
www.EBooksWorld.ir

ASP.NET Core 2 and Angular 5

Full-stack web development with .NET Core and Angular

Valerio De Sanctis

BIRMINGHAM - MUMBAI

www.EBooksWorld.ir

ASP.NET Core 2 and Angular 5
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2017

Production reference: 1221117

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-360-0

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

Credits

Author
Valerio De Sanctis

Copy Editor
Shaila Kusanale

Reviewers
Ramchandra Vellanki
Juergen Gutsch

Project Coordinator
Devanshi Doshi

Commissioning Editor
Ashwin Nair

Proofreader
Safis Editing

Acquisition Editor
Reshma Raman

Indexer
Rekha Nair

Content Development Editor
Onkar Wani

Graphics
Jason Monteiro

Technical Editor
Akhil Nair

Production Coordinator
Aparna Bhagat

www.EBooksWorld.ir

About the Author
Valerio De Sanctis is a skilled IT professional with over 12 years of experience in lead
programming, web-based development, and project management using ASP.NET, PHP,
and Java. He previously held senior positions at a range of financial and insurance
companies, most recently serving as Chief Technology Officer and Chief Operating Officer
at a leading after-sales and IT service provider for many top-tier life and non-life insurance
groups.

In the course of his career, Valerio De Sanctis helped many private organizations to
implement and maintain .NET-based solutions, working side-by-side with many IT
industry experts and leading several frontend, backend, and UX development teams. He
designed the architecture and actively oversaw the development of a wide number of
corporate-level web application projects for high-profile clients, customers, and partners,
including London Stock Exchange Group, Zurich Insurance Group, Allianz, Generali,
Harmonie Mutuelle, AIG, QBE, Marsh & McLennan, Lloyd's, Honda Motor, FCA Group,
Luxottica, ANSA, Saipem, ENI, Enel, Terna, Banzai Media, Virgilio.it, Repubblica.it, and
Corriere.it.

He is an active member of the Stack Exchange Network, providing advice and tips for .NET,
JavaScript, HTML5, and other web-related topics on the StackOverflow, ServerFault, and
SuperUser communities. Most of his projects and code samples are available under open
source licenses on GitHub, BitBucket, NPM, CocoaPods, JQuery Plugin Registry, and
WordPress Plugin Repository.

Starting from 2015, he also runs an IT-oriented, web-focused blog at www.ryadel.com
featuring news, reviews, code samples and guides to help developers and enthusiasts
worldwide. Between 2016 and 2017, he wrote two books on web development: ASP.NET
Core and Angular 2, and ASP.NET Core: Cloud-ready, Enterprise Web Application Development,
with over 5,000 copies sold worldwide.

I would like to thank those who supported me in writing this book: my beloved and
beautiful wife, Carla, for her awesome encouragement and invaluable support; my
children, Viola and Daniele; my parents and my sister for always being there in times of
need; and my IT friends, colleagues, and partners working at Ryadel.com, Kapusons,
Teleborsa and Assirecre Group for their enduring friendship. A special thanks to Onkar,
Reshma, and all Packt Publishing folks who worked hard to bring this book to life. Last but
not least, I would like to thank you, the reader, for picking up this book. I really hope you
will enjoy it!

www.EBooksWorld.ir

http://www.ryadel.com

About the Reviewers
Ramchandra Vellanki is a passionate programmer. He has 13 years of programming
experience, has worked in different roles, and has experience in building and maintaining
large-scale products/applications. He started his career with IBM iSeries, and then worked
on C++, MFC, .NET, and JavaScript. Currently, he is working on .NET and JavaScript
technologies. He enjoys exploring and learning new technologies.

I would like to thank my parents (Saroja and Ramaiah), wife (Sirisha) and kids (Abhi and
Ani) for their love, understanding, and constant support. I also would like to thank all my
friends and relatives for their continuous encouragement and support throughout my
career and life.

Juergen Gutsch is a .NET-addicted web developer. He has been working with .NET and
ASP.NET since the early versions in 2002. Before that, he wrote server-side web applications
using classic ASP. Juergen is also an active person in the German speaking .NET developer
community. He is leading the .NET user group in Basel (Switzerland) and the INETA
Germany Association. Due to that, Microsoft awarded him to be a Microsoft Most Valuable
Professional in the Visual Studio and Development Technologies category several times.

Jurgen writes for the dotnetpro magazine, one of the most popular German-speaking
developer magazines, and he also publishes articles in English on his blog at https:/ /asp.
net- hacker. rocks. The best way to contact him and to stay in touch with him is using
Twitter--https:// twitter. com/ sharpcms.

He is working as a developer, consultant, and trainer for the digital agency
YooApplications Inc. (http:/ /yooapps. com), located in Basel, Switzerland. YooApplications
serves national as well as international clients and specializes in creating custom digital
solution for distinct business needs.

www.EBooksWorld.ir

https://asp.net-hacker.rocks
https://asp.net-hacker.rocks
https://asp.net-hacker.rocks
https://asp.net-hacker.rocks
https://asp.net-hacker.rocks
https://asp.net-hacker.rocks
https://asp.net-hacker.rocks
https://asp.net-hacker.rocks
https://asp.net-hacker.rocks
https://asp.net-hacker.rocks
https://twitter.com/sharpcms
https://twitter.com/sharpcms
https://twitter.com/sharpcms
https://twitter.com/sharpcms
https://twitter.com/sharpcms
https://twitter.com/sharpcms
https://twitter.com/sharpcms
https://twitter.com/sharpcms
https://twitter.com/sharpcms
http://yooapps.com
http://yooapps.com
http://yooapps.com
http://yooapps.com
http://yooapps.com
http://yooapps.com
http://yooapps.com

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub. com/ mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.EBooksWorld.ir

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1788293606.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

www.EBooksWorld.ir

https://www.amazon.com/dp/1788293606
https://www.amazon.com/dp/1787286576

Table of Contents
Preface 1

Chapter 1: Getting Ready 9

Two players, one goal 10
The ASP.NET core revolution 10
What's new in Angular? 11

A full-stack approach 12
Single-Page Application 13

Common features of a competitive SPA 13
Product Owner expectations 15

A sample Single-Page Application project 17
The vision 17

Not your usual "Hello World!" 18
Introducing TestMakerFree 18

Core features and requirements 19
Preparing the workspace 21

Disclaimer-Do (not) try this at home 21
The broken code myth 21
Stay hungry, stay foolish, yet be responsible as well 23
Versions and builds 23

Setting up the project 24
Alternative setup using the command line 28
Test run 29

Looking around 30
The configuration files 32

Program.cs 32
Startup.cs 34
The appsettings.json file 38
The package.json file 39

Upgrading (or downgrading) Angular 40
Upgrading (or downgrading) the other packages 41

The tsconfig.json file 43
The webpack configuration files 45

Updating the webpack.config.js file 47
Patching the webpack.config.vendor.js file 48
Why use a dynamic module bundler? 49
Refreshing the Webpack-generated files 49

The server-side code 50
Controllers/HomeController.cs 50

www.EBooksWorld.ir

Table of Contents

[ii]

Controllers/SampleDataController.cs 51
The /Views/ folder 52

The client-side code 53
The /ClientApp/app/ folder 54

Getting to work 56
Static file caching 56

A blast from the past 57
Back to the future 58
Testing it up 61

The strongly-typed approach(es) 62
Client app cleanup 63

Trimming down the component list 63
The AppModule class(es) 66
Updating the NavMenu 67

References 68
Suggested topics 69
Summary 69

Chapter 2: Backend with .NET Core 70

The data flow 71
The role of ViewModel 74

Our first ViewModel 74
QuizViewModel 75
QuizController 76

Adding more action methods 78
ByTitle() 79
Random() 79

Testing it up 80
Adding other controllers 81

QuestionViewModel 81
QuestionController 82
AnswerViewModel 84
AnswerController 85
ResultViewModel 86
ResultController 87

Understanding routes 89
Defining routing 89

Routing through the ages 89
Handling routes in .NET Core 91

Three choices to route them all 92
Adding more routes 93

The Dummy Data Provider 95
Dealing with single entries 96

www.EBooksWorld.ir

Table of Contents

[iii]

Suggested topics 100
Summary 100

Chapter 3: Frontend with Angular 101

Navigation pattern 102
Master/detail binding 103

The Quiz client-side interface 104
The QuizList component 105

The new Angular HttpClient 107
A match against the old standard 107
How to install it 108
How to use it 109
Dependency Injection 109
Get and subscribe 109

The onSelect() method 110
The template file 110
The Stylesheet file 112
Adding the component 112

The AppModule file(s) 112
The HomeComponent template 114

Testing it up 114
The QuizComponent class 115

Adding the Component files 115
Adding the component 117
Testing it up 118

Adding additional lists 119
Multiple components instances 120

Testing and debugging 123
The OnInit interface and lifecycle hooks 125
Implementing ngOnInit 126
Testing it up 129

Two-way data binding 129
Disabling two-way data binding 131

Client-side routing 132
PathLocationStrategy versus HashLocationStrategy 133
Refactoring our app 133
Registering a new Route 135

Upgrading the QuizComponent 136
Getting the ID parameter 136
Adding the HttpClient 138
Fetching the data 139

Updating the QuizListComponent 140
Master/Detail Routing test 141

Adding new components 142
AboutComponent 142

www.EBooksWorld.ir

Table of Contents

[iv]

LoginComponent 143
PageNotFoundComponent 143
Updating the AppModule 144

Full-Scale test 146
Suggested topics 150
Summary 150

Chapter 4: Data Model with Entity Framework Core 151

Getting ready 152
Installing Entity Framework Core 152
Data Modeling approaches 155

Model-First 155
Database-First 157
Code-First 158

Pros 159
Cons 159

Taking a choice 159
Creating Entities 159

ApplicationUser 160
Quiz 162
Question 164
Answer 165
Result 167

Defining relationships 168
The one-to-many EF Lazy-Load pattern 170

Setting up the DbContext 171
Database initialization strategies 173

Choosing the Database Engine 174
Updating the appsettings.json file 175
Creating the Database 175

Updating Startup.cs 176
Adding the Initial Migration 176

The "No executable found matching command dotnet-ef" error 178
Understanding Migrations 179

Implementing a Data Seed strategy 180
Creating a DbSeeder class 180
Adding the DbSeeder to Startup.cs 187
Seeding the Database 189

Updating the QuizController 190
Introducing Mapster 190

Installation 190
Basic usage 191

www.EBooksWorld.ir

Table of Contents

[v]

Updating the QuizController 192
Testing the Data Provider 195

Suggested topics 196
Summary 196

Chapter 5: Client-Server Interactions 198

Add, update, and delete quizzes 198
Updating QuizController 199
Adapting the client 203

Adding QuizEditComponent 203
Activating the Edit mode 208

Event handlers versus router links 209
Adding the Edit route 209

Implementing the Delete feature 210
A word on Observables 211

First client-server test 211
The client-server workflow 215

Questions, answers, and results 217
Server-side tasks 217

QuestionController 217
AnswerController 222
ResultController 226
BaseApiController 231

Implementing BaseApiController 232
Client-side tasks 233

Adding the interfaces 234
QuestionListComponent 234

Introducing ngOnChanges() 237
Why bother? 239
The template file 239
Adding the references 240

QuestionEditComponent 241
References and routes 244

AnswerListComponent 244
AnswerEditComponent 247

The template file 248
References and routes 249

ResultListComponent 249
Reference and routes 250

ResultEditComponent 252
Full-scale test 253
Suggested topics 259
Summary 260

Chapter 6: Style Sheets and UI Layout 261

www.EBooksWorld.ir

Table of Contents

[vi]

How bad is it, doc? 261
Introducing LESS 262

Style sheet languages 262
CSS 263

CSS code sample 263
What is LESS and why use it? 264

Variables 266
Import directives 266
Nested selectors 267
Mixins 268
Extend pseudo-class 270

LESS docs and support 271
SASS, Stylus, and other alternatives 271

Implementing LESS 272
Installing LESS compiler 273
Compiling LESS files with Webpack 275

DIY versus framework-based styling 276
Do-it-yourself approach 277

Pros 277
Cons 277

Framework-based approach 278
Pros 278
Cons 278

Conclusions 279
Working with Bootstrap 279

Changing the theme 280
Rebuild the Webpack vendor config file 281

Delete the /wwwroot/dist/ folder 281
Update the .csproj file 282
Create the update-webpack.bat file 282

Testing the new theme 284
Revising the UI structure 284

AppComponent 284
NavMenuComponent 286
QuizSearchComponent 288

Registering QuizSearchComponent 290
The logo SVG file 290
A quick test 291

Styling the components 292
CSS encapsulation 292

Native encapsulation using Shadow DOM 294
Disable encapsulation 296

HomeComponent 296
QuizListComponent 297

www.EBooksWorld.ir

Table of Contents

[vii]

Another UI test 302
QuizComponent 305

Testing it up 309
QuizEditComponent 310
Question, answer, and result components 312

Buttons and icons 313
Tables and DIVs 314
Forms and inputs 315

Full-scale layout test 316
Suggested topics 317
Summary 317

Chapter 7: Forms and Data Validation 319

Data validation 320
Forms in Angular 320

Template-Driven forms 321
The pros 322
The cons 322

Model-Driven/Reactive forms 323
Our first Reactive form 326

Adding ReactiveFormsModule 326
Updating QuizEditComponent 327
Adding validators 331

Adding shortcuts 334
Upgrading components 335

QuestionEditComponent 335
AnswerEditComponent 337
ResultEditComponent 340

Debugging and testing 343
A look at the Form Model 343

The pipe operator 344
Reacting to changes 345

Observing the Observable 345
Extending the activity log 349

Client-side debugging 350
Forms unit testing 351

Suggested topics 351
Summary 352

Chapter 8: Authentication and Authorization 353

To auth, or not to auth 354
Authentication 354

Third-party authentication 355
The rise and fall of OpenID 355
OpenID Connect 356

www.EBooksWorld.ir

Table of Contents

[viii]

Authorization 357
Third-party authorization 357

Proprietary versus third-party 358
Proprietary auth with .NET Core 360

Setting up the .NET Core Identity 360
Configuring the Identity service 360
Extending the ApplicationUser 362
Upgrading the DbContext 363
Revising the DbSeeder 363

A word on async tasks, awaits, and deadlocks 369
Updating the database 370

Adding the identity migration 370
Applying the migration 371

Option #1 - update 372
Option #2 - drop and recreate 372

Seeding the data 373
Authentication methods 374

Sessions 374
Tokens 376
Signatures 378
Two-factor 378
Conclusions 378

Implementing JWT authentication 379
Add the auth service to the .NET Core Startup class 380
Updating the AppSettings files 382
The TokenController 383

Upgrading the BaseApiController 383
Reflecting the upgrade on the affected controllers 385

Adding the TokenController 385
The TokenRequestViewModel 389
The TokenResponseViewModel 389
Testing with Postman 390

Angular login form 392
The TokenResponse interface 393
The AuthService class 393

Updating the AppModule 397
The new LoginComponent 398

First login test 403
Adding the token to the HTTP request header 407

The AuthInterceptor class 407
Adding the HttpInterceptor in the AppModule 408

Enforcing authorization 410
Adapting the client 411

www.EBooksWorld.ir

Table of Contents

[ix]

NavMenuComponent 411
QuizComponent 413

Shielding the server 414
Retrieving the current user ID 415

Client-server auth test 416
Suggested topics 417
Summary 418

Chapter 9: Advanced Topics 419

Token expiration and refresh tokens 419
What's a refresh token? 420
Server-side tasks 421

Adding the token entity 421
Upgrading the user entity 422
Upgrading ApplicationDbContext 423
Applying the EF core migration 424

Implementing the refresh token 424
Upgrading TokenResponseViewModel 424
Upgrading TokenRequestViewModel 424
Upgrading TokenController 425

Client-side tasks 429
Updating the TokenResponse interface 430
Upgrading AuthService 430
Adding AuthResponseInterceptor 432

Add the AuthResponseInterceptor in the AppModule 435
Testing it up 435

New user registration 436
Server-side tasks 436

UserController 436
UserViewModel 438

Client-side tasks 439
The user interface 439
RegisterComponent 440

Custom validator 442
Template and style sheet files 443

AppModule 443
LoginComponent 444
NavMenu 444

Testing it up 445
Third-party authentication 447

OAuth2 authorization flow 447
Implicit flow versus explicit flow 448

Implicit flow pros and cons 449
Explicit flow pros and cons 450

Conclusions 450

www.EBooksWorld.ir

Table of Contents

[x]

Logging in with Facebook 450
Creating the Facebook app 451

Implicit flow 454
Updating TokenController 455

Adding the GenerateRandomPassword() method 458
Adding LoginFacebookComponent 460

Understanding zones 464
Adding the template file 465
Updating AppModule 466
Linking LoginFacebookComponent 466

Testing it up 467
Explicit flow 467

Installing the Authentication.Facebook package 468
Setting up the Facebook Authentication service 468
Updating the appsettings.json file 469
Upgrading TokenController 470

The ExternalLogin method 470
Adding SignInManager 471
The ExternalLoginCallback method 472

The LoginExternalProvider component 476
Updating AppModule 479
Linking LoginFacebookComponent 479
Testing it up 480

Suggested topics 480
Summary 480

Chapter 10: Finalization and Deployment 482

Switching to SQL Server 482
Installing SQL Server 2017 Express 483
Installing SQL Server Management Studio 484

Configuring the database 485
Changing the authentication mode 486
Adding the TestMakerFree database 486
Adding the TestMakerFree login 486
Mapping the login to the database 487

Adding a SQL Server connection string 489
Working with the Connection Strings 489

Adding production URL to External Providers 490
Updating the launchSettings.json file 491

Publishing our native web application 492
Creating a Publish profile 492

FTP Publish Profile 494
Folder Publish Profile 495

Publishing our web app 496
Configuring the web server and IIS 497

www.EBooksWorld.ir

Table of Contents

[xi]

Installing the ASP.NET Core module for IIS 497
Adding the website 498
Configuring the Application Pool 500

Firing up the engine 501
Troubleshooting 503

Browser output message 503
The Web.Config file 505

Event Viewer 508
ASP.NET Core Module logging 508
The Kestrel test 509

Kestrel Test from Visual Studio 510
Disable server-side rendering 511

Suggested topics 511
Summary 512

Index 513

www.EBooksWorld.ir

Preface
It's only been a year since I wrote ASP.NET Core and Angular 2, but it definitely feels a lot
more, at least from a web developer's perspective. Modern web technologies are still
improving at lightning-fast speed, with an increasing, perceptible, and measurable interest
being in the client-side aspects of the game. Angular, React, and VueJS collected no less
than 150,000 StackOverflow questions in the latest 18 months, which is more than 250 per
day--and the trend is still growing.

That's to be expected, since most of the major conceptual changes that occurred between
2015 and 2017 have been hitting the clients way more than the servers; we switched from a
reactive approach of doing stuff--that led us to build responsive, resilient, elastic, and
message-driven Single-Page Apps (SPAs)--to a progressive way of seeing things--which
materialized into Progressive Web Apps (PWAs). The change of perspective is slight, yet
prominent; far from being a different paradigm, what we've seen was nothing less than the
natural and inevitable evolution of the same original concepts.

Compared to the SPA revolution that took place in 2015-2016, the rise of Progressive Web
Apps is not a game-breaking event; we can say that PWAs inherit all the major concepts that
were already part of the Reactive Manifesto and bring them further on with brand new
features--such as Service Workers--that would not have been possible without some
relevant client-side accomplishments such as HTML5, modern browsers, and ECMAScript
6. PWAs are a much expected improvement in the present that also emphasizes its
increasing distance from the past. At the same time, PWAs are not meant to be the future,
not because they won't become a standard--they definitely will--but because they will also
improve and, eventually, collapse into something else. This is how the client side of the moon
always worked and--hopefully--always will.

www.EBooksWorld.ir

Preface

[2]

What happened to the other side, then? We can't possibly say that 2017 wasn't an intense
year for server-side technologies; Node.js is still dominating the scene, with more than 8
million confirmed instances online at the moment and trustable surveys telling us that three
developers out of four will deal with it even more than they did. As well as the raw and
naked usage, there is also a crowded galaxy of modern web frameworks based on Node,
boosting its popularity even more, such as Hapi, Express, Restify, Koa, Sails, and Adonis,
just to mention some of them. Django continues to focus on stability, with the 1.11 LTS
bringing a lot of minor and major fixes; the next major release, expected for December, will
also bring some neat improvements such as simplified URL routing syntax, window
expressions, and improved Phyton 3.x support. The whole PHP ecosystem, which seemed
to be slowly but steadily doomed to lose ground, regained some breath thanks to the great
performance achievements reached by PHP 7.1 (in late 2016) and the huge number of
available frameworks--Symfony, Laravel, Zend, Yii, Expressive, Silex, Slim, and more--each
of which is best suited for a distinctive set of patterns, use cases, and scenarios. Last but
definitely not least, comes ASP.NET; the .NET Core 2.0 release features some major
improvements that make it easier to use and also more capable as a platform: major
performance boosts in both framework and runtime, six new supported platforms--
including Debian, SUSE, and macOS--and even ARM32-native builds for running apps on
Raspberry Pi.

If we try to connect all these dots, we can easily see how most of the innovative,
experimental, and rule-changing aspects of web development are nowadays skewed
toward the client side, while the server-side race is more focused on performance and
stability. Nonetheless, both sides of the coin share a strong common ground built upon the
concepts of readability, maintainability, and overall simplicity of the source code.

Back in 2016, among all those different and yet kindred environments, we chose to focus on
two of them: ASP.NET Core to cover the server-side aspects, and Angular to deal with the
client side. Apart from the technical reasons, we also did this because these two frameworks
had something in common that we did like: both of them were a reboot of a massively
popular previous installment that played a leading role in their respective field. That was a
bold, revolutionary move that we liked a lot. Should we do the same in 2017 as well? Are
ASP.NET Core 2 and Angular 5 still a viable choices to deal with Progressive Web Apps,
lightning-speed performance, and code simplicity?

In short, the answer is yes, and the book you're about to read will do its very best to prove
it.

www.EBooksWorld.ir

Preface

[3]

What this book covers
Chapter 1, Getting Ready, introduces the ASP.NET Core and Angular frameworks,
explaining how they can effectively be used to build a feature-rich, modern web
application. It then enumerates the core aspects of a common SPA project, which will be
addressed throughout the following chapters. The last part covers the required steps for
setting up a .NET Core web application project, along with its required packages and
components, up to a buildable and running app skeleton.

Chapter 2, Backend with .NET Core, explains how we can build our very own set of APIs to
exchange JSON data between a server-side ASP.NET Core Controller and a client-side
Angular Component. The reader will learn how to handle the HTTP request-response cycle
and also how to configure the improved routing logic built upon the .NET Core pipeline.

Chapter 3, Frontend with Angular, focuses on the client-side aspects; the reader will learn
how to fetch JSON objects with Angular and show the retrieved data onscreen using the
Angular Template Syntax. They will also understand how to deal with client-side routing in
Angular and how to implement a viable routing pattern using the PathLocationStrategy
approach.

Chapter 4, Data Model with Entity Framework Core, guides the reader through implementing
a proper, DBMS-based Data Model using Entity Framework (EF) Core. They will learn how
to install and properly configure the required EF Core packages, then use them to build a
lightweight set of entities and persist them into a database structure using the Code-First
approach.

Chapter 5, Client-Server Interactions, shows how the existing code can be upgraded to make
full use of the EF Core Entities defined in the last chapter. The reader will learn how to fetch
and persist the application data using the database instead of the sample objects mocked by
the previous data-retrieval methods.

Chapter 6, Style Sheets and UI Layout, introduces LESS, a powerful dynamic style sheet
language that can be compiled into CSS. After a brief overview of the LESS language
syntax, the reader will learn how to add, implement, and compile LESS scripts within the
application project to greatly improve the frontend UI.

Chapter 7, Forms and Data Validation, is mostly dedicated to passing data from the client to
the server, from account-related features--such as user registration--to more complex
interactions with the whole range of existing Entities. The reader will learn how to send
PUT- and POST-based requests using the versatile Angular Model-Driven approach, and how
to properly respond to them by extending the existing .NET Core Controllers accordingly.

www.EBooksWorld.ir

Preface

[4]

Chapter 8, Authentication and Authorization, starts as a recap of the most relevant auth-
related concepts for building a web application and then shows how to turn these concepts
into practice. The reader will learn how to implement a sample token-based auth provider
and also how to properly add and configure it throughout the existing Entity Framework
entities, .NET core services, and HTTP middleware list.

Chapter 9, Advanced Topics, shows how to implement a specific set of features required to
finalize a production-ready web application, such as token expiration, refresh tokens, new
user registration, and third-party authentication.

Chapter 10, Finalization and Deployment, describes the most common tasks to publish a
potentially shippable web application onto a production server. The reader will learn how
to replace the localDb instance with an external SQL Server, create FTP and FileSystem
publishing profiles, upload their compiled application to an external server, and configure
it to run under IIS using the .NET Core Windows Server Hosting bundle; they will also
learn how to deal with the most common issues with the help of some .NET Core-specific
troubleshooting techniques.

What you need for this book
Windows 7 SP1 or newer, up to and including Windows 10
Visual Studio 2017 15.4.2 (or newer): any version will work, including the freely
available Community Edition
Microsoft SQL Server 2017 (o newer) for Chapter 10, Finalization and Deployment
only: any version will work, including the freely available Express Edition
Windows Server 2008 R2 (or newer) for Chapter 10, Finalization and Deployment
only
Microsoft .NET Core SDK 2.0.1, freely available as an official Microsoft download
TypeScript 2.1.5.0 (or newer), freely available
NodeJS 6.11.2 (or newer), freely available
Angular 5.0.0 final release (or newer), freely available

All ASP.NET, Angular, JavaScript, and CSS packages used throughout the book are also
open source and freely available for download using Visual Studio package managers such
as NuGet and npm.

www.EBooksWorld.ir

Preface

[5]

Who this book is for
This book is for seasoned ASP.NET developers who already know about ASP.NET Core
and Angular in general, but want to know more about them and/or understand how to
blend them together to craft a production-ready SPA.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"Fill it with its corresponding pagenotfound.component.html template file."

A block of code is set as follows:

import { Component } from "@angular/core";

@Component({
 selector: "pagenotfound",
 templateUrl: "./pagenotfound.component.html"
})

export class PageNotFoundComponent {
 title = "Page not Found";
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<h1>Welcome to TestMakerFree</h1>
<p>A sample SPA project made with .NET Core and Angular.</p>
<quiz-list class="latest"></quiz-list>
<quiz-list class="byTitle"></quiz-list>
<quiz-list class="random"></quiz-list>

Any command-line input or output is written as follows:

dotnet ef database update

www.EBooksWorld.ir

Preface

[6]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this:

"Open a PowerShell Command Prompt and navigate through the project's root folder."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:// www.
packtpub. com. If you purchased this book elsewhere, you can visit http:/ /www. packtpub.
com/support and register to have the files emailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.

www.EBooksWorld.ir

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[7]

Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ /github. com/
PacktPublishing/ASP. NET- Core- 2- and- Angular- 5. We also have other code bundles from
our rich catalog of books and videos available at https:/ /github. com/ PacktPublishing/ .
Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ /www. packtpub. com/ submit- errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/ /www. packtpub. com/
books/content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.EBooksWorld.ir

https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/ASP.NET-Core-2-and-Angular-5
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[8]

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.EBooksWorld.ir

1
Getting Ready

ASP.NET Core MVC is a framework that runs on top of the full .NET framework
(Windows) or .NET Core (cross-platform), specifically made for building efficient HTTP
services that will be able to be reached by a massive range of clients, including web
browsers, mobile devices, smart TVs, web-based home automation tools, and more.

Angular is the successor of AngularJS, a world-renowned development framework born
with the idea of providing the coder with the toolbox needed to build reactive and cross-
platform web-based apps optimized for desktop and mobile. It features a structure-rich
template approach based upon a natural, easy-to-write, and readable syntax.

Technically, these two frameworks have little or nothing in common: ASP.NET Core is
mostly focused on the server-side part of the web development stack, while Angular is
dedicated to cover all the client-side aspects of web applications such as UI and UX.
However, they were put together here because they share a common vision--the HTTP
protocol is not limited to serving web pages; it can also be used as a viable platform to build
web-based APIs to effectively send and receive data. A thought that slowly made its way
through the first 20 years of the World Wide Web and is now an undeniable, widely
acknowledged statement and also a fundamental pillar of almost every modern web
development approach.

As for the reasons behind this perspective switch, there are plenty of good reasons for that,
the most important of them being related to the intrinsic characteristics of the HTTP
protocol: rather simple to use, and flexible enough to match most development needs of the
always-changing environment that the World Wide Web happens to be in. Not to mention
how universal it has become nowadays--almost any platform that we can think of has an
HTTP library, so HTTP services can reach a broad range of clients, including browsers,
mobile devices, and traditional desktop applications.

www.EBooksWorld.ir

Getting Ready Chapter 1

[10]

Two players, one goal
From the perspective of a fully-functional web-based application, we can say that the web
API interface provided with the ASP.NET Core framework is a programmatic set of server-
side handlers used by the server to expose a number of hooks and/or endpoints to a defined
request-response message system, typically expressed in structured markup languages,
such as JSON or XML. As we already said, this is achieved by making good use of the HTTP
protocol handled by a publicly-available web server (typically IIS). Similarly, Angular can
be described as a modern, feature-rich client-side library that pushes the HTML5 features--
along with the modern browser's capabilities--to their full extent by binding the input
and/or output parts of an HTML web page into a flexible, reusable, and easily testable
JavaScript model.

These assumptions allow us to answer to a simple, yet inevitable question "can we combine
the backend strengths of ASP.NET Core's web API with the frontend capabilities of the
Angular framework in order to build a modern, feature-rich, and highly versatile web
application?

The answer, in short terms, is yes. In the following chapters, we'll see how we can do that
by analyzing all the fundamental aspects of a well-written, properly designed web-based
product, and how ASP.NET Core and/or Angular can be used to handle each one of them.

The ASP.NET core revolution
To summarize what happened in the ASP.NET world within the last two years is not an
easy task; in short words, we can say that we're undoubtedly facing the most important
series of changes in the .NET Framework since the year it came to life. ASP.NET Core 1.0,
which came out in Q3 2016, was a complete re-implementation of the ASP.NET we knew;
the brand new framework unites all the previous web application technologies, such as
MVC, Web API, and web pages, into a single programming module, formerly known as
MVC6. The new framework introduces a fully-featured cross-platform component, also
known as .NET Core, shipped with a brand new open source .NET Compiler Platform
(currently known as Roslyn), a cross-platform runtime (known as CoreCLR), and an
improved x64 Just-In-Time compiler (RyuJIT).

The 1.0 final release was shortly followed by ASP.NET Core 1.1 (Q4 2016), which brought
some new features and performance enhancements, and also addressed many bugs and
compatibility issues affecting the former one.

www.EBooksWorld.ir

Getting Ready Chapter 1

[11]

The third and, at the time of writing, the latest step was taken with ASP.NET Core 2.0,
which came out in Q2 2017 as a preview and then in Q3 2017 for the final release; the newer
version features among a number of significant improvements with a huge effort to
standardize the shared APIs among the .NET Framework, .NET Core, and Xamarin, making
it easy for developers to share and reuse code across the whole .NET ecosystem.

Someone might be wondering about what happened to ASP.NET 5 and
Web API 2, as these used to be quite popular names until mid-2016.
ASP.NET 5 was no less than the original name of ASP.NET Core, before
the developers chose to rename it to emphasize the fact that it is a
complete rewrite. The reasons for that, along with the Microsoft vision
about the new product, are further explained in the following Scott
Hanselman's blog post that anticipated the changes on Jan 16, 2016:
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore
10AndNETCore10.aspx

For those who don't know, Scott Hanselman is the outreach and community
manager for .NET/ASP.NET/IIS/Azure and Visual Studio since 2007.
Additional information regarding the perspective switch is also available
in the following article by Jeffrey T. Fritz, Program Manager for Microsoft
and NuGet team leader:
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-
asp-net-core-and-net-core/

As for Web API 2, it was a dedicated framework for building HTTP
services returning pure JSON or XML data instead of web pages. Initially
born as an alternative to the MVC platform, it has been merged with the
latter into the new, general-purpose web application framework known as
MVC6, which is now shipped as a separate module of ASP.NET Core.

What's new in Angular?
The new release of AngularJS, simply known as Angular, is a complete rewrite of the
previous one, entirely based upon TypeScript and ECMAScript 6 specifications.

If you're a seasoned web developer, most likely, you already know what
TypeScript is. In case you don't, no worries, we'll get to that later on.

www.EBooksWorld.ir

http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/

Getting Ready Chapter 1

[12]

The choice of not making Angular backward compatible with AngularJS clearly
demonstrates the intention of the author's team to adopt a completely new approach--any
developer who already knows AngularJS will undoubtedly face a huge number of breaking
changes, not only in the code syntax, but also in the way of thinking and designing the
client app. Angular is highly modular, component-based, comes with a new and improved
dependency injection model and a whole lot of programming patterns its older cousin
never heard of.

However, the most important reason we're picking Angular over other excellent JS libraries
such as ReactJS and EmberJS is the fact that it already comes out with a huge pack of
features out of the box, making it most suited, although maybe not as simple to use than the
aforementioned competitors; if we combine that with the consistency given by the
TypeScript language, we can say that despite being the youngster, Angular embraced the
framework approach more convincingly than the others. This has been confirmed over the
course of the past 9 to 12 months, where the project hit two major versions (Angular 2 in Q3
2016 and Angular 4 in Q1 2017), gaining a lot in terms of stability, performances, and
features, without losing much in terms of backward compatibility, best practices, and
overall approach. All these reasons are solid enough to invest in it, hoping it will continue
to keep up with these compelling premises.

A full-stack approach
Learning to use ASP.NET Core and Angular together would mean being able to work to
both the frontend (client side) and backend (server side) of a web application; to put it in
other words, it means being able to design, assemble, and deliver a complete product.

Eventually, in order to do that, we'll need to dig through the following:

Backend programming
Frontend programming
UI styling and UX design
Database design, modeling, configuration, and administration
Web server configuration and administration
Web application deployment

At first glance, it can seem that this kind of approach goes against common sense; a single
developer should not be allowed to do everything by himself. Every developer knows well
that the backend and the frontend require entirely different skills and experiences, so why
in the world should we do that?

www.EBooksWorld.ir

Getting Ready Chapter 1

[13]

Before answering the question, we should understand what we really meant when we said
"being able to". We don't have to become experts on every single layer of the stack; no one
expects us to do so. When we choose to embrace the full-stack approach, what we really
need to do is to raise our awareness level throughout the whole stack we're working on; it
means that we need to know how the backend works and how it can and will be connected
to the frontend. We need to know how the data will be stored, retrieved, and then served
through the client; we need to acknowledge the interactions we will need to layer out
between the various components that our web application is made of, and we need to be
aware of security concerns, authentication mechanisms, optimization strategies, load-
balancing techniques, and so on.

This doesn't necessarily mean that we have to have strong skills in all these areas; as a
matter of fact, we hardly ever will. Nonetheless, if we want to pursue a full-stack approach,
we need to understand the meaning, role, and scope of any of them, and possibly, be able to
work there whenever we need to.

Single-Page Application
In order to demonstrate how ASP.NET Core and Angular can work together to their full
extent, we couldn't think of anything better than building a Single-Page Application (SPA)
project. The reason for that is quite obvious--there is no better approach to show some of the
best features they have to offer nowadays. We'll have the chance to work with modern
interfaces and patterns such as HTML5 pushState API, webhooks, data transport-based
requests, dynamic web components, UI data bindings, and a stateless, AJAX-driven
architecture capable to flawlessly encompass all of these.

Common features of a competitive SPA
To put it briefly, a SPA is a web-based application that struggles to provide the same user
experience as a desktop application. If we consider the fact that all SPAs are still served
through a web server and thus accessed by web browsers just like any other standard
website, we can easily understand how that desired outcome can only be achieved by
changing some of the default patterns commonly used in web development, such as
resource loading, DOM management, and UI navigation. In a good SPA, both contents and
resources--HTML, JavaScript, CSS, and such–-are either retrieved within a single page load
or dynamically fetched when needed; this also means that the page doesn't reload or
refresh, it just changes and adapts in response to user actions, performing the required
server-side calls behind the scenes.

www.EBooksWorld.ir

Getting Ready Chapter 1

[14]

These are some of the key features provided by a competitive SPA nowadays:

No server-side roundtrips: A competitive SPA is able to redraw any part of the
client UI without requiring a full server-side round trip to retrieve a full HTML
page. This is mostly achieved by implementing a Separation of Concerns design
principle, which means that the data will be separated from the presentation of
data using a model layer that will handle the former, and a view layer that reads
from the latter.
Efficient routing: A competitive SPA is able to keep track of the user current state
and location during its whole navigation experience using organized, JavaScript-
based routers. This is usually accomplished in one of two ways: the Hashbang
technique, or the HTML5 History API usage. We'll talk about either one of them
in Chapter 2, Backend with .NET Core.
Performance and flexibility: A competitive SPA usually transfers all of its UI to
the client, thanks to its JavaScript SDK of choice (Angular, JQuery, Bootstrap, or
any such). This is often good for network performance, as increasing client-side
rendering and offline processing reduces the UI impact over the network.
However, the real deal brought by this approach is the flexibility granted to the
UI, as the developer will be able to completely rewrite the application frontend
with little-to-no impact on the server, aside from a few of the static resource files.

The list can easily grow, as these are only some of the major advantages of a properly-
designed, competitive SPA. These aspects play a major role nowadays, as many business
websites and services are switching from their traditional Multi-Page Application mindset
(MPA) to full-committed or hybrid SPA-based approaches. The latter ones, which have
been increasingly popular since 2015, are commonly called Native Web Applications
(NWA), because they tend to implement a number of small-scale, single-page modules
bound together upon a multipage skeleton rather than building a single, monolithic SPA.

Not to mention the fact that there are also a lot of enterprise-level SPAs and Native Web
Applications flawlessly serving thousands of users every day, want to name a few?
WhatsApp Web and Teleport Web, Flickr, plus a wide amount of Google web services,
including Gmail, Contacts, Spreadsheet, Maps, and more. These services, along with their
huge user base, are the ultimate proof that we're not talking about a silly trend that will
fade away with time; conversely, we're witnessing the completion of a consolidated pattern
that's definitely meant to stay.

www.EBooksWorld.ir

Getting Ready Chapter 1

[15]

Product Owner expectations
One of the most interesting, yet underrated concepts brought out by many modern agile
software development frameworks, such as SCRUM, is the importance given to the
meanings and definitions of roles; among these, there's nothing as important as the Product
Owner, also known as the customer in Extreme Programming methodology or customer
representative elsewhere. They're the one who brings to the development table the
expectations we'll struggle to satisfy. They will tell us what's most important to deliver and
when they will prioritize our work based on its manifest business value rather than its
underlying architectural value; they'll be entitled by the management to take decisions and
make tough calls, which is sometimes great, sometimes not; this will often have a great
impact on our development schedule. To cut it short, they're the one in charge of the
project; that's why, in order to deliver a web application matching their expectancy, we'll
need to understand their vision and feel it as if it were ours.

This is always true, even if the project's Product Owner is our dad, wife, or best friend:
that's how it works.

Now that we made it clear, let's take a look at some of the most common Product Owner's
expectations for a typical web-based SPA project. We ought to see if the choice of using
ASP.NET Core and Angular will be good enough to fulfill each one of them.

Early release(s): No matter if we're selling a bunch of salad or web-based
services, the customer will always want to see what he's buying. If we're using
SCRUM, we'll have to release a potentially-shippable product at the end of each
sprint; we'll have Milestones in a Waterfall-based approach, and so on. One thing
is for sure--the best thing we can do in order to efficiently organize our
development efforts will be to adopt an iterative and/or modular-oriented
approach. ASP.NET Core and Angular, along with the strong Separation of
Concerns granted by their underlying MVC or MVVM based patterns, will
gracefully push us into the mindset needed to do just that.

www.EBooksWorld.ir

Getting Ready Chapter 1

[16]

GUI over backend: We'll often be asked to work to the GUI and frontend
functionalities, because that will be the only real viewable and measurable thing
for the customer. This basically means that we'll have to mock the data model
and start working on the frontend as soon as possible, delaying everything that
relies under the hood, even if that means leaving it empty; we can say that the
hood is what we need the most. Note that this kind of approach is not necessarily
bad; by all means, we're not tying up the donkey where the (product) owner
wants. On the contrary, the choice of using ASP.NET Core along with Angular
will grant us the chance to easily decouple the presentation layer and the data
layer, implementing the first and mocking the latter, which is a great thing to do.
We'll be able to see where we're going before wasting valuable time or being
forced to make potentially wrong decisions. ASP.NET Core's Web API interface
will provide the proper tools to do that by allowing us to create a sample web
application skeleton in a matter of seconds using Visual Studio Controller
templates and in-memory data contexts powered by Entity Framework 6, which
we'll be able to access using entity models and code-first. As soon as we do that,
we'll be able to switch to GUI design using the Angular presentation layer
toolbox as much as we want until we reach the desired results; once we're
satisfied, we'll just need to properly implement the Web API controller interfaces
and hook up the actual data.
Fast completion: None of the preceding will work unless we also manage to get
everything done in a reasonable time span. This is one of the key reasons to
choose to adopt a server-side framework and a client-side framework working
together with ease. ASP.NET Core and Angular are the tools of choice not only
because they're both built on solid, consistent ground, but also because they're
meant to do precisely that--get the job done on their respective side and provide a
usable interface to the other partner.
Adaptability: As stated by the Agile manifesto, being able to respond to change
requests is more important than following a plan. This is especially true in
software development, where we can even claim that anything that cannot
handle changes is a failed project. That's another great reason to embrace the
Separation of Concerns enforced by our two frameworks of choice, as this grants
the developer ability to manage--and even welcome, to some extent--most of the
layout or structural changes that will be expected during the development phase.

A few lines ago, we mentioned SCRUM, which is one of the most popular
agile software development frameworks out there. Those who don't know
it yet should definitely take a look at what it can offer to any result-driven
Team Leader and/or Project Manager. Here's a good place to
start--https:/ / en. wikipedia. org/ wiki/Scrum_ (software_ development).

www.EBooksWorld.ir

https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)

Getting Ready Chapter 1

[17]

That's about it. Note that we didn't cover everything here, as it will be impossible without
knowing an actual assignment. We just tried to give an extensive answer to the following
general questions: if we were to build a SPA, would ASP.NET Core and Angular be an
appropriate choice? The answer is undoubtedly yes, especially when used together.

