entities/Order.cs file with the following contents:

namespace ECommerce.Data.Entities
{
 public class Order
 {
 public int Id { get; set; }
 public int UserId { get; set; }
 public DateTime Placed { get; set; } = DateTime.UtcNow;

 public List<OrderItem> Items { get; set; } = new List<OrderItem>();
 public Address DeliveryAddress { get; set; }
 public PaymentStatus PaymentStatus { get; set; } =
 PaymentStatus.Pending;
 public AppUser User { get; set; }
 }
}

As with our other entities, we have an integer primary key named Id; in this case, we also need to link each order with a single user. As such, we have an integer foreign key named UserId, which will be wired up automatically by the default EF conventions. In addition to knowing which user the order belongs to, we also need to know the date the order was placed, so we also include a Placed DateTime property.

Next up, we have a list of OrderItem objects, which are navigation properties for a one-to-many relationship, which we'll set up when we create the OrderItem entity shortly. We then have the DeliveryAddress property, which we will soon define as an owned entity type—more on this later. The PaymentStatus property is an enum which, as the name suggests, is used to model the payment status of the order. Finally, we have the AppUser property, which is the navigation property that pairs with the UserId foreign key that we discussed earlier.

The OrderItem entity belongs in a new Data/Entities/OrderItem.cs file, and looks like this:

namespace ECommerce.Data.Entities
{
 public class OrderItem
 {
 public int Id { get; set; }
 public int OrderId { get; set; }
 public int ProductId { get; set; }
 public int ColourId { get; set; }
 public int StorageId { get; set; }
 public int Quantity { get; set; }

 public ProductVariant ProductVariant { get; set; }
 }
}

Again, as usual, we have the Id primary key property, but this time we will include an OrderId foreign key property to associate each order item with the order it belongs to. We then have the ProductId, ColourId, and StorageId properties, which together form another foreign key to the specific product variant that was ordered. Even though this is a composite key, EF is still capable of determining the relationship by convention without any kind of manual configuration on our part. We then have the Quantity property, which tells us how many of this product variant was ordered, enabling us to calculate the order total based on the price of the variant multiplied by the quantity. We'll need to be able to perform this calculation on the server side in order to verify the order total that we send to Stripe for processing. Finally, we have the ProductVariant navigation property, which ties in with the composite foreign key before it.

The PaymentStatus enum that we used on the Order entity is another new file that we need to create in the Data/Entities/PaymentStatus.cs directory. It looks like this:

namespace ECommerce.Data.Entities
{
 public enum PaymentStatus
 {
 Pending,
 Paid,
 Declined
 }
}

Nothing to explain here really, as this is just a standard C# enum class. By default, we set all new orders to use the Pending value, but we will update this to either Paid or Declined depending on the response from Stripe when we charge the customer later on.

We've already defined all the data properties we need for EF to infer the foreign key between orders and users. However, we have currently only defined the appropriate navigation properties to a single user from each order, and not the list of orders that belong to each user. Open up the Data/Entities/AppUser.cs file and add the following navigation property to resolve this:

namespace ECommerce.Data.Entities
{
 public class AppUser : IdentityUser<int>
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }

 [NotMapped]
 public string FullName
 {
 get { return $"{FirstName} {LastName}"; }
 }

 public List<Order> Orders { get; set; } = new List<Order>();
 }
}

By defaulting this property to a new empty list of Order objects, we avoid the potential null reference exceptions that would occur if we tried to perform any LINQ operations on this property before the user has actually placed any orders.

 Owned entity types in EF Core 2.0

The last new entity that we need is the Address entity, which, as previously discussed, will be configured as an owned entity type. These have been newly added in the latest version of EF Core, which at the time of writing is version 2.0, and can be compared with the similar concept of complex types in older versions of EF.

 Why use owned entity types?

Owned types enable us to model complex types such as addresses that can be reused in as many different owning parent types as we need, including multiple references to the same owned type from a single parent.

For example, in the context of most online shops, users will have both delivery and billing addresses. Each of these complex types will likely have the exact same fields, so we can save duplication by defining an Address type and referencing it twice for billing and delivery variants.

By default, owned types are stored as additional fields in the same table as their parent type. As an example, we could have an Address owned type with Address1 and Address2 fields. If we then referenced this type from a parent entity with a property named BillingAddress, we'd see these properties in the parent database table named BillingAddress_Address1 and BillingAddress_Address2. However, if you'd prefer, you can manually override the default in order to use a feature called table splitting, which splits the owned type into its own database table instead.

 Defining an owned type

Owned type classes are almost identical to normal entity classes. Following on from the preceding examples, and recalling the Order entity that we defined earlier, we need a new Data/Entities/Address.cs entity file, which looks like this:

namespace ECommerce.Data.Entities
{
 public class Address
 {
 [Required]
 public string FirstName { get; set; }
 [Required]
 public string LastName { get; set; }
 [Required]
 public string Address1 { get; set; }
 public string Address2 { get; set; }
 [Required]
 public string TownCity { get; set; }
 [Required]
 public string County { get; set; }
 [Required]
 public string Postcode { get; set; }
 }
}

Based on this class, the only clue that this isn't a standard entity is the lack of the Id primary key property. Owned types do not need primary keys, as they are given a shadow property as their primary key, which is assigned the same value as the primary key of their parent entity. Owned types are only ever accessible as navigation properties of the entities that own them, so there is never any confusion as to which entity they belong to. They are also included by default in every EF query for the parent entity, without the need for eagerly loading the navigation property.

 Configuring owned types

At the time of writing, a new version of EF Core has been released that gives us additional options in configuring owned types. As of EF Core 2.1, the OwnedAttribute class was added, meaning that we can now decorate the Address class with it in order to declare it as an owned type. However, my personal preference is to stick with the original method of explicit configuration by overriding the OnModelCreating method of our DbContext class as we have for our existing entity-related configurations. Open up the Data/EcommerceContext.cs class and update our OnModelCreating override as follows:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 base.OnModelCreating(modelBuilder);

 modelBuilder.Entity<Product>()
 .HasIndex(b => b.Slug)
 .IsUnique();

 modelBuilder.Entity<ProductFeature>()
 .HasKey(x => new { x.ProductId, x.FeatureId });

 modelBuilder.Entity<ProductVariant>()
 .HasKey(x => new { x.ProductId, x.ColourId, x.StorageId });

 modelBuilder.Entity<Order>()
 .OwnsOne(x => x.DeliveryAddress);
}

If you'd rather use the OwnedAttribute method instead, feel free to make sure you're running EF Core 2.1 and add the attribute to the Address class instead, as this really is a matter of personal preference. However, it is worth noting that owned entity types are never inferred by default, and must be configured in one way or the other.

While we're in this file, we might as well add the following orders table declaration to the bottom of the current list of DbSet<T> values:

public DbSet<Order> Orders { get; set; }

 Creating the orders migration

As with any change to our entity data model, we need to add a migration before the changes will be persisted to the database. Open a Terminal at the root of the project and run the following command:

dotnet ef migrations add Orders

Again, as with any migration, it is worth giving the generated migrations file a check to make sure everything looks OK, as it's easier to remove a migration before it reaches the database than it is to roll back and remove it afterwards.

 Installing and configuring the Stripe.net NuGet package

At this point, we're ready to add a controller and action method to receive orders and subsequently process the payment information of the user placing that order. Before we get that far, though, we need to install the Stripe.net NuGet package. Open the Add Package window of the NuGet package manager VSCode extension and type Stripe.net into the search bar. Make sure it is Stripe.net that you install and not just Stripe. At the time of writing, the latest version is 15.3.1.

 Configuring Stripe

If you followed along from the first section of this chapter, you should have already registered for an account on the Stripe website, but if not, you'll need to go back and do that now. If you have, we're going to need your Stripe secret key from the API Keys section under the Developers option in the left-hand menu of the Stripe dashboard. See the following screenshot to find what you're looking for:

Next, open up the Startup.cs file and locate the Configure method. At the very bottom, below the app.UseMvc(...) line, add the following:

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapSpaFallbackRoute(
 name: "spa-fallback",
 defaults: new { controller = "Home", action = "Index" });
});

StripeConfiguration.SetApiKey("YOUR_STRIPE_SECRET_KEY_HERE");

You'll need to add the appropriate Stripe import statement to the top of the file, and replace the placeholder string with your own secret key from the Stripe dashboard.

 Processing orders and payments

We're finally ready to actually receive an order, persist it to the database, and process the user's payment for that order. To do so, we'll create a new controller in the Features/Orders/Controller.cs file. The initial content for this controller contains a single Create action method, which looks like this:

namespace ECommerce.Features.Orders
{
 [Authorize]
 [Route("api/[controller]")]
 public class OrdersController : Controller
 {
 private readonly EcommerceContext _db;

 public OrdersController(EcommerceContext db)
 {
 _db = db;
 }

 [HttpPost]
 public async Task<IActionResult> Create([FromBody]
 CreateOrderViewModel model)
 {
 if (!ModelState.IsValid)
 return BadRequest(ModelState);

 //...rest of method omitted for brevity
 }
 }
}

This is a standard controller definition that will be very familiar to you, so we won't dwell on it for too long. The only things worth mentioning are that every action will require authentication, so we decorate the controller itself with the Authorize attribute, and that we're prefixing each action with api/orders using the Route attribute as well. Finally, we're expecting an instance of the EcommerceContext class to be supplied using constructor injection from the built-in DI framework.

For now, the only action method we need is the Create action, where we expect to bind an instance of the—as yet undefined—CreateOrderViewModel class. We'll come back to it later, but for now just know that it contains the same properties that we added to the Order object that we're sending from the CheckoutForm component on the client side. Finally, as with most action methods, we're failing early if there are any validation errors.

 Persisting the order object

The first thing we need to do to complete the Create action method is to persist the user's order into the database. The following code needs to be added immediately below the ModelState check:

var user = await _db.Users.SingleAsync(x => x.UserName == HttpContext.User.Identity.Name);

var order = new Order
{
 DeliveryAddress = new Address
 {
 FirstName = model.FirstName,
 LastName = model.LastName,
 Address1 = model.Address1,
 Address2 = model.Address2,
 TownCity = model.TownCity,
 County = model.County,
 Postcode = model.Postcode
 },
 Items = model.Items.Select(x => new OrderItem
 {
 ProductId = x.ProductId,
 ColourId = x.ColourId,
 StorageId = x.StorageId,
 Quantity = x.Quantity
 }).ToList()
};

user.Orders.Add(order);

await _db.SaveChangesAsync();

We start by retrieving the currently logged-in user based on their username, which we find on the HttpContext.User.Identity.Name property. By using the LINQ SingleAsync method, we decide to throw an exception if either zero or more than one user matches the query we supplied. This is something that should never happen, or the user wouldn't have been able to log in in the first place, so I'm happy to let an exception be thrown. Normally, we'd be logging these types of exceptions so that we can handle them appropriately.

Next, we will build up the Order object from the properties on the view model that we receive as a parameter to the action method. Most of this is plain object mapping, but for the order items, we use a LINQ Select statement to project the list of items from the view model into a new list of OrderItem objects that we can store in the database. This is very similar to how we project entity models into view models when querying the database.

Finally, we add the Order object to the Orders collection in our database context, then save changes to ensure that the order is persisted regardless of anything else that happens in the rest of the action method. The next and final thing we'll do is process the user's payment, but regardless of the outcome to that action, we want to make sure that the order is persisted so that we have a record of it should the user want to retry their payment at a later date. Remember that the PaymentStatus property of this order will default to Pending, so if anything goes wrong with the payment code, we'll still know not to process the order until the payment status changes.

 Calculating the total order price

Before we charge the payment to the customer, we need to calculate the total order price. We've already talked about this but, to reiterate, the calculation we did earlier cannot be trusted as it was done on the client side of our application. Client-side code is inherently vulnerable to malicious users, seeing as they have full access to it if they know how. Therefore, we didn't even bother to send the order total as part of the form submission, as we'll be calculating it again now that we're safely on the server side of the application.

Directly after saving the order to the database, add the following:

var total = await _db.Orders
 .Where(x => x.Id == order.Id)
 .Select(x => Convert.ToInt32(x.Items.Sum(i =>
 i.ProductVariant.Price * i.Quantity) * 100))
 .SingleAsync();

Since we called SaveChangesAsync, the order.Id property was generated for us so that we can now use it in this query. We find the single order in the database that matches the order ID that was just created, then use a LINQ Select statement to return an integer value that is calculated as the sum of the product variant price multiplied by the quantity of each order item. When sending this price to Stripe for charging the user, we need to send it as a whole number in pence (GBP), if you're in the UK like me. As such, I've multiplied the total by 100 to get the price in pence rather than pounds. Stripe supports multiple currencies, so if you're not in the UK, then do check their documentation for how to use your own national currency.

 Processing the payment with Stripe

With the order total calculated, we can send the details to Stripe to confirm the payment. Add the following code to the same action method:

var charges = new StripeChargeService();
var charge = await charges.CreateAsync(new StripeChargeCreateOptions
{
 Amount = total,
 Description = $"Order {order.Id} payment",
 Currency = "GBP",
 SourceTokenOrExistingSourceId = model.StripeToken
});

if (string.IsNullOrEmpty(charge.FailureCode))
{
 order.PaymentStatus = PaymentStatus.Paid;
}
else
{
 order.PaymentStatus = PaymentStatus.Declined;
}

await _db.SaveChangesAsync();

return Ok(new CreateOrderResponseViewModel(order.Id, order.PaymentStatus));

We start by creating a new instance of the StripeChargeService class before invoking its CreateAsync method. Stripe refers to payments as charges, so when we create a charge, we are committing the payment to Stripe for processing, and the user's card details that we validated earlier will be charged for the total we provide. The CreateAsync method takes an instance of the StripeChargeCreateOptions class, which models the details that we need to create a charge with Stripe.

The Amount property of this options class is the total that we just calculated, again remembering that it must be in pence rather than pounds. The Description property can be anything you like, but it is worth setting this to something that makes it immediately obvious what the payment was for if you intend to use the Stripe dashboard regularly. We've discussed currency already, but you'll need to set the Currency property depending on where you live. In this case, it's GBP. The SourceTokenOrExistingSourceId property is what Stripe will use to identify the card details to use for the payment, and must be set to the token that we received from our client-side Stripe API call.

In this case, we receive that token on the model.StripeToken property, which is what we assign. As a quick recap, when we submitted the payment card details to Stripe from the client side of our app, the card details were verified and stored on Stripe's servers, ready to be charged when we were ready to do so. The token we received in return is now used to identify those card details to be used with this payment request.

After calling the CreateAsync method, we receive an instance of the StripeCharge class in return, which contains a FailureCode property to work out if the payment was successful or not. If it was successful, we change the payment status of the order to Paid, and to Failed if it wasn't. We can then call SaveChangesAsync again to persist this change into the database. As previously mentioned, we're keeping things simple here and choosing not to persist any of the Stripe charge response details, as all of this information is readily available on the Stripe dashboard. However, if you'd prefer, you could extend your data model further in order to store the full response if you really wanted to.

Finally, we return an instance of our own CreateOrderResponseViewModel, which consists of the order ID and payment status values, which we then use in the client-side CheckoutSuccess component that we created earlier.

In the preceding code, we used a number of view models that we haven't created yet, so let's start by creating the Features/Orders/CreateOrderViewModel.cs file, which looks like this:

namespace ECommerce.Features.Orders
{
 public class CreateOrderViewModel
 {
 [Required]
 public string StripeToken { get; set; }
 [Required]
 public string FirstName { get; set; }
 [Required]
 public string LastName { get; set; }
 [Required]
 public string Address1 { get; set; }
 public string Address2 { get; set; }
 [Required]
 public string TownCity { get; set; }
 [Required]
 public string County { get; set; }
 [Required]
 public string Postcode { get; set; }

 public List<OrderItemViewModel> Items { get; set; }
 }
}

The associated Features/Orders/OrderItemViewModel.cs file, which looks like this:

namespace ECommerce.Features.Orders
{
 public class OrderItemViewModel
 {
 public int ProductId { get; set; }
 public int ColourId { get; set; }
 public int StorageId { get; set; }
 public int Quantity { get; set; }
 }
}

Finally, we'll create the Features/Orders/CreateOrderResponseViewModel.cs file, which looks like this:

namespace ECommerce.Features.Orders
{
 public class CreateOrderResponseViewModel
 {
 public int OrderId { get; set; }
 public string PaymentStatus { get; set; }

 public CreateOrderResponseViewModel(int orderId,
 PaymentStatus paymentStatus)
 {
 OrderId = orderId;
 PaymentStatus = paymentStatus.ToString();
 }
 }
}

This now completes everything we need for placing orders and processing payments. The last API we need to provide for our client-side functionality is the list of orders our users will see on their my account page.

 Adding an order list API endpoint

We have one last action method to add, which, thankfully, is a very simple one. If you've closed it, open the Features/Orders/Controller.cs file up again, and add the following action method beneath the one we already defined:

[HttpGet]
public async Task<IActionResult> List()
{
 var orders = await _db.Orders
 .Where(x => x.User.UserName == User.Identity.Name)
 .Select(x => new OrderListViewModel
 {
 Id = x.Id,
 Placed = x.Placed,
 Items = x.Items.Sum(i => i.Quantity),
 Total = x.Items.Sum(i => i.ProductVariant.Price * i.Quantity),
 PaymentStatus = Enum.GetName(typeof(PaymentStatus),
 x.PaymentStatus)
 })
 .ToListAsync();

 return Ok(orders);
}

We simply query the database for all orders where the associated user's UserName property matches the username of the currently logged in user, then project them to a new list of OrderListViewModel objects. Again, we'll create this in a moment, but it just contains the properties that we display in the table of orders on the my account page of our UI. The Id and Placed properties are very simple, but the rest are not so obvious. The Items property is the total count of items ordered, so we use the LINQ Sum operator on the Quantity field of all the items in the order. This totals all of the item quantities and gives us the total number of phones for each individual order. The Total field is essentially the same calculation that we did before sending the payment off to Stripe for processing. However, this time, we don't multiply by 100 at the end as we want to display this total in pounds and pence, rather than just pence.

The PaymentStatus field is the most interesting, because it requires a bit of hacking to get the string representation of the enum when querying directly from the database. Normally, we could have just done x.PaymentStatus.ToString() to get the string value that we want, but in this case, it always returns the numeric value instead. Presumably, this is because enums are stored as numeric values in the database when using them with EF models, and this operation by default will run at the database level. Therefore, by calling x.PaymentStatus.ToString() at this point, we'd just be calling it on a numeric SQL value rather than a C# enum. To fix this, we have to use the static Enum.GetName method, passing it the type of the enum we want to evaluate, and the value we want the name string for. This will force the query to hit the database first, before returning back to our C# code to evaluate this expression in order to return the data we want, but there isn't really a much nicer way of doing this with enums.

At the time of writing, EF Core 2.1 has been released, which includes value converters that enable us to store enum string representations within the database!

The view model we need for the preceding action method is the Features/Orders/OrderListViewModel.cs class, which looks like this:

namespace ECommerce.Features.Orders
{
 public class OrderListViewModel
 {
 public int Id { get; set; }
 public DateTime Placed { get; set; }
 public int Items { get; set; }
 public decimal Total { get; set; }
 public string PaymentStatus { get; set; }
 }
}

And, with this, we have finished our server-side API changes that are required for the client-side features we added earlier.

 Summary

We've covered a lot of ground in this chapter. We started off by looking at the reasons why we'd use Stripe for payment processing over competitors such as PayPal. We then proceeded to build a number of new client-side UI components for collecting the information we need in order to handle order processing on the server, as well as to keep our users informed of their order state. We also included rich client-side validation for the first time, using the popular VeeValidate package.

We looked at how Stripe processes payments and how we remain PCI-compliant by not storing any sensitive payment card information on our own servers. Instead, we send these to Stripe's API to deal with, meaning that we can deal with simple tokens to pass between our client and server in order to trigger the final payment from the safety of our server-side C# code.

We then moved on to the server side of our application and extended the data model so that we can store orders in the database. We also added a new controller for handling new orders, as well as listing all of the orders a user has placed. We looked at how to trigger payments from the server using our client-generated Stripe token, and how to tell if the payment was successful or not.

It's been another long chapter, but we really have only scratched the surface of what we can do with the combination of Stripe, Vue, and ASP.NET Core. In the next chapter, we're going to build an admin panel so that you can actually get your new products into the database without manually seeding them, as we've done so far.

 Building an Admin Panel

From the perspective of a customer, our online shop is now feature complete. They can browse our product catalog with the added abilities of sorting, filtering, and searching to help them find what they are looking for. They can then add their chosen products to their shopping cart before proceeding through the checkout process to pay for their order using the Stripe payment service. Finally, they can visit their account page to view a list of all of their previously placed orders.

However, right now, all of our products are hardcoded to be seeded manually into the database when the application starts. It's not ideal to need to deploy a new version of the application every time we need to add a new product, so in this chapter we're going to build a very basic admin panel where only those users with the Admin role can add new products to the catalog at any time.

The topics we're going to cover in this chapter include the following:

	Role-based access on both the client and server

	Reducing duplication using Vue component inheritance

	Building a custom type ahead component

	Building a custom multi-select component

	Vee-Validate remote validation

	Nested Vue-Router route definitions

 Extending the authentication endpoint with user roles

The current implementation of our authentication API endpoint already adds the users' roles to the JWT token in the form of claims. This is all we needed to do in order to support role-based authorization on the server side of the application, as ASP.NET Identity automatically decodes the JWT for us so that the claims we added are available on the HttpContext.User.Identity claims principle object.

However, on the client side of our application, those claims are still encoded into the JWT and we cannot access them without decoding it. This isn't a huge issue, and we could certainly bring in a new npm package that would be able to decode a JWT for us, but we don't really need to. Instead, what we'll do is return the list of roles a user is assigned to as part of the view model we send back to the client when they first authenticate. We can then store these roles in the Vuex store state of our application so that we have access to them from any client-side component. This is by far the simplest approach, with no real downside. The only thing to note is that we must always remember that client-side code is inherently insecure. As such, we still need to ensure that any API endpoint that serves role-specific data is also locked down using role-based authorization on the server, just in case a malicious user is able to bypass our page-level access restrictions on the client.

Start by opening up the Features/Authentication/Controller.cs file, then change the return statement at the bottom of the GenerateToken method as follows:

return new TokenViewModel
{
 AccessToken = new JwtSecurityTokenHandler().WriteToken(token),
 AccessTokenExpiration = expires,
 FirstName = user.FirstName,
 LastName = user.LastName,
 Roles = roles
};

We already created the roles variable to encode them into the JWT as claims, so it's just a simple matter of returning the raw list as part of the TokenViewModel we return to the client. Speaking of which, the updated version of said view model looks like this:

namespace ECommerce.Features.Authentication
{
 public class TokenViewModel
 {
 [JsonProperty("access_token")]
 public string AccessToken { get; set; }
 [JsonProperty("access_token_expiration")]
 public DateTime AccessTokenExpiration { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public IEnumerable<string> Roles { get; set; }
 }
}

That's all there is to it. After a user successfully authenticates, we've already configured our Vuex mutation in such a way that the full object response from the API call is persisted into the global application state. This means that the roles property we just added will now also be available to us on the client, as part of the auth object.

 Client-side role-based authorization

Now that we have access to the set of roles the current user belongs to, we can start preventing them from accessing certain pages of the application, depending on which roles they are assigned to. To make this process easier, we'll add the following Vuex getter function to the ClientApp/store/getters.js file:

export const isInRole = (state, getters) => role => {
 const result = getters.isAuthenticated && state.auth.roles.indexOf(role) > -1;
 return result;
};

As the name suggests, this getter function determines whether the current user is in a specific role, which we pass in as an argument. This is quite different to the getter functions we've defined before, as in addition to the state parameter we also make use of the optional getters parameter that we also have access to if we need it. On top of this, we then use fat arrow syntax to declare the role argument, which represents the value we pass in to the function to check for.

The function body itself is more straightforward. In order to determine whether a user is in a specific role, we first need to check whether the user has even logged in yet. The getters parameter gives us access to all of the other getter functions we've defined, including the isAuthenticated function, which we use to check whether the user is logged in or not. If they are, we proceed to check the state.auth.roles property to see whether the role we pass in exists within it or not, by checking whether its index is greater than -1. If both of these checks resolve to true, then the user is in the role we received as the function argument; if they don't both resolve to true, they aren't.

 Adding role checks to client-side routes

Now that we have an easy way of determining whether the current user is in a specific role or not, we need to extend our route guard functionality to include role checking as well as authentication status. To make sure only logged in users are allowed to proceed the checkout, we added a meta property to the checkout page route definition, as well as a router hook that checks whether the user is authenticated before allowing them to access the page. We need to extend this functionality to support an additional meta property, which we can use to specify which user role is required to access a specific page.

Let's start by modifying the router's beforeEach hook to check for a meta.role property on the route we're trying to navigate to, and if it finds one, ensure that the current user is in the correct role using the Vuex getter we just defined. Open up the ClientApp/boot.js file and locate the router.beforeEach hook that we defined earlier. Start by making the following amendments:

if (to.matched.some(route => route.meta.requiresAuth)) {
 if (!store.getters.isAuthenticated) {
 store.commit("showAuthModal");
 next({ path: from.path, query: { redirect: to.path } });
 } else {
 if (
 to.matched.some(
 route => route.meta.role && store.getters.isInRole(route.meta.role)
)
) {
 next();
 } else if (!to.matched.some(route => route.meta.role)) {
 next();
 } else {
 next({ path: "/" });
 }
 }
} else {
 //...omitted for brevity
 //...we'll make some more changes here shortly...
}

This looks fairly involved at first glance, but if we break it down, it's actually pretty simple. Notice that the code we've added is wrapped inside an if block that's already checked whether the route we're trying to navigate to requires authentication. Following that, we've also verified that the user is authenticated by triggering the login modal if they haven't. So, now that we know the user is authenticated, we can check to see whether the route we're trying to access has a role restriction. We can do this with three separate checks to decide what to do:

	If: The to route has the meta.role property set, and the user is in the role specified by its value; we allow them to proceed by invoking the next callback directly.

	Else if: The to route does not have the meta.role property set; we also allow them to proceed by invoking the next callback directly.

	Else: The user does not have access to this route, so we redirect them to the home page by invoking the next callback and overloading it with a different path property.

At this point, it might seem as though we are done. However, so far we've only added role checking to routes that require authentication. It may not be immediately obvious that we also need to perform the same checks on routes that don't necessarily require authentication. As an example, think about the shopping cart page of our app; you don't have to be authenticated to add products to your cart or access the shopping cart page to view them, but we may not want admin users placing orders. As such, we can allow them to add products to their cart before they authenticate, but once they log in, we prevent them from accessing the shopping cart page, so they can't proceed with the order.

In order to fix this, we need to make some similar changes in the else block from the preceding code example (there's a comment to make it more obvious!). These changes look like this:

if (to.matched.some(route => route.meta.requiresAuth)) {
 //...previous sample omitted for brevity
} else {
 if (
 to.matched.some(
 route =>
 route.meta.role &&
 (!store.getters.isAuthenticated ||
 store.getters.isInRole(route.meta.role))
)
) {
 next();
 } else {
 if (to.matched.some(route => route.meta.role)) {
 next({ path: "/" });
 }

 next();
 }
}

Again, this looks more complex than it actually is. This time, we only have two checks to make:

	If the to route has the meta.role property set, and either the user has not yet authenticated or they are in the role defined as the value of the meta.role property, we allow them to proceed by invoking the next callback directly.

	Else, we check if the to route has the meta.role property set, and if so overload the next callback with a different path value because the user cannot access this route. Otherwise, we simply invoke the next callback directly because the user can proceed.

To test out these changes, we need to actually go ahead and add the meta.role property to a few of our existing route definitions. Slightly further up in the ClientApp/boot.js file, locate the routes array and modify it as follows:

const routes = [
 { path: "/products", component: Catalogue },
 { path: "/products/:slug", component: Product },
 { path: "/cart", component: Cart, meta: { role: "Customer" } },
 {
 path: "/checkout",
 component: Checkout,
 meta: { requiresAuth: true, role: "Customer" }
 },
 {
 path: "/account",
 component: Account,
 meta: { requiresAuth: true, role: "Customer" }
 },
 { path: "*", redirect: "/products" }
];

If you re-run the application again now, then log in as our existing admin user account, you should be prevented from accessing either the Cart, Checkout, or My Account pages.

 Server-side role-based authorization

Remembering that we can't trust client-side authorization checks alone, the final change we need to make to prevent admin users placing orders is to protect the API endpoint that stores the order and processes the payment information. Open up the Features/Orders/Controller.cs file and amend it as follows:

[HttpPost, Authorize(Roles = "Customer")]
public async Task<IActionResult> Create([FromBody] CreateOrderViewModel model)
{
 //...method body omitted for brevity
}

That's all there is to it. In this instance, we only allow the single Customer role to place orders, but if we had multiple roles, then we could pass a comma-separated list of roles here instead.

 Hiding UI elements based on role

So, we're now preventing admin users from placing orders by locking down the API endpoint to customer users only; we are also preventing admin users from accessing the shopping cart, checkout, and my account pages, seeing as they are no use to a user who can't place orders. However, the links to those pages are still visible, and this isn't a good user experience, so let's go ahead and hide the links that admin users shouldn't be able to see.

The first thing we're going to do is hide the cart summary widget in the main navbar. Open up the ClientApp/components/App.vue file, then make the following amendments to the template section:

<b-navbar-nav class="ml-auto mr-4">
 <cart-summary v-if="isCustomer" />
 <auth-nav-item />
</b-navbar-nav>

Very simply, we conditionally render the cart summary component based on some kind of isCustomer property, which we're yet to define. This property will be defined as a new computed property, and looks like this:

computed: {
 ...
 isCustomer() {
 return (
 this.$store.getters.isInRole("Customer") ||
 !this.$store.getters.isAuthenticated
);
 }
}

Again, we make use of the isInRole getter function we defined earlier, but in this instance, it isn't enough to simply check whether the user is in the Customer role. We still need to show the cart summary widget to users who have not yet authenticated. As such, we assume that the current user is a customer if they belong to the Customer role or they are not yet logged in. This takes care of the only link to the shopping cart page, and subsequently the only link to the checkout page, seeing as it's situated on the shopping cart page itself.

Next, we need to hide the link to the my account page in the dropdown that appears after a user has logged in. Open up the ClientApp/components/app/AuthNavItem.vue file, and make the following changes to the template section:

<b-dropdown-item v-if="isCustomer" to="/account">
 <i class="fas fa-user"></i>
 My Account
</b-dropdown-item>

As we did before, we conditionally display this drop-down item based on an isCustomer property, which we'll now define as another computed property:

computed: {
 ...
 isCustomer() {
 return this.$store.getters.isInRole("Customer");
 }
}

In this instance, we only need to check whether the user belongs to the Customer role, as this component is only ever visible after a user has already logged in. Re-running the application again now should show that when logged in as an admin user, you no longer see links to the pages we prevented access to.

 Building the admin panel components

The admin panel section of our app is going to be a little different to what we've done so far, whereby we have a distinct page of the application for each feature. Instead, we're going to define a single entry point route definition, which contains a collection of nested routes for each section of the admin panel.

This should make more sense when we take a look at the template section of a new page-level component that we need to make. It belongs in the ClientApp/pages/admin/Index.vue file and looks like this:

<template>
 <b-container class="page pt-4">
 <b-row>
 <b-col cols="3">
 <b-list-group>
 <b-list-group-item to="/admin/orders">
 <i class="fas fa-shopping-cart mr-2"></i>
 Orders
 </b-list-group-item>
 <b-list-group-item to="/admin/products">
 <i class="fas fa-mobile mr-2"></i>
 Products
 </b-list-group-item>
 </b-list-group>
 </b-col>
 <b-col cols="9">
 <router-view />
 </b-col>
 </b-row>
 </b-container>
</template>

Essentially, all we're doing here is rendering two standard columns using the Bootstrap grid system. The first of these columns contains a Bootstrap list group control, which we're using as a type of subnavigation menu, and the second (wider) column contains a <router-view /> component. You may be wondering how this can possibly work, seeing as we're already rendering this page level component into a similar <router-view /> component in the root level App.vue component. The answer is simply that Vue and Vue-Router support nested routes in much the same way that ASP.NET supports nested master or layout pages.

We'll look at the route definitions in a moment, but essentially what we are doing here is defining another (nested) layout component specific to the admin panel. The subnavigation menu in the first column will be displayed on any child route of the /admin URL, and the <router-view/> component in the second column will be used to display the nested page component. If you look closer at the list group in the first column, you'll notice we've defined links to both the /admin/orders and /admin/products URLs—these are the two main pages we'll be creating to form the admin panel.

 Configuring nested route definitions

So, we've seen how to render child route level components in the template section of a parent component, but how do we configure this parent-child relationship with Vue-Router? As with most things in the Vue ecosystem, it's actually incredibly easy. Open up the ClientApp/boot.js file, as we have a few changes to make here. Firstly, find our existing list of page level component imports, and add the following additional imports, as shown in the following code snippet:

//import admin pages
import AdminIndex from "./pages/admin/Index.vue";
import AdminOrders from "./pages/admin/Orders.vue";
import AdminProducts from "./pages/admin/Products.vue";
import AdminCreateProduct from "./pages/admin/CreateProduct.vue";

Don't worry if you start seeing errors at this point, as only one of these components actually exists—we'll create the others shortly. Next, find the existing routes array and modify it as follows:

const routes = [
 ...
 {
 path: "/admin",
 component: AdminIndex,
 meta: { requiresAuth: true, role: "Admin" },
 redirect: "/admin/orders",
 children: [
 {
 path: "orders",
 component: AdminOrders
 },
 {
 path: "products",
 component: AdminProducts
 },
 {
 path: "products/create",
 component: AdminCreateProduct
 }
]
 },
 { path: "*", redirect: "/products" }
];

All we have to do is declare a children array property containing a list of nested route definitions that belong to the parent route. In this case, we define a root level /admin route, which renders the Index.vue component we just created but automatically redirects to the /admin/orders route by default. It has three child routes declared in its children array, one of which is the /admin/orders route we just discussed. The next is a /admin/products route, which will display our existing list of products. Finally, we have the /admin/products/create route, which will display a form for creating new products. Now, there is no limit to how many levels deep you can nest route definitions. We could easily have declared the last route as a child of the /admin/products route, but to keep things simple, we've left it at a single level of nesting.

There are a few caveats to be aware of when declaring child route definitions, the first of which is that the path value we assign is appended to that of the parent route. In this case, the parent route path is /admin, and the first child route path is orders. When accessing the nested orders page, we must use the full /admin/orders URL. With this knowledge, you'd expect that child route definitions would also inherit the meta property of their parent as well. Unfortunately, this isn't the case, so if you wanted to be completely explicit and ensure that each child route of the admin panel requires authentication, you'd need to duplicate the meta property on each one. However, it isn't necessary as long as we put some thought into how our role checking route guard works—which we already have! As a reminder, we do things like this:

if (to.matched.some(route => route.meta.requiresAuth) { ... }

The key thing to note here is that the matched property from the to route is an array of route definitions that match the URL we're trying to access. This means that if we try to navigate to the /admin/orders URL, we'd get both the /admin and /admin/orders route definitions in the to.matched array. Then, because we use the native JavaScript Array.some function, we're looking to see whether any of the matched routes require authentication. In our case, it means we don't need to duplicate the meta property, as navigating to any child route will result in the parent being checked for authentication restrictions.

 Refactoring components for reuse

The first page in our admin panel is the orders page, where we need to display a list of all orders placed by our customers. This sounds incredibly similar to the order list component that we built for displaying the customer-specific list of orders on the my account page. Rather than repeat ourselves, we can make some minor tweaks to the existing component so that it can be used in both contexts.

From the perspective of a customer, it's already doing what it needs to do, as the orders it displays are passed in via props, and are limited to only those orders placed by the currently logged in customer. From the perspective of an admin, we can display the orders for all customers by simply passing in a different list of orders. However, it would be good to quickly see which customer each order belongs to. We can add an additional column for this, but that column doesn't make sense in the context of a customer as they can only see their own orders anyway. We already have a simple way of determining whether a user is in a specific role, so we can conditionally display this column based on the users' role.

The first thing we're going to do is move the OrderList.vue component out of the ClientApp/components/account folder and into the new ClientApp/components/shared folder, seeing as we're now using it from multiple pages. Next, in the template section, we need to modify the thead section of the orders table as follows:

<thead>
 <tr>
 <th>Order #</th>
 <th v-if="isAdmin">Customer</th>
 <th>Placed</th>
 <th>Items</th>
 <th>Total</th>
 <th>Payment status</th>
 </tr>
</thead>

As discussed, we conditionally display an additional table header based on an isAdmin computed property that we'll define shortly. We need to make a couple of very similar changes to the tbody section of the same order's table element:

<tbody>
 <template v-if="orders && orders.length > 0">
 <tr v-for="order in orders" :key="order.id">
 <td>{{ order.id }}</td>
 <td v-if="isAdmin">{{ order.customer }}</td>
 <td>{{ order.placed | date }}</td>
 <td>{{ order.items }}</td>
 <td>{{ order.total | currency }}</td>
 <td>{{ order.paymentStatus }}</td>
 </tr>
 </template>
 <tr v-else>
 <td v-if="isAdmin" colspan="6">There are no orders to display.</td>
 <td v-else colspan="5">You haven't placed any orders yet!</td>
 </tr>
</tbody>

Again, we conditionally display the customer column based on the isAdmin computed property. We've also used the v-if and v-else directives on a pair of td elements to change the text we use if there are no orders to display, again based on whether or not the user belongs to the admin role. As you've probably already guessed, the isAdmin computed property is very similar to the isCustomer computed property we used earlier:

computed: {
 isAdmin() {
 return this.$store.getters.isInRole("Admin");
 }
}

This completes the changes we need to make to the component itself, but now that we've moved it to a different folder, we need to update the my account page to import it from the shared folder instead. Open up the ClientApp/pages/Account.vue file and make the following minor change:

...
import OrderList from "../components/shared/OrderList.vue";
...

We can now create the ClientApp/pages/admin/Orders.vue file, which is the next of our nested page components that will reuse the same OrderList.vue component that we've just refactored. The template section for this new page component looks like this:

<template>
 <order-list :orders="orders" />
</template>

This is so simple that it needs no explanation, so we'll move straight on to the associated script section. This is a bit more involved, so like we did previously, we'll build it up in stages. The base component definition looks like this:

<script>
import axios from "axios";
import OrderList from "../../components/shared/OrderList.vue";

export default {
 name: "orders",
 components: {
 OrderList
 },
 ...
};
</script>

We will start by importing axios, as we know we'll need to fetch the order list from the API, and then we'll import the OrderList.vue component that we just refactored and moved into the shared components folder. Finally, we will export a default component definition object with the name orders and a components declaration object to include the OrderList component we just imported.

The data requirement of this component is very simple, as all we need is an orders property to store the orders that we pass down as a prop to the order list component:

data() {
 return {
 orders: null
 };
}

As with our other page level components, we need a setData method for assigning the data that we fetch from the API to our data object:

methods: {
 setData(orders) {
 this.orders = orders;
 }
}

And finally, we need a beforeRouteEnter hook to fetch the data we need from the API, before calling the setData method we just defined:

beforeRouteEnter(to, from, next) {
 const vm = this;
 axios.get("/api/orders").then(response => {
 next(vm => vm.setData(response.data));
 });
}

Notice how we fetch the orders list from the /api/orders endpoint. This is the same endpoint we use for the order list on the my account page, which currently only returns the orders placed by the user who calls it. As such, we'll need to tweak this to return all customers orders if that user belongs to the admin role. We also need to add a new Customer property to the model we return to cater for the additional needs of the order list component in the context of an admin user. The updated List action method on the Features/Orders/Controller.cs file looks like this:

[HttpGet]
public async Task<IActionResult> List()
{
 var orders = await _db.Orders
 .Where(x => User.IsInRole("Admin") || x.User.UserName ==
 User.Identity.Name)
 .Select(x => new OrderListViewModel
 {
 Id = x.Id,
 Customer = x.User.FullName,
 Placed = x.Placed,
 Items = x.Items.Sum(i => i.Quantity),
 Total = x.Items.Sum(i => i.ProductVariant.Price * i.Quantity),
 PaymentStatus = Enum.GetName(typeof(PaymentStatus),
 x.PaymentStatus)
 })
 .ToListAsync();

 return Ok(orders);
}

We've updated the LINQ Where statement in the preceding query to first check whether the current user belongs to the admin role. If they do, the or statement will terminate early and simply return all orders in the database. If they don't, it will continue to work as it did before, by only returning the orders that belong to the logged in user. As mentioned previously, we've also added the Customer property to the model we return, which now looks like this:

public class OrderListViewModel
{
 public int Id { get; set; }
 public string Customer { get; set; }
 public DateTime Placed { get; set; }
 public int Items { get; set; }
 public decimal Total { get; set; }
 public string PaymentStatus { get; set; }
}

 Product list component

The order list is only the first part of our admin panel, and by far the simplest. The main feature we're ultimately aiming for here is a form component for creating new products. However, before we get that far, we need to display the existing list of products. We've already added the route definition for this component, as well as a link to it from the parent component.

Create a new ClientApp/pages/admin/Products.vue file, and start it off with the following template section:

<template>
 <div>
 <h3 class="float-left">Products</h3>
 <b-button variant="primary" to="/admin/products/create"
 class="float-right mb-4">
 <i class="fas fa-plus"></i>
 Add new product
 </b-button>
 <table class="table table-striped table-hover">
 ...
 </table>
 </div>
</template>

Nothing particularly special here, just the page title and a button, floated to the left and right, respectively, followed by an empty table element which will hold our list of products. This button will eventually link to the Create Product page, but until we define that component, it won't work. The missing section of the products table looks like this:

<thead>
 <tr>
 <th>#</th>
 <th>Name</th>
 <th>Short description</th>
 <th>Price</th>
 </tr>
</thead>
<tbody>
 <template v-if="products && products.length > 0">
 <tr v-for="product in products" :key="product.id">
 <td>{{ product.id }}</td>
 <td>{{ product.name }}</td>
 <td>{{ product.shortDescription }}</td>
 <td>{{ product.price | currency }}</td>
 </tr>
 </template>
 <tr v-else>
 <td colspan="3">There are no products to display.</td>
 </tr>
</tbody>

Again, there's nothing new here; the template markup of this component is virtually the same as the order list component, so we won't dwell on it any more. The script section for this component is also very similar to the Order List page, so much so that it would be a good test for you to try and complete it before reading the following code sample.

Done? Now, compare it with the following:

<script>
import axios from "axios";

export default {
 name: "products",
 data() {
 return {
 products: null
 };
 },
 methods: {
 setData(products) {
 this.products = products;
 }
 },
 beforeRouteEnter(to, from, next) {
 const vm = this;
 axios.get("/api/products").then(response => {
 next(vm => vm.setData(response.data));
 });
 }
};
</script>

As a quick recap:

	We import axios for fetching data from our API

	We export a default component object

	We name the component "products"

	We define a data object that contains a single products property for storing the data returned from the API

	We define a single setData method for assigning the data returned from the API to the products property of the component's data object

	We define a beforeRouteEnter hook to trigger the API call before invoking the setData method

 Creating a product form component

The last page of our admin panel is the Create Product page, which on the face of it should be fairly simple as it's just a standard form that posts some data back to our API. However, when adding a new product, we have fairly complex requirements whereby we need to select a value from a variable length list of options—potentially more than we'd want to add to a standard HTML select element. We also need to support the addition of a variable-length list of complex product variant objects.

Create a new ClientApp/pages/admin/CreateProduct.vue file, with an initial template section that looks like this:

<template>
 <div>
 <div class="clearfix">
 <h3 class="float-left">Add a new product</h3>
 <b-button variant="link" class="float-right"
 to="/admin/products">Back to product list</b-button>
 </div>

 <form class="mt-4 mb-4" @submit.prevent="save">
 ...
 </form>

 <add-variant-modal
 :colours="colours"
 :storage="storage"
 @submit="addVariant" />
 </div>
</template>

The full template section of this component is going to be pretty long due to the amount of fields we have to render, so we're going to build it up in stages. What we've added in the preceding code snippet should be fairly self-explanatory, but so far we have:

	A title and link back to the product list page, floated to the left and right, respectively

	An empty form shell with an @submit event handler preventing the default action and invoking a save method instead

	A custom <add-variant-modal /> component, which is yet to be defined, but will ultimately show a modal window containing a secondary form for adding a product variant

Before we begin filling in the missing form fields, cast your mind back to the previous chapter where we built out the checkout form component. We had a fair amount of duplication in the way we rendered each form field, which looked something like this:

<b-form-group>
 <label>First name</label>
 <b-form-input v-model="firstName" data-vv-name="first name" v-
 validate="'required|min:3'" :state="state('first name')" />
 <b-form-invalid-feedback>
 {{ errors.first('first name') }}
 </b-form-invalid-feedback>
</b-form-group>

That's a fair amount of HTML markup for a single form field, especially considering most of it does not change much, aside from the label text and the data property we bind to the input. Even if we were to render a select element rather than a text input, we'd still need the wrapping <b-form-group /> component, the <label> element, and the <b-form-invalid-feedback /> component for displaying validation errors. The other issue here is that we used a component level method called state for working out whether the input should be highlighted as valid/invalid, or left in its default state. Now that as we're declaring form fields in a different component, we'd likely need to duplicate that method to use here, which is certainly not very DRY.

 It would be much cleaner if we could do something more like this instead:

<form-input
 label="Name"
 name="first name"
 :error="errors.first('first name')"
 v-model="firstName"
 v-validate="'required|min:3'" />

Much more concise and easy to read! In fact, the only reason this isn't a single line of code is to make it more legible on narrower screen widths. For now, let's assume that this is exactly how we can render each of the form fields of the Create Product form, as we'll come back and define this component shortly. Back in the template section of the ClientApp/pages/admin/CreateProduct.vue file, start adding the following form fields between the empty form element tags:

<form-input
 label="Name"
 name="name"
 :error="errors.first('name')"
 v-model="product.name"
 v-validate="'required|min:10|uniqueProductName'" />

<form-input
 label="Short description"
 name="short description"
 :error="errors.first('short description')"
 v-model="product.shortDescription"
 v-validate="'required|min:10'" />

<form-text-area
 label="Description"
 name="description"
 :rows="5"
 :error="errors.first('description')"
 v-model="product.description"
 v-validate="'required|min:10'" />

Each of these components expects a number of props to control the differences in the content that they render. The label prop specifies the text in the label element, the name prop specifies the name of the field in the context of client-side validation, the error prop controls the visibility and text of the validation error displayed if we pass a value, and we then use v-model and v-validate as we would with any other native input element. In addition to this, the last component renders a text area rather than an input, and as such it has an additional rows prop to specify the number of rows to display.

Next, add the following markup directly after the previous components:

<b-row>
 <b-col>
 <form-input
 type="number"
 label="Talk time"
 name="talk time"
 :error="errors.first('talk time')"
 append="hours"
 v-model="product.talkTime"
 v-validate="'required|decimal'" />
 </b-col>
 <b-col>
 <form-input
 type="number"
 label="Standby time"
 name="standby time"
 :error="errors.first('standby time')"
 append="hours"
 v-model="product.standbyTime"
 v-validate="'required|decimal'" />
 </b-col>
 <b-col>
 <form-input
 type="number"
 label="Screen size"
 name="screen size"
 :error="errors.first('screen size')"
 append="inches"
 v-model="product.screenSize"
 v-validate="'required|decimal'" />
 </b-col>
</b-row>

Here, we're rendering three of our new <form-input /> components side-by-side using a standard Bootstrap grid. You may have noticed that on each of these three components we've specified the type prop, which we're using here to override the default input type of text to number instead. We've also used an append prop, which may not make much sense just yet. If you're familiar with Bootstrap at all, you'll know that they have styles for creating input groups. These are custom elements of sorts, where things like text or buttons can be displayed either before or after an input element, in a way that it looks as though it's part of the input itself. This is exactly what we want to do here, so we're assuming we'll have some props to enable us to specify the data to either append or prepend.

After these three inputs, we'll need the following:

<b-row>
 <b-col>
 <typeahead
 label="Brand"
 name="brand"
 :items="brands"
 :error="errors.first('brand')"
 v-model="product.brand"
 v-validate="'required|min:3'" />
 </b-col>
 <b-col>
 <typeahead
 label="Operating system"
 name="operating system"
 :items="os"
 :error="errors.first('operating system')"
 v-model="product.os"
 v-validate="'required|min:3'" />
 </b-col>
</b-row>

This is where things get a little more interesting, as instead of <form-input /> or <form-text-area /> components, where it's pretty easy to guess what will ultimately be displayed, we're using another custom <typeahead /> component instead. The brand and operating system fields are the first in which we need to allow a selection from an unknown amount of potential options. Right now, our lists of brands and operating systems are fairly small, but as the product catalogue grows in size, so too could these lists of options. As such, rather than displaying them in a standard HTML select element where they cannot be searched or filtered on, we'll create a custom typeahead component. This will give us the added flexibility that we can allow brands or operating systems that don't yet exist to be entered, at which point we can enter a new value into the database rather than linking the product to an existing one.

The only new prop on the <typeahead /> component is the items prop. To make sure this component is completely reusable, it won't be in charge of managing its own list of options, so we'll need to pass them down into the component from the parent using the items prop instead.

Next up, we have the product features field:

<multi-select
 name="features"
 label="Features"
 :items="features"
 :error="errors.first('features')"
 v-model="product.features"
 v-validate="'required'" />

Every product can have multiple features associated with it. We're not allowing new features to be added in order to keep things simple, but we still need a way of selecting multiple values for the same field. We could have rendered a standard checkbox list, but with rich SPA frameworks such as Vue, we can do much better. Here, we're using yet another custom <multi-select /> component, which has an almost identical interface to that of the <typeahead /> component we just saw.

We've now defined all of the standard inputs we need on this form, so all that's left is defining a way of adding multiple product variants. Displaying the variants that we've already added is easy, as it's a perfect fit for a standard HTML table element:

<div class="clearfix mt-4 mb-2">
 <h4 class="float-left">Variants</h4>
 <b-button size="sm" class="float-right" v-b-modal.variantModal>
 <i class="fas fa-plus"></i>
 </b-button>
</div>

<table class="table">
 <thead>
 <tr>
 <th>Colour</th>
 <th>Capacity</th>
 <th>Price</th>
 </tr>
 </thead>
 <tbody>
 <template v-if="product.variants.length > 0">
 <tr v-for="(item, index) in product.variants" :key="index">
 <td>{{ item.colour }}</td>
 <td>{{ item.storage }}</td>
 <td>{{ item.price | currency }}</td>
 </tr>
 </template>
 <tr v-else>
 <td colspan="3">You haven't added any variants yet</td>
 </tr>
 </tbody>
</table>

We start with a title and a button for toggling a modal, which we'll use to add new variants to the following table. In this case, the button makes use of the v-b-modal directive to specify the ID of the modal component we wish to toggle when the button is clicked—in this case, it's the modal we already rendered directly beneath the form we are currently filling out. Next, we render a simple HTML table to display the color, capacity, and price values of each variant we add by looping over the items in the product.variants array and rendering a table row for each. If there are no items in that array, we display a single row with appropriate text to notify the user.

The only thing to note is that as we've done before, we must wrap the first tr element here in a template tag. When using the v-if and v-else directives, if you wish to control the visibility of multiple elements with the same condition, you can wrap them in a template to avoid duplicating the v-if statement. In this case, we are only writing that statement once anyway, as we only declare a single table row, which may or may not be rendered multiple times. However, in this case, we still need to include the wrapping template element, or the conditionals simply don't work due to the way Vue processes them.

The last piece of this form includes a validation message for the product variants property, and the form submit button:

<div v-if="variantsError" class="error">
 {{ variantsError }}
</div>

<div class="clearfix">
 <b-button class="float-right" variant="primary" @click.prevent="save">Save product</b-button>
</div>

But why are we suddenly back to including explicit error messages rather than using the Vee-Validate computed errors property as we've done so far? With standard inputs such as text, number, and selections, Vee-Validate can handle their validation needs out of the box, without much work from us. However, we've not actually been using standard inputs in this form, as we've been using our own custom inputs instead (even though we're yet to see what they look like). We'll cover more of this later, but for now you just need to know that when building your own custom input components in Vue, if we want them to behave like an input, and therefore be validated like an input, we have to build them in a specific way. This is what we will be doing for our custom form-input, form-text-area, typeahead, and multi-select components, and ultimately we could also do it for the product variants as well.

We could have abstracted the table of product variants, along with the modal to add new ones, into another custom component that we could build to behave like an input. However, it does add additional complexity, so it is always worth weighing up the pros and cons of making the effort to do so. It's also worth seeing what the alternative approach is, so we can see clearly what the benefits of our current set of custom inputs truly are. Think about how many form inputs we've needed to render on this form, and how many individual error properties we'd need to create and track. We could do what Vee-Validate does and have a single errors collection, but we'd still need to manually validate each input and decide when and if an error is pushed into that collection. That being said, if this were the only custom input you needed to build, it may not be worth it to save the effort of tracking a single validation error.

The template section for this component is now complete, so add a script section with the following initial contents:

<script>
import axios from "axios";
import FormInput from "../../components/shared/FormInput.vue";
import FormTextArea from "../../components/shared/FormTextArea.vue";
import Typeahead from "../../components/shared/Typeahead.vue";
import MultiSelect from "../../components/shared/MultiSelect.vue";
import AddVariantModal from "../../components/admin/AddVariantModal.vue";

export default {
 name: "create-product",
 components: {
 FormInput,
 FormTextArea,
 Typeahead,
 MultiSelect,
 AddVariantModal
 }
}
</script>

As usual, we start by importing axios for our API calls, as well as each of the new components we've discussed while defining the template of the component. We then export a default component object named create-product, specifying each of the imported components as children using the components object.

The data requirements of this component are fairly simple:

data() {
 return {
 product: {
 name: "",
 shortDescription: "",
 description: "",
 talkTime: "",
 standbyTime: "",
 screenSize: "",
 brand: "",
 os: "",
 features: [],
 variants: []
 },
 brands: [],
 os: [],
 features: [],
 colours: [],
 storage: [],
 variantsError: null
 };
}

We have a product object with empty properties for each of the fields we need to send off to our API to create a new product. Then, we have empty brands, os, features, colours, and storage arrays for storing the options we're passing down into our custom typeahead and multi-select components. Finally, we have the variantsError property, which as we already discussed will track the error state of the product.variants array.

Ultimately, there will be three methods that we need, the first of which is the setData method, which looks like this:

methods: {
 setData(data) {
 this.brands = data.brands;
 this.os = data.os;
 this.features = data.features;
 this.colours = data.colours;
 this.storage = data.storage;
 }
 ...
}

As with our other page level components, we use this method as a way of assigning the data returned from an API call in a beforeRouteEnter hook. Next, we have a save method, which we'll use to save the product data by calling an API endpoint:

methods: {
 ...
 save() {
 if (this.product.variants.length <= 0) {
 this.variantsError = "You must add at least one product variant.";
 } else {
 this.variantsError = null;
 }

 this.$validator.validateAll().then(result => {
 if (result && !this.variantsError) {
 axios
 .post("/api/products", this.product)
 .then(response => {
 this.$router.push("/admin/products");
 })
 .catch(error => {
 //handle server side validation
 console.log(error.data);
 });
 }
 });
 }
}

As we're not using Vee-Validate to validate the product.variants array, we start by ensuring there is at least one item in the array. If not, we set an appropriate error message against the variantsError property. Next, we validate the rest of our data properties using the $validator.validateAll function, wait for it to resolve, then check the result property.

If the result property is true and the variantsError property does not have a value, we can proceed to make our API call since the form is in a valid state. Otherwise, we do nothing, as our errors are already visible to the user so they know what they need to fix. To save the product to the database, we HTTP POST the product object to the /api/products endpoint. If the request is successful, we simply redirect back to the products list page. If it fails, all we do is log the result to the console for debugging purposes in order to keep things simple. Again, in a real application, this is where we'd handle server-side validation.

The last method we need on this component is the addVariant method:

methods: {
 ...
 addVariant(variant) {
 this.product.variants.push(variant);
 }
}

This is the method we invoke when our custom <add-variant-modal /> component emits the submit event, and we use it to push the new variant object into the product.variants array.

To finish off the script section for this component, we need the following beforeRouteEnter hook:

beforeRouteEnter(to, from, next) {
 const vm = this;
 axios.get("/api/filters").then(response => {
 next(vm => vm.setData(response.data));
 });
}

Nothing to explain here as we've used a similar hook on most of our page level components. The only thing to note is that we're reusing the /api/filters API endpoint that we defined way back in Chapter 5, Building a Product Catalog—it already has all the data we need, and nothing else that we don't, so we might as well make the most of it.

To finish this component entirely, we need the following simple style section in order to make our product variants error match the default Bootstrap styling for error messages:

<style lang="scss" scoped>
.error {
 font-size: 80%;
 color: #dc3545;
}
</style>

 Creating an add variant modal component

In the previous component, we rendered a custom <add-variant-modal /> component, which we are still to define. Create a ClientApp/components/admin/AddVariantModal.vue file and give it the following template section:

<template>
 <b-modal ref="modal" id="variantModal" title="Add a new variant" ok-title="Add" @ok="submit">
 <form @submit.prevent="submit">
 <typeahead
 label="Colour"
 name="colour"
 :items="colours"
 v-validate="'required|min:3'"
 :error="errors.first('colour')"
 v-model="colour" />

 <typeahead
 label="Capacity"
 name="capacity"
 :items="storage"
 v-validate="'required|min:3'"
 :error="errors.first('capacity')"
 v-model="capacity" />

 <form-input
 type="number"
 label="Price"
 name="price"
 :error="errors.first('price')"
 prepend="£"
 v-model="price"
 v-validate="'required|decimal'" />
 </form>
 </b-modal>
</template>

Most of this will look very familiar by now, as we are simply rendering a group of our new custom input components inside a <b-modal /> component. The only things to note are that for the first time we use the prepend prop of our <form-input /> component, we assign a ref of modal to the <b-modal /> component, and we listen for the @ok event of the <b-modal /> component in order to invoke the submit method, which we'll look at shortly.

The script section for this component is also fairly simple. The main component definition looks like this:

<script>
import FormInput from "../shared/FormInput.vue";
import Typeahead from "../shared/Typeahead.vue";

export default {
 name: "add-variant-modal",
 components: {
 FormInput,
 Typeahead
 },
 props: {
 colours: {
 type: Array
 },
 storage: {
 type: Array
 }
 }
};
</script>

We need to make use of our custom form input and typeahead components, so we start by importing those and then export another default component object. This time, it is named add-variant-modal, and optionally has two props: a colours array and a storage array. These are the predefined options that we can pick from when adding a new product variant, but they aren't required as we can still add a new value for each of these if there aren't any to begin with.

In addition to the preceding components and props definitions, we need the following data function:

data() {
 return {
 colour: "",
 capacity: "",
 price: ""
 };
}

This should be fairly self-explanatory, as each product variant has individual colour, capacity, and price properties.

Finally, we need the following submit method:

methods: {
 submit() {
 this.$validator.validateAll().then(result => {
 if (result) {
 const payload = {
 colour: this.colour,
 storage: this.capacity,
 price: this.price
 };

 this.$emit("submit", payload);
 this.$refs.modal.hide();
 this.colour = "";
 this.capacity = "";
 this.price = "";
 }
 });
 }
}

As with our other form-based components, we start by validating the inputs using $validator.validateAll. If all is well, we construct a payload object, which represents the product variant we need to pass back up to the parent form so that it can be added to the list of product variants. In order to achieve that, we emit a submit event, passing the payload object as an argument. Once this is done, we can close the modal using the ref property we assigned earlier by calling the $refs.modal.hide() function. Finally, we can clean up by resetting the values of the colour, capacity, and price properties.

 Vue component inheritance

Our CreateProduct.vue page is now complete, but the vast majority of its complexity has been abstracted away into a set of reusable custom input components. We are still to define these, but they include FormInput.vue, FormTextArea.vue, MultiSelect.vue, and Typeahead.vue. As a quick recap, the idea here is to reduce duplication. When rendering a single form field with Bootstrap styling, we tend to have multiple nested div elements with different classes, a label, an input of some kind, and a validation message. We also need some logic in order to work out which class to apply to the input to give immediate feedback as to whether the input is valid or not—this would also be duplicated, at least at the containing component level.

As an example, without our custom components, if we were to render a text input field, we'd need the following markup:

<b-form-group>
 <label>First name</label>
 <b-form-input v-model="firstName" data-vv-name="first name" v-
 validate="'required|min:3'" :state="state('first name')" />
 <b-form-invalid-feedback>
 {{ errors.first('first name') }}
 </b-form-invalid-feedback>
</b-form-group>

The bold highlighted sections are really the only bits of that markup that change depending on the specific form field in question. The label text obviously needs to change, as does the name of the property in the context of anything to do with validation. Also, the input element itself can change. For example, we could swap out the <b-form-input /> component for a <b-form-select /> instead, or even one of our custom <typeahead /> or <multi-select /> components.

So, how do we go about creating a component to encapsulate this duplicated functionality, while still being flexible enough to handle different types of input, all while still playing nicely with Vee-Validate? The obvious option is to take a single custom component that takes a type prop, then render a collection of different inputs, each using a v-if directive to control visibility based on the type passed in. Something like this:

<template>
 <div class="form-group">
 <label>{{ label }}</label>
 <input v-if="type === 'text'" type="text" />
 <input v-if="type === 'number'" type="number" />
 <select v-if="type === 'select'">
 ...
 </select>
 </div>
</template>

<script>
export default {
 name: "input-example",
 props: {
 type: {
 type: String,
 required: true,
 default: 'text'
 }
 }
}
</script>

However, the problem we'd face here is that the more input types we need to support, the bigger the template section will get. Aside from readability, if you are interested in SOLID principles, you'll also notice that it would violate the open/closed principle. We'd need to modify this component every time we hit an input type that we haven't yet catered for.

Instead, a better approach would be to use inheritance. Just like in C#, Vue components can extend, or inherit from, another component. Now, there are some gotchas that we need to be aware of, the biggest of which is that only the behavior of a component can be inherited—that is, the script section. The template section cannot be inherited with our current HTML only templates; we'd need to bring in some kind of rendering engine such as Jade or Pug, and use partials to achieve a similar goal. However, we still have a fairly clean option of declaring the base component as a child of the inheriting component, and using slots to render child-specific content within the parent template. This will make more sense if we look at an example.

 Defining a form input base component

Bearing everything we've already discussed in mind, let's go ahead and define a base component for all of our form input elements. Create a ClientApp/components/shared/FormInputBase.vue file with the following template section:

<template>
 <div class="form-group">
 <label v-if="label">{{ label }}</label>
 <slot><!--input will eventually go here --></slot>
 </div>
</template>

So far, this is very simple. We render a standard div element with a Bootstrap-specific class of form-group, containing an optional label element, and a single slot where we can insert input-specific markup in any parent components. This way, if a consuming component does not pass in a label prop, the label simply does not get rendered.

The script section is a little more interesting:

<script>
export default {
 name: "form-input-base",
 props: {
 label: {
 type: String
 },
 name: {
 type: String
 },
 value: {
 type: [String, Array]
 },
 error: {
 type: String
 }
 },
 computed: {
 classes() {
 return {
 "form-control": true,
 "is-valid": !!!this.error && this.value.length > 0,
 "is-invalid": !!this.error
 };
 }
 }
};
</script>

Remembering that the properties and methods that we define here can be inherited, we declare a selection of props that are not directly used within this component. In fact, the only one that is is the label prop. So, knowing that we'll be using this component as a base for our other input components, we declare the label, name, value, and error props, as well as a classes computed property.

Regardless of the type of input we are trying to render, we must give it a name so that it can be validated by Vee-Validate—hence the name prop. Also, validation will be done by the parent form component, which means any errors will be placed in the errors computed property of that component. Remember that, by default, Vee-Validate injects this property into every component we create, meaning the errors we'd see in this component are different to those of the parent. Therefore, we must rely on the parent to pass any error message that we need to display down within the error prop. This is absolutely fine, as in order to make it as reusable as possible, it probably shouldn't be responsible for its own validation anyway. The value prop should be self-explanatory: we'll be using it to bind the value of the input! When building custom input components, if we want to make use of the v-model and v-validate directives from consuming components, there are two rules to abide by. First, the child component must declare a value prop, and second, it should emit an input event when the underlying value actually changes. More on this later.

The classes computed property is how we determine whether the input is in an untouched, valid, or invalid state. We're returning an object so that we can do something like :class="classes" on one of our inheriting input controls. Every input in a Bootstrap-styled application has a class of form-control, so we always set that class by giving it a value of true. However, the is-valid and is-invalid classes may look a little strange to you if you are not familiar with JavaScript. By putting double exclamation marks in front of a statement, it coerces that statement into a Boolean. For example, if we write !!this.error, it treats the string value of the error property as a Boolean. As such, if we provide a value in the error prop, then this statement will return true. On the other hand, if we provide a value but change the statement to !!!this.error, then it will return false. Basically, if we don't provide an error prop, and the value prop has something in it, the input is valid. If we do provide an error prop, then the input is invalid.

 Inheriting from a base component

Now that we have our base component in place, let's look at how to make use of it. We'll start with the most commonly used FormInput.vue component, which belongs in the ClientApp/components/shared folder. Start by giving it the following template section:

<template>
 <form-input-base :label="label">
 // inheriting component content will go here...
 </form-input-base>
</template>

This is our workaround for the fact that templates aren't inherited by subcomponents that extend a base component. Instead, we declare the base component as a child of the subcomponent, then render it as part of the template, as we've done here. This only works because we included a slot component as part of the base component's own template section, which we can now use to inject subcomponent-specific markup. In this case, this markup looks like this:

<div class="input-group">
 <div v-if="prepend" class="input-group-prepend">
 {{ prepend }}
 </div>

 <input
 :class="classes"
 :type="type"
 :name="name"
 :value="value"
 @focus="$emit('focus')"
 @blur="$emit('blur')"
 @input="$emit('input', $event.target.value)"
 @change="$emit('change', $event.target.value)" />

 <div v-if="append" class="input-group-append">
 {{ append }}
 </div>

 <div v-if="error" class="invalid-feedback">
 {{ error }}
 </div>
</div>

From our add product form component template, we know that this component needs to support Bootstrap input groups. As such, we start by rendering a div element with the input-group class, followed by an optional div with the input-group-prepend class. We only display this element if the consuming component passes in the prepend prop.

Next, we have the most important part, the actual input element itself. We use the v-bind directive to bind the class, name, and value properties based on the component's props that we're going to inherit from the base input component. We also bind the type property, but this time to a local type prop, which doesn't belong to the base because it is specific to this component. Remembering that if we want this component to behave like a standard input, we need to emit an input event when the value changes. This is exactly what we do here, but we take it a few steps further by directly emitting the focus, blur, and change events also. Aside from enabling us to listen for these events like we would with a standard input and triggering our own actions on them, we need to emit the focus and blur events so that Vee-Validate can provide real-time feedback as we progress through the form. It does this by automatically validating a field when it detects that the user has entered and subsequently moved away from it, by listening to the focus and blur events.

We follow the input with another optional append div element, which again is only displayed if we pass in the append prop. Finally, we render another div element to conditionally display an error message if we pass one in using the error prop. Most, if not all of our custom input components will have an error message like this, but unfortunately due to the way Bootstrap works, we cannot move this to the base component template. This is because it won't receive proper styling unless it is rendered in exactly the right location for Bootstraps, CSS selectors. In this case, it is rendered inside the input group element, and will not work properly if we were to move it outside instead. Unfortunately, this duplication is unavoidable, so we just have to live with it!

We're using standard HTML with Bootstrap classes rather than Bootstrap-Vue components here due to a bug in Bootstrap-Vue where the CSS styling breaks when using input groups!

The script section for this component looks like this:

<script>
import FormInputBase from "./FormInputBase.vue";

export default {
 name: "form-input",
 extends: FormInputBase,
 components: {
 FormInputBase
 },
 props: {
 type: {
 type: String,
 default: "text"
 },
 prepend: {
 type: String
 },
 append: {
 type: String
 }
 }
};
</script>

Seeing as we're extending the base form component, we will start by importing it. Next, we will export a default component object where we also declare the base form component as a child, so that we can render it in the preceding template section. All we need to do to actually inherit from the base component is use the extends property, passing in the imported base component object. Finally, we declare any subcomponent-specific props that don't already exist on the base component. In this case, these are the type, prepend, and append props.

In addition to the FormInput.vue component, we also need a FormTextArea.vue component, which lives in the same ClientApp/components/shared folder. This component is so similar to the last that we're not going to discuss it, and you could actually have a go at creating it yourself before reading any further.

Once you've done this, compare it with the following template section:

<template>
 <form-input-base :label="label">
 <textarea
 :class="classes"
 :name="name"
 :value="value"
 :rows="rows"
 @focus="$emit('focus')"
 @blur="$emit('blur')"
 @input="$emit('input', $event.target.value)"
 @change="$emit('change', $event.target.value)">
 </textarea>

 <div v-if="error" class="invalid-feedback">
 {{ error }}
 </div>
 </form-input-base>
</template>

And also compare it with this script section:

<script>
import FormInputBase from "./FormInputBase.vue";

export default {
 name: "form-text-area",
 extends: FormInputBase,
 components: {
 FormInputBase
 },
 props: {
 rows: {
 type: Number,
 default: 3
 }
 }
};
</script>

 Building custom input controls

So far, our input components are fairly simple wrappers around standard HTML input elements in order to reduce duplication. However, we are yet to define the Typeahead.vue and MultiSelect.vue components, which need to go beyond the standard functionality of a HTML input element.

Now, there are plenty of third-party components that would do the job we want without us going to the extent of building them ourselves. However, it isn't always appropriate to use someone else's component if it doesn't quite look or behave the way we want. It's also quite easy and fun to build our own, and definitely something worth learning for times when you can't find a ready-rolled component to do the job you want.

 Building a custom typeahead control

Create a ClientApp/components/shared/Typeahead.vue file and then start off the template section with the following:

<template>
 <form-input-base :label="label">
 <div class="typeahead">
 ...
 </div>
 </form-input-base>
</template>

As we did with our other input components, we're going to inherit from the base form component, so we'll start by rendering it here and placing our subcomponent content within it. Next, we need a standard HTML input where the user will begin typing their value:

<input
 ref="input"
 :value="value"
 :name="name"
 :class="classes"
 @blur="blur"
 @focus="focus"
 @keydown.enter.prevent="enter"
 @keydown.down.prevent="down"
 @keydown.up.prevent="up"
 @input="input" />

Again, as we did with the form input component, we bind the value, name, and class properties to the values of the associated props that we're inheriting from the base component. However, in addition to this, we're also giving this input a ref of input. We'll see why when we get to the script section shortly.

In this case, we do something slightly different with regards to event handling. For starters, we're listening for additional keydown events on the enter, up, and down keys. Also, rather than simply emitting the event directly so that it bubbles up to the consuming component, we invoke component methods instead. This is because we need more control in this component, as we'll need to perform some logic before we eventually emit these events like we did before.

Directly beneath the input element, we need the following:

<div v-if="error" class="invalid-feedback">
 {{ error }}
</div>

No explanation needed here as it's exactly the same as we've done in the previous form input components. Finally, we need some kind of UI element for displaying the list of suggestions that we'll show as the user starts typing in the input:

<b-list-group v-if="open" class="suggestions">
 <b-list-group-item
 v-for="(suggestion, index) in matches"
 :key="index"
 :active="index === current"
 @mousedown.prevent="click(index)"
 button>

 {{ suggestion }}
 </b-list-group-item>
</b-list-group>

The Bootstrap list group element is ideal for this scenario, so that's what we're using here. We conditionally render it based on some kind of open property on the component, and give it a class of suggestions so that we can specifically target it with some CSS styles later on.

There's no point in a list group without a nested collection of list group items, so we'll loop over an array of matches (another component property of some kind), rendering a b-list-group-item component for each one. As we've done before, we bind the key property to the unique array index of the item, and the active property to an inline expression that checks whether the array index is equal to a component property called current. More on this shortly, but for now just know that the current property is a numeric value used to track which suggested item the user has currently selected if navigating with the keyboard. We will also prevent the default mousedown behavior, choosing instead to invoke a click method, passing in the item's array index array as an argument. Finally, inside each list group item, we display the suggestion text so that the user knows what they are selecting from.

The script section for this component is pretty complex in comparison to what we've seen so far, so we're going to build it up in stages. Start with the following:

<script>
import FormInputBase from "./FormInputBase.vue";

export default {
 name: "typeahead",
 extends: FormInputBase,
 components: {
 FormInputBase
 },
 props: {
 items: {
 type: Array,
 required: true
 }
 }
 ...
};
</script>

None of this should need any explanation by now, as we're simply defining another custom input component that inherits from the base input component. As it's a typeahead control, we'll need to display suggestions based on what the user has typed, and those suggestions will be computed from a list of items passed in via a required items prop of type Array.