Does it mean that we're done already? Not a chance, as we have no intention of taking this
assumption for granted. Conversely, it's time for us to demonstrate it by ceasing to speak in
general terms and starting to put things in motion.

A sample Single-Page Application project
What we need now is to conceive a suitable test case scenario similar to the ones we will
eventually have to deal with--a fully-featured, production-ready Single-Page Application
project, complete with all the core aspects we would expect from a potentially shippable
product.

In order to do this, the first thing we need to do is to become our own customer for a minute
and come up with an idea, a vision to share with our own other self. We'll then be able to
put our developer shoes back on and split our abstract plan into a list of items we'll need to
implement; these will be the core requirements of our own project. Finally, we'll set up our
workstation by getting the required packages, adding the resource files, and configuring
both the ASP.NET Core and Angular frameworks into the Visual Studio IDE.

The vision
If we're going to demonstrate the key features of ASP.NET Core and Angular in a practical
way such as committing ourselves into a full-stack SPA project and bringing it to life, we
definitely need to go for a project where they can shine the most.

That's why we can't really take into consideration most presentation-oriented websites such
as demos, product galleries, corporate or marketing showcases, photo/video/media reels,
blogs, and the likes; we need something that can make better use of the asynchronous and
parallel request processing capabilities of both frameworks, bringing them both toward
their full extent; in order to fulfill these expectations, we would rather think about
something similar to a CMS engine, a community-driven wiki, or even better, an interactive
web application featuring some strong client-server interactions such as auth tokens,
RESTful data transfer, and push notifications.

www.EBooksWorld.ir

Getting Ready Chapter 1

[18]

The latter seems to be the most appropriate, as it will mean going through a number of not-
so-trivial implementation challenges while keeping the expected amount of source code
small enough to fit into this book.

Not your usual "Hello World!"
The application we will build won't be just a shallow demonstration, we won't throw some
working code here and there and expect the reader to connect the dots. Our objective is to
create a solid, realistic web application using the frameworks we've chosen while following
the current development best practices.

Each chapter will be dedicated to a single core aspect; if you feel like you already know
your way there, feel free to skip to the next one. Conversely, if you're willing to follow us
through the whole loop, you'll have a great journey through the most useful aspects of
ASP.NET Core and Angular and how they can work together to deliver the most common
and useful web-development tasks, from the most trivial one to the more complex beasts.
It's an investment that will pay dividends, as it will leave you with a maintainable,
extensible, and well-structured project, plus the knowledge needed to build your own.

To avoid making things too boring, we'll try to pick an enjoyable theme that will also have
some usefulness in the real world; do you know anything about personality tests? They are
questionnaires designed to reveal aspects of an individual's nature, trace a psychological
makeup, or identify similarities with other notable real or fictional characters. The web is
nothing less than full of them, featuring the most popular themes from the movie and
entertainment industry--which Game of Thrones character are you? Are you a Jedi or a Sith? and
so on.

Introducing TestMakerFree
I hope you like these kinds of questionnaires because we will build a web application that
will allow users from anywhere in the world to build their own test(s). In order to do so,
we'll put together a wizard-like tool that can be used to add questions and answers, upload
images, choose a scoring method, assign a score to each answer, and define the possible
outcomes/results. At the end of the wizard, the user will receive a unique URL that can be
used to take the test and/or share it via email, blog/forum posts, IMs, social networks, and
so on.

www.EBooksWorld.ir

Getting Ready Chapter 1

[19]

Ultimately, they will have a small yet useful web application featuring a server-side engine
powered by ASP.NET Core and a web client mostly built using Angular.

The chosen name? TestMakerFree, also known as www.testmakerfree.com; needless to say,
the free word means that our application will be free of charge. Luckily enough, the domain
was still available at the time of writing this book. If you go there now, you'll be able to see
the final outcome of what we will build from scratch during the course of this book; don't
do that if you don't like spoilers, as it can ruin some of your fun.

Core features and requirements
Let's try to visualize how our application should work.

Our users will definitely need to register, so we'll be able to grant them the ownership of
their own tests; once done, they will be able to create a new test. Each test will have a name,
a description, a list of questions, and a series of possible results; each question will have a
descriptive text, a list of answers, and an optional image; each answer will have a
descriptive text, an optional image, and a list of score points; and each result will have a
descriptive text and a score value.

The score points and the score value will be extensively discussed later on. For now, we'll
just state the obvious--whenever a user completes the test, the sum of score points among
all the given answers will be matched with the score value given to each possible result in
order to determine the final outcome. The numbers will be shown or hidden to the user as
per the test owner's choice.

If you ever heard about the Myers-Briggs Type Indicator (MBTI) and/or
the Five Factor Model (FFM), you most likely already know how we'll
make use of score points and score values. In case you want to know more
about these testing models, we strongly suggest you take a look at the
en.wikipedia.org/wiki/Myers-Briggs_Type_Indicator and
en.wikipedia.org/wiki/Big_Five_personality_traits Wikipedia
pages.

That's about it. It might sound easy or not, depending on our programming experience, but
one thing is certain--we got a plan.

www.EBooksWorld.ir

http://www.testmakerfree.com
http://en.wikipedia.org/wiki/Myers-Briggs_Type_Indicator
http://en.wikipedia.org/wiki/Big_Five_personality_traits

Getting Ready Chapter 1

[20]

Now that we have identified the key features, let's break them down into a list of
development topics:

Routing: The application will have to properly respond to client requests, that is,
routing them according to what they're up to.
Data model: We'll definitely adopt a database engine to store our tests, questions,
answers, and so on; hence, we'll also need to develop the proper tools to access it
in a modern, fashionable way. In order do so, we need to define our data
architecture by setting up data repositories and domain entities that will be
handled by the server and hooked to Angular through the most suited ASP.NET
Core interface to handle HTTP communications--the Controller class.
Controllers: From an MVC-based architectural perspective, one of the main
differences between multi-page and single-page applications is that the former's
Controllers are designed to return views, while the latter ones, also known as
API Controllers, mostly return serialized data. These are what we will need to
implement to put Angular components in charge of the presentation layer.
Angular components: Switching to the client side, we will need to define a set of
components to handle UI elements and state changes. As we probably already
know, components are the most fundamental elements in Angular, replacing the
AngularJS controllers and scopes. We'll get to know more about them soon
enough.
Authentication: Soon enough, we'll have to deal with user login and registration.
We'll take care of that by adding a membership context, so we'll be able to limit
CRUD operations to authenticated users only, keeping track of each user action,
requiring registration to access some pages/views, and so on.
UI styling: We will take our time to come to that, as we will stick to the core
topics first, but we'll definitely get there eventually; the initial ugliness of our web
client will flourish into a responsive, good-looking, and mobile-friendly user
interface.

These will be our main development challenges. As we said earlier, we definitely have to
understand how to properly handle each one of them, or we won't be able to succeed.
Hence, let's get to work without further ado!

The following chapters will guide us through the journey; we'll also cover other important
aspects such as SEO, Security, Performance Issues, Best Coding Practices, and
Deployment, as they will be very important later on.

www.EBooksWorld.ir

Getting Ready Chapter 1

[21]

Preparing the workspace
The first thing we have to do is to set up our workstation; it won't be difficult, because we
only need a small set of essential tools. These include Visual Studio 2017, the web platform
installer, the Node.JS runtime, a web server such as IIS or IIS Express, and a decent source
code control system such as Git, Mercurial, or Team Foundation. We will take the latter for
granted, as we most likely already have it up and running.

In the unlikely case we don't, we should really make amends before
moving on! Stop reading, go to www.github.com or www.bitbucket.com,
create a free account, and spend some time to learn how to effectively use
these tools; we won't regret it, that's for sure.

Disclaimer-Do (not) try this at home
There's something very important that we need to understand before proceeding. If we're a
seasoned web developer we will most likely know about it already, however, since this
book is for (almost) everyone, I feel like it's very important to deal with this matter as soon
as possible.

This book will make an extensive use of a number of different programming tools, external
components, third-party libraries and so on. Most of them, such as TypeScript, NuGet,
NPM, Gulp, .NET Core Frameworks/runtimes, and so on are shipped together with Visual
Studio 2017, while others such as Angular and its required JS dependencies will be fetched
from their official repositories. These things are meant to work together in a 100%
compatible fashion, however they are all subject to changes and updates during the
inevitable course of time: as time passes by, the chance that these updates might affect the
way they interact with each other and the project health will increase.

The broken code myth
In an attempt to minimize the chances that this can occur, this book will always work with
fixed versions/builds of any third-party component that can be handled using the
configuration files. However, some of them, such as Visual Studio and/or .NET framework
updates, might be out of that scope and might bring havoc to the project. The source code
might cease to work, or Visual Studio can suddenly be unable to properly compile it.

www.EBooksWorld.ir

http://www.github.com
http://www.bitbucket.com

Getting Ready Chapter 1

[22]

When something like that happens, the less experienced reader will always be tempted to
put the blame on the book itself. Some of them may even start thinking something like this:

There are a lot of compile errors, hence the source code must be broken!

Alternatively, they may think like this:

The code sample doesn't work: the author must have rushed things here and there and
forgot to test what he was writing.

There can be many other things like these.

It goes without saying that such hypotheses are hardly true, especially considering the
amount of time that the authors, editors, and technical reviewers of these books spent in
writing, testing, and refining the source code before building it up, making it available on
GitHub and even publishing a working instance of the resulting application to a
worldwide-available public website.

Any non-amateur developer will easily understand that most of these things couldn't even
be done if there was some "broken code" somewhere; there's no way this book can even
attempt to hit the shelves unless it comes with a 100% working source code, except for few
possible minor typos that will quickly be reported to the publisher and thus fixed within the
GitHub repository in a short while. In the unlikely case that it looks like it doesn't, such as
raising unexpected compile errors, the non-novice reader should spend a reasonable
amount of time trying to understand the root cause. Here's a list of questions they should
try to answer before anything else:

Am I using the same development framework, third-party libraries, versions, and
builds adopted by the book?
If I updated something because I felt like I needed to, am I aware of the changes
that might affect the source code? Did I read the relevant change logs? Have I
spent a reasonable amount of time looking around for breaking changes and/or
known issues that could have had an impact on the source code?
Is the book's GitHub repository also affected by this issue? Did I try to compare it
with my own code, possibly replacing mine?

www.EBooksWorld.ir

Getting Ready Chapter 1

[23]

Stay hungry, stay foolish, yet be responsible as well
Don't get it wrong: whenever you want to use a newer version of Visual Studio, update
your Typescript compiler or upgrade any third-party library; you are free and also very
encouraged to do that. This is nothing less than the main scope of this book--making the
readers fully aware of what they're doing and capable of going on their path, way beyond
the given code samples.

However, if you feel you're ready to do that, you will also have to adapt the code
accordingly; most of the time, we're talking about trivial stuff, especially these days when
you can Google out the issue and/or get the solution on StackOverflow. They changed the
typings? Then you need to load the new typings; they moved the class somewhere else? Then
you need to find the new namespace and change it accordingly; and so on.

That's about it, nothing more, nothing less. The code reflects the passage of time; the
developer just needs to keep up with the flow, performing minimum changes to it when
required. You can't possibly get lost and blame someone other than you if you update your
environment and fail to acknowledge that you have to change a bunch of code lines to make
it work again.

Am I implying that the author is not responsible for the source code of the book? It's the
exact opposite, the author is always responsible. They're supposed to do their best to fix all
the reported compatibility issues while keeping the GitHub repository updated. However,
the reader should also take his very own level of responsibility; more specifically, he should
understand how things work for any development book and the inevitable impact of the
passage of time on any given source code. No matter how hard the author can work to
maintain it, the patches will never be fast or comprehensive enough to make these lines of
code always work on any given scenario. That's why the most important thing the reader
needs to understand--even before the book topics--is the most valuable concept in modern
software development: being able to efficiently deal with the inevitable changes that will
always occur.

Whoever refuses to understand that is doomed; there's no way around it.

Versions and builds
These are the releases we will use:

Visual Studio 2017 version 15.4.4
Microsoft .NET Core SDK 2.0.3
TypeScript 2.4.2

www.EBooksWorld.ir

Getting Ready Chapter 1

[24]

NuGet Package Manager 4.1.0
NodeJS 6.9.0
Angular 5.0.2 final release

We strongly suggest using the same version used within this book, or newer, at your own
risk! Jokes aside, if you prefer to use a different version, that's perfectly fine, as long as you
will take responsibility if something doesn't work, just like we said a paragraph ago.

Setting up the project
The first thing we need to do is to download the .NET Core SDK, unless the release we
want to use is already shipped with Visual Studio 2017. We can download the latest version
from either the official Microsoft URL, that is, https:/ /www. microsoft. com/ net/core, or
from the official GitHub project page, at https:/ /github. com/ dotnet/ cli/ tree/ v2. 0.
3#installers-and- binaries.

The installation is very straightforward, just follow the wizard until the end to get the job
done:

www.EBooksWorld.ir

https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries
https://github.com/dotnet/cli/tree/v2.0.2#installers-and-binaries

Getting Ready Chapter 1

[25]

Once installed, launch Visual Studio 2017 and create a new ASP.NET Core Web
Application project. Let's do that by following the mentioned steps:

Fire up Visual Studio 2017 and, from the File menu, expand New and select1.
Project to open a New Project modal window.
From the Templates tree, expand the Visual C# node and select the Web2.
subfolder; the right section of the modal window will be populated by a number
of available project templates. Among these, there are two choices for creating an
ASP.NET Core Web Application project: .NET Core and .NET Framework, as
we can see in the following diagram:

The first one, optimized for cross-platform deployment, entirely relies upon the3.
new .NET Core framework; the latter, ideal for a Windows environment, is based
upon the latest .NET Framework version (4.6.2 at the time of writing) instead.

www.EBooksWorld.ir

Getting Ready Chapter 1

[26]

The good thing here is that, thanks to the ASP.NET Core versatility, we are
free to choose the approach we like the most, as both frameworks are
mature enough to support almost everything we will use within this book.
That said, in order to have better compatibility with most NuGet packages
we might choose to add, we'll be choosing the template based on .NET
Core.

Select the ASP.NET Core Web Application (.NET Core) template and fill the4.
relevant Name, Location, and Solution name fields; set TestMakerFreeWebApp
as Project Name and TestMakerFree as Solution name, just to not confuse
them, and then click on OK to continue.
In the next modal window, we can further customize our template by choosing5.
the default contents to include in our project (Empty, Web API, or Web
Application) and the authentication mechanism, should we want to use one.
Select .NET Core and ASP.NET Core 2.0 from the drop-down list, and then select
the Angular template icon with No Authentication; the Enable Docker Support
checkbox, if present, should be disabled by default. Eventually, click on the OK
button to create the project:

www.EBooksWorld.ir

Getting Ready Chapter 1

[27]

Those who're used to the Visual Studio Web Application Project templates for the previous
ASP.NET versions will be tempted to choose Empty instead, thus avoiding the insane
amount of sample classes, folders, and components, including a number of potentially
outdated versions of various client-side frameworks such as Bootstrap, KnockoutJS,
JQuery, and more. Luckily enough, these new ASP.NET Core project templates are quite
lightweight and just ship the required files, resources, and dependencies to the project to
Bootstrap a sample template based on the chosen client-side technology:

www.EBooksWorld.ir

Getting Ready Chapter 1

[28]

In our specific case, our template will set up a rather clean working environment containing
the following:

The default ASP.NET MVC /Controllers/ and /Views/ folders, with some
sample controllers and views
The /ClientApp/ folder, with some TypeScript files containing the source code
of a sample Angular app
The /wwwroot/ folder, which will be used by VS2017 to build an optimized
version of the client-side code whenever we need to execute it locally or have it
published anywhere; that folder is initially empty, but it will be populated upon
first-run

If we spend some time to browse through this folder and take a look at the content, we can
see how the .NET Core developers did a tremendous job in easing the MVC-with-Angular
setup and kickstart process. This template already supports SEO optimization and Server-
Side Rendering (SSR), and also features a bunch of useful optimizations; those who fought
with task runners and client-side building strategies in the recent past will most likely
appreciate the fact that this template features a build process completely handled by NPM,
Webpack, and .NET Core with specific loading strategies for development and production.

More details on this approach, including a summary of the main reasons
behind it, are well explained by the following .NET WebDev blog, which
explains the great work done by Steve Sanderson to properly support
Single-Page Applications in .NET Core:

https://blogs.msdn.microsoft.com/webdev/2017/02/14/building-sing
le-page-applications-on-asp-net-core-with-javascriptservices/

Alternative setup using the command line
If we take a look at the article mentioned in the information box at the end of the previous
paragraph, we can see how the SPA templates are fetched and installed using the command
line. Although we did that using the VS2017 GUI, we can also do that using the command
line in the following way:

dotnet new angular

www.EBooksWorld.ir

https://blogs.msdn.microsoft.com/webdev/2017/02/14/building-single-page-applications-on-asp-net-core-with-javascriptservices/
https://blogs.msdn.microsoft.com/webdev/2017/02/14/building-single-page-applications-on-asp-net-core-with-javascriptservices/

Getting Ready Chapter 1

[29]

When using this command, the Angular project will be created within the folder where the
command is executed.

The command line can also come in handy whenever we want to get the latest versions of
the SPA templates, which is currently not supported within the GUI:

dotnet new --install Microsoft.AspNetCore.SpaTemplates::*

Test run
Before moving further, we should definitely attempt a quick test run to ensure that
everything is working properly. Doing that should be just as easy as hitting the Run button
or the F5 key:

This is an excellent consistency check to ensure that our development system is properly
configured. If we see the sample Angular SPA up and running, as shown in the preceding
screenshot, it means that we're good to go; if we don't, it probably means that we're either
missing something or that we've got some conflicting software preventing VS2017 and its
external web tools (NPM/NODE) from properly compiling the project.

www.EBooksWorld.ir

Getting Ready Chapter 1

[30]

In order to fix that, we can try to do the following:

Uninstall/reinstall Node.JS, as we can possibly have an outdated version
installed.
Uninstall/reinstall Visual Studio 2017, as our current installation might be
broken or corrupt. The.NET Core SDK should come shipped with it already;
however, we can also try reinstalling it.
Update the SPA templates using the command-line interface by following the
instructions we gave in the previous paragraph.
Install VS2017 on a clean environment (be it either a physical system or a VM) to
overcome any possible issue related to our current operating system
configuration.

If none of these works, the best thing we can do is to ask for specific
support on the .NET Core community forum, at https:/ /forums. asp.
net/ 1255. aspx/ 1? ASP+NET+Core.

Looking around
Now that our project has been created, it's time to take a quick look around and try to
understand some of the hard work that the .NET Core SPA Template has done to make it
work. Hey, wait a minute! Shouldn't we skip all these setup technicalities and just jump into
coding? As a matter of fact, yes, we'll definitely be doing that in a little while. However,
before doing that, it can be wise to highlight a couple of aspects of the code that has been
put in place already so that we'll know how to properly move within our project in
advance: where to find the server-side and client-side code, where to put some new content,
how to change our initialization parameters, and so on. It will also be a good chance to
review our base knowledge about the Visual Studio environment and the required
packages we will need.

IMPORTANT! The sample code we're reviewing here is the one that's
being shipped with the Angular SPA Visual Studio Template at the time of
writing--MVC ASP.NET Core with Angular. In the (likely) event that this
sample code will get updated in future releases, ensure to get the former
source code from the web using this book's official NuGet repository and
use it to replace the contents of your /TestMakerFreeWebApp/ folder. If
we avoid doing that, our sample code might differ from the one featured
in this book.

www.EBooksWorld.ir

https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core

Getting Ready Chapter 1

[31]

The first thing that meets the eye is that, as we already mentioned, the layout of a standard
ASP.NET Core solution is quite different from what it used to be in ASP.NET 4 and earlier
versions. The main difference is the brand new /wwwroot/ folder, which will contain the
compiled, ready-to-publish contents of our application: HTML, JS, and CSS files, along with
fonts, images, and everything else we want our users to have access to in terms of static
files.

Other things worth noting are as listed:

The good old /Controllers/ and /Views/, which come shipped with any
MVC-based ASP.NET application since the former release of the MVC
framework
The /ClientApp/ folder, which already hosts a bunch of Angular source code
files; we can see that they all have a .ts extension, which means we'll be using
the TypeScript programming language (we'll say more about this in a bit)
The Dependencies virtual folder, which is basically the replacement of the old
Resources folder and contains all the internal, external, and third-party
references required to build and run our project
A bunch of root-level .cs, .json, and .js files that will determine our web
application's configuration, the available client-side and server-side modules and
also their setup, compilation, and publishing rules; we'll address them in a while

Just by observing these folders, provided that we already got a glimpse of ASP.NET MVC
experience, we are already able to figure out how things will be handled:

Each request will be received by the MvcApplication, which will handle them at
the server-side level and route those related to the GUI through the appropriate
Controller
The Controller will do the required server-side tasks and then, depending on the
given request, either serve raw JSON data or return the response content using a
View
The View will serve the required client-side content (HTML, JS, and CSS),
including the required JS modules that will be served in a highly-optimized
fashion using a dedicated dynamic loader (Webpack)

Let's quickly review the whole process, starting with the root configuration files.

www.EBooksWorld.ir

Getting Ready Chapter 1

[32]

The configuration files
Let's start with the main .NET Core startup files: Program.cs and Startup.cs.

Program.cs
The Program.cs file will most likely raise the curiosity of most seasoned ASP.NET
programmers, as it's not something we usually see in a web application project. First
introduced in ASP.NET Core 1.0, the Program.cs file's main purpose is to set up and build
the IWebHost.

That's great to know, but what is a Web Host? In a very few words, a host
is the execution context of any ASP.NET Core app. In a web-based
application, the host must implement the IWebHost interface, which
exposes a collection of web-related features and services and also a Start
method. The Web Host references the server that will handle requests.

The preceeding statement can lead to thinking that the web host and the
web server are the same thing; however, it's very important to understand
that they're not, as they serve very different purposes. The following
excerpt from the .NET Core GitHub project does a great job explaining the
key difference between them:

The host is responsible for application startup and lifetime management.
The server is responsible for accepting HTTP requests. Part of the host's
responsibility includes ensuring that the application's services and the
server are available and properly configured. We could think of the host as
being a wrapper around the server. The host is configured to use a
particular server; the server is unaware of its host.

Source: http:/ /aspnetcore. readthedocs. io/en/ stable/ fundamentals/
hosting. html

If we open the Program.cs file, we can easily see that the web host is built in an extremely
easy way:

public class Program
{
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

www.EBooksWorld.ir

http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html
http://aspnetcore.readthedocs.io/en/stable/fundamentals/hosting.html

Getting Ready Chapter 1

[33]

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
}

The WebHost.CreateDefaultBuilder() method is one of the many improvements of
ASP.NET Core 2.0 over its 1.x counterpart as it simplifies the amount of source code
required to set up basic use cases, thus making it easier to get started with a new project.

To understand this better, let's take a look at the sample Program.cs equivalent, like it was
in ASP.NET Core 1.x:

public class Program
{
 public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .UseApplicationInsights()
 .Build();

 host.Run();
 }
 }

This used to perform the following steps:

Setting up the Kestrel web server
Setting the Content root folder, that is, where to look for the appsettings.json
file and other configuration files
Setting up the IIS Integration
Defining the Startup class to use (usually defined in the Startup.cs file)
Finally, Build and Run the now configured IWebHost

In .NET Core 1.x, all these steps must be called explicitly here and also manually configured
within the Startup.cs file; in .NET Core 2.0, we can still do this, yet using the
WebHost.CreateDefaultBuilder() method will generally be better as it will take care of
most of the job, also letting us change the defaults whenever we want.

www.EBooksWorld.ir

Getting Ready Chapter 1

[34]

If you're curious about this method, you can even take a peek at the source
code on GitHub at https:/ /github. com/ aspnet/MetaPackages/ blob/ rel/
2.0. 0/ src/ Microsoft. AspNetCore/ WebHost. cs.

At the time of writing, the WebHost.CreateDefaultBuilder() method
implementation starts at line #152.

Startup.cs
Let's move to the Startup.cs file. If you're a seasoned .NET developer, you might be
already familiar with it, since it was first introduced in OWIN-based applications to replace
most of the tasks previously handled by the good old Global.asax file.

OWIN (for Open Web Interface for .NET) and comes as part of Project
Katana, a flexible set of components released by Microsoft back in 2013 for
building and hosting OWIN-based web applications. For additional info,
refer to https:/ /www. asp. net/ aspnet/ overview/ owin- and- katana.

However, the similarities end here; the class has been completely rewritten to be as
pluggable and lightweight as possible, which means that it will include and load only
what's strictly necessary to fulfill our application's tasks. More specifically, in .NET Core,
the Startup.cs file is the place where we can do the following:

Add and configure Services and Dependency Injection, in the
ConfigureServices method
Configure HTTP request pipeline by adding the required Middleware
packages, in the Configure method

To better understand this, let's take a look at the following lines taken from the Startup.cs
source code shipped with the project template we chose:

// This method gets called by the runtime. Use this method to configure the
HTTP request pipeline.
public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions
 {
 HotModuleReplacement = true
 });
 }

www.EBooksWorld.ir

https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/rel/2.0.0/src/Microsoft.AspNetCore/WebHost.cs
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana
https://www.asp.net/aspnet/overview/owin-and-katana

Getting Ready Chapter 1

[35]

 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseStaticFiles();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapSpaFallbackRoute(
 name: "spa-fallback",
 defaults: new { controller = "Home", action = "Index" });
 });
}

This is the Configure method implementation, where--as we just said--we can set up and
configure the HTTP request pipeline.

The code is very readable, so we can easily understand what happens here:

The first bunch of lines features an if-then-else statement that implements
two different behaviors to handle runtime exceptions in development and
production, throwing the exception in the former case or showing an opaque
error page to the end user in the latter; that's a neat way to handle runtime
exceptions in a very few lines of code.
The app.UseStaticFiles() call adds the
Microsoft.AspNetCore.StaticFiles middleware to the HTTP pipeline,
which will allow our web server to serve the static files within the web root.
Without this line, we won't be able to serve locally hosted assets such as JS, CSS,
and images; hence, having it there is a good thing. Also, note how the method is
called with no parameters; the StaticFiles middleware default settings are
more than enough for us, so there's nothing to configure or override here.
We can't say the same for the subsequent app.UseMvc() call, which comes with
some interesting configuration parameters. We'll extensively talk about that in
Chapter 2, Backend with .NET Core; for now, let's just understand that these lines
serve the purpose of adding the MVC Middleware within the HTTP pipeline and
also setting up a couple of HTTP routing rules pointing to the HomeController
Index action method, which will be the web application main entry point.

www.EBooksWorld.ir

Getting Ready Chapter 1

[36]

Let's perform a quick test to ensure that we properly understand how these Middlewares
work. From Visual Studio's Solution Explorer, go to the /wwwroot/ folder and add a new
test.html page to our project. Once done, fill it with the following contents:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Time for a test!</title>
</head>
<body>
 Hello there!

 This is a test to see if the StaticFiles middleware is working
properly.
</body>
</html>

Now, let's launch the application in debug mode--using the Run button or the F5 keyboard
key--and point the address bar to http://localhost:<port>/test.html.

We should be able to see our test.html file in all its glory:

Now, let's go back to our Startup.cs file and comment out the app.UseStaticFiles()
call to prevent the StaticFiles middleware from being loaded:

 // app.UseStaticFiles();

www.EBooksWorld.ir

Getting Ready Chapter 1

[37]

Once done, run the application again and go back to the previous URL:

As expected, static files aren't being served anymore. If we point our address bar to /home,
we can see how this new behavior is also preventing the sample SPA provided by the
Angular template from even loading, which means that we just broke our web app, yay!

Now that we proved our point, let's bring the StaticFiles middleware back in place by
removing the comments and go ahead.

For additional information regarding the StaticFiles middleware and
static files handling in .NET Core, visit and read https:/ / docs. asp.net/
en/ latest/ fundamentals/ static- files. html.

All in all, we can honestly say that the Startup.cs file shipped with the Angular SPA
template already has everything we need, so we can leave it as it is for now. However,
before going ahead, let's take another look at the if-then-else statement contained
within this code snippet; we can easily see that there are other things planned when the
application is in development mode. We're talking about the
UseWebpackDevMiddleware() method with the HotModuleReplacement option set to
true. This is one of the great features shipped with the
Microsoft.AspNetCore.SpaServices package for those who use Webpack, which
includes us; we'll get there later on, when talking about the Webpack configuration file.

www.EBooksWorld.ir

https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html
https://docs.asp.net/en/latest/fundamentals/static-files.html

Getting Ready Chapter 1

[38]

Now, it's time to take a quick look at the three .json files also lying in the root folder. Each
one of them is a configuration file for something; let's look at a bunch of words for each one
of them.

The appsettings.json file
The appsettings.json file is nothing less than the replacement of the good old
Web.config file; the XML syntax has been replaced by a more readable (and less verbose)
JSON format. Moreover, the new configuration model is based upon key/value settings that
can be retrieved from a wide variety of sources, including--yet not limited to--Json files,
using a centralized interface.

Once retrieved, they can be easily accessed within our code using Dependency Injection
via literal strings (using the vanilla IConfiguration class):

public SampleController(IConfiguration configuration)
{
 var myValue = configuration["Logging:IncludeScopes"];
}

Alternatively, even in a strongly-typed fashion using a custom POCO class (we'll get there
later on).

It's worth noting that there's also an appsettings.Development.json
file nested below the former one. Such file serves the same purpose of the
old Web.Debug.config file since ASP.NET 4.x; everything is written
there will override the appsettings.json values as long as the
application runs in the development mode.

Back in .NET Core 1.x, this overriding behavior had to be specified
manually within the Startup.cs file; in .NET Core 2, the
WebHost.CreateDefaultBuilder() method within the Program.cs
file takes care of that automatically, assuming that you don't need to add
another custom .json configuration file.

Assuming that we understood everything here, it's time to move on to the next
configuration file.

www.EBooksWorld.ir

Getting Ready Chapter 1

[39]

The package.json file
The package.json file is the NPM Configuration File; it basically contains a list of NPM
packages that the developer want to be restored before the project starts. Those who
already know what NPM is and how it works can skip to the next paragraph, while the
others should definitely keep reading.

NPM (shortcode for Node Package Manager) started its life as the default package manager
for the JavaScript runtime environment known as Node.js. During the latest years, though,
it was also being used to host a number of independent JS projects, libraries, and
frameworks of any kind, including Angular; eventually, it became the de facto package
manager for JavaScript frameworks and tooling. If you never used it, you may easily think
of it as the Nuget for the JavaScript world.

Although NPM is mostly a command-line tool, the easiest way to use it from Visual Studio is
to properly configure a package.json file containing all the NPM packages we want to
get, restore, and keep up to date later on. These packages get downloaded in the
/node_modules/ folder within our project directory, which is hidden by default within
Visual Studio; however, all the retrieved packages can be seen from the
/Dependencies/npm/ virtual folder. As soon as we add, delete, or update the
package.json file, Visual Studio will automatically update that folder accordingly.

In the Angular SPA template we've been using, the shipped package.json contains a huge
amount of packages--all Angular packages plus a good bunch of dependencies, tools, and
third-party utilities such as Karma (a great Test Runner for JavaScript/TypeScript).

Before moving ahead, let's take an additional look at our package.json file and try to get
the most out of it. We can see how all the packages are listed within a standard JSON object
entirely made of key-value pairs; the package name is the key, while the value is used to
specify the version number. We can either input precise build numbers or use the standard
npmJS syntax to specify auto-update rules bound to custom version ranges using the
supported prefixes, such as the following:

The Tilde (~): A value of "~1.1.4" will match all 1.1.x versions, excluding 1.2.0,
1.0.x, and so on

The Caret (^): A value of "^1.1.4" will match everything above 1.1.4, excluding
2.0.0 and above

www.EBooksWorld.ir

Getting Ready Chapter 1

[40]

This is another scenario where Intellisense will come inhandy, as it will also suggest how to
do that.

For an extensive list of available npmJS commands and prefixes, it's
advisable to check out the official npmJS documentation at
https://docs.npmjs.com/files/package.json.

Upgrading (or downgrading) Angular
As we can see, the Angular SPA Template uses fixed version numbers for all the Angular-
related packages; this is definitely a wise choice since we have no guarantees that newer
versions will seamlessly integrate with our existing code without raising some potentially
breaking issues and/or compiler errors. Needless to say, the version number will naturally
increase with the passage of time, because the template developers will definitely try to
keep their good work up to date.

That said, these are the Angular packages and releases that will be used within this book:

"@angular/animations": "5.0.2",
"@angular/common": "5.0.2",
"@angular/compiler": "5.0.2",
"@angular/compiler-cli": "5.0.2",
"@angular/core": "5.0.2",
"@angular/forms": "5.0.2",
"@angular/http": "5.0.2",
"@angular/platform-browser": "5.0.2",
"@angular/platform-browser-dynamic": "5.0.2",
"@angular/platform-server": "5.0.2",
"@angular/router": "5.0.2"

As we can see, the version number is the same for all packages and corresponds to the
Angular release currently installed.

The final version of Angular 5, codename Pentagonal Donut, has been
released on November 1, 2017--just days before this book will hit the
shelves: we did our best to use the latest possible final (non-beta, non-rc)
version to give the reader the best possible experience with the most
recent technology available. That said, that "freshness" will eventually
decrease over time and this book's code will start to become obsolete:
when it will happen, don't blame us for that!

www.EBooksWorld.ir

https://docs.npmjs.com/files/package.json

Getting Ready Chapter 1

[41]

If we want to ensure the highest possible level of compatibility between our project and this
book's source code, we should definitely adopt that same release, which, at the time of
writing, also corresponds to the latest stable one. We can easily perform the upgrade--or
downgrade--by changing the version numbers; as soon as we save the file, Visual Studio
will automatically fetch the new versions through NPM. In the unlikely case it won't,
manually deleting the old packages and issuing a full rebuild should be enough to fix the
issue.

As always, we're free to overwrite such behavior and get newer (or older) versions of these
packages, assuming that we properly understood the consequences and according to this
chapter's Disclaimer.

If you encounter problems while updating your package.json file, such
as conflicting packages or "broken" code, ensure that you download the
full source code from the official GitHub repository of this book, which
includes the same package.json file that has been used to write, review,
and test this book; it will definitely ensure a great level of compatibility
with the source code you'll find here.

Upgrading (or downgrading) the other packages
As we can easily expect, if we upgrade (or downgrade) Angular to 5.0.0 final, we also need
to take care of a series of other NPM packages that might require to be updated (or
downgraded) as well. Here's the full package list we'll be using in our package.json file
throughout the book: the important packages are highlighted--be sure to triple-check them!

{
 "name": "TestMakerFree",
 "private": true,
 "version": "0.0.0",
 "scripts": {
 "test": "karma start ClientApp/test/karma.conf.js"
 },
 "dependencies": {
 "@angular/animations": "5.0.2",
 "@angular/common": "5.0.2",
 "@angular/compiler": "5.0.2",
 "@angular/compiler-cli": "5.0.2",
 "@angular/core": "5.0.2",
 "@angular/forms": "5.0.2",
 "@angular/http": "5.0.2",
 "@angular/platform-browser": "5.0.2",
 "@angular/platform-browser-dynamic": "5.0.2",

www.EBooksWorld.ir

Getting Ready Chapter 1

[42]

 "@angular/platform-server": "5.0.2",
 "@angular/router": "5.0.2",
 "@ngtools/webpack": "1.8.2",
 "@types/webpack-env": "1.13.2",
 "angular2-template-loader": "0.6.2",
 "aspnet-prerendering": "3.0.1",
 "aspnet-webpack": "2.0.1",
 "awesome-typescript-loader": "3.4.0",
 "bootstrap": "3.3.7",
 "css": "2.2.1",
 "css-loader": "0.28.7",
 "es6-shim": "0.35.3",
 "event-source-polyfill": "0.0.9",
 "expose-loader": "0.7.3",
 "extract-text-webpack-plugin": "2.1.2",
 "file-loader": "1.1.5",
 "html-loader": "0.5.1",
 "isomorphic-fetch": "2.2.1",
 "jquery": "3.2.1",
 "json-loader": "0.5.7",
 "preboot": "5.1.7",
 "raw-loader": "0.5.1",
 "reflect-metadata": "0.1.10",
 "rxjs": "5.5.2",
 "style-loader": "0.19.0",
 "to-string-loader": "1.1.5",
 "es6-shim": "0.35.3",
 "typescript": "2.4.2",
 "url-loader": "0.6.2",
 "webpack": "2.6.1",
 "webpack-hot-middleware": "2.20.0",
 "webpack-merge": "4.1.1",
 "zone.js": "0.8.12"
 },
 "devDependencies": {
 "@types/chai": "4.0.1",
 "@types/jasmine": "2.5.53",
 "chai": "4.0.2",
 "jasmine-core": "2.6.4",
 "karma": "1.7.0",
 "karma-chai": "0.1.0",
 "karma-chrome-launcher": "2.2.0",
 "karma-cli": "1.0.1",
 "karma-jasmine": "1.1.0",
 "karma-webpack": "2.0.3"
 }
}

www.EBooksWorld.ir

Getting Ready Chapter 1

[43]

It's advisable to perform a manual command-line npm update from the
project's root folder right after applying these changes to the
package.json file, in order to trigger a batch update of all the project's
NPM packages: sometimes Visual Studio doesn't update the packages
automatically and doing that using the GUI can be tricky.

For this very reason, a convenient update-npm.bat batch file has been
added to this book's source code repository on GitHub to handle that--
without manually having to type the above command.

For further reference and/or future updates, please also check the updated source code
within this book's official GitHub repository, which will always contain the latest
improvements, bug fixes, compatibility fixes and so on.

The tsconfig.json file
The tsconfig.json file is the TypeScript configuration file. Again, those who already
know what TypeScript is won't need to read all this, although the others should most likely
stay.

In less than 100 words, TypeScript is a free, open source programming language developed
and maintained by Microsoft that acts as a JavaScript superset; this means that any
JavaScript program is also a valid TypeScript program. TypeScript also compiles to
JavaScript, so it can seamlessly work on any JS-compatible browser without external
components. The main reason to use it is to overcome the syntax limitations and overall
shortcomings of JavaScript when developing large-scale applications or complex projects: in
very short terms, to ease the developer's life when he's forced to deal with non-trivial
JavaScript code.

In this project, we will definitely use TypeScript for a number of good reasons; the most
important ones of them are as follows:

TypeScript has a number of features over JavaScript, such as static typing, classes,
and interfaces. Using it in Visual Studio also gives us the chance to benefit from
the built-in IntelliSense, which is a great benefit and often leads to a remarkable
productivity burst.
For a large client-side project, TypeScript will allow us to produce a more robust
code, which will also be fully deployable anywhere a plain JavaScript file would
run.

www.EBooksWorld.ir

Getting Ready Chapter 1

[44]

Not to mention the fact that the Angular SPA template we chose is using it, hence we can
say that we got a leg in that boat already!

Jokes aside, we're not the only ones praising TypeScript; it's something acknowledged by
the Angular team itself, considering the fact that the Angular source code has been written using
TypeScript since Angular 2, as proudly announced by Microsoft in the following MDSN blog
post in March 2015:

https://blogs.msdn.microsoft.com/typescript/2015/03/05/angular-2-built-on-types
cript/

It was further emphasized by this great post by Victor Savkin (co-founder of Narwhal
Technologies and acknowledged Angular consultant) on his personal blog in October 2016:

https://vsavkin. com/ writing- angular- 2- in-typescript- 1fa77c78d8e8
Getting back to the tsconfig.json file, there's not much to say; the option values used by
the Angular SPA Template are more or less what we need to configure both Visual Studio
and TSC (the TypeScript compiler) to properly transpile the TS code files included in the
/ClientApp/ folder: however, while we're here, we can take the chance to tweak them a
little more:

{
 "compilerOptions": {
 "module": "es2015",
 "moduleResolution": "node",
 "target": "es5",
 "sourceMap": true,
 "experimentalDecorators": true,
 "emitDecoratorMetadata": true,
 "skipDefaultLibCheck": true,
 "skipLibCheck": true,
 "strict": true,
 "lib": ["es6", "dom"],
 "types": ["webpack-env"]
 },
 "exclude": ["bin", "node_modules"],
 "atom": { "rewriteTsconfig": false },
 "angularCompilerOptions": {
 "strictMetadataEmit": true
 }
}

The interesting stuff here is the angularCompilerOptions object, which can be used to
configure the behavior of the Angular AoT compiler: the strictMetadataEmit setting which
we added will tell the compiler to report syntax errors immediately rather than produce an
error log file.

www.EBooksWorld.ir

https://blogs.msdn.microsoft.com/typescript/2015/03/05/angular-2-built-on-typescript/
https://blogs.msdn.microsoft.com/typescript/2015/03/05/angular-2-built-on-typescript/
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8

Getting Ready Chapter 1

[45]

For more info regarding the new Angular AoT compiler, read the
following URL: https:/ /angular. io/guide/ aot- compiler

The webpack configuration files
Last but not least we must spend some words on the webpack.config.js and
webpack.config.vendor.js files, which play the most important role for the client-side
components of our project because of the insane amount of tasks they take care of. Let's
start with the usual question: what is Webpack to begin with? Those who know can move
forward; as for the others, keep reading.

In short, Webpack is the most used--and arguably the most powerful nowadays--module
bundler for modern JavaScript applications. Its main job is to recursively build a dependency
graph of all the NPM modules needed by the client-side application before starting it,
package them all into a small number of bundles--often only one--and then feed them (or it)
to the browser.

The benefits brought to the developer by this revolutionary approach are simply too many
and too great to be summarized in a short paragraph like this, as they will require too much
space to be properly explained. We'll just scratch the surface by mentioning the most
important ones:

Dramatically reduces the HTTP requests to load the client-side assets in normal
scenarios, that is, when no package managers, task runners, or concatenation
strategies are being used
Dramatically reduces the chance of variable conflicts when using standard
concatenation strategies such as the .concat().uglify().writeTo() chains
featured by Gulp, Grunt, and the likes
Dramatically increases the control over static files, as it can be configured to
skip all the "dead" JS/CSS and even image (!) assets, reduce/optimize the size of
CSS files even before minifying them, easily switch between CDNs URLs and
locally hosted files, and so on

All these good things are real, as long as the tool is properly configured, which brings us to
the only real bad thing about Webpack; it's not easy to set it up properly, especially for a
newcomer, for a number of good reasons--the documentation has been greatly improved
within the past 2 years, yet it's still not as good as other projects; the configuration file is
quite hard to read and the syntax might be quite confusing at times.

www.EBooksWorld.ir

https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler

Getting Ready Chapter 1

[46]

Luckily enough, despite the steep learning curve, there's a gigantic amount of established
examples, boilerplate projects, and code snippets available through the web that can be
easily adapted to be used within most projects. The Angular SPA Template we've chosen is
no exception, as it comes with two great configuration files - webpack.config.js and
webpack.config.vendor.js - that already do all we need: the former one will be used to
construct the bundle containing the application code, while the latter will bundle all the
required vendor dependencies.