The data requirements of the component are fairly simple:

data() {
 return {
 current: -1,
 focused: false
 };
}

As we discussed previously, as we're supporting keyboard navigation in order to highlight a suggestion before selecting it, we need the current property to track the index of the currently highlighted suggestion. We also need a focused property to keep track of whether or not the user currently has their cursor inside the input—we'll see why when we look at the computed properties object:

computed: {
 matches() {
 return this.items.filter(str => {
 return str.toLowerCase().indexOf(this.value.toLowerCase()) >= 0;
 });
 },
 open() {
 return (
 this.value.length > 0 &&
 this.focused &&
 !this.items.some(item => item === this.value)
);
 }
}

The matches property is a subset of the full items collection. We display them in the suggestions box so that the user can select one to automatically complete the rest of the input value. We only suggest the item if it contains the value the user has begun to type into the input box, making sure the search is case-insensitive by converting both sides of the comparison to lowercase.

The open property determines whether or not the suggestions box should be visible or not. The rule is quite simple: the user must have entered at least a single character into the input, the input must be focused, and none of the items in the items prop should have their text value equal to the current value of the input. As soon as they either navigate away from the input, make a selection from the suggestions box, or type a complete value that matches one of the predefined items, the suggestions box is hidden.

We need quite a few methods on this component, so we'll add them one at a time so that we can cover each one individually. The first is the input method:

methods: {
 input(event) {
 this.$emit("input", event.target.value);

 this.items.map(item => {
 if (item.toLowerCase() === event.target.value.toLowerCase()) {
 this.$emit("input", item);
 }
 });
 },
 ...
}

Rather than directly emit the input event inline as we've done before, this time we invoke this method every time the input element emits a native input event. After emitting the event so that it bubbles up to the consumer, we do another case-insensitive search of the items array to see whether what the user typed matches any of the items in the array. If it does, we emit another input event, this time passing the matched array item. This might seem slightly pointless unless you're a little OCD like I am, but if I have a brand named Brand and a user types brand into the input, I would rather have Brand be displayed in the input.

Next, we need the click method:

click(index) {
 this.$emit("input", this.matches[index]);
 this.$refs.input.$el.focus();
}

This method is invoked when a user clicks on one of the suggested items in the suggestions box. We receive the selected index of the matches array as an argument so that we can emit an input event with the selected value to notify the consumer that a selection has been made. We then need to force the component to focus back on the input element using this.$refs.input.$el.focus(), seeing as a click made outside of the input will have caused it to emit a blur event. This enables the user to immediately carry on typing should they wish to, or at the very least tab into the next input quickly and easily.

The next method we need is the enter method:

enter() {
 if (this.current >= 0) {
 this.$emit("input", this.matches[this.current]);
 }
}

This method is invoked when the user hits the Enter key on their keyboard. The idea is that once they begin typing and the suggestions box is displayed, they can use the arrow keys to highlight a suggestion, then hit Enter to actually make the selection. As such, in this method, we ultimately emit the input event and pass the currently selected suggestion as an argument. We do this by accessing a specific item of the matches array, using the current value as the array index to access. However, before we do any of this, we need to make sure the user has actually highlighted a suggestion by validating that the current property has a value greater than or equal to zero.

Next, we need the up and down methods to handle the arrow key presses:

up() {
 if (this.current >= 0) this.current--;
},
down() {
 if (this.current < this.matches.length - 1) this.current++;
}

The currently selected suggestion is highlighted based on the current property being compared with the index of the matches array when its items are rendered into the template section. As such, in order to change the currently selected (and highlighted) item, all we need to do is change the current property. This is exactly what the up and down methods do; they decrement the current property if its value is greater than or equal to zero, and increment it if its value will not exceed the number of items in the matches array.

Finally, we need the focus and blur methods:

focus() {
 this.focused = true;
 this.$emit("focus");
},
blur() {
 this.focused = false;
 this.$emit("blur");
}

Other than emitting the appropriate native events, the only other thing these methods do is keep the focused property in sync with whether or not the user is currently focused on this component.

To finish off this component, add the following style section:

<style lang="scss" scoped>
.typeahead {
 position: relative;

 .suggestions {
 position: absolute;
 top: 42px;
 right: 0;
 left: 0;
 z-index: 1;
 -webkit-box-shadow: 0px 2px 10px 0px rgba(204, 204, 204, 1);
 -moz-box-shadow: 0px 2px 10px 0px rgba(204, 204, 204, 1);
 box-shadow: 0px 2px 10px 0px rgba(204, 204, 204, 1);
 }
}
</style>

We want the suggestions box to be displayed over the top of any content, directly beneath the typeahead components, so we use relative and absolute positioning to achieve what we want. Again, this isn't a book on CSS, so I'm not going to explain any further than that. The only other thing we've done is give the suggestions box a slight drop shadow to make it stand out from any input elements that it may display.

With this, our typeahead component is complete. In summary, we pass in a list of items that will be used for the autocomplete functionality, and as the user begins typing, we filter those items based on the current value of user input and display the suggestions in a box beneath the input. To select a suggestion, the user can click on it with a mouse, touchpad, or touchscreen, or they can use the arrow keys on their keyboard before pressing the Enter key to select the highlighted item. If the value they are looking for does not exist, they can still enter whatever they like and we'll handle the creation of new items in the API when we get there.

 Building a multi-select control

The typeahead control we've just built is used for most of the complex fields on the create product form, but for the features of that product, we've used a multi-select control instead. We won't be supporting the addition of new features on the fly, so the user will only be able to select from the preexisting list.

Create an empty ClientApp/components/shared/MultiSelect.vue file, and then start the template section off with the following:

<template>
 <form-input-base :label="label">
 <div class="multi-select">
 <input
 ref="input"
 :value="text"
 :name="name"
 :class="classes"
 @focus="focus"
 @blur="blur"
 @keydown.prevent="keydown" />

 ...
 </div>
 </form-input-base>
</template>

Again, this should look pretty familiar by now, but in summary, we are:

	Rendering a div element with a class of multi-select inside the slot of a <form-input-base /> component

	Rendering a standard HTML input with a ref of input

	Binding the value property to a computed text value

	Binding the name and class properties based on the props we'll inherit from the base form component

	Handling the focus, blur, and keydown events with component methods rather than default behavior

Next, as with all of our custom form components, we need an optional validation feedback div element:

<div v-if="error" class="invalid-feedback">
 {{ error }}
</div>

And just like with our typeahead component previously we need a Bootstrap list group to display the items the user can select from:

<b-list-group v-if="open">
 <b-list-group-item
 v-for="(item, index) in items"
 :key="index"
 @mousedown.prevent="check(item)">

 <b-form-checkbox
 class="checkbox"
 :checked="isChecked(item)"
 disabled>

 {{ item }}
 </b-form-checkbox>
 </b-list-group-item>
</b-list-group>

This time, we loop over the items prop directly, as there is no filtering to be done. We also display a Bootstrap formatted checkbox instead of a plain text value so that we can show which items have already been selected. We do this by binding the checked property of the checkbox to an isChecked component method, passing in the item in question so that it can be calculated.

Notice how we're actually disabling each checkbox by passing in an empty disabled prop. As with the typeahead control, a click event in the items box causes the input element to emit a blur event. This then hides the items, as we only want them to appear when the user is focused on the control. We combat this by disabling the checkbox, then adding a mousedown event handler to the containing list group item element, preventing the default behavior and invoking our check component method. In this method, we can force the focus back onto the input element, preventing the items box from disappearing each time the user selects one.

The script section for this component is another reasonably complex one, so we'll build it up in stages again. Start with the following:

<script>
import FormInputBase from "./FormInputBase.vue";

export default {
 name: "multi-select",
 extends: FormInputBase,
 components: {
 FormInputBase
 },
 props: {
 items: {
 type: Array,
 required: true
 }
 }
};
</script>

In summary, we are:

	Importing the FormInputBase component

	Exporting a default component object

	Naming it multi-select

	Extending the FormInputBase component

	Declaring the FormInputBase component as a child

	Defining a required items prop of type Array

Next, we need to define the data requirements of the component, which in this case are incredibly simple:

data() {
 return {
 open: false
 };
}

The only data we need to track is the open property, which controls whether or not we display the items box. We also need a single computed property:

computed: {
 text() {
 return this.value.join(", ");
 }
}

Since the value prop we pass in to this component is an array of selected items, we cannot simply bind the value property of the input directly to it. Instead, we concatenate the selected values into a single text value by joining them with a comma delimiter. This is then the property that we bind the input value to.

We'll need a number of components methods, starting with the isChecked method:

methods: {
 isChecked(item) {
 return this.value.some(s => s === item);
 }
 ...
}

To determine whether an item is already checked or not, we can use the native JavaScript Array.some function on the value prop, comparing each item with the item argument we've passed in.

Next, we need the focus and blur methods:

focus() {
 this.open = true;
 this.$emit("focus");
},
blur() {
 this.open = false;
 this.$emit("blur");
}

These are fairly self-explanatory, but aside from emitting the native events to enable validation from the consuming parent component, we toggle the open property so that the items box is displayed while the user has focus in the component's input element.

We then need the keydown method:

keydown(event) {
 event.preventDefault();
}

No logic required here at all, as the only thing we need to do is prevent all key presses inside the input. This isn't a text box the user should be able to type in, as the value we display inside it is computed from the selections they make from the available items.

Finally, we need the check method:

check(item) {
 var current = Object.assign([], this.value);
 var index = current.indexOf(item);

 if (index > -1) {
 current.splice(index, 1);
 } else {
 current.push(item);
 }

 this.$emit("input", current);
 this.$refs.input.$el.focus();
}

This method is fired each time a user clicks on one of the list group item rows in the items box, regardless of whether the item has already been checked or not. Bearing that in mind, we need to be able to both push new selections to the items array, or remove a selection if it already exists. That being said, we also already know that we cannot directly mutate the value prop, or Vue will start throwing errors and/or warnings to the browser console. Instead, we create a method level current variable, using Object.assign to clone the value array on to it. We can then use this current variable to see whether the item argument already exists within it by using the Array.indexOf function.

If the item already exists, that is, the index of the item within the array is greater than -1, we remove it using the Array.splice function, passing the index of the array to start removing from and the number of positions to remove. If it doesn't already exist, we simply push it to the array. With the current array now up to date with the state of which items are currently checked, we can notify the parent component that the value has changed by emitting an input event, passing the newly updated value as an argument like we did previously. Finally, to prevent the items box disappearing due to a click event outside of the input element, we focus back on to it using the ref we added to the input in the template.

To finish off the component, we need a bit of styling to get things displayed the way we want. Add the following style section:

<style lang="scss" scoped>
.multi-select {
 position: relative;

 .list-group {
 position: absolute;
 top: 42px;
 right: 0;
 left: 0;
 z-index: 1;
 -webkit-box-shadow: 0px 2px 10px 0px rgba(204, 204, 204, 1);
 -moz-box-shadow: 0px 2px 10px 0px rgba(204, 204, 204, 1);
 box-shadow: 0px 2px 10px 0px rgba(204, 204, 204, 1);
 margin-bottom: 20px;

 .list-group-item {
 cursor: pointer;

 &:hover {
 background: darken(#fff, 5%);
 }

 .custom-control {
 cursor: pointer;
 }
 }
 }
}
</style>

 Persisting new products to the database

At this point, our client-side changes for the admin panel are near enough complete, and if you run the application now, you should be able to browse to the admin panel, view a list of orders and existing products, and fill in the create product form to see our custom input controls in action. However, if you try to save a product that passes client-side validation, nothing will happen as the API endpoint we told it to send to does not yet exist. We'll fix that now.

 Creating a slug generator

In order to support SEO-friendly URLs in our product catalogue, we rely on identifying specific products by their URL slug property. For example, when accessing a page with a relative path of /products/soylent-megafone, the slug that we extract is soylent-megafone. This is what we pass back to our API endpoint to fetch the specific products details. So far, these properties have been hardcoded into our seed data method, so how do we slugify a product name so that it becomes URL-friendly?

We could look for a NuGet package to do the job for us, but it seems a little overkill to bring in a third-party dependency for something so minor. Instead, we'll create our own string extension helper method to convert a normal string into a URL-friendly slug. Create a new Infrastructure/StringExtensions.cs file, and then add the following static class definition:

public static class StringExtensions
{
 public static string GenerateSlug(this string phrase)
 {
 string str = phrase.RemoveDiacritics().ToLower();
 // invalid chars
 str = Regex.Replace(str, @"[^a-z0-9\s-]", "");
 // convert multiple spaces into one space
 str = Regex.Replace(str, @"\s+", " ").Trim();
 // cut and trim
 str = str.Substring(0, str.Length <= 45 ? str.Length : 45).Trim();
 str = Regex.Replace(str, @"\s", "-"); // hyphens
 return str;
 }

 private static string RemoveDiacritics(this string text)
 {
 var s = new string(text.Normalize(NormalizationForm.FormD)
 .Where(c => CharUnicodeInfo.GetUnicodeCategory(c) != UnicodeCategory.NonSpacingMark)
 .ToArray());

 return s.Normalize(NormalizationForm.FormC);
 }
}

I must admit that I didn't write this code myself, but rather found it online at the personal blog of a developer named Adam Hathcock (https://adamhathcock.blog/2017/05/04/generating-url-slugs-in-net-core/).

The comments are pretty clear, but essentially what we're doing here is sanitizing the string to remove any unwanted characters, then replacing the spaces with hyphens to form a URL-friendly version.

 Creating the API endpoint

We can now add an additional API endpoint to the Features/Products/Controller.cs file. The controller action definition looks like this:

[HttpPost, Authorize(Roles = "Admin")]
public async Task<IActionResult> Create([FromBody] CreateProductViewModel model)
{
 ...
}

This endpoint will only accept HTTP POST requests from authenticated users who belong to the Admin role. Remembering that our custom typeahead control allows users to enter any arbitrary string value, we first need to check whether what they entered for the brand and operating system already exist in the database or not. We do this as follows:

var brand = await _db.Brands.FirstOrDefaultAsync(x => x.Name == model.Brand);

if (brand == null)
 brand = new Brand { Name = model.Brand };

var os = await _db.OS.FirstOrDefaultAsync(x => x.Name == model.OS);

if (os == null)
 os = new OS { Name = model.OS };

The typeahead control also automatically matches the case of an existing item, so when we do a string comparison here, we don't need to worry about the casing of either side. If either the brand or os variables are null, we create new entities, which we'll attach to a new Product instance next:

var product = new Product
{
 Name = model.Name,
 Slug = model.Name.GenerateSlug(),
 ShortDescription = model.ShortDescription,
 Description = model.Description,
 TalkTime = model.TalkTime,
 StandbyTime = model.StandbyTime,
 ScreenSize = model.ScreenSize,
 Brand = brand,
 OS = os,
 Thumbnail = "/assets/images/thumbnail.jpeg",
 Images = new List<Image>
 {
 new Image { Url = "/assets/images/gallery1.jpeg" },
 new Image { Url = "/assets/images/gallery2.jpeg" },
 new Image { Url = "/assets/images/gallery3.jpeg" },
 new Image { Url = "/assets/images/gallery4.jpeg" },
 new Image { Url = "/assets/images/gallery5.jpeg" },
 new Image { Url = "/assets/images/gallery6.jpeg" }
 }
};

Most of the properties of this object are simply copied directly from the view model we received as a parameter to the action method. However, notice that for the Slug property, we invoke our newly created GenerateSlug string extension on the model.Name property. This will take care of making the product name URL-friendly for us, by doing things such as replacing spaces and a few other special characters with dashes, then converting the final string to lowercase. We're also keeping this endpoint simple by hard-coding the product images to those that we've already stored in the wwwroot/assets/images folder.

Next, let's look at how to add the list of features the user selected from our custom multi-select control:

foreach (var feature in model.Features)
{
 var feat = await _db.Features.SingleAsync(x => x.Name == feature);
 product.ProductFeatures.Add(new ProductFeature { Feature = feat });
}

At this point, we know that any value we receive as part of the model.Features list must already exist in the database, so we use LINQ's SingleAsync method, which will throw an exception if it can't find a match. It is then a simple case of adding a new ProductFeature entity to the list, linking it back to the Feature entity we just queried the database for.

We need to do a similar process with the product variants, but this time there is a little more logic to perform:

foreach (var variant in model.Variants)
{
 var colour = await _db.Colours.FirstOrDefaultAsync(x => x.Name == variant.Colour);

 if (colour == null)
 colour = new Colour { Name = variant.Colour };

 var capacity = Convert.ToInt32(variant.Storage.Substring(0, variant.Storage.IndexOf("GB")));
 var storage = await _db.Storage.FirstOrDefaultAsync(x => x.Capacity == capacity);

 if (storage == null)
 storage = new Storage { Capacity = capacity };

 product.ProductVariants.Add(new ProductVariant
 {
 Colour = colour,
 Storage = storage,
 Price = variant.Price
 });
}

As we did with the brand and operating system properties, we start by checking whether the colour and storage properties of each product variant already exist in the database or not. If they do, we link to the existing entities, and if they don't, we create new ones. It is then a simple case of pushing a new ProductVariant entity into the product.ProductVariants list.

Finally, we need to complete the action method with the following:

_db.Products.Add(product);

await _db.SaveChangesAsync();

return Ok();

We will add the newly created product object to the database, save our changes, then return a 200 OK HTTP response code.

The CreateProductViewModel class that we receive from the request body belongs in the same folder, and looks like this:

namespace ECommerce.Features.Products
{
 public class CreateProductViewModel
 {
 public string Name { get; set; }
 public string ShortDescription { get; set; }
 public string Description { get; set; }
 public decimal TalkTime { get; set; }
 public decimal StandbyTime { get; set; }
 public decimal ScreenSize { get; set; }
 public string Brand { get; set; }
 public string OS { get; set; }
 public List<string> Features { get; set; }
 public List<CreateProductVariantViewModel> Variants { get; set; }
 }
}

And the CreateProductVariantViewModel class that it depends on looks like this:

namespace ECommerce.Features.Products
{
 public class CreateProductVariantViewModel
 {
 public string Colour { get; set; }
 public string Storage { get; set; }
 public decimal Price { get; set; }
 }
}

 Remote validation with Vee-Validate

At this point, we can now actually complete the create product form and submit it back to our API to persist a new product into the database. However, if you've remembered that we originally put a unique index on the Slug column of the Products table, you'll know that it would be very easy for the API call to fail if we send a duplicate product name. You may also have spotted that right at the top of the create product form, we rendered the following input element:

<form-input
 label="Name"
 name="name"
 :error="errors.first('name')"
 v-model="product.name"
 v-validate="'required|min:10|uniqueProductName'" />

Notice the uniqueProductName validation rule. This is obviously not a default rule built into Vee-Validate, as how can they possibly know whether our product name is unique or not? This is a rule that we need to instruct Vee-Validate on how to enforce, and seeing as we've not done this yet, you'll see errors popping up in your browser console.

To remedy this, we're going to extend the Validator object that Vee-Validate injects into our components. We could have done this as part of the create product form component, but it's not very SOLID to do so. Instead, create an empty ClientApp/helpers/validation.js file, and then add the following code into it:

import axios from "axios";
import { Validator } from "vee-validate";

const isUnique = value =>
 ...
});

Validator.extend("uniqueProductName", {
 validate: isUnique,
 getMessage: (field, params, data) => data.message
});

As we'll need to hit an API endpoint in order to determine whether a user-entered product name has already been taken or not, we start by importing axios. We also need to import the Validator object from Vee-Validate so that we can extend it to include our custom validation rule.

We then need to define a function that takes a single value parameter and determines whether that value is valid or not. In this case, we define an isUnique function, which we'll complete in just a minute. With this in place, we can invoke the Validator.extend function in order to add our own rule to be used on our components. The first argument this function expects is the string name of the rule, which will be used in the v-validate directive of an input control, as we did here:

v-validate="'required|min:10|uniqueProductName'"

The second argument is an object that needs to contain a validate function and a getMessage function. The validate function is used to validate the input, and in our case we simply assign the isUnique function we scaffolded out earlier. The getMessage function always receives three arguments: field, params, and data. The one we're interested in here is the data argument as it contains the returned result from the validate function. We're expecting this result to contain a message property, which will contain the appropriate error message if validation fails.

The full isUnique function needs to look like this:

const isUnique = value =>
 new Promise(resolve => {
 const payload = { name: value };

 axios.post("/api/products/validate", payload).then(response => {
 const isValid = response.data;
 if (isValid) {
 return resolve({
 valid: true
 });
 } else {
 return resolve({
 valid: false,
 data: {
 message: "Name is already in use."
 }
 });
 }
 });
 });

Vee-Validate validator functions are asynchronous, so we must return a promise from this function. We then start by constructing a payload object with a single name property to which we assign the value that we are validating. We can then use axios.post to hit the /api/products/validate endpoint, passing the payload object as its argument.

When the API call completes, we're expecting to receive a simple true/false response as to whether the payload was valid or not. If we receive true, the payload was valid and we resolve the promise with an object where its valid property is also true. If we receive false from the API, the payload was invalid and we resolve the promise with an object where its valid property is also false, but this time including a data object. This is the object that gets passed as the third argument to the getMessage function we discussed a moment ago. As such, we define a message property with the error string we want to be displayed in the UI if validation fails.

 Making our app aware of the new custom validation rule

Our validation rule is now complete, but as yet our components cannot use it as our app isn't aware of the new file. To fix this, we simply need to import the new helper file in an appropriate location within the ClientApp/boot.js file:

import Vue from "vue";
import VueRouter from "vue-router";
import store from "./store";
import BootstrapVue from "bootstrap-vue";
import NProgress from "nprogress";
import VueToastr from "@deveodk/vue-toastr";
import "@deveodk/vue-toastr/dist/@deveodk/vue-toastr.css";
import VeeValidate from "vee-validate";

//plugins
import "./helpers/validation";

Vue.use(VueRouter);
Vue.use(BootstrapVue);
Vue.use(VueToastr, {
 defaultPosition: "toast-top-right"
});
Vue.use(VeeValidate);

Ordering matters here, so make sure that this new import statement is placed before we call Vue.use(VeeValidate).

 Creating the validation API endpoint

The last step is to actually create the API endpoint that's going to validate the product name for us. Open up the Features/Product/Controller.cs file and add the following new action method to the bottom:

[HttpPost("validate"), Authorize(Roles = "Admin")]
public async Task<IActionResult> Validate([FromBody] ValidateProductViewModel model)
{
 var valid = await _db.Products.AllAsync(x => x.Name.ToLower() != model.Name.ToLower());
 return Ok(valid);
}

As with our other admin panel API endpoints, we only allow authenticated users who belong to the Admin role, and we listen on the /api/products/validate URL. The method body is very simple: we declare a valid Boolean variable and then check whether all of the products in the database have different names to the one we're validating. Finally, we return a 200 OK response with the valid Boolean value as the response body, just as we expect in our client-side validator function.

The ValidateProductViewModel class we expect to receive from the request body looks like this:

namespace ECommerce.Features.Products
{
 public class ValidateProductViewModel
 {
 public string Name { get; set; }
 }
}

 Tidying things up

Fundamentally, our admin panel is now complete, but there are a few things we need to do in order to just clean things up a little and fix a few minor bugs that have crept in as we've changed things.

 Linking to the admin panel

For starters, the only way of accessing the admin panel is to manually enter /admin as the relative URL path in your browser. Some sites prefer this as an approach, so it's not obvious that such an area of the app even exists, unless you know it's there. However, if this isn't the case, then we need to add a link to it from our main nav menu—but only displayed if the current user belongs to the Admin role.

Open up the ClientApp/components/App.vue file and make the following amendment to the template section:

<b-collapse is-nav id="nav_collapse">
 <b-navbar-nav>
 <b-nav-item to="/products">Products</b-nav-item>
 <b-nav-item v-if="isAdmin" to="/admin">Admin</b-nav-item>
 </b-navbar-nav>
 <b-navbar-nav class="ml-auto mr-4">
 <cart-summary v-if="isCustomer" />
 <auth-nav-item />
 </b-navbar-nav>
</b-collapse>

We'll also need an additional computed property to satisfy the v-if directive we just added:

computed: {
 showAuthModal() {
 return this.$store.state.showAuthModal;
 },
 isAdmin() {
 return this.$store.getters.isInRole("Admin");
 },
 isCustomer() {
 return (
 this.$store.getters.isInRole("Customer") ||
 !this.$store.getters.isAuthenticated
);
 }
}

 Fixing a logout bug

Now that we have nested route definitions, if we log out while viewing one of those nested pages, for example, the create product page, we won't be redirected back to the app home page. This is because our current logout method looks like this:

logout() {
 this.$store.dispatch("logout").then(() => {
 if (this.$route.meta.requiresAuth) {
 this.$router.push("/");
 }
 });
}

We are only checking whether the current route has the requiresAuth meta property set to true, rather than any route in its parent-child hierarchy. To resolve this, open up the ClientApp/components/app/AuthNavItem.vue file and make the following modifications:

logout() {
 this.$store.dispatch("logout").then(() => {
 if (this.$route.matched.some(route => route.meta.requiresAuth)) {
 this.$router.push("/");
 }
 });
}

Now, the check will traverse up the route definition tree to see whether the current route or any of its ancestors require authentication.

 Fixing a bug by selecting a product variant

This one is slightly more involved than the rest. Before we added the ability to create new products, we were assuming that every combination of color and capacity would have a corresponding variant. For example, if we have a phone with two color options and two storage options, we would have four product variants in total. However, when building out the UI to add these on the fly, it became apparent that this isn't the case, as we may not want to sell every combination. In fact, the way our UI works means we only add the specific combinations we want.

For example, suppose we add three product variants to a new product, each of which has a different value for color and storage than the others. We'd have three distinct color values to choose from, and three distinct storage values to choose from. With our current logic, we'd expect nine different product variants, covering every combination of those values. However, we only actually have three variants because that's all we added in the UI. When a customer navigates to a product details page, they will have the ability to specify a combination of color and capacity that may not actually exist!

The fix this, we have a number of changes to make. Starting with the server-side changes, we need to modify the Get action method in the Features/Products/Controller.cs file:

var product = await _db.Products.Select(x => new ProductDetailsViewModel
{
 Id = x.Id,
 Slug = x.Slug,
 Name = x.Name,
 ShortDescription = x.ShortDescription,
 Description = x.Description,
 Price = x.ProductVariants.OrderBy(v => v.Price).First().Price,
 Thumbnail = x.Thumbnail,
 Images = x.Images.Select(i => i.Url),
 Features = x.ProductFeatures.Select(f => f.Feature.Name),
 //Colours = ...,
 //Storage = ...,
 Variants = x.ProductVariants
 .OrderBy(v => v.Colour.Name)
 .ThenBy(v => v.Storage.Capacity)
 .Select(v => new ProductVariantViewModel
 {
 ProductId = x.Id,
 Name = x.Name,
 Thumbnail = x.Thumbnail,
 ColourId = v.ColourId,
 Colour = v.Colour.Name,
 StorageId = v.StorageId,
 Capacity = v.Storage.Capacity,
 Price = v.Price
 })
 })
.FirstOrDefaultAsync(x => x.Slug == slug);

We need to remove the Colours and Storage properties, as we'll compute the valid values for these on the client side instead. We then added some OrderBy statements to make sure the product variants list is in the right order by the time it hits the client.

As we've removed the Colours and Storage properties from the controller, they are also no longer needed in the corresponding ProductDetailsViewModel either:

namespace ECommerce.Features.Products
{
 public class ProductDetailsViewModel
 {
 public int Id { get; set; }
 public string Slug { get; set; }
 public string Name { get; set; }
 public string ShortDescription { get; set; }
 public string Thumbnail { get; set; }
 public IEnumerable<string> Images { get; set; }
 public IEnumerable<string> Features { get; set; }
 public decimal Price { get; set; }
 public string Description { get; set; }
 //public IEnumerable<SelectListItem> Colours { get; set; }
 //public IEnumerable<SelectListItem> Storage { get; set; }
 public IEnumerable<ProductVariantViewModel> Variants { get; set; }
 }
}

Finally, we have a number of changes to make in the ClientApp/components/product/Details.vue component. Start by making the following changes to the template section:

<h5>Variants</h5>
<b-form-group label="Colour">
 <b-form-select :options="colours" v-model="colour" />
</b-form-group>
<b-form-group label="Capacity">
 <b-form-select :options="storage" v-model="capacity" />
</b-form-group>

Rather than binding the options props of the two select boxes to the lists we used to have on the model returned from the API, we instead bind to a pair of data properties. To do this, we'll be making use of some of the utility functions in the lodash library, which we've already installed. In the script section, we need to make sure we import it for use:

import _ from "lodash";
import Gallery from "./Gallery.vue";

We also need to modify the created life cycle hook so that it invokes some methods that we'll be defining shortly:

created() {
 this.computeColours();
 this.computeStorage();
 this.computeProductVariant();
}

The computeColours method will extract the distinct colour values from the array of product variants, and then set the currently selected colour value to the first item in the computed array. The computeStorage method will do a similar job for the storage options, basing them on product variants where the color matches the selected colour value that we just set. The computeProductVariant method will work out which variant to track based on the currently selected colour and storage values.

We're going to be moving a number of our properties that are currently computed so that they become plain old data properties instead. Make the following changes to the data function:

data() {
 return {
 open: false,
 index: 0,
 colours: [],
 colour: null,
 storage: [],
 capacity: null,
 variant: null
 };
}

We no longer have any computed properties, so the computed object can be removed entirely.

We're also going to add a pair of watch functions to keep the select boxes in sync with the available variant options, and update the variant data property to the correct variant based on the current state of those select boxes:

watch: {
 colour: {
 handler(value) {
 this.computeStorage();
 this.computeProductVariant();
 }
 },
 capacity: {
 handler(value) {
 this.computeProductVariant();
 }
 }
}

We will start by watching the colour property, and we'll invoke the computeStorage and computeProductVariant methods every time its value changes. Next, we'll watch the capacity value, but this time the only thing we need to do is invoke the computeProductVariant method when it changes.

The new computeColours method looks like this:

computeColours() {
 this.colours = _.uniqBy(
 this.product.variants.map(v => {
 return {
 value: v.colourId,
 text: v.colour
 };
 }),
 "value"
);

 this.colour = this.colours[0].value;
}

We use the uniqBy function from lodash to ensure we only get distinct items in the array based on a property named value. This property comes from the Array.map function, which we use on the product variants array, where we return a new array of objects that contain value and text properties. These are what we need to pass into the select box for it to be able to bind the options properly.

The computeStorage method looks like this:

computeStorage() {
 this.storage = this.product.variants
 .filter(v => {
 return v.colourId === this.colour;
 })
 .map(v => {
 return {
 value: v.storageId,
 text: v.capacity
 };
 });

 this.capacity = this.storage[0].value;
}

This method is slightly simpler, as we filter the product variants array for only those variants whose color matches the color we've selected in the first select box. We then take that filtered array of variants and run the same Array.map function as we did for colours, returning a new array of objects containing value and text properties that can be bound to a select box.

Finally, the computeProductVariant method looks like this:

computeProductVariant() {
 this.variant = this.product.variants.find(
 v => v.colourId == this.colour && v.storageId == this.capacity
);
}

This is taken directly from the old variant computed property, so it should not need any explanation.

Our changes are now complete, so if you run the application again, it should work exactly as it did before, but it will now handle product variants properly, regardless of the combinations we defined when creating the product. This is all very well and good, but why is our implementation so much more complicated now?

The problem is that now that we have the capacity select box items entirely dependent on the selected value of the color select box, the storage items can change. With our previous method of using computed properties for everything, when the color select box changed its value, both the storage and variant computed properties tried to update themselves simultaneously. This meant there was a very brief split second where the variant computed, may not actually find a matching variant, unless we force it to wait until the UI finish refreshing before doing its calculation. This is what we've done by using watchers and methods instead, and we no longer get any console errors while we wait for everything to sync up.

 Summary

We've covered a lot again in this chapter, some of which was considerably more complicated than previous chapters. However, we are now entirely feature complete!

We started by adding role-based authorization to both our server-side and client-side code. This included adding more advanced route guards to our client-side route definitions, then hiding a number of UI elements if the user wasn't in an appropriate role to view them.

We then started to build out the UI components that were necessary for our admin panel, which for the first time required us to configure nested route definitions. We refactored the order list component to be usable both in the customer's my account page and in our new admin panel. We then built a product list component and created a product form component. While doing so, we discussed the amount of code duplication we currently had, and decided to build a number of custom input components designed to make our lives easier and reduce that duplication.

To implement our custom input components, we needed to look at Vue component inheritance so that we could abstract common properties and template sections into a base form input component. We then inherited from this component by building custom input, text area, typeahead, and multi-select components.

We finished off the Create Product page by adding an API endpoint for persisting the new products into the database, then added remote validation to ensure only unique product names were sent to the API for processing. Finally, we spent some time tidying up by making a few minor enhancements and bug fixes for issues that cropped up after the changes we've made in this chapter. We also fundamentally changed the way we handle product variants, based on the way we add them in the first place and the fact we don't always sell every combination of colour/capacity for a given phone.

This chapter has completed the base feature set of our application. In the next few chapters, we'll be looking at deploying the application into a cloud environment, followed by some advanced topics to build on what we've already learned and built.

 Deployment

With the application now feature-complete, we are ready to deploy to a production cloud environment. When deciding which environment to use, we have plenty to choose from, including Microsoft Azure, Google Cloud Platform, and Amazon AWS, to name but a few of the most common options. We'll be making use of Microsoft Azure, since when building ASP.NET applications it makes a lot of sense to stick with Microsoft when choosing a hosting platform. We can also get an application such as proof-of-concept apps up and running quickly and easily, at a low cost.

In this chapter, we will cover the following topics:

	Registering for an Azure portal account

	Setting up an Azure database/app service

	Configuring Azure environment variables and connection strings

	Preparing an application for deployment

	Setting up simple Git deployments in Azure

	Enabling logging in Azure

	Forcing HTTPS connections

 Registering for an Azure account

The first thing we'll need to do is head over to https://portal.azure.com and register for an account. Most people already have a Microsoft account for one reason or another, but if you don't, you can sign up for a new one.

Once you've either signed in or created a new Microsoft account and signed in, you'll be presented with the Azure portal signup screen:

Every Azure portal user must go through phone and credit card verification before they're allowed access, but don't worry too much as the only thing that will cost you money is the SQL Server database. This is around £4 GBP a month at the time of writing, but for the first month, everything is free, as you get £150 in credits for signing up.

The registration process is very simple, so it doesn't need any further explanation. Once you've finished registering, you should be presented with a screen that looks something like this:

At this point, we are ready to start setting up our production environment.

 Setting up an Azure environment

Before we start creating any databases or web app services, we need to create a subscription, followed by a resource group. But what exactly are these things and why do we need them?

 Understanding Azure subscriptions and resources

The first thing we need to create, and as such understand, is a subscription. Every Azure user must have at least one subscription, as every resource we create must be associated with a single parent subscription. This is all very well and good, but what actually is a resource within the context of Azure? The answer is essentially any manageable item or service that we can provision. Examples include databases, web apps, virtual machines, and storage accounts.

So, we now know that subscriptions are containers for Azure resources, but they also have two other main purposes: they allow us to control user access to the groups of resources that they own, and they allow us to pay for those resources via a single monthly invoice due to the fact that we get billed for the entire subscription. This is good for any application, but even more so for more complex apps that may utilize the standard web app service and database resources, but also require other resources, such as file storage and push notifications. Rather than having to pay individually for those resources, you pay one monthly bill for everything.

The next thing we need to create is a resource group, which as the name suggests is a logical group of resources. Why do we need a resource group if we already group resources under a subscription, I hear you ask. Again, there are two main purposes that resource groups aim to fulfill. Firstly, you may not want all of your subscription users to have full access to every resource they contain. Instead, you can utilize a second level of user access management at the resource group level rather than the subscription level. Secondly, they allow us to perform actions, for example resource deletion, on multiple resources at a time by specifying a resource group instead of a single resource.

There are many different ways that you can utilize subscriptions and resource groups depending on the size and structure of your organization. Hosting companies are now branching away from offering physical (or even virtualized) servers, instead choosing to offer managed cloud hosting using services such as Azure. They will often go as far as consulting on the best ways of architecting applications within Azure, including partitioning using vLANs on top of resource groups. This might be something to consider if you are a large organization with serious complexity involved with the hosting of your applications, or you simply don't have time to manage your environments yourself. However, for the sake of our sample application, we'll be keeping things simple with a single subscription and resource group to store everything else that we'll need.

 Creating a subscription and resource group

Creating a subscription is incredibly easy, as there is a link to do so on the very first screen you see after creating a portal account (see the previous screenshot). Even better is that this first subscription is entirely free for the first month, as long as you don't go over £150 worth of free credits. At the end of that month, you have to opt in to a pay as-you-go subscription, meaning you won't get a nasty bill after the first 30 days unless you've made an explicit choice to continue your service—this isn't one of those free trials that automatically bill you after the first month if you forget to cancel!

Once you've followed the instructions to create your first subscription, we need to make a resource group to hold our database and web app resources. To do so, click on the Resource groups link in the main menu on the left, and then click the Add button at the top of the screen. You'll be presented with a simple form on the screen that looks like this:

What you call it and which location you choose for it is entirely up to you. I named mine phoneshop, and used the UK South data center as the location, seeing as I am based in the UK and we're building an online phone shop. With this done, we are ready to start creating our actual resources.

 Creating a database

It makes sense to start off with the database, seeing as we'll need the connection string later, when it comes to setting up the web app. There's a couple of parts to this, as in addition to the database itself, we also need to configure the server that will host it. Both are done at the same time, as when creating a new database you can either choose to create a new server or pick an existing one. As this is our first database, it will be the former on this occasion.

Again, in the main menu on the left, click on the SQL databases link followed by the Add link at the top of the page that follows. Most of the fields are fairly self-explanatory, and by the time you get to the Server section, it should look something like this:

I chose to name the database phoneshop, left the default subscription selection as my Free Trial, and selected the phoneshop resource group we just created by checking the Use existing radio button. We want the database to be completely empty, so we choose the Blank database option for its source. Then, we come to the Server section, where our only option is to choose to create a new server seeing as no other servers were found. This opens a secondary form where I named the server phoneshop, entered my preferred server admin login credentials, and again chose UK South as the data center location.

Having completed the database server form and hitting the Select button at the bottom, we can finish off the main form for creating the database:

We don't wish to use SQL elastic pool, so I've left this as the default Not now option. Finally, I've specified Basic, 2 GB as the pricing tier for this database. It's worth noting at this point that we don't pay for the database server itself; instead, we must pay for each individual database that's hosted on it. Additional databases mean additional cost. Once you've finished this form, hit the Create button to finalize this. This could take a couple of minutes to complete, so just wait until it's done before we move on to the web app itself.

 Creating an app service

An app service is a self-contained environment for deploying a single web or mobile app within Azure. They support a number of different application frameworks such as ASP.NET, Java, Node.js, and PHP all without the need for us to configure any kind of server infrastructure ourselves. All we need to do is spin one up, then deploy our application to it, and Azure will handle the rest for us. However, if you have more advanced needs, then we have a few different ways of overriding the default configuration, including the use of environment variables and the web.config file.

As with creating the database there are actually two parts to the creation of our first app service. This is because app services must always belong to another resource called an app service plan, which again we can choose to create at the same time as creating the app service itself. However, unlike with databases and database servers, it's the app service plan that is charged for and, as such, determines the pricing tier of our web app service. Speaking of which, there are a number of different pricing tiers available for app service plans, starting with the Free tier, which is what we'll be using for our sample application. The monthly cost of each tier above the free one is calculated by how much you actually use. This isn't an easy cost to estimate, although there are pricing calculators on the Azure website that aim to help you. My recommendation would be to make use of the £150 free credit for your first 30 days and see how much of that gets used up by one of your existing applications.

Aside from an increase in price, you also gain additional functionality and available resource limits as you go up the pricing tiers. For example, in the free tier we only get 1 GB of disk space, cannot use a custom domain name, and have no option for autoscaling. However, moving up to the Standard tier (the recommended minimum for production apps), we get 50 GB of disk space, custom domains are supported, and we can even set up autoscaling. This means that if we have huge spikes in activity, the application is far less likely to fall over, as Azure will automatically scale up the amount of available resources to deal with the additional requests. On top of this, on a standard tier service plan, we can actually host up to 10 app services, that is, 10 different web applications for the price of one. To really get the best value from Azure App Services, you need to stack up multiple applications under a single service plan.

To create our app service/plan, click on the App Services link in the main menu on the left, then click the Add button at the top of the screen that follows. You'll be presented with a whole host of different applications you can create, but we just need the first option: Web App. On the screen that follows, hit the Create button at the bottom, and you'll be presented with the following form to complete:

As with our other resources, I've chosen to name the App Service phoneshop, left the subscription as the default Free Trial option, and chosen to use my existing phoneshop resource group. I've left the OS as the default Windows option; note how the App Service plan/Location field has already been filled in for us. By default, Azure will choose to create a new App Service plan for you with a generic name using the S1 pricing tier that's located in the Central US data center. It is very easy to skip over this field, seeing as it has been pre-completed, and then end up with a higher pricing tier than you'd like, and a database/web app running on different continents. I've certainly done this before, and then spent a good few hours trying to work out why there was around a 500 ms latency on every database call within my application.

Rather than take the default option, we're going to hit the Create new button to specify our own service plan details:

I've chosen to name it phoneshop again, but selected the UK South data center and the F1 Free pricing tier. Once you've configured your own service plan, hit the OK button at the bottom, which should then leave you with just the Application Insights field to finalize our app service:

I'm not going to bother using application insights on my application, but feel free to turn it on if you wish. At this point, we can hit the Create button at the bottom to finalize the creation of our app service. As with the database, this can take a couple of minutes to complete, so just wait for the notification bar to let you know it's finished.

The notification bar is accessible by clicking the bell icon at the top of all Azure portal screens!

Once the app service finishes deploying, we will have created everything we need to host our e-commerce application in the cloud. To see all the resources we have created and to make sure everything is up and running, click on the All resources link in the main menu. You should be greeted with a screen that looks like this:

Double-check you have the same four resource types deployed: SQL server, App Service plan, App Service, and SQL database. Also ensure that they are all located in the same data center location of your choice.

 Configuring environment variables

At the very least, most web applications will need the database connection string to be set as an environment variable. If you've used ASP.NET Core before, you'll know that it is incredibly easy to include environment-specific configuration settings using the appsettings.json and appsettings.{EnvironmentName}.json files. However, I wouldn't recommend storing sensitive variables such as connection strings and third-party API credentials in these configuration files. Instead, we can add them as environment variables directly within Azure, keeping them well away from source control and the eyes of developers who perhaps shouldn't have access to these settings.

First, we need to find out what our Azure connection string actually is. To do so is very easy, and from the all resources page that you should still be viewing, click on the SQL database name to go to the resource details page for our Azure database. This should look something like the following:

You'll notice that a secondary menu has now appeared on the left, with a whole host of different items to explore if you are interested. This is where you'll find any kind of configuration that you might want to do, such as geo-replication and syncing with other databases. The one we are interested in here is the Connection strings option, but you can also click on the Show database connection strings link toward the top of the main window. Either of these links should take you to the following screen:

There are a number of tabs showing connection strings in different formats that are dependent on the application framework in use, but the one we want is the default ADO.NET option. Click the Copy button to the right of the box to copy this connection string to your clipboard.

We now need somewhere to add this as an environment variable on our app service. Click on the App Services link in the main menu, then on the name of the app service we created earlier. You'll be presented with a similar screen to the one we just saw for the database:

Again, there is a whole host of options in the secondary menu for configuring the app service. We don't have time to discuss many of them, but most are pretty self-explanatory if you want to have a play around. What we need is the Application settings option, which will take you to a screen like this:

Note that, to find the Application settings and Connection strings sections, you need to scroll down quite a way. Here, I've already added a connection string by clicking on the Add new connection string link. If you're using the same setting names, as I've done in the appsettings.json file, you need to ensure you call this connection string DefaultConnection. Before you paste in the value, you'll also need to replace the {your_username} and {your_password} sections, using the access credentials you configured when setting up the SQL server earlier.

So, how does this work if we've already got a connection string defined in the appsettings.json file? If you open up the Program.cs file, you'll see a section at the bottom that looks like this:

public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();

When we call the WebHost.CreateDefaultBuilder method, a number of things happen. First, the appsettings.json file is loaded in order to provide the application with our default set of application settings. Next, the appsettings.{EnvironmentName}.json file is loaded based on the specific environment we're running under, which loads the environment-specific settings of our application. If any of these settings already exist, that is, they also appear in the root appsettings.json file, the environment-specific settings will always take precedence. Finally, there is a call to config.AddEnvironmentVariables(), which does a similar job to adding an environment-specific config file. Any environment variables configured on the server will be added to the application's configuration, and environment variables whose name matches a key within the settings files will again take precedence over them. To put it simply, environment variables will always be used over their counterparts in appsettings.json files.

At this point, most simple applications can be deployed, and would probably work just fine. However, in our case, we have a few additional environment variables to configure:

By default, Azure app services are set to use Node version 6.9.1. However, for our application to work, you need to raise this version to 8.9.3, just like I've done, by changing the value of the WEBSITE_NODE_DEFAULT_VERSION application setting. I've also added a second setting named ASPNETCORE_ENVIRONMENT with a value of Production. I'm not going to explain this one as I'm assuming most of you are already familiar with ASP.NET Core environments.

Back in Chapter 7, User Registration and Authentication, we talked about overriding the JwtKey app setting in production. The Application settings section is where you can do so if you wish.

Make sure you hit the Save button at the top of the page. Our app service and all its required environment variables have been fully configured. However, before we can actually deploy the application, we have some preparation work to do.

 Preparing the application for deployment

We're currently using PostgreSQL as our local development database, and although you can set up a Postgres database in Azure, it is far more expensive than running with SQL Server instead. This is why we chose to create a SQL Server and associated database when setting up the environment earlier. However, we now need to configure our application to work with multiple database providers, depending on the environment we are running in. We're also going to tweak the post-publish build steps that came preconfigured with the project template we started from. There are a couple of potential issues that can crop up when using Git to deploy to Azure, so we'll aim to combat them in advance to avoid headaches later on.

 Configuring multiple database providers

Working with two different providers based on the environment we're running in might seem like a strange way of doing things. However, it is actually more common than you might think. Many development teams like to run their apps locally with open source database providers such as Postgres or SQLite, but make use of Microsoft SQL Server in their production environments.

We have a couple of changes to make so that we can add in support for SQL Server, starting with how we register the DbContext class with the built-in DI container. Open up the Startup.cs file, and make the following modifications right at the top:

public Startup(IConfiguration configuration, IHostingEnvironment env)
{
 Configuration = configuration;
 _env = env;
}

public IConfiguration Configuration { get; }

private IHostingEnvironment _env { get; }

...

Next, at the very top of the ConfigureServices method, make the following changes:

public void ConfigureServices(IServiceCollection services)
{
 if (_env.EnvironmentName == EnvironmentName.Development)
 {
 services.AddDbContext<EcommerceContext>(options =>
 options.UseNpgsql(Configuration.GetConnectionString
 ("DefaultConnection")));
 }
 else
 {
 services.AddDbContext<EcommerceContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString
 ("DefaultConnection")));
 }

 ...
}

Finally, we need to manually tweak the migration files to instruct them on how to set up our table identity columns in SQL Server. As an example, the creation script for the AspNetUsers table in the Initial migration file currently looks like this:

migrationBuilder.CreateTable(
 name: "AspNetRoles",
 columns: table => new
 {
 Id = table.Column<int>(nullable: false)
 .Annotation("Npgsql:ValueGenerationStrategy",
 NpgsqlValueGenerationStrategy.SerialColumn),
 ConcurrencyStamp = table.Column<string>(nullable: true),
 Name = table.Column<string>(maxLength: 256, nullable: true),
 NormalizedName = table.Column<string>(maxLength: 256,
 nullable: true)
 }
 ...

Note the .Annotation("Npgsql:...") line—in addition to this, we need to chain on a similar statement that specifies the SQL Server-specific evaluation strategy for identity columns. The updated version looks like this:

migrationBuilder.CreateTable(
 name: "AspNetRoles",
 columns: table => new
 {
 Id = table.Column<int>(nullable: false)
 .Annotation("Npgsql:ValueGenerationStrategy",
 NpgsqlValueGenerationStrategy.SerialColumn)
 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),
 ConcurrencyStamp = table.Column<string>(nullable: true),
 Name = table.Column<string>(maxLength: 256, nullable: true),
 NormalizedName = table.Column<string>(maxLength: 256,
 nullable: true)
 }
 ...

We won't cover everything here, but you'll need to make the same change in every migration file that has a table creation step like the preceding one. This currently includes the Initial, ProductEntity, Catalogue, and Orders migration files.

 Tweaking the post-publish build steps

If you're entirely new to modern frontend development frameworks, you may be wondering why we keep referring to "building" our frontend code. These days, client-side applications are composed of many different JavaScript files, or more specifically modules. These modules are loosely connected using import and export statements, as we've seen while building out our sample e-commerce application.

While in development, we use middleware in our ASP.NET application to dynamically build the JavaScript for us, and update those built files as and when we make changes to them. However, in production, we have no need for the bundled JavaScript files to be updated until we do another deployment. As such, as part of the deployment, we want all of our client-side JavaScript to be built into static files, which will be served from the wwwroot directory just like any other.

We've also been using certain pieces of syntax that are not yet understood by all web browsers. We can solve this issue by transpiling our modern JavaScript code down into an older version that browsers can understand, similarly to how we compile C# into a form that underlying servers can understand. This process of bundling files together and transpiling them into a common format is what we mean when we refer to the building of a Vue.js client application.

As part of the .NET project template we used to scaffold the application back in Chapter 3, Getting Started with the Project, we already have a post-publish task set up that builds our client-side JavaScript bundles and places them within the wwwroot folder. This task is at the bottom of the ECommerce.csproj file, and looks like this:

<Target Name="PublishRunWebpack" AfterTargets="ComputeFilesToPublish">
 <Exec Command="npm install"/>
 <Exec Command="node node_modules/webpack/bin/webpack.js
 --config webpack.config.vendor.js --env.prod"/>
 <Exec Command="node node_modules/webpack/bin/webpack.js --env.prod"/>
 <ItemGroup>
 <DistFiles Include="wwwroot\dist**"/>
 <ResolvedFileToPublish Include="@(DistFiles->'%(FullPath)')"
 Exclude="@(ResolvedFileToPublish)">
 <RelativePath>%(DistFiles.Identity)</RelativePath>
 <CopyToPublishDirectory>PreserveNewest</CopyToPublishDirectory>
 </ResolvedFileToPublish>
 </ItemGroup>
</Target>

However, when it comes to running this script inside Azure, it is common to see an npm error thrown to do with our SCSS compilation. The crux of this error is that, for whatever reason, npm believes that our Node and/or npm versions have changed since we ran the npm install command. This simply isn't the case, and there are plenty of other people in similar positions who are posting GitHub issues all over the internet. Thankfully, it is a simple one-line fix:

<Target Name="PublishRunWebpack" AfterTargets="ComputeFilesToPublish">
 <Exec Command="npm install"/>
 <Exec Command="npm rebuild node-sass"/>
 <Exec Command="node node_modules/webpack/bin/webpack.js --config
 webpack.config.vendor.js --env.prod"/>
 <Exec Command="node node_modules/webpack/bin/webpack.js --env.prod"/>
 <ItemGroup>
 <DistFiles Include="wwwroot\dist**"/>
 <ResolvedFileToPublish Include="@(DistFiles->'%(FullPath)')"
 Exclude="@(ResolvedFileToPublish)">
 <RelativePath>%(DistFiles.Identity)</RelativePath>
 <CopyToPublishDirectory>PreserveNewest</CopyToPublishDirectory>
 </ResolvedFileToPublish>
 </ItemGroup>
</Target>

The error itself suggests we run the npm rebuild node-sass command to try to resolve the issue, which is exactly what we've done by adding the additional <Exec /> statement here.

 Configuring Git deployments

Configuring Git deployments in Azure is an absolute breeze as long as you are using one of the main source control providers such as GitHub, Bitbucket, or VSTS. Back inside the Azure portal, navigate to the App Services page, then click on the name of the app service we created earlier. From the details page that follows, we need to click on the Deployment options link from the secondary menu on the left. The screen that follows should look like this:

After clicking on the Configure required settings button, you will be presented with a number of source control options to choose from. Connecting to these is very simple, and the wizard will guide you through the process very quickly. As an example, I am using Bitbucket, so after selecting the appropriate option, I am presented with the following screen to finalize my deployment options:

You must first complete the Authorization section, which will ask you to authenticate with the provider you've chosen, then grant access for Azure to connect to your repositories. Next, you can select a specific project from within your source control account, followed by the branch you wish to deploy from. Optionally, you can also configure performance tests to run after every successful deployment, but to keep things quick and simple, here, I am choosing not to configure them. After hitting the OK button, Azure will automatically run the first deployment for you based on the latest version of your code on the branch you specified. As such, make sure the changes we've just made to prepare the application for deployment are committed and pushed to your repository, or the deployment will likely fail.

Click on Deployment options again and you should see that the application is currently being deployed. The most recent Git commit message will be shown alongside a spinner to indicate that the deployment is still in progress. After a few minutes, if all is well, the deployment will succeed and you should see a screen like this:

Occasionally, you may see deployments fail due to the following npm error: npm ERR! code EBUSY. This does happen from time to time, and the solution is to go to your app service details page and completely stop it and then start it again using the buttons at the top of the Overview section.

With the application deployed, you can now check it out by browsing to the Azure URL for your app service, which is based on its name like so: {appname}.azurewebsites.net. In my case, I can head to phoneshop.azurewebsites.net to see my application up and running. From now on, every git push to the remote repository will trigger a newly automated deployment to the environment we just set up and configured.

 Finalizing the apps configuration

Our app is now deployed, but there are a couple of further enhancements we can make if we wish. First of all, it is incredibly hard to debug live issues without some kind of logging enabled, and second of all, most applications these days should be running on HTTPS—especially those with payment processing, such as ours. In this section, we'll take a look at how to enable logging within Azure, and then how to make the most of the free SSL certificate we have access to while using an Azure website's subdomain as we are doing now.

 Enabling logging in Azure

Enabling logging in Azure is probably the most difficult aspect of configuring an app service. While viewing the app service details page, you can scroll right down on the secondary menu to find the Diagnostics logs section, where you can configure all kinds of logging options. However, what we'd be interested in is the Application Logging (Filesystem) option, but if you hover over the more information icon, you'll notice that it only remains enabled for 12 hours before being automatically disabled again. This is because this feature is intended for use with the live log stream functionality, which can be accessed from the Log stream secondary menu item. This won't help us with historic log messages, as you need to be watching the log stream in real time to get any benefit from it.

Instead, we're going to access the filesystem of our app service directly, and enable the standard out log file in the web.config file. To do so, find the Advanced Tools secondary menu item, then click the Go link in the screen that follows. A new browser tab should open, which looks like this:

From the main menu at the top of the page, select Debug console followed by CMD, which should present you with the following screen:

From here, we have full access to the console of our app service, as well as the preceding GUI to browse the filesystem. We need to navigate to the site/wwwroot directory, which will display all of the files that we deployed using Git to the app service earlier:

The one we're interested in should be right at the bottom of the list, named web.config. Click on the pencil icon to the left to edit this file, after which the contents should look like this:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.webServer>
 <handlers>
 <add name="aspNetCore" path="*" verb="*"
 modules="AspNetCoreModule" resourceType="Unspecified" />
 </handlers>
 <aspNetCore processPath="dotnet" arguments=".\ECommerce.dll"
 stdoutLogEnabled="true" stdoutLogFile="\\?\%home%\LogFiles
 \stdout" />
 </system.webServer>
</configuration>

The only thing we've changed here is to set the stdoutLogEnabled setting to true. Once you've made this change, hit the Save button at the top of the screen to commit the changes. From now on, any unhandled exceptions from our application will be logged to a file in the home/LogFiles directory, which you can find by following the same steps as earlier, but changing the directory you navigate to.

 Forcing HTTPS connections only

Forcing HTTPS on Azure App Services could not be easier. While viewing the details page for your app service resource, click on the Custom domains secondary menu item, then simply select On, which is next to the HTTPS Only option. After doing so, the page should look like this:

 Summary

Azure may not be the cheapest option when deploying small personal projects to the cloud, but for businesses with many different applications, it's highly competitive in comparison with the other major cloud hosting providers. We've only scratched the surface of what you can do with the Azure portal, so I strongly encourage you to make the most of the free 30-day trial and make use of as many different resources as you can.

We started out by getting to grips with the concepts of Azure subscriptions, resources, and resource groups. Once familiar with those, we started to deploy the resources we needed for our application, including a single resource group, a database server, a SQL database, an app service plan, and an app service. We then made some changes to the application itself in order to prepare it for deployment into Azure. The main change we needed to make was to enable support for multiple database providers so that we could utilize a full-blown SQL server in our production environment, while remaining cross-platform-compliant in development.

We then configured our application to deploy automatically from every git push to a source control provider of our choice. Finally, we added some additional configuration to enable logging, and forced the use of HTTPS on our newly deployed application.

In the next few chapters, we're going to cover some more advanced topics such as refresh token authentication flows, server-side rendering, and Continuous Integration and deployment using VSTS.

 Authentication and Refresh Token Flow

In the last chapter, we looked at how to set up a production-ready Azure environment and configured our application so that we can deploy it automatically using Git deployments. As the application is now feature-complete and deployed to our chosen hosting environment, it's time to start building on some of our existing features using some more advanced concepts. In this chapter, we're going to extend our current authentication mechanism to include refresh tokens as well as the access tokens we're already using. In summary, we'll cover the following topics in this chapter:

	Refresh tokens: What are they and why would we use them?

	Adding refresh token support to the backend

	Handling refresh token flow on the frontend using axios interceptors

 Understanding refresh tokens

Before we can implement them, we need to understand what refresh tokens are used for, what they actually are, and why we would want to use them on top of our current JSON Web Token (JWT)-based access tokens.

 What are refresh tokens used for?

Let's start by understanding the basics of what we're actually going to use refresh tokens for, before diving into the nitty gritty of what they are actually composed of. As the name implies, a refresh token is used for refreshing an existing token—or more specifically, refreshing an existing access token.

Refresh tokens are used to obtain a new access token as and when your existing access token expires. What's more, this doesn't require any input from the user; it is all done silently in the background without them even knowing. Essentially, this enables users to remain logged in indefinitely. At this point, you might be wondering about the security aspect of this, but don't worry, we're actually increasing the security of our application! More on that later in this chapter.

So, how does this actually work? When an access token expires, we return a 401 HTTP status code to signify that the user is no longer authenticated. With some modifications to our frontend application code, we can listen for this status code on every API request we make, and attempt to refresh the token if we catch one. If the refresh succeeds, we can retry the original request and carry on as if nothing happened, but if it fails, we simply redirect the user to the login page so that they can authenticate fully again.

The following diagram shows a simple refresh token flow between a Client SPA and a Server API:

 What are refresh tokens?

Plainly and simply, a refresh token is an arbitrary string of text that we assign to each user within the database as and when they authenticate successfully. The contents of this string of text do not really matter, as long it is a unique value; when we try and refresh the user's access token, we need to be able to uniquely identify them based on their refresh token.

So, why do we bother if the contents of the string don't matter, seeing as we already have a unique identifier in the form of the user's database ID value? There are two aspects to this question: firstly, why don't the contents of the string matter; and secondly, why can't we use their database ID as the refresh token if it already uniquely identifies them?

Starting with the latter, we can't use their database ID value because that value should never change once initially created. Every time a user authenticates or refreshes their existing access token, a new refresh token is generated and stored in the database. By changing the refresh token so often, it makes it far less likely that malicious users who have somehow gained access to another user's refresh token can use it to obtain an access token.

So, now that we know we can't use their existing ID, and must use a new unique string value, why does it not matter what the content is? The answer is simple: the refresh token is not trying to fully describe the user it's been assigned to—this is the job of an access token, which has a whole bunch of claims encoded within it. The refresh token simply needs to be able to uniquely identify which user in the database is trying to refresh their existing access token. The obvious choices for globally unique strings are GUIDs, but to make it slightly shorter and more readable, we'll be converting a GUID to a Base64-encoded string instead.

If you aren't familiar with the term GUID, it stands for Globally Unique Identifier, and describes a value that is virtually guaranteed to be unique, even across multiple databases and/or application boundaries.

 Why use refresh tokens?

So, why would we actually bother using refresh tokens? After all, our access tokens are already configured to be valid for 30 days from the point of login, which is quite a long time anyway.

The main answer to this question is to increase the security of our application. Once a JWT access token has been generated, it is 100% valid until it expires based on the expiration date we set for it when we created it. There is absolutely nothing that we can do to prevent it from being used to successfully authenticate a user. This is because JWT-based authentication does not consult with the database when an existing access token is passed to an API request; everything the server needs to know about a user to authorize them is encoded into the token itself. The problem, then, is that the longer an access token is valid for, the more time a malicious user has to make use of that access token if they manage to get hold of it.

On the other hand, refresh tokens are stored in the database, and as such the database must be queried in order for a refresh token to be validated. If we remove the refresh token from the database, a subsequent API request to refresh the user's access token would then fail. This means that they can have a much longer expiration due to the fact that we have a way of invalidating them if we suspect a malicious user has gained access to the tokens of one of our customers.

 Refresh tokens allow us to have very short access token expiration dates set, usually measured in minutes rather than days. This minimizes the window that access tokens can be abused for if they are compromised, while still leaving users logged in for longer periods due to the ability to refresh the token until we manually invalidate their refresh token as well.

 Adding refresh token support to the backend

We've covered enough theory for now, so let's crack on and see how refresh tokens actually work. We can't do anything on the frontend of the app until the backend supports refresh tokens, so that's where we're going to start.

 Extending the AppUser model

First up, we need a place to store the refresh token as and when we generate it. As previously discussed, this token is unique to each user, so it belongs in our Data/Entities/AppUser entity model:

namespace ECommerce.Data.Entities
{
 public class AppUser : IdentityUser<int>
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string RefreshToken { get; set; }

 [NotMapped]
 public string FullName
 {
 get { return $"{FirstName} {LastName}"; }
 }

 public List<Order> Orders { get; set; } = new List<Order>();
 }
}

With this property in place, we also need to make sure it is unique. As this requires an index to be placed on the database field, it also serves the purpose of speeding up the query of finding a user based on their refresh token—something we'll be doing quite frequently. Open up the Data/EcommerceContext.cs file, locate the overridden OnModelCreating method, and update it as follows:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 base.OnModelCreating(modelBuilder);

 modelBuilder.Entity<Product>()
 .HasIndex(b => b.Slug)
 .IsUnique();

 modelBuilder.Entity<ProductFeature>()
 .HasKey(x => new { x.ProductId, x.FeatureId });

 modelBuilder.Entity<ProductVariant>()
 .HasKey(x => new { x.ProductId, x.ColourId, x.StorageId });

 modelBuilder.Entity<Order>()
 .OwnsOne(x => x.DeliveryAddress);

 modelBuilder.Entity<AppUser>()
 .HasIndex(x => x.RefreshToken)
 .IsUnique();
}

And finally, we can create a migration to update our database accordingly. Open a Terminal at the root of your project and run the following:

dotnet ef migrations add RefreshTokens

 Generating refresh tokens

Now that we have a place to store the refresh token, we actually need to generate one. We already have the ideal place to do so, which is in the GenerateToken method of the Features/Authentication/Controller.cs class:

private async Task<TokenViewModel> GenerateToken(AppUser user)
{
 ...

 var refreshToken =
 Convert.ToBase64String(Guid.NewGuid().ToByteArray());

 user.RefreshToken = refreshToken;
 await _userManager.UpdateAsync(user);

 return new TokenViewModel
 {
 AccessToken = new JwtSecurityTokenHandler().WriteToken(token),
 AccessTokenExpiration = expires,
 RefreshToken = refreshToken,
 FirstName = user.FirstName,
 LastName = user.LastName,
 Roles = roles
 };
}

Now, every time a user authenticates using their email and password, a new refresh token will be generated, stored in the database, and returned, along with their access token. You'll probably have noticed that the RefreshToken property doesn't actually exist on the TokenViewModel class, so let's add it now:

namespace ECommerce.Features.Authentication
{
 public class TokenViewModel
 {
 [JsonProperty("access_token")]
 public string AccessToken { get; set;
 [JsonProperty("access_token_expiration")]
 public DateTime AccessTokenExpiration { get; set; }
 [JsonProperty("refresh_token")]
 public string RefreshToken { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public IEnumerable<string> Roles { get; set; }
 }
}

 Refreshing JWT access tokens

All that's left now is to provide a means for the client-side application to actually refresh an access token when it expires. We can do so by adding a simple controller action to the Features/Authentication/Controller.cs class:

[HttpPost("refresh")]
public async Task<IActionResult> Refreshtoken([FromBody] RefreshTokenViewModel model)
{
 if (!ModelState.IsValid)
 return BadRequest();

 var user = await _db.Users.SingleOrDefaultAsync(x => x.RefreshToken == model.RefreshToken);

 if (user == null)
 return BadRequest();

 var token = await GenerateToken(user);

 return Ok(token);
}

By now, this should be fairly self-explanatory, so in summary what we are doing here is the following:

	Defining a HTTP POST action listening on the /api/token/refresh route

	Returning a plain BadRequest result if validation fails

	Querying the database for the single user whose RefreshToken matches that of the model being posted from the client

	Returning a plain BadRequest result if no matching user is found

	Generating new access/refresh tokens using the existing GenerateToken method

	Returning the token model within an Ok result

Notice how we've not bothered to supply any kind of error information with the BadRequest results being returned here. As previously discussed, our client-side app will use this endpoint without the end user ever knowing about it. As such, we don't really need to supply any kind of error information, unless you wish to for debugging purposes.

The RefreshTokenViewModel class that we're accepting on this action method needs to look like this:

namespace ECommerce.Features.Authentication
{
 public class RefreshTokenViewModel
 {
 [Required, JsonProperty("refresh_token")]
 public string RefreshToken { get; set; }
 }
}

If you hadn't already noticed, we're also accessing the DbContext directly using an _db property that does not yet exist. We need to add the additional dependency to the top of this controller like so:

namespace ECommerce.Features.Authentication
{
 [Route("api/[controller]")]
 public class TokenController : Controller
 {
 private readonly EcommerceContext _db;
 private readonly SignInManager<AppUser> _signInManager;
 private readonly UserManager<AppUser> _userManager;
 private readonly IConfiguration _configuration;

 public TokenController(
 EcommerceContext db,
 SignInManager<AppUser> signInManager,
 UserManager<AppUser> userManager,
 IConfiguration configuration)
 {
 _db = db;
 _signInManager = signInManager;
 _userManager = userManager;
 _configuration = configuration;
 }

 ...
 }
}

With that, we have everything we need to issue and validate refresh tokens from our server-side API.

 Finishing up

When we first implemented authentication back in Chapter 7, User Registration and Authentication, we were returning the expiry date of the access token so that the client could use it to determine whether the token was still valid without needing to make an API call. However, now that our refresh token functionality will automatically retrieve new access tokens for us, we no longer care about the access token's expiry date. As such, we can remove it from the model that's returned to the client.

Start by opening the Features/Authentication/TokenViewModel.cs file and removing the lines highlighted in the following code snippet:

namespace ECommerce.Features.Authentication
{
 public class TokenViewModel
 {
 [JsonProperty("access_token")]
 public string AccessToken { get; set;
 //[JsonProperty("access_token_expiration")]
 //public DateTime AccessTokenExpiration { get; set; }
 [JsonProperty("refresh_token")]
 public string RefreshToken { get; set; }
 public IEnumerable<string> Roles { get; set; }
 }
}

Next, at the bottom of the GenerateToken method of the Features/Authentication/Controller.cs class, modify the returned object by removing the access token's expiry field:

return new TokenViewModel
{
 AccessToken = new JwtSecurityTokenHandler().WriteToken(token)
 //AccessTokenExpiration = expires,
 RefreshToken = refreshToken,
 Roles = roles
};

Finally, we're currently taking a numeric value from the appsettings.json file and using it as the number of days an access token is valid for. We now want this to be the number of minutes it is valid for instead. In the same controller, find the following line in the GenerateToken method and change it like so:

var expires = DateTime.Now.AddMinutes(Convert.ToDouble(_configuration["Authentication:JwtExpireMins"]));

We now also need to rename this setting within the appsettings.json file itself:

"Authentication": {
 "JwtKey": "ECOMMERCE_SUPER_SECRET_KEY",
 "JwtIssuer": "http://localhost:5000",
 "JwtAudience": "http://localhost:5000",
 "JwtExpireMins": 15
}

This completes our entire server-side changes. Let's see what's involved on the client side.

 Adding refresh token support to the frontend

We have now discussed the basic flow of how refresh tokens work, as well as implementing a means of performing that flow by adding an additional API endpoint to our server. All that remains is deciding how we actually modify the frontend of the application to automatically handle our refresh token flow without letting the user know what's happening.

We know that we need to watch every API call for a 401 HTTP status code response and attempt to obtain a new access token by hitting the refresh token API endpoint. We also know that we don't want to be doing this manually on every API request in the system, as it would be completely impractical to try and maintain them if the logic ever changed. We need a way of defining this logic in a single place and have it automatically work any time we add new API requests in the future.

Luckily, all of these requirements are handled very easily by using an axios interceptor function. Axios interceptor functions quite literally intercept our API requests and/or responses and provide a means for us to run our custom logic on every request in the system with ease. We can define such a function to look for a 401 response status code on every API call, check whether we have a refresh token available, and use it to make a follow-up API call to the refresh token endpoint if we do. This will start to make a lot more sense when we look at the code later!

The only problem is that the only place we can really put this function right now is in the ClientApp/boot.js file, which is already getting pretty bloated. The bulk of this file is currently router-specific code, which we can certainly extract into separate files in order to thin it down a bit. The other benefit this will give us is that we'll be able to import the router object into other files so that we can make use of it; this is exactly what we need for our refresh token handling.

 Extracting router configuration into separate files

Start by creating a new ClientApp/router directory, which will ultimately contain two files: index.js and routes.js. Starting with routes.js, we need to extract our page component import statements out of ClientApp/boot.js and drop them at the top of this new file:

//import page components
import Catalogue from "../pages/Catalogue.vue";
import Product from "../pages/Product.vue";
import Cart from "../pages/Cart.vue";
import Checkout from "../pages/Checkout.vue";
import Account from "../pages/Account.vue";

//import admin pages
import AdminIndex from "../pages/admin/Index.vue";
import AdminOrders from "../pages/admin/Orders.vue";
import AdminProducts from "../pages/admin/Products.vue";
import AdminCreateProduct from "../pages/admin/CreateProduct.vue";

Next, we can extract the routes array from ClientApp/boot.js as well:

const routes = [
 { path: "/products", component: Catalogue },
 { path: "/products/:slug", component: Product },
 { path: "/cart", component: Cart, meta: { role: "Customer" } },
 {
 path: "/checkout",
 component: Checkout,
 meta: { requiresAuth: true, role: "Customer" }
 },
 {
 path: "/account",
 component: Account,
 meta: { requiresAuth: true, role: "Customer" }
 },
 {
 path: "/admin",
 component: AdminIndex,
 meta: { requiresAuth: true, role: "Admin" },
 redirect: "/admin/orders",
 children: [
 {
 path: "orders",
 component: AdminOrders
 },
 {
 path: "products",
 component: AdminProducts
 },
 {
 path: "products/create",
 component: AdminCreateProduct
 }
]
 },
 { path: "*", redirect: "/products" }
];

Finally, we simply need to export the routes array so it can be imported by the main router definition file:

export default routes;

The main router definition will now belong in the ClientApp/router/index.js file, and again we can start by extracting some of the import statements that used to reside in ClientApp/boot.js:

import Vue from "vue";
import VueRouter from "vue-router";
import NProgress from "nprogress";

import routes from "./routes";
import store from "../store";

Vue.use(VueRouter);

Note that the Vue import line needs to remain in both the ClientApp/router/index.js and ClientApp/boot.js files, but VueRouter and NProgress can be removed from the boot file. We can then import the routes array from the other file we just created, as well as import the store object. Again, the store object needs to remain in both files. Finally, we've extracted the Vue.use(VueRouter); line, which can now be removed from the boot file.