If we open them, we can see how they're both set up to build three main configuration
objects:

The sharedConfig object for the assets that will be used within either the client-
side and server-side bundles
The clientBundleConfig object used to bundle together the client-side assets
for running-in browsers
The serverBundleConfig object used to bundle together the server-side
(prerendering) assets

The former section acts as a prerequisite bundle that gets merged with the other two before
they are deployed within the /wwwroot/ folder.

If you want to know more about Webpack, we strongly suggest you to
take a look at the official documentation, available at https:/ /webpack.
js. org/ .

Also, it's worth noting that Webpack v2.x introduced a built-in validator
for the config files that will greatly help the developer to track most
coding errors; this new feature is extremely handy for those who want to
update/improve the existing configuration files.

For specific instruction on how to properly set up Webpack for Angular,
it's also advisable to read the https:/ /angular. io/ docs/ ts/latest/
guide/ webpack. html article from the official Angular documentation.

Do you remember the UseWebpackDevMiddleware() method we found in the
Startup.cs file a short while ago? Now that we shed some light on Webpack, we can
bring back the topic and easily explain what it was.

That middleware, only available when the web application is running in development mode,
will intercept any request that will match files built by Webpack, dynamically build those
files on demand and serve them to the browser without writing them to disk. Basically, it
will act as an in-memory webhook.

www.EBooksWorld.ir

https://webpack.js.org/
https://webpack.js.org/
https://webpack.js.org/
https://webpack.js.org/
https://webpack.js.org/
https://webpack.js.org/
https://webpack.js.org/
https://webpack.js.org/
https://webpack.js.org/
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html
https://angular.io/docs/ts/latest/guide/webpack.html

Getting Ready Chapter 1

[47]

Needless to say, such behavior will bring some benefits during development, such as these:

No need to run Webpack manually or set up file watchers: If you've been using
task runners, you know how difficult it can be to have these always up in terms
of resources
The browser will always receive up-to-date built output: No more outdated
code due to caching issues or watchers not being up
Overall speed increase (at least arguably): The built artifacts should be served
extremely quickly since the active Webpack instance should keep their partial
compilation states already cached in memory

For further information regarding the Webpack Dev Middleware, we
suggest you to read the official documentation on the
Microsoft.AspNetCore.SpaServices GitHub repository, available at
https:/ /github. com/ aspnet/ JavaScriptServices/ tree/ dev/src/
Microsoft. AspNetCore. SpaServices#webpack- dev- middleware.

Updating the webpack.config.js file
Switching from Angular 4 to Angular 5 requires to perform a manual update to the
webpack.config.js file to replace the previous AotPlugin to the new
AngularCompilerPlugin: both of them are Webpack plugins that perform an AoT
compilation of Angular components and modules. The former has been used since Angular
2 and up to Angular 4, while the latter has been released to work with Angular 5.

Open the webpack.config.js file with the Visual Studio editor and update line 4 in the
following way (updated code highlighted):

const AotPlugin = require('@ngtools/webpack').AngularCompilerPlugin;

Right after that, scroll down to the sharedConfig : module : rules section and replace
the simple test: /\.ts$/ rule with the following one:

[...]

module: {
 rules: [
 { test: /(?:\.ngfactory\.js|\.ngstyle\.js|\.ts)$/, [...]

[...]

www.EBooksWorld.ir

https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware
https://github.com/aspnet/JavaScriptServices/tree/dev/src/Microsoft.AspNetCore.SpaServices#webpack-dev-middleware

Getting Ready Chapter 1

[48]

At the time of writing these steps are required because the template
package still built around Angular 4 and AotPlugin. However, this will
most likely change in the near future: if the AngularCompilerPlugin is
already present in the webpack.config.js file we can skip this
paragraph and go ahead.

Patching the webpack.config.vendor.js file
Before going further, the webpack.config.vendor.js file needs to be updated as well in
order to fix a nasty bug that would prevent it from working as expected with Angular 5.
Open that file and add the following line to the already existing sharedConfig.plugin
array in the following way (new line highlighted):

[...]

plugins: [
 new webpack.ProvidePlugin({ $: 'jquery', jQuery: 'jquery' }), // Maps
these identifiers to the jQuery package (because Bootstrap expects it to be
a global variable)
 new webpack.ContextReplacementPlugin(/\@angular\b.*\b(bundles|linker)/,
path.join(__dirname, './ClientApp')), // Workaround for
https://github.com/angular/angular/issues/11580
 new
webpack.ContextReplacementPlugin(/angular(\\|\/)core(\\|\/)@angular/,
path.join(__dirname, './ClientApp')), // Workaround for
https://github.com/angular/angular/issues/14898
 new webpack.ContextReplacementPlugin(/\@angular(\\|\/)core(\\|\/)esm5/,
path.join(__dirname, './ClientApp')), // Workaround for
https://github.com/angular/angular/issues/20357
 new webpack.IgnorePlugin(/^vertx$/) // Workaround for
https://github.com/stefanpenner/es6-promise/issues/100
]

[...]

For further info regarding this fix, you can refer to the relevant GitHub issue at the
following URL: https:/ / github. com/ angular/ angular/ issues/ 20357

At the time of writing, this patch has to be done manually; however, it's
more than likely that it will be included in a future release of the template
package, together with the other GitHub issues already present. Needless
to say, if that's the case we can skip this paragraph and go ahead.

www.EBooksWorld.ir

https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357
https://github.com/angular/angular/issues/20357

Getting Ready Chapter 1

[49]

Why use a dynamic module bundler?
Before moving ahead, it can be useful to explain why we just did so much hard work with a
dynamic module packer/bundler such as Webpack instead of dropping a bunch of links
pointing to all the relevant JS files--either hosted locally or, even better, through a high-
performance CDN--right from the beginning.

To keep it simple, we did that because it's the only way to efficiently handle any modern
JavaScript modular system such as Angular, RxJS, and also all applications based upon
them, including the one we're working on right now.

What's a modular system exactly? It's nothing more than a package, library, or application
split into a series of smaller files depending on each other using reference statements such
as import and require. ASP.NET, Java, Python, and most compilation-based languages
have it; that's not the case of script-based languages such as PHP and JavaScript, which are
doomed to preload everything in memory before being able to determine whenever they'll
be using it or not. All these change with the introduction of ECMAScript 6 (also known as
ES6), which brings a full-featured module and dependency management solution for
JavaScript.

Module bundlers such as Webpack pack a number of relevant JS/CSS resources at build
time, including most ES6-polyfills for browsers that don't support it already, allowing us to
get that module system working in modern browsers. Since both Angular and RxJS
leverage such an approach, implementing it within our project will result in a huge
performance gain.

We chose Webpack over other module packers, bundlers, and/or loaders (such as
SystemJS) because of its great flexibility, as it provides a great way to properly package our
application (concat, uglify, and the likes) with the additional knowledge given by its
dependency graph. Additionally, Webpack received a great level of support in .NET Core 2,
thanks to the introduction of the Microsoft ASP.NET Core JavaScript Services project and
the Webpack Middleware, as we've already seen in this paragraph, making it the most
logical choice when developing with .NET Core and Angular.

Refreshing the Webpack-generated files
To force Webpack to re-compile the vendor configuration file taking into account the fix we
applied early on, we need to run the following command-line instruction from the project's
root folder:

> node node_modules/webpack/bin/webpack.js --config
webpack.config.vendor.js

www.EBooksWorld.ir

Getting Ready Chapter 1

[50]

A convenient update-webpack.bat batch file has been added to this
book's source code repository on GitHub to handle that--without
manually having to type the above command.

Alternatively, we can also delete the /wwwroot/dist/ folder to force a full re-compilation
upon the first project build.

It's generally wise to recompile the vendor configuration file everytime whenever we
perform a task that could impact the generated bundles, such as: update the package.json
file, perform a manual npm update from the command-line, alter the webpack.config.js
configuration file, and so on.

The server-side code
Now that we've understood the meaning of the root configuration files, we can take a look
at the Server-Side code shipped with the Angular SPA Template. As we already saw, we're
talking about the contents of the /Controllers/ and /Views/ folders; let's start with the
former.

Controllers/HomeController.cs
If we remember what we've seen within the Startup.cs file, we already know that it is the
controller that all the requests not pointing to static files will be routed to. In other words,
HomeController will handle all the requests that point (or get redirected to) our Single-Page
Application first landing page, which we'll call Home View from now on.

More specifically, these requests will be handled by the Index action method. If we open
the HomeController.cs file, we can see that the method does indeed exist, although being
extremely lightweight--a single line of code that just returns the default Index View. That's
more than enough; there's nothing to add there, as this is precisely what we need for a
Single-Page Application entry page--just serve the Home View and let the client-side
framework, Angular via Webpack, in our scenario, handle the rest.

The only exception for such behavior will be when we need to route the user away from the
SPA, for example, when he's hitting an unrecoverable error. For these kinds of scenarios, an
Error() action method was also implemented within the HomeController, which returns
a dedicated Error View; however, before doing that, it will add some basic debug
information to the ViewData collection (the current request unique identifier). This level of
error handling is far from ideal, but we can live with it for the time being.

www.EBooksWorld.ir

Getting Ready Chapter 1

[51]

Controllers/SampleDataController.cs
The HomeController is a perfect example of a standard MVC Controller returning Views;
conversely, the SampleDataController.cs is only returning structured JSON data, thus
making it conceptually closer to the APIControllers featured by the ASP.NET Web API
framework. Luckily enough, the new MVC 6 merged the best of both worlds into one,
which means that there's no difference between these two kinds of controllers anymore;
we're free to return any content we want from within the same controller class.

That said, there's no need to dig much into this controller's code for now; we'll do that soon
enough, starting from Chapter 2, Backend with .NET Core. Let's just take a look at the
resulting JSON data by issuing a couple of requests.

Start the application in debug mode by clicking on the Run button or pressing the F5
keyboard key; then, replace the /home part of the address bar URL with
/api/SampleData/WeatherForecasts. The full URL should be just like the following:

http://localhost:<port>/api/SampleData/WeatherForecasts

We should be able to see something like this:

www.EBooksWorld.ir

Getting Ready Chapter 1

[52]

These are the raw (sample) data elements coming out from the server. Now, point the URL
back to /home, which will bring us back to the Home View. From there, click on the Fetch
data link from the left menu to get the following:

These are the same data elements mentioned earlier, fetched and served by Angular
through the sample SPA provided by our current project template. All the GUI elements--
menu links, page title, and labels, HTML code, CSS styles, and so on--are inside the
/ClientApp/ folder; the server-side code only provides the raw data, just like it's meant to
be.

The /Views/ folder
A quick look at the /Views/ folder is more than enough, as the view files merely contain
the least possible amount of required code:

A minimalistic HTML5 skeleton to host the <head> and <body> elements, along
with some child elements, such as the <title> page
Some <script> and <link> elements pointing to the local paths where the
Webpack bundles will be built
The <app> element, which is the DOM placeholder used by Angular to inject the
SPA into

www.EBooksWorld.ir

Getting Ready Chapter 1

[53]

Those who are used to the ASP.NET MVC and Razor convention can easily see how the
template did a good job in putting all the common HTML structure in the Layout view (the
_Layout.cshtml file), leaving the Index and Error views as lightweight as possible. The
result is stunning and also very easy to read--the whole HTML base structure is comprised
within a few lines of Razor and HTML code.

The client-side code
Last but not least, let's pay a visit to the sample Angular app and see how it works. Rest
assured, we won't stay for long; we just want to take a glimpse of what's under the hood.

By expanding the /ClientApp/ directory, we can see that there are three subfolders and
two files. However, the only thing that we should take into consideration, for the time
being, is the /ClientApp/app/ folder, along with all its subfolders; this is the place
containing all the Angular TypeScript files. In other words, the whole source code of our
client-side application is meant to be put here.

Before going there, let's spend a couple words on its siblings:

The /ClientApp/dist/ folder and the boot.server.ts file are both used by
Webpack to build the server bundles that will be used to enable the Angular
Universal's Server-Side Rendering (SSR), which has been adopted and
implemented by .NET Core 2.0 within the Microsoft ASP.NET Core JavaScript
Services package. We'll get back to it later on; however, we can safely ignore
them both for now.
The /Client/test/ folder is where we'll put our unit tests; we can entirely skip
it for now and get back once we're ready.
The boot.browser.ts file contains the first code that will be executed by the
browser, thus acting as the client-side bootstrapper of our Angular application; if
we open it and take a look at the code, we can see how it imports the required
packages to perform the bootstrap--including the AppModule from the
/ClientApp/app/ folder--and then perform the app initialization within the
<app> HTML element, also using different behaviors for development and
production. Although it plays a very important role, we won't need to change its
contents for a while; hence it's better to leave it as it is for now and focus on the
application source code instead.

www.EBooksWorld.ir

Getting Ready Chapter 1

[54]

If you're curious about Angular Universal and Server-Side Rendering
and want to know more about them, we strongly suggest you to start with
reading this good article by Burak Tasci:

https:/ /medium. com/ burak- tasci/ angular- 4- with- server- side-
rendering- aka- angular- universal- f6c228ded8b0

Although not diving deep into these concepts, it does a good job of
explaining the core concept of this innovative approach. As soon as you
get the basics, you can take a look at the real deal here:

https:/ /universal. angular. io/
https:/ /github. com/ aspnet/ JavaScriptServices

The /ClientApp/app/ folder
The /ClientApp/app/ folder loosely follows the Angular folder structure best practices,
thus containing the following:

A /component/ folder, containing all the Angular components. We will talk
more about them in Chapter 3, Frontend with Angular; for now, we'll just say that
these are the building UI blocks of any Angular application, to the point that we
can say that it is basically a tree of components working together. Each
component has its very own namespace, which is represented with a subfolder,
and comes with the following:

A required TypeScript file, which follows the
<componentName>.component.ts naming conventions
An optional HTML file containing the component template, or (in
other words) its UI layout structure
An optional CSS file to handle the UI styling
Other optional files, such as the counter.component.spec.ts in
the /components/counter/ folder, which can be used whenever
we need to split the component code into multiple files for
readability or code reuse purposes

Three TypeScript files: app.module.browser.ts, app.module.server.ts,
and app.module.shared.ts containing the Angular root module class, also
known as the AppModule.

www.EBooksWorld.ir

https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://medium.com/burak-tasci/angular-4-with-server-side-rendering-aka-angular-universal-f6c228ded8b0
https://universal.angular.io/
https://universal.angular.io/
https://universal.angular.io/
https://universal.angular.io/
https://universal.angular.io/
https://universal.angular.io/
https://universal.angular.io/
https://universal.angular.io/
https://universal.angular.io/
https://universal.angular.io/
https://github.com/aspnet/JavaScriptServices
https://github.com/aspnet/JavaScriptServices
https://github.com/aspnet/JavaScriptServices
https://github.com/aspnet/JavaScriptServices
https://github.com/aspnet/JavaScriptServices
https://github.com/aspnet/JavaScriptServices
https://github.com/aspnet/JavaScriptServices
https://github.com/aspnet/JavaScriptServices
https://github.com/aspnet/JavaScriptServices
https://github.com/aspnet/JavaScriptServices
https://github.com/aspnet/JavaScriptServices

Getting Ready Chapter 1

[55]

If you already have some Angular experience, you most likely know what the AppModule is
and how it works. If you don't, the only thing you need to understand is that it serves as the
main application entry point, the one that gets bootstrapped by the boot file(s) we talked
about earlier.

Here's a schema of the standard Angular Initialization Cycle that will help us better
visualize how it works:

As we can see, the boot.ts file bootstraps the app.module.ts (AppModule), which then
loads the app.component.ts file (AppComponent); the latter will then load all the other
components whenever the application needs them.

We can find such structure in any Angular application, it being the default initialization
behavior enforced by the Angular.io project developers. However, the Angular SPA
template we've chosen features a slightly more complex scenario because, as we said earlier,
it also supports Server-Side Rendering; for this very reason, it needs to take care of the
server-side part as well. This is why we got two very different boot files --boot.browser.ts
and boot.server.ts, respectively--to load our app into the browser and to support
Server-Side Rendering, and also two different AppModule classes to boot: the
app.module.browser.ts and app.module.server.ts, both of them including the
common app.module.shared.ts file.

www.EBooksWorld.ir

Getting Ready Chapter 1

[56]

Here's the improved schema when using SSR:

All these files will then be processed by Webpack and built in the /wwwroot/dist/main-
client.js and /ClientApp/dist/main-server.js files, which will contain the
"bundled" version of our Angular app, respectively, for Client-Side and Server-Side
rendering.

That's about it, at least for now. If you feel like you're still missing something here, don't
worry, we'll be back there soon enough to understand all of this better.

Getting to work
Now that we've got a general picture of our new project, it's time to do something. Let's
start with two simple exercises that will also come handy in the future: the first one of them
will involve the server-side aspects of our application, while the latter will be performed on
the client-side. Both will help us acknowledge whether we really understood everything
there is to know before proceeding to the subsequent chapters.

Static file caching
Let's start with the server-side task. Do you remember the /wwwroot/test.html file we
added when we wanted to check how the StaticFiles middleware works? We will use it
to do a quick demonstration of how our application will internally cache static files.

The first thing we have to do is to run the application in debug mode (by clicking on the
Run button or pressing the F5 key) and put the following URL in the address line, so we
can have another good look at it.

www.EBooksWorld.ir

Getting Ready Chapter 1

[57]

Right after that, without stopping the application, open the test.html file and add the
following lines to its existing content (new lines are highlighted):

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Time for a test!</title>
</head>
<body>
 Hello there!

 This is a test to see if the StaticFiles middleware is working
properly.

 IT DOES, BUT THE FILES ARE CACHED ON CLIENTS BY DEFAULT!
</body>
</html>

Save the file, then go back to the browser address bar and press Enter again to issue another
HTTP request to the test.html file. Ensure that you don't use F5 or the refresh button, as it
will force a page refresh from the server, which is not what we want; you will see that the
preceding changes won't be reflected by your browser, which means that you hit a client-
cached version of that page.

Caching static files on the clients can be a good thing in production servers, but is definitely
annoying during development. Luckily enough, as we said earlier, the Webpack
middleware will automatically fix this issue for all the TypeScript files, and also for all the
static assets we'll serve through Webpack itself. However, what about the other ones? We'll
most likely have some static HTML files, favicons, image files, audio files, or anything else
that we would like to be directly served by the web server.

Is there a way to fine-tune the caching behavior for static files? If so, can we also set up
different behaviors for the debug/development and release/production scenarios?

The answer is yes for both questions; let's see how we can do that.

A blast from the past
Back in ASP.NET 4, we could easily disable static files caching by adding some lines to our
main application's Web.config file, such as the following:

 <caching enabled="false" />
<staticContent>
 <clientCache cacheControlMode="DisableCache" />

www.EBooksWorld.ir

Getting Ready Chapter 1

[58]

</staticContent>
<httpProtocol>
 <customHeaders>
 <add name="Cache-Control" value="no-cache, no-store" />
 <add name="Pragma" value="no-cache" />
 <add name="Expires" value="-1" />
 </customHeaders>
</httpProtocol>

That would be it; we can even restrict such behavior to the debug environment by adding
these lines to the Web.debug.config file.

We can't use the same approach in .NET Core, as the configuration system has been
redesigned from scratch and is now quite different from the previous versions; as we said
earlier, the Web.config and Web.debug.config files have been replaced by the
appsettings.json and appsettings.Development.json files, which also work in a
completely different way. Now that we understood the basics, let's see whether we can
solve that caching issue by taking advantage of the new configuration model.

Back to the future
The first thing to do is to understand how we can modify the default HTTP headers for
static files; as a matter of fact, we can do that by adding a custom set of options to the
app.UseDefaultFiles() method call in the Startup.cs file that adds the StaticFiles
middleware to the HTTP request pipeline.

In order to do that, open Startup.cs, scroll down to the Configure method, and replace
that single line with the following code (new/modified lines are highlighted):

app.UseStaticFiles(new StaticFileOptions()
{
 OnPrepareResponse = (context) =>
 {
 // Disable caching for all static files.
 context.Context.Response.Headers["Cache-Control"] = "no-cache,
 no-store";
 context.Context.Response.Headers["Pragma"] = "no-cache";
 context.Context.Response.Headers["Expires"] = "-1";
 }
});

www.EBooksWorld.ir

Getting Ready Chapter 1

[59]

That wasn't hard at all; we just added some additional configuration values to the method
call, wrapping them all within a dedicated StaticFileOptions object instance.

However, we're not done yet; now that we learned how to change the default behavior, we
just need to change these static values with some convenient references pointing to the
appsettings.Development.json file. To do that, we can add the following key/value
section to the appsettings.Development.json file in the following way (new lines
highlighted):

 {
 "Logging": {
 "IncludeScopes": false,
 "Debug": {
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 },
 "Console": {
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
 },
 "StaticFiles": {
 "Headers": {
 "Cache-Control": "no-cache, no-store",
 "Pragma": "no-cache",
 "Expires": "-1"
 }
 }
}

Then, change the preceding Startup.cs code accordingly (modified lines highlighted):

 app.UseStaticFiles(new StaticFileOptions()
{
 OnPrepareResponse = (context) =>
 {
 // Disable caching for all static files.
 context.Context.Response.Headers["Cache-Control"] =
 Configuration["StaticFiles:Headers:Cache-Control"];
 context.Context.Response.Headers["Pragma"] =
 Configuration["StaticFiles:Headers:Pragma"];

www.EBooksWorld.ir

Getting Ready Chapter 1

[60]

 context.Context.Response.Headers["Expires"] =
 Configuration["StaticFiles:Headers:Expires"];
 }
});

Ensure that you add these values to the non-development version of the
appsettings.json file as well, otherwise the application won't find them (when executed
outside a development environment) and throw an error.

Since this will most likely happen in a production environment, we can take the chance to
relax these caching policies a bit:

 {
 "Logging": {
 "IncludeScopes": false,
 "Debug": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "Console": {
 "LogLevel": {
 "Default": "Warning"
 }
 }
 },
 "StaticFiles": {
 "Headers": {
 "Cache-Control": "max-age=3600",
 "Pragma": "cache",
 "Expires": null
 }
 }
}

That's about it. Learning how to use this pattern is strongly advisable, as it's a great and
effective way to properly configure our application's settings.

www.EBooksWorld.ir

Getting Ready Chapter 1

[61]

Testing it up
Let's see whether our new caching strategy is working as expected. Run the application in
debug mode, and then issue a request to the test.html page by typing the following URL
in the browser address bar:

http://localhost:<port>/test.html

We should be able to see the updated contents with the phrase we wrote earlier; if not, press
F5 from the browser to force a page retrieval from the server:

Now, without stopping the application, edit the test.html page and update its contents in
the following way (updated lines are highlighted):

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Time for a test!</title>
 </head>
 <body>
 Hello there!

 This is a test to see if the StaticFiles middleware is working
 properly.

 It seems like it works, and now it doesn't even cache those files!
</body>
</html>

www.EBooksWorld.ir

Getting Ready Chapter 1

[62]

Right after that, go back to the browser, select the address bar, and press Enter; again,
ensure that you did not press the refresh button or the F5 key, or you'll have to start over. If
everything worked properly, we will immediately see the updated contents on screen:

We did it! Our server-side task was successfully completed.

The strongly-typed approach(es)
The approach that we chose to retrieve the appsettings.json configuration values makes
use of the generic IConfiguration object, which can be queried using the preceding string-
based syntax. This approach is rather practical; however, if we want to retrieve this data in a
more robust way, for example, in a strongly-typed fashion, we can--and should--implement
something better. Although we won't dive deeper into that within this book, we can suggest
reading the following great articles showing three different approaches to achieve this
result:

The first one, written by Rick Strahl, explains how to do that using the IOptions<T>
provider interface:

https://weblog.west- wind. com/ posts/ 2016/ may/ 23/strongly- typed- configuration-
settings-in-aspnet- core

The second, by Filip W, explains how to do that with a simple POCO class, thus avoiding the
IOptions<T> interface and the extra dependencies required by the preceding approach:

https://www.strathweb. com/ 2016/ 09/ strongly- typed- configuration- in-asp- net- core-
without-ioptionst/

www.EBooksWorld.ir

https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/

Getting Ready Chapter 1

[63]

The third, by Khalid Abuhakmeh, shows an alternative way to use a standard POCO class and
directly register it as a Singleton with the ServicesCollection, while also (optionally)
shielding it from unwanted modifications due to development mistakes:

https://rimdev.io/ strongly- typed- configuration- settings- in- asp-net- core- part-
ii/

All of these approaches were meant to work with .NET Core 1.x; however, they can still be
very usable in .NET Core 2. That said, if we were to choose, we would probably go with the
latter, as we found it to be the most clean and clever one.

Client app cleanup
Now that our server-side journey has come to an end, it's time to challenge ourselves with a
quick client-side exercise. Don't worry, it will be just a rather trivial demonstration of how
we can update the Angular source code that lies within the /ClientApp/ folder to better
suit our needs. More specifically, we will remove all the stuff we don't need from the
sample Angular app shipped with our chosen Angular SPA Template and replace them
with our own content.

We'll never say it enough, so it's worth repeating it again. The sample
source code explained in the following paragraphs is taken from the MVC
ASP.NET Core with Angular project template originally shipped with
Visual Studio 2017 v15.3; since it might be updated in the future, it's
important to check it against the code published in this book's GitHub
repo. If you find relevant differences between the book code and yours,
feel free to get the one from the repository and use that instead.

Trimming down the component list
If we navigate through the /ClientApp/app/components/ folder, we can take another
close look at the components that are currently in place:

The /app/ folder contains the files related to the AppComponent, which is the
main application component file; it's the one in charge to dynamically load all the
other components, hence we definitely want to keep it.
The /home/ folder contains the files related to HomeComponent, which hosts the
Home View contents. Do you remember the introductory text shown on the
browser when we run the project? This is where we can find (and update) it. Our
SPA will most likely need a home as well, so it's better to keep it too.

www.EBooksWorld.ir

https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/

Getting Ready Chapter 1

[64]

The /navmenu/ folder contains the files related to NavMenuComponent, which
handles the layout and the functionalities of the navigation menu to the left. Even
if we will make a lot of changes to this menu, keeping it as a working base would
be a good idea.

The /counter/ and /fetchdata/ folders contain two sample components, which
demonstrate how to implement two very common Angular features: respectively, affect the
DOM in real time and fetch data from the web server. Although they can still use them as
valuable code samples, keeping them within our client code will eventually confuse us,
hence it's better to move these two folders outside the project - or just entirely delete them -
to prevent the Visual Studio TypeScript compiler from messing with the .ts files contained
there.

However, as soon as we do that, the Visual Studio Error List view will immediately raise
two blocking TypeScript-based issues:

Error TS2307 (TS) Cannot find module
'./components/fetchdata/fetchdata.component'.
Error TS2307 (TS) Cannot find module
'./components/counter/counter.component'.

Both errors will point to the app.module.shared.ts file, which, as we already know,
contains the references of all the TypeScript files used by our Angular application and
required by either the client (for browser rendering) and the server (to enable server-side
rendering). If we open the file, we can clearly see where the problem is:

www.EBooksWorld.ir

Getting Ready Chapter 1

[65]

To fix it, we need to remove the offending references. However, when we do that, the
following TypeScript errors will be raised:

Error TS2304 (TS) Cannot find name 'CounterComponent'.
Error TS2304 (TS) Cannot find name 'FetchDataComponent'.
Error TS2304 (TS) Cannot find name 'CounterComponent'.
Error TS2304 (TS) Cannot find name 'FetchDataComponent'.

All these issues will also point to the app.module.shared.ts file, which now has four
names without a valid reference:

Remove all the four lines containing the errors to fix them.

Once done, our updated AppModuleShared file should look like this:

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { RouterModule } from '@angular/router';

www.EBooksWorld.ir

Getting Ready Chapter 1

[66]

import { AppComponent } from './components/app/app.component';
import { NavMenuComponent } from './components/navmenu/navmenu.component';
import { HomeComponent } from './components/home/home.component';

@NgModule({
 declarations: [
 AppComponent,
 NavMenuComponent,
 HomeComponent
],
 imports: [
 CommonModule,
 HttpModule,
 FormsModule,
 RouterModule.forRoot([
 { path: '', redirectTo: 'home', pathMatch: 'full' },
 { path: 'home', component: HomeComponent },
 { path: '**', redirectTo: 'home' }
])
]
})
export class AppModuleShared {
}

Since we're here, those who don't know how Angular works should spend a couple of
minutes to understand how an AppModule class actually works. We already know why we
got three files instead of one--to allow SSR--but we never talked about the source code.

The AppModule class(es)
Angular Modules, also known as NgModules, have been introduced in Angular 2 RC5 and
are a great and powerful way to organize and bootstrap any Angular application; they help
developers consolidate their own set of components, directives, and pipes into reusable
blocks.

Every Angular application since v2 RC5 must have at least one module, which is
conventionally called root module and thus given the AppModule class name.

AppModule is usually split into two main code blocks:

A list of import statements, pointing to all the references (in the form of TS files)
required by the application.

www.EBooksWorld.ir

Getting Ready Chapter 1

[67]

The root NgModule declaration, which--as we can see--is basically an array of
named arrays, each one containing a set of Angular objects that serves a common
purpose: directives, components, pipes, modules, providers, and so on. The last
one of them contains the component we want to bootstrap, which in most
scenarios--including ours--is the main application component, the
AppComponent.

Updating the NavMenu
If we run our project in debug mode, we can see that our code changes don't prevent the
client app from booting properly. We didn't break it this time, yay! However, if we try to
use the navigation menu to go to the Counter and/or Fetch data, nothing will happen; this
is hardly a surprise, since we just moved these components out of the way. To avoid
confusion, let's remove these links from the menu as well.

Open the /ClientApp/app/components/navmenu/navmenu.component.html file and
delete the offending lines. Once done, the updated source code should look as follows:

<div class='main-nav'>
 <div class='navbar navbar-inverse'>
 <div class='navbar-header'>
 <button type='button' class='navbar-toggle' data-
 toggle='collapse' data-target='.navbar-collapse'>
 Toggle navigation

 </button>
 <a class='navbar-brand' [routerLink]="
 ['/home']">TestMakerFree
 </div>
 <div class='clearfix'></div>
 <div class='navbar-collapse collapse'>
 <ul class='nav navbar-nav'>
 <li [routerLinkActive]="['link-active']">
 <a [routerLink]="['/home']">

 Home

 </div>
 </div>
</div>

www.EBooksWorld.ir

Getting Ready Chapter 1

[68]

While we're here, let's take the chance to get rid of something else. Do you remember the
Hello, World! introductory text shown by the browser when we firstly ran the project? Let's
change it with our own content.

Open the /ClientApp/app/components/home/home.component.html file and replace
its whole content with the following:

<h1>Greetings, stranger!</h1>
<p>This is what you get for messing up with .NET Core and Angular.</p>

Save, run the project in debug mode and get ready to see the following:

The Counter and Fetch data menu links are gone, and our Home View welcome text
couldn't be sleeker.

That's about it for now. Rest assured, we can easily do the same with other components and
completely rewrite their text, including the navigation menu; we'll do that in the following
chapters, where we'll also update the UI layout, add new components, and so on. For the
time being, understanding how easy it is to change the content--and also how fast Webpack
will handle our modifications--is good enough.

References
Native Web Apps, Henrik Joreteg, 2015
Manifesto for Agile Software Development, Kent Beck, Mike Beedle & many others,
2001

www.EBooksWorld.ir

Getting Ready Chapter 1

[69]

Suggested topics
SCRUM, Extreme Programming, MVC and MVVM architectural patterns, ASP.NET Core,
.NET Core, Roslyn, CoreCLR, RyuJIT, Single-Page Application (SPA), NuGet, NPM,
ECMAScript 6, Bower, Webpack, SystemJS, RxJS, Cache-Control, HTTP Headers, .NET
Middleware, Angular Universal, Server-Side Rendering (SSR).

Summary
So far so good; we just set up a working skeleton of what's about to come. Before moving
further, let's do a quick recap of what we just did in this chapter.

We briefly described our platforms of choice--ASP.NET Core and Angular--and
acknowledged their combined potential in the process of building a modern web
application. Then, we chose a Native Web Application with a Single-Page Application
approach as the ideal field of choice for testing what our frameworks are able to do (and
how to do it).

In an attempt to reproduce a realistic production-case scenario, we also went through the
most common SPA features, first from a technical point of view, and then putting ourselves
in the shoes of a typical Product Owner and trying to enumerate their expectations. We also
made a quick list of everything we need to put together a potentially shippable product
featuring all the expected goodies.

Eventually, we did our best to properly set up our development environment; we chose to
do that using the default Angular SPA Template shipped with Visual Studio, thus adopting
the standard ASP.NET Core approach. Right after that, we also spent some valuable time to
look up and understand its core components, how they're working together, and their
distinctive roles: the root configuration files, the server-side code, and the client-side code.

Finally, we performed some quick tests to see whether we're ready to hold our ground
against what's coming next: setting up an improved request-response cycle, building our
own Controllers, defining additional routing strategies, and more.

www.EBooksWorld.ir

2
Backend with .NET Core

Now that we have our skeleton up and running, it's time to explore the client-server
interaction capabilities of our frameworks; to put it in other words, we need to understand
how Angular will be able to fetch data from .NET Core using its brand new MVC and web
API all-in-one structure.

We won't be worrying about how will .NET Core retrieve this data, be it from session
objects, data stores, DBMS, or any possible data source; we will come to that later on. For
now, we'll just put together some sample, static data in order to understand how to pass
them back and forth using a well-structured, highly-configurable, and viable interface,
following the same approach used by the SampleDataController shipped with the Angular
SPA Template that we chose in Chapter 1, Getting Ready.

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[71]

The data flow
As you might already know, a Native Web App following the Single-Page Application
approach will roughly handle the client-server communication in the following way:

In our specific scenario, the index.html role is covered by the /Views/Index.cshtml
view file that is returned by the Index action method within the HomeController;
however, the base concept is still the same.

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[72]

In case you're wondering about what these Async Data Requests actually are, the answer is
simple--everything, as long as it needs to retrieve data from the server, which is something
that most of the common user interactions will normally do, including (yet not limited to)
pressing a button to show more data or to edit/delete something, following a link to another
action view, submitting a form, and so on. That is, unless the task is so trivial--or it involves
a minimal amount of data--that the client can entirely handle it, which means that it already
has everything it needs. Examples of such tasks are show/hide element toggles, in-page
navigation elements (such as internal anchors), and any temporary job requiring to click on
a confirmation or save button to be pressed before being actually processed.

The preceding picture shows, in a nutshell, what we will do; define and implement a
pattern to serve these JSON-based, server-side responses our application will need to
handle the upcoming requests. Since we've chosen to develop an application featuring a
strongly data-driven application pattern, we'll surely need to put together a bunch of
common CRUD-based requests revolving around a defined set of objects that will represent
our various entries.

For those who never heard of it, CRUD is an acronym for create, read,
update, and delete, the four basic functions of persistent storage. The term
became popular, thanks to James Martin, who mentioned it in his 1983
book Managing the Database Environment, and it's commonly used in
computer programming contexts since then.

If we consider the master plan we put down in Chapter 1, Getting Ready, we can already
define most of the entries we will need. We'll definitely have Quizzes, which will be the
main entities of our application; they will contain one or more Questions, each one with a
list of Answers, and a number of possible Results. Eventually, we'll most likely add Users
to the loop, so we'll be able to implement an authentication/authorization mechanism that
will be used by our application to determine who can view/edit/delete what.

For each one of them, we'll develop a set of requests that will address some common tasks
such as display a list of entries of the same type, view/edit an entry's data, and delete an
entry.

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[73]

Before moving ahead, let's take a more detailed look at what happens between any of these
Data Requests issued by the client and JSON Responses sent out by the server, that is,
what's usually called the Request/Response flow:

As we can see, in order to respond to any client-issued Data Request, we need to set up a
server-side Controller featuring the following capabilities:

Read and/or write data using the Data Access Layer
Organize these data in a suitable, JSON-serializable ViewModel
Serialize the ViewModel and send it to the client as a Response

Based on these points, we can easily conclude that the ViewModel is the key item here. That's
not always correct, it could or couldn't be the case, depending on the project we're building.
To better clarify that, before going ahead, we should definitely spend a couple of words on
the ViewModel object itself.

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[74]

The role of ViewModel
We all know that a ViewModel is a container-type class that represents only the data we
want to display on our web page. In any standard MVC-based ASP.NET application, the
ViewModel is instantiated by the Controller in response to a GET request using the data
fetched from the Model; once built, the ViewModel is passed to the View, where it's used to
populate the page contents/input fields.

The main reason for building a ViewModel instead of directly passing the Model entities is
that it only represents the data that we want to use, and nothing else; all the unnecessary
properties that are in the model domain object will be left out, keeping the data transfer as
lightweight as possible. Another advantage is the additional security it gives, since we can
protect any field from being serialized and passed through the HTTP channel.

In a standard Web API context, where the data is passed using conventions via serialized
formats such as JSON or XML, the ViewModel can be easily replaced by a JSON-serializable
dynamic object created on the fly, such as this:

var response = new {
 Id = "1",
 Title = "The title",
 Description = "The description"
};

This approach is often viable for small or sample projects, where creating one (or many)
ViewModel classes can be a waste of time. That's not our case, though conversely, our project
will greatly benefit from having a well-defined, strongly-typed ViewModel structure, even if
they will all be eventually converted into JSON strings.

Our first ViewModel
Now that we have a clear vision of the request/response flow and its main actors, we can
start building something. Our client doesn't even exist yet, but we can easily guess what we
need to build it up--a set of CRUD methods for each one of the entries we identified early.

If we already used ASP.NET MVC at least once, we already know that the most
straightforward way to do that is to create a dedicated Controller for each entry type.
However, before adding each one of them, it can be wise to create the corresponding
ViewModel so that it can handle the entry data in a strongly-typed fashion.

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[75]

QuizViewModel
We might as well start with the flagship entry of our application, which will also be the
most relevant and complex one.

Wait a minute, why are we starting with the ViewModel if we don't have a data model in
place? Where will we get the data from?

Such questions are anything but trivial and deserve a concise explanation before going
further. One of the biggest advantages of building a web application using ASP.NET and
Angular is that we can start writing our code without worrying too much about data
sources; that will come later, and only after we're sure about what we really need. This is
not a requirement either; we're also free to start with our data source for a number of good
reasons, such as the following:

We already have a clear idea of what we'll need
We already have our entity set(s) and/or a defined/populated data structure to
work with
We're used to starting with the data, then moving to the GUI

All the preceding reasons are perfectly fine; we won't ever get fired for doing that. Yet, the
chance to start with the frontend might help us a lot if we're still unsure about how your
application will look, either in terms of GUI and/or data. In building this application, we'll
take advantage of that; hence, why we will start playing with our QuizViewModel even if
we don't have its Data Source and Entity class yet.

From Solution Explorer, right-click on the TestMakerFreeWebApp node (the project's root
node) and create a new /ViewModels/ folder; once done, right-click on that newly-added
folder and issue the usual Add | New Item command.

From the ASP.NET Core | Code treeview node, select a Class file, call it
QuizViewModel.cs, and click on OK to have it added under the /ViewModels/ folder.

Once done, replace the new file's sample contents with the following:

using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using System.Threading.Tasks;

namespace TestMakerFreeWebApp.ViewModels
{

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[76]

 [JsonObject(MemberSerialization.OptOut)]
 public class QuizViewModel
 {
 #region Constructor
 public QuizViewModel()
 {

 }
 #endregion

 #region Properties
 public int Id { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public string Text { get; set; }
 public string Notes { get; set; }
 [DefaultValue(0)]
 public int Type { get; set; }
 [DefaultValue(0)]
 public int Flags { get; set; }
 public string UserId { get; set; }
 [JsonIgnore]
 public int ViewCount { get; set; }
 public DateTime CreatedDate { get; set; }
 public DateTime LastModifiedDate { get; set; }
 #endregion
 }
}

As we can see, this is basically a POCO object with a rather common set of general-purpose
properties; our Quiz will have a Title, a Description, and so on. There are still some missing
things, such as the aforementioned Questions, Answers, and Results, but these will come later
on.

QuizController
Let's move on to QuizController:

From Solution Explorer, open the /Controllers/ folder.1.
Right-click on the folder and select the usual Add | New Item command.2.

Ensure not to use the Add | Controller option available there, as it will
activate a wizard-like feature that will also add some dependencies to our
project, which is something we definitely don't need (yet).

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[77]

From the ASP.NET Core | Web treeview node, select Web API Controller Class;3.
call the new file QuizController.cs and click on OK to have it added under
the /Controllers/ folder, along with the already existing HomeController.cs
and SampleDataController.cs, which we reviewed in Chapter 1, Getting
Ready.

The controller will be created with a bunch of sample methods, which we'll not use. Delete
the entire file content and replace it with the following code:

using System;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using TestMakerFreeWebApp.ViewModels;
using System.Collections.Generic;

namespace TestMakerFreeWebApp.Controllers
{
 [Route("api/[controller]")]
 public class QuizController : Controller
 {
 // GET api/quiz/latest
 [HttpGet("Latest/{num}")]
 public IActionResult Latest(int num = 10)
 {
 var sampleQuizzes = new List<QuizViewModel>();

 // add a first sample quiz
 sampleQuizzes.Add(new QuizViewModel()
 {
 Id = 1,
 Title = "Which Shingeki No Kyojin character are you?",
 Description = "Anime-related personality test",
 CreatedDate = DateTime.Now,
 LastModifiedDate = DateTime.Now
 });

 // add a bunch of other sample quizzes
 for (int i = 2; i <= num; i++)
 {
 sampleQuizzes.Add(new QuizViewModel()
 {
 Id = i,
 Title = String.Format("Sample Quiz {0}", i),
 Description = "This is a sample quiz",
 CreatedDate = DateTime.Now,
 LastModifiedDate = DateTime.Now
 });

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[78]

 }

 // output the result in JSON format
 return new JsonResult(
 sampleQuizzes,
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }
 }
}

Let's take a quick look at the code to see what we've done.