Next, we can extract the actual router object declaration from the boot file:

const router = new VueRouter({ mode: "history", routes: routes });

This is followed by the router.beforeEach hook:

router.beforeEach((to, from, next) => {
 NProgress.start();

 if (to.matched.some(route => route.meta.requiresAuth)) {
 if (!store.getters.isAuthenticated) {
 store.commit("showAuthModal");
 next({ path: from.path, query: { redirect: to.path } });
 } else {
 if (
 to.matched.some(
 route => route.meta.role &&
 store.getters.isInRole(route.meta.role)
)
) {
 next();
 } else if (!to.matched.some(route => route.meta.role)) {
 next();
 } else {
 next({ path: "/" });
 }
 }
 } else {
 if (
 to.matched.some(
 route =>
 route.meta.role &&
 (!store.getters.isAuthenticated ||
 store.getters.isInRole(route.meta.role))
)
) {
 next();
 } else {
 if (to.matched.some(route => route.meta.role)) {
 next({ path: "/" });
 }

 next();
 }
 }
});

After that, here is the router.afterEach hook:

router.afterEach((to, from) => {
 NProgress.done()
});

Finally, we need to export the router object so that it can be imported elsewhere:

export default router;

Just to make sure everything is still looking OK in the ClientApp/boot.js file, the import statements at the top should currently look like this:

import Vue from "vue";
import router from "./router";
import store from "./store";
import BootstrapVue from "bootstrap-vue";

import VueToastr from "@deveodk/vue-toastr";
import "@deveodk/vue-toastr/dist/@deveodk/vue-toastr.css";
import VeeValidate from "vee-validate";

//helpers
import "./helpers/validation";

Note that we needed to import the router object from our newly created router directory. Next, the Vue plugin installation section should look like this:

Vue.use(BootstrapVue);
Vue.use(VueToastr, {
 defaultPosition: "toast-top-right"
});
Vue.use(VeeValidate);

// filters
import { currency, date } from "./filters";

Vue.filter("currency", currency);
Vue.filter("date", date);

This is followed by our store initialization from the localStorage section:

import axios from "axios";
const initialStore = localStorage.getItem("store");

if (initialStore) {
 store.commit("initialise", JSON.parse(initialStore));
 if (store.getters.isAuthenticated) {
 axios.defaults.headers.common["Authorization"] = `Bearer ${
 store.state.auth.access_token
 }`;
 }
}

And finally, we have our Vue instantiation:

new Vue({
 el: "#app-root",
 router,
 store,
 render: h => h(require("./components/App.vue"))
});

 Refreshing access tokens with axios interceptors

Axios interceptor functions can be thought of like action filters or middleware in ASP.NET MVC. They are invoked on every single request that we make using axios, and we can hook into the request both before it has run and after. This makes them ideal for our refresh token requirements, as we can check every response that we get back from an API request and perform some custom logic if we detect an authentication failure.

In this case, we'll be looking for 401 response status codes, checking whether we have a refresh token to use, and then attempting to obtain a new access token using the new API endpoint we created earlier on. If we get one, we re-trigger the original request that failed, and the user is none the wiser that any of this has happened, unless they're watching the network tab in their browser devtools.

This will make more sense when we get our interceptor in place, so let's create a new ClientApp/helpers/interceptors.js file and start by importing the modules we'll need, like so:

import axios from "axios";
import store from "../store";
import router from "../router";

We obviously need axios, seeing as this is an axios interceptor function, but we'll also need a reference to our store and router objects so that we can persist the new access token to the store, or redirect to the home page if the refresh token fails. Next, we need to define the interceptor function itself, which currently has the body of the function omitted for brevity:

axios.interceptors.response.use(undefined, function(error) {
 ...
}

As we are only interested in checking the response of an axios call, we use axios.intercepters.response. However, if we wanted to perform some logic before an API request, we could just as easily have used axios.interceptors.request as well. For example, we could have defined an axios interceptor function that applies our access token to the request if it exists in local storage, rather than our current implementation of adding it to the default headers.

The use function that we invoke in the preceding code takes two optional arguments, both of which are callback functions. The first is a function to invoke if the response returns a successful HTTP response code, and the second is a function to invoke if an error code is returned. All we care about are 401 (Unauthorized) codes, so we can pass undefined as our success code callback function. All of our logic belongs inside the error code callback function, which receives a parameter that we've aptly named error containing the details of the request and why it failed.

The first thing we need to do inside this function is get hold of the original request that just failed so that we can retry it if we successfully manage to refresh the access token:

const originalRequest = error.config;
if (
 error.response.status === 401 &&
 !originalRequest._retry &&
 store.state.auth.refresh_token
) {
 ...
}

return Promise.reject(error);

We can obtain the object model of the original request from the error.config variable, which in this case we reference using a new originalRequest variable. Next, we check whether the response code returned was equal to 401, that the request was not a retry, and that we have a refresh token in our store state. If any of these checks fail, we don't do anything other than reject the promise, as this isn't a response that we care about intercepting with this function.

All axios interceptor functions return promises by default.

However, if all of these checks pass, we drop down inside the if block, where we start doing the following:

originalRequest._retry = true;

const payload = {
 refresh_token: store.state.auth.refresh_token
};

At this point, we can mark our originalRequest object as a retry by setting the _retry property to true. We then construct a payload object, which is what we'll be sending to the API in order to attempt an access token refresh. The API request itself is next, which looks like this:

return axios
 .post("/api/token/refresh", payload)
 .then(response => {
 const auth = response.data;
 axios.defaults.headers.common["Authorization"] = `Bearer ${
 auth.access_token
 }`;
 originalRequest.headers["Authorization"] = `Bearer ${
 auth.access_token
 }`;
 store.commit("loginSuccess", auth);
 return axios(originalRequest);
 })
 .catch(error => {
 store.commit("logout");
 router.push({ path: "/" });
 delete axios.defaults.headers.common["Authorization"];
 return Promise.reject(error);
 });

We perform a HTTP POST request, passing the payload object that we just created, then checking the response and performing some logic depending on whether it succeeded or failed. If we successfully managed to refresh the access token, we drop into the then block and do the following:

	Create a new auth variable referencing the response.data property

	Set the global axios default authorization header based on the auth.access_token property

	Set the originalRequest authorization header in the same way

	Commit the loginSuccess mutation in order to persist the new tokens to the store

	Retry the original request using return axios(originalRequest);

You may be wondering why we need to set the authorization header on both the global axios defaults and the originalRequest object. Unfortunately, the originalRequest object would have contained the expired access token taken from the global axios defaults at the point the request was originally sent. Even by overriding the defaults at this point, the originalRequest object will remain unchanged, as when we call axios(originalRequest), it quite literally sends the request as is, with no modifications from the global defaults.

If we fail to refresh the access token, we then drop down inside the catch block and do the following:

	Commit the logout mutation to clear the auth state from the store

	Redirect to the home page using the router object we imported earlier

	Delete the default axios authorization header

	Reject the promise returned from the interceptor function

At this point, it should make more sense as to why our router configuration refactoring was worthwhile. As we need access to the router object here, the only place it was available was in the ClientApp/boot.js file, or any of our Vue components due to the fact that the router is injected into them all using the $router property. This function doesn't belong in either of those places, so it makes sense to extract the router config into a file that we could export it from, meaning we could then import it in files such as this one.

Our interceptor function is now complete, but we still need to import it into our entry boot file or it will never be invoked. Open up the ClientApp/boot.js file and add the following import line:

//helpers
import "./helpers/validation";
import "./helpers/interceptors";

Our interceptor function will now be globally used by all axios requests, meaning our refresh token handling is now complete. However, we have one final change to make to ensure things work as we expect.

 Finishing up

If you remember, at the end of our server-side changes, we removed the access token expiration date from the response returned from a successful authentication request. We don't care about when the token expires anymore, as our refresh token interceptor will handle our need to obtain a new access token every 15 minutes anyway. As such, we can modify our authenticated getter function to omit the expiry date check. Open up the ClientApp/store/getters.js file and modify the isAuthenticated function like so:

export const isAuthenticated = state => {
 return state.auth !== null && state.auth.access_token !== null;
};

We can now test that everything is working properly by monitoring the Network tab within Chrome's DevTools. Rather than waiting 15 minutes for your access token to expire, you can change the expiration in the appsettings.json file to a much shorter interval. You'll then need to log in, navigate to a page that requires authentication, wait for the access token to expire, and hit the refresh button. You should see output similar to the following:

 Summary

The refresh token flow is a great way of increasing the security of a JWT-based authentication system, and is heavily used in OAuth2 and Open ID Connect-based applications. We've seen how easy it was to implement on the server, and just one additional file was needed on the client to tie everything together. The benefits of using refresh tokens certainly outweigh the very minor overhead of the time taken to implement them.

In the next chapter, we're going to look at another more advanced concept in Vue in order to enhance the SEO of our application: server-side rendering (SSR).

 Server-Side Rendering

In the last chapter, we increased the security of our application by implementing a more advanced refresh token authentication flow. This enabled us to minimize the amount of time an access token is valid for, and as such vulnerable for, without compromising on the length of time a user can remain logged in for.

The next, more advanced, topic on our feature list is Server-Side Rendering (SSR). This is by far one of the most complex features to properly set up and configure in a Vue.js application, particularly when you have password-protected sections as we do. In summary, in this chapter, we're going to look at the following topics:

	Why use SSR in the first place?

	The easy way: Nuxt.js

	Additional npm packages required for SSR

	More advanced webpack configuration

	How to boot a Vue.js application on both the client and server

	How to pre-fetch component data on the server

	How to access protected API routes from the server

	How to conditionally hide specific components on the server

	How to validate that SSR is working

Before we can do anything else, we have a few npm packages to install and some fairly major code refactors to perform before we can render our application on the server.

 Why use SSR in the first place?

When SPA frameworks such as Vue, React, and Angular came about, one of the benefits of using them was to move the task of rendering your application away from the server and into the client. This meant that servers were only required to render a minimal HTML file consisting of some kind of root element that the application would be mounted into, and the asset references of the JavaScript and CSS files needed by the application. For example, if we run the application now and look at its source using a web browser, this is all we receive from the server:

Inspecting the existing server-rendered HTML

Notice the only elements rendered within the body tags are our app-root element and JavaScript references. Once the JavaScript assets are loaded, they then render the application and mount it into the DOM using the root element that we rendered as a placeholder. So, why are we now suddenly making the decision to move that concern back to the server? We're not going to go into a lot of detail, but it's worth at least exploring the fundamentals of why SSR is important.

 Search engine optimization

The first and foremost benefit is Search Engine Optimization (SEO) purposes. SEO is the process of optimizing a web application in order to promote it as far up the rankings of search engines as possible. SEO is important in a lot of web applications, but in an e-commerce application, it is particularly important for new customers to be able to find our shop when they search for the items they wish to buy.

If we render our application on the server, it is guaranteed to be treated by the search engine crawlers in exactly the same way as any other standard HTML web page, with absolutely no negative impact on its rankings. However, although there is an argument that most search engines now support the crawling of JavaScript, generally speaking, I don't believe it is 100% reliable. It is more than possible that our search engine rankings can in fact be seriously impacted by not rendering on the server, ultimately decreasing our sales potential and profitability.

 Performance

The other main benefit to SSR is performance, or at least perceived performance. But what exactly does that mean? SPA frameworks make web applications much more interactive with rich client-side UIs and animations. However, they also drastically increase the amount of JavaScript that needs to be downloaded when a user visits your web page. If we only render the application on the client, unless we specifically cater for it, the user will be greeted with a blank white screen until the JavaScript has been loaded and kicks in to render the application.

On a modern PC and browser combination, this happens so fast that it's barely noticeable. However, we still need to think about those on older machines, or slower connections such as unreliable mobile data connections. The delay will be far more noticeable and may even deter users from sticking around to wait. But, this doesn't actually answer the question of what we mean by perceived performance.

When we render the application on the server, the browser is sent the full HTML of the specific page they requested. This means that they potentially see a fully-rendered web page far sooner than if we were to render the same page on the client instead. However, even though the page looks to be fully rendered, it won't be interactive until all of the JavaScript has been loaded and initialized. Unfortunately, SSR isn't a silver bullet that solves all of our problems in that respect! The concept of perceived performance is that users are almost tricked into believing that the website is loading faster than it actually is, because they see something in their browser sooner, even if they can't actually click around the app for another few milliseconds.

 How does SSR work?

SSR adds a lot of complexity to our application. As it stands, with our application being rendered on the client, all the server does on the initial web request is render an empty HTML shell containing script references to our application's JavaScript files. Once the browser renders this empty shell, it starts to download the script files and executes them when they finish. At this point, our Vue application will be initialized, and will start to trigger the API requests that are necessary to fetch the data required to render the full HTML and CSS of the application. Once the application finishes rendering, it is immediately ready for the user to start interacting with it. This means that the application is both viewable and interactable at the exact same time, right at the end of the application startup cycle.

In comparison, when we start using SSR, the initial request to the server results in a fully rendered HTML page being returned and rendered by the browser. To do so, the server must initialize our Vue application, including the triggering of any API requests necessary to populate the store and complete the initial render. Once the browser receives this HTML and renders it, the application is viewable by the user. However, the browser still needs to download the application script references and initialize the Vue application again on the client. This means that although the application is viewable much sooner in the startup process, there is a slight delay before the client initializes the application and it becomes interactable.

On the face of it, this process doesn't seem too scary, but there are a number of complications that this brings about. We'll cover these in much more detail as we start to implement SSR, but in summary, they include the following:

	API requests performed during a server render may well require authentication, and as such need access to the user's JWT token. This is currently an issue due to the fact that the token is stored in local storage, which isn't accessible on the server.

	As the Vue application is initialized first on the server and then again on the client, we don't want the API requests performed during the server render to be duplicated by the client's initialization.

	Data fetched during the initial server render is lost after the server finishes processing the request, meaning that our store will be empty on the client unless we hydrate it from the copy we created during the server render.

	Not all of our client-side components and libraries can be initialized or rendered on the server; for example, any code that relies on the window or document APIs must be ignored during the initial server render.

In essence, the way we initialize the application is very different depending on whether we are rendering on the client or the server, and we have to provide very strict instructions as to how we want the application to boot on each.

 The easy way – Nuxt.js

Nuxt.js is a framework built on top of Vue.js, aimed specifically at the use case of building universal or server-rendered web applications. It makes it incredibly easy too, as it does a fantastic job of abstracting away the infrastructure code necessary to render on both the client and server. It leaves us to focus purely on building our application UI, and even provides a number of additional features that really help us do that. Things such as, but not limited to, additional component hooks for fetching asynchronous data, middleware, and shared component layouts are all included on top of the default functionality we get with plain Vue.js.

However, there is one downside, and unfortunately for us it's a major one. Nuxt.js has a dependency on being hosted directly within a Node.js server. It can't be directly linked with an ASP.NET Core web application as we've done with our client-side application so far, even through the use of the JavaScriptServices middleware. That being said, there is a valid argument that large applications should have their frontends and backends developed and deployed completely independently of one another anyway. I've certainly built applications where I hosted a Nuxt.js frontend application in a Docker container running a Node.js server on Linux, as well as a completely separate ASP.NET Core web API hosted in a Docker container running either Linux or Windows.

This client/server separation has a number of pros and cons, but the most prominent of each are probably flexibility and complexity, respectively. We increase the complexity of our hosting environment and deployment pipeline, but gain the benefit of increased flexibility in how we can scale the frontend and backend independently, based on the specific needs of the application. On top of this, if you have separate frontend and backend development teams, then splitting your application like this can also be a benefit to you by helping those teams work completely independently from one another—if that's how you prefer to work, of course.

I would strongly recommend looking into Nuxt.js and whether splitting the frontend and backend of your application could work for you or your organization, especially if you'll be implementing SSR at any point. However, we won't be going down this route, and instead we'll be looking at what's involved with implementing SSR ourselves. I also think it's important to understand how SSR works under the hood, and just how much effort is involved with implementing it. This way, you fully appreciate what you're gaining by using a framework such as Nuxt.js for future projects!

 Preparing the application for SSR

Aside from the additional npm packages we need, we also need to make some fundamental changes to the way we're fetching the data for each page, as well as the way we're storing the user's access token once authenticated. SSR is made far easier if we make use of Vuex for all of our app's data requirements. We're already using Vuex for things like shopping cart data and authentication state, but we've not used it for our product catalog, user account, or admin panel sections. We'll need to refactor these areas to make use of Vuex before we can even think about enabling SSR for the entire application.

The reason Vuex makes things easier is that even though the application will originally be rendered on the server, there is still the process of initializing the app on the client side as well. After the initial server render, the client needs to take control of any future page renders until the point that we hit the server again. To do so, it needs to be made aware of any application state that was handled by the server and hydrate the client-side state to match. This prevents the client side needing to duplicate the API calls that already took place on the server. As our application state is centralized in one place with Vuex, this client-side hydration is made far easier than if we leave state scattered among the different pages of our application.

Aside from the use of Vuex, we also need to refactor the way we store the user's authentication state. Currently, we persist the entire Vuex store to the browser's local storage, including the auth object containing their tokens. However, for the password-protected sections of our app, in order to enable SSR, we'll need access to these tokens for making the API calls necessary to pre-fetch the data on the server. While the app is rendering on the server, it has no access to the browser's local storage, meaning that it will proceed as if the user is unauthenticated and simply kick them back out to the login modal on the home page. To resolve this, we'll need to persist the access tokens into a storage mechanism that is available on both the client and server—and cookies are the perfect solution.

 Installing npm packages required for SSR

There are quite a few additional npm packages to install, so open up your Terminal at the root of your project and run the following commands:

yarn add aspnet-prerendering
yarn add vue-server-renderer
yarn add webpack-merge
yarn add vuex-router-sync
yarn add vue-no-ssr
yarn add js-cookie

Alternatively, you could install all of these in one command like so:

yarn add aspnet-prerendering vue-server-renderer webpack-merge
vuex-router-sync vue-no-ssr js-cookie

The first three of these packages are all required whenever we wish to render a Vue.js application on the server with ASP.NET Core. The aspnet-prerendering package is one that the ASP.NET Core Microsoft.AspNetCore.SpaServices NuGet package needs to perform SSR on any client-side, framework-based project, including Vue, as well as both React and Angular. The vue-server-renderer package is specific to Vue.js, and is responsible for actually generating the HTML of our application on the server. Finally, webpack-merge is used to literally merge multiple webpack configurations into one. This makes it easier for us to define different configurations for each environment, client, and server, and then merge them into one.

The other three packages defined here are included as part of the refactoring we're going to need to do, and are there to make our lives much easier in the process. The vuex-router-sync package, once configured, will automatically persist the values of the currently active Vue-Router route into our Vuex store. We'll need this when we move the product catalog data into the store, as the API calls we make require parameters from the query string. The vue-no-ssr package is a simple helper component that prevents certain portions of our app from attempting to render on the server. Some custom UI components, which rely on the window or document browser-only objects, will cause errors if we try and render them on the server. As such, we'll simply prevent them from rendering until we reach the client. Finally, the js-cookie package gives us a super simple API for getting and setting browser cookie values—perfect for when we move the authentication tokens out of local storage.

 Adding Vuex actions and mutations for all API requests

We currently have a number of pages/components that fetch their own data directly using Axios. As previously discussed, we need to refactor these to use our Vuex store instead.

 Defining additional Vuex actions

To start with, we need a set of new Vuex actions, which all belong in the ClientApp/store/actions.js file. The first of these is responsible for retrieving the list of products from our API:

export const fetchProducts = ({ commit }, query) => {
 return axios.get("/api/products", { params: query }).then(response => {
 commit("setProducts", response.data);
 });
};

We use axios to perform a HTTP GET request to the /api/products endpoint. This action will be used by both the product catalog page and the admin panel. In the case of the catalog, we need to pass the query parameters to the API to perform our server-side filtering of results. To do so, we've defined a query parameter for this action, which we assign to the params object in the axios call. Once the API call resolves, we simply commit the setProducts mutation.

The next action we need is the fetchFilters action, which looks like this:

export const fetchFilters = ({ commit }) => {
 return axios.get("/api/filters").then(response => {
 commit("setFilters", response.data);
 });
};

This is virtually identical to the previous one, save for the change of API endpoint and mutation that we commit. As such, we won't discuss it again and move straight on to the next fetchProduct action:

export const fetchProduct = ({ commit }, slug) => {
 return axios.get(`/api/products/${slug}`).then(response => {
 commit("setProduct", response.data);
 });
};

Again, this is almost identical, but the one thing to notice is the slug parameter, which we expect so that we can identify a single product in the subsequent API call. The final action we need is the fetchOrders action:

export const fetchOrders = ({ commit }) => {
 return axios.get("/api/orders").then(response => {
 commit("setOrders", response.data);
 });
};

 Defining the additional Vuex mutations

The next thing we'll need is a matching set of mutations to actually set the store data when the actions we've just defined are invoked. These belong in the ClientApp/store/mutations.js file, and look like this:

export const setProducts = (state, products) => {
 state.products = products;
};

export const setFilters = (state, filters) => {
 state.filters = filters;
};

export const setProduct = (state, product) => {
 state.product = product;
};

export const setOrders = (state, orders) => {
 state.orders = orders;
};

These are incredibly simple and shouldn't need any explanation at this point, as we simply take the associated parameter and assign it to the store's state object.

 Defining the additional store state properties

For the mutations we've just defined to work, we'll need a number of additional properties on our Vuex state object. Actually, to be completely accurate, we technically don't need to add these properties, but best practices recommend that we do in order to be explicit in what we expect our store to keep track of. Open up the ClientApp/store/index.js file and add the following properties:

const store = new Vuex.Store({
 strict: true,
 actions,
 mutations,
 getters,
 state: {
 auth: null,
 showAuthModal: false,
 loading: false,
 cart: [],
 products: [],
 filters: [],
 product: null,
 orders: []
 }
});

 Updating existing pages to use Vuex

Now that we have a set of Vuex actions and mutations for retrieving and storing all of our page-level data, we need to update our components to use them. We are currently making use of the beforeRouteEnter hook to trigger the API requests necessary to fetch the data for each page. However, if you read the official documentation on SSR with Vue (https://ssr.vuejs.org/), the recommended approach is to define a custom asyncData function on any component that has data requirements which must be fulfilled before it can be fully rendered. That way, we can configure the initial server render of the application to wait for all asyncData functions to complete before completing and returning the resulting HTML to the browser. We can also modify the client-side routing logic of the application to look for these asyncData functions and wait for them to complete before allowing the page to change, in much the same way as the beforeRouterEnter hook works currently.

The biggest change we need to make is in the ClientApp/pages/Catalogue.vue page, so that's where we'll start.

 Refactoring the catalog page

In the script section, we first need to delete the data function and methods object entirely. The products and filters that we used to store locally in this component have now been moved to the store. Next, in the computed object, we also need to delete the sort computed property. We now need to make a change to the existing sortedProducts computed property, as well as add a new filters computed property. These changes look like this:

computed: {
 sortedProducts() {
 return this.$store.getters.sortedProducts;
 },
 filters() {
 return this.$store.state.filters;
 }
}

Now that the products array is in the store, we can also move the sorting logic there as well, which makes this component far simpler. We don't need to do any processing on the filters property, so we simply extract the raw value straight from the state object. The sortedProducts getter is not yet defined, but belongs in the ClientApp/store/getters.js file and looks like this:

export const sortedProducts = state => {
 switch (state.route.query.sort || 0) {
 case 1:
 return state.products.slice().sort((a, b) => {
 return b.price > a.price;
 });
 break;
 case 2:
 return state.products.slice().sort((a, b) => {
 return a.name > b.name;
 });
 break;
 case 3:
 return state.products.slice().sort((a, b) => {
 return b.name > a.name;
 });
 break;
 default:
 return state.products.slice().sort((a, b) => {
 return a.price > b.price;
 });
 }
};

This is largely a case of cutting and pasting the old logic straight from the component, but we have had to change things ever so slightly. For starters, we now decide which sorting rule to use by evaluating the state.route.query.sort value if it exists, or defaulting to zero if it doesn't. Next, in each of the switch cases, we also call .slice() on the products array to ensure that our sorting is performed on a new copy of the array rather than the original. If we omit this, then we'd be greeted by a host of console warning messages stating that we shouldn't be directly mutating the state outside of our mutations. Aside from these changes, the rest of the logic is exactly the same as before, so no more needs to be said at this point.

Back in the catalog page component, we now need to update our data fetching logic to trigger the new Vuex actions we created earlier, rather than perform the API calls directly within the component as we're doing currently. The beforeRouteEnter hook that we currently have can be deleted entirely, and then replaced with the following custom component method:

asyncData({ store, route }) {
 return Promise.all([
 store.dispatch("fetchProducts", route.query),
 store.dispatch("fetchFilters")
]);
}

Note that this belongs at the same level as the hook it replaces, and does not belong inside the methods object. As previously discussed, this function is not a standard function that Vue knows what to do with, but we'll see how to invoke it shortly. At this point, it is worth noting that we must return a promise from this function if we want to wait for it to complete before allowing the page to change or the initial server render to complete. In this case, we use the Promise.all function, which accepts an array of functions and returns a single promise to represent them all. Here, we dispatch both the fetchProducts and fetchFilters actions that we created earlier, passing the current route.query object to the former. Finally, the beforeRouteUpdate hook also needs to be updated to dispatch one of these actions as well:

beforeRouteUpdate(to, from, next) {
 this.$store.dispatch("fetchProducts", to.query).then(() => {
 next();
 });
}

We simply dispatch the fetchProducts action again, wait for it to resolve, then allow the router to finish navigation by invoking the next callback as we did before. Now that we've finished these changes to the catalog page, we can quickly perform the same refactoring process on the other pages as well. However, these changes will be very much the same as we've just done, so we'll skim over them pretty quickly.

 Refactoring the product details page

Open up the ClientApp/pages/Product.vue file, locate the script section, then remove the data function and methods object entirely. In their place, add the following computed object:

computed: {
 product() {
 return this.$store.state.product;
 }
}

Next, replace the beforeRouteEnter hook with the following asyncData function:

asyncData({ store, route }) {
 return store.dispatch("fetchProduct", route.params.slug);
}

 Refactoring the account page

Open up the ClientApp/pages/Account.vue file, locate the script section, then remove the data function and methods object entirely. In their place, add the following computed object:

computed: {
 orders() {
 return this.$store.state.orders;
 }
}

Next, replace the beforeRouteEnter hook with the following asyncData function:

asyncData({ store }) {
 return store.dispatch("fetchOrders");
}

 Refactoring the orders admin page

Open up the ClientApp/pages/admin/Orders.vue file, locate the script section, then remove the data function and methods object entirely. In their place, add the following computed object:

computed: {
 orders() {
 return this.$store.state.orders;
 }
}

Next, replace the beforeRouteEnter hook with the following asyncData function:

asyncData({ store }) {
 return store.dispatch("fetchOrders");
}

 Refactoring the products admin page

Open up the ClientApp/pages/admin/Products.vue file, locate the script section, then remove the data function and methods object entirely. In their place, add the following computed object:

computed: {
 products() {
 return this.$store.state.products;
 }
}

Next, replace the beforeRouteEnter hook with the following asyncData function:

asyncData({ store }) {
 return store.dispatch("fetchProducts");
}

 Refactoring the create product admin page

Open up the ClientApp/pages/admin/CreateProduct.vue file, locate the script section, then remove the following properties from the object returned from the data function:

brands: []
os: []
features: []
colours: []
storage: []

Note that this time we cannot delete the data function entirely, as there are other properties that we still need in this component. We can't delete the methods object entirely either, but we can delete just the setData function as it's no longer required. Next, add the following computed object:

computed: {
 brands() {
 return this.$store.state.filters.brands;
 },
 os() {
 return this.$store.state.filters.os;
 },
 features() {
 return this.$store.state.filters.features;
 },
 colours() {
 return this.$store.state.filters.colours;
 },
 storage() {
 return this.$store.state.filters.storage;
 }
}

Finally, replace the beforeRouteEnter hook with the following asyncData function:

asyncData({ store }) {
 return store.dispatch("fetchFilters");
}

This completes the changes we need to make in the way we fetch our page-level data.

 Changing the way we persist user authentication state

As previously discussed, when we enable SSR, any initial API calls made during a page load will be triggered from the server, rather than the client as they are now. We're currently storing user access tokens in the browser's local storage, which isn't available during a server render, so we need to move them to a cookie instead. On top of this, we've actually kept things simple by keeping the full state object synced in local storage, rather than just the small bits we need. However, now that we've moved all of our app's data requirements into the global store, we don't want to keep persisting it all. If we left things as they are now, the entire store would be persisted to local storage and then copied back into the store once the application initializes on the client. This means that any store data we fetch on the server will be overwritten by the copy persisted in local storage, which is not at all what we want to happen! As such, we're only going to persist the shopping cart data into local storage, and the authentication-related data into a cookie. The rest will be stored in-memory only.

 Changing our approach of persisting state to local storage

The first thing we need to do is alter the store.subscribe call that we make in the ClientApp/store/index.js file. It now needs to look like this:

store.subscribe((mutation, state) => {
 const cartMutations = [
 "addProductToCart",
 "updateProductQuantity",
 "removeProductFromCart",
 "setProductQuantity",
 "clearCartItems"
];

 if (cartMutations.indexOf(mutation.type) >= 0) {
 localStorage.setItem("cart", JSON.stringify(state.cart));
 }
});

Remember that this function will be invoked each time a mutation is committed to the store. We no longer wish to subscribe to every mutation as we did before, so here we start by defining an array of mutation names that we actually do care about listening for. This list contains the name of any mutation that manipulates the state.cart array in any way. We then check to see whether the mutation that is currently being handled is present in our list, and if it is, we persist the current value of the cart array into local storage.

Now that we've handled the persistence of cart items, we also need to change how we read this data when the app starts up. Open up the ClientApp/boot.js file and locate the following section:

const initialStore = localStorage.getItem("store");

if (initialStore) {
 store.commit("initialise", JSON.parse(initialStore));
 if (store.getters.isAuthenticated) {
 axios.defaults.headers.common["Authorization"] = `Bearer ${
 store.state.auth.access_token
 }`;
 }
}

This section needs to be replaced entirely with the following, much simpler, alternative:

const cartItems = localStorage.getItem("cart");
if (cartItems) {
 store.commit("setCartItems", JSON.parse(cartItems));
}

As we're now only storing the cart items, we changed the local storage key to cart, so this is now what we use when checking whether the user has already added anything to their cart in a previous browsing session. If they have, we commit the setCartItems mutation, which will ultimately replace the initialise mutation that we used to commit before. This does not yet exist, so open up the ClientApp/store/mutations.js file, delete the initialise mutation declaration, and replace it with the following:

export const setCartItems = (state, items) => {
 state.cart = items;
};

This takes care of persisting cart data between sessions, but user authentication state will now be lost each time the user refreshes a page or closes their browser.

 Storing authentication state in cookies

There are a few ways we could go about doing this, one of which is to do what we've done with the cart data and subscribe to the mutations that manipulate the auth object in the store state. However, to demonstrate the other obvious choice, we're going to modify the Vuex actions for logging in/out instead. Open up the ClientApp/store/actions.js file, then right at the top, add the following line to import the js-cookie library that we installed earlier:

import Cookie from "js-cookie";

With this in place, we can scroll down a bit and look for the login action. We need to set a cookie if the axios request succeeds, or remove the cookie if it fails. The updated action looks like this:

export const login = ({ commit }, payload) => {
 return new Promise((resolve, reject) => {
 commit("loginRequest");
 axios
 .post("/api/token", payload)
 .then(response => {
 const auth = response.data;
 axios.defaults.headers.common["Authorization"] =
 `Bearer ${
 auth.access_token
 }`;
 commit("loginSuccess", auth);
 commit("hideAuthModal");
 Cookie.set("AUTH", JSON.stringify(auth));
 resolve(response);
 })
 .catch(error => {
 commit("loginError");
 delete axios.defaults.headers.common["Authorization"];
 Cookie.remove("AUTH");
 reject(error.response);
 });
 });
};

It's incredibly simple, thanks to the js-cookie library. Similarly, we'll need to modify the logout action to remove the cookie as well:

export const logout = ({ commit }) => {
 commit("logout");
 delete axios.defaults.headers.common["Authorization"];
 Cookie.remove("AUTH");
};

 Setting up and configuring SSR

We've finished all of the refactoring that we needed to do in order to prepare the application to be rendered on the server. We now need to look at how we configure our application to be booted on both the client and the server, as we already determined that we need to be very specific about what happens when and where. This also includes enhancing our existing webpack configuration so that it too understands how our application needs to work on both the client and server.

Let's start with how we actually boot our application. Currently, we have a single ClientApp/boot.js file, which handles this task for us nicely as we only ever boot the application on the client. However, we now need to split this file into three separate parts: app.js, client.js, and server.js. As you've probably already guessed, client.js and server.js are used to instruct Vue how our application should be booted on the client and server, respectively. To save on duplication, we also specify app.js, which will contain any functionality that should be shared between both client and server files. This can be likened to app.js acting as a base class, and client.js and server.js acting as subclasses in C#.

 Defining the shared boot logic

Start by creating a new ClientApp/app.js file, then adding the following import statements at the top to get things started:

import Vue from "vue";
import VeeValidate from "vee-validate";
import router from "./router";
import store from "./store";
import { currency, date } from "./filters";
import { sync } from "vuex-router-sync";
import Cookie from "js-cookie";
import axios from "axios";
import "./helpers/interceptors";
import "./helpers/validation";
import App from "./components/App.vue";

The vast majority of these can be copied and pasted directly from the old ClientApp/boot.js file, but just be sure not to miss the few additions that we've added here. In fact, the majority of all three of the new files we're creating at the minute can be copied and pasted from our old boot file.

Remember that this is the shared boot file, and as such anything we import here will be imported on both client and server renders. If any of the files or third-party libraries that we import here are not compatible with SSR, this can completely prevent the app from loading as it will fail to render on the server. As an example, if we were to import the Velocity library either here or in the ClientApp/server.js file, the app would fail to load due to the dependency Velocity has on the window and document APIs, which are not available on the server.

Next, we need to copy across a few lines to install the VeeValidate plugin, as well as register our two custom filters, currency and date:

Vue.use(VeeValidate);
Vue.filter("currency", currency);
Vue.filter("date", date);

Remember that everything we're adding to this file are pieces that we need when rendering on both the client and the server. If we didn't include these statements, our app would fail to render completely. The next thing we need is brand new in this file, as we're about to make use of the vuex-router-sync package that we installed earlier:

sync(store, router);

Under the hood, this method invocation is configuring a number of mutations, which will automatically add the route object to our store state, then keep it up to date whenever the current route changes. We've already made use of this route object in some of our refactoring of API requests into Vuex actions/mutations.

Until this point, we've managed to avoid the need for any kind of environment-specific configuration variables within the client-side Vue portion of our app. However, now that we're looking to enable SSR, axios will be unable to determine the base URL path of our API requests when rendering on the server. This isn't an issue when rendering on the client because it has access to the window object, which is enough to determine the URL that the app is currently running on. As such, from now on, we'll need to explicitly set the base URL of our axios requests. To do so, add the following statement just below the preceding sync method invocation:

axios.defaults.baseURL =
 process.env.NODE_ENV === "production"
 ? "https://phoneshop.azurewebsites.net"
 : "http://localhost:5000";

We interrogate the NODE_ENV environment variable to determine whether we're running in production or not. If we are, we set the base URL to our Azure environment URL—make sure to swap this out for your own URL—and if not, we default back to our localhost URL that we've been using while developing the app. With this configuration in place, we can make an API request to a path such as this:

/api/products

When we do so, Axios will automatically prefix this with our base URL, like this:

http://localhost:5000/api/products

This then means that when rendering on the server, our API calls will still succeed, as they have been doing in the browser so far. Next up, we can now check whether the current user is already authenticated or not by checking for the AUTH cookie we set in our Vuex actions earlier:

const auth = Cookie.get("AUTH");
if (auth) {
 store.commit("loginSuccess", JSON.parse(auth));
 axios.defaults.headers.common["Authorization"] = `Bearer ${
 store.state.auth.access_token
 }`;
}

Again, you won't yet find this code anywhere else so make sure to copy it down carefully. It's also important that we check the user's authentication state in this file, or we'll find that any conditional checks that we do in router hooks or component templates will fail to detect that the user has authenticated when the app is initially rendered. This will make more sense when we add the next part:

const app = new Vue({
 router,
 store,
 render: h => h(App)
});

As we check the authentication state before initializing our root Vue instance, we ensure that the store holds accurate data for the first render of the application. Finally, we can export the objects we'll need to import in the client- and server-specific boot files:

export { app, router, store };

 Defining the client-specific boot logic

We can now build on our base app.js file by defining our client-specific boot file. Create a new ClientApp/client.js file, then add the following import statements at the top:

import Vue from "vue";
import { app, router, store } from "./app";
import BootstrapVue from "bootstrap-vue";
import VueToastr from "@deveodk/vue-toastr";
import "@deveodk/vue-toastr/dist/@deveodk/vue-toastr.css";

Notice how most of these statements are importing presentation-only components, such as CSS style sheets and libraries, for client-side-only features, such as toast notifications. The server will only be responsible for rendering the HTML markup of our application, not making it fully interactive for the user. Applying any CSS styles and fully initializing the application so it becomes interactable is still the job of the browser, which means we only need to import these files in our client-side boot file.

We can now install the BootstrapVue and VueToastr libraries as we've done before:

Vue.use(BootstrapVue);
Vue.use(VueToastr, {
 defaultPosition: "toast-top-right"
});

 Hydrating the client-side store

Next, we have another new piece of functionality that you won't have seen before:

if (window.__INITIAL_STATE__) {
 store.replaceState(__INITIAL_STATE__)
}

As this file will not be run until we hit the user's browser, we have access to the window object, and here we check to see whether a property called __INITIAL_STATE__ has been set on it. If it has, we call the store.replaceState function and pass it as an argument to completely replace our client-side store state with the value of this object. This process is known as hydrating the client-side store from the store we created while server rendering. Again, the server is only responsible for rendering static HTML, just like any typical server-side development framework such as ASP.NET MVC or Ruby on Rails. The application does not become fully interactive until all of our client-side JavaScript has been loaded and initialized. That being said, our Vuex actions are still run on the server in order to pre-fetch any data required to actually render the HTML; this means that we must have had an active Vuex store on the server. Rather than trigger those API requests again when we hit the server, instead we simply hydrate the client-side store with any data that we already fetched on the server.

 Loading shopping cart data from local storage

The only data in our application that the server will never have any knowledge of is the shopping cart items we're currently storing in the browser's local storage. Remembering that this file is for client-specific boot logic, it's the ideal place to query for existing cart items and commit them to the store if we find any:

const cartItems = localStorage.getItem("cart");
if (cartItems) {
 store.commit("setCartItems", JSON.parse(cartItems));
}

This is exactly the same as how we retrieved the cart items in the old boot file, so we won't go into any more detail than that, especially as the final section in this file is far more involved.

We now need to configure the client-side router to scan through the components that are about to be rendered on the next page, and look for any that define the asyncData function that we talked about earlier. If we find any, we need to wait for the promises they return to resolve before allowing the navigation to continue. This is far more complicated than when we were using the beforeRouterEnter hook previously, but it does allow us to reuse the same data fetching logic on both the client and server, seeing as the beforeRouterEnter hook is not available during server renders.

The official SSR documentation already has a recommended approach to achieve what we want, so I'll be following their direction with the following:

router.onReady(() => {
 router.beforeResolve((to, from, next) => {
 const matched = router.getMatchedComponents(to);
 const prevMatched = router.getMatchedComponents(from);

 let diffed = false;
 const activated = matched.filter((c, i) => {
 return diffed || (diffed = prevMatched[i] !== c);
 });

 if (!activated.length) {
 return next();
 }

 Promise.all(
 activated.map(c => {
 if (c.asyncData) {
 return c.asyncData({ store, route: to });
 }
 })
)
 .then(() => {
 next();
 })
 .catch(next);
 });

 app.$mount("#app-root");
});

This is almost a direct copy of the methods suggested by the documentation, and it already does a fantastic job of explaining how this works, so I strongly suggest you check it out by going here: https://ssr.vuejs.org/guide/data.html#client-data-fetching.

 Pre-fetching component data

Essentially, what we are doing here is implementing another VueRouter hook, which runs before the page transition has resolved and creates a list of components that we haven't already rendered:

const matched = router.getMatchedComponents(to);
const prevMatched = router.getMatchedComponents(from);

let diffed = false;
const activated = matched.filter((c, i) => {
 return diffed || (diffed = prevMatched[i] !== c);
});

If we don't find any components that we actually care about fetching data for, we simply return early:

if (!activated.length) {
 return next();
}

However, if we do have some components that we care about, we make use of the Promise.all function again to make sure that the hook doesn't finish running until all components' data has been loaded:

Promise.all(
 activated.map(c => {
 if (c.asyncData) {
 return c.asyncData({ store, route: to });
 }
 })
)
 .then(() => {
 next();
 })
 .catch(next);
});

We loop over all of the components in the activated array using the standard JavaScript Array.map function, before checking whether each component has defined an asyncData method. If they have, we invoke it and pass in the store and to parameters. As a reminder, this is to fulfill the needs of the asyncData methods we defined on components such as this one:

asyncData({ store, route }) {
 return store.dispatch("fetchProduct", route.params.slug);
}

Finally, once all component data requirements have been fulfilled, we mount our app onto the DOM:

app.$mount("#app-root");

 Remembering our promises

At this point, I need to stress how important it is to always remember the return statement when dealing with promises in JavaScript. The whole point of the pretty complicated code we've just talked about is to enable us to wait for our API calls to complete before moving on to the next page or completing a server render of the application. We do that using the following code that we just discussed:

Promise.all(
 activated.map(c => {
 if (c.asyncData) {
 return c.asyncData({ store, route: to });
 }
 })
)
 .then(() => {
 next();
 })
 .catch(next);
});

Again, we're using the Promise.all function to wait for all of the component asyncData methods that we find by using the return statement as we invoke them. If we omit the return statement, the asyncData function will still be invoked, but we simply won't wait for it to finish before moving on with the next callback.

This rule applies all the way down the chain if the logic you use within an asyncData function contains any further asynchronous function calls. Take the following, for example:

asyncData({ store, route }) {
 return store.dispatch("fetchProduct", route.params.slug);
}

The store.dispatch function is asynchronous, so again if we omitted the return statement here, the asyncData function would not wait for the dispatch call to complete before notifying its caller that it has completed its processing. This would yet again mean the page navigation would complete before the API call had the chance to return any data.

 Defining the server-specific boot logic

With our shared and client-specific boot logic in place, the last piece of the puzzle is defining how our app boots on the server. Create another new ClientApp/server.js file, then add the following import statements at the top:

import { app, router, store } from "./app";
import axios from "axios";

Next, we need to export a default function, which expects a context parameter and returns a promise:

export default context => {
 return new Promise((resolve, reject) =>
 ...
 }
}

We'll see where the context parameter originates from in a moment, but for now you just need to know that it contains all of the information we'll need to render the app, and is somewhat similar to the HttpContext object in an ASP.NET request. It includes things like the URL being accessed and any cookies that were passed up as part of the original HTTP request.

Inside this function, we first need to check for the AUTH cookie:

const auth = context.cookies.find(c => c.key === "AUTH");
if (auth) {
 store.commit("loginSuccess", JSON.parse(auth.value));
 if (store.getters.isAuthenticated) {
 axios.defaults.headers.common["Authorization"] = `Bearer ${
 store.state.auth.access_token
 }`;
 }
}

As we aren't inside the browser at this point, the js-cookie library we used before will not work. Instead, we can access the request cookies using the context.cookies property, which contains an array of key/value pairs. More specifically, we'll use the Array.find function to look for a cookie where the key is equal to AUTH. If we find one, we'll do exactly the same as we've done before by committing the loginSuccess mutation, then setting the default authorization header for any future axios HTTP requests.

Next, we need to push the URL path being rendered into our router object:

router.push(context.url);

Finally, we need to pre-fetch the data needed by any of the components matched by that URL in a similar way to what we did in the client boot file. We do this by looking for asyncData functions again and waiting for them to resolve before allowing the render to complete. If we allow the render to complete before we finish fetching the required data, the HTML returned to the client would not contain anything that relies on that data. For fairly obvious reasons, this would potentially make SSR a completely pointless feature.

Again, the official SSR documentation already suggests the ideal way of doing this, so I'll be taking their lead and using the code they provide as a base:

router.onReady(() => {
 const matchedComponents = router.getMatchedComponents();
 if (!matchedComponents.length) {
 return reject(new Error({ code: 404 }));
 }
 Promise.all(
 matchedComponents.map(Component => {
 if (Component.asyncData) {
 return Component.asyncData({ store, route:
 router.currentRoute });
 }
 })
)
 .then(() => {
 context.state = store.state;
 resolve(app);
 })
 .catch(reject);
}, reject);

This is a direct copy of the sample code for server-side data fetching, which you can find here: https://ssr.vuejs.org/guide/data.html#server-data-fetching.

It is strongly recommended to have a read through this, as it already explains these concepts incredibly well. However, in summary, what we're doing here is very similar to what we did on the client. If any components are matched to the currently rendered URL, we loop over each one and look for an asyncData function. If we find any, we invoke them all under the umbrella of a single Promise.all call, ensuring that we don't finish the render until all data has been fetched. Once this singular promise is resolved, we set the context.state property to the current state value within the store object, then resolve the top-level promise, which wraps the whole router.onReady hook.

This really does now show why the asyncData approach is worthwhile. It serves both the purpose of waiting for server-side data fetching for SSR and client-side data fetching between page changes.

 Deleting the old boot file

At this point, we've finished with our new boot file structure, and as such we can delete the original ClientApp/boot.js file entirely. This will then introduce a new problem, in that our current webpack configuration is looking for that specific file. Let's fix that now.

 Making webpack aware of the client/server boot files

With our updated boot files ready to go, we need to modify our existing webpack configuration to make it aware of those new files. We're going to go through a similar process, albeit much shorter, to split the webpack configuration into a shared client/server-specific object.

 Defining a shared webpack configuration object

Luckily for us, the necessary changes here are minimal. Our existing configuration object will, save for a minor tweak, become the shared configuration object that we'll later merge with the client- and server-specific objects. Open up the webpack.config.js file, then add the following additional property near the top of the file:

const path = require("path");
const webpack = require("webpack");
const ExtractTextPlugin = require("extract-text-webpack-plugin");
const bundleOutputDir = "./wwwroot/dist";
const UglifyJSPlugin = require("uglifyjs-webpack-plugin");
const merge = require("webpack-merge");

Next, around the line 10 mark, you should have a single return statement, which returns an array like this:

return [
 {
 stats: { modules: false },
 context: __dirname,
 resolve: { extensions: [".js"] },
 entry: { main: "./ClientApp/boot.js" },
 module: {
 ...
 }
 ...
 }
];

Rather than returning the array here, we're going to define a function that returns a sharedConfig object instead:

const sharedConfig = () => ({
 stats: { modules: false },
 context: __dirname,
 resolve: { extensions: [".js"] },
 module: {
 ...
 }
 ...
});

Also notice that we've removed the entry property. Now that we're rendering on both the client and server, we'll need to specify environment-specific entry properties instead. The only other change we need to make to this shared configuration object is to remove one of the plugins we've been using up until this point. If you look a little further down in this file, you'll see a plugins array like this:

plugins: [
 new webpack.DefinePlugin({
 "process.env": {
 NODE_ENV: JSON.stringify(isDevBuild ? "development" :
 "production")
 }
 })
 // new webpack.DllReferencePlugin({
 // context: __dirname,
 // manifest: require("./wwwroot/dist/vendor-
 // manifest.json")
 // })
]

For some reason, when we leave this DllReferencePlugin in place, our application fails to render on the server. However, by removing it, all we are doing is disabling the webpack bundle-splitting feature, which separates the vendor bundle from our application bundle. The application will work perfectly without it, albeit with slightly slower reload times when running in development.

This seems to be an issue with webpack itself, or at least with DllReferencePlugin, and despite having several issues open on GitHub, I've so far failed to work out a resolution. As soon as I do, I'll ensure that the sample code is updated to reflect the change.

 Defining client- and server-specific webpack configuration objects

With the shared configuration function in place, we can now use the webpack-merge library we imported earlier to create both client- and server-specific objects. Directly beneath the sharedConfig function, add the following:

const clientBundleConfig = merge(sharedConfig(), {
 entry: { main: "./ClientApp/client.js" },
 output: {
 path: path.join(__dirname, "wwwroot/dist")
 }
});

const serverBundleConfig = merge(sharedConfig(), {
 target: "node",
 entry: { "main-server": "./ClientApp/server.js" },
 output: {
 libraryTarget: "commonjs2",
 path: path.join(__dirname, "wwwroot/dist")
 }
});

Both of these objects are merged with the shared object using the merge function from webpack-merge. Also, in both cases, we needed to specify the entry property to instruct webpack where to start loading and bundling our files from, as well as the output property to determine where to place the bundle file after it's finished processing it. You'll notice that we point the entry properties at the ClientApp/client.js and ClientApp/server.js files we just created, and output them both to the wwwroot/dist folder. The only other thing we needed to add to the server-specific configuration was that we're targeting Node.js rather than the browser, and our ouput.libraryTarget property should be commonjs2.

With these in place, we simply need to return a new array containing both configuration objects:

return [clientBundleConfig, serverBundleConfig];

 Updating the vendor webpack configuration to include SSR libraries

Before we're done with webpack configuration, we have one very small change to make in the webpack.config.vendor.js file. Open it up and add the following additional library to the vendor array:

vendor: [
 "event-source-polyfill",
 "axios",
 "vue",
 "vue-router",
 "vuex",
 "bootstrap/dist/css/bootstrap.min.css",
 "bootstrap-vue",
 "nprogress/nprogress.css",
 "aspnet-prerendering"
]

This is the npm module that ASP.NET Core uses under the hood to render SPAs on the server. As always, now that we've modified this file, we need to regenerate our vendor bundle using the following Terminal command:

yarn webpack

 Enabling SSR

We finally have all of the configuration files in place that we'll need in order to render our app on the server. We now need a file that will be invoked directly from our MVC view and will be responsible for actually rendering the application for us. Create a new ClientApp/renderOnServer.js file, then start it off with the following:

process.env.VUE_ENV = "server";

const fs = require("fs");
const path = require("path");

const filePath = path.join(__dirname, "../wwwroot/dist/main-server.js");
const code = fs.readFileSync(filePath, "utf8");

const bundleRenderer = require("vue-server-renderer").createBundleRenderer(
 code
);

The important part here is how we physically read the wwwroot/dist/main-server.js file, then create a bundle renderer using the contents of it. The main-server.js file is the product of our server-side webpack configuration, bundling our application based on the contents of the server.js file we defined earlier. The bundle renderer we create from this file is ultimately what renders the application as a string so that we can render it into the DOM.

Next, we need the following:

var prerendering = require("aspnet-prerendering");
module.exports = prerendering.createServerRenderer(function(params) {
 return new Promise(function(resolve, reject) {
 ...
 });
});

Here, we make use of the aspnet-prerendering npm module to create a server renderer. This acts as the interface between the ASP.NET HTTP request and our server-side rendering functionality. The params argument is used to pass HTTP parameters from the original ASP.NET request down into the promise function within. Using these, we can create the context object that we expect within the ClientApp/server.js file:

const context = {
 url: params.url,
 absoluteUrl: params.absoluteUrl,
 baseUrl: params.baseUrl,
 data: params.data,
 domainTasks: params.domainTasks,
 location: params.location,
 origin: params.origin,
 cookies: params.data.cookies
};

Most examples you'll find on documentation sites do not include the original HTTP request cookies as we've done here. In our case, these are crucial for us to be able to use the user's access token to perform any API requests.

Finally, we use the bundle renderer we created earlier to render the app as a string:

bundleRenderer.renderToString(context, (err, _html) => {
 if (err) {
 reject(err.message);
 }
 resolve({
 globals: {
 html: _html,
 __INITIAL_STATE__: context.state
 }
 });
});

The renderToString function we're using here accepts two parameters: the context object we wish to pass to the server boot file and a callback function to invoke once the rendering has finished. This callback function has its own two parameters: an err property, which will be null if everything was OK, and the HTML string that's been generated. In this case, if we find that the err property has a value assigned to it, we know that the request failed, so we reject the promise being returned from the preceding createServerRenderer call. If there is no value in the err property, we resolve the promise and pass an object with the _html string that was just generated. We also take the context object, which has just been processed by the server, and assign its state value to an __INITIAL_STATE__ property that will be used to hydrate the application once it reaches the client. Because we attached the html and __INITIAL_STATE__ properties to the globals object, they will be automatically assigned to the window object once we hit the browser.

The last step is to make our MVC view aware of this file using an ASP.NET Core taghelper, which comes pre-installed with the SpaServices NuGet package. Open up the Features/Home/Index.cshtml view and modify the app-root component's div element as follows:

<div
 id="app-root"
 asp-prerender-module="ClientApp/renderOnServer"
 asp-prerender-data="new { cookies =
 ViewContext.HttpContext.Request.Cookies }">
</div>

We use the asp-prerender-module taghelper to point to the renderOnServer.js file we just created. As previously mentioned, we're completely reliant on the HTTP request cookies being sent to this file as well, which is why we also use the asp-prerender-data taghelper to pass in a cookies object, which we retrieve from the ViewContext.HttpContext.Request.Cookies parameter.

And with that, we have successfully set up and configured SSR in our application. However, due to some of the functionality we have in our components, if we try to run the app now, it would fail to render on the server. We'll fix that in the final section.

 Conditionally rendering elements that rely on the browser

Some of our components are entirely reliant on being used in the browser due to their coupling with the window , document, or localStorage APIs. If we don't prevent these components from rendering on the server, we'll get all kinds of errors that aren't particularly easy to debug.

As an example, at the top of the script section in the ClientApp/components/catalogue/FilterAccordion.vue component, we are importing the Velocity library that we're using for animations:

import * as Velocity from "velocity-animate";

Velocity is one of those libraries that cannot run outside of the browser, and simply importing it like this is enough to cause our SSR to fail. This is a particularly tricky situation, as using the import syntax as we are means that any import lines have to be at the root level of the script tag. That is, we can't simply do this:

if (typeof window !== "undefined") {
 import * as Velocity from "velocity-animate";
}

Even if we could, we'd still get errors because the Velocity object wouldn't even exist on the server, and we expect it to exist further down in the same file. This is how we actually fix it:

let Velocity;
if (typeof window !== "undefined") {
 Velocity = require("velocity-animate");
} else {
 Velocity = function() {
 return Promise().resolve(true);
 };
}

We start by declaring an empty Velocity variable, then determining whether we are rendering on the client based on whether the window object is undefined or not. If it isn't, we are on the client and can safely use the require syntax to load Velocity rather than the import syntax. If the window object is undefined, we still need to assign a value to the Velocity variable, so we use a simple function that always returns a promise which resolves. The real Velocity function also returns a promise, so we need to mimic that behavior.

Including the example we just looked at, there are a handful of different places that we'll need to make a similar change to. Unfortunately, none of these are exactly the same, so each needs a fairly specific fix to be applied.

 Fixing the range filter component

In the ClientApp/components/catalogue/RangeFilter.vue file, we'll be using the third-party vue-slider component. This is another example of a component that isn't compatible with SSR, so we'll need to hide it while rendering on the server. In the template section, make the following changes:

<no-ssr>
 <vue-slider
 :value="value"
 :formatter="formatter"
 :min="min"
 :max="max"
 :interval="interval || 1"
 :lazy=true
 width="90%"
 @callback="filter">
 </vue-slider>
</no-ssr>

All we've done is wrap the vue-slider component with another third-party component that we installed earlier the no-ssr component. As the name implies, it prevents its contents from being rendered on the server. However, we can't stop here as we're still importing the vue-slider component in the script section. As with the preceding Velocity example, simply importing this component is enough to prevent the app rendering on the server.

At the top of the script section, make the following changes:

import noSsr from "vue-no-ssr";

let vueSlider = {};
if (typeof window !== "undefined") {
 vueSlider = require("vue-slider-component");
}

export default {
 name: "range-filter",
 components: {
 vueSlider,
 noSsr
 },
 ...
}

We first need to import the no-ssr component, then do a similar browser check to the one we did in the Velocity example. We declare a vueSlider variable with the default value of an empty object, then override it with the actual vueSlider object by loading it using the require syntax, as long as we're in the browser (that is, the window object is not undefined). Finally, we add the no-ssr component to the list of child components.

 Fixing the checkout form component

In the ClientApp/components/checkout/CheckoutForm.vue component, we use the Stripe library to initialize the credit card input field. Stripe cannot be used on the server, so we'll need to prevent this initialization from happening until we hit the browser.

In the script section, we simply need to move the initialization logic into the mounted life cycle hook like so:

let card = null;

export default {
 name: "checkout-form",
 mounted() {
 let stripe = Stripe(`pk_test_NNMExLrT99IPhWHmPdu3xuXo`),
 elements = stripe.elements(),
 style = {
 base: {
 lineHeight: "24px"
 }
 };

 card = elements.create("card", { style: style });
 card.mount(this.$refs.card);
 }
 ...
}

The mounted hook is not invoked at all during a server render, so this is enough to fix our issues in this component.

 Fixing page transition animations in the router

In the ClientApp/router/index.js file, we configured a beforeEach hook to trigger a transition animation on every page change. To do so, we use the NProgress library, which is yet another one that isn't compatible with SSR. This time, the fix is incredibly simple, as we simply don't bother starting the animation if we're on the server:

router.beforeEach((to, from, next) => {
 if (typeof window !== "undefined") {
 NProgress.start();
 }
 ...
}

 Fixing the store subscription to persist cart items to local storage

In the ClientApp/store/index.js file, we have a subscription that runs on every mutation and persists the user's shopping cart contents if the mutation manipulated them. However, during SSR, we have no access to local storage, so again we need to prevent this code from running if we are on the server:

if (typeof window !== "undefined") {
 store.subscribe((mutation, state) => {
 const cartMutations = [
 "addProductToCart",
 "updateProductQuantity",
 "removeProductFromCart",
 "setProductQuantity",
 "clearCartItems"
];

 if (cartMutations.indexOf(mutation.type) >= 0) {
 localStorage.setItem("cart", JSON.stringify(state.cart));
 }
 });
}

 Testing our server-rendered application

At the beginning of this chapter, we looked at the page source of our existing client-rendered application. To test that our SSR implementation is working, all we need to do is check the page source again. Running the application and viewing the page source in Chrome now yields this:

Inspecting the updated server-rendered HTML

Notice that the placeholder root element is still empty, but immediately after it a new script tag has been rendered with a call to set the window.html property. On top of this, if you scroll right to the bottom of the server-rendered HTML string, you'll find window.__INITIAL_STATE__ being set to an object that represents the version of our Vuex store that was initialized during the server render:

Checking for initial Vuex state from the server

This value is what we use to hydrate the client-side store when our scripts are loaded and take over any further rendering of the application.

 Summary

SSR is a complicated feature to properly utilize, and seeing as there are definite drawbacks to doing so, it should always be evaluated to determine whether it's really necessary. We started out by looking at a few of the reasons to implement SSR, and hopefully after finishing this chapter, you'll also understand some of the drawbacks. As we've seen towards the end, there are a lot of hoops to jump through depending on what kind of functionality your app has and how many third-party libraries you use. As such, implementing SSR should never be a decision that's taken lightly.

We then started preparing our application for SSR by refactoring some of our existing implementation details to make our lives easier when rendering on the server. We then started adding the additional configuration files we needed, such as client- and server-specific boot files and webpack configurations. This then enabled us to tie things together by looking at how to actually trigger a server render using ASP.NET Core taghelpers and a custom JavaScript module, which is invoked by the SpaServices middleware.

Finally, we fixed a number of issues that resulted from rendering our application on the server. Specifically, we needed to conditionally render certain parts of the UI, depending on whether we were in the browser or not, due to tight coupling to browser-based APIs such as window, document, and localStorage.

The next chapter is the final one, where we'll be looking at building on our existing deployment pipeline and adding continuous integration and deployment functionality using Visual Studio Team Services (VSTS).

 Continuous Integration and Continuous Deployment

In the previous chapter, we implemented one of the more complicated features of building a modern SPA frontend: server-side rendering. We had to make quite a lot of changes to the application to prepare it for SSR, as well as fix a number of bugs that cropped up when attempting to render browser-reliant components on the server. However, the application itself is now as feature-complete as it's going to be for the purposes of this book.

In this final chapter, we're going to improve our current deployment mechanism by implementing a Continuous Integration (CI) and Continuous Deployment (CD) pipeline using Visual Studio Team Services (VSTS). VSTS isn't the only option available to us, as there are many different ways that we can build a CI/CD pipeline, but as we're hosting within Azure, it makes a lot of sense to stick with a Microsoft ecosystem due to how seamlessly they work together.

In summary, in this chapter, we're going to cover the following topics:

	CI/CD: Why bother?

	Disabling Azure app service Git deployments

	Getting started with VSTS

	Setting up a CI build

	Setting up a CD release

 CI/CD – why bother?

Before we go much further, we need to be clear that CI and CD are entirely separate concepts, and it is perfectly acceptable to do CI without doing CD. However, it is not possible to do CD without CI! So, aside from giving us more control than our current approach, why should we bother?

 Continuous integration

We may not have any automated tests in our application currently, but they are a fundamental part of ensuring success in most production-grade applications. CI not only gives us peace of mind that the application still builds after every code push, but also that it still works. Automated tests are always run as part of the CI process, giving us immediate feedback if something breaks after we push any changes to source control.

We also ensure that the application builds on a completely separate environment to that of the developers who built it. It works on my machine is a common phrase in many dev teams, which becomes completely irrelevant if something goes wrong on a properly configured and reliable build server.

 Continuous deployment

CD is one way of removing human error from the list of possible problems that can occur when deploying an application to production. A well-tested deployment pipeline is far more reliable than a human, who may forget to perform a crucial step of the process.

We often deploy far more frequently when using a CI/CD pipeline as well, meaning new versions are much smaller, and as such there is less chance of bugs creeping into the live environment. However, if the worst does happen and we need to roll back to a previous release, the smaller size benefits us here as well, as there is less to do to get back to the last known working version.

 Disabling Azure app service Git deployments

Back in Chapter 10, Deployment, we configured the application to deploy on every push to the master branch using the built-in Azure app service Git deployment feature. However, using this method, we get very limited control over the deployment process, and it is not uncommon to get some pretty strange errors preventing the application from deploying until you simply retry at a later time. As we'll be moving the responsibility for deploying the application over to VSTS, we need to disable the Azure Git deployment feature.

Log in to the Azure portal, then navigate to your web app service that we created earlier. In the secondary navigation menu on the left, head to the Deployment options page, then hit the Disconnect button at the top of the page that loads. You may need to wait a couple of minutes for the notification to confirm that the deployment has been disconnected, but once this is done, if you refresh the page, it should look like this:

Disabling Azure Git deployments

 Getting started with VSTS

If you've already got a VSTS account and have configured a project to use for source control purposes, feel free to skip this section and move on to the next one, where we'll be configuring the CI/CD pipeline. If not, continue on to see how you can get started with a new VSTS account and project.

 Creating a VSTS account

First things first, you'll need to sign up for a VSTS account if you don't already have one. Head over to the following URL in your browser, then hit the Get started for free button to begin the account registration process: https://www.visualstudio.com/team-services/.

Once you finish the registration process, you'll be able to access your account dashboard using a custom URL based on the username you provided when you signed up. For example, mine is the following: https://sturatcliffe.visualstudio.com/.

And when you first visit the page, you should see something like this:

 Setting up a team services project

With your account all set up, the next step is to create a project. A project in VSTS can be used to manage your application's life cycle all the way from planning through to deployment. You can manage backlogs of work items and bugs using a rich Kanban board-style UI, house your application source code using Git repositories, and create CI/CD pipelines using the concepts of builds and releases.

When it comes to the latter, which after all is what we are most interested in for the purposes of this chapter, we aren't restricted to using VSTS to house our source code. My code is currently stored in a Bitbucket account, but VSTS can use OAuth to connect to many different cloud-based Git repositories to fetch your code and build/release it. However, if you're looking for a place to store your code in private repositories, VSTS is a great option due to the fact that you get unlimited private repositories for up to five users—far more generous than many other providers!

After creating your account and landing on the screen displayed earlier, you should see a Projects menu item, which will take you to a page that looks like this:

Note that if you are using an existing VSTS account and already have a project created, you'll see your list of projects instead. There should be a button to create a new project if this is the case.

We can use this form to create an appropriately named project for our application; in my case, I chose to name it PhoneShop. You can enter whatever you like for the description, but as it isn't mandatory, I left mine blank. If you followed along in Chapter 10, Deployment, it is safe to assume that you already have your code stored in some kind of Git repository. Therefore, leaving the Version control option as Git should be fairly self-explanatory. We won't be discussing work item processing, so you can also leave that as the default Agile option.

After completing this form, you should be greeted with the default project dashboard screen, which looks something like this:

From here, you can manage everything there is to manage about your new project, but for now all we are interested in is getting started with our CI/CD pipeline.

 Building a CI/CD pipeline

With our VSTS project set up and ready to go, we can finally start building our CI/CD pipeline, starting with a VSTS build.

 Setting up a VSTS build

From the preceding project dashboard page, on the right-hand side, there is a Set up Build link next to the Build and Release heading. Clicking on this link will take you to a page that looks like this:

If you're using VSTS for source control, then selecting your code repository is as simple as specifying the team project, repository, and default branch you wish to build from. In this case, a default PhoneShop repository and master branch was created for me when I set up the team project earlier. However, in my case, I need to select the Bitbucket Cloud option, followed by the Authorize using OAuth button to connect to my Bitbucket account. At this point, you'll need to select your own source control provider, then follow the instructions to allow VSTS to connect to it so that it can access your source code.

Make sure your browser has popup blocking disabled for the VSTS website. When connecting to other source control providers using OAuth, VSTS will try and open the login pages in a new window.

After authorizing access to your source control provider, you can then select the Git repository and branch you wish to build:

Upon clicking the Continue button, you'll be taken to a screen to select a build template. You can either scroll down the list to look for the ASP.NET Core option, or alternatively search for it as I've done here:

The one we're interested in is the first option displayed here, not the (.NET Framework) version. Upon selecting it, you'll be presented with the following build definition screen where we can make any necessary modifications to the default template:

By default, the build is configured to Get sources, that is, to download our source code from Git and then run the .NET Restore, Build, Test, and Publish commands in that order. If any of these steps fail, the whole build will fail. Finally, if the build succeeds, the Publish Artifact step uploads a ZIP file containing our packaged application so that it can be used in a release that we'll configure shortly.

The way we're building our frontend Vue code is already part of the .NET Publish command, so we actually don't need to modify this default template at all. The only thing we could do if we wanted is remove the Test step, as we haven't written any tests. However, the build won't fail if we don't, as it just won't find any tests to run. Therefore, it's worth leaving it in place in case we were to add some tests in the future.

You can customize this build process to do pretty much anything you can think of with regards to building and packaging an application. For example, if we weren't already building our client-side application as part of the .NET publish command, we could configure the build step here instead. To do so, we could add a couple of npm commands to run as part of this build process:

However, in our case, this is completely unnecessary so we'll just leave the template in its default state. We can now test our build by clicking the Save & queue button at the top of the page. In the modal window that follows, leave the default values for all fields and hit the Save & queue button at the bottom to kick off our first build. You'll see a pale green banner displayed at the top of the page to confirm that the build was triggered, including a link to click on, which will take you to the build page itself. From here, you can monitor the progress of the build, which usually takes around 5 minutes to complete depending on how many npm and NuGet packages need to be downloaded.

When the build finishes, you should see a screen that looks something like this:

You'll also receive an email to notify you whether or not the build succeeds, meaning you don't need to sit and watch every time you push new changes to your repository.

 Enabling CI

At this point, our build is set up and tested so we know that it works, but as it stands we need to manually trigger builds as and when they are required. If we want to automate these builds to run on every push to the master branch, we need to enable CI.

From the preceding build page, click the Edit build definition link to be taken back to the page where we had the option of modifying the default template. From here, click on the Triggers link at the top of the page, which will present you with the following screen, where you can enable CI:

After checking the Enable continuous integration checkbox, you can save the build by hovering over the Save & queue menu item, then clicking the Save option. Now, every time we push new changes to the master branch, our build will run automatically.

 Setting up a VSTS release

With our CI build in place, we can now create a VSTS release to actually deploy the packaged application to our Azure app service. We can do so by following the Releases link at the top of the screen, which will bring you to the following page:

We don't have any releases yet, so let's go ahead and click the New definition button to create one. As with the build definition, you'll be presented with a list of templates to choose from:

Rather than start with a predefined template, this time we'll use the Empty pipeline link at the top and create our own from scratch. By building our own, you'll see just how easy it is, even without the nice-to-have templates that Microsoft provide for us out of the box.

If you'd rather use a template, the Azure App Service Deployment template will work fine after you configure it to point at your own environment!

After selecting the template, we then need to give the environment we're releasing to a name. I've entered Production for mine:

Once you've given the environment a name, close the popup as we now need to add an artifact for VSTS to actually release for us. An artifact is a packaged application that we need to push to our Azure app service, which in our case is the ZIP file that we ended up with at the end of our CI build. We can do so by clicking on the Add artifact section to the left of the Pipeline tab. Another modal will open from the right-hand side, which looks like this:

We need to leave the source type as the default Build option, then specify the build that we wish to use in the Source drop-down menu. In my case, I left the default build name of PhoneShop-ASP.NET Core-CI, but if you renamed yours, it will display your specific build name here instead. After selecting the source, the Default version dropdown should auto populate to Latest, which is what we want. Click the Add button at the bottom to complete the artifact selection form.

The next step is to tell the release definition what we actually want it to do with the build artifact. Click on the Tasks tab and you'll see the following screen:

We need to add a task that pushes the build artifact to our Azure app service. This is where it really pays to use VSTS for our CI/CD pipeline, as it provides default tasks for doing just that. Click the + symbol to the right of the Agent phase box, and you'll see the following screen with a whole host of available tasks to choose from:

Under the Deploy tab, you should be able to find a task named Azure App Service Deploy. Click the Add button next to it to add the task to the release:

Notice that as soon as you add it, you'll see a red exclamation warning that states some settings need attention. We need to set the Azure subscription and specific app service we want to deploy to, which we can do by clicking on the new Azure App Service Deploy task:

At the time of writing this book, the Version dropdown had a 4.* (preview) option available. It is advisable to stick to the latest non-preview version to avoid issues.

As long as you used the same Microsoft account for both your Azure and VSTS accounts, you should see your Azure subscription in the associated dropdown. Once selected, click the Authorize button to allow VSTS to access the subscription by creating a service endpoint for you. After doing so, you should be able to select your app service as well:

Everything else can remain as is, with the default options selected. However, unless you wish to leave the default New Release Definition name, you can change it using the pencil icon that appears when you hover near the name at the very top of the screen. Whether you change the name or not, you must remember to hit the Save button at the top to ensure the release definition is saved successfully.

VSTS releases are much more robust than Azure Git deployments, but occasionally you'll still see the ERROR_FILE_IN_USE message on a failed deployment. Usually, this is resolved by manually kicking off the release again, but on rare occasions you may need to restart your App Service from the Azure portal.

If you manually trigger a release at this point, if all goes well, you'll see a screen that looks something like this once it completes:

 Enabling CD

Similar to when we initially created the build definition, as it stands, the release will only run when we trigger it manually. This may be what you want, depending on the preferences of you or your business, but if you'd rather have your releases triggered automatically after every successful build, then we need to enable CD.

To do so, head back to the Pipeline tab of our release definition, where you'll see a lightning bolt button in the Artifacts section. This will open another modal from the right of the screen, where you can set the Continuous deployment trigger:

Flip the switch here to Enabled, then remember to hit the Save button again to ensure that these changes are persisted. Now, every push to our master Git branch will trigger a new build, which if successful will in turn trigger a release to our production Azure environment.

 Summary

In this chapter, we've created a much more robust deployment mechanism by building a CI/CD pipeline in VSTS. We started by disabling our original Git deployment mechanism in Azure itself, before creating a VSTS build to replace it. We saw that we have much more control over how our application is published if we need it, but also how simple it is to create a build if your requirements are fairly simple, like ours are.

We then enabled CI so that every push to the master Git branch of our source control repository triggers a new build in VSTS. Next, we created a release definition to connect to our Azure subscription and push the build artifact to our production environment app service.

We saw how easy it is to integrate VSTS releases with Azure app services, due to the built-in tasks that Microsoft provide. Finally, we optionally enabled CD so that every time a new build is completed successful, our application is automatically released for us.

 Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

.NET Core 2.0 By Example

Rishabh Verma, Neha Shrivastava

ISBN: 978-1-78839-509-0

	Build cross-platform applications with ASP.NET Core 2.0 and its tools

	Integrate, host, and deploy web apps with the cloud (Microsoft Azure)

	Leverage the ncurses native library to extend console capabilities in .NET Core on Linux and interop with native coden .NET Core on Linux and learn how to interop with existing native code

	Reuse existing .NET Framework and Mono assemblies from .NET Core 2.0 applications

	Develop real-time web applications using ASP.NET Core

ASP.NET Core 2 and Angular 5

Valerio De Sanctis

ISBN: 978-1-78829-360-0

	Use ASP.NET Core to its full extent to create a versatile backend layer based on RESTful APIs

	Consume backend APIs with the brand new Angular 5 HttpClient and use RxJS Observers to feed the frontend UI asynchronously

	Implement an authentication and authorization layer using ASP.NET Identity to support user login with integrated and third-party OAuth 2 providers

	Configure a web application in order to accept user-defined data and persist it into the database using server-side APIs

	Secure your application against threats and vulnerabilities in a time efficient way

 Leave a review - let other readers know what you think

Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

 images/00011.jpeg
o ono=

4 OPEN EDITORS.
Jg) pEma
» vscode

» ez
i

4 Features

Authentication
Fiters

Home
Orders

© Controller.cs
€ CreateProductvariantviewModel.cs
© CreateProductviewModel.cs
© ProductDetailsViewModel.cs
© ProductlistviewModel.cs
€ ProductvariantViewModel.cs
@ ValidateProductViewModel cs
» Shared
> Users
= Viewimportscshtml
_Viewstartcshtmi
> Infrastructure
> wwwroot
© gitignore
{} appsettings.Developmentjson
1) appsettingsjson
S ECommerce.csproj
1} package-lockjson
1) packagejson
© Programecs
© Startups
® webpack configjs
15 webpack configvendorjs

Show All Commands
Goto File

Find in Files

Start Debugging

Toggle Terminal

Ctri+shift+p.

crrisp.