As we can see, we started defining the Latest method accepting a single (optional) integer
parameter value called num, which defaults to 10. The method accepts any GET request
using the custom routing rules configured via the HttpGet attribute. This approach is
called Attribute routing, and we'll be digging into it further later in this chapter. For now,
let's stick to the code inside the method itself.

The behavior is really simple, since we don't (yet) have a Data Source; we're basically
returning a couple of sample QuizViewModel objects. Note that, although it's just a fake
response, we're doing it in a structured and credible way, respecting the number of items
issued by the request and also providing different content for each one of them. As a matter
of fact, we're basically following the same approach used by the
SampleDataController.cs provided by our Visual Studio Angular SPA Template, which
we looked up back in Chapter 1, Getting Ready.

It's also worth noting that we're using a JsonResult return type, which is the best thing we
can do as long as we're working with ViewModel classes featuring the JsonObject
attribute provided by the Newtonsoft.Json framework, that's definitely better than
returning plain string or IEnumerable<string> types, as it will automatically take care
of serializing the outcome and setting the appropriate response headers (Content-Type,
charset, and so on).

Adding more action methods
Before going further, let's take the chance to implement two more action methods to the
QuizController to emulate a couple of different retrieval strategies: getting the quizzes in
alphabetical order and in a completely random fashion.

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[79]

ByTitle()
Go right after the Latest() method and add the following code:

/// <summary>
/// GET: api/quiz/ByTitle
/// Retrieves the {num} Quizzes sorted by Title (A to Z)
/// </summary>
/// <param name="num">the number of quizzes to retrieve</param>
/// <returns>{num} Quizzes sorted by Title</returns>
[HttpGet("ByTitle/{num:int?}")]
public IActionResult ByTitle(int num = 10)
{
 var sampleQuizzes = ((JsonResult)Latest(num)).Value
 as List<QuizViewModel>;

 return new JsonResult(
 sampleQuizzes.OrderBy(t => t.Title),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
}

As we can see, this internally calls the Latest() method itself--which actually just returns
some sample quizzes created on-the-fly--and outputs them in alphabetical order.

Random()
The same technique can be used to implement the Random() method as well:

/// <summary>
/// GET: api/quiz/mostViewed
/// Retrieves the {num} random Quizzes
/// </summary>
/// <param name="num">the number of quizzes to retrieve</param>
/// <returns>{num} random Quizzes</returns>
[HttpGet("Random/{num:int?}")]
public IActionResult Random(int num = 10)
{
 var sampleQuizzes = ((JsonResult)Latest(num)).Value
 as List<QuizViewModel>;

 return new JsonResult(
 sampleQuizzes.OrderBy(t => Guid.NewGuid()),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[80]

 });
}

Testing it up
Let's try our Controller by running our app in Debug Mode; in order to test it, we need to
manually type the following URL in the browser's address bar:

http://localhost:<port>/api/quiz/latest/3

If we did everything correctly, it will show something like this:

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[81]

Note how the ViewCount property is not present in the JSON-serialized
output; that's by design, since it has been flagged with the JsonIgnore
attribute, meaning that we're explicitly opting it out.

Our first Controller is up and running. Do not underestimate it! Eventually, it will be in
charge of all quiz-related operations within our web application.

Adding other controllers
Now that we know the trick, we can add a bunch of other ViewMode and Controller pairs,
one for each entry type we came up with earlier. In order to avoid repetition we'll skip the
create file part and jump directly to the source code for each one of them, while also adding
some useful hints where we need to.

QuestionViewModel
What will a quiz be without some questions? Here's how we can deal with the
QuestionViewModel.cs file that we need to add within the /ViewModels/ folder:

using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using System.Threading.Tasks;

namespace TestMakerFreeWebApp.ViewModels
{
 [JsonObject(MemberSerialization.OptOut)]
 public class QuestionViewModel
 {
 #region Constructor
 public QuestionViewModel()
 {

 }
 #endregion

 #region Properties
 public int Id { get; set; }
 public int QuizId { get; set; }
 public string Text { get; set; }

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[82]

 public string Notes { get; set; }
 [DefaultValue(0)]
 public int Type { get; set; }
 [DefaultValue(0)]
 public int Flags { get; set; }
 [JsonIgnore]
 public DateTime CreatedDate { get; set; }
 public DateTime LastModifiedDate { get; set; }
 #endregion
 }
}

As we can see, this is quite similar to the QuizViewModel, except that it has slightly
different properties; one of these is the QuizId, which is rather obvious since each question
will be related to its Quiz in a classic one-to-many relationship; each single Quiz will have
multiple Questions.

QuestionController
Here's the QuestionController, which we also need to create in the /Controllers/
folder as a .cs file, just like we did with the QuizController:

using System;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using TestMakerFreeWebApp.ViewModels;
using System.Collections.Generic;

namespace TestMakerFreeWebApp.Controllers
{
 [Route("api/[controller]")]
 public class QuestionController : Controller
 {
 // GET api/question/all
 [HttpGet("All/{quizId}")]
 public IActionResult All(int quizId)
 {
 var sampleQuestions = new List<QuestionViewModel>();

 // add a first sample question
 sampleQuestions.Add(new QuestionViewModel()
 {
 Id = 1,
 QuizId = quizId,

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[83]

 Text = "What do you value most in your life?",
 CreatedDate = DateTime.Now,
 LastModifiedDate = DateTime.Now
 });

 // add a bunch of other sample questions
 for (int i = 2; i <= 5; i++)
 {
 sampleQuestions.Add(new QuestionViewModel()
 {
 Id = i,
 QuizId = quizId,
 Text = String.Format("Sample Question {0}", i),
 CreatedDate = DateTime.Now,
 LastModifiedDate = DateTime.Now
 });
 }

 // output the result in JSON format
 return new JsonResult(
 sampleQuestions,
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }
 }
}

As we can see, we ditched the Latest method we defined in the QuizController and
replaced it with an All method that will give us the chance to retrieve all the questions
related to a specific Quiz, given its Id.

Implementing a Latest method will have little sense here, as Questions won't have a
distinctive meaning on their own. They are only meant to be retrieved--and presented to the
user--along with the Quiz they're related to; that's why the All method makes much more
sense.

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[84]

AnswerViewModel
The Answers have with their Question the same one-to-many relationship that Questions
have with their Quiz, hence the AnswerViewModel that we need to add will be quite
similar to the QuestionViewModel:

using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;

namespace TestMakerFreeWebApp.ViewModels
{
 [JsonObject(MemberSerialization.OptOut)]
 public class AnswerViewModel
 {
 #region Constructor
 public AnswerViewModel()
 {

 }
 #endregion

 #region Properties
 public int Id { get; set; }
 public int QuizId { get; set; }
 public int QuestionId { get; set; }
 public string Text { get; set; }
 public string Notes { get; set; }
 [DefaultValue(0)]
 public int Type { get; set; }
 [DefaultValue(0)]
 public int Flags { get; set; }
 [DefaultValue(0)]
 public int Value{ get; set; }
 [JsonIgnore]
 public DateTime CreatedDate { get; set; }
 public DateTime LastModifiedDate { get; set; }
 #endregion
 }
}

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[85]

As we can see, there are only two significant differences:

We added a property, that references the QuestionId that represents the
Question the Answer is related to
We added a Value property, that we'll use later to give a score value to each
answer

AnswerController
Let's go ahead with adding the AnswerController:

using System;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using TestMakerFreeWebApp.ViewModels;
using System.Collections.Generic;

namespace TestMakerFreeWebApp.Controllers
{
 [Route("api/[controller]")]
 public class AnswerController : Controller
 {
 // GET api/answer/all
 [HttpGet("All/{questionId}")]
 public IActionResult All(int questionId)
 {
 var sampleAnswers = new List<AnswerViewModel>();

 // add a first sample answer
 sampleAnswers.Add(new AnswerViewModel()
 {
 Id = 1,
 QuestionId = questionId,
 Text = "Friends and family",
 CreatedDate = DateTime.Now,
 LastModifiedDate = DateTime.Now
 });

 // add a bunch of other sample answers
 for (int i = 2; i <= 5; i++)
 {
 sampleAnswers.Add(new AnswerViewModel()
 {
 Id = i,
 QuestionId = questionId,

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[86]

 Text = String.Format("Sample Answer {0}", i),
 CreatedDate = DateTime.Now,
 LastModifiedDate = DateTime.Now
 });
 }

 // output the result in JSON format
 return new JsonResult(
 sampleAnswers,
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }
 }
}

As we can see, the code is almost identical to that of QuestionController, although it will
most likely change later on.

ResultViewModel
So far, so good. Let's proceed with the ResultViewModel:

using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;

namespace TestMakerFreeWebApp.ViewModels
{
 [JsonObject(MemberSerialization.OptOut)]
 public class ResultViewModel
 {
 #region Constructor
 public ResultViewModel()
 {

 }
 #endregion

 #region Properties
 public int Id { get; set; }
 public int QuizId { get; set; }

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[87]

 public string Text { get; set; }
 public string Notes { get; set; }
 [DefaultValue(0)]
 public int Type { get; set; }
 [DefaultValue(0)]
 public int Flags { get; set; }
 [JsonIgnore]
 public DateTime CreatedDate { get; set; }
 public DateTime LastModifiedDate { get; set; }
 #endregion
 }
}

We're using the same code here as well; these controllers aren't much more than
placeholders for now; however, we'll greatly improve them later on.

ResultController
Its corresponding ResultController is as follows:

using System;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using TestMakerFreeWebApp.ViewModels;
using System.Collections.Generic;

namespace TestMakerFreeWebApp.Controllers
{
 [Route("api/[controller]")]
 public class ResultController : Controller
 {
 // GET api/question/all
 [HttpGet("All/{quizId}")]
 public IActionResult All(int quizId)
 {
 var sampleResults = new List<ResultViewModel>();

 // add a first sample result
 sampleResults.Add(new ResultViewModel()
 {
 Id = 1,
 QuizId = quizId,
 Text = "What do you value most in your life?",
 CreatedDate = DateTime.Now,
 LastModifiedDate = DateTime.Now
 });

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[88]

 // add a bunch of other sample results
 for (int i = 2; i <= 5; i++)
 {
 sampleResults.Add(new ResultViewModel()
 {
 Id = i,
 QuizId = quizId,
 Text = String.Format("Sample Question {0}", i),
 CreatedDate = DateTime.Now,
 LastModifiedDate = DateTime.Now
 });
 }

 // output the result in JSON format
 return new JsonResult(
 sampleResults,
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }
 }
}

It's worth noting that the ResultViewModel and ResultController source code is much
similar to QuestionViewModel and QuestionController. The reason for that is rather
obvious--both Questions and Results are related to their Quiz without any intermediate
relationship, such as the Answers have with the Questions.

Now that our .NET Core Controllers and ViewModels have been set in place, we can safely
get rid of the SampleDataController.cs file, as we don't need it anymore. From Solution
Explorer, navigate to the /Controllers/ folder, right-click on it and delete it. Doing this
won't cause issues, as we already removed all the relevant client-side code back in Chapter
1, Getting Ready.

If we want to keep the SampleDataController.cs for further reference,
we can also create a /Controllers/_deleted/ subfolder and move it
there instead, just like we did with the counter and fetchdata Angular
components back in Chapter 1, Getting Ready.

After the cleanup, let's take a clear look at the routing aspect of what we just did; since it is
a major topic, it's well worth some of our time.

www.EBooksWorld.ir

https://cdp.packtpub.com/asp_net_core_and_angular__second_edition/wp-admin/post.php?post=132&post_type=chapter&action=edit&save=save#post_58

Backend with .NET Core Chapter 2

[89]

Understanding routes
In Chapter 1, Getting Ready, we acknowledged the fact that the ASP.NET Core pipeline has
been completely rewritten in order to merge the MVC and WebAPI modules into a single,
lightweight framework to handle both worlds. Although this is certainly a good thing, it
comes with the usual downside that we need to learn a lot of new stuff. Handling routes is
a perfect example of this, as the new approach defines some major breaking changes from
the past.

Defining routing
The first thing we should do is to give out a proper definition of what routing actually is.

To cut it simple, we can say that URL routing is the server-side feature that allows a web
developer to handle HTTP requests pointing to URIs not mapping to physical files. Such a
technique can be used for a number of different reasons, including these:

Giving dynamic pages semantic, meaningful, and human-readable names in order
to advantage readability and/or Search Engine Optimization (SEO)
Renaming or moving one or more physical files within your project's folder tree
without being forced to change their URLs
Set up alias and redirects

Routing through the ages
In earlier times, when ASP.NET was just Web Forms, URL routing was strictly bound to
physical files. In order to implement viable URL convention patterns, the developers were
forced to install/configure a dedicated URL rewriting tool using either an external ISAPI
filter such as Helicontech's SAPI Rewrite or, starting with IIS7, the IIS URL Rewrite
Module.

When ASP.NET MVC was released, the routing pattern was completely rewritten, and
developers could set up their own convention-based routes in a dedicated file
(RouteConfig.cs or Global.asax, depending on template) using the Routes.MapRoute
method. If you've played along with MVC 1 through 5 or WebAPI 1 and/or 2, snippets like
this should be quite familiar to you:

 Routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Home", action = "Index", id =

www.EBooksWorld.ir

https://cdp.packtpub.com/asp_net_core_and_angular__second_edition/wp-admin/post.php?post=132&post_type=chapter&action=edit&save=save#post_58

Backend with .NET Core Chapter 2

[90]

 UrlParameter.Optional }
);

This method of defining routes, strictly based on pattern matching techniques used to relate
any given URL requests to a specific Controller's Actions, went by the name of Convention-
based routing.

ASP.NET MVC5 brought something new, as it was the first version supporting the so-
called Attribute-based routing. This approach was designed as an effort to give a more
versatile approach to developers. If you used it at least once, you'll probably agree that it
was a great addition to the framework, as it allowed developers to define routes within the
Controller file. Even those who chose to keep the convention-based approach could find it
useful for one-time overrides, such as the following, without having to sort it out using
some regular expressions:

 [RoutePrefix("v2Products")]
public class ProductsController : Controller
{
 [Route("v2Index")]
 public ActionResult Index()
 {
 return View();
 }
}

In ASP.NET Core MVC (aka MVC 6), with the routing pipeline being completely
rewritten, attribute-based routing is quickly becoming a de-facto standard, replacing the
convention-based approach in most boilerplates and code samples. However, setting routing
conventions using the Routes.MapRoute() method is still a viable way to define a limited
amount of high-level, default routing rules, as our Startup.cs file clearly shows (relevant
lines are highlighted):

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 routes.MapSpaFallbackRoute(
 name: "spa-fallback",
 defaults: new { controller = "Home", action = "Index" });
});

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[91]

This code snippet, taken from the Configure method, demonstrates that convention-based
routing is still a viable approach when developing an SPA. The only difference between
ASP.NET 4.x and earlier releases is the fact that the routes are directly sent to the MVC
middleware when we add it to the HTTP request pipeline as part of its configuration
parameters, thus resulting in a more streamlined approach.

Handling routes in .NET Core
As we just saw, the new routing implementation is basically handled by the two
services.AddMvc() and app.UseMvc() methods called within the Startup.cs file,
which perform the following tasks respectively:

Registering MVC using the Dependency Injection framework built into
ASP.NET Core
Adding the required middleware to the HTTP request pipeline, while also
(optionally) setting a pack of default routes

We can take a look at what happens under the hood by looking at the current
implementation of the app.UseMvc() method in the framework code (relevant lines are
highlighted):

 public static IApplicationBuilder UseMvc(
 [NotNull] this IApplicationBuilder app,
 [NotNull] Action<IRouteBuilder> configureRoutes)
{
 // Verify if AddMvc was done before calling UseMvc
 // We use the MvcMarkerService to make sure if all the services
 were added.
 MvcServicesHelper.ThrowIfMvcNotRegistered(app.ApplicationServices);

 var routes = new RouteBuilder
 {
 DefaultHandler = new MvcRouteHandler(),
 ServiceProvider = app.ApplicationServices
 };

 configureRoutes(routes);

 // Adding the attribute route comes after running the user-code
 because
 // we want to respect any changes to the DefaultHandler.
 routes.Routes.Insert(0, AttributeRouting.CreateAttributeMegaRoute(
 routes.DefaultHandler,
 app.ApplicationServices));

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[92]

 return app.UseRouter(routes.Build());
}

The good thing about this is the fact that the framework now handles all the hard work,
iterating through all the Controller's Actions and setting up their default routes, thus saving
us some work. It's worth noting that the default ruleset follows the standard RESTFUL
conventions, which means that it will be restricted to the Get, Post, Put, Delete action
names. Here, we can say that ASP.NET Core is enforcing a strict WebAPI-oriented approach,
which is much to be expected since it incorporates the whole ASP.NET Core framework.

Following the RESTful convention is generally a great thing to do, especially if we aim to
create a set of pragmatic, RESTful-based public APIs to be used by other developers.
Conversely, if we're developing our own app and we want to keep our API accessible to our
eyes only, going for custom routing standards is just as viable. As a matter of fact, it can
even be a better choice to shield our Controllers against some of the most trivial forms of
request floods and/or DDoS-based attacks. Luckily enough, both the Convention-based
Routing and the Attribute-based Routing are still alive and well, allowing us to set up our
own standards. If we want to enforce the former approach, we can extend the code already
present in the Startup.cs file; conversely, we can keep doing what we previously did
within our Controllers source code, where Attribute-Based Routing is widely present
either at Controller level:

 [Route("api/[controller]")]
public class ItemsController : Controller

Alternatively, it can be present at the action method level:

 [HttpGet("GetLatest")]
public JsonResult GetLatest()

Three choices to route them all
Long story short, ASP.NET Core is giving us three different choices for handling routes:
enforcing the standard RESTful conventions, reverting back to the good old Convention-
based Routing, or decorating the Controller files with the Attribute-based Routing. That
said, we will definitely keep using a mix all of these approaches in our application to better
learn when, where, and how to properly make use of either of them.

It's worth noting that Attribute-based routes, if/when defined, will override
any matching Convention-based pattern: both of them, if/when defined, will
override the default RESTful conventions created by the built-in
app.UseMvc() method.

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[93]

Adding more routes
Let's get back to our QuizController. Now that we're aware of the various routing
patterns available, we can use them to implement the API calls we're still missing.

Open the QuizController.cs file and add the following code (new lines are highlighted):

using System;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using TestMakerFreeWebApp.ViewModels;
using System.Collections.Generic;

namespace TestMakerFreeWebApp.Controllers
{
 [Route("api/[controller]")]
 public class QuizController : Controller
 {
 #region RESTful conventions methods
 /// <summary>
 /// GET: api/quiz/{}id
 /// Retrieves the Quiz with the given {id}
 /// </summary>
 /// <param name="id">The ID of an existing Quiz</param>
 /// <returns>the Quiz with the given {id}</returns>
 [HttpGet("{id}")]
 public IActionResult Get(int id)
 {
 // create a sample quiz to match the given request
 var v = new QuizViewModel()
 {
 Id = id,
 Title = String.Format("Sample quiz with id {0}", id),
 Description = "Not a real quiz: it's just a sample!",
 CreatedDate = DateTime.Now,
 LastModifiedDate = DateTime.Now
 };

 // output the result in JSON format
 return new JsonResult(
 v,
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[94]

 #endregion

 #region Attribute-based routing methods
 /// <summary>
 /// GET: api/quiz/latest
 /// Retrieves the {num} latest Quizzes
 /// </summary>
 /// <param name="num">the number of quizzes to retrieve</param>
 /// <returns>the {num} latest Quizzes</returns>
 [HttpGet("Latest/{num}")]
 public IActionResult Latest(int num = 10)
 {
 var sampleTests = new List<QuizViewModel>();

 // add a first sample quiz
 sampleQuizzes.Add(new QuizViewModel()
 {
 Id = 1,
 Title = "Which Shingeki No Kyojin character are you?",
 Description = "Anime-related personality test",
 CreatedDate = DateTime.Now,
 LastModifiedDate = DateTime.Now
 });

 // add a bunch of other sample quizzes
 for (int i = 2; i <= num; i++)
 {
 sampleQuizzes.Add(new QuizViewModel()
 {
 Id = i,
 Title = String.Format("Sample Quiz {0}", i),
 Description = "This is a sample quiz",
 CreatedDate = DateTime.Now,
 LastModifiedDate = DateTime.Now
 });
 }

 // output the result in JSON format
 return new JsonResult(
 sampleQuizzes,
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }
 #endregion
 }
}

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[95]

As we can see, we did a bunch of significant improvements here:

We added a Get method that follows the RESTful conventions we explained
earlier; we will definitely need it each time we'll have to retrieve a specific Quiz,
given its Id.
We also decorated each class member with a dedicated <summary> documentation
tag explaining what it does and its return value. These tags will be used by
IntelliSense to show real-time information about the type within the Visual Studio
GUI. They will also come inhandy when we'll want to generate an autogenerated
XML Documentation for our project using industry-standard documentation tools,
such as Sandcastle.
Finally, we added some #region / #endregion pre-processor directives to separate
our code into blocks. We'll do this a lot from now on, as this will greatly increase
the readability and usability of our source code, allowing us to expand or
collapse different sections/parts when we don't need them, thus focusing more on
what we're working with.

For more information regarding documentation tags, take a look at the
MSDN official documentation page, at https:// msdn. microsoft. com/
library/ 2d6dt3kf. aspx.

If you want know more about C# pre-processor directives, check out
https://msdn.microsoft.com/library/9a1ybwek.aspx instead.

The Dummy Data Provider
As we can easily see, we're emulating the role of a Data Provider returning one or more
sample Quizzes in a credible fashion. The reason for this can't be more obvious; we don't
have any Data Provider in place for the time being (and we won't until we reach Chapter 4,
Data Model with Entity Framework Core); hence, this is the only way we have to output some
stuff and see some decent results on screen.

It's also worth noting that we built it in a way that it will always return identical items, as
long as the num parameter value remains the same:

The generated items Id will follow a linear sequence, from 1 to num.
Any generated item will have incremental CreatedDate and
LastModifiedDate values; the higher the Id is, the most recent these dates will
be. This follows the assumption that most recent items will have a higher Id, as it
normally is for DBMS records featuring numeric, auto incremental keys.

www.EBooksWorld.ir

https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/2d6dt3kf.aspx
https://msdn.microsoft.com/library/9a1ybwek.aspx
https://msdn.microsoft.com/library/9a1ybwek.aspx

Backend with .NET Core Chapter 2

[96]

While it obviously lacks any insert/update/delete feature, this trivial technique is viable
enough to serve our purposes until we'll replace it with an actual, persistence-based Data
Source.

Technically speaking, we can do something better than we did using one
of the many Mocking Frameworks available through NuGet: Moq,
NMock3, NSubstitute, or Rhino, just to name a few.
These frameworks are the ideal choice when using a Test-Driven
Development (TDD) approach, which is not the case in this book. In this
specific scenario, our Dummy Data Provider is still a viable way to get what
we need, while keeping the focus on our main topic--ASP.NET Core and
Angular interaction.

Dealing with single entries
Our updated QuizController class gives us a way to retrieve a single Quiz entry; it will
definitely be very useful when our users will select one of them within the Latest list, as
we'll be able to point them to something similar to a detail page. It will also be very useful
when we'll have to deal with CRUD operations such as Delete and Update.

We're not dealing with the client-side code yet, so we don't know how we'll present such a
scenario to the user. However, we already know what we'll eventually need, a Get, Put,
Post, and Delete method for each one of our entries--Quizzes, Questions, Answers, and
Results--as we'll definitely have to perform these operations for all of them.

Luckily enough, we don't need to implement them now. However, since we're working
with these Controllers, it can be a good time to set up a basic interface:

 #region RESTful conventions methods
/// <summary>
/// Retrieves the Answer with the given {id}
/// </summary>
/// <param name="id">The ID of an existing Answer</param>
/// <returns>the Answer with the given {id}</returns>
[HttpGet("{id}")]
public IActionResult Get(int id)
{
 return Content("Not implemented (yet)!");
}

/// <summary>
 /// Adds a new Answer to the Database
/// </summary>

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[97]

/// <param name="m">The AnswerViewModel containing the data to
insert</param>
[HttpPut]
public IActionResult Put(AnswerViewModel m)
{
 throw new NotImplementedException();
}

/// <summary>
/// Edit the Answer with the given {id}
/// </summary>
/// <param name="m">The AnswerViewModel containing the data to
update</param>
[HttpPost]
public IActionResult Post(AnswerViewModel m)
{
 throw new NotImplementedException();
}

/// <summary>
/// Deletes the Answer with the given {id} from the Database
/// </summary>
/// <param name="id">The ID of an existing Answer</param>
[HttpDelete("{id}")]
public IActionResult Delete(int id)
{
 throw new NotImplementedException();
}
#endregion

This is the code that we have to add to AnswerController. As soon as we do that, we also
need to perform the same operation with the other controllers: QuestionController,
ResultController, and also QuizController (except for the Get method we added
earlier). Ensure that you change the comments and the ViewModel reference accordingly
(each Controller must reference the ViewModel related to their specific entry).

Our brand new RESTful methods won't do anything other than returning
a not-implemented text message (or a NotImplementedException) to the
client/browser issuing the request; this is by design, as we'll implement
them later on.

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[98]

To test our new methods, select Debug | Start Debugging from the main menu (or press
F5) and type the following URLs in the browser's address bar:

For quizzes, type /api/quiz/1:

For question, type /api/question/1:

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[99]

For answer, type /api/answer/1:

For result, type /api/result/1:

Everything works as it should be. As we already said, the exception brought on screen by
the Response is perfectly fine; we did it on purpose, to demonstrate how we can handle these
kinds of errors. This is also a good practice when dealing with ASP.NET Core API
interfaces: if we don't have it implemented yet, throw a NotImplementedException until
we're done to prevent any unwanted Request from having nasty effects on our still
unfinished web application.

www.EBooksWorld.ir

Backend with .NET Core Chapter 2

[100]

So far, so good, we got ourselves a number of server-side APIs to retrieve JSON arrays filled
by a client-defined (or default) number of latest items, and an additional one to retrieve a
single item from its unique ID. All these calls will be very handy in the next chapter, where
we'll start developing client-side components using Angular.

Suggested topics
HTTP Request, HTTP Response, Convention-based Routing, Attribute-based Routing,
RESTful Conventions, Mock Objects, Test-Driven Development, XML Documentation Tags,
and C# Pre-Processor Directives

Summary
We spent some time putting the standard application data flow under our lens--a two-way
communication pattern between the server and their clients, built upon the HTTP protocol.
We acknowledged the fact that we'll mostly be dealing with JSON-serializable object such
as Quizzes, so we chose to equip ourselves with a QuizViewModel server-side class, along
with a QuizController that will actively use it to expose the data to the client.

We started building our MVC6-based Web API interface by implementing a number of
methods required to create the client-side UI; we routed the requests to them using a custom
set of Attribute-based routing rules, which seemed to be the best choice for our specific
scenario.

While we were there, we also took the chance to add dedicated methods to get, insert,
update, and delete single entries from our controllers. We did that following the RESTful
conventions enforced by the Get, Put, Post, Delete methods.

In the next chapter, we will see how we can consume the ASP.NET Core Web API using
Angular in order to build an interactive user interface for our application.

www.EBooksWorld.ir

3
Frontend with Angular

Our ASP.NET Core Web API is working fine, but the server-side controllers we built in
Chapter 2, Backend with .NET Core--QuizController, QuestionController,
AnswerController, and ResultController--are still missing something we will
eventually need, some POST-based methods to insert, update, and delete their records.
There's no sense in adding them now, since we’re still dealing with sample data objects that
are created on-the-fly; however, we’ll definitely add these methods in due course, when we’ll
switch to a real Data Model.

As for the time being, let’s see how we can make good use of what we just did by
implementing all the new stuff in the Angular source code shipped along with the Visual
Studio Angular SPA template we chose to use. Needless to say, this means that we will
perform a series of structural changes on the existing sample in terms of UI, layout,
navigation, and data retrieval strategies.

Let’s summarize what we will do in this chapter:

Greet our users with a brand new Home View that will show three different lists of
Quizzes--Latest, By Title (A-Z), Random. We'll populate these by fetching the
relevant data using the QuizController API methods built in Chapter 2, Backend
with .NET Core.
Let our users navigate to a Test Detail View upon clicking any given Test, where
they’ll be able to read some basic information about the chosen test.
Allow our users to go back from the Test Detail View to the Home View upon
clicking a standard Back link.
Update the side menu and all the text labels according to these changes.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[102]

Navigation pattern
If we try to visualize all this, we can easily see that we're talking about a standard,
straightforward Master/Detail navigation pattern; the same approach, with minor
differences, can also be found on countless websites. When we’re done, users will be able to
perform a basic navigation loop, as follows:

Note that we will also give the user two additional choices, other than going back:

Actually try the quiz by clicking on the Take It! button
Change the quiz details and settings by clicking on the Edit button

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[103]

We’ll dedicate this chapter to creating the main navigation interface and implementing the
Go Back button, which is by far the easiest one; the other buttons will require additional
effort and will be addressed later on.

Any experienced developer will hardly miss the fact that the Edit button will most likely
require the greatest amount of effort, as it will force us to deal with the underlying Data
Model on both the client-side and server-side levels. Doing that in Angular is a rather
seamless task, thanks to the framework’s built-in two-way data binding features. Persisting
these changes to the application's Data Source will be a whole different story, though, as it
will require us to implement a couple more features, such as the following:

A dedicated server-side API that will receive the updated data from the client
Model and sync it to the server Model
A client-side update command pattern--such as a button, a focus event, or
something like that--that will trigger the aforementioned update API call

This is something we’ll do in the next chapter, when we’ll implement a persistent Data
Source and replace our Dummy Data Provider sample with a working one; we won’t be able
to properly handle any persisting update command until then.

Master/detail binding
Our main focus now is to implement a standard master/detail navigation pattern. We’ll do
that in two consecutive steps to demonstrate all the relevant Angular features better, as
follows:

Put together a temporary, component-based master/detail relationship within the1.
same view using the Angular data-binding capabilities.
Improve that temporary code, replacing the single-view display with an actual2.
view-based navigation pattern with full client-side routing support.

Truth be told, the former step isn’t needed at all; we could just implement the latter and get
the task over with. However, by choosing that quick and straight path, we would skip some
really important concepts regarding Angular and its interactions with the web API
structure we just built. We’re talking about something that will come in handy later on, so
it’s highly recommended that we restrain ourselves from rushing things.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[104]

The Quiz client-side interface
The first thing we need to do is to add the Quiz interface to our Angular-enabled client.
Wait a minute, should we really do that? Can’t we just use the raw JSON data sent by the
QuizController’s Get and GetLatest methods defined earlier, consuming them as
anonymous JavaScript objects?

Theoretically speaking, we can, just as much as we can output raw JSON from the
Controllers instead of creating all the ViewModel classes, like we did instead. In a well-
written app, though, we should always resist the temptation to handle raw JSON data
and/or to use anonymous objects for a number of good reasons:

We have chosen TypeScript over JavaScript because we want to work with type
definitions. Anonymous objects and properties are the exact opposite; they lead
to the JavaScript way of doing things, which is something we wanted to avoid in
the first place.
Anonymous objects (and their properties) are not easy to validate: we don’t want
our data items to be error prone or forced to deal with missing properties or
anything like that.
Anonymous objects are hardly reusable, and won’t benefit from many Angular
handy features--such as the object mapping--that will require our objects to be
actual instances of an interface and/or a type.

The first two arguments are very important, especially if we’re aiming for a production-
ready application; no matter how easy our development task might seem at first, we should
never think that we can afford losing that level of control over our application’s source code.

The third reason is also crucial as long as we want to use Angular to its full extent. If that’s
the case, using an undefined array of properties such as raw JSON data is basically out of
the question; we will use a TypeScript interface, as it is the most lightweight way to work
with structured JSON data in a strongly-typed fashion. More specifically, we'll add a
dedicated Quiz interface to properly map our JSON-serialized QuizViewModel server-side
class.

From Solution Explorer, right-click on the /ClientApp/app/ folder and create a new
/interfaces/ subfolder, and then right-click on it and add a new TypeScript file in
there; call it quiz.ts and fill its content with this source code:

interface Quiz {
 Id: number;
 Title: string;
 Description: string;

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[105]

 Text: string;
}

Note that we’re not (yet) mapping all the properties present in the QuizViewModel class; as
a general rule of thumb, we’ll be keeping these classes as lightweight as possible, defining
only what we know we will use for the time being. We can always add more properties
later, as soon as we need them.

The QuizList component
What we will do here is to create a dedicated component that will show a list of items task
on screen. It's important to understand that we can also do that in our already-present
AppComponent class; however, it won't be the ideal thing to do. We're working on a rather
complex app that is expected to grow fast, thus it's advisable to embrace a modular
approach right from the start and split our planned features into separate, reusable assets.

To be more specific, what we need now is a flexible and pluggable QuizListComponent
that we can use--once or even multiple times as separate instances--within our existing
AppComponent; we plan to use this pattern throughout all our client-side development
experience.

Again, from Solution Explorer, add a new TypeScript file in the
/ClientApp/app/components/quiz/ folder, call it quiz-list.component.ts, and fill
it with the following content:

import { Component, Inject } from "@angular/core";
import { HttpClient } from "@angular/common/http";

@Component({
 selector: "quiz-list",
 templateUrl: './quiz-list.component.html',
 styleUrls: ['./quiz-list.component.css']
})

export class QuizListComponent {
 title: string;
 selectedQuiz: Quiz;
 quizzes: Quiz[];

 constructor(http: HttpClient,
 @Inject('BASE_URL') baseUrl: string) {
 this.title = "Latest Quizzes";
 var url = baseUrl + "api/quiz/Latest/";

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[106]

 this.http.get<Quiz[]>(url).subscribe(result => {
 this.quizzes = result;
 }, error => console.error(error));
 }

 onSelect(quiz: Quiz) {
 this.selectedQuiz = quiz;
 console.log("quiz with Id "
 + this.selectedQuiz.Id
 + " has been selected.");
 }
}

That’s a good amount of non-trivial source code. Let’s see what we just did in detail:

In lines 1-2, we import the Angular references that we need from the
@angular/core and @angular/common/http packages; since we’re creating a
Component, we need the Component base class. Other than that, we also need to
import the Inject decorator, which we're using within the class constructor to
make the baseUrl parameter available through Dependency Injection (DI), and
the HttpClient class to perform HTTP requests, also being instantiated using DI.
In lines 4-8, we set up the component UI layout and following settings:

The selector, which gives a name to the HTML pseudo-element
we'll have to use to include the component within another
component's template; in this case, with the given value, it will be
<quiz-list></quiz-list>

The templateUrl, pointing to a single HTML file containing the
component template
The styleUrls, pointing to the CSS files that will contain the
component styles; the expected value is an array, meaning that we
can split the component styling into multiple CSS files

Starting from line 10, we can find the QuizListComponent class declaration,
along with all its properties, its constructor, and methods.

Before adding the template and style files, there are still a couple of things in the preceding
source code that we need to look at; let's try to shed some light on them.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[107]

The new Angular HttpClient
Being able to efficiently send and receive JSON data from our .NET Core Controllers is
probably the most important requirement for our SPA. We chose to do that using the brand
new Angular HttpClient, first introduced in Angular 4.3.0-RC.0, which is among the best
answers the framework can give to get the job done. For this very reason, we will use it a lot
throughout the whole book; however, before doing that, it might be advisable to properly
understand what it is, why is it better than the former implementation, and how to properly
implement it.

A match against the old standard
The new HttpClient was introduced in July 2017 as an improved version of the former
Angular HTTP client API, also known as @angular/http, or simply HTTP. Instead of
replacing the old version in the @angular/http package, the Angular development team
has put the new classes in a separate package--@angular/common/http. They chose to do
that to preserve the backward-compatibility with the existing code bases and also to ensure a
slow, yet steady migration to the new API.

Those who used the old Angular HTTP service class at least once will most likely remember
its main limitations:

JSON was not enabled by default, forcing the developers to explicitly set it within
the request Headers--and JSON.parse/stringify the data--when working with
RESTful APIs.
There was no easy way to access the HTTP request/response pipeline, thus
preventing the developer from intercepting or altering the request and/or response
calls after they were issued or received, by using some ugly and pattern-breaking
hacks. As a matter of fact, extensions and wrapper classes were basically the only
way to customize the service, at least on a global scope.
There was no native strong-typing for request and response objects (although we
can cast JSON-as-interfaces as a workaround).

The great news is that the new HttpClient does all of this and much more; other features
include testability support and better error handling via APIs entirely based on Observables.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[108]

How to install it
In the ASP.NET Core MVC with Angular template we've been using, the new HttpClient
class is not enabled by default. In order to use that, we need to add its references to the
Angular's AppModule class. We already know from Chapter 1, Getting Ready, that we have
three files to properly configure it: app.module.browser.ts, app.module.server.ts,
and app.module.shared.ts. Since we definitely want the QuizListComponent to be
available for both client-side and server-side rendering, we will add it to the
app.module.shared.ts file.

Go to the /ClientApp/app/ folder, open the app.module.shared.ts file, and replace the
references to the former HTTP service with the new one in the following way (changed
lines are highlighted):

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { FormsModule } from '@angular/forms';
import { HttpClientModule } from '@angular/common/http';
import { RouterModule } from '@angular/router';

import { AppComponent } from './components/app/app.component';
import { NavMenuComponent } from './components/navmenu/navmenu.component';
import { HomeComponent } from './components/home/home.component';
import { QuizListComponent } from './components/quiz/quiz-list.component';
import { QuizComponent } from './components/quiz/quiz.component';

@NgModule({
 declarations: [
 AppComponent,
 NavMenuComponent,
 HomeComponent,
 QuizListComponent,
 QuizComponent
],
 imports: [
 CommonModule,
 HttpClientModule,
 FormsModule,
 RouterModule.forRoot([
 { path: '', redirectTo: 'home', pathMatch: 'full' },
 { path: 'home', component: HomeComponent },
 { path: '**', redirectTo: 'home' }
])
]
})
export class AppModuleShared {
}

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[109]

How to use it
The first thing that catches our eye is that we're using the HttpClient class within the
constructor; we only got the quizzes property to store its results. As a matter of fact, we
don't even instantiate it within our code, we just have an HTTP parameter to the constructor
and take it for granted, as if there was some guy who would instantiate it for us.

As a matter of fact, it is just like that, but the guy is Angular itself, or--to better say it--its
very own Dependency Injection framework.

Dependency Injection
If we're used to work with modern languages such as .NET Core, ReactJS, AngularJS, or
Angular, we most likely already know what Dependency Injection (DI from now on), as
well as the huge amount of benefits it brings in terms of code reusability, testability,
readability, simplicity, and so on. In the unlikely case you don't, we'll make fun of ourselves
trying to shrink one of the most important code design patterns in the last 20 years in less
than 20 words using a coding technique where a class receives its dependencies from
external sources rather than directly instantiating them.

For the sake of simplicity, we will stop here; however, those who want to
know more about this topic can take an extensive look at this great guide
from the official Angular documentation, which explains how DI works
both in general terms and within the Angular framework:

https:/ /angular. io/ guide/ dependency- injection

Get and subscribe
When you return to the code, we can see that we use the HttpClient class by calling two
consecutive methods: .get<Quiz[]>() and .subscribe(). The former, as the name
suggests, issues a standard HTTP request to our .NET Core QuizController to fetch an
array of quizzes; we use a local string variable to assemble the controller's endpoint URL
and then toss it as a parameter. The latter instantiates an Observable object that will execute
two very different actions right after a result and/or in case of an error. Needless to say, all
this will be done asynchronously, meaning that it will run in a separate thread (or scheduled
for later execution), while the rest of the code continues to execute.

It's very important to understand that we're only scratching the surface of what an
Observable can do. However, this is all we need for now: we'll have the chance to talk more
about them later on.

www.EBooksWorld.ir

https://angular.io/guide/dependency-injection
https://angular.io/guide/dependency-injection
https://angular.io/guide/dependency-injection
https://angular.io/guide/dependency-injection
https://angular.io/guide/dependency-injection
https://angular.io/guide/dependency-injection
https://angular.io/guide/dependency-injection
https://angular.io/guide/dependency-injection
https://angular.io/guide/dependency-injection
https://angular.io/guide/dependency-injection
https://angular.io/guide/dependency-injection
https://angular.io/guide/dependency-injection
https://angular.io/guide/dependency-injection

Frontend with Angular Chapter 3

[110]

Observables are a powerful feature for managing async data; they are the
backbone of the ReactiveX JavaSript Library (RxJS), which is one of the
Angular required dependencies, and are planned to be included in the
final release of EcmaScript 7. If you're familiar with ES6 Promises, you can
think of them as an improved version of that approach.

Angular makes extensive use of both Observables when dealing with
data. Those who want to get additional information can take a look at the
following URL, taken from the RxJS official documentation:

http:/ / reactivex. io/rxjs/ class/ es6/ Observable. js~Observable. html

The onSelect() method
For the time being, our QuizListComponent features a single method, which is meant to
be executed whenever the user selects one of the quizzes. The implementation is quite
straightforward; we accept the selected quiz as a parameter, store it into a local variable,
and use the standard console.log JS command to output what happened to the client
console.

However, we're still unable to see the code that will actually render the list of quizzes and
allow the user to perform the selection. We can, however, easily guess that both of these
tasks will be handled by the component's template file.

The template file
From Solution Explorer, right-click on the /ClientApp/app/components/quiz/ folder
and add a new HTML file; call it quiz-list.component.html, and replace the sample
code with the following:

<h2>{{title}}</h2>
<ul class="quizzes">
 <li *ngFor="let quiz of quizzes"
 [class.selected]="quiz === selectedQuiz"
 (click)="onSelect(quiz)">
 {{quiz.Title}}

www.EBooksWorld.ir

http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html

Frontend with Angular Chapter 3

[111]

It's important to understand that we're free to use any filename we want
for the template file, as long as it reflects the value we used in the
templateUrl property within the quiz-list.component.ts file. We
can even share the same template among two (or more) different
components. However, the Angular best practices suggest that we use the
same name of the component, as it will lead to a cleaner, more readable
code structure.

Among these few lines, we can see the two things we were looking for:

The HTML code to render the quiz list, handled with a ngFor cycle that will
iterate through the quizzes array and create a number of elements as soon
as it is filled by the .subscribe() method of HttpClient in the component
class source code
The (click) event handler that will raise a call to the onSelect() method,
where the currently iterated quiz is passed as a parameter

There are also a couple of other things worth noting:

In line 4, we added a simple logic that will decorate the element hosting the
selected quiz with the selected CSS class so that we can style it in a different way.
In line 1 and line 6, we make use of the double-curly braces of interpolation, an
important Angular feature that allows us to insert calculated strings into the text
between HTML element tags and within attribute assignments. The text between
the braces is almost always the name of a component property; the whole block
will be replaced with the string value of the corresponding component property.
This means that, in our specific scenario, we can expect to see the component title
between the <h2> element in line 1 and the quiz title between the
element in line 6.