Ctrishift+F

5

ctr+

images/00010.jpeg
Welcome to Hands on Vue.|s
with ASP.NET Core!

The time is: Sun Jan 07 2018 15:57:09 GMT+0000 (GMT Standard Time)

images/00013.jpeg
firstName: "Stu",

lastName: "Ratcliffe",

fullName: "Stu Ratcliffe”,

3d: 1,

userName: "stu@ratcliffe.io",
normalizedUserName: "STU@RATCLIFFE.IO",
email: "stu@ratcliffe.io”,

normalizedEmail: "STU@RATCLIFFE.IO",
emailConfirmed: true,

passwordHash: "AQAAAAEAACCQAAAAEDweckxIDzkByB
securityStamp: "51829d68-ec88-49bf-a634-b39c8
concurrencyStamp: "6dfedd34-9204-4fc3-bf54-fe
phoneNumber: null,

phoneNumberConfirmed: false,
twoFactorEnabled: false,

lockoutEnd: null,

lockoutEnabled: true,

accessFailedCount: @

images/00012.jpeg
File v Object «

i\ Browser

= & Servers (1)
= (§¥ PostgreSQL 10
G = Databases (2)
= == ecommerce
® ¥ Casts
I & Catalogs
I Event Triggers

&

#- 95) Extensions
+ g Foreign Data Wrappers
B} &5 Languages
& & Schemas (1)
& == postgres
- &b Login/Group Roles
& (5 Tablespaces

images/00015.jpeg
Products

Samsung Galaxy S8

Samsung Galaxy S6 Android smartphone
with true edge to edge display

499.99

Apple iPhone X

‘Apple iPhone X smartphone with super
retina display

499.99

HTC UM

HTC U11 Android smartphone with built-in
‘Amazan Alexa

509.99

HTC UM

HTG U11 Android smartphone with built-in
Amazon Alexa

509.99

Samsung Galaxy S8

Samsung Galaxy $8 Android smartphone
with true edge to edge display

499.99

Apple iPhone X

Apple IPhone X smartphone with super
etina display

499.99

Samsung Galaxy S8

Samsung Galaxy S8 Android smartphane with true ecige fo edge display

Lorem ipsum dolor sit amet consectetur adipisicing elit. Pererendis tempora ad cum
laudantium, omnis fugit amet iure animi corporis labore repellat magnam perspicialis
‘explicabo maiores fuga provident a obcaecatl tenetur nostrum, quidem quod dignissimos,
Voluptatem quasi? Nisi quaerat, fugit voluptas ducimus facilis impedit quod dicta, laborum si
iure nihil veniam aspematur delectus officia culpa, at cupiditate? Totam minima ut defeniti
Iaboriosam dolores cumque in, nesciunt optio! Quod recusandae voluptate facere pariatur
soluta vel corrupti tenetur aut malores. cumque mollitia fuglat iaudantium error odit voluptas
nobis [aboriosam quo, rem deleniti? Iste quidem amet perferendis sed iusto tempora modi i
tempore quibusdam laborum? Dicta allquam libero, facere, maxime corporis qui offcils
‘explicabo aspematur non consequatur molltia fure magnam odit enim. Eligend suscipit, opt
officls repelat eos quis iure? Omnis, error aliquid quibusdam Iste amet nihil nisi cumaue:
magni sequi enim illo autem nesciunt optio accusantium animi commodi tenetur neque eum
vitae est.

499.99

images/00014.jpeg
Products

Samsung Galaxy S8

Samsung Galaxy S8 Android smartphone
with true edge to edge display

499.99

Apple iPhone X

HTC U1

HTC U11 Android smartphone with built-in
Amazon Alexa

509.99

Samsung Galaxy S8

images/00031.jpeg
[0 Runner

Import

(= Builder

History

hitp:i/localhost:S000/ @

GET hetp://localhost:5000/api/users

a Headers (2) T

Key

Content-Type

Authorization

Body @ T

Pretty JsoN =

"fullNane"
i 3

Value
application/json

Bearer eyJhbGeiOifiUzI1 NilsInRSCCIBIkpXVC]9.eyjzd..

“userNane": "email@sturatcliffe.co.uk",

"normalizedUserName

“email
“normalizedemail': "EMAIL@STURATCLIFFE.CC.UK",
“emailConfirmed": true,

“passwordHash"
"securityStamp” :
“concurrencystamp”
“phoneNumher": null,

"EMATL@STURATCLIFFE.CC.UK",
“email@sturatcliffe.co.uk”,

No Environment £
Gk P
Codz
Description BulkEdit Presets v

Status: 200 0K Wime: 357 ms.

* AQAAALEAAC CQAAAAED6EY kNCIOFOQFZE@ONSBrPIUX6pUNZeNd+T4+CB2YqLOMPIA/N/ 1u21KAGKCS /+3
ed8633d-e6a5-41al-8182-c5cF8e2dcc7b”
"65773bcs -ee2a-4dec-8857-bel13d240ab3 ",

images/00030.jpeg
Debugger

Crafted by {9 Auth0

Encoded

eyJhbGci0iJIUZITNiIsINR5cCI6IkpXVCJ9.eyJ
zdWIi0iJzdHVAcmF@Y2xpZmZ1llmlvIiwianRpIjo
iMTkyOTE@M2YtNDRiYi@ONzRmLThjNjgtYTQyOTk
wOWJjMDBmIiwiaHROcDovL3NjaGVtYXMueG1sc29
hcC5vemevd3MvMjAWNSBWNS9pZGVudG10eS9jbGF
pbXMvbmF tZW1kZW50aWZpZXIi0iIxIiwiaHR@cDo
vL3NjaGVtYXMueG1sc29hcC5vemevd3MvMjAWNS8
WNS9pZGVudG10eS9 jbGFpbXMvbmFtZSI6InNOdUB
yYXRjbG1lmZmUuaW8ilCJodHRwOi8vc2NoZW1hecy5
taWNyb3NvZnQuY29tL3dzLzIwMDgvMDYvaWR1bnR
pdHkvY2xhaW1zL3JvbGUi0iJBZG1pbiIsImV4cCI
6MTUYNDA3MjUxMSwiaXNzIjoiaHROcDovL2xvY2F
saG9zdDo1MDAWIiwiYXVkIjoiaHR@cDovL2xvY2F
saG9zdDo1MDAWIN®.RhDjDX3mgnUWS-
PFUMFc6rQiEDiG6NR3LkZd9ziGmmI

Decoded
HEADER:
{
alg": "HS256",
“typ": "JWT"

PAYLOAD.

sub": "sturatcliffe.io
44bb-474f-8c68-2429909bc0BT

2005/85/identity/clains/nam

s.xmlsoap.org

org/ws/2005/85/identity/claims/nam

008/06/identity/clains/r

images/00033.jpeg
stuartratcife nailcom Sign out

Azure free account sign up
Start with a £150 credit for 30 days, and keep going for free

1 Identity verification by phone ~

Country code

United Kingdom (+44) B

Phone number

0796 6660684

We delivered a code to your phone.

Verification code

2 ldentity verification by card v

3 Agreement ¥

English

images/00032.jpeg
™ Unnamed account v Q Search Feedback about this page? [] i e
Add 2 name
L restosa |
2 Home APl keys Learn more about AP| authentication =
+/ Activate your account
i Viewing test APl keys. Toggle to view live keys. Viewing test data
m Payments
v Balance
Standard API keys
0 Customers
NAME TOKEN LAST USED CREATED
@ Radar
® Biling Publishable key pk_test_NNMEXLrT99IPhWHmPdusxuxo # Apr 15,2018 Oct 10,2017
>
Coniect Secret key T AOr15,2018 AUGY, 201/
T Orders
Restricted API keys + Create restricted key
Developers
API keys
NAME TOKEN LAST USED CREATED
Webnooks
Events No restricted keys
Logs

Viewing test data

images/00035.jpeg
1 resources, sen stuartratcliffe83@hot... ()
Microsoft Azure O Search resources, services, and docs 0> |2 0|0 || SerEdieson s

e > > Resource grovp.

+ Create aesource Resource group o x

Create an empiy resource group

Al services

8 pashboard

All resources
) Resource groups
& App services

> Function Apps

& saL databases
=

‘Azure Cosmos DB

Virtual machines

Load balancers.

H e

Storage accounts

Virtual networks

Azure Active Directory

Monitor

b 0 o

Advisor

‘Security Center

0 @

Cost Management + Billing

& Help+ support

images/00034.jpeg
Microsoft Azure

Y @

e

Create a resource

Al services

Dashboard

Al resources

Resource groups

App Services

Function Apps

SQL databases

Azure Cosmos DB

Virtual machines

Load balancers

Storage accounts

Virtual networks

Azure Active Directory

Monitor

Advisor

Security Center

Cost Management + Biling

Help + support

Get an Azure subscription

Develop + test cloud
solutions

premium

stuartratcliffe88@hot..
STUARTRATCLIFFEBSHOTMAIL

images/00037.jpeg
Microsoft Azt ch resources, services, and docs B P (%0 0| R ersdecoos @

STuARTRATCUFFEBSHOTMA . Q)

—+ Create a resource SQL databases « A X SQL Database a x

swartratelfe88ihotmal (Default irector

Al services

M8 Dashboard

Al resources
) Resource groups

& App services

Function Apps

20

SQL databases

L)

‘Azure Cosmos DB

Virtual machines

Load balancers.

| K A |

Storage accounts

Virtual networks

Azure Active Directory

Monitor

5 0 ¢

Advisor

Security Center

0 @

Cost Management + Billing

Help + support

images/00036.jpeg
Microsoft Azure £ Search resources, s
Home > SQL databases > SQL Datal Server

Create a resource # X SQL Database

Al services

Dashboard

Al resources
Jsting

Resource groups

App Services

Function Apps

SQL databases

¢ Azure Cosmos DB

Virtual machines

Load balancers.

Storage accounts

SQL_Latin_General CP1_CLAS

Virtual networks

Azure Active Directory

Monitor

Advisor

Security Center

Cost Management + Biling

Help + support

d d

X

Server

Create a new se

No servers found

i

stuartratcliffe88@hot..
STUARTRATCLIFFEBSHOTMAIL.

=}

x @@

UK South

images/00028.jpeg
[runner mport Builder

sgnn ©Q A & @

No Environment o3
http://localhost:5000/ @
History

POST http://localhost:5000/api/token Params save
m Body ® Code
form-data x-www-form-urlencoded @ raw binary JSON (application/json)
R
8: Email: “"stu@ratcliffe.io”,
3 Password: "Passworc”
a

Body C @

It us: 400 Bad Request [fime: 347 ms

Invalid e-nail address and/or password

images/00027.jpeg
[runner import Builder sgnh O A & @

No Environment. fed
http://localhost:5000/ @
History Collection:
cer R — s e
Clear all
Authorization 1) c Cod
v Today $ =%
GET httpi//localhost:5000/api/users
Type No Auth
Body ‘ i @ T I Status: 401 Unauthorized [NTime: 95 ms.
Pretty) r Text =

images/00029.jpeg
[J Rumner import

No Environment.

httpi//localhost:5000/ @

History "
POST http://localhost:5000/api/token Params. Save

i (U] Body ® : t Code
form-data x-www-form-urlencaded @ raw binary |SON (application/json)
1-4
2 Email: "stugratcliffe.io”,
Password: "Passworc1*"
H
Body (4] iine: 386 ms
Pretty JSON

"access_token": "eylhbGci0iIIUZIINIISINRSCCI6IkpXVCI
ey T7dWT§0172dHVACNFAY2xpZni7] Ll VT i anRpTjoiMTkyOTEGM2YENDRI Vi AONZRIL ThiN gt YTQYOTkUOW) JHDBMT iui aHRACDoVL 3N aGVE YXMueG1 s 20he 5y
cmevd3MyNAWNSEWNSIPZGVUdG10eS9 JbGF pbXMvbmF t ZW1kZW58aWZpZX 1101 TxTiwiaHR@cDOVL 3Nja6VtYXMueGlsc29hcCovemevd3MvMIAUNS8WNS9pZGVudGlae

593bGFpbXHVbmFtZST6 IINGCUBYYXRbGImZnUuak8iLCIodHRWO1 BvC2N0ZNThcyStakyb3NvZnQuY29tL 3dzL 2 TuMDgVMDYVakR1bnRpdHKVY2xhaWlzL 3IvbGUIOL
JBZG1pbi 1SINVACCIEMTUYNDA3NUXMSWL aXNZ 1J01aHRECDOVLZXVY 2F 3692 ADOIHDANL 11 YXVKL 01 aHROCDOVL 2XVY 2F 5 3692CD0TMDAWLF® . RDIDXMENUNS
PFUMFC6rQiEDIGENR3LKZdIziGnmI" ,
"access_token_expiration”: "2018-@4-18T18:28:31.0896252+01:00"

images/00020.jpeg
PhoneShop

Filters
[reset |
Brand ~
‘ an ‘ Ace
Globex Soyient
Initech Umbrella
Price ~

Scraensize ~

Capacity ~

Al aGe

8GB 16G8

Acme TNT 4

Acme TNT 4 Android smartphone with true edge to edge display

Prices from £209

Soylent MegaFone

Soylent MegaFore budget Android smartphone with true edge
0 edge display

Prices from £99

Umbrella T3

Umrella T3 premium Android smartphone with true edge o
edge display

Prices from £499

Globex Scorpio

lokex Scorpio Windows smartphone with true edge to edge
display

Prices from £149.

Initech Silicon 5

nitech Silicon 5 premium IOS smartphone wiith truz edge to
2dge disolay

Prices from £599

art

images/00022.jpeg
I
e i
e

i
Dispatch//

/
\\ // /
Rer:k\\v. o Autate

images/00021.jpeg
PhoneShop

Filters
[reset |
Brand ~
‘ an ‘ Ace
Globex Soyient
Initech Umbrella
Price ~

Scraensize ~

Capacity ~

Al aGe

8GB 16G8

Acme TNT 4

Acme TNT 4 Android smartphone with true edge to edge display

Prices from £209

Soylent MegaFone

Soylent MegaFore budget Android smartphone with true edge
0 edge display

Prices from £99

Umbrella T3

Umrella T3 premium Android smartphone with true edge o
edge display

Prices from £499

Globex Scorpio

lokex Scorpio Windows smartphone with true edge to edge
display

Prices from £149.

Initech Silicon 5

nitech Silicon 5 premium IOS smartphone wiith truz edge to
2dge disolay

Prices from £599

art

images/00024.jpeg
\ 4 A D

Q Filter mutations b4 S =] Q Filter inspected state

Base State 17:04:30 v state

¥ cart: Array[1]
¥ 9: Object

capacity: "4GB"

colour: "Grey"

colourId: 5

name: "Soylent MegaFone"

price: 99

productId: 3

quantity: 1

storageld: 1

thumbnail: "/assets/images/thumbnail.

v mutation

» payload: Object
type: "addProductToCart"

: ‘ Console ‘

images/00023.jpeg
v

Q_ Filter mutations 3 S [Q_ Filter inspected state

Base State 17:04:30 v state

¥ cart: Array[@]

: Console

images/00026.jpeg
v

Q, Filter mutations

Base State
addProductToCart

updateProductQuantity

addProductToCart

|&

o @

17:04:30

17:22:56

17:25:14

Q_ Filter inspected state

v state

¥ cart: Array[2]

» ©: Object

¥ 1: Object
capacity: "16GB"
colour: "Grey"
colourId: 5
name: "Soylent MegaFone"
price: 139
productId: 3
quantity: 1
storageld: 3

thumbnail: "/assets/images/thumbnail.

v mutation

» payload: Object
type: "addProductToCart"

¢ Console

images/00025.jpeg
v

Q_ Filter mutations

Base State

addProductToCart

updateProductQuantity

3 e @ Q, Filter inspected state

17:04:30 v state
¥ cart: Array[1]
V¥ 9: Object
capacity: "4GB"

17:22:56

colour: "Grey"
colourld: 5

name: "Soylent MegaFone"
price: 99

productId: 3

quantity: 2

storageld: 1

thumbnail: "/assets/images/thumbnail

v mutation

» payload: Object
type: "updateProductQuantity”

i Console

images/00017.jpeg
Q. Fitler components O select Tr Format | <ProductDetails> Q. Fiterinspected data <> InspectDOM [Openiin editor

¥ <Root ~ props
v <hpp proguct: object
v <ProductList> description: "Loren ipsum dolor sit amet consectetur adipisicing elit. erferendis tempora ad cum laudanti

e s ey

price: ass.53
ShortDescription: "Samsung Galaxy S8 Android smartphone with true edge to edge display”
Slug: “samsung-galaxy-ss-1"

thumbnail: "http://placenold. t/2eex300"

v data

» sroute

images/00016.jpeg
¥ <Root >
¥ <App>
¥ <ProductList>

<ProductDetails>

images/00019.jpeg
Storage

P dintd

Capacity tex!

P d:intd

Name: tex!

’ Products
Productd: int4
intd
/7 Colourld: int4 FJ :;1 intd
/7 Storageld: int4 escription: foxt

Price: numeric(0, 0) Name: text
‘) TalkTime: numeric(0, 0)

ShortDescription: text
 Slug: text
Thumbnail: text Name: fext
 Brandid int4
Colours - 0SId inl4
ScreenSize: numeric(0, 0)
Name: text StandbyTime: numeric(0, 0)

Brands

ProductFeatures

/7 Productid: int4
< Productld int4 7 Featureld int4
Url: text

Features

P dind

Name: ext

images/00018.jpeg
PhoneShop Product:

Soylent MegaFone Globex Scorpio

Globex Scorpio Windows smartphone with true edge
to edge display

Soylent MegaFone budget Android smartphone with
true edge to edge display

Prices from £149

Prices from £99

Acme TNT 4 Umbrella T3

Acme TNT 4 Android smartphone with true edge to Umbrella T3 premium Android smartphone with true

edge display edge to edge display

Prices from £499

Prices from £299

Initech Silicon 5

Initech Silicon 5 premium i0S smartphone with true
edge to edge display

Prices from £599

images/00051.jpeg
Kudu Remote Execution Console
Type ‘exit’ then hit ‘enter’ to get a new CMD process.
Type "cls’ to clear the console

Microsoft Windows [Version 10.6.14393]
(c) 2016 Microsoft Corporation. All rights reserved.

D:\home>

Modified size

5/20/2018, 12:09:08 PM

0)

N

018, 12:06:40 PM

5/20/2018, 1:06:08 PM

18, 11:26:2

Am

5/20/2018, 12:06:29 PM

Use old console

images/00050.jpeg
Environment

Build

Azure App Service
Site up time
site folder

Temp folder

REST API s

« App Settings
« Deployments
« Source control info

« Files

73.10510.3399.0 (2ac27c6b5e)

73.0.8598.30 (1d_websites_stable. 180425-1555)
00.00:58:04

Di\home

DilocalTempl

- Log streaming (use curl, not browser!)
- Processes and mini-gumps

« Runtime versions

- Site Extensions: installed | feed

/eb hooks

- WebJobs: all | triggered | continuous
- Functions: list | host config

More information about Kudu can be found on the wiki.

images/00053.jpeg
- o - g & O () & staratdifess@hot..
MictosoftAzare Search resources, services, and docs x Q O3 © 0 i e &
X

Home > App Services > phoneshop - Custom d

Create resource [phoneshop - Custom domains *
Allservices 5 « Oreesn @racs
L Deployment options - “
’ Custom Hostnames
I Dashboard . Continuous Delivery (Previen)
Al resources. Configure and manage custom hostnames assigned to your app Learn more
sermines

Resource groups = Application setting;

& App services ¥ Authentication / Authorization

ts

Function Apps @ Applicaton i

e & Managed service identity (. Click here to upgrade your App Service plan to assign custom hostnames to your app.

 Backups
& Azure Cosmos DB

rvice Domains

P S

e This subscription is not eligible to purchase App.

Virtual machines

@ Load balancers

[Er—

Scale up (App Service plan)

Virtual networks -
Scale out (App Service plar)

@ Azure Active Directory

% Weblobs
@ Monitor 0 push

@ Advisor @ MySQLIn App

@ Ssecurity Center

Cost Management + Billng

Automation script

Help + support

AP SERVICE PLAN

images/00052.jpeg
/wwwroot + 15 items

W ELommMerce Frecompiieaviews pan
ECommerce runtimeconfig json
Npgsqldi

Npgsg! EntityFrameworkCore.PostgreSQL.dil

I package-lock json
B package json
i Stripe net dil

[web.config

Kudu Remote E;
Type “exit’ then hit "enter’ to get a new CMD process.
Type “cls’ to clear the console

Microsoft Windows [Version 10.6.14393]
(c) 2016 Microsoft Corporation. All rights reserved.

D:\home>
D:\home\site>

D:\home\site\wroot>

SI2UIUTS, 1240241 FI

5/20/2018, 1:03:08 PM

5/20/2018, 1:03:07 PM

4/6/2018, 7:39:12 PM

5/20/2018, 1:05:07 PM

25 Ke

1KB

607 KB

147 KB

236 KB

388 KB

1KB

Use old console

images/00055.jpeg
“|® (]| Bements Console Sources Network > o141 i x
® O W™V v = O Groupbyframe | @ Preservelog [Disable cache
[T] O HeeataURis
)7 15 cs5 mo. s Font Doc WS it Oner
Orders om w0ms e o =
L— =
Wibiodies Order Payment
Customer Placed Items Total status ¥ = PR
B £ '
1 Stu 10/04/2018 3 £45700 paid 1] Ve T TSRO s 1
Ratdliffe = = !
Ow « 1
| vendor shv-WTepdB14GZNpZA0... s 1
2 Stu 14/04/2018 5 £735.00 Paid (] mainjs?v=ETQWUGFIMSX]4fTERP... sc. []
Ratdliffe L]
D ordes |
) "
3 Stu 14/04/2018 5 £73500 Paid || refrasn ven. - L]
Ratcliffe T — 1
ool cH6S0BORNNT0 304 s o 1 Tams| 1
[
4 Stu 14/04/2018 1 £139.00 Paid 1
Ratcliffe '
| ettt o, 20 o son. . e B
X [Jouternem 304 . fm. 7. 3ims]
5 Stu 14/04/2018 1 £149.00 Paid (] imerttmt ey . ot | 748 ey 1
Ratcliffe Os 20 wr m. s, eisms -
Os aw o . 6 S0ms :
6 Stu 15/04/2018 1 £599.00 Paid
Ratcliffe
20 equets | 13 M8 barsfered | Frise 424 | DOMConietloaded: 1105 | Losei 2265
0 concote [o nen x

images/00054.jpeg
POST /api/token

Access Token In
Authorization header

. Refresh token
in request bocy

. Unautheniicated

access_token + refresh_token

POST /api/products

products[]

POST /api/products

401 access_token expired

POST /api/token/refresh

access_token + refresh_token

POST /api/products

products[]

images/00057.jpeg
L rela"stysheet heef et uendor cos?nDl_YATRAICERIOERNTER b TSOAGRK_TEOOE" >
o betgas e, S mesons confeelsasa /o5 0GB relestyleshent” /5

ik b
s

<ol Liaop-ross i/t
Songie cargee. ras colisprel o</ rachar saagles cbrasear brand Sor -] o raaneshept b pmvr-beands (e cotispee Lo el
et i o i e b AN e bt e g I R e il diiod
e oo e et Hrigeere e o cdiontn oo $1n </otes (Ghue ol 20,0018 | L/stir k pepmiersi/e s
et Al o e s Fomiartn </sanplates (hdropdon Seom sor("/ ascoumt L1k CLaoen\ fut fa-Lrert"s
e Ty et e siopden-ftans o ropdoun frans 1 Clacer\“fas fu-slansot 4l 1 /Lo | LCEE\n /b oo Leemsd/b nacfeem cropdmnr< b bt ners
75 SaLLapi i navher> <b-comtainer FIALE-\ CLossos PO\ Sote-s-ARALLS0S - 40 ASEALESO<oocal Gol8c\'IN" dtecv-IBEAIEROr<div EiReEA FLibers by Sata-
aLcooscrs CLosse i at AV S LIECrSC/1S <5-84n VArLanECoutLine SeconduTy\Co<L 188" Tas fastyne WP-3\2<si> BAASAC/D-BRTS < LLnt-§r0up €1aren\ oL\ b LLat
Eroup-Liam dte-v-ceobisbiscole claseek hender TpenL dathv-CeBTASERs<Epan Jnta-v-COPPSDIISTANGC/Apan> 1 CLAkEAC 185 Fachevron-doun FLoatoriEML: dutacy-CaotdSPIRE/ 1>
ek <ok Chaxie\"body W3 PELI\ dbth-y-ceOFdIR GatnvConfaShEr<hFou Sata-r. SRS b-caL COLEL\M6\" data-v-EAdPRABASCALy CLatsc\ FALeeLten ScEive\ dai
LGRS /b co1s Ch-col Golen\ E\" dmca-v-SLAPBBAS 1 CLasee\ FLINer Ram - v-SAIBORDATACHRC/dbise B COI0 p-Coh 0L\ B\ Ghen. EAsSRRBAS b
e omseadsalonasc S b cotoch col Coli- B\ data-r. S1RORISCHLy CLeEr\FITCer L Sata.y.ALdPaseessoy ATk by o cohs -5
L CTare FETear Leam . GAEToebesTriSeche L5513 oL COTEL"o\ Srtn L ClarRnnes oLy atre Aol Lreel” GetaL-
CiaBtastsintratinc 6110 cols< b rocs< s« /b Tt grouy Leom (b Lict grocp5em Sata--cobTeTors i Claree Hescer pant-
CESTESR e oo (4 <laceo\ far fo.charon doun FLove HAghe " Crta L ST/ Lo I a4y clacec\ by s i L gt
e i L L T ST s i e g L W
CLAZii\ Raniar cpenl daters ceohistiscapan data- ceoT S Seretn SLeed/apars <1 Clseae o fo chesror dour Fese iGN\ e eeb S/ bhs (ah Clasae oy
o T ety 0e0f i3 detacr-ceBTARRS iy CLosea\ a1 der - dutocs ELRLRGs e lasse\ me-sur FLocehelder " dmtacy-8900TLbcne/aieoc/abes </ burcio- Lo ravm: siamd
L5 roue (e e v ceufashEs cab <Lanee\ e Spen Gata o Cabfdskaisgun datn) ceOTUSRErCaRaC vy spons <L laree Ereiron o flset-righe ! daiont
et T T Lo ey e 3 A" eG4 dnta e cabGBRa o dova s E10Sbepbsch Lol Calon "B\ data. E1IBBestredLs Clpsse - Fiiter ftam
SEEALet date SLISNesArsL1e/alyp</a-cai> <ol COLsrL'O\ dato-r-E1aboeato<dhy ape TLItErLeomt Ghtacs-EL4PORAG) B/ -coLrch-ca] SOLOr\CE\" data-v.
Cidatastscaty CLarsor FLLLEr-(oem catacy-S1as0e OOy CIo-colo o to] CHLIACEN- SIS (OLY CLasEr\-ILIear-ALem - ey SlsSoesiploahc/aLese/o-(aldb-s
COLintUEL" datary.61490entrcoly Clestei-FLitar- faam® dato-v-Slisoustr3icac/divae/b-col b i
Elasausssessd v fo-colscb-col culen\ €L data-v-shSbaechlv Chatse\-Filter- Kank” dav hpstiey
T TCer £Sam\ .. S1090034 35GEc/ /- 31> - €9 COAEL-F1 does-s-ELaDORRAS ok AT\ IR LEenL" GueR - GRETBRREIITE BT colsch-coh ot
Eha3tunas 1 SIaree EHLRr VERL GaTa-y TR/ L o CaLo b rors<) B0 LT §roUp {5ens (R TLES groug- 1 e4eh 1 CAOTERRESCaEs claseel pendhr
e B e i caca L cebe oo e < clotec\ e D I e e
Cearied e VTCSR A e o dava s GicSmemas oo Sols\"6\" data L ELadeends Lot FiLeer fecn SCEiiel dutay-S1dsbest AL b cehs ¢
e e A T G LT G e L P e
v st g e ot e P e e e e b e e
it o) Wyrssdt s g iy s ot Tl A N e MY i st S
CLaat iiear e Gaee . Ghosoestsbgatesrertatse /e soL b csl CoLeE\ 6\ fata-v oot Clocoe\-Filter-ELen” data-v:$1030eat At gier </ cobs b col
CALEAVON" ey o1Sbeatrcabe clesbo\CTiikar tem- dateos-SLERSRASPLOAC/851r< bl bl cOLee "0\ datace- AdSRear Y Llatoe\ FLIGer SRR datacr.
ELdansatoarome Lo/ b-caloc/oerous /8Ly~ /5L frovpLhens <o LLAt-Eroup-Lism tacy-CoOPOIoesChlr CIRSEE\ hadder e dote-v-cobTdTosrcspan deta-r
Cooraamoparating systeec/spats <5 clatbe\"Tax To-thivean-dom 1IGBL-r LML data-v-LeH O ire/dbvs (o clog 7 oty ceatashe anta-v-cestassics-
o data- TR co) CoLse L6\ data-y- AR Ly CLabs\-TLIVEE-LLen VL v SAISOROATALLC/dber <o CE\ daca stanatecaty
CTasantTETRer- deom, Sata-c GLoSSeReo Aokl /oL bco] CoLin\ BN data.r.S19Bema ALY CIuEEL\CFLIREP LA .- S10sOebpL05C s/ ol 0. o1 COLE=\"8\"
Gota s A 1) CIaEeo\ FITar YERL Aoty A nGont 4100 -l /b- oIS LT froupL5ens <h-LLEL-grove. 100 SrEe-CROTSIRES b Ciages\ ander
B e e W P P e s e ey P Rt R ol
B T e
b e ot i S e e i PR e S e
SEeal ST daters-eiSseeniresty lasge i tenSeome deins-EIoROeAATELetosth b ol b col CoLgei e\’ Sata-SLIPOeeR i FInpee\-FLIter-tam" s
CLaBRestidr s ol chocal coles L1 e Cldsbents 1 Clpsor\-Fileer feem " dote v $LSSbenisrase Sharget i o coLych col Selis 61" dueat-d1dsdends sty
Clasaiiikar Seen " dota e b1oS0ead 086141 sl s b oL SoLec\ A\ duta-s 1t cits chasee|Filear-ieent dsta - SLIsbest L Ghore /o cels b o) SrcIs
Frocamiti ey ettt et I e V- g i S Gl s e et v
i e L e et placenaldars\-Suaren. - (-5/b fore inputsc/dbs> <l e 'ml 4\ 4 Flabel ety
4o s e oY) by ey oA s B btaret g e s A g i e i e e S Bl

et i o« “COLY dats-sariarrendareda\ e clasee\“app\ " ch-rakar Sogglesbla\'ad\" typec\"dark\” uariants\” k" vbar
Lo raw collapeatesch-sosbo savochones-

Claen it tren” o
el e

images/00056.jpeg
<meta name widthsdevice-width, initial-scales1.0” />
<titlesHome Page - ECommercec/title>

<base href="" />

dist/vendor.css?v

<link rel="stylesheet" hre i_qY8daTesdfcrQlOFFITaeL hnSxTSDARSK _TEDOE" />

use.fontawesome . con/releases/vs.0.6/css/all.css” rel="stylesheet” />

12| </head>
13/ <body>

15| <div id="app-root’>Loading. ..</div>

8

| <script src="https://js.stripe.com/v3/"></script>
| <script src-"/dist/vendor. js vextoliepssOSfaNCFAs kL7500 aRaRESPK VIIKCLAK"></5cript>
2

2 <script src="/dist/main,is2v=keyYqqL-6ECy_KbEz1D-KSDSHI2MdgEMETXpANmNqYQ" </ script>
x|

24| </body>

2| </html>
E

images/00059.jpeg
ficrosoft Az O Search ddo E Qo > f wartratchffess@hot... ()
AsGosat el Q> B s @
Creste a esource * X
A services: e
oymentustrart

B ontoomd a

Al resources

Resource groups

App ser

Function Apps
SQL databases
Aaure Cosmos DB
Vitual machines
Load baancers
Storage accounts
Vitual netwrks
Aaure Active Directory
Monitor
b Acisor
Secuity Center
D cost Management + siling

& Help + support

images/00058.jpeg
Hab-yromp:1tatrc/b-1E80: gramprd/alion/boraly h-eal colse\\" data-eA8AcHIGély clazist'nt-4 FLiN\! deba-w-ASIMCOSXcdiv. Clasan\"Siarch\". duta-v-ABMAIeatoch-fud-
Srpun UaTias L typas Feeue i placenaldero\-Searcn. /b form:inputsc s <ok claces ml 41" dnch-y-EaIDE data- HAALEO0cEpan cince-\Label Ar- 3\ Gata- v
SAE3BEISort by</ Spans <h-Aropsom TAENEC\"\" Kexts| Cost. (Low 10 MLEN)\" CLaSer*ropdiun\ d418-y oaRSOMRRS o drapdounLiem date 1. SUSIOIRESCOSt.(Low o MIEh)</h
ropdomn-Loen><h-ropioun- Ltn deka-y-LuE3MEEICost (HLEh L5 Lov)</beSeapdoun-Leses <o Jropdoun-35en Sata-v-bodSdbuame (A - 2)</5-4roptmn: {1emscb- droptoun:Lren da
Ereiane (2 - 3¢/ arapaoun Sams bodropdns 18015 (45 <Tarre\ EraBIctr - Sty ISR data: v ARG E-ro clasee et 4\" dnta-.-oLsbebErch col
AT Clagae "o\ SAkev-SOLARENES Dmeila CLASEo\"DrORMETL" Sata-r. POLIBGRESLnE SLoke SLLde\- srec\"/aseets/LnaEes AAONSLL e\ aLEr\ Saylent PegRraneL”
it L S0ty (kt clasae et " data-s-SOLSeLE o Lent Fagaronec /43 < clatee\ mt-a a6 41" et SOLBLEES I Soylint egarone budget iniroid seartghons
U Crue sipe 1o tdge Splapin 4lps p Clane\ Ri-d SELAL dita s FOISene P ices from (39 00¢/gsc/b madiase/o-cels b col e\ CE\" Clares Ceb AL data v
Spisunas b pedia CLasse\ product" data s SOLSHREN g Siote\ "S5 Lde\" sree\"/ossets/iaages/ s Ll fpog\” A1t Glober Seorplo\ 4ot y-OLEELD: 12 clasin mE-2\
eteri Sosehe e Seorpioc/hds G Ciasael et s g\ daca-v Seisaenss Glooex Seacple Uinbtus smitobone ith Coim edie. o sdgs EPLONG - Ipy 45
CERe\Tet 8 mb 01" e L DRI Srices Tron £145 000/ b oI b 1o Ch-cOL PR\ EL" Clacec\ abin\" ot s OBIABEOES(E-nedts CIaTIo\ produeEL dRCe-Y SRR
C1ag S1ote\ astae\" Srce\/assetsy nages) humbnoL L SHBE\- ALEr\ TSt SrOUCEL: data-v S0LABEbRS (NZ CLALLN\RE-D)" Gty SOLABSBEITELE PIOBUGOINE <5 CLast-\ mEA o
e sbisnaess e i i Tes <5 Clngam\"mbot s\ Sata-s-SHLABBEORLLcas from £190 S0C/p/bomeaand/bocolochicol Sm\CE\-
Claceo a4\ Sat v SOLERbEh s Clase| PrOBUCE\” Gata SULARETSing Tlote ATIOe\" Sri " aesets]insger) chusbrali. ougl S\ Acre THT 41" Gata L SonseEEs
12 CLason e 21" datoy SHRABeES A TIT 447D <p Classe\"at-4 m6-4\" dats-1-S045ehES 0 Line THT 4 dndrold smariphon uLth true sdge £ edge dlsplarin
765" Clama a6\ Smns SiRaebisPrices £rom £355.00¢ /g /o medinr</b-calslhecel smn\"E\" clarcel 41" dath SOLdebircE mestn clasee\ protsce)” date
sseka>ciag Slct\"aside\" sree\"/assets/mages <humbna Ll Jpeg\+ S1C\"Unbrell T3\ dotans 3013ebE> (h2 classe\WE-3\" Gata-u- SRR RGreLin TS/ND> <p classn
Tmore\” dath-s-sosscheown Unbre L1515 previum Anirold smoriphone with rve edge o edge ALspIay\n <o <p Closeri md mhosl” data.v-S0LGeREPrLcEs
o £495.000 5> b-madins/b-colschcol Sme "L\ Clarec\ b 1" daka- v SSiARablsh medis claseel produer.” data-y-SoLibebts<ing rlove\ aside”
e Taciuts nnges Thumbnnd . JpeE\" S1E-\ TniSech SiTicon 51" e s OABaEEs < clare- et 3\ deta-t.GOLeGeEErnttech SH1icon S/mhs <p claree\CuTA wb-A\” dot
Seiisekarin Indtach Sillion S prantun 105 snartshone with true sdge 1o ede dLoplay\n | CIes <p clasie\ me 4 m-a\" deva-v-soltachasprices from £559.000/55
-1k 2a1 see\ B\ Chsusit o i\ dns-DO1Bebbs b necis Clasee\ prodier” duca-v-SOLABeED)cing <lote\"aisel” e
S15-\"Some Other Test product\" dota.y.901SSuRE> (h2 classe\"Wi-2\" GeTa.v-P014RaSd)Some ST LRSS rOGUCTI/ND> <p <lasee\ -4 mo-4)
S0 tast produce dascriptionn | </os G classe\ wi-b wbi\" date-_SOIBeRSIPrices from €939 55/ /b madiase - caLye/b-roust/dL1s< /b a1 b 1our</b-ontainar
e fastera\ 1" o Cioee o backdr s "1" - chore-sn ereu\” (b tabes b cab Cheler\ Loginl” setiveri- " form clarei\ p 31 b Alare