The double-curly braces of interpolation are part of the Angular Template
Syntax, a collection of expressions, shortcuts, and keywords that can be
used in templates--along with HTML--to grant them additional features.
We'll introduce more of them later on, as soon as we need to use them.
Nonetheless, if you just can’t wait to see what else is in store, you can take
a look at the official documentation, which is available on the Angular
website at the following address:

https:/ /angular. io/ guide/ template- syntax

www.EBooksWorld.ir

https://angular.io/guide/template-syntax
https://angular.io/guide/template-syntax
https://angular.io/guide/template-syntax
https://angular.io/guide/template-syntax
https://angular.io/guide/template-syntax
https://angular.io/guide/template-syntax
https://angular.io/guide/template-syntax
https://angular.io/guide/template-syntax
https://angular.io/guide/template-syntax
https://angular.io/guide/template-syntax
https://angular.io/guide/template-syntax
https://angular.io/guide/template-syntax
https://angular.io/guide/template-syntax

Frontend with Angular Chapter 3

[112]

The Stylesheet file
Last but not least, we need to add the CSS asset that we declared in the styleUrls array
within the quiz-list.component.ts file.

From Solution Explorer, right-click on the /ClientApp/app/components/quiz/ folder
and create a new CSS file; call it quiz-list.component.css and replace the sample code
with the following:

ul.quizzes li {
 color: #000acb;
 cursor: pointer;
}

 ul.quizzes li.selected {
 background-color: #cccccc;
 }

There's nothing fancy here, just some minimal styling to make things look less ugly.

Adding the component
We just created our very first Angular component! However, before we can test it, we need
to properly add it into our Angular application. This basically means that we'll have to
reference its path(s), class(es), and pseudo-element(s) to one or more already existing files,
depending on the component role. This is something that we'll always need to do whenever
we create a component, so it's really important to pay close attention to all the required
steps.

In most cases, such as this one, the affected files won't be more than two: the AppModule
and the template file of the parent component that will contain the one that we just made. In
our specific scenario, we want the QuizListComponent to be shown as part of the
HomeComponent, so we'll put it into the home.component.html template file.

The AppModule file(s)
The first thing we need to do is to add the component references within the application
module files; once again, we want to put them in the shared file.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[113]

Open the app.module.shared.ts file and update its contents in the following way (new
lines are highlighted):

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { FormsModule } from '@angular/forms';
import { HttpClientModule } from '@angular/common/http';
import { RouterModule } from '@angular/router';

import { AppComponent } from './components/app/app.component';
import { NavMenuComponent } from './components/navmenu/navmenu.component';
import { HomeComponent } from './components/home/home.component';
import { QuizListComponent } from './components/quiz/quiz-list.component';

@NgModule({
 declarations: [
 AppComponent,
 NavMenuComponent,
 HomeComponent,
 QuizListComponent
],
 imports: [
 CommonModule,
 HttpClientModule,
 FormsModule,
 RouterModule.forRoot([
 { path: '', redirectTo: 'home', pathMatch: 'full' },
 { path: 'home', component: HomeComponent },
 { path: '**', redirectTo: 'home' }
])
]
})
export class AppModuleShared {
}

We only added two lines:

The imports statement, with a reference to the TypeScript file hosting the
QuizListComponent class
An actual reference to the QuizListComponent class in the declarations array

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[114]

The HomeComponent template
Now that our QuizListComponent is properly referenced in the AppModule, we can add it
to the HomeComponent template file.

Open the /ClientApp/app/components/home/home.component.html file and add the
single highlighted line:

<h1>Greetings, stranger!</h1>
<p>This is what you get for messing up with .NET Core and Angular.</p>
<quiz-list></quiz-list>

That's all we need to do here; Angular and WebPack will handle the rest.

Testing it up
Let's perform a quick test to see whether our brand new Angular component is working as
expected. Run the application in debug mode and cross your fingers, hoping to see
something like this:

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[115]

It's not bad at all! If we take some time playing with the new content, we can confirm that
the CSS styles are also working properly, with the mouse cursor becoming a pointer when
clicking on the elements and the items being highlighted in grey when they're selected
with a click.

This is more than enough to tell us that everything is going well; now we can go back to
work and add the component that will allow our users to view the details of the selected
quiz.

The QuizComponent class
Now that we know how to add a component, along with its template and style files, we can
avoid explaining the most trivial steps and focus more on the code.

Adding the Component files
Let's start with adding a new /ClientApp/app/components/quiz/quiz.component.ts
file with the following content:

import { Component, Input } from "@angular/core";

@Component({
 selector: "quiz",
 templateUrl: './quiz.component.html',
 styleUrls: ['./quiz.component.css']
})

export class QuizComponent {
 @Input() quiz: Quiz;
}

Once done, follow up with the
/ClientApp/app/components/quiz/quiz.component.html template file:

<div *ngIf="quiz" class="quiz">
 <h2>{{quiz.Title}}</h2>

 <label>Title:</label>
 <input [(ngModel)]="quiz.Title" placeholder="Insert the
 title..." />

 <label>Description:</label>

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[116]

 <textarea [(ngModel)]=" quiz.Description"
 placeholder="Insert a suitable description..."></textarea>

</div>

Right after that add, the /ClientApp/app/components/quiz/quiz.component.css
stylesheet file:

.quiz {
 margin: 5px;
 padding: 5px 10px;
 border: 1px solid black;
 background-color: #dddddd;
 width: 300px;
}

 .quiz * {
 vertical-align: middle;
 }

 .quiz ul li {
 padding: 5px 0;
 }

The only new thing in this component is the @Input decorator, which is required in
Angular to define a target property. Target properties, as the name suggests, are expected to
be the target of a data binding. A data binding takes place whenever a component property
(or a DOM element) takes its value from an external source instead of having its own value;
the external source is usually another property from the same component or from a parent
component.

In our scenario, we used the @Input decorator with the quiz local property, because we
want to make it available for binding; more specifically, we plan to bind it to the
selectedQuiz of QuizListController.

It's important to understand what the @Input decorator does under the
hood and why we need to use it. In a few words, it appends metadata to
the class hosting the affected property; thanks to the metadata, Angular
will know that the given property is available for binding and will
seamlessly allow it. Without the metadata, the binding will be rejected by
Angular for security reasons.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[117]

Adding the component
Our second Angular component is ready; let's add it to our Angular app and test it.

Open the app.module.shared.ts file and add the required references (new lines are
highlighted):

[...]

import { HomeComponent } from './components/home/home.component';
import { QuizListComponent } from './components/quiz/quiz-list.component';
import { QuizComponent } from './components/quiz/quiz.component';

@NgModule({
 declarations: [
 AppComponent,
 NavMenuComponent,
 HomeComponent,
 QuizListComponent,
 QuizComponent
],

[...]

Then, open the quiz-list.component.html file and append the <quiz> pseudo-element
in the following way (new lines highlighted):

<h2>{{title}}</h2>
<ul class="quizzes">
 <li *ngFor="let quiz of quizzes"
 [class.selected]="quiz === selectedQuiz"
 (click)="onSelect(quiz)">
 {{quiz.Title}}

<quiz *ngIf="selectedQuiz" [quiz]="selectedQuiz"></quiz>

In the preceding code, we added a <quiz> pseudo-element with a couple of Angular-
specific attributes that deserve some explanation:

The *ngIf is a condition that will hide the whole <quiz> element if the
selectedQuiz value resolves to false, meaning that it's null or empty. This is a
good thing because we want to render the QuizComponent only when the user
selects a quiz from the list.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[118]

The [quiz] attribute clearly references the @Input() quiz local property of the
QuizComponent class that we just talked about. The Angular Template Syntax
requires that the targets of a property binding must be wrapped into square
brackets so that they won't be mistaken for standard HTML attributes.

Testing it up
It's time for another test. Run the project in debug mode, wait for the home view to load, and
then select a quiz from the list and see what happens:

If everything is working as it should, as we change the selectedQuiz, the bottom panel
should be updated as well, showing the details of that newly-selected test.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[119]

Adding additional lists
Our Home View isn’t done yet; two out of three item lists are yet to be done, at least on the
client-side. We’re talking about the most viewed items and the randomly picked ones; let’s
add them to the loop. Basically, we have two ways to do this:

Adding two more Angular components very similar to the QuizListComponent
one
Extending our QuizListComponent and make it configurable, thus making it
able to handle all the three item listings

Adding two more components will be rather easy; we can clone the quiz-
list.component.ts file a couple of times, and change the inner method of the two new
files to make it fetch the relevant data from the /quiz/ByTitle and /quiz/Random server-
side APIs already available through our QuizController. Once done, we can define a
different selector for each one of them, add the required stuff in the AppModule and
HomeComponent templates, and we will be done.

However, this is also a horrible approach. We will restrain ourselves from cloning any part
of our code unless there’s really no other way to get the things done; we’re using Angular
because we want to build versatile and reusable components, and we will stick to this path as
much as we can. We also don’t want to spawn unnecessary components, as it will be a pain
to keep them in sync each and every time we have to apply a definition update, a member
rename, an interface change, or any other source code modification that will affect either of
them.

For these reasons, we’ll definitely choose the second option. It's worth mentioning it's also
will be just as easy, once we know how to properly do it.

Regarding that choice, it can be easily noted that we already started with
the right foot; we called it QuizListComponent instead of
LatestQuizzesComponent, because we never really wanted to restrict it
to a single API call.

We can say that we already knew that we would be choosing the second
option right from the start; that’s hardly a surprise. Though, since we’re
fully committed to building reusable components.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[120]

Multiple components instances
The first thing we need to do is to configure the AppComponent HTML template to make it
render a couple more <quiz-list> component tags; while doing that, we also need to find
a way to uniquely identify them in order to issue a different behavior for each instance,
including latest items, most viewed items, and random items.

Open the /ClientApp/app/components/home/home.component.html file and update
our preceding code in the following way (added/modified lines are highlighted):

<h1>Greetings, stranger!</h1>
<p>This is what you get for messing up with .NET Core and Angular.</p>
<quiz-list class="latest"></quiz-list>
<quiz-list class="byTitle"></quiz-list>
<quiz-list class="random"></quiz-list>

Then, add a home.component.css style sheet file in that same folder and fill it with the
following:

quiz-list {
 width: 400px;
 display: block;
 padding: 2px 20px;
 margin: 0px 5px;
 float: left;
}

 quiz-list.latest {
 background-color: #f0f0f0;
 }

 quiz-list.byTitle {
 background-color: #e0e0e0;
 }

 quiz-list.random {
 background-color: #d0d0d0;
 }

Needless to say, all these CSS rules won't work unless we add a reference to their file in the
home.component.css file. Let's do that (new lines are highlighted):

import { Component } from '@angular/core';

@Component({
 selector: 'home',
 templateUrl: './home.component.html',

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[121]

 styleUrls: ['./home.component.css']
})
export class HomeComponent {
}

Let’s take a closer look at what we did here:

We added two more <quiz-list> elements.
We defined a standard class attribute with a different value for each instance;
this is what we will use to uniquely identify each one of them. Note that we
could’ve used the id attribute or any other standard or custom attribute; using
class seems to be a rather elegant choice, as it can also be used to apply different
styles.
We took the chance to implement some minimalistic CSS styles to arrange the
three elements horizontally and add some space between them; since they have
different class attribute values , we also gave a unique background-color to each
element.

Now is a good time to perform a quick debug run to see whether everything is working as
expected:

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[122]

We successfully managed to get three identical QuizListComponent instances within the
HomeComponent. Despite the different UI styling determined by the distinctive class
attribute value we gave them in the HomeComponent template, they all work in the same
way. What we need to do now is to change their behavior according to their class so that
each one of them will fetch different quizzes by consuming its own API.

Open the quiz-list.component.ts file and perform the following changes to the
existing code (new and updated lines are highlighted):

import { Component, Inject, Input } from "@angular/core";
import { HttpClient } from '@angular/common/http';

@Component({
 selector: "quiz-list",
 templateUrl: './quiz-list.component.html',
 styleUrls: ['./quiz-list.component.css']
})

export class QuizListComponent {
 @Input() class: string;
 title: string;
 selectedQuiz: Quiz;
 quizzes: Quiz[];

 constructor(http: HttpClient,
 @Inject('BASE_URL') baseUrl: string) {
 var url = baseUrl + "api/quiz/";

 switch (this.class) {
 case "latest":
 default:
 this.title = "Latest Quizzes";
 url += "Latest/";
 break;
 case "byTitle":
 this.title = "Quizzes by Title";
 url += "ByTitle/";
 break;
 case "random":
 this.title = "Random Quizzes";
 url += "Random/";
 break;
 }

 this.http.get<Quiz[]>(url).subscribe(result => {
 this.quizzes = result;
 }, error => console.error(error));

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[123]

 }

 onSelect(quiz: Quiz) {
 this.selectedQuiz = quiz;
 console.log("quiz with Id "
 + this.selectedQuiz.Id
 + " has been selected.");
 }
}

We’ve got a fair amount of changes here. Let’s see what we did:

In line 1, we added a reference to the Input decorator from @angular/core; we
need it here so that our class will be able to issue a data-binding between the
class input property (see line 11) and the class attribute defined in the
HomeComponent template file. In other words, we plan to get the <quiz-list>
class value so that we can use it programmatically (read further).
In line 11, we added a local @Input class property that we'll use to get the
class value at runtime.
In lines 16-33, we re-implement the HTTP request logic by adding a switch-case
statement that will configure some of the component settings--specifically, the
title and the Controller API URL--depending on the @Input class property
value, which is bound to the component CSS class.

Testing and debugging
We might think that these changes will be enough to do what we want; however, if we hit
the run command and take a look at the browser's HomeView, we can see that nothing has
changed. We still get three identical QuizListComponent instances with the same title and
quizzes.

What's going on there? The best thing we can do to understand it will be to debug our client
app, inspect our class property, and see why the switch-case statement is not working as
expected.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[124]

We can do that by taking advantage of the TypeScript runtime debugging capabilities
provided by Visual Studio:

Alternatively, we can do that using the JavaScript console log in the following way (the
quiz-list.component.ts file, new lines are highlighted):

[...]

 constructor(http: HttpClient,
 @Inject('BASE_URL') baseUrl: string) {
 console.log("QuizListComponent " +
 " instantiated with the following class: "
 + this.class);

[...]

Regardless of how we do that, the result won't change; the class local property will have a
undefined value, meaning that the binding isn't working. This makes the switch-case fallback
to its default condition, hence we get three identical Latest Quizzes component instances
regardless of their class attribute value.

Now that we've found the issue, we just have to understand the reasons behind it; to do
that, we have to take a closer look at the Angular components life cycle.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[125]

The OnInit interface and lifecycle hooks
In software engineering, the term life cycle is often used to symbolize a list of sequential
steps marking the various phases of any given item, starting from the first relevant one and
ending up with the last. Depending on the given context, the item can either be a project, an
application, a thread, and so on. Different kinds of items can also have different relevant
phases worth measuring. For example, in Object-Oriented Programming languages, the item is
often an object, and the lifecycle marks the steps from its creation phase (usually issued by
constructors, initializers, or builders) up to its destruction phase (usually handled by
destructors, dispose statements, garbage collections, and so on).

Most modern frameworks, including .NET Core and Angular, manage their objects through
a known and measurable life cycle; on top of that, they also provide a number of lifecycle
hooks bound to the most relevant steps that can be used by developers to perform actions
whenever they occur.

In Angular, each component is subject to a life cycle; the framework creates it, renders it,
creates and renders its children, checks it when its data-bound properties change, and
eventually, destroys and removes it from the DOM; most of these steps are bound to a
dedicated lifecycle hook, as we can see in the following overview:

It's important to understand that each lifecycle hook, in addition to being exposed to the
developers, is also used in the Angular framework to perform required internal tasks.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[126]

With regard to the preceding diagram, the non-indented hooks are
available for component and directive instances, while the indented ones are
for component instances only. The reason is fairly obvious--directives don't
have contents and views that can trigger them.

This is good to know, but what about our binding problem? What does this have to do with
it? We can easily answer that by taking a look at the Angular official documentation and
reading what happens during the ngOnInit lifecycle hook:

ngOnInit(): Initializes the directive/component after Angular first displays the data-bound properties and
sets the directive/component's input properties. These are called once, after the first ngOnChanges().
Here lies our answer--we are expecting to get our @Input class value within the
constructor, but the framework will only set it during the ngOnInit() lifecycle hook,
which comes later on. This means that our code is fine, except that we chose the wrong hook.

For a detailed description of all the available Angular lifecycle hooks, you
can check out the following URL from the official docs:

https:/ /angular. io/ guide/ lifecycle- hooks

Implementing ngOnInit
Now that we know what we did wrong, we can fix our issue by properly implementing a
ngOnInit hook within our QuizListComponent class.

Open the quiz-list.component.ts file and add the following code (new/updated lines
are highlighted):

import { Component, Inject, Input, OnInit } from "@angular/core";
import { HttpClient } from "@angular/common/http";

@Component({
 selector: "quiz-list",
 templateUrl: './quiz-list.component.html',
 styleUrls: ['./quiz-list.component.css']
})

export class QuizListComponent implements OnInit {
 @Input() class: string;
 title: string;
 selectedQuiz: Quiz;
 quizzes: Quiz[];
 http: HttpClient;
 baseUrl: string;

www.EBooksWorld.ir

https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks

Frontend with Angular Chapter 3

[127]

 constructor(http: HttpClient,
 @Inject('BASE_URL') baseUrl: string) {
 this.http = http;
 this.baseUrl = baseUrl;
 }

 ngOnInit() {
 console.log("QuizListComponent " +
 " instantiated with the following class: "
 + this.class);

 var url = this.baseUrl + "api/quiz/";

 switch (this.class) {
 case "latest":
 default:
 this.title = "Latest Quizzes";
 url += "Latest/";
 break;
 case "byTitle":
 this.title = "Quizzes by Title";
 url += "ByTitle/";
 break;
 case "random":
 this.title = "Random Quizzes";
 url += "Random/";
 break;
 }

 this.http.get<Quiz[]>(url).subscribe(result => {
 this.quizzes = result;
 }, error => console.error(error));
 }

 onSelect(quiz: Quiz) {
 this.selectedQuiz = quiz;
 console.log("quiz with Id "
 + this.selectedQuiz.Id
 + " has been selected.");
 }
}

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[128]

Here's an explanation of what we just did:

In line 1, we added a reference to the OnInit interface, which is required to
implement the ngOnInit() hook.
In lines 15-16, we added two new local properties that will store the constructor
variables; we need to do that because we will use them within the ngOnInit()
method, so we need to have them referenced somewhere. Since they are
instantiated through DI, this won't have performance or memory impact.
In lines 19-20, we assigned the DI instances to our new properties. Note how all
the class logic has been removed from the constructor, which is now very
shallow.
Starting from line 23, we implemented the ngOnInit() method, which now
handles the tasks that were previously done within the constructor.

The only downside of this new implementation is the amount of code bloat required to
declare and assign these new properties; we can definitely use some syntactic sugar to
shrink it out. Luckily enough, Angular support a neat constructor syntax that will allow us
to skip these properties, declaration, and assignment. Consider writing the following:

http: HttpClient;
baseUrl: string;

constructor(http: HttpClient,
 @Inject('BASE_URL') baseUrl: string) {
 this.http = http;
 this.baseUrl = baseUrl;
}

We can write this instead:

constructor(private http: HttpClient,
 @Inject('BASE_URL') private baseUrl: string) {
}

We will achieve the following result--as soon as we give them an explicit access modifier,
these parameters will be exposed accordingly. In our specific scenario, the private modifier
is more than enough, as it makes them available throughout the whole class; let's change
our code to use this new syntax and go ahead.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[129]

Testing it up
Now it's time to run the project and see whether our improvements fixed our lifecycle issue
for good:

It definitely looks like we did it. While we're here, we can also take the chance to check
whether the QuizComponent instances lying within each QuizListComponent instance are
still working properly; they seem to be in good shape as well.

Our application is growing fast; we already got a decent server-side API set, and we're
beginning to make good use of it by putting together a small yet versatile set of working
Angular Components able to fetch and display our sample data. However, we’re still
missing an important Angular feature that will help us a lot later on; let's do what it takes to
close the gap.

Two-way data binding
We already mentioned it a number of times as one of the most convenient and widely-
known features of Angular, as well as in many other reactive frameworks out there.
Nonetheless, before going further, let’s ensure that we know what we’re talking about.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[130]

Two-way data binding, also known as two-way binding, means that whenever the Data
Model changes, the UI changes accordingly and vice versa. To be more specific, consider the
following:

Whenever the model is updated, the changes are immediately reflected to the
views implementing it
Whenever a view is updated, the changes are immediately reflected in the
underlying model

From a practical development perspective, two-way data binding will help us a lot, because
we won’t have to manually sync the UI components with the Data Model.

The good news is, since we’re using Angular, we’re already set; our application is already
equipped with fully-functional two-way data binding between two Angular components
that share a data bind via the Quiz interface: the QuizListComponent and the
QuizComponent. The magic lies in the way we implemented the [(ngModel)] directive
within the QuizComponent template file (relevant lines are highlighted):

<div *ngIf="quiz" class="quiz">
 <h2>{{quiz.Title}}</h2>

 <label>Title:</label>
 <input [(ngModel)]="quiz.Title" placeholder="Insert the
 title..." />

 <label>Description:</label>
 <textarea [(ngModel)]=" quiz.Description"
 placeholder="Insert a suitable description..."></textarea>

</div>

We can easily check this out by running the application in Debug mode, then selecting a
quiz and changing its Title property using the input textbox provided by the
QuizComponent. We can easily note how any change will be immediately reflected in the
QuizListComponent accordingly:

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[131]

As we already said, all of these things are happening on the client-side only, so order to
persist them through the server Model, we will need to implement a fully-featured Data
Source, which is something we will do in the next chapter.

Disabling two-way data binding
In case we don’t like having a two-way binding relationship, we can easily turn it off by
removing the parentheses around the ngModel directive within the
quiz.component.html file, leaving only the square brackets:

<input [ngModel]="test.Title" placeholder="Insert the title..."/>

The parentheses within brackets that enable two-way binding [()] are
widely known as banana brackets. This funny name has its roots in the
Adventure in Angular podcast episode 078, featuring Brad Green, Misko
Hevery, and Igor Minar, in which they referred to that syntax by calling it a
“box of bananas”. Other than being an impressive visualization, the
banana-box concept helps us to avoid common mistakes such as placing the
brackets inside the parentheses.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[132]

Client-side routing
Our Master/Detail relationship is indeed working, yet it has some major flaws. The current
in-page navigation approach, for example, is completely different from the original plan. We
wanted our users to switch back and forth between the HomeView containing the list of
quizzes and a dedicated QuizView whenever he selects one of them, but the app doesn't do
that; it just opens something like a "quiz detail panel" under each list. Not just one but three
different panels, one for each item lists--that doesn’t make any sense! We need to fix that as
soon as possible.

While doing that, we also have another issue to solve. You may have noted that, regardless
of what we do within our app, the URL in the browser's address bar is always the same. It
will mean that we won’t be able to share, say, a URL that will directly lead to a specific quiz;
we’ll be forced to share the starting URL because it is the only supported one.

Wait a minute, isn’t this our Native Web application’s most expected behavior? This is what
the Single-Page approach is all about after all, isn’t it? The answer is no. The Single-Page
application approach has nothing to do with keeping an immutable URL in the browser's
address Bar. URLs are not pages, as the name suggests; they are unique identifiers for
accessing resources.

Standard Web applications are usually built upon a rather small number of pages that
answer to multiple URLs and serve specific contents based upon query string parameter
values and/or URL rewriting techniques. Single-Page applications make no exceptions, as
they can adapt their inner state according to the request URL and also track the user
navigation by updating the browser’s address bar accordingly. This technique is called
client-side routing, which has the same meaning as navigation; luckily enough, the sample
SPA shipped with our Angular template already implements all we need to set everything
up. Remember the counter and fetchdata components that we removed back in Chapter
1, Getting Ready? They also had their own client-side routes registered in the AppModule and
implemented in the NavMenuComponent, which we also removed because we didn't need
them anymore. Now that we need something similar, all we have to do is go back there and
get the job done.

Before doing that, we need to understand how the router can help us achieve what we
want, changing the browser’s location and history whenever the user navigates within the
app, without triggering a new page request to the server.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[133]

PathLocationStrategy versus
HashLocationStrategy
The Angular router can be configured to follow one of two different patterns:
PathLocationStrategy or HashLocationStrategy. The former is based upon the
HTML5 history.pushState technique, which is by far the prefered one. It is worth
noting, however, that such techniques won’t work well on older browsers, because they will
automatically send a page request every time the current location.href value changes,
ruining the whole SPA approach, unless the change is limited to the part of the URL that is
after a hash character (#).

HashLocationStrategy is mostly a workaround that exploits such behavior, as it will
instruct the router to compose all the navigation URLs prepending them with a hash
character (#) in the following way:

http://localhost:14600/app/#/quiz-detail/2

The Angular Router Module uses PathLocationStrategy by default, hence our app will
do the same. Should we prefer to take the other route, we can switch to
HashLocationStrategy with an override during the bootstrap phase; we will see how to
do that in a short while.

Refactoring our app
If we want to transform our current approach into an effective Master/Detail navigation
pattern, implementing the routes isn't the only thing we need to do--we also need to change
our existing component structure to make it routing-friendly. Actually, it can be wise to get
this done first, since it will involve some minor refactoring.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[134]

Let’s try to get a visual picture of what we need to do before proceeding. It’s time to get rid
of this working, yet rather inconsistent, cascading structure:

We'll switch to this navigable one:

While we were there, we took the chance to enrich our app with a couple more components
(AboutComponent and LoginComponents) that we will implement later on.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[135]

In order to achieve all of this, we need to take care of the following tasks:

Register and implement a new route that will make our QuizComponent load in
stand-alone mode instead of being a mere element of the QuizListComponent
template.

Change the QuizComponent loading behavior so that it can work
independently; more specifically, it should fetch the selected quiz
details with a server-side API call using a single parameter (such as
the quiz ID), instead of receiving the whole object from its parent
using the data-bind feature.

Add more sample Components to test the routing behavior with a number of
different requests and configure them into the AppRouting scheme as well.

Let’s do this.

Registering a new Route
Open the app.module.shared.ts file and add the following highlighted line to the
existing code:

[...]

@NgModule({
 declarations: [
 AppComponent,
 NavMenuComponent,
 HomeComponent,
 QuizListComponent,
 QuizComponent
],
 imports: [
 CommonModule,
 HttpClientModule,
 FormsModule,
 RouterModule.forRoot([
 { path: '', redirectTo: 'home', pathMatch: 'full' },
 { path: 'home', component: HomeComponent },
 { path: 'quiz/:id', component: QuizComponent },
 { path: '**', redirectTo: 'home' }
])
]
})

[...]

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[136]

The meaning of this is quite straightforward; each time the app receives an HTTP request
pointing to /quiz/<id>, it will load the QuizComponent, passing the <id> value as a GET
parameter corresponding to the ID key.

Angular will iterate through these rules starting with the first one until it
finds a match; ensure to add the new routing rules before the ** global
fallback that redirects everything to home, or they will never be executed!

Upgrading the QuizComponent
Now we need to perform some important changes to the quiz.component.ts file to
ensure that our QuizComponent will properly receive and handle it.

Since we’re removing the parent property binding, we can safely remove the reference to
the Input interface module, as well as the @Input decorator, from our local quiz variable,
as we’re not using them here anymore.

It's important to understand that as soon as we do this, the binding
relationship between the QuizListComponent and QuizComponent will
cease to work. However, this is hardly an issue; although it has been being
very useful to demonstrate how two-way binding works, the time has come
to replace it with a more reasonable, route-based navigation mechanism.

[...]

export class QuizComponent {
 quiz: Quiz;
}

[...]

We still need to retrieve the quiz data through the server-side API, however to do that, we
will need the quiz ID that is expected to come as a GET parameter through the routed HTTP
request.

Getting the ID parameter
Here's how we can retrieve it:

import { Component } from "@angular/core";
import { ActivatedRoute, Router } from "@angular/router";

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[137]

@Component({
 selector: "quiz",
 templateUrl: './quiz.component.html',
 styleUrls: ['./quiz.component.css']
})

export class QuizComponent {
 quiz: Quiz;

 constructor(private activatedRoute: ActivatedRoute,
 private router: Router) {

 // create an empty object from the Quiz interface
 this.quiz = <Quiz>{};

 var id = +this.activatedRoute.snapshot.params["id"];
 console.log(id);
 if (id) {
 // TO-DO: load the quiz using server- side API
 }
 else {
 console.log("Invalid id: routing back to home...");
 this.router.navigate(["home"]);
 }
 }
}

What we did here is quite simple to explain:

In line 2, we added a reference to the ActivatedRoute interface and to the
Router class, so we can use both of them later on; the former will give us
information about the currently active route, which will contain the GET
parameter that we need to retrieve; the latter will allow us to redirect the user to
the HomeView in case of an error.
In lines 13-28, we implemented the constructor class, where we get the ID GET
parameter from the active route using the ActivateRoute interface. If the ID is
not null or empty, we load the quiz using server-side API (this is yet to be done,
hence the to-do comment), otherwise we route the user back to the HomeView.

Note that we're already using the private access modifier for the
constructor parameters, as we will most likely need to have them available
through the whole class later on.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[138]

The usage of the injected ActivatedRoute object instance is somewhat cryptic, hence it
deserves a brief explanation. As you may know, this is the place where we can find
information about route parameters, query parameters, and URL fragments for the
currently active route. In order to access the ID query parameter, we need to look into the
params property, which happens to be an Observable object. This basically means that we
will normally need to subscribe to it in the following way, just like we did with the get()
method result of HttpClient:

this.activatedRoute.params.subscribe(
 params => {
 let id = +params['id'];
 // do something with id
 });

This will indeed work; however, we were able to retrieve the ID parameter using a smaller
amount of code and avoiding Observable entirely thanks to the snapshot property,
which returns a flatten representation of the currently active route. As a general rule of
thumb, we can--and should--use the snapshot whenever we don’t need to actively monitor
the Observable changes.

As we already mentioned once, Observables are one of the most interesting
features introduced by Angular; we’ll definitely talk more about them later
on.

Adding the HttpClient
So far, so good; now we need to replace that to-do with a working code that will get the quiz
from the .NET Core QuizController. We can easily do that with the HttpClient service,
just like we did to get the quiz array in the QuizListController a while ago. In order to
use it, we need to add the required import reference to the top of the
quiz.controller.ts file:

import { Component, Inject } from "@angular/core";
import { ActivatedRoute, Router } from "@angular/router";
import { HttpClient } from "@angular/common/http";

[...]

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[139]

While we were there, we also added the Inject decorator in line 1, as we will use it in a
few.

The next step is to have the HttpClient available somewhere. As usual, we can achieve
that through Dependency Injection, by adding an attribute variable to the constructor:

[...]

constructor(private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient) {
}

[...]

Fetching the data
Finally, we need to replace our TO-DO comment with the code that will allow our
component to fetch the quiz JSON data from the .NET Core QuizController from the ID
GET parameter provided by the current route and store it into a local property. Here it is
(new/updated lines are highlighted):

 constructor(private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient,
 @Inject('BASE_URL') private baseUrl: string) {

 var id = +this.activatedRoute.snapshot.params["id"];
 console.log(id);
 if (id) {
 var url = this.baseUrl + "api/quiz/" + id;

 this.http.get<Quiz>(url).subscribe(result => {
 this.quiz = result;
 }, error => console.error(error));
 }
 else {
 console.log("Invalid id: routing back to home...");
 this.router.navigate(["home"]);
 }
 }

It's worth noting that we also had to inject the baseUrl reference in the constructor, which
is required to properly build the Web API endpoint address.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[140]

Updating the QuizListComponent
We're done with the QuizComponent, but now we need to make it work by changing the
way the QuizListComponent makes use of it. The first thing that we need to do is to
remove its element tag from the quiz-list.component.html template file:

<h2>{{title}}</h2>
<ul class="quizzes">
 <li *ngFor="let quiz of quizzes"
 [class.selected]="quiz === selectedQuiz"
 (click)="onSelect(quiz)">
 {{quiz.Title}}

<!-- <quiz *ngIf="selectedQuiz" [quiz]="selectedQuiz"></quiz> -->

We commented it out, but we can delete it as well. Now, open the quiz-
list.component.ts file and add something to the implementation of the onSelected()
method so that it will route the user to the QuizComponent instead of relying on a data-bind
that is long gone:

[...]

onSelect(quiz: Quiz) {
 this.selectedQuiz = quiz;
 console.log("quiz with Id "
 + this.selectedQuiz.Id
 + " has been selected.");
 this.router.navigate(["quiz", this.selectedQuiz.Id]);
}

[...]

Wait a minute, this line will never compile, as there is no this.router in the
QuizListComponent file! Let's fix that in the constructor, with the help of the Angular
syntatic sugar we learned of earlier (new lines are highlighted):

import { Component, Inject, Input, OnInit } from "@angular/core";
import { Router } from "@angular/router";
import { HttpClient } from "@angular/common/http";

@Component({
 selector: "quiz-list",
 templateUrl: './quiz-list.component.html',
 styleUrls: ['./quiz-list.component.css']
})

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[141]

export class QuizListComponent implements OnInit {
 @Input() class: string;
 title: string;
 selectedQuiz: Quiz;
 quizzes: Quiz[];

 constructor(private http: HttpClient,
 @Inject('BASE_URL') private baseUrl: string,
 private router: Router) {
 }

[...]

Needless to say, we had to import the Router class as well.

Master/Detail Routing test
It's time to test our improved Master/Detail approach. Run the application in debug mode
and wait for the Home view to load, then select a quiz element and see what happens:

We did it, it works! The page is as ugly as hell, but there's no reason to worry about that
now; we'll save the styling for another chapter. For now, we'll just stick to the plan and add
the additional components we talked about earlier.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[142]

Adding new components
If we remember correctly, these were the names we chose for them:

AboutComponent

LoginComponent

PageNotFoundComponent

Considering what we just did, we should be able to add them in the blink of an eye. They
won’t be much more than a placeholder for the time being. We will properly implement
each one of them as soon as we need to.

AboutComponent
From Solution Explorer, create a new /ClientApp/app/components/about/ folder, and
then add a new about.component.ts file with the following content:

import { Component } from "@angular/core";

@Component({
 selector: "about",
 templateUrl: "./about.component.html"
})

export class AboutComponent {
 title = "About";
}

Once done, add the about.component.html template file:

<h2>{{title}}</h2>
<div>
 TestMakerFree: a production-ready, fully-featured SPA sample
 powered by ASP.NET Core and Angular.
</div>

To be honest, we ought to say that we’re neither production-ready nor fully-featured yet,
but that’s what we’re aiming for, so a little encouragement won’t hurt. It won’t be a lie
forever, after all!

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[143]

LoginComponent
Back to Solution Explorer, create a new /ClientApp/app/components/login/ folder
and fill it out with the following login.component.ts file:

import { Component } from "@angular/core";

@Component({
 selector: "login",
 templateUrl: "./login.component.html"
})

export class LoginComponent {
 title = "Login";
}

Also, put in the login.component.html template file:

<h2>{{title}}</h2>
<div>
 TO-DO: Not implemented yet.
</div>

As we already said, this is just a placeholder; there’s no way we can implement a proper
login view or any authentication mechanism now, as we’re still missing a real, persistent
Data Source. If we have the urge to mock it out, we can arrange something similar to what
we did in Chapter 2, Backend with .NET Core. There’s no need to do that yet, however, since
we’ll start implementing the real deal in the following chapter.

PageNotFoundComponent
Last but not least, create a new /ClientApp/app/components/pagenotfound/ folder
and fill it out with the following pagenotfound.component.ts file:

import { Component } from "@angular/core";

@Component({
 selector: "pagenotfound",
 templateUrl: "./pagenotfound.component.html"
})

export class PageNotFoundComponent {
 title = "Page not Found";
}

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[144]

Also fill it with its corresponding pagenotfound.component.html template file:

<h2>{{title}}</h2>
<div>
 Oops... This page does not exist (yet!).
</div>

Wait a minute, aren't we forgetting something that we're require to do each and every time
we add a new component? As a matter of fact, we do; we still need to add them all to the
AppModule class.

Updating the AppModule
Open the /ClientApp/app/app.module.shared.ts file and add the new references
accordingly (new lines highlighted):

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { FormsModule } from '@angular/forms';
import { HttpClientModule } from '@angular/common/http';
import { RouterModule } from '@angular/router';

import { AppComponent } from './components/app/app.component';
import { NavMenuComponent } from './components/navmenu/navmenu.component';
import { HomeComponent } from './components/home/home.component';
import { QuizListComponent } from './components/quiz/quiz-list.component';
import { QuizComponent } from './components/quiz/quiz.component';
import { AboutComponent } from './components/about/about.component';
import { LoginComponent } from './components/login/login.component';
import { PageNotFoundComponent } from
'./components/pagenotfound/pagenotfound.component';

@NgModule({
 declarations: [
 AppComponent,
 NavMenuComponent,
 HomeComponent,
 QuizListComponent,
 QuizComponent,
 AboutComponent,
 LoginComponent,
 PageNotFoundComponent
],
 imports: [
 CommonModule,
 HttpClientModule,

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[145]

 FormsModule,
 RouterModule.forRoot([
 { path: '', redirectTo: 'home', pathMatch: 'full' },
 { path: 'home', component: HomeComponent },
 { path: 'quiz/:id', component: QuizComponent },
 { path: 'about', component: AboutComponent },
 { path: 'login', component: LoginComponent },
 { path: '**', component: PageNotFoundComponent }
])
]
})
export class AppModuleShared {
}

As we can see, we also added the proper routing rules to ensure that these components will
actually be reached whenever the user clicks on the related link within the
NavMenuComponent. At the moment, though, there are no links in the NavMenuComponent
pointing to these components! We almost forgot that, didn't we? Let's fix that.

Open the /ClientApp/app/components/navmenu/navmenu.component.html file and
add the following content to the existing template code (new lines are highlighted):

<div class='main-nav'>
 <div class='navbar navbar-inverse'>
 <div class='navbar-header'>
 <button type='button' class='navbar-toggle' data-
 toggle='collapse' data-target='.navbar-collapse'>
 Toggle navigation

 </button>
 <a class='navbar-brand' [routerLink]="
 ['/home']">TestMakerFree
 </div>
 <div class='clearfix'></div>
 <div class='navbar-collapse collapse'>
 <ul class='nav navbar-nav'>
 <li [routerLinkActive]="['link-active']">
 <a [routerLink]="['/home']">

 Home

 <li [routerLinkActive]="['link-active']">
 <a [routerLink]="['/about']">

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[146]

 About

 <li [routerLinkActive]="['link-active']">
 <a [routerLink]="['/login']">

 Login

 </div>
 </div>
</div>

That will do. We also took the opportunity to add some neat icons from the Glyphicon
Halflings set, which is freely available for the Bootstrap framework, which is the frontend
library shipped with the .NET Core MVC with Angular template we've been using. We'll
talk more about it in Chapter 6, Style Sheets and UI Layout.

Before moving ahead, let's spend a moment explaining how we handled the
PageNotFoundComponent. For obvious reasons, it can't have a direct link on the
NavMenuComponent along with the other existing routes; that won't make any sense, as it's
intended to kick in whenever the user ends up with a non-existing route. To properly
implement this, we changed the behavior of the global fallback routing rule so that it will
load the PageNotFoundComponent instead of redirecting to Home.

Full-Scale test
It’s almost time to hit F5 and see whether our revised Angular app is still holding its
ground. Before we do that, let's quickly open the

/ClientApp/app/components/home/home.component.html file and replace our witty
welcome text with something that can define our application better:

<h1>Welcome to TestMakerFree</h1>
<p>A sample SPA project made with .NET Core and Angular.</p>
<quiz-list class="latest"></quiz-list>
<quiz-list class="byTitle"></quiz-list>
<quiz-list class="random"></quiz-list>

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[147]

If we did everything correctly, we should be greeted with something like this:

This definitely looks like the HomeView we wanted. Let’s check whether the improved
Master-Detail navigation pattern is still working by clicking on one of the available quizzes.
The HomeView should be replaced by the QuizView, displaying the test detail data:

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[148]

Still ugly, yet still up and running. Note how the URL in the address bar properly switches
from localhost/home to localhost/quiz/{n}, thus reflecting the user navigation up to
this point.

Since the Master/Detail route seems to be working, let’s test the changes we made to the
NavMenuComponent. Clicking on the About link element should update our page in the
following way:

The Login link should be working as well:

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[149]

Finally, we can go back to the HomeView and take another look at the initial layout:

If we compare the preceding screenshot with the previous one, we should be able to see
some small differences, such as the Random Quizzes listing showing different entries.
Mind you, this is hardly a surprise, since we want our app to always refresh that content by
issuing a new API call each time. Neither Angular nor .NET Core will serve cached content
unless we tell them to do so.

Conversely, the web server and/or the browser can definitely do that due
to their default behavior for static files; that’s why we explicitly disabled
file caching back in Chapter 1, Getting Ready.

Did we forget about our PageNotFoundComponent? We didn't put it in the
NavMenuComponent for obvious reasons, but it will be a shame not to test it as well. To do
that, just write a non-existing route in the browser's address bar and see what happens:

That's it.

www.EBooksWorld.ir

Frontend with Angular Chapter 3

[150]

Suggested topics
Angular components, Directives and Interfaces, XMLHttpRequest (XHR), Two-Way Data
Binding, Master-Detail navigation patterns, PathLocationStrategy, HashLocationStrategy,
location.pushState, URL Rewrite Module, URL Rewriting, Promise, Observable,
EcmaScript6, and EcmaScript7.

Summary
A lot of things happened here. We turned our attention to the client-side components of our
app, switching the focus from Web API to Angular. We chose to implement a Home View
featuring multiple listings of clickable tests, giving our users the chance to navigate to their
detail page through a classic Master-Detail relationship.

To achieve such results, we created a bunch of Angular-related items: the Quiz interface for
the model, the QuizListComponent class to retrieve the required data from the .NET Core
Controller and show them to the user, and the QuizComponent to access the detail of each
selected quiz. We connected them all with the Angular native data-binding strategies and
updated the HomeComponent accordingly; right after that, we improved the
QuizListComponent by turning it into a versatile and reusable class so that we were able
to add multiple instances of it into the HomeComponent template.

Everything we did was indeed working, but it didn’t reach our expectations in terms of
seamless navigation between views. We chose to address this issue by refactoring our app
and improving the implementation of the Angular Routing Module, thus improving our
previous Master/Detail approach.

As soon as we built our improved, navigation-based pattern, we performed a final test to see
whether everything was working as expected; since it did, we added other components,
including a PageNotFoundComponent that will be shown to our users whenever they try to
visit a non-existing route.

In the last section, we implemented a minimalistic, dummy-based, yet functional Web API
using .NET Core MVC. In this chapter, we built an unpolished--yet working--Angular
client-side App. In the subsequent chapters, we’ll address these flaws by adding a Data
Model, further improving our controllers and also working on the frontend for a better UI.

www.EBooksWorld.ir

4
Data Model with Entity

Framework Core
Our Single-Page Application is growing fine, yet it’s also starting to show its limits:

There’s no way we can add, update, or delete our sample records
We cannot properly implement our Login view, since it will require handling
some sort of user authentication in terms of credential storage and session
persistence, to say the least
Truth be told, we can’t even say we’re actually showing something close to our
original plan; our quizzes are still shallow items with titles and descriptions put
together by a sample method providing some autogenerated data

It’s time to get rid of that provisional demo and start working on the real thing. We won’t
use Angular for the time being, as what we need to implement has little or nothing to do
with the client-side portion of our app. Nonetheless, we’re fully aware of the fact that most
entities of the Data Model we’re about to build will have their correspondence in an
Angular model class, just like we did in Chapter 3, Frontend with Angular, with the C#
QuizViewModel and the TypeScript Quiz interface. As long as we don’t forget that we’re
doing this for feeding Angular, we’ll be good.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[152]

Getting ready
We need to do a lot of things here, so it’s better to avoid wasting time by introducing the
whole Data Model concept as well as the various meanings of these two words. The
experienced reader, as well as the seasoned developer, will be most likely aware of all the
relevant stuff. We’ll just say that when we are talking about a Data Model, we don’t mean
anything more or anything less than a lightweight, definitely-typed set of entity classes
representing persistent, code-driven Data Structures that we can use as resources within our
Web API code.

The word persistent has been used for a reason; we want our data structure to be stored in a
Database. That's rather obvious for any application based on data. Our TestMakerFree
app won’t be an exception, since we want it to act as a collection--or a repository--of user
made quizzes. More than requiring a Database, our Single-Page Application aims to be a web-
brows able Database by itself.

Installing Entity Framework Core
We will create our Database with the help of the Entity Framework Core (also known as EF
Core), the well-known open source Object Relational Mapper (ORM) for ADO.NET
developed by Microsoft. The reasons for such a choice are many:

Seamless integration with the Visual Studio IDE
A conceptual model based upon entity classes (Entity Data Model or EDM) that
will enable us to work with data using domain-specific objects without the need to
write data-access code, which is precisely what we’re looking for
Easy to deploy, use, and maintain in development and production phases
Compatible with all the major open source and commercial SQL-based engines,
including MSSql, MySql, PostgreSql, Oracle, and more, thanks to the official
and/or third-party EF-compatible Connectors available via NuGet

It’s worth mentioning that Entity Framework Core was previously known
as Entity Framework 7 until its latest RC release. The name change follows
the ASP.NET 5 / ASP.NET Core perspective switch we already talked
about, as it also emphasizes the EF Core major rewrite/redesign if we
compare it to the previous installments.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[153]

You might be wondering why we’re choosing to adopt a SQL-based approach instead of
going for a NoSQL alternative; there are many good NoSQL products such as MongoDB,
RavenDB, and CouchDB that happen to have a C# connector library. What about using one
of them instead?

The answer is rather simple; they are not yet supported by Entity Framework Core 2.0,
which--at the time of writing--happens to be the latest stable release. If we look at the EF
Core team backlog, we can see that non-relational Database providers such as Azure Table
Storage, Redis, and others are indeed mentioned for upcoming support, yet it’s unlikely that
we’ll be able to see any of them implemented within the EF Core’s next releases as well.

If you want to know more about the upcoming release, and/or if you feel
bold enough to use it anyway--maybe with a NoSQL DB as well--we
suggest you read more about the EF Core project status by visiting the
following links:

Project Roadmap:

https:/ /github. com/ aspnet/ EntityFramework/ wiki/ Roadmap

Source Code on GitHub:

https:/ /github. com/ aspnet/ EntityFramework

Official documentation:

https:/ /docs. efproject. net/ en/latest/

In order to install Entity Framework Core, we need to add the relevant packages to the
dependencies section of our project file. We can easily do that using the visual GUI in the
following way:

Right-click on the TestMakerFreeWebApp project.1.
Select Manage NuGet Packages.2.
Ensure that the Package source drop-down list is set to All.3.

www.EBooksWorld.ir

https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://github.com/aspnet/EntityFramework
https://docs.efproject.net/en/latest/
https://docs.efproject.net/en/latest/
https://docs.efproject.net/en/latest/
https://docs.efproject.net/en/latest/
https://docs.efproject.net/en/latest/
https://docs.efproject.net/en/latest/
https://docs.efproject.net/en/latest/
https://docs.efproject.net/en/latest/
https://docs.efproject.net/en/latest/
https://docs.efproject.net/en/latest/
https://docs.efproject.net/en/latest/
https://docs.efproject.net/en/latest/
https://docs.efproject.net/en/latest/
https://docs.efproject.net/en/latest/

Data Model with Entity Framework Core Chapter 4

[154]

Go to the Browse tab and search for the packages containing the4.
Microsoft.EntityFrameworkCore keyword:

Install the following packages (latest at the time of writing):

Microsoft.EntityFrameworkCore version 2.0.1
Microsoft.EntityFrameworkCore.SqlServer version 2.0.1
Microsoft.EntityFrameworkCore.SqlServer.Design version 2.0.0-
preview1-final
Microsoft.EntityFrameworkCore.Tools version 2.0.1
Microsoft.EntityFrameworkCore.Tools.DotNet version 2.0.0

If we prefer to do that using the NuGet package manager command line, we can input the
following:

PM> Install-Package Microsoft.EntityFrameworkCore -Version 2.0.1
PM> Install-Package Microsoft.EntityFrameworkCore.SqlServer -Version 2.0.1
PM> Install-Package Microsoft.EntityFrameworkCore.SqlServer.Design -Version
2.0.0-preview1-final
PM> Install-Package Microsoft.EntityFrameworkCore.Tools -Version 2.0.1
PM> Install-Package Microsoft.EntityFrameworkCore.Tools.DotNet -Version
2.0.0

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[155]

Among the installed namespaces, we can easily note the presence of
Microsoft.EntityFrameworkCore.SqlServer, which is the Microsoft SQL Database
Provider for Entity Framework Core. This highly versatile connector provides an interface
with the whole Microsoft SQL Server Database family, including SQL Server 2008 to 2016,
as well as the Express and Compact editions for personal and development usage.
We’re free to choose between using one of them and picking another DBMS engine such as
MySQL, PostgreSQL, or any other EF-compatible product. Should we take this decision
now? It entirely depends on the data modeling approach we want to adopt; for the time
being, and for the sake of simplicity, we choose to stick to the MS family.

Data Modeling approaches
Now that we have Entity Framework installed, we have to choose between one of the three
available approaches to model the data structure: Model-First, Database-First, or Code-
First. Each one of them comes with its fair amount of advantages and disadvantages, as the
experienced readers and seasoned .NET developers will most certainly know. While we
won’t dig too much into these, it could be useful to briefly summarize each one of them
before taking the choice.

Model-First
If we’re not familiar with the Visual Studio IDE design tools such as the XML-based
DataSet Schema (XSD) and the Entity Designer Model XML visual interface (EDMX), the
Model-First approach can be rather confusing. The key to understanding it is to
acknowledge the fact that the word Model here is meant to define a visual diagram built with
the design tools. That diagram will then be used by the Framework to autogenerate the
Database SQL script and the Data Model source code files.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[156]

To summarize, we can say that going Model-First will mean "working on a visual EDMX
diagram and letting Entity Framework create/update the rest accordingly":

Such an approach has the following benefits:

We will be able to create the Database schema and the class diagram as a whole
using a visual design tool, which can be great when the data structure is quite big
Whenever the Database changes, the model can be updated accordingly without
data loss

Yet there are some downsides, as follows:

The diagram-driven, autogenerated SQL scripts can lead to data loss in case of
updates. An easy workaround for that will be generating the scripts on disk and
manually modifying them, which will require decent SQL knowledge.
Dealing with the diagram can be tricky, especially if we want to have precise
control over our Model classes; we won’t always be able to get what we want, as
the actual source code will be autogenerated by a tool.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[157]

Database-First
Given the disadvantages of Model-First, we can think that Database-First might be the way to
go. This can be true if we either have a Database already or don’t mind building it
beforehand. That being the case, the Database-First approach is similar to the Model-First
one, except that it goes the other way around; instead of designing the EDMX manually and
generating the SQL script to create the Database, we build the latter and then generate the
former using the Entity Framework Designer tool.

We can summarize it by saying that going Database-First will mean "building the Database
and letting Entity Framework create/update the rest accordingly":

Here are the pros of this alternative approach:

If we have an already-existing Database in place, this will most likely be the way
to go as it will spare us the need to recreate it
Risk of data loss will be kept to a minimum, because any change or update will
be always performed on the Database

And here are the cons:

Manually updating the Database can be tricky if we’re dealing with clusters,
multiple instances, or a number of development/testing/production
environments, as we will have to manually keep them in sync instead of relying
on code-driven updates/migrations or autogenerated SQL scripts

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[158]

We will have even less control over the autogenerated Model classes (and their
source code) than when using Model-First approach; it will require an extensive
knowledge over EF conventions and standards, otherwise we’ll often struggle to
get what we want

Code-First
Last but not least comes the Entity Framework flagship approach since EF4, which enables
an elegant, highly-efficient Data Model development workflow. The appeal of this approach
can be easily found in its premise; the Code-First approach allows the developer to define
model objects using only standard classes, without the need of any design tool, XML
mapping files, or cumbersome piles of autogenerated code.

To summarize, we can say that going Code-First means writing the Data Model entity
classes we’ll be using within our project and letting Entity Framework generate the
Database accordingly:

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[159]

Pros

There is no need for diagrams and visual tools whatsoever, which can be great for
small-to-medium size projects as it will save a lot of time
A fluent code API that allows the developer to follow a Convention over
Configuration approach, to handle the most common scenarios, while also giving
them the chance to switch to custom, attribute-based implementation overrides the
need to customize the Database mapping

Cons

A good knowledge of C# and updated EF conventions is required
Maintaining the Database can often be tricky, as well as handling updates
without suffering data loss; the migrations support, which was added in 4.3 to
overcome the issue and has been continuously updated since then, greatly
mitigates the problem, although it also affected the learning curve in a negative
way

Taking a choice
As we can see by reading the advantages and disadvantages of these three options, there is
no such thing as an overall better or best approach; conversely, we can say that each project
scenario will likely have a best suited approach.

Regarding our project, considering the fact that we don’t have a Database yet and we’re
aiming for a flexible, mutable small-scale data structure, adopting the Code-First approach
will probably be a good choice. That’s what we will do, starting from the following
paragraph.

Creating Entities
We’ll definitely make use of one of the big advantages of the Code-First approach and start
writing our Entity classes immediately, without worrying too much about what Database
Engine we’ll use.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[160]

Truth be told, we already know something about what we’ll eventually
use. We won’t be adopting a NoSQL solution, as they are not supported by
EF yet; we also don’t want to commit ourselves into purchasing expensive
license plans, so Oracle and the commercial editions of SQL Server are
most likely out of the picture as well.

This leaves us with relatively few choices: SQL Server Compact Edition,
SQL Server Express, MySql, or other less-known solutions such as
PostgreSql. That being said, adopting Code-First will give us the chance to
postpone the call until our Data Model is ready.

ApplicationUser
Let's start with the entity that will be used to store all the user-related info. We'll use it for a
number of useful tasks, such as keeping record of who created each quiz, tracking those
who will take the quizzes, handling the login and authentication phase, and more.

Switch to Solution Explorer, then do the following:

Create a new /Data/ folder at the root level of the TestMakerFreeWebApp1.
project; this will be where all our EntityFramework-related classes will reside.
Create a /Data/Models/ folder.2.
Add a new ASP.NET Core | Code | Class file, name it ApplicationUser.cs,3.
and replace the sample code with the following:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace TestMakerFreeWebApp.Data
{
 public class ApplicationUser
 {
 #region Constructor
 public ApplicationUser()
 {

 }
 #endregion

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[161]

 #region Properties
 [Key]
 [Required]
 public string Id { get; set; }

 [Required]
 [MaxLength(128)]
 public string UserName { get; set; }

 [Required]
 public string Email { get; set; }

 public string DisplayName { get; set; }

 public string Notes { get; set; }

 [Required]
 public int Type { get; set; }

 [Required]
 public int Flags { get; set; }

 [Required]
 public DateTime CreatedDate { get; set; }

 [Required]
 public DateTime LastModifiedDate { get; set; }
 #endregion
 }
}

Note how there are no foreign keys pointing at quizzes, questions, and so on here; there's
nothing strange about that, as these are all one-to-many relationships that will be handled
from the other side.

We can ask ourselves why we used the ApplicationUser class name
instead of User. The answer is pretty simple--ApplicationUser is the
conventional name given to the custom implementation of the
IdentityUser base class used by the ASP.NET Identity module. We’re
using that in compliance with that convention, as we plan to implement
this module later on.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[162]

Quiz
The next entity will be the one identifying the quizzes, which will allow us to rewrite most
of the QuizController sample code. Right-click on the /Data/Models/ folder, add a
Quiz.cs class file, and fill it with the following code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace TestMakerFreeWebApp.Data
{
 public class Quiz
 {
 #region Constructor
 public Quiz()
 {

 }
 #endregion

 #region Properties
 [Key]
 [Required]
 public int Id { get; set; }

 [Required]
 public string Title { get; set; }

 public string Description { get; set; }

 public string Text { get; set; }

 public string Notes { get; set; }

 [DefaultValue(0)]
 public int Type { get; set; }

 [DefaultValue(0)]
 public int Flags { get; set; }

 [Required]
 public string UserId { get; set; }

 [Required]

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[163]

 public int ViewCount { get; set; }

 [Required]
 public DateTime CreatedDate { get; set; }

 [Required]
 public DateTime LastModifiedDate { get; set; }
 #endregion
 }
}

Note the presence of the UserId foreign key, which will point to the user who created the
quiz.

It’s also worth noting that we used a lot of Data Annotations attributes, as
they are the most convenient way to override the default Code-First
conventions.

If you want to know more about Data Annotations in EF Core, we strongly
suggest reading the official documentation at the following URL:

https:/ /docs. efproject. net/ en/latest/ modeling/ index.html

As we can see, this Quiz entity class is very similar to the QuizViewModel class we created
in Chapter 2, Backend with .NET Core. That’s perfectly fine, because that class was originally
meant to resemble the public properties of the Data Source underlying model, which is
precisely what we’re defining now.

The following diagram can help us better understand this:

www.EBooksWorld.ir

https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html
https://docs.efproject.net/en/latest/modeling/index.html

Data Model with Entity Framework Core Chapter 4

[164]

As we can see, we’re creating the Quiz entity that will be used by EF to generate the
Database (using code-first) and also translated (using property mapping) into the
QuizViewModel we’ll use to serve our content to our Angular client.

As we might guess, the ApplicationUser and Quiz entities alone will hardly be enough
to achieve what we want. In order to complete our initial requirements, we need to define
some more entity classes, such as the following:

Question, which will be used to store the questions related to each quiz
Answer, which will be used to store the answers related to each question
Result, which will be used to store the results related to each quiz

Other than that, sooner or later we'll also need the entities to store the user response, but we
can postpone them for the time being.

Question
Right-click on the /Data/Models/ folder and add a Question.cs class file with the
following code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace TestMakerFreeWebApp.Data
{
 public class Question
 {
 #region Constructor
 public Question()
 {

 }
 #endregion

 #region Properties
 [Key]
 [Required]
 public int Id { get; set; }

 [Required]
 public int QuizId { get; set; }

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[165]

 [Required]
 public string Text { get; set; }

 public string Notes { get; set; }

 [DefaultValue(0)]
 public int Type { get; set; }

 [DefaultValue(0)]
 public int Flags { get; set; }

 [Required]
 public DateTime CreatedDate { get; set; }

 [Required]
 public DateTime LastModifiedDate { get; set; }
 #endregion
 }
}

That’s it. Note the QuizId foreign key we have here instead of the UserId; this is because
each question is a child element of the quiz, so we don't need an UserId property, we'll just
fetch the value from the parent.

It's important to understand that the preceding assumption is true only if
we can take for granted that the quiz author will be the only user allowed
to add/manage questions to each quiz; this is precisely what we're about to
do, hence, the UserId property can be omitted.

Answer
A question will most likely require some answers. Right-click on the /Data/Models/ folder
and add the following Answer.cs class file:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace TestMakerFreeWebApp.Data
{
 public class Answer
 {
 #region Constructor

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[166]

 public Answer()
 {

 }
 #endregion

 #region Properties
 [Key]
 [Required]
 public int Id { get; set; }

 [Required]
 public int QuestionId { get; set; }

 [Required]
 public string Text { get; set; }

 [Required]
 public int Value { get; set; }

 public string Notes { get; set; }

 [DefaultValue(0)]
 public int Type { get; set; }

 [DefaultValue(0)]
 public int Flags { get; set; }

 [Required]
 public DateTime CreatedDate { get; set; }

 [Required]
 public DateTime LastModifiedDate { get; set; }
 #endregion
 }
}

Again, we only have the foreign key that we need to traverse up the one-to-many
dependency tree that we're slowly building. There's also a new Value property that we can
use to give a variable weight to different answers. That value can be a positive or even a
negative number, depending on how we want to implement our quiz backend mechanics.
There will be chances to talk more about this soon.

It seems that we're only missing the results here; let's add them.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[167]

Result
Here's the content of the /Data/Models/Result.cs class file:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace TestMakerFreeWebApp.Data
{
 public class Result
 {
 #region Constructor
 public Result()
 {

 }
 #endregion

 #region Properties
 [Key]
 [Required]
 public int Id { get; set; }

 [Required]
 public int QuizId { get; set; }

 [Required]
 public string Text { get; set; }

 public int? MinValue { get; set; }

 public int? MaxValue { get; set; }

 public string Notes { get; set; }

 [DefaultValue(0)]
 public int Type { get; set; }

 [DefaultValue(0)]
 public int Flags { get; set; }

 [Required]
 public DateTime CreatedDate { get; set; }

 [Required]

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[168]

 public DateTime LastModifiedDate { get; set; }
 #endregion
 }
}

Here we go. The QuizId foreign key property is back as the results are bound to the quiz
itself, not to questions or answers. Other than that, we can also note the MinValue and
MaxValue properties; these will be the boundaries that will be used--along with the total
score points earned by the user by picking the various answers--to determine the proper
result(s) after the quiz is over. If multiple results are available for that given score, a random
one will be picked.

Note how MinValue and MaxValue are initialized using a C# int? type,
which defines a nullable int type. We did that to give the quiz author the
chance to create results without boundaries so that they can act as a catch-
all. For example, a result with a null MinValue will be picked for all score
values up to its MaxValue; similarly, a result with a null MaxValue will be
picked for all score values equal or greater than its MinValue. Needless to
say, this also means that a result with both these values set to null will
always be picked, unless we keep the author from doing that.

Defining relationships
Now that we have built our main entity skeleton, we need to create some relationships
between them. We want to be able to do stuff like retrieve a Quiz, then browse to their
related Questions and get the available Answers. We'll also need to fetch the Result(s) for
any given score, find out the ApplicationUser who made the quiz, and so on. To do this,
we have to implement a set of entity-related properties that Entity Framework will load on
demand using its default Lazy-Load retrieval feature.

The first thing we’ll do is add a new region to our Quiz class containing these three new
properties:

#region Lazy-Load Properties
/// <summary>
/// The quiz author: it will be loaded
/// on first use thanks to the EF Lazy-Loading feature.
/// </summary>
[ForeignKey("UserId")]
public virtual ApplicationUser User { get; set; }

/// <summary>

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[169]

/// A list containing all the questions related to this quiz.
/// It will be populaed on first use thanks to the EF Lazy-Loading feature.
/// </summary>
public virtual List<Question> Questions { get; set; }

/// <summary>
/// A list containing all the results related to this quiz.
/// It will be populaed on first use thanks to the EF Lazy-Loading feature.
/// </summary>
public virtual List<Result> Results { get; set; }
#endregion

Whoever has some experience with Entity Framework won’t miss the ForeignKey Data
Annotation; this is one of the many Code-First configuration overrides we’ll need to use to
have our Data Model properly built. There’s nothing complex here, we’re just telling EF that
this property should be loaded using the UserId property defined earlier; this will also
create a one-to-many binding relationship (also known as constraint), as long as our chosen
Database will support the feature.

In order to use the ForeignKey attribute (and all other EF Data
Annotation), you need to add a reference to the
System.ComponentModel.DataAnnotations.Schema namespace in the
using section of the Quiz class. You shouldn't need to do that, as the most
recent Visual Studio releases should automatically add it for you.

Let's do the same with the other entities, starting with the Question:

#region Lazy-Load Properties
/// <summary>
/// The parent quiz.
/// </summary>
[ForeignKey("QuizId")]
public virtual Quiz Quiz { get; set; }

/// <summary>
/// A list containing all the answer related to this question.
/// </summary>
public virtual List<Answer> Answers { get; set; }
#endregion

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[170]

Then, move on to the Answer:

#region Lazy-Load Properties
/// <summary>
/// The parent question.
/// </summary>
[ForeignKey("QuestionId")]
public virtual Question Question { get; set; }
#endregion

Continue with the Result:

#region Lazy-Load Properties
/// <summary>
/// The parent quiz.
/// </summary>
[ForeignKey("QuizId")]
public virtual Quiz Quiz { get; set; }
#endregion

Now, conclude with the ApplicationUser:

#region Lazy-Load Properties
/// <summary>
/// A list of all the quiz created by this users.
/// </summary>
public virtual List<Quiz> Quizzes { get; set; }
#endregion

That's it. As we can see, for each Quiz, we want to retrieve the owner user and all the
questions and results; for each Question, we want the parent quiz and all the answers; for each
Answer, the parent question; for each Result, the parent quiz; last but not least, for each
ApplicationUser, the list of quizzes that they created.

The one-to-many EF Lazy-Load pattern
If we take a wider look at the amount of source code we have written, we can easily note
how each Foreign Key spawned:

A single-object entity property with the same type of the entity we’re referring to
in the class containing the Foreign Key
A type-defined listing property in the related class

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[171]

This pattern won’t change as long as we’re defining one-to-many relationships only; an object
to the left, leading to a list of related objects to the right.

Are we done with our entities? Yes. Are we ready to deploy our code-first Database? Hardly.
Before doing that, we need to take care of two more things:

Set up an appropriate Database Context.1.
Enable the Code-First Migrations support within our project.2.

Let’s do that right now.

Setting up the DbContext
To interact with data as objects/entity classes, Entity Framework Core uses the
Microsoft.EntityFrameworkCore.DbContext class, also called DbContext or simply
Context. This class is in charge of all the entity objects during runtime, including populating
them with data from the Database, keeping track of changes, and persisting them to the
Database during CRUD operations.

We can easily create our very own DbContext class for our project--which we will call
ApplicationDbContext--by doing the following:

From Solution Explorer, right-click on the /Data/ folder we created a while ago1.
and add a new ApplicationDbContext.cs class file.
Fill it up with the following code:2.

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata;

namespace TestMakerFreeWebApp.Data
{
 public class ApplicationDbContext : DbContext
 {
 #region Constructor
 public ApplicationDbContext(DbContextOptions options) :
 base(options)
 {
 }
 #endregion Constructor

 #region Methods
 protected override void OnModelCreating(ModelBuilder

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[172]

 modelBuilder)
 {
 base.OnModelCreating(modelBuilder);

 modelBuilder.Entity<ApplicationUser>().ToTable("Users");
 modelBuilder.Entity<ApplicationUser>().HasMany(u =>
 u.Quizzes).WithOne(i => i.User);

 modelBuilder.Entity<Quiz>().ToTable("Quizzes");
 modelBuilder.Entity<Quiz>().Property(i =>
 i.Id).ValueGeneratedOnAdd();
 modelBuilder.Entity<Quiz>().HasOne(i => i.User).WithMany(u
 => u.Quizzes);
 modelBuilder.Entity<Quiz>().HasMany(i =>
 i.Questions).WithOne(c => c.Quiz);

 modelBuilder.Entity<Question>().ToTable("Questions");
 modelBuilder.Entity<Question>().Property(i =>
 i.Id).ValueGeneratedOnAdd();
 modelBuilder.Entity<Question>().HasOne(i =>
 i.Quiz).WithMany(u => u.Questions);
 modelBuilder.Entity<Question>().HasMany(i =>
 i.Answers).WithOne(c => c.Question);

 modelBuilder.Entity<Answer>().ToTable("Answers");
 modelBuilder.Entity<Answer>().Property(i =>
 i.Id).ValueGeneratedOnAdd();
 modelBuilder.Entity<Answer>().HasOne(i =>
 i.Question).WithMany(u => u.Answers);

 modelBuilder.Entity<Result>().ToTable("Results");
 modelBuilder.Entity<Result>().Property(i =>
 i.Id).ValueGeneratedOnAdd();
 modelBuilder.Entity<Result>().HasOne(i =>
 i.Quiz).WithMany(u => u.Results);
 }
 #endregion Methods

 #region Properties
 public DbSet<ApplicationUser> Users { get; set; }
 public DbSet<Quiz> Quizzes { get; set; }
 public DbSet<Question> Questions { get; set; }
 public DbSet<Answer> Answers { get; set; }
 public DbSet<Result> Results { get; set; }
 #endregion Properties
 }
}

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[173]

There are a couple of important things we did here:

We overrode the OnModelCreating method to manually define our Data Model
relationships for our entity classes. Note that we manually configured the table
names for each entity using the
modelBuilder.Entity<TEntityType>().ToTable method; we did that with
the sole purpose of showing how easy it is to customize the Code-First generated
Database.
We added a DbSet<T> property for each of our entities, so we can easily access
them later on.

Database initialization strategies
Creating the Database for the first time isn’t the only thing we need to worry about; for
example, how can we keep track of the changes that will definitely occur to our Data
Model?

In previous versions of EF (up to 6.x), we could choose between one of the Database
management patterns (known as Database Initializers or DbInitializers) offered by the Code-
First approach, that is, by picking the appropriate Database initialization strategy for our
specific needs: CreateDatabaseIfNotExists, DropCreateDatabaseIfModelChanges,
DropCreateDatabaseAlways, and MigrateDatabaseToLatestVersion. Additionally,
should we need to address specific requirements, we can also set up our own custom
initializer by extending one of the preceding and overriding their core methods.

The major flaw of DbInitializers was them not being immediate and streamlined enough
for the average developer. They were viable, yet difficult to handle without an extensive
knowledge of the whole Entity Framework logic.

In EF Core, the pattern has been greatly simplified; there are no DbInitializers, and automatic
migrations have also been removed. The Database initialization aspect is now entirely
handled through PowerShell commands, with the sole exception of a small set of commands
that can be placed directly on the DbContext implementation constructor to partially
automatize the process; they are as follows:

Database.EnsureCreated()

Database.EnsureDeleted()

Database.Migrate()

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[174]

There’s currently no way to create migrations programmatically; they must be added via
PowerShell, as we will see shortly.

Choosing the Database Engine
Before doing that, though, we need to choose which Database engine we would like to use.
We’ll take this as an opportunity to demonstrate the versatility of the Code-First approach.

From the main Menu, select View | SQL Server Object Explorer and look through the
available development-ready Databases; you should have at least one MSSQLocalDB
Database instance under the SQL Server node:

If you have one or more instances of SQL Server and/or SQL Express installed, you will also
find a reference for each one of them.

If you have no entries (no SQL Server node), you are most likely missing
the SQL Server Data Tools component from your Visual Studio
installation; in order to fix that, you need to open the Visual Studio
Installer and add the SQL Server Data Tools components. Once you’re
done, restart Visual Studio; the default MSSQLLocalDB instance should
be ready and available.

For now, we'll use the (localdb)\MSSQLLocalDB instance; we need to keep track of that
name, as we’ll need to use it in the appsettings.json file in a short while.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[175]

The default (localdb)\MSSQLLocalDB instance we have just choosen
might be viable enough for development, but it won’t work on production.
Don’t worry, though, we will choose a whole different Database engine
when we get to the deployment phase. As we said before, we’re doing that
on purpose in order to demonstrate the versatility of the Code-First
approach.

Updating the appsettings.json file
From Solution Explorer, open the appsettings.json file and add the following (new
lines highlighted):

{
 "ConnectionStrings": {
 "DefaultConnection": "Data Source=(localdb)\\MSSQLLocalDB;Initial
 Catalog=TestMakerFree;Integrated Security=True;
 MultipleActiveResultSets=True"
 },
 "Logging": {
 "IncludeScopes": false,
 "Debug": {
 "LogLevel": {
 "Default": "Warning"
 }
 },

[...]

This is the connection string we’ll be referencing in our project's Startup.cs file later on.

Creating the Database
Now that we have our own DbContext and a valid Connection String, we can easily add the
Initial Migration and create our Database.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[176]

Updating Startup.cs
The first thing we have to do is to add the EntityFramework support and our
ApplicationDbContext implementation to our application startup class. Open the
Startup.cs file and update the ConfigureServices method in the following way (new
lines are highlighted):

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();

 // Add EntityFramework support for SqlServer.
 services.AddEntityFrameworkSqlServer();

 // Add ApplicationDbContext.
 services.AddDbContext<ApplicationDbContext>(options =>
options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")
)
);
 }

The new code will also require the following namespace references:

using Microsoft.EntityFrameworkCore;
using TestMakerFreeWebApp.Data;

Adding the Initial Migration
Open a PowerShell Command Prompt and navigate through the project’s root folder,
which is as follows in our example:

C:\Projects\TestMakerFree\TestMakerFreeWebApp\

Once there, type the following command to add the first migration:

dotnet ef migrations add "Initial" -o "Data\Migrations"

The optional -o parameter can be used to change the location where the
migration code-generated files will be created; if we don’t specify it, a root-
level /Migrations/ folder will be created and used as default. Since we
put all the EntityFrameworkCore classes into the /Data/ folder, it’s
advisable to store migrations there as well.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[177]

The command should give the on-screen output below:

Wait for the migration to be created, and then type the following to apply it:

dotnet ef database update

Once done, open the Server Object Explorer and verify that the TestMakerFree Database
has been created, along with all the relevant tables:

If you've used migrations before, you might be asking why we didn’t use
the Visual Studio’s Package Manager Console to execute these commands.
The reason is simple--unfortunately, doing this won’t work, because the
commands need to be executed within the project root folder, which is not
where the Package Manager Console commands are executed. It is also
unknown whether that behavior will change in the near future.

If we go back to Visual Studio and take a look at our project's Solution Explorer, we can see
that there’s a new /Data/Migrations/ folder containing the EF Core code-generated files.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[178]

The "No executable found matching command dotnet-
ef" error
At the time of writing, there's a nasty issue affecting most .NET Core-based Visual Studio
projects that can prevent the dotnet ef command from working properly. More
specifically, you can be prompted by the following error message when trying to execute
that command:

No executable found matching command "dotnet-ef"

If you experience this issue, try to check the following:

Double-check that you properly added the
Microsoft.EntityFrameworkCore.Tools and the
Microsoft.EntityFrameworkCore.Tools.DotNet package libraries (as
explained earlier), as they are required for the command to work
Ensure that you are issuing the dotnet ef command in the project's root folder--
the same one that also contains the <ProjectName>.csproj file; it won't work
anywhere else

If both of these checks hit their marks, try this workaround--right-click on the project's root
folder, select Edit <ProjectName>.csproj to open that file to edit in Visual Studio, and look
for the following element:

<ItemGroup>
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools"
 Version="2.0.1" />
 <DotNetCliToolReference
Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="2.0.0" />
</ItemGroup>

Alternatively, you can also edit the <ProjectName>.csproj file with a
text editor such as Notepad++; just ensure that you reload your project
when you're done.

The <ItemGroup> element is just a container here; you need to look for the highlighted
lines. Needless to say, the Version value will change when using a different or more recent
EF Core release. Be aware that these elements can have a slightly different syntax.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[179]

However, they definitely need to be there; if you can't find them, you will know why the
dotnet ef command is not working. Fix that unwanted behavior by manually adding
them to your project configuration file. They must we wrapped within an <ItemGroup>
block, so you can either put them together in a group with other
<DotNetCliToolReference> elements (if there is at least one), or add a whole net
<ItemGroup> block.

As soon as you update your project configuration file, restart Visual Studio (or reload the
project), and then try to execute the dotnet ef command again from the project's root
folder. In the unlikely case that you end up with some NuGet package conflicts, you can try
issuing the dotnet update command from the project's root folder to fix them; right after
that, reload your project and try to execute the dotnet ef command again.

A lot more can be said regarding this issue, but doing that will bring us
too far from the scope of this book. If you want to know more, you can
take a look at the article I wrote about it while working on this book at
https:/ /goo. gl/Ki6mdb.

Understanding Migrations
Before going ahead, it would be useful to say a few words explaining what Code-First
Migrations actually are and the advantages we gain by using them.

Whenever we’re developing an application and defining a Data Model, we can be sure that
it will change a number of times for many good reasons: new requirements from the
product owner, optimization processes, consolidation phases, and so on. A bunch of
properties will be added, deleted, or have their type changed. Chances are, sooner or later,
we’ll be adding new entities as well, and/or changing their relation pattern according to our
ever-changing needs.

Each time we do something like that, we’ll also put our Data Model out of sync with its
underlying, Code-First generated Database. This won’t be a problem when we’re debugging
our app within a development environment, because that scenario usually allows us to
recreate the Database from scratch whenever the project changes.

Upon deploying the application into production, we’ll be facing a whole different story; as
long as we’re handling real data, dropping and recreating our Database won’t be an option
anymore. This is what the Code-First Migrations feature is meant to address: giving the
developer a chance to alter the Database schema without having to drop/recreate the whole
thing.

www.EBooksWorld.ir

https://goo.gl/Ki6mdb
https://goo.gl/Ki6mdb
https://goo.gl/Ki6mdb
https://goo.gl/Ki6mdb
https://goo.gl/Ki6mdb
https://goo.gl/Ki6mdb
https://goo.gl/Ki6mdb
https://goo.gl/Ki6mdb
https://goo.gl/Ki6mdb

Data Model with Entity Framework Core Chapter 4

[180]

We won’t dig more into this topic; Entity Framework Core is a world of its
own, and addressing it in detail is out of the scope of this book. If you
want to learn more, we suggest you start with the official EF Core MS
documentation at https:/ /docs. microsoft. com/ en-us/ ef/core/ .

Implementing a Data Seed strategy
We have created the Database, yet it’s still completely empty. In order to test it against our
existing application, it will be useful to find an easy way of adding some sample data
programmatically.

In the most recent Entity Framework versions, up to and including EF6, it was possible to do
that using the DbMigrationsConfiguration.Seed() method. Unfortunately, though,
migrations configuration doesn’t exist in EF Core; this seems to be more of an
implementation choice than a lack of features, since the seeding task can now be performed
directly within the Startup.cs file.

If you're interested in reading the discussion leading to that conclusion,
we strongly suggest you take a look at the following URL, pointing to the
issue #3070 of the Entity Framework Core repository on GitHub:

https:/ /github. com/ aspnet/ EntityFramework/ issues/ 3070

Although this is definitely true, there is still some controversy going on between the EF
Core developers community regarding that specific aspect. The absence of a high-level API
and/or a consolidated pattern to run seeding after applying migrations is indeed something
that should be addressed somehow, as executing such a delicate task during application run
creates a number of issues, and it doesn’t seem to be a viable solution in most scenarios.

Creating a DbSeeder class
Let’s start by adding a DbSeeder.cs static class to the /Data/ folder. This class will use the
ApplicationDbContext to create some sample entities and save them to our Database;
doing that will take a considerable amount of code, hence it might be useful to split the
various class components into #region blocks so that we can better understand the various
steps.

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070
https://github.com/aspnet/EntityFramework/issues/3070

Data Model with Entity Framework Core Chapter 4

[181]

Let's start with the Public Methods region, which will contain the methods that we want
to make available from external classes:

[...]

#region Public Methods
public static void Seed(ApplicationDbContext dbContext)
{
 // Create default Users (if there are none)
 if (!dbContext.Users.Any()) CreateUsers(dbContext);

 // Create default Quizzes (if there are none) together with their
 set of Q&A
 if (!dbContext.Quizzes.Any()) CreateQuizzes(dbContext);
}
#endregion

[...]

As we can see, the region contains a single Seed() method that will accept an
ApplicationDbContext parameter and launch a couple of private methods--
CreateUsers() and CreateQuizzes()--which will actually get the job done. These will
be addressed in the Seed Methods region below.

We implemented the Seed() method using a conservative approach, as it
will be executed each and every time our Data Model changes. We don’t
want any user or quiz to be added twice, so we ensure that all entities are
not already present in the Database before adding them.

The Seed Methods region is quite long, so we'll split it into two parts, one for each method;
let's start with CreateUsers():

[...]

#region Seed Methods
private static void CreateUsers(ApplicationDbContext dbContext)
{
 // local variables
 DateTime createdDate = new DateTime(2016, 03, 01, 12, 30, 00);
 DateTime lastModifiedDate = DateTime.Now;

 // Create the "Admin" ApplicationUser account (if it doesn't exist
 already)
 var user_Admin = new ApplicationUser()
 {
 Id = Guid.NewGuid().ToString(),

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[182]

 UserName = "Admin",
 Email = "admin@testmakerfree.com",
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 };

 // Insert the Admin user into the Database
 dbContext.Users.Add(user_Admin);

#if DEBUG
 // Create some sample registered user accounts (if they don't exist
 already)
 var user_Ryan = new ApplicationUser()
 {
 Id = Guid.NewGuid().ToString(),
 UserName = "Ryan",
 Email = "ryan@testmakerfree.com",
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 };

 var user_Solice = new ApplicationUser()
 {
 Id = Guid.NewGuid().ToString(),
 UserName = "Solice",
 Email = "solice@testmakerfree.com",
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 };

 var user_Vodan = new ApplicationUser()
 {
 Id = Guid.NewGuid().ToString(),
 UserName = "Vodan",
 Email = "vodan@testmakerfree.com",
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 };

 // Insert sample registered users into the Database
 dbContext.Users.AddRange(user_Ryan, user_Solice, user_Vodan);
#endif
 dbContext.SaveChanges();
}

[...]

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[183]

This method will create the Admin user, plus a set of sample registered users: Ryan, Solice,
and Vodan. Each user comes with his own unique ID (in Guid format) and credentials set;
these will definitely be useful for the login and authentication tests that will come in the
future.

Before moving ahead, let's spend a moment looking at the #if... #endif conditional
block that we used here, which is a C# pre-processor directive, also known as a conditional
compilation directive. This means that the wrapped code will be compiled only if the given
condition matches. The DEBUG switch will be True for release builds and False for debug
builds, thus allowing us to use two different behaviors for our testing environment and for
production. Since we don’t want to create the sample users in our production environment,
we’ve put that part of code inside a conditional compilation block that is executed only
when the application is running in Debug mode.

Here's the second part of the Seeds Method region:

[...]

private static void CreateQuizzes(ApplicationDbContext dbContext)
{
 // local variables
 DateTime createdDate = new DateTime(2016, 03, 01, 12, 30, 00);
 DateTime lastModifiedDate = DateTime.Now;

 // retrieve the admin user, which we'll use as default author.
 var authorId = dbContext.Users
 .Where(u => u.UserName == "Admin")
 .FirstOrDefault()
 .Id;

#if DEBUG
 // create 47 sample quizzes with auto-generated data
 // (including questions, answers & results)
 var num = 47;
 for (int i = 1; i <= num; i++)
 {
 CreateSampleQuiz(
 dbContext,
 i,
 authorId,
 num - i,
 3,
 3,
 3,
 createdDate.AddDays(-num));
 }

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[184]

#endif

 // create 3 more quizzes with better descriptive data
 // (we'll add the questions, answers & results later on)
 EntityEntry<Quiz> e1 = DbContext.Quizzes.Add(new Quiz()
 {
 UserId = authorId,
 Title = "Are you more Light or Dark side of the Force?",
 Description = "Star Wars personality test",
 Text = @"Choose wisely you must, young padawan: " +
 "this test will prove if your will is strong enough " +
 "to adhere to the principles of the light side of the
 Force " +
 "or if you're fated to embrace the dark side. " +
 "No you want to become a true JEDI, you can't possibly
 miss this!",
 ViewCount = 2343,
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 });

 EntityEntry<Quiz> e2 = DbContext.Quizzes.Add(new Quiz()
 {
 UserId = authorId,
 Title = "GenX, GenY or Genz?",
 Description = "Find out what decade most represents you",
 Text = @"Do you feel confortable in your generation? "+
 "What year should you have been born in?" +
 "Here's a bunch of questions that will help you to find
 out!",
 ViewCount = 4180,
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 });

 EntityEntry<Quiz> e3 = DbContext.Quizzes.Add(new Quiz()
 {
 UserId = authorId,
 Title = "Which Shingeki No Kyojin character are you?",
 Description = "Attack On Titan personality test",
 Text = @"Do you relentlessly seek revenge like Eren? " +
 "Are you willing to put your like on the stake to
 protect your friends like Mikasa? " +
 "Would you trust your fighting skills like Levi "+
 "or rely on your strategies and tactics like Arwin? " +
 "Unveil your true self with this Attack On Titan
 personality test!",
 ViewCount = 5203,

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[185]

 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 });

 // persist the changes on the Database
 DbContext.SaveChanges();
}
#endregion

[...]

The preceding CreateQuizzes() method adds a total of 50 sample quizzes to the
Database. As we can see, 47 of them come with questions, answers, and results, thanks to
the CreateSampleQuiz() utility method (which we'll see in a bit), while the other three
feature a more realistic title and text contents, yet they come out empty. We did that on
purpose, as we plan to manually add their questions, answers, and results with our
Angular app in the subsequent chapters.