UarTanee\danger - imler bl o1 \n /b sIeres choalers Vacianiel ruceess b Aepietrarion ruccartful. lesse ogin fo cortinue i </b-alerts <poLogin wich
your ¢-ma11 sadress and passiord.</5) <b-fora-group 1abelo\ E-adl\"><b-forn-inputs</b-forn: rgut>c/o-fora:grouss <b-fora-grous abels\"Passuord\">cb-forn input
jpes e o</ forn et < 5 Forn froUpS (o Fara-3Toup Bt v areeprinary L Sype\ subete\ S opint b bUrtors b bukton var e\ sereuie sCancel /e
ieeons b Fora. g1/ aren b a0 Ch-tap FLALee\ RAELSeRr s cForm CIatoc\ g T\ B AT LAr e\ ganger 1 dLsmeEiblac "L <5 aleres b fora grovp Iabele HireT
e < ora LAputae/b Fort Pyt form-rouEs <b-Form-Arous TAbeLr\FLRSE Keme\-3<h-Torm inputs</b-Tobm ATautsc/b. form-graups <b-form-gous R\ CE-net1\"><h 1

LR o o fnpu g\ parsiord /o fore.iaputs< b forh o Cb- o grace Tabela ontire
Ferevard oo formAnput e\ R d\- < b Torm. Inputs</ b Torn-Brougs. <h-Tarm§rougs b-butean i iant e rohate Ragiever e burtons <b-nsttan
VArLint=\“default\">Conce (/b buttons</b-form-ouss</ ora></b- L/ b-tabir(/5_moda Ly /oo st
[Pacca eakentchey T 04 U IAE T8 RS CTUTAPAV DS o) SoLL 04 DXV Son s 2E TG el RS 0L38{ P TEL ATy UL AR RIS OS5
B e e e e N e e e e e
S5 L LAl Loy S2Y S 5L 33 0 820U Ao OCMLSF OV G LN G 2515 8N Xt USRS 359 Sodhn
33V 0O POECL oL L OO AL 1. 82X S 2o AL TC SN SCORI s, ke - GQUAD eSO UAGe rol
[CCustoner™],“FirEchame” “Laura", Lasciane” " Fenver) ShouRUEIRSaL” False, Tonding” cTalse, car e |, productsts 141 clug" < Sene-tht_4, name":"Aeme’ THT
. ihartDestriptice” “Acee TIT 4 dndrold nariphone With true sdge to adge Slaplay® pricet 399, thunbnall's" sssats! nages/Shunbnatl Jpeg" {1432, "sLug" "globex-
Cebrpo e “Slasex Seorpior,“ehartbercriptine “dlsbex Scorpls Lindecs sesrtghone Lich tree iRt %o cége
SLipLay,price” 103, ChambaL1" st/ e/ unbnLL peg) (14”13, S1ug".“Soylent-megsFana"s nans"s 'Soylent egaFone",shartDescription” “Soylent regarone budget
Sndroid narephone <ith true sdge € edge Sisplay®, price" 59, ehonnaiir " assets) insges)chinbnail fpes), -L6" 8, SLog-:*ioisech- sl Leon 5", name": Tnitedh Siticon
7 “Shar Description”: “Initech S1licon 3 prentin 405 snartshone vich True ede o edie Sisplay price S50, ChumbnaLi":/asiecs/inages Shambaati e},
(43, sy umbrella 3", “nane” 1 nbeel1a 13", thar<Descripsion’ unbreLis T3 preniun Androld sareghone with trve edge <o edge

oL et product”, ranei Test Sroduet”,"shor toescriptisn” Some test

Geseripeion price” (198,99, “thurbnai1 */assets/ nages Shunbnat1 Soeg”), {"14" 7, "H1ug" | some-okher-est-prodict”, nane -Some sther ezt
raduct anoriDeserprion:-Sone Dther Test praduct Jercription’s orice (559,30, hantma L1 -/ atsets ages/ NORLL Jpeg 1], FLicers s (“brands
[ohcme*, aloben, Seyhant”, Tnktech”, “UsbrelLa"], 'storage":{"408","B6E",“1EGD, 208" “EAGH", “L3BGE", 256GH", "ATE", T8 “coloura
[oBlack? it Gala”, shiver”, irty”, Spacegrey” Red-, Piok i et L, st
Chacger, ST Uit shull, orders 1, raut
(ramer kL, St a1y 1 o

8 sertpe srevpsspnriestpe comrea ety
2| crtpt e Alatvendar b) IR AT ARSI < 5 >

cocrtat sre-" st main e ST 0N A T ML S SRR A" 5 15>

/sy
5| s

images/00049.jpeg
zure

+ Create aresource

Al services

[pashboard

Al resources

Resource groups
& App services
e on A
R s databases
& Azure Cosmos DB
B virtual machines
@ Load balancers
e

Virtual networks

@ Azure Active Directory

@ Monitor

@ advisor
@ security Center
© cost Management + Billing

& Hep+ support

Depio

phoneshop - Deployment options

ity log

rol (AM)

@ o

X Diagnose and solve problems

oEpLOMENT
Quickstert
Deployment credentials
Deployment siots
% Deployment options

. Continuous Delivery (Previes

SETTINGS

Application setti

Authentication / Authorization

@ Applcston Insights

& Mansged senvice i

& Backups

B Custom domins
S5L settings

Networking -

suns/20

v

e Disconnect

Change back to npr instal
Bitbucket

Active

105

8 Contigure Performance

stuartratcliffe88@hot...
STUARTRATCLIFFEBSHOTMAIL.

»

o
»
X

images/00040.jpeg
» stuartratcliffe88@hot...
Microsoft Azure O Search resources, servies, and docs B P &6 0 k| e

App > Web App

- createaresource Web App o x

Al services

* FAVORITES

[pashboard

Al resources

Resource groups

App Services
Function Apps

SQL databases

LA}

Azure Cosmos DB

Virtual machines

Load balancers

| K |

Storage accounts

Virtual networks

Azure Active Directory

Monitor

Advisor

Security Center

O e® » 0 &

Cost Management + Billng

Help + support

images/00042.jpeg
O Search resources, services, and do & © () [B @ staratdiffess@hot.. @
Microsoft Azure Search resources, services, and d x ®> & © 0O F sruasTRATCuFFEsBoTMAL .)
Home > Al resources > phoneshop
Create a resource phoneshop * X
p—
Al services z «| [Moopy DRestore B Eport © Setsemerfirewall @ Deiete K Connectuith
Server name
i Elastic database pool
Dashboard W Activiy

UK South

Al resources. & Tgs o
scription (

Pricing tier

[——— X Diagnose and solve problems o i
i -7573-4ad8-b660-ThaTefcfeicT 2018:05-19 21:13 UTC
App Senvices ickstart R
e B Query editor (preview) Resource .
QL databases sermivGs -
Configure .
Azure Cosmos DB &, o

B Geo-Replication
Virtual machines

% Connection strings
Load balancers. 3
[#) Sync to other databases

Storage accounts
Add Azure Search

Virtual networks DTU PERCENTAGE @
[S—— o
B Abie Doy
Database size
Monitor Automation script -
5MB
Advisor -
— o
Security Center @ Advanced Theeat Protection 02s 2GB
Gost Maregeinest + iling Ea Audiing & Throt Detect

@ Vuerabily Assessment

Help + support

Database features (6)

5 Data Discovery & Classicai. ~

images/00041.jpeg
Microsoft Azure

Create a resource

Al services

Dashboard
Al resources
Resource groups

App Services

Function Apps

SQL databases

Azure Cosmos DB
Virtual machines

Load balancers
Storage accounts
Virtual networks
Azure Active Directory
Monitor

Advisor

Security Center

Cost Management + Billng

Help + support

Home

All resources

items

NAME

earch resources

services,

and docs

Tvee

SQLserver
App Service plan
App Senvice

SQL databa

RESOURCE GROUP

LocaTion

UK South

UK South

UK South

UK South

stuartratcliffe88@hot...

STUARTRATCLIFFEBSHOTMAIL.

SUBSCRIPTION

Free T
Free Trial
Free T

Free Trial

o
»
X

»

images/00044.jpeg
Microsoft Azure

Create a resource

Al services

Dashboard

Al resources

Resource groups

App Services

Function Apps

QL databases

Azure Cosmos DB

Virtual machines

Load balancers.

Storage accounts

Virtual networks

Azure Active Directory

Monitor

Advisor

Security Center

Cost Management + Billing

Help + support

Home > App Services

@ rhoreshop

sop 4 rt @ Delete

ource group (¢

X Diagnose and solve problems

DELOYMENT

Quidstart
i Deployment siots
% Deployment options
b Continuous Delvery (Preview)
sermnes Hitp Sx »
= Applic
9 Authentication / Authorizati
°

HITP SERVER ERRORS @

0

Data Out *

& Get publish rofie

stuartratciiffe88@hot...
STUARTRATCLIFFESHOTMAIL.

02 Reset pubish profie

App Service plan/pricing tier

/deployment username
TP/deploy

Dataln *

DATAIN @

08

images/00043.jpeg
O Search resources, services, and d % O () [B suaratiffesd@hot.. @
Microsoft Azure resources and d x ®> &0 0E Ep——
Home > Al resources > phoneshop - Connectionsting
T .0’ phoneshop - Connection strings * X
=
Allservices »
ADONET
eien ADONET (0L authenticsion)

[pashboard -

tivity log

Server=icpiphoneshop database windows.net 1433:Intial Catalog=phoneshopP:

jour_usermame}Password={your_password;MultipleActiveResultSets=False:Encryp
Alimoncn ® e Timeoune30

t Security Info=False:User ID:
rueiTrustServerCertficate:

Connection

RS X Diagnose and solve problems L

Quick start

& App services

B Query it (revien)

Function Apps

R s databases serminGs
© Configure

& Azure Cosmos DB

® GeoReplication
B virtual machines

o
@ Load balancers
8 Sync to other databases

B storage accounts
Add Azure Se:

Virtual networks

@ o tepieay @ o
@ wonitor 2 Automation script
@ advisor "
secummy
@ Security Center @ Advanced Threat Protection
Cost Management + Billng B3 Ausiting & Threst Detection
et p @ Vunerabily Assessment

% Data Discovery & Clasificati.

images/00046.jpeg
Microsoft Azure) Search resources, services, and docs x @ > & @) |5 EEEEiEiii

o
N stunTRATCrFEsaHoTAL .)
Home > App Senvices > ph ” =
e 0 Phoneshop - Application setiings » X
Al services 5 é
Dashboard ity log
All resources Access. rol (IAM)
Resource groups # Togs
App Services X Diagnose and solve problems s .
Function Apps oELoMmENT Setting x
a ot Setting x

SQL databases Quickstart

Deployment cregentials
Azure Cosmos DB
i, Deployment siots

Virtual machines Connection strings

Deployment options
Load balancers
. Continuous Defvery (Previ

Storage accounts

SETTINGS
Virtual networks

m

Applicaton settings
‘Azure Active Directory Default documents

? Authentication / Authorization
Morit
fonter @ applcation Insights ithtm x
vy @ Managed service identity (Pr. e x
x
Security Center & Backups
x
Cost Management + Biling § Custom domains
x
Help + support O SSLsettings -
Networking - %

images/00045.jpeg
r re iy I f& startratciffes8@hot...
Microsoft Azure carch re x @> & & | pmrwsenols @Y
Home > App Snvices > proneshop - Agpication setings
e — g phoneshop - Applicton stings %
hop service

Al services

[pashboard B Actiitylog
All resources ntrol (AM)
Resource groups @ T
srens X Diagnose and solve problems =
Function Apps DEpLOYMENT
QL databases Qlickstart
Deployment credentials Connection strings
‘Azure Cosmos DB Y
i, Deployment siots Seriing *

Virtual machines

& Deployment options

Load balancers.

4 Continuous Delivery (Preview)
Storage accounts

SETTINGS
Virtual networks

= Application setting;
‘Azure Active Directory

T Authentication / Author
Monitor
o

Application In

ts

Advisor & Managed sevice identity (P.
‘Security Center S Backups

Cost Management + Billing Custom domains

Help + support

X X X X X X X X X

images/00048.jpeg
. stuartratcliffes8@hot... ()
Microsoft Azure O Search resources, services, and docs x®> %00 & e

> Deployment option

+ Create a resource Deployment option (=13
Setup depioyment option
Al services
* FavoRiTes
I8 Dashboard

Al resources

0 e
& App services
% Function Apps
& saL databases
& Azure Cosmos DB
B virtual machines
@ Load balancers
B Sitraae saants
Virtual networks
4 Azure Active Directory
@ Monitor
@ advisor
@ security Center
(o]

Cost Management + Billng

Help + support

images/00047.jpeg
1 stuartratciiffess@hot... (i
Microsoft Azure 22 P> 500§ e @@

tt option X Choose source B x

Create a resource Deployment

Al services

I8 Dashboard

Al resources

Resource groups

& App services
Function Apps

R s databases

& Azure Cosmos DB External Repository

B virtual machines

@ Load balancers

Storage accounts

Virtual networks

4 Azure Active Directory

@ Monitor

@ advisor

@ security Center

?) Cost Management + Billing

Help + support

images/00039.jpeg
Microsoft Azure

Create a resource

Al services

Dashboard

Al resources

Resource groups

App Services

Function Apps

SQL databases

Azure Cosmos DB

Virtual machines

Load balancers.

Storage accounts

Virtual networks

Azure Active Directory

Monitor

Advisor

Security Center

Cost Management + Billng

Help + support

op

ervices, and d

App Service plan > N

An App Service plan i the container for your app. The App Service plan settings w

determine the location, features, cost and computs
app.

Create new

ServicePlanc447d6d0-b2bd(S1) (New)
Central Us

es associated with your

New Plan

z

New App Service Plan

te 2 pian

stuartratcliffe88@hot..
STUARTRATCLIFFEBSHOTMAIL.

=}

o
»
X

images/00038.jpeg
stuartratcliffe88@hot
STUARTRATCLIFFEBSHOTMAIL.

Microsoft Azure

Create a resource x o x

Al services

An App Service plan s the container for your app. The App Service plan settings will &
determine the location, features, cost and compute resources associated with your

app.
Dashboard * Subscription
Free Trial

] Create new
Al resources

Create new

Resource groups. (ServicePlancd47d6d0-b2bd(S1) (New)
phoneshop Central US New Plan
App Services
Function Apps
* App Service plar

1 databases ServicePlancd47d6d0-b2bd(Cent.

¢ Azure Cosmos DB
Application Insights @ | O

Virtual machines

Load balancers.
Storage accounts

Virtual networks

Azure Active Directory
Monitor

Advisor

Security Center

Cost Management + Biling

] Pin to dashboard

Help + support

images/00071.jpeg
PhoneShop rk Build and Releas

Builds Releases Library Task Groups Deployment Groups

Select a Template 0 Search

All definitions > ¥ New Release Definition O staitwit ah ! i Bty pipting

Pipeline Tasks Varisbles Retention ~ Options History
Featured
@ Azure App Service Deployment
Artifacts | <+ Add Eniiranments| adg> Deploy your application to Azure App Services. Choose

from Web App On Windows, Linux, Containers, Function
Apps or Weblobs

@ Deploy Node.js App to Azure App Service
Deploy your Nodejs application to Azure Web App

| % | Environment1 ()
L& Je template @ Deploy PHP app to Azure App Service and
Azure MySQL

Deploy your PHP Application to Azure Web App and
database to Azure Database for MySQL

® ié’zs;::ﬂs “ 1S Website and SQL Database Deployment

Deployment Group: Deploy ASPNet, ASPNet core web
applications to IS Website and SQL Database

&, #2ure Cloud Service Deployment
Deploy an Azure Cloud Service

Others

@ Azure App Service Deployment with
Continuous Monitoring

Deploy your Web applications to Azure App Service and
enable continuous monitoring using application insights.

@ Azure App Service Deployment with Slot

Deploy your Azure Web App to a staging slot and swap
Slots to deploy to production.

@ Azure App Service Deployment with Test and
Performance Test

Deploy your Azure Web App and run test or cloud based
web performance test.

o Azure Service Fabric Compose Deployment

images/00070.jpeg
Builds.

PhoneShop

Releases

Library

and Releast

Task Groups Deployment Groups

Release Management helps you automate the deployment and testing of
your software in multiple environments. You can either fully automate the
delivery of your software all the way to production, or set up semi-automated
processes with approvals and on-demand deployments.

Start by creating a new release definition.

images/00073.jpeg
PhoneShop shboare Code Work Build and Release

Builds Releases Library Task Groups Deployment Groups Add artifact

All definitions > ¥ New Release Definition
Source type

Pipeline Tasks Variables Retention ~ Options History

4 1Y) x

+ Build ait Gitrub Team Found...

Artifacts | + Add Environments | + Add
3 more artifact types v/

Project* ©

PhoneShop
| Production

Add artifact R | 1phase, 0task
Source (Build definition) * @

PhoneShop-ASPNET Core-Cl

Schedule
O ot set

Default version* ®

Latest

Source alias @

_PhoneShop-ASPNET Core-Cl

O s S e e e T s e e
The lnest sucesstl buid of PhaneShop-ASP.NET Core.Cl pubiahed th folowing aracts:
Hex

Add

images/00072.jpeg
PhoneShop and Release

Builds Releases Library Task Groups Deployment Groups

All definitions > ¥ New Release Definition

Save - Release v = View releases -+
Pipeline Tasks - Variables Retention Options History
X
1 1 Environment [Delete & Move
Artifacts | - Add Environments | + Add Production
& properties A
Neme and owners of the environment
Environment name
+ Add artifact % Production @
| & | 1phase, 0task Production|
Environment owner
@ stuart Ratciitie x
Schedule
O notset

images/00075.jpeg
PhoneShop

Builds Releases Library Task Groups Deployment Groups

All definitions > ¥ New Release Definition

Save View releases -+

Pipeline Tasks Variables Retention Options History

Production
e s
i Addtasks | O Refresh s
Agent phase &
& Runonagent All Build Utility Test Package Deploy Tool Marketplace

. NET Core

Build, test, package, or publish a dotnet application, or run
custom dotnet command. For package commands, supports
NuGetorg and authenticated feeds like Package Management and
MyGet,

.NET Core Tool Installer

Acquires a specific version of .NET Core from internet or the tools
cache and adds it to the PATH. Use this task to change the version
of NET Core used in subsequent tasks.

Android Signing
Sign snd slign Ancroid APK s

Ant
Build with Apache Ant

App Center Distribute
Distribute app builds to testers and users via App Center

e 2 3 R

App Center Test
Test app packages with Visual Studio App Center,

&

Archive Files

Archive files using compression formats such as 7z, rar, targz, and
2ip.

Azure App Service Deploy

@ =

images/00074.jpeg
PhoneShop and Release work

Builds Releases Library Task Groups Deployment Groups

All definitions > ¥ New Release Definition

Save Release = View releases

Pipeline Tasks Variables Retention Options History

Production
Environment name.
Deployment process
|| Production
Agent phase +

& Runon agent

images/00077.jpeg
PhoneShop Dashboards Code
Builds Releases Library ~Task Groups Deployment Groups
All definitions > % New Release Definition
Pipeline (O Tasks v Variables Retention Options History
Production
Deployment process
Agent phase i

& Run on agent

Azure App Service Deploy:

© Some settings need attention

Save Release

View releases

X Remove

Azure App Service Deploy ®

P Version | 3 v

Display name *

Azure App Service Deploy:

Azure subscription* @ | Manage =

@ This setting 5 reuied
Apptype* @
Web App v

App Service name* @

(R e——
[peploy tosiet @

Virtual application ©

Package or folder *

§(System.DefaultWorkingDirectory)/**/* zip

File Transforms & Variable Substitution Options v
Additional Deployment Options v
Post Deployment Action »

Application and Configuration Settings

images/00076.jpeg
honeShop.

Builds Releases Library Task Groups Deployment Groups
All definitions > ¥ New Release Definition B Save + Release View releases

Pipeline (D Tasks © Variables Retention Options History

© Some settings need sttention

Production ‘
Doty
i Addtasks | O Refresh P search
Agent phase B
& Runon agent Al Build Utiity Test Package Deploy Tool Marketplace
Azure App Service Deploy: ‘ 2

App Center Distribute
Distribute app builds to testers and users via App Center

Azure App Service Deploy

Update Azure WebApp Services On Windows, Web App On Linux
with built-in images or docker containers, ASPNET, NET Core, PHE,
Python or Node based Web applications, Function Apps, Mobile
Apps, Api applications, Web Jobs using Web Deploy / Kudu REST
APls

Azure App Service Manage

Start, Stop, Restart, Slot swap, Instal site extensions or Enable
Continuous Monitoring for an Azure App Service

Azure CLI

Run a Shell or Batch script with Azure CLI commands against an
azure subscription

Azure Cloud Service Deployment
Deploy an Azure Cloud Serice

Azure Database for Mysgl Deployment

This is an early preview. Run your scripts and make changes to your
Azure DB for Mysql.

Azure File Copy
Copy files to Azure blob or VM(s)

Azure Kev Vault -

images/00079.jpeg
[

Builds Releases Library

¢

SR

Search release definitions.
Release Definitions.
Al release definitions

Phoneshop CD

Dashboards ~ Code Work

Task groups Deployment groups

PhoneShop CD / Release-5

Environments Artifacts Variables

» Summary

F Save Abandon

U | ¥ Deploy~

Details

No descrption
Manually created by Start Ratclffe 33 minutes ago

Environments

Actions

Enviro...

Deployment status

Issues

Noissues reported in ths release.

PhoneShop-ASPNET Core-Cl / 20180710.1 (Build)

General Commits Workitems Tests Logs History
© Relesse (pipeline view) [Send Email
Work items.

No associated work items found.

Tags
B master
Add..
Triggered Compl... Tests
33minutesago 31 min.. Notests

images/00078.jpeg
Builds Releases Library Task Groups Deployment Groups

All definitions > ¥ New Release Definition

Pipeline Tasks Variables Retention ~ Options History

Production
Deployment process

Agent phase
8 Runon agent

Azure App Service Deploy: phoneshop
2 Acure Agp Senice Deploy

Save View releases

Azure App Service Deploy ® X Remove
| Poversion| 32 v
| Display name *
Azure App Service Deploy: phoneshop
Azure subscription* @ | Manage &
Pay-As-You-Go (3712642f-7573-4ad8-b6b9-Ta7BfcfcicT) > ‘ O
Apptype* @
Web App v
App Service name* @
| phoneshop v &

[] peploy tosiot @

Virtual application ©

Package or folder * ®

§(System.DefaultWorkingDirectory)/**/* zip

File Transforms & Variable Substitution Options v
Additional Deployment Options v
Post Deployment Action »/

Application and Configuration Settings

images/00060.jpeg
QJ sturatdiffe Search work items in this collection

Welcome back, Stuart Ratcliffe

Projects My favorites My workitems My pull requests | @

My work items Filter your work items v

Assigned tome Following Mentioned My activity

Your work, all in one place
Quickly take action on work items assigned to you.

Search for work.

images/00062.jpeg
PhoneShop

Briefly describe your project...

Add tags

Get started with your new project!

A Clone to your computer

SSH | https://sturatcliffe.visualstudio.com/PhoneShop/_git/PhoneShop B | OR
Generate Git credentials

& Clone in Visual Studio |

‘aving problems authenticating in Git? Be sure to get the latest version of Git for Windows or our plugins for Intell, Eciipse, Android Studio or

indows command line.

¥ or push an existing repository from command line
' orimport a repository
¥ orinitialize with a README or gitignore

v or build code from an external repository

Members (1)

Activity
Code

No code yet

& Release

No builds yet

Work

No workitems yet

7Days v

Add Code

Set up Build

Add Work

images/00061.jpeg
QJ sturatdiffe

Projects My favorites My work iter

& <« 8

Create new project

Projects contain your source code, work items, automated builds and more.

Project name *

Description

Version control

Git M

Work item process

Agile v e

Create Cancel

images/00064.jpeg
PhoneShop and Releast

Builds Releases Library Task Groups Deployment Groups

Select a source

0 o = a o

% VSTS Git GitHub GitHub Enterprise Subversion | Bitbucket® Cloud | External Git

' Authorized using connection: Bitbucket connection 1 Change v

Repository *

stuartratcliffe/vuejs-aspnetcore-packt

Select your repository
Default branch for manual and scheduled builds *

Tell us where your sources are. master ~
You can customize how to get these sources from the repository later:

Continue

images/00063.jpeg
PhoneShop

Builds Releases Library Task Groups Deployment Groups

(.

Select your repository

Tl us where your sources are.
You can customize how to get these sources from the repository later.

and Release

Select a source

e Y 3] =

VSTS Git GitHub GitHub Enterprise Subversion

Team project

£1 PhoneShop v

Repository

& PhoneShop v

Default branch for manual and scheduled builds

3 master ~

Continue

Bitbucket® Cloud

©

External Git

images/00066.jpeg
PhoneShop Dashboards ~ Code Work

Builds Releases Library Task Groups Deployment Groups

& - > PhoneShop-ASPNET Core-Cl

Tasks Variables Triggers Options Retention History Save & queue =
Process
Buld process
Name *
Get sources
O stuartratciffe/vuei-aspreteore-packt 3 master PhoneShop-ASPNET Core-CI
Phaset & Agentqueue* @ | Pool information | Manage &
& Run on agent
Hosted V52017 v| O
Restore
NET Core Parameters @ | @ Unlinkall
Build Project(s) to restore and build &
NET Core ———
Test
NET Core
Project(s) to test &
Publish **/*Tests/*.csproj
NET Core

Publish Artifact
Pubish Buld Artiacts

images/00065.jpeg
Builds

PhoneShop

Releases Library Task Groups Deployment Groups

Choose a template

Choose a template that builds your kind of 2pp.
Don't worry i it not an exact match:
You can add and customize the tasks later.

and Release Tes

Select a template

Orstartwith an g Empty pip:

Others

ASPNET Core
Build and test an ASPNET Core web application.

Dql ASPNET Core (.NET Framework)

Build an ASPNET Core web application that targets the full
Framework.

NET

O ASP.NET Core

images/00068.jpeg
[«] PhoneShop \ Dashboards Code Work BuildandRelease Test Wiki | @& Search work items in this project PNV a g o

Size Chunks Chunik Names
322 ks 0 [emitted] main
site.css 6.15 kB © [enitted] main
EComerce -> D:\a\I\a\s\

Task Publish Build Artifacts
Description : Publish build artifacts to Visual Studio Team Services/TFS or a file share
Version 1.135.0

Author : Microsoft Corporation

Help [More Information] (https://go.microsoft. con/Fulink/3LinkID=768390)

Uploading 1 Files

File upload succeed.

Upload 'D:\a\1\a* to file container
Associated artifact 2 with build 2

images/00067.jpeg
PhoneShop

Builds Releases Library Task Groups

=+ > PhoneShop-ASPNET Core-Cl

Tasks Variables Triggers Options Retention
Process

Build process

Get sources

U stuartretciffe/vueis-ospretcore-packt § master

Phase 1
B Runonagent

Restore
NET Core

npm install
o

npm run build
o

Build
NET Core

Test
NET Core

Publish
NET Core

Publish Artifact
Pubish Buld Artacts

Deployment Groups

History

and Release

Save & queue

Name *

PhoneShop-ASPNET Core-Cl

Agent queue* @ | Pool information | Manage

Hosted V52017

Parameters @ | @ Unlinkall

Project(s) to restore and build &

7 csproj

Project(s) to test &

*/Tests/csproj

images/00069.jpeg
PhoneShop and Release

Builds Releases Library Task Groups Deployment Groups

=+ > PhoneShop-ASPNET Core-Cl

Tasks Variables Triggers Options Retention History s Summary > Queve --- Z

Continuous integration
J ¥ stuartratcliffe/vuejs-aspnetcore-packt

u stuartratcliffe/vuejs-aspnetcore-packt
et [] Enable continuous integration
Pull request validation

stuartratcliffe/vuejs-aspnetcore-packt
Osaoled

Scheduled + Add

No bulls scheduled

Build completion + Add

Bufld when another buid completes

images/00080.jpeg
PhoneShop Dashboards Code

Builds Releases Library Task Groups Deployment Groups

View releases -+

All definitions > ¥ PhoneShop CD [Save + Release

Pipeline Tasks Variables Retention Options History

X
Continuous deployment trigger
Artifacts | + Add Environments | - Add Build: _PhoneShop-ASPNET Core-Cl
(@) Disabled
. ® ,

_Phoneshop-

i % ‘ Production
ASPNET Core-C. R

1 phase, 1 task

Schedule
L O] notset

images/00082.jpeg
ASP.NET Core 2
and Angular 5

images/00081.jpeg

cover.jpeg
ASP.NET
Core2
and Vue.js

Full Stack Web Development with Vue, Vuex, and ASP.NET Core 2.0

Packh k

www.packt.com

By Stuart Ratcliffe

images/00002.jpeg

images/00001.jpeg
Packh

images/00004.jpeg
Mapt

images/00003.jpeg

images/00006.gif
‘“T‘,,/,uh,ﬁ,‘;{,t;ﬁzu s 44"'3‘45?,‘7»‘45:‘:}{,’,’,‘W"“‘,7?;%:’5',?:»,7;7"""‘“"“:"”"Wt."r'4',1",1.:,‘7"4'y;‘ﬁ’:‘,’:’r‘:{,‘,’«,r,j"::?;;’; ,":‘r”f»””f!‘.f:"‘f'%‘é’{r&;ﬁ?’,fff.‘.'::::i""""‘r'r'wx,rw/w:r;’;:,;wuf‘u
=i | e ,u::m»’:z,,;:s: PEdien.
e L ,,,,,,m,;;‘,;w,‘,",u,,‘,,j;,‘m 0 ,‘W,A,,!f‘,s/;m <4!u:,<4(»I.mmnl»lmﬁ”m:’wJ‘!L'Ili‘,’m'”A«’n4‘11:ﬂ:,‘:l‘lll‘r4»{;41&L/,‘yunu 0

T T :,'&r»:;m‘,l,!,:, e T, —

t.,,‘,N,‘,”V‘:‘,Jm,’m,:‘,‘“, e L ‘,:,,,,,4,,‘/,,‘,,,“,,‘,,mrmf B S

‘ . Sorting and displa) ; o
sl b el

e . i
. w |

s

..'
i 'rwmw},{,4,»,1»"»;:‘4;"" M,«»,,umzr,‘w,,, e e ..
. ",‘,",'»E‘f"",’Er‘”f»"‘/f”'5':,71r,:7r"'<"<f§;’5»"<‘}lf’/l"':,ﬂi:i,muu@,» x
”' .
<,».,,,,,;i,n - . »'::th’!j[’;in s e

lisesls ‘,‘A,'/ o ”:’a::,;'::,;‘,f,tzwi'I'v,‘é&z,1:,;;,‘}::,:1,;
B . »::W»w»«‘f»’f'f’r;? . "'71:47‘:4[:’2';‘:‘:":‘:'*3;'3;‘"',‘f"“‘"'/"“ww:»‘x;:a,,,4;;4_,,;%;‘:2;,&:,:,‘::?,,” n

P -

‘.u,;,‘;,:u,,w,,‘,»uww:r o o
| 4 J!" J"ﬁ}”,{‘!o‘zu‘,;’,‘;‘4,’15’4,,4,’ ::,,‘g;::q;;,,;@;q.,,;,,‘,,w,‘g,q,‘,‘smrrw,’:,;::f."jj'w . popular

t . »r'<e,:A,g»;::‘,»,;;;;:,;;g;q}gj{‘;,;.,,,::N’,‘,,“'w; ;z:,;,»’i‘;;;zm .
i [»,,;m,w,;;;w . 0;; “,’, . :‘ Uy ~,,<,~»,,,,’;‘;,1:; . W‘W

nﬁw,»,;;z:,:w . p w,,w a

| A wmwr,w%"»‘frff"’i"ﬁ,Wm”

L

t 1 4 ,"4
uau‘“ 1!/,“‘ 0 A\H/l[”””’”
o - .

. /,,,,:;;,,nr,;:::w»w,,u:t‘,;Marr;irufwaxx,::!ca» “ wwu»w/mruv'ww, "‘""’9""‘"""‘}”*’"”""””"
. yw11,(;’,};4[,’;’;;,;%",1:45;‘,'r~,,< . o L:,"uu(/umm
. . P

u,,‘,,//;,‘;,,,,,ww,.mnq’;, «“",,,:‘ 'rh"""uLm'reruw'»"‘f!'»“'l,"‘l”’I «f,y,r;;,;;, e
. z . New
Iu““/,,/'u}‘;':,i"f{"L'EV.‘a'i;;"w:::‘v::‘;g:::!{«i‘r;!w'r"é"‘wr"‘f»’77?:‘11‘?:?41%*'"‘"‘“’“‘"‘""""ﬂ[i"""m a&":“‘%fﬁk’w . . ,"’,'z/(.:/n S
. ~w.:,'rrfq:k;:'zztr‘!f"'?f‘%’:‘z:j',,;f,a::%l.','vi'“ﬁﬁ»:;:a:w’w» o ";:;;;L:'/‘“‘/ L “U 3‘4’»‘,‘”’“‘,"’:‘?F:{"'"“”‘"’“/."r"Jrl,wr

e

s B
u/,w,,’u e r,w,4::4»’,,.;"”17'«Wr/w ,':‘,a'ze:u,w[rl‘,‘w»“;;[;;,;:{n:j‘:"j’,t,,W;»‘
N ,,,q,,,,‘,m,‘,‘,w,w,»;‘,»;w,;::‘n‘

‘,mu‘;,“uwv I’Ww.w",,// .

images/00005.gif
Header

Sidebar Main Content Sidebar

Footer

images/00008.jpeg
D

EXTENSIONS: MARKE... é:

| vetur|

VVetur 0415
Vue tooling for VS Code
Pine Wu

Install

Install

images/00007.gif
Request

next()

next

Response

images/00009.jpeg
@ EXTENSIONS: MARKE... 25 == = Extension: C# %

ci#

C# ms-vscode.csharp .

Microsoft | & 4,412,733
C# for Visual Studio Code (pov

p C# FixFormat 0.0.52
Fix format of usings / indents /...

? Leopotam Install

This extension is recommended

C# Extensions 1.3.0

] :

Pli C# IDE Extensions for VSCode Details Contributions Changelog Dependencic
jchannon)
eppz! (C# theme for Un.. 1.241
Carefully designed colors with .. C# for Visual Studio Code (powered by
eppz! Install
C# XML Documentatio... 00.17 Master Release
Generate C# XML documentat... = .
Keisuke Kato B - L -
St Sanpen Wel he C# e Vi St @ T
C# Snippets for Visual Studio C.. elcome to the C# extension for Visual Studio Code! This |
J Serra
sl e Lightweight development tools for .NET Core.
C# 1L Viewer 001 o Great C# editing support, including Syntax Highligh
A C# IL Viewer for Visual Studi... e Debuos 1t for NET G CoreCLR). NOTE:
o nh o an) ebugging support for . ore (CoreCLR). 3

¢ Support for project.json and csproj projects on Winc

C# to Typescript code g... 0.1.2 i et el
C# to Typescript code generat... The C# extension is powered by OmniSharp.
chiadem

{a’ ExtBundles: C# 1.1.0 Get Started Writing C# in VS Code

An extension pack containing ...