Last but not least comes the Utility Methods region:

[...]

#region Utility Methods
/// <summary>
/// Creates a sample quiz and add it to the Database
/// together with a sample set of questions, answers & results.
/// </summary>
/// <param name="userId">the author ID</param>
/// <param name="id">the quiz ID</param>
/// <param name="createdDate">the quiz CreatedDate</param>
private static void CreateSampleQuiz(
 ApplicationDbContext dbContext,
 int num,
 string authorId,
 int viewCount,
 int numberOfQuestions,
 int numberOfAnswersPerQuestion,
 int numberOfResults,
 DateTime createdDate)
{
 var quiz = new Quiz()
 {
 UserId = authorId,
 Title = String.Format("Quiz {0} Title", num),
 Description = String.Format("This is a sample description for
 quiz {0}.", num),
 Text = "This is a sample quiz created by the DbSeeder class for

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[186]

 testing purposes. " +
 "All the questions, answers & results are auto-
 generated as well.",
 ViewCount = viewCount,
 CreatedDate = createdDate,
 LastModifiedDate = createdDate
 };
 dbContext.Quizzes.Add(quiz);
 dbContext.SaveChanges();

 for (int i = 0; i < numberOfQuestions; i++)
 {
 var question = new Question()
 {
 QuizId = quiz.Id,
 Text = "This is a sample question created by the DbSeeder
 class for testing purposes. " +
 "All the child answers are auto-generated as well.",
 CreatedDate = createdDate,
 LastModifiedDate = createdDate
 };
 dbContext.Questions.Add(question);
 dbContext.SaveChanges();

 for (int i2 = 0; i2 < numberOfAnswersPerQuestion; i2++)
 {
 var e2 = dbContext.Answers.Add(new Answer()
 {
 QuestionId = question.Id,
 Text = "This is a sample answer created by the DbSeeder
 class for testing purposes. ",
 Value = i2,
 CreatedDate = createdDate,
 LastModifiedDate = createdDate
 });
 }
 }

 for (int i = 0; i < numberOfResults; i++)
 {
 dbContext.Results.Add(new Result()
 {
 QuizId = quiz.Id,
 Text = "This is a sample result created by the DbSeeder
 class for testing purposes. ",
 MinValue = 0,
 // max value should be equal to answers number * max answer
 value

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[187]

 MaxValue = numberOfAnswersPerQuestion * 2,
 CreatedDate = createdDate,
 LastModifiedDate = createdDate
 });
 }
 dbContext.SaveChanges();
}
#endregion

[...]

Here lies the CreateSampleQuiz() method implementation, which adds a new quiz to the
Database, along with a configurable tree of questions, answers, and results for the quiz
itself.

Before going further, it's important to note how this method, which is called no less than 47
times by CreateQuizzes(), makes a good use of the dbContext.SaveChanges()
command. This is how we tell our ApplicationDbContext instance to persist all the
pending changes to the Database. This is quite resource intensive; however, we need to do
that to retrieve the Id key of the quizzes and questions we add, which we need to properly
create the Quiz > Questions > Answers and Quiz > Results relationships. The
dbContext.SaveChanges() method performs actual INSERT queries under the Entity
Framework hood, so it can be resource-intensive if we run it multiple times. Luckily enough,
the whole data-seed process will happen only once, so it won't impact the overall
performance of our application.

The DbSeeder.cs class features an impressive amount of code, yet there's
nothing to worry about as it's full of repeating tasks. However, it does
make good use of the various features made available by our
ApplicationDbContext class and its DbContext base class.

If you want to know more about DbContext, you can check out the
official API at
https:/ /docs. microsoft. com/ en-US/ ef/ core/ api/ microsoft.
entityframeworkcore. dbcontext.

Adding the DbSeeder to Startup.cs
Our next task will be to add the DbSeeder to our Startup class. Since it's a static class, we
will be able to use it anywhere, but we need an instance of our ApplicationDbContext; it
would be great to get that using Dependency Injection.

www.EBooksWorld.ir

https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/en-US/ef/core/api/microsoft.entityframeworkcore.dbcontext

Data Model with Entity Framework Core Chapter 4

[188]

Theoretically speaking, we can add a new parameter in the Configure() method, as
follows:

[...]

public void Configure(IApplicationBuilder app, IHostingEnvironment env,
 ApplicationDbContext dbContext)
{
 [...]

 DbSeeder.Seed(dbContext);
}

[...]

This will indeed instantiate it through DI and get it done without drawbacks. However, we
really don't want to alter the Configure method default parameter list, even if it won't
affect our application.

We can achieve the same outcome in a less-intrusive fashion with a few more lines of code:

[...]

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 [...]

 // Create a service scope to get an ApplicationDbContext instance
 using DI
 using (var serviceScope =
 app.ApplicationServices.GetRequiredService<IServiceScopeFactory>
 ().CreateScope())
 {
 var dbContext =
 serviceScope.ServiceProvider.GetService<ApplicationDbContext>();
 // Create the Db if it doesn't exist and applies any pending
 migration.
 dbContext.Database.Migrate();
 // Seed the Db.
 DbSeeder.Seed(dbContext);
 }
}

[...]

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[189]

Append the highlighted snippet at the end of the Startup class Configure method, and
then add an import reference to the following required namespace at the start of the
Startup.cs file:

[...]
using Microsoft.Extensions.DependencyInjection;
[...]

We're now good to go.

Seeding the Database
We’re now ready to seed our Database. As we have hooked the DbSeeder.Seed() method
to the Startup class, it’ll be as easy as executing our app once by pressing F5: this will be
enough to let the seeder work its magic. If we did everything correctly, our Database should
be populated in no time. In order to check that, we can follow these steps:

Open the Server Object Explorer panel.1.
Expand the nodes up to our TestMakerFree Database.2.
Right-click on the dbo.Quizzes table and select View Data.3.

We should see something like the following:

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[190]

Updating the QuizController
Last but not least, we need to make some changes to the QuizController to make it use
the ApplicationDbContext to retrieve data instead of those Dummy Data Provider
strategies we implemented back in Chapter 2, Backend with .NET Core.

In order to do that, the first thing we need to do is to find an efficient way to map each Quiz
entity to a corresponding QuizViewModel object, as our new Data Provider won’t generate
them anymore. We can achieve such a result in a number of ways, including the following:

Adding a Helper Method, such as GetQuizViewModel(Quiz quiz), thus
handling the mapping manually with a few lines of code
Adding a Constructor Method to the QuizViewModel itself, such as
QuizViewModel(Quiz quiz), doing pretty much the same thing as the
aforementioned helper method
Adding one of the many Object-to-Object Auto-Mapping Tools freely available
via NuGet and configuring it to handle the mapping automatically whenever we
need it

We’ll definitely go for the latter.

Introducing Mapster
ASP.NET features a lot of object-to-object mapping tools, AutoMapper being the most used
and acknowledged one; you’re free to use the one you like the most and/or are most used to.
For the purpose of this book, we’ll use Mapster because it’s lightweight, simple to use, and
often performs better than its big brothers.

Installation
From Solution Explorer, right-click on the TestMakerFreeWebApp project and select
Manage NuGet Packages. Ensure that the Browse tab is selected, and then type Mapster
into the search box and press Enter. Select the appropriate result and press the Install
button to add it.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[191]

Ensure that you select a stable version; for the purpose of this book, we'll
use Mapster 3.1.1, which is currently the latest stable one. As always,
you're free to choose any other release as long as you remember the
disclaimer in Chapter 1.

For those who prefer to use the NuGet Package Manager Console, here's the one liner:

PM> Install-Package Mapster -Version 3.1.1

Basic usage
Like most mappers, Mapster can do its job in a number of different and convenient ways.

Let's start with the most basic usage, where a source object can be directly mapped to a
destination object:

var destObject = sourceObject.Adapt<TDestination>();

Alternatively, we can instantiate a mapper by ourselves (or get it through Dependency
Injection):

IAdapter adapter = new Adapter();
var destObject = adapter.Adapt<TDestination>(sourceObject);

All achieve the same result using a static method:

var destObject = TypeAdapter.Adapt<TDestination>;

All mappings can be either configured on-the-fly--during the mapping itself--or globally,
using the TypeAdapterConfig static class, which also features a fluent and readable
syntax:

TypeAdapterConfig<TSource, TDestination>
 .NewConfig()
 .Ignore(dest => dest.IgnoreThisProperty)
 .Map(dest => dest.MergeProperty1And2,
 src => string.Format("{0}{1}", src.Property1, src.Property2));

However, where Mapster really shines is the speed. Arguably 2.5 times faster than
AutoMapper, it's twice as fast as other better known alternatives out there.

Those who want to know more about Mapster and how to use it are
encouraged to visit the official project repo on GitHub at https:/ /github.
com/ chaowlert/ Mapster.

www.EBooksWorld.ir

https://github.com/chaowlert/Mapster
https://github.com/chaowlert/Mapster
https://github.com/chaowlert/Mapster
https://github.com/chaowlert/Mapster
https://github.com/chaowlert/Mapster
https://github.com/chaowlert/Mapster
https://github.com/chaowlert/Mapster
https://github.com/chaowlert/Mapster
https://github.com/chaowlert/Mapster
https://github.com/chaowlert/Mapster

Data Model with Entity Framework Core Chapter 4

[192]

Updating the QuizController
Now that we know how to use Mapster, we can upgrade our QuizController
accordingly. Open the QuizController.cs file and perform the following changes
(new/updated lines are highlighted):

using System;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using TestMakerFreeWebApp.ViewModels;
using System.Collections.Generic;
using System.Linq;
using TestMakerFreeWebApp.Data;
using Mapster;

namespace TestMakerFreeWebApp.Controllers
{
 [Route("api/[controller]")]
 public class QuizController : Controller
 {
 #region Private Fields
 private ApplicationDbContext DbContext;
 #endregion

 #region Constructor
 public QuizController(ApplicationDbContext context)
 {
 // Instantiate the ApplicationDbContext through DI
 DbContext = context;
 }
 #endregion Constructor

 #region RESTful conventions methods
 /// <summary>
 /// GET: api/quiz/{id}
 /// Retrieves the Quiz with the given {id}
 /// </summary>
 /// <param name="id">The ID of an existing Quiz</param>
 /// <returns>the Quiz with the given {id}</returns>
 [HttpGet("{id}")]
 public IActionResult Get(int id)
 {
 var quiz = DbContext.Quizzes.Where(i => i.Id ==
 id).FirstOrDefault();
 return new JsonResult(
 quiz.Adapt<QuizViewModel>(),
 new JsonSerializerSettings()

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[193]

 {
 Formatting = Formatting.Indented
 });
 }

 /// <summary>
 /// Adds a new Quiz to the Database
 /// </summary>
 /// <param name="m">The QuizViewModel containing the data to
 insert</param>
 [HttpPut]
 public IActionResult Put(QuizViewModel m)
 {
 throw new NotImplementedException();
 }

 /// <summary>
 /// Edit the Quiz with the given {id}
 /// </summary>
 /// <param name="m">The QuizViewModel containing the data to
 update</param>
 [HttpPost]
 public IActionResult Post(QuizViewModel m)
 {
 throw new NotImplementedException();
 }

 /// <summary>
 /// Deletes the Quiz with the given {id} from the Database
 /// </summary>
 /// <param name="id">The ID of an existing Test</param>
 [HttpDelete("{id}")]
 public IActionResult Delete(int id)
 {
 throw new NotImplementedException();
 }
 #endregion

 #region Attribute-based routing methods
 /// <summary>
 /// GET: api/quiz/latest
 /// Retrieves the {num} latest Quizzes
 /// </summary>
 /// <param name="num">the number of quizzes to retrieve</param>
 /// <returns>the {num} latest Quizzes</returns>
 [HttpGet("Latest/{num:int?}")]
 public IActionResult Latest(int num = 10)
 {

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[194]

 var latest = DbContext.Quizzes
 .OrderByDescending(q => q.CreatedDate)
 .Take(num)
 .ToArray();
 return new JsonResult(
 latest.Adapt<QuizViewModel[]>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }

 /// <summary>
 /// GET: api/quiz/ByTitle
 /// Retrieves the {num} Quizzes sorted by Title (A to Z)
 /// </summary>
 /// <param name="num">the number of quizzes to retrieve</param>
 /// <returns>{num} Quizzes sorted by Title</returns>
 [HttpGet("ByTitle/{num:int?}")]
 public IActionResult ByTitle(int num = 10)
 {
 var byTitle = DbContext.Quizzes
 .OrderBy(q => q.Title)
 .Take(num)
 .ToArray();
 return new JsonResult(
 byTitle.Adapt<QuizViewModel[]>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }

 /// <summary>
 /// GET: api/quiz/mostViewed
 /// Retrieves the {num} random Quizzes
 /// </summary>
 /// <param name="num">the number of quizzes to retrieve</param>
 /// <returns>{num} random Quizzes</returns>
 [HttpGet("Random/{num:int?}")]
 public IActionResult Random(int num = 10)
 {
 var random = DbContext.Quizzes
 .OrderBy(q => Guid.NewGuid())
 .Take(num)
 .ToArray();
 return new JsonResult(
 random.Adapt<QuizViewModel[]>(),

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[195]

 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }
 #endregion
 }
}

We did a lot of changes here:

At the start of the file, we added a reference to the TestMakerFreeWebApp.Data
and Mapster required namespaces.
We added a private DbContext member, which we assign through DI in a new
constructor method.
We used the DbContext to change the behavior of all our data-retrieval methods:
Get, Latest, ByTitle, and Random. We got rid of the Dummy Data Provider
and used ApplicationDbContext instead, meaning that all the quiz data will
now be fetched from our Database from now on.
We used the .Adapt<TDestination> method of Mapster to map the Quiz entity
to the QuizViewModel class anywhere; note how we even mapped Quiz arrays
into QuizViewModel arrays, as the library supports them too.

Testing the Data Provider
Before moving further, it’s time to perform a final test to check whether everything we did
up to this point--ApplicationDbContext, Code-First Database Initialization, Data Migrations, Data
Seed, and Data Mapping--is working as expected.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[196]

To do that, just launch the application in debug mode by pressing the F5 key. If everything
has been implemented properly, you should be presented with a Home Page similar to this:

Although it doesn’t seem too different from what we already had by the end of Chapter 3,
Frontend with Angular, we know that a lot of stuff changed under the hood. For example, our
application is now equipped with a persistent Database built on top of a real Data Model
handled by an EF-powered, migrations-aware DbContext available through Dependency
Injection upon a per-request scope.

Suggested topics
Data Model, Data Provider, ADO.NET, Object-Relational Mapper, Entity Framework Core,
Code-First, Database-First, Model-First, Entity Class, Data Annotations, DbContext, CRUD
Operations, Data Migration, Dependency Injection (DI), ORM Mapping, and Mapster.

Summary
We started this chapter by enumerating a number of things we couldn’t implement due to
our Dummy Data Provider limitations; in order to overcome these, we chose to replace it with
a real Data Provider built upon a persistent Database.

Entity Framework Core seemed an obvious choice to get what we want, so we added its
relevant packages to our project; we briefly enumerated the available Data Modeling
approaches and resorted to using Code-First due to its flexibility.

www.EBooksWorld.ir

Data Model with Entity Framework Core Chapter 4

[197]

Right after that, we proceeded to create our entity classes--ApplicationUser, Quiz,
Question, Answer and Result--along with a set of relationships taking advantage of the
renowned Entity Framework Core’s Convention over Configuration approach. Then, we built
our ApplicationDbContext class accordingly.

After completing our Data Model, we chose the Database Engine, quickly resorting to the
Visual Studio's default MSSQL LocalDb instance; we added the connection string to the
appsettings.json file and passed it to ApplicationDbContext through the Setup
class. Doing this allowed us to add our first migration using the dotnet ef tool using
PowerShell and, once done, use Code-First to generate our Database accordingly.

We didn’t want to leave our Database empty, so we implemented a DbSeeder static class to
seed it with some sample data; we learned how our ApplicationDbContext instance can
be used within a static class, thanks to the ASP.NET Core Dependency Injection approach;
doing that took a reasonable, yet well spent, amount of time.

Finally, we switched back to the QuizController class and updated it to make it use the
new Data Provider, replacing the outdated one; in order to do this in the best possible way,
we also installed Mapster, a fast and easy-to-use ORM mapping tool that we used to
successfully perform some Model-to-ViewModel mapping tasks.

After completing all these tasks, we ran our application in Debug mode to verify that
everything was still working as intended. The HomeView is very similar to the one we had
at the end of Chapter 3, Frontend with Angular, yet a lot of things changed on the backend.
Our application is now ready to grow the way we want it to.

www.EBooksWorld.ir

5
Client-Server Interactions

In the previous chapter, we replaced our dummy data provider with a real data provider
built upon the Entity Framework Core using the Code-First approach. Now that we have
data persistence, we're ready to entrust our users with the ability to interact with our
application; this means that we can implement some much needed stuff, such as the
following:

Authentication-related features: Login form, access control, server-side sessions,
and so on
CRUD operations for all our entities: Creating/updating a quiz along with its
questions/answers/results sets, taking a quiz, and so on

In this chapter, we will take care of the latter by adding a number of client-server interactions
handled by standard HTTP requests/response chains; the authentication features will be
addressed in a separate chapter later on.

Add, update, and delete quizzes
The first thing we'll do is to implement the add, update, and delete methods for our Web
API's QuizController. We'll adhere to RESTful conventions and good practices, using the
proper HTTP verb for each scenario: POST to create, PUT to update, and DELETE to delete.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[199]

Updating QuizController
Remember the #region RESTful conventions methods in our QuizController.cs file? It's
time to update its contents to support CRUD operations on Quiz entities.

Here's the new code (new and updated lines are highlighted):

[...]

#region RESTful conventions methods
/// <summary>
/// GET: api/quiz/{id}
/// Retrieves the Quiz with the given {id}
/// </summary>
/// <param name="id">The ID of an existing Quiz</param>
/// <returns>the Quiz with the given {id}</returns>
[HttpGet("{id}")]
public IActionResult Get(int id)
{
 var quiz = DbContext.Quizzes.Where(i => i.Id == id)
 .FirstOrDefault();

 // handle requests asking for non-existing quizzes
 if (quiz == null)
 {
 return NotFound(new
 {
 Error = String.Format("Quiz ID {0} has not been found", id)
 });
 }

 return new JsonResult(
 quiz.Adapt<QuizViewModel>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
}

/// <summary>
/// Adds a new Quiz to the Database
/// </summary>
/// <param name="model">The QuizViewModel containing the data to
insert</param>
[HttpPut]
public IActionResult Put([FromBody]QuizViewModel model)
{

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[200]

 // return a generic HTTP Status 500 (Server Error)
 // if the client payload is invalid.
 if (model == null) return new StatusCodeResult(500);

 // handle the insert (without object-mapping)
 var quiz = new Quiz();

 // properties taken from the request
 quiz.Title = model.Title;
 quiz.Description = model.Description;
 quiz.Text = model.Text;
 quiz.Notes = model.Notes;

 // properties set from server-side
 quiz.CreatedDate = DateTime.Now;
 quiz.LastModifiedDate = quiz.CreatedDate;

 // Set a temporary author using the Admin user's userId
 // as user login isn't supported yet: we'll change this later on.
 quiz.UserId = DbContext.Users.Where(u => u.UserName == "Admin")
 .FirstOrDefault().Id;

 // add the new quiz
 DbContext.Quizzes.Add(quiz);
 // persist the changes into the Database.
 DbContext.SaveChanges();

 // return the newly-created Quiz to the client.
 return new JsonResult(quiz.Adapt<QuizViewModel>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
}

/// <summary>
/// Edit the Quiz with the given {id}
/// </summary>
/// <param name="model">The QuizViewModel containing the data to
update</param>
[HttpPost]
public IActionResult Post([FromBody]QuizViewModel model)
{
 // return a generic HTTP Status 500 (Server Error)
 // if the client payload is invalid.
 if (model == null) return new StatusCodeResult(500);

 // retrieve the quiz to edit

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[201]

 var quiz = DbContext.Quizzes.Where(q => q.Id ==
 model.Id).FirstOrDefault();

 // handle requests asking for non-existing quizzes
 if (quiz == null)
 {
 return NotFound(new
 {
 Error = String.Format("Quiz ID {0} has not been found",
 model.Id)
 });
 }

 // handle the update (without object-mapping)
 // by manually assigning the properties
 // we want to accept from the request
 quiz.Title = model.Title;
 quiz.Description = model.Description;
 quiz.Text = model.Text;
 quiz.Notes = model.Notes;

 // properties set from server-side
 quiz.LastModifiedDate = quiz.CreatedDate;

 // persist the changes into the Database.
 DbContext.SaveChanges();

 // return the updated Quiz to the client.
 return new JsonResult(quiz.Adapt<QuizViewModel>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
}

/// <summary>
/// Deletes the Quiz with the given {id} from the Database
/// </summary>
/// <param name="id">The ID of an existing Test</param>
[HttpDelete("{id}")]
public IActionResult Delete(int id)
{
 // retrieve the quiz from the Database
 var quiz = DbContext.Quizzes.Where(i => i.Id == id)
 .FirstOrDefault();

 // handle requests asking for non-existing quizzes
 if (quiz == null)

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[202]

 {
 return NotFound(new
 {
 Error = String.Format("Quiz ID {0} has not been found", id)
 });
 }

 // remove the quiz from the DbContext.
 DbContext.Quizzes.Remove(quiz);
 // persist the changes into the Database.
 DbContext.SaveChanges();

 // return an HTTP Status 200 (OK).
 return new OkResult();
}
#endregion

[...]

It goes without saying--yet we're still saying it--that these changes require
the using TestMakerFree.Data reference at the beginning of the file.

The preceding source code contains some comments that will help explain the
implementation details of what we just did. Nonetheless, it will be useful to focus on the
following highlights:

We updated our already-implemented Get method so that it will be able to
handle requests pointing to non-existing items. Although this is not strictly
related to what we're doing now, we took the chance to do that while we were
there.
We implemented the Put, Post, and Delete methods to make them actually
perform the expected server-side operations to add, update, and delete a quiz
instead of throwing a NotImplementedException, like they were doing since
Chapter 2, Backend with .NET Core.
We added the [FromBody] parameter attribute to the Put and Post methods
signatures; we did this to tell .NET Core to fetch the QuizViewModel sent by our
Angular app--in JSON format--from the request body.
We used the Adapt<TDestination>() feature from the Mapster ORM library
at the end of the Put and Post methods to return a new QuizViewModel to the
client built upon the created/modified Quiz.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[203]

Also, note how we didn't use Mapster to populate the Quiz entity from the
QuizViewModel in the Post method, as we have chosen to manually treat, check, and
assign each property separately there; we did that to gain more control over these changes,
separating the properties that the user is allowed to modify from those who should be set
from server-side only.

We should also spend a few moments talking about what we didn't do
here: no error-handling strategies, no validation or integrity checks on
user-input values, no authentication, just to name a few. This isn't a
robust, production-ready code yet, and we need to be fully aware of that.
There's nothing wrong with it; we're still in the development phase, after
all, and we'll refine these aspects once we get a good grip on all the
features we still need to know.

Adapting the client
Now that our server-side QuizController supports the four basic CRUD functions, we
can upgrade our Angular client to make use of them.

Adding QuizEditComponent
Let's start with making our users aware that they can create their own quizzes.

Navigate to the /ClientApp/app/components/navmenu/ folder, open the
navmenu.component.html file, and append the following element to the end of the
existing (new lines are highlighted):

[...]

<ul class='nav navbar-nav'>
 <li [routerLinkActive]="['link-active']">
 <a [routerLink]="['/home']">
 Home

 <li [routerLinkActive]="['link-active']">
 <a [routerLink]="['/about']">
 About

 <li [routerLinkActive]="['link-active']">
 <a [routerLink]="['/login']">

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[204]

 Login

 <li [routerLinkActive]="['link-active']">
 <a [routerLink]="['/quiz/create']">
 Create
 Quiz

[...]

Needless to say, we also need to update our Angular app's RouterModule to add the
relevant route accordingly--along with the references to the component that will handle it--
in the app.module.shared.ts file:

[...]

import { QuizListComponent } from './components/quiz/quiz-list.component';
import { QuizComponent } from './components/quiz/quiz.component';
import { QuizEditComponent } from './components/quiz/quiz-edit.component';
import { AboutComponent } from './components/about/about.component';

[...]

declarations: [
 AppComponent,
 NavMenuComponent,
 HomeComponent,
 QuizListComponent,
 QuizComponent,
 QuizEditComponent,
 AboutComponent,
 LoginComponent,
 PageNotFoundComponent
],

[...]

RouterModule.forRoot([
 { path: '', redirectTo: 'home', pathMatch: 'full' },
 { path: 'home', component: HomeComponent },
 { path: 'quiz/create', component: QuizEditComponent },
 { path: 'quiz/:id', component: QuizComponent },
 { path: 'about', component: AboutComponent },
 { path: 'login', component: LoginComponent },
 { path: '**', component: PageNotFoundComponent }

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[205]

])

[...]

Ensure that you add the new quiz/create rule above the quiz/:id one,
or the request will be handled by the latter! That :id keyword we used
there is a catch-all and hence it will accept numbers and strings.

Saving the file with these changes will immediately raise a TS to compile warning, as there
isn't a QuizEditComponent class out there. Let's fix that by adding a quiz-
edit.component.ts file within the /ClientApp/app/components/quiz/ folder with
the following code:

import { Component, Inject, OnInit } from "@angular/core";
import { ActivatedRoute, Router } from "@angular/router";
import { HttpClient } from "@angular/common/http";

@Component({
 selector: "quiz-edit",
 templateUrl: './quiz-edit.component.html',
 styleUrls: ['./quiz-edit.component.css']
})

export class QuizEditComponent {
 title: string;
 quiz: Quiz;

 // this will be TRUE when editing an existing quiz,
 // FALSE when creating a new one.
 editMode: boolean;

 constructor(private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient,
 @Inject('BASE_URL') private baseUrl: string) {

 // create an empty object from the Quiz interface
 this.quiz = <Quiz>{};

 var id = +this.activatedRoute.snapshot.params["id"];
 if (id) {
 this.editMode = true;

 // fetch the quiz from the server
 var url = this.baseUrl + "api/quiz/" + id;
 this.http.get<Quiz>(url).subscribe(res => {

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[206]

 this.quiz = res;
 this.title = "Edit - " + this.quiz.Title;
 }, error => console.error(error));
 }
 else {
 this.editMode = false;
 this.title = "Create a new Quiz";
 }
 }

 onSubmit(quiz: Quiz) {
 var url = this.baseUrl + "api/quiz";

 if (this.editMode) {
 this.http
 .post<Quiz>(url, quiz)
 .subscribe(res => {
 var v = res;
 console.log("Quiz " + v.Id + " has been updated.");
 this.router.navigate(["home"]);
 }, error => console.log(error));
 }
 else {
 this.http
 .put<Quiz>(url, quiz)
 .subscribe(res => {
 var q = res;
 console.log("Quiz " + q.Id + " has been created.");
 this.router.navigate(["home"]);
 }, error => console.log(error));
 }
 }

 onBack() {
 this.router.navigate(["home"]);
 }
}

As always, we're also adding the quiz-edit.component.html template file:

<h2>{{title}}</h2>
<div class="quiz-edit">
 <div>
 <label for="title">Quiz title:</label>

 <input type="text" id="title" [(ngModel)]="quiz.Title"
 placeholder="choose a title..." />
 </div>

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[207]

 <div>
 <label for="description">Quiz description:</label>

 <input type="text" id="description"
 [(ngModel)]="quiz.Description" placeholder="enter a
 description..." />
 </div>
 <div>
 <label for="text">Quiz informative text:</label>

 <textarea id="text" [(ngModel)]="quiz.Text" placeholder="enter
 a text..."></textarea>
 </div>
 <div>
 <input *ngIf="editMode" type="button" value="Apply Changes"
 (click)="onSubmit(quiz)" />
 <input *ngIf="!editMode" type="button" value="Create the Quiz!"
 (click)="onSubmit(quiz)" />
 <input type="button" value="Cancel" (click)="onBack()" />
 </div>
</div>

Also, we're adding the quiz-edit.component.css stylesheet file:

.quiz-edit input[type="text"],

.quiz-edit textarea {
 min-width: 500px;
}

The code is well documented as it has a lot of comments explaining what we're doing here
and there. However, let's give it a quick overview:

The first thing to note is that we used the QuizEditComponent name, not
QuizCreateController; the reason we did that is easily understandable by
looking at the source code, we'll use the same component to handle either the
Create a new Quiz feature--with a PUT request to our QuizController--or the
Edit an existing Quiz feature--with a POST one. Doing that will save us a
tremendous amount of development time, at the cost of some if-then-else
conditional directives in the component class and template files; the whole
purpose of the editMode internal property is to help us perform these switches
wherever we need them.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[208]

We already know most of the Angular classes, services, and decorators that we
used here--Inject, HttpClient, Router, ActivatedRoute, and so on; no need
to repeat ourselves here, we already know why they're here.
We added three different UI buttons to our template file, but only two of them
will be visible at the same time, depending on whether the component works in
editMode or not. We did that trick using the *ngIf directive, which is another
extremely useful tool in the Angular Template Syntax shed. As we can easily see, it
can be used to conditionally add or remove any element from the DOM as long
as we feed it with any property or expression returning a Boolean value.

Activating the Edit mode
We're now able to launch our QuizEditController in Create mode from the Create a
Quiz NavMenu link; however, there's currently no way to access the Edit mode yet. The
most logical way to do that would probably be from the QuizComponent; the user will
navigate from the quiz list(s) to a specific quiz, then--assuming that it's the author--would
see a button to access the Quiz Edit view.

To implement such behavior, open the quiz.component.html template file and add the
following code (new lines are highlighted):

<div *ngIf="quiz" class="quiz">
 <h2>{{quiz.Title}}</h2>

 <label>Title:</label>
 <input [(ngModel)]="quiz.Title" placeholder="Insert the
 title..." />

 <label>Description:</label>
 <textarea [(ngModel)]="quiz.Description"
 placeholder="Insert a suitable description..."></textarea>

 <div>
 <input type="button" value="Edit" (click)="onEdit()" />
 </div>
</div>

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[209]

Once done, add the onEdit() method implementation to the quiz.component.ts file in
the following way:

[...]

onEdit() {
 this.router.navigate(["quiz/edit", this.quiz.Id]);
}

[...]

The preceding code should be added just below the constructor method of the
QuizComponent class.

Event handlers versus router links
It's worth nothing that instead of adding an <input> element and binding its click action to
a event-handler delegate method like we just did, we could've done the following:

<a [routerLink]="['/quiz/edit', quiz.Id]"

This is the same approach taken by the NavMenuComponent with the menu entries: just a
plain anchor ID QueryString parameter. Both approaches will get the job done, hence
we're free to use whatever we like the most.

A big advantage of the anchor/routerLink method is that everything
happens on the template, arguably making it easier and faster to lay it
down; conversely, the input/click method is more versatile, as the
delegate method enables the developer to do virtually anything, as we'll
get to see in the next paragraph.

Adding the Edit route
Last but not least, we need to add the Edit route to the AppModule class. Open the
/ClientApp/app/app.module.shared.ts file and add the following:

[...]

RouterModule.forRoot([
 { path: '', redirectTo: 'home', pathMatch: 'full' },
 { path: 'home', component: HomeComponent },
 { path: 'quiz/create', component: QuizEditComponent },
 { path: 'quiz/edit/:id', component: QuizEditComponent },

[...]

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[210]

Implementing the Delete feature
Before going further, we can take the chance to add a Delete Quiz button to our
QuizController and bind it to another event-handler method that will take care of the
client-server interactions required to actually execute the delete action.

Let's start with creating the button in the quiz.component.html template file; we can put
it just below the Edit button:

[...]

<div>
 <input type="button" value="Edit" (click)="onEdit()" />
 <input type="button" value="Delete this Quiz" (click)="onDelete()" />
</div>

[...]

Once done, add the following onDelete() method implementation in the
quiz.component.ts file, right below the onEdit() method:

[...]

onDelete() {
 if (confirm("Do you really want to delete this quiz?")) {
 var url = this.baseUrl + "api/quiz/" + this.quiz.Id;
 this.http
 .delete(url)
 .subscribe(res => {
 console.log("Quiz " + this.quiz.Id + " has been
 deleted.");
 this.router.navigate(["home"]);
 }, error => console.log(error));
 }
}

[...]

There's nothing new here, except for the good old JavaScript confirm() technique that we
threw in to prevent users from accidentally deleting a quiz; that popup is as ugly as it was
in the 90s, but it's still a good time/value deal when we're in a hurry, even in Angular!

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[211]

A word on Observables
We're definitely making a good use of the Angular HttpClient--as would be expected
from any decent server-side fed SPA. Although it's not advisable to waste too much space
talking about it, we should definitely spend a few words on its new abstraction pattern
based upon Observables. One of the most relevant differences with the previous approach
is that Observables have a lazy behavior by design, meaning that they won't fire unless
there is a valid subscription issued by a .subscribe() function call.

This is a major perspective switch from the AngularJS Promises, that will execute right off
the bat, regardless of how the client code will use their result afterward. Another important
difference involves the .subscribe() function, which will be fired upon completion of the
add task of ItemService. In Angular, subscriptions are designed to work just like a
standard .then() or .complete() function featured in most async-based JavaScript
libraries (AngularJS/Promises, JQuery/AJAX, and so on), with the key difference that they
are also bound to the Observable itself; this means that they won't just trigger once and
resolve, but they will be executed each and every time the Observable completes its task(s)
until it ceases to exist, unless they get cancelled by calling the .unsubscribe() function
method on their Observable.

That said, we can easily note that the minimalistic HTTP requests we've been implementing
are hardly a good example to demonstrate the advantages of this behavior as most of these
Observables will fire only once; to better see the difference with the previous approaches,
we will have to implement some truly reactive functionalities such as Search with
Autocomplete, Websockets, Push Notifications, Instant Messaging, and similar stuff.

First client-server test
With all these new additions, our Angular-based SPA should be able to show at least a
glimpse of its true potential; let's perform a full surface test before adding questions,
answers, and results to the loop.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[212]

This is how our Home view should appear now:

The new Create a Quiz NavMenu link is there, just as expected; by clicking on that, we will
be brought to the Quiz Edit view:

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[213]

As we can see, the QuizEditComponent is working as we would expect when the
editMode switch is set to FALSE, prompting the user to create a new quiz. Let's fill the
fields with some sample data, as shown in this screenshot:

Once done, click on the Create a Quiz button to see what happens:

Here's our new boy, it worked!

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[214]

We can now create new quizzes; let's see whether we can edit the existing ones as well.
From the Home view, click on the quiz we just added to access the Quiz view:

From here, we can test whether our Edit and Delete this Quiz buttons work. Clicking on
the first one will bring us to the Edit Quiz view:

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[215]

We can try to change some string values here and see whether the changes are reflected in
the Database; we can even place some debug symbols within our client-side and server-side
code to see how the request will be issued by the Angular app, received by .NET Core, and
eventually handled within the Delete action method of QuizController through our EF
Core's ApplicationDbContext instance.

When we're done, go back to the Quiz view and click on the Delete the Quiz button; the
delete confirmation popup should appear to check whether we're really sure about that:

Click on Cancel first, then click on the Delete this Quiz button again and click on OK to let
the app work its magic and then bring you back to the Home view. From there, we should
be able to see that the newly created quiz is gone for good.

The client-server workflow
Everyone should have already figured it out by now, yet it can still be useful to recap the
interactions workflow between the client-side and the server-side components of our app:

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[216]

The user can create a new quiz using the Create a Quiz button from the
navigation menu; as soon as they click on it, it will navigate to the
QuizEditComponent. The component will run in Create mode since the
editMode internal property value will be set to FALSE within the constructor.
Once there, he can create a new quiz and confirm the operation by clicking on the
Create the Quiz button; as soon as they do that, the Angular HttpClient returns
an Observable object ready to issue a PUT request call to the server-side API.
That call will be handled by the QuizController, which will create the quiz
within the database using an instance of the ApplicationDbContext class
obtained through dependency injection.
Alternatively, the user can select an already-existing quiz from one of the lists in
the Home view and navigate to the corresponding Quiz view; from there, he can
choose to Edit or Delete that quiz using one of the available buttons. From there,
these two things can happen:

If the user clicks on the Edit button, the application will fire the
onEdit() event-handler delegate method, which will route the
user to the QuizEditComponent; this time the component will run
in Edit mode, as the editMode property will be TRUE. The user can
change one or more values and confirm them by clicking on the
Apply Changes button; as soon as they do that, the Angular
HttpClient returns an Observable object ready to issue a POST
request call to the server-side API. This call will be handled by the
QuizController, which will persist the applied changes to the
database using an instance of the ApplicationDbContext class
obtained through dependency injection.
If the user clicks on the Delete button, the application will fire the
onDelete() event-handler delegate method, which will use the
Angular HttpClient to return an Observable object ready to
issue a DELETE request call to the server-side API. The call will be
handled by the QuizController, which will delete the quiz from
the database using an instance of the ApplicationDbContext
class obtained through dependency injection.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[217]

Note how the various Observable objects we're using to handle the HTTP responses will
immediately fire thanks to the fluent .subscribe() call issued by the calling method,
creating an asynchronous thread that will always take care of the following tasks:

In case of success, re-route the user to the Home view, not before outputting the
good news in the console log
In case of failure, output the error in the console log

It's also worth noting how the Angular framework reinitializes the Home view--along with
all the ItemListComponent elements--each time the user is sent back to the Home view so
that he'll be able to see the changes he just made using the create, edit, and delete features
immediately after they occur.

Questions, answers, and results
We just did an excellent job with our quizzes, but it's still not enough to allow our users to
actually create--or even take!--a quiz; we're still missing questions, answers, and results.

In the following paragraphs, we'll do our best to bring them up to speed.

Server-side tasks
Remember all those controllers that we set up back in Chapter 2, Backend with .NET Core?
We have been neglecting them for a while, with the sole exception of the QuizController;
it's definitely time to atone.

QuestionController
Let's start with QuestionController. Here's the code that will put it back on track
(new/updated lines are highlighted):

using System;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using TestMakerFreeWebApp.ViewModels;
using System.Collections.Generic;
using System.Linq;
using TestMakerFreeWebApp.Data;
using Mapster;

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[218]

namespace TestMakerFreeWebApp.Controllers
{
 [Route("api/[controller]")]
 public class QuestionController : Controller
 {
 #region Private Fields
 private ApplicationDbContext DbContext;
 #endregion

 #region Constructor
 public QuestionController(ApplicationDbContext context)
 {
 // Instantiate the ApplicationDbContext through DI
 DbContext = context;
 }
 #endregion

 #region RESTful conventions methods
 /// <summary>
 /// Retrieves the Question with the given {id}
 /// </summary>
 /// <param name="id">The ID of an existing Question</param>
 /// <returns>the Question with the given {id}</returns>
 [HttpGet("{id}")]
 public IActionResult Get(int id)
 {
 var question = DbContext.Questions.Where(i => i.Id == id)
 .FirstOrDefault();

 // handle requests asking for non-existing questions
 if (question == null)
 {
 return NotFound(new
 {
 Error = String.Format("Question ID {0} has not been
 found", id)
 });
 }

 return new JsonResult(
 question.Adapt<QuestionViewModel>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }

 /// <summary>

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[219]

 /// Adds a new Question to the Database
 /// </summary>
 /// <param name="model">The QuestionViewModel containing the
 data to insert</param>
 [HttpPut]
 public IActionResult Put([FromBody]QuestionViewModel model)
 {
 // return a generic HTTP Status 500 (Server Error)
 // if the client payload is invalid.
 if (model == null) return new StatusCodeResult(500);

 // map the ViewModel to the Model
 var question = model.Adapt<Question>();

 // override those properties
 // that should be set from the server-side only
 question.QuizId = model.QuizId;
 question.Text = model.Text;
 question.Notes = model.Notes;

 // properties set from server-side
 question.CreatedDate = DateTime.Now;
 question.LastModifiedDate = question.CreatedDate;

 // add the new question
 DbContext.Questions.Add(question);
 // persist the changes into the Database.
 DbContext.SaveChanges();

 // return the newly-created Question to the client.
 return new JsonResult(question.Adapt<QuestionViewModel>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }

 /// <summary>
 /// Edit the Question with the given {id}
 /// </summary>
 /// <param name="model">The QuestionViewModel containing the
 data to update</param>
 [HttpPost]
 public IActionResult Post([FromBody]QuestionViewModel model)
 {
 // return a generic HTTP Status 500 (Server Error)
 // if the client payload is invalid.
 if (model == null) return new StatusCodeResult(500);

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[220]

 // retrieve the question to edit
 var question = DbContext.Questions.Where(q => q.Id ==
 model.Id).FirstOrDefault();

 // handle requests asking for non-existing questions
 if (question == null)
 {
 return NotFound(new
 {
 Error = String.Format("Question ID {0} has not been
 found", model.Id)
 });
 }

 // handle the update (without object-mapping)
 // by manually assigning the properties
 // we want to accept from the request
 question.QuizId = model.QuizId;
 question.Text = model.Text;
 question.Notes = model.Notes;

 // properties set from server-side
 question.LastModifiedDate = question.CreatedDate;

 // persist the changes into the Database.
 DbContext.SaveChanges();

 // return the updated Quiz to the client.
 return new JsonResult(question.Adapt<QuestionViewModel>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }

 /// <summary>
 /// Deletes the Question with the given {id} from the Database
 /// </summary>
 /// <param name="id">The ID of an existing Question</param>
 [HttpDelete("{id}")]
 public IActionResult Delete(int id)
 {
 // retrieve the question from the Database
 var question = DbContext.Questions.Where(i => i.Id == id)
 .FirstOrDefault();

 // handle requests asking for non-existing questions
 if (question == null)

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[221]

 {
 return NotFound(new
 {
 Error = String.Format("Question ID {0} has not been
 found", id)
 });
 }

 // remove the quiz from the DbContext.
 DbContext.Questions.Remove(question);
 // persist the changes into the Database.
 DbContext.SaveChanges();

 // return an HTTP Status 200 (OK).
 return new OkResult();
 }
 #endregion

 // GET api/question/all
 [HttpGet("All/{quizId}")]
 public IActionResult All(int quizId)
 {
 var questions = DbContext.Questions
 .Where(q => q.QuizId == quizId)
 .ToArray();
 return new JsonResult(
 questions.Adapt<QuestionViewModel[]>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }
 }
}

There's nothing new here, as we stick to the same pattern that we already used for the
QuizController; we retrieve an ApplicationDbContext instance through dependency
injection, and we use it throughout all our methods to get, insert, update, and delete
our entities. We can see the usual references to the namespaces we already know, such as
our TestMakerFree.Data provider and the Mapster package library.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[222]

There are some minor differences here and there, such as the quizId property that we use
to enforce our one-to-many relationship between a quiz and its questions; a good example
would be the All() action method when we get to retrieve all the questions related to a
given quizId.

AnswerController
The AnswerController won't be much different, at least for the time being:

using System;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using TestMakerFreeWebApp.ViewModels;
using System.Collections.Generic;
using System.Linq;
using TestMakerFreeWebApp.Data;
using Mapster;

namespace TestMakerFreeWebApp.Controllers
{
 [Route("api/[controller]")]
 public class AnswerController : Controller
 {
 #region Private Fields
 private ApplicationDbContext DbContext;
 #endregion

 #region Constructor
 public AnswerController(ApplicationDbContext context)
 {
 // Instantiate the ApplicationDbContext through DI
 DbContext = context;
 }
 #endregion

 #region RESTful conventions methods
 /// <summary>
 /// Retrieves the Answer with the given {id}
 /// </summary>
 /// <param name="id">The ID of an existing Answer</param>
 /// <returns>the Answer with the given {id}</returns>
 [HttpGet("{id}")]
 public IActionResult Get(int id)
 {
 var answer = DbContext.Answers.Where(i => i.Id == id)
 .FirstOrDefault();

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[223]

 // handle requests asking for non-existing answers
 if (answer == null)
 {
 return NotFound(new
 {
 Error = String.Format("Answer ID {0} has not been
 found", id)
 });
 }

 return new JsonResult(
 answer.Adapt<AnswerViewModel>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }

 /// <summary>
 /// Adds a new Answer to the Database
 /// </summary>
 /// <param name="model">The AnswerViewModel containing the data
 to insert</param>
 [HttpPut]
 public IActionResult Put([FromBody]AnswerViewModel model)
 {
 // return a generic HTTP Status 500 (Server Error)
 // if the client payload is invalid.
 if (model == null) return new StatusCodeResult(500);

 // map the ViewModel to the Model
 var answer = model.Adapt<Answer>();

 // override those properties
 // that should be set from the server-side only
 answer.QuestionId = model.QuestionId;
 answer.Text = model.Text;
 answer.Notes = model.Notes;

 // properties set from server-side
 answer.CreatedDate = DateTime.Now;
 answer.LastModifiedDate = answer.CreatedDate;

 // add the new answer
 DbContext.Answers.Add(answer);
 // persist the changes into the Database.
 DbContext.SaveChanges();

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[224]

 // return the newly-created Answer to the client.
 return new JsonResult(answer.Adapt<AnswerViewModel>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }

 /// <summary>
 /// Edit the Answer with the given {id}
 /// </summary>
 /// <param name="model">The AnswerViewModel containing the data
 to update</param>
 [HttpPost]
 public IActionResult Post([FromBody]AnswerViewModel model)
 {
 // return a generic HTTP Status 500 (Server Error)
 // if the client payload is invalid.
 if (model == null) return new StatusCodeResult(500);

 // retrieve the answer to edit
 var answer = DbContext.Answers.Where(q => q.Id ==
 model.Id).FirstOrDefault();

 // handle requests asking for non-existing answers
 if (answer == null)
 {
 return NotFound(new
 {
 Error = String.Format("Answer ID {0} has not been
 found", model.Id)
 });
 }

 // handle the update (without object-mapping)
 // by manually assigning the properties
 // we want to accept from the request
 answer.QuestionId = model.QuestionId;
 answer.Text = model.Text;
 answer.Value = model.Value;
 answer.Notes = model.Notes;

 // properties set from server-side
 answer.LastModifiedDate = answer.CreatedDate;

 // persist the changes into the Database.
 DbContext.SaveChanges();

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[225]

 // return the updated Quiz to the client.
 return new JsonResult(answer.Adapt<AnswerViewModel>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }

 /// <summary>
 /// Deletes the Answer with the given {id} from the Database
 /// </summary>
 /// <param name="id">The ID of an existing Answer</param>
 [HttpDelete("{id}")]
 public IActionResult Delete(int id)
 {
 // retrieve the answer from the Database
 var answer = DbContext.Answers.Where(i => i.Id == id)
 .FirstOrDefault();

 // handle requests asking for non-existing answers
 if (answer == null)
 {
 return NotFound(new
 {
 Error = String.Format("Answer ID {0} has not been
 found", id)
 });
 }

 // remove the quiz from the DbContext.
 DbContext.Answers.Remove(answer);
 // persist the changes into the Database.
 DbContext.SaveChanges();

 // return an HTTP Status 200 (OK).
 return new OkResult();
 }
 #endregion

 // GET api/answer/all
 [HttpGet("All/{questionId}")]
 public IActionResult All(int questionId)
 {
 var answers = DbContext.Answers
 .Where(q => q.QuestionId == questionId)
 .ToArray();
 return new JsonResult(
 answers.Adapt<AnswerViewModel[]>(),

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[226]

 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }
 }
}

We can see a couple of new things here:

The quizId property that has been replaced with the questionId to comply
with the relationship between the Answer entity and its parent Question
In the Post() action method, where we're not using the object mapping, we had
to manually set the Value property of the updated answer

ResultController
Last but not least, here comes the ResultController (most relevant lines are highlighted):

using System;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using TestMakerFreeWebApp.ViewModels;
using System.Collections.Generic;
using System.Linq;
using TestMakerFreeWebApp.Data;
using Mapster;

namespace TestMakerFreeWebApp.Controllers
{
 [Route("api/[controller]")]
 public class ResultController : Controller
 {
 #region Private Fields
 private ApplicationDbContext DbContext;
 #endregion

 #region Constructor
 public ResultController(ApplicationDbContext context)
 {
 // Instantiate the ApplicationDbContext through DI
 DbContext = context;
 }
 #endregion

 #region RESTful conventions methods

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[227]

 /// <summary>
 /// Retrieves the Result with the given {id}
 /// </summary>
 /// <param name="id">The ID of an existing Result</param>
 /// <returns>the Result with the given {id}</returns>
 [HttpGet("{id}")]
 public IActionResult Get(int id)
 {
 var result = DbContext.Results.Where(i => i.Id == id)
 .FirstOrDefault();

 // handle requests asking for non-existing results
 if (result == null)
 {
 return NotFound(new
 {
 Error = String.Format("Result ID {0} has not been
 found", m.Id)
 });
 }

 return new JsonResult(
 result.Adapt<ResultViewModel>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }

 /// <summary>
 /// Adds a new Result to the Database
 /// </summary>
 /// <param name="model">The ResultViewModel containing the data
 to insert</param>
 [HttpPut]
 public IActionResult Put([FromBody]ResultViewModel model)
 {
 // return a generic HTTP Status 500 (Server Error)
 // if the client payload is invalid.
 if (model == null) return new StatusCodeResult(500);

 // map the ViewModel to the Model
 var result = model.Adapt<Result>();

 // override those properties
 // that should be set from the server-side only
 result.CreatedDate = DateTime.Now;
 result.LastModifiedDate = result.CreatedDate;

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[228]

 // add the new result
 DbContext.Results.Add(result);
 // persist the changes into the Database.
 DbContext.SaveChanges();

 // return the newly-created Result to the client.
 return new JsonResult(result.Adapt<ResultViewModel>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }

 /// <summary>
 /// Edit the Result with the given {id}
 /// </summary>
 /// <param name="model">The ResultViewModel containing the data
 to update</param>
 [HttpPost]
 public IActionResult Post([FromBody]ResultViewModel model)
 {
 // return a generic HTTP Status 500 (Server Error)
 // if the client payload is invalid.
 if (model == null) return new StatusCodeResult(500);

 // retrieve the result to edit
 var result = DbContext.Results.Where(q => q.Id ==
 model.Id).FirstOrDefault();

 // handle requests asking for non-existing results
 if (result == null)
 {
 return NotFound(new
 {
 Error = String.Format("Result ID {0} has not been
 found", m.Id)
 });
 }

 // handle the update (without object-mapping)
 // by manually assigning the properties
 // we want to accept from the request
 result.QuizId = model.QuizId;
 result.Text = model.Text;
 result.MinValue = model.MinValue;
 result.MaxValue = model.MaxValue;
 result.Notes = model.Notes;

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[229]

 // properties set from server-side
 result.LastModifiedDate = result.CreatedDate;

 // persist the changes into the Database.
 DbContext.SaveChanges();

 // return the updated Quiz to the client.
 return new JsonResult(result.Adapt<ResultViewModel>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }

 /// <summary>
 /// Deletes the Result with the given {id} from the Database
 /// </summary>
 /// <param name="id">The ID of an existing Result</param>
 [HttpDelete("{id}")]
 public IActionResult Delete(int id)
 {
 // retrieve the result from the Database
 var result = DbContext.Results.Where(i => i.Id == id)
 .FirstOrDefault();

 // handle requests asking for non-existing results
 if (result == null)
 {
 return NotFound(new
 {
 Error = String.Format("Result ID {0} has not been
 found", m.Id)
 });
 }

 // remove the quiz from the DbContext.
 DbContext.Results.Remove(result);
 // persist the changes into the Database.
 DbContext.SaveChanges();

 // return an HTTP Status 200 (OK).
 return new OkResult();
 }
 #endregion

 // GET api/result/all
 [HttpGet("All/{quizId}")]
 public IActionResult All(int quizId)

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[230]

 {
 var results = DbContext.Results
 .Where(q => q.QuizId == quizId)
 .ToArray();
 return new JsonResult(
 results.Adapt<ResultViewModel[]>(),
 new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 });
 }
 }
}

This code will definitely raise some compiler warnings due to the fact that there are no
MinValue and/or MaxValue properties in the ResultViewModel class (yet); let's fill the
gap by adding them both in the ResultViewModel.cs file (new lines are highlighted):

[...]

#region Properties
public int Id { get; set; }
public int QuizId { get; set; }
public string Text { get; set; }
public int? MinValue { get; set; }
public int? MaxValue { get; set; }
public string Notes { get; set; }
[DefaultValue(0)]
public int Type { get; set; }
[DefaultValue(0)]
public int Flags { get; set; }
[JsonIgnore]
public DateTime CreatedDate { get; set; }
public DateTime LastModifiedDate { get; set; }
#endregion

[...]

This will fix the warning and allow the compiler to successfully build our code. We already
explained the purpose of these properties when we worked on the Result entity back in
Chapter 4, Data Model with Entity Framework Core, so we won't repeat ourselves here.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[231]

BaseApiController
Our .NET Web API controllers get their job done; however, they're all affected by a
noticeable flaw--the amount of duplicate code we used to make them all behave in the same
way, although with different entities. More specifically, this means the following:

They all have a DbContext property and a constructor that retrieves it through
dependency injection
They all create a number of JsonSerializerSettings objects configured in the
same way

This is a rather common issue when working with the MVC pattern, where the same
interfaces and approaches are often adopted multiple times and within different controllers.

Luckily enough, repeating a behavior doesn't necessarily mean repeating the code; we can
easily cut these dupes with the help of a Base class.

Those who are already familiar with the C# class inheritance mechanism
will definitely know the purpose of a Base class and how to use it. In the
unlikely case that you aren't, just think of it as a parent class that can be
created to allow a number of other derived classes to inherit all the
members, properties, and behaviors defined there. This pattern is
extremely popular in object-oriented programming, although the
semantics may vary from language to language; for example, in Java, a
Base class is called Superclass, while the derived classes are known as
Subclasses.

Let's try to put together a Base class for our web API controllers that will take care of the
repeating tasks summarized earlier. From Solution Explorer, right-click on the
/Controllers/ folder and add a new BaseApiClontroller.cs class file with the
following code:

using System;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using System.Collections.Generic;
using System.Linq;
using TestMakerFreeWebApp.Data;
using Mapster;

namespace TestMakerFreeWebApp.Controllers
{
 [Route("api/[controller]")]
 public class BaseApiController : Controller

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[232]

 {
 #region Constructor
 public BaseApiController(ApplicationDbContext context)
 {
 // Instantiate the ApplicationDbContext through DI
 DbContext = context;

 // Instantiate a single JsonSerializerSettings object
 // that can be reused multiple times.
 JsonSettings = new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 };

 }
 #endregion

 #region Shared Properties
 protected ApplicationDbContext DbContext { get; private set; }
 protected JsonSerializerSettings JsonSettings { get; private
 set; }
 #endregion
 }
}

Implementing BaseApiController
The next thing to do is to derive the QuizController, QuestionController,
AnswerController, and ResultController from this BaseApiController class, so
they can inherit the shared properties and get rid of a lot of duplicate code; let's start with
the QuizController.

Open the QuizController.cs file and perform the following changes (updated lines are
highlighted):

[...]

namespace TestMakerFreeWebApp.Controllers
{
 public class QuizController : BaseApiController
 {
 #region Constructor
 public QuizController(ApplicationDbContext context)
 : base(context) { }
 #endregion

[...]

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[233]

As we can see, we removed the following:

The [Route("api/[controller]")] attribute, since it's already present in the
BaseApiController; all the Base class attributes will be inherited by the
derived classes as well
The Private Members region, thus shrinking the constructor to a minimal amount

Once done, scroll down to the end of the Get(id) action method and update its return
value in the following way (updated lines are highlighted):

[...]

 return new JsonResult(
 quiz.Adapt<QuizViewModel>(),
 JsonSettings);

[...]

Replace all the other JsonSerializerSettings() instances created on the fly with the
JsonSettings property to further reduce the amount of source code lines.

Once done with the QuizController, we need to perform these two changes on all the
other Web API controllers as well--QuestionController, AnswerController, and
ResultController--all except HomeController. For obvious space reasons, we won't do
that here, leaving such a task to the reader; the things to do are identical anyway.

IMPORTANT: Ensure not to inherit the BaseApiController class
within your HomeController, as this is not a web API Controller; it has
its specific set of server-side routing rules to serve the start page; doing
that will prevent your app from running properly.

Client-side tasks
The server-side part of the job has been done; it's time to switch to Angular and integrate all
these new features within the GUI.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[234]

Adding the interfaces
Let's start with defining our client-side interfaces to handle questions, answers, and results;
from Solution Explorer, right-click on the /ClientApp/app/interfaces/ folder and
create the TypeScript files with the appropriate names and contents described here:

question.ts: Here's the code for the question.ts file:

interface Question {
 Id: number;
 QuizId: number;
 Text: string;
}

answer.ts: Here's the answer.ts file:

interface Answer {
 Id: number;
 QuestionId: number;
 Text: string;
 Value: number;
}

result.ts: Here's the result.ts file:

interface Result {
 Id: number;
 QuizId: number;
 Text: string;
 MinValue?: number;
 MaxValue?: number;
}

Note how we also included the foreign-key properties to retrieve the Quiz or Question
parent, as we'll use them in our client app soon enough.

QuestionListComponent
The first thing we'll do is to implement a QuestionListComponent that will show a list of
questions for any given quiz; once done, we'll add it to our already-existing
QuizEditComponent, thus enabling our users to view, create, edit, and/or delete them
from the same place where they can edit the details of the parent quiz.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[235]

Start with creating the /ClientApp/app/components/question/ folder, then right-click
on it and add the question-list.component.ts file with the following content (relevant
lines are highlighted):

import { Component, Inject, Input, OnChanges, SimpleChanges } from
"@angular/core";
import { Router } from "@angular/router";
import { HttpClient } from "@angular/common/http";

@Component({
 selector: "question-list",
 templateUrl: './question-list.component.html',
 styleUrls: ['./question-list.component.css']
})

export class QuestionListComponent implements OnChanges {
 @Input() quiz: Quiz;
 questions: Question[];
 title: string;

 constructor(private http: HttpClient,
 @Inject('BASE_URL') private baseUrl: string,
 private router: Router) {

 this.questions = [];
 }

 ngOnChanges(changes: SimpleChanges) {
 if (typeof changes['quiz'] !== "undefined") {

 // retrieve the quiz variable change info
 var change = changes['quiz'];

 // only perform the task if the value has been changed
 if (!change.isFirstChange()) {
 // execute the Http request and retrieve the result
 this.loadData();
 }
 }
 }

 loadData() {
 var url = this.baseUrl + "api/question/All/" + this.quiz.Id;
 this.http.get<Question[]>(url).subscribe(res => {
 this.questions = res;
 }, error => console.error(error));
 }

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[236]

 onCreate() {
 this.router.navigate(["/question/create", this.quiz.Id]);
 }

 onEdit(question: Question) {
 this.router.navigate(["/question/edit", question.Id]);
 }

 onDelete(question: Question) {
 if (confirm("Do you really want to delete this question?")) {
 var url = this.baseUrl + "api/question/" + question.Id;
 this.http
 .delete(url)
 .subscribe(res => {
 console.log("Question " + question.Id + " has been
 deleted.");

 // refresh the question list
 this.loadData();
 }, error => console.log(error));
 }
 }
}

Once done, follow up with the question-list.component.html template file:

<h3>Questions</h3>
<div *ngIf="questions.length > 0">
 <table class="questions">
 <thead>
 <tr>
 <th>Text</th>
 <th>Options</th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let question of questions">
 <td>{{question.Text}}</td>
 <td><input type="button" value="Edit"
 (click)="onEdit(question)" />
 <input type="button" value="Delete"
 (click)="onDelete(question)" /></td>
 </tr>
 </tbody>
 </table>
</div>
<div *ngIf="questions.length == 0">
 This quiz has no questions (yet):

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[237]

 click the Add a new Question button to add the first
one!
</div>
<input type="button" value="Add a new Question" (click)="onCreate()" />

Also, follow up with the question.list.component.css style sheet file:

table.questions {
 min-width: 500px;
}

We've got lot of new stuff here; let's see how it works.

By looking at the class implementation, we can see how we're expecting to receive a quiz
property, which will most likely come from the parent component--the quiz-
edit.component.ts file. Since it will come from there, we had to use the @Input()
decorator to authorize the binding. The quiz property will be used within the loadData()
method to assemble the URL for the server-side API to retrieve all the existing questions for
the current quiz; as usual, that request will be issued by the Angular HttpClient, just like
we did a number of times earlier.

However, it's difficult to miss that we're taking a different approach here. The news is the
loadData() method itself, which is not called in the constructor phase, nor in the
ngOnInit() life cycle hook we used in the past; we can clearly see that it's executed within
the ngOnChanges() method, which is something we have never heard of.

Introducing ngOnChanges()
The ngOnChanges() method is nothing less than another life cycle hook that will trigger
each time Angular sets a data-bound input property. We had to use it instead of the
constructor or ngOnInit() methods for a rather obvious reason: we can't load the
questions unless the parent quiz property is available, so we need to postpone the Http
call until the parent component sets it. Since the quiz is also retrieved with an asynchronous
Http call by the parent component, we had to find a way to tell our
QuestionListComponent when the data-bound property is actually updated.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[238]

The following schema should help you better visualize the issue:

The rounded rectangle with gray background is the asynchronous thread where the
QuizEditComponent retrieves the quiz using the HttpClient.

By looking at the upper portion of the preceding schema, we can see how, without using
ngOnChanges(), the QuestionListComponent will issue a completely useless Http call
trying to get the questions of an empty quiz object, thus getting zero results. Besides, when
the quiz is actually retrieved, it won't do anything because there are no triggers that can tell
that the quiz object value has been changed; long story short, we will never get these
questions.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[239]

The lower portion of the schema tells a whole different story: there are no useless Http calls
at the end of the constructor-based life cycle, as the isFirstChange() method that we put
within our ngOnChanges() implementation will return TRUE, giving us a good reason to
ignore the event and do nothing. Later on, when the parent's async call will complete and
the quiz will be set, that same method will return FALSE, giving the green flag for issuing
the Http call the right way--or, rather, at the right time.

Why bother?
Wait a minute... why did we have to pass the whole quiz object, since we're only using it to
get the quiz ID? Can't we just forget about it as a whole and just pass the quiz ID from the
QuizEditController? We won't need to wait for any async call, as we're already getting it
from the route! Why should we complicate the task with all this ngOnChanges() fuzz?

This is a legitimate question, especially now that the app is still in its embryonic stage, we
can definitely afford to have a component that will serve all the available questions for a
given quiz without knowing anything about the quiz itself, other than its ID. We can even
say that, for the time being, working with the quiz ID and forgetting about the rest would
be the right thing to do here. However, there will be other scenarios where we will need to
have more information from our source object--or from our parent component--than those
we can fetch from the parent route. Sooner or later, we'll definitely hit one of them; when it
happens, we'd love to know that we could do something better than just issuing another
Http call and re-fetch it all from scratch.

The ngOnChanges() life cycle hook will be a powerful tool in our Angular
arsenal; learning how it works and how to use it can be a great help to
overcome a number of nasty concurrency issues between components and
is definitely a great addition in our Angular knowledge. For further
information regarding it, we strongly suggest that you refer the following
URL addresses from the Angular official documentation:

https:/ /angular. io/ api/ core/ OnChanges
https:/ /angular. io/ guide/ lifecycle- hooks#onchanges

The template file
Let's come back to the QuestionListComponent template file. Once again, we made good
use of the *ngIf directive to show a different <div> element depending on if the quiz has
at least one question or not; the former contains a table where we iterate through the
questions and show them accordingly, while the latter hosts a classic "empty contents" info
message that the users will see where the quiz contains no questions (yet).

www.EBooksWorld.ir

https://angular.io/api/core/OnChanges
https://angular.io/api/core/OnChanges
https://angular.io/api/core/OnChanges
https://angular.io/api/core/OnChanges
https://angular.io/api/core/OnChanges
https://angular.io/api/core/OnChanges
https://angular.io/api/core/OnChanges
https://angular.io/api/core/OnChanges
https://angular.io/api/core/OnChanges
https://angular.io/api/core/OnChanges
https://angular.io/api/core/OnChanges
https://angular.io/api/core/OnChanges
https://angular.io/api/core/OnChanges
https://angular.io/guide/lifecycle-hooks#onchanges
https://angular.io/guide/lifecycle-hooks#onchanges
https://angular.io/guide/lifecycle-hooks#onchanges
https://angular.io/guide/lifecycle-hooks#onchanges
https://angular.io/guide/lifecycle-hooks#onchanges
https://angular.io/guide/lifecycle-hooks#onchanges
https://angular.io/guide/lifecycle-hooks#onchanges
https://angular.io/guide/lifecycle-hooks#onchanges
https://angular.io/guide/lifecycle-hooks#onchanges
https://angular.io/guide/lifecycle-hooks#onchanges
https://angular.io/guide/lifecycle-hooks#onchanges
https://angular.io/guide/lifecycle-hooks#onchanges
https://angular.io/guide/lifecycle-hooks#onchanges

Client-Server Interactions Chapter 5

[240]

We also added three input buttons that will fire some delegate methods defined in the
QuestionListComponent class: onAdd, onEdit, and onDelete. Their names are quite
self-explanatory, hence we already know what to expect from them. Note how the Delete
event handler is the only one that performs its task firsthand, while the other two will just
route the user away. None of these routes is handled yet, but we'll fix this soon enough.

Adding the references
As always, before we can use the component, we need to add it to the AppModule class.
Open the app.module.shared.ts file and add the following highlighted lines in the
import list and the declarations array:

[...]

import { QuizListComponent } from './components/quiz/quiz-list.component';
import { QuizComponent } from './components/quiz/quiz.component';
import { QuizEditComponent } from './components/quiz/quiz-edit.component';
import { QuestionListComponent } from './components/question/question-
list.component';

[...]

 declarations: [
 AppComponent,
 NavMenuComponent,
 HomeComponent,
 QuizListComponent,
 QuizComponent,
 QuizEditComponent,
 QuestionListComponent,

[...]

As soon as we do that, we can add our new component to the quiz-edit.component.ts
file using its <question-list> selector. A good place to put it will be right after the <div>
element containing the quiz command buttons:

[...]

<div>
 <input *ngIf="editMode" type="button" value="Apply Changes"
(click)="onSubmit(quiz)" />
 <input *ngIf="!editMode" type="button" value="Create the Quiz!"
(click)="onSubmit(quiz)" />
 <input type="button" value="Cancel" (click)="onBack()" />
</div>

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[241]

<question-list [quiz]="quiz" *ngIf="editMode"></question-list>

[...]

Again, this is just standard stuff: the one-way data-binding to the quiz object that we've
talked about for a long time early on, and a *ngIf directive that will ensure that the child
component will be shown only when the parent works in Edit mode.

QuestionEditComponent
Now, it's time to create the QuestionEditComponent, along with its required routes and
references. To do that, right-click on the /ClientApi/api/components/question/ folder
and add the question-edit.component.ts file with the following content (relevant lines
are highlighted):

import { Component, Inject, OnInit } from "@angular/core";
import { ActivatedRoute, Router } from "@angular/router";
import { HttpClient } from "@angular/common/http";

@Component({
 selector: "question-edit",
 templateUrl: './question-edit.component.html',
 styleUrls: ['./question-edit.component.css']
})

export class QuestionEditComponent {
 title: string;
 question: Question;

 // this will be TRUE when editing an existing question,
 // FALSE when creating a new one.
 editMode: boolean;

 constructor(private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient,
 @Inject('BASE_URL') private baseUrl: string) {

 // create an empty object from the Quiz interface
 this.question = <Question>{};

 var id = +this.activatedRoute.snapshot.params["id"];

 // check if we're in edit mode or not
 this.editMode = (this.activatedRoute.snapshot.url[1].path ===
 "edit");

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[242]

 if (this.editMode) {

 // fetch the quiz from the server
 var url = this.baseUrl + "api/question/" + id;
 this.http.get<Question>(url).subscribe(res => {
 this.question = res;
 this.title = "Edit - " + this.question.Text;
 }, error => console.error(error));
 }
 else {
 this.question.QuizId = id;
 this.title = "Create a new Question";
 }
 }

 onSubmit(question: Question) {
 var url = this.baseUrl + "api/question";

 if (this.editMode) {
 this.http
 .post<Question>(url, question)
 .subscribe(res => {
 var v = res;
 console.log("Question " + v.Id + " has been
 updated.");
 this.router.navigate(["quiz/edit", v.QuizId]);
 }, error => console.log(error));
 }
 else {
 this.http
 .put<Question>(url, question)
 .subscribe(res => {
 var v = res;
 console.log("Question " + v.Id + " has been
 created.");
 this.router.navigate(["quiz/edit", v.QuizId]);
 }, error => console.log(error));
 }
 }

 onBack() {
 this.router.navigate(["quiz/edit", this.question.QuizId]);
 }
}

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[243]

Pay attention to the highlighted lines, as we're using a different way to
choose between activating the Edit mode or not. The reason is that we
can't rely on the mere presence of the ID in this component, because--as
we're about to see-- even the Create mode route will ship one: the ID of the
parent quiz, which we need to actually create the question.

Once done, follow up with the question-edit.component.html template file:

<h2>{{title}}</h2>
<div class="question-edit">
 <div>
 <label for="text">Question text:</label>

 <textarea id="text" [(ngModel)]="question.Text"
 placeholder="enter a suitable text..."></textarea>
 </div>
 <div>
 <input *ngIf="editMode" type="button" value="Apply Changes"
 (click)="onSubmit(question)" />
 <input *ngIf="!editMode" type="button" value="Create the
 Question!" (click)="onSubmit(question)" />
 <input type="button" value="Cancel" (click)="onBack()" />
 </div>

 <answer-list *ngIf="editMode" [question]="question"></answer-list>

</div>

The preceding highlighted line shows how we're already setting up things
for the upcoming AnswerListComponent that we will implement in a
short while; the overall approach is identical to <question-list>, which
we already used in the QuizEditComponent.

Finally, here's the question-edit.component.css style sheet file:

.question-edit textarea {
 min-width: 500px;
}

There's nothing new here, as we're using the same pattern we successfully pulled off to
handle the Quiz | Questions one-to-many relationship.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[244]

References and routes
We already know that we have to add every component to the app.module.shared.ts
file's import list and declarations array, so we won't explain how to do it again; let's just
do it as we already did a number of other times.

While we're there, let's add the missing routes as well to the RouterModule, just after the
quiz ones:

[...]
{ path: 'quiz/create', component: QuizEditComponent },
{ path: 'quiz/edit/:id', component: QuizEditComponent },
{ path: 'quiz/:id', component: QuizComponent },
{ path: 'question/create/:id', component: QuestionEditComponent },
{ path: 'question/edit/:id', component: QuestionEditComponent },
{ path: 'about', component: AboutComponent },

[...]

We can easily note a big difference between the quiz/create and the
question/create/:id routes--the latter will require an :id parameter, just like the
question/edit/:id counterpart. We already explained the reason earlier, but it can't hurt
to repeat it here--the Create mode will need to know the QuizId when issuing the Put
Http call to the QuestionController, as it's a required property of the Question Entity.

AnswerListComponent
After all we did with the questions, implementing the answer-related components will be a
walk in the park! Jokes aside, this is pretty much the same code with some minimal
differences. As a matter of fact, it will be even easier, as we won't have to struggle with
child components; we'll just need to implement the ngOnChanges() life cycle hook again,
since we have no parent changes to detect.

Anyway, here's the deal: from Solution Explorer, create the
/ClientApi/app/components/answer/ folder and right-click on it to add the following
answer-list.component.ts class file:

import { Component, Inject, Input, OnChanges, SimpleChanges } from
"@angular/core";
import { Router } from "@angular/router";
import { HttpClient } from "@angular/common/http";

@Component({
 selector: "answer-list",

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[245]

 templateUrl: './answer-list.component.html',
 styleUrls: ['./answer-list.component.css']
})

export class AnswerListComponent implements OnChanges {
 @Input() question: Question;
 answers: Answer[];
 title: string;

 constructor(private http: HttpClient,
 @Inject('BASE_URL') private baseUrl: string,
 private router: Router) {

 this.answers = [];
 }

 ngOnChanges(changes: SimpleChanges) {
 if (typeof changes['question'] !== "undefined") {

 // retrieve the question variable change info
 var change = changes['question'];

 // only perform the task if the value has been changed
 if (!change.isFirstChange()) {
 // execute the Http request and retrieve the result
 this.loadData();
 }
 }
 }

 loadData() {
 var url = this.baseUrl + "api/answer/All/" + this.question.Id;
 this.http.get<Answer[]>(url).subscribe(res => {
 this.answers = res;
 }, error => console.error(error));
 }

 onCreate() {
 this.router.navigate(["/answer/create", this.question.Id]);
 }

 onEdit(answer: Answer) {
 this.router.navigate(["/answer/edit", answer.Id]);
 }

 onDelete(answer: Answer) {
 if (confirm("Do you really want to delete this answer?")) {
 var url = this.baseUrl + "api/answer/" + answer.Id;

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[246]

 this.http
 .delete(url)
 .subscribe(res => {
 console.log("Answer " + answer.Id + " has been
 deleted.");

 // refresh the question list
 this.loadData();
 }, error => console.log(error));
 }
 }
}

Follow this with the answer-list.component.html template file:

<h3>Answers</h3>
<div *ngIf="answers.length > 0">
 <table class="answers">
 <thead>
 <tr>
 <th>Text</th>
 <th>Value</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let answer of answers">
 <td>{{answer.Text}}</td>
 <td>{{answer.Value}}</td>
 <td><input type="button" value="Edit"
 (click)="onEdit(answer)" />
 <input type="button" value="Delete"
 (click)="onDelete(answer)" /></td>
 </tr>
 </tbody>
 </table>
</div>
<div *ngIf="answers.length == 0">
 This questions has no answers (yet):
 click the Add a new Answer button to add the first
one!
</div>
<input type="button" value="Add a new Answer" (click)="onCreate()" />

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[247]

Then, follow it with the answer-list.component.css style sheet file:

table.answers {
 min-width: 500px;
}

Before moving further, don't forget to add the AnswerListComponent to the
app.module.shared.ts file--just like we did a number of times already.

AnswerEditComponent
The AnswerEditComponent is so much similar to the QuestionEditComponent--at least
for the time being--that we can just copy and paste the question-edit.component.ts
file, rename it as answer-edit.component.ts, and perform the following changes:

Replace Question with Answer and question with answer
Replace Quiz with Question and quiz with question

Ensure that you follow the given order; also, if you plan to do it automatically, don't forget
to activate the case-sensitive switch from within your text editor to avoid screwing up the
source code!

We were able to do that because we used the same naming conventions
for everything, from the Web API server-side routes to to the CSS classes;
however, exploiting find and replace in this way is hardly a good
behavior, and we only do that because we don't want to overburden this
book with source code samples. We strongly suggest the reader to take
this chance to try implementing the AnswerEditComponent with the
acquired knowledge instead of using the copy and replace trick, as it will
be a great exercise to check whether they properly understand everything.

The same trick can be done for the answer-edit.component.css style sheet file;
conversely, the template file requires some additional work.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[248]

The template file
Each time we add a new answer, we need to give it a score value. The best thing we can do
to properly handle this is to add a <select> element to the AnswerEditComponent
template file so that the active user can pick a number from a list of allowed values.

Here's the full answer-edit.component.html template file, with the relevant code
highlighted:

<h2>{{title}}</h2>
<div class="answer-edit">
 <div>
 <label for="text">Answer text:</label>

 <textarea id="text" [(ngModel)]="answer.Text"
 placeholder="enter a suitable text..."></textarea>
 </div>

 <div>
 <label for="value">Score Value:</label>

 <select id="value" name="value" [(ngModel)]="answer.Value">
 <option *ngFor="let num of [-5,-4,-3,-2,-1,0,1,2,3,4,5]"
 [value]="num">{{num}}</option>
 </select>
 </div>

 <div>
 <input *ngIf="editMode" type="button" value="Apply Changes"
 (click)="onSubmit(answer)" />
 <input *ngIf="!editMode" type="button" value="Create the
 Answer!" (click)="onSubmit(answer)" />
 <input type="button" value="Cancel" (click)="onBack()" />
 </div>
</div>

By doing so, our users will be able to give each answer a value from a minimum of -5 to a
maximum of 5. Needless to say, this is just an example; we're free to let the user pick the
number they want by setting wider boundaries or by replacing the <select> element with
an <input type="number" /> element; as always, the choice is ours.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[249]

References and routes
As for the references and routes, we already know what to do. Let's just emphasize the
routing aspect, as this is the only thing that might not throw an immediate exception if we
do something wrong, thus taking more time to fix in case of an error:

[...]
{ path: 'question/edit/:id', component: QuestionEditComponent },
{ path: 'answer/create/:id', component: AnswerEditComponent },
{ path: 'answer/edit/:id', component: AnswerEditComponent },
{ path: 'about', component: AboutComponent },

[...]

ResultListComponent
Instead of implementing the ResultListComponent from scratch, we can give another try
to the copy-rename-replace trick we used in the previous paragraph, taking the
QuestionListComponent as the source. Create the
/ClientApi/api/components/result/ folder, then copy paste the question-
list.component.ts and question-list.component.css files there, renaming them as
result-list.component accordingly.

Once done, perform the following case-sensitive find and replace tasks:

Replace Question with Result
Replace question with result

Alternatively, the reader can try to implement them both by himself and make additional
changes, along with the following result-list.component.html template file that
requires some additional work (relevant lines highlighted):

<h3>Results</h3>
<div *ngIf="results.length > 0">
 <table class="results">
 <thead>
 <tr>
 <th>Text</th>
 <th>Min. Value</th>
 <th>Max. Value</th>
 <th>Options</th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let result of results">

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[250]

 <td>{{result.Text}}</td>
 <td *ngIf="result.MinValue === null">N/A</td>
 <td *ngIf="result.MinValue !== null">
 {{result.MinValue}}</td>
 <td *ngIf="result.MaxValue === null">N/A</td>
 <td *ngIf="result.MaxValue !== null">
 {{result.MaxValue}}</td>
 <td><input type="button" value="Edit"
 (click)="onEdit(result)" />
 <input type="button" value="Delete"
 (click)="onDelete(result)" /></td>
 </tr>
 </tbody>
 </table>
</div>
<div *ngIf="results.length == 0">
 This quiz has no results (yet):
 click the Add a new Result button to add the first
one!
</div>
<input type="button" value="Add a new Result" (click)="onCreate()" />

We're dealing with MinValue and MaxValue here, which we defined as nullable
numbers. We can just use {{result.MinValue}} and {{result.MaxValue}} within a
<td> block, just like we did with the preceding {{result.Text}}; it would have worked,
showing an empty string in case of null; however, since we wanted to show a custom N/A
string instead, we used some *ngIf directives to get a more readable result.

Reference and routes
Open the quiz-edit.component.html template file and implement the
ResultListComponent as a sub-component in the following way, right after the
<question-list> element (new line highlighted):

[...]

 <question-list *ngIf="editMode" [quiz]="quiz"></question-list>

 <result-list *ngIf="editMode" [quiz]="quiz"></result-list>

[...]

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[251]

Right after that, open the app.module.shared.ts file and add the usual import
references, declarations, and routes:

[...]

import { AnswerEditComponent } from './components/answer/answer-
edit.component';
import { ResultListComponent } from './components/result/result-
list.component';
import { ResultEditComponent } from './components/result/result-
edit.component';
import { AboutComponent } from './components/about/about.component';

[...]

 declarations: [

[...]

 AnswerEditComponent,
 ResultListComponent,
 ResultEditComponent,
 AboutComponent,

[...]

 RouterModule.forRoot([

[...]

 { path: 'answer/edit/:id', component: AnswerEditComponent
 },
 { path: 'result/create/:id', component: ResultEditComponent
 },
 { path: 'result/edit/:id', component: ResultEditComponent
 },
 { path: 'about', component: AboutComponent },

[...]

As we can see, we also took the chance to add the references and routes for the upcoming
ResultEditComponent, which is coming in the next paragraph.

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[252]

ResultEditComponent
Once again, our copy-rename-replace trick can save us some valuable time--and space.
Copy and paste the question-edit.component.ts and CSS files to the
/ClientApi/api/components/result/ folder, rename them as result-
edit.component, and perform the same case-sensitive find and replace tasks we used the
last time:

Replace Question with Result
Replace question with result

As always, the wise reader should take the chance to manually implement the
ResultEditComponent instead.

Once the class and style sheet files are ready, create the result-edit.component.html
template file from scratch in that same folder and fill it with the following code (relevant
lines are highlighted):

<h2>{{title}}</h2>
<div class="result-edit">
 <div>
 <label for="text">Result text:</label>

 <textarea id="text" [(ngModel)]="result.Text"
 placeholder="enter a suitable text..."></textarea>
 </div>

 <div>
 <label for="MinValue">Minimum Score Value:</label>

 <input type="number" id="MinValue" name="MinValue"
 [(ngModel)]="result.MinValue" />
 </div>

 <div>
 <label for="MaxValue">Maximum Score Value:</label>

 <input type="number" id="MaxValue" name="MaxValue"
 [(ngModel)]="result.MaxValue" />
 </div>

 <div>
 <input *ngIf="editMode" type="button" value="Apply Changes"
 (click)="onSubmit(result)" />
 <input *ngIf="!editMode" type="button" value="Create the
 Result!" (click)="onSubmit(result)" />

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[253]

 <input type="button" value="Cancel" (click)="onBack()" />
 </div>

</div>

As we can see, we had to handle the MinValue and MaxValue unique properties of the
Result interface. We already faced a similar scenario with the Value property in the
AnswerEditComponent template file; however, this time we chose a different approach
because these properties are meant to host nullable numeric values. The <input
type="number /> is a good compromise here, as it will prevent users from inputting non-
numeric values while also accepting an empty value, which will be treated as null by our
code.

Full-scale test
We can't possibly say that we were slacking off here! After a tremendous amount of work,
it's time to perform a final client-server test to ensure that everything is working as
expected.

Just a quick consideration before we start: it's been a while from our last
client-server test, and we changed a whole lot of things. It's very important
to understand that receiving some compiler, runtime, or GUI-related
errors here will be perfectly normal, especially if we performed some find-
replace as we did (not) suggest to. Whenever this happens, it will only
mean that we missed something on the way. Don't lose the grip, read the
error messages, use the built-in debugger, check up your source code, and
do your best to find the issue; if you can't figure it out, try to "unmount"
some component by removing the references; this will greatly help you
understand what's actually working and where the problem lies. Always
keep in mind that the code is never wrong, yet also don't forget that you're
in control here.

Run the application in debug mode by pressing F5 and wait from the Home view to load.
Once done, click on one of the available quiz items; ensure that you choose one of the auto
generated ones, because we need it to have questions, answers, and results:

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[254]

Here's our beloved (yet still ugly) Quiz view. From there, left-click on the Edit button and
see what happens:

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[255]

We'll admit that it can definitely look a lot better. Yet it works! We got the quiz data, the
questions list and the results list, which means that our QuestionListComponent and
ResultQuizComponent are actually doing their job.

From here, we can click on the Add a new Question button to check out if the
QuestionEditComponent is working as well:

Fill it with some sample data (as in the preceding screenshot), and then click on the Create
the Question button to get routed back to the Quiz Edit view:

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[256]

As expected, the new question is there; now we can use it to test the Edit mode of
QuestionEditComponent. Left-click on the Edit button to its right to access it:

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[257]

From here, we can test the answers-related component; the AnswerListComponent seems
to be working fine already, so we can click on the Add a new Answer button and check out
the AnswerEditComponent in Create mode:

From here, we can fill in the values and then issue the Create the Answer command; we'll
get routed back to the AnswerEditComponent, where the AnswerListComponent should
behave according to our actions:

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[258]

So far, so good; now we should test the AnswerEditComponent in Edit mode to confirm
that it also works. Once done, we can navigate backward using the Cancel button and
delete what we just did to test the Delete functionalities provided by the answers and
questions listing components. We should see the answer and the question disappear from
the listings as soon as we confirm our choice.

Last but not least, we need to test the result-related components and repeat the same steps
to ensure that everything is working fine on that part as well:

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[259]

Since we're dealing with nullable values here, it's important to check for them too; in the
preceding example, we're trying to create a new result without lower bounds--a null
MinValue--and a MaxValue of 20. Our ResultListComponent should be able to handle it
without problems, as we can see by clicking on the Create the Result button:

Here comes our custom N/A string. Now we just have to Edit the new result to test the
ResultEditComponent in Edit mode; once done, Delete it and get ready for the next
chapter.

Suggested topics
RESTful conventions, HTTP verbs, HTTP status, Observables, OnChanges/ngOnChanges,
Life cycle Hooks, Base, and Derived classes

www.EBooksWorld.ir

Client-Server Interactions Chapter 5

[260]

Summary
Before moving further, let's do a quick recap of what we did throughout this chapter.

We started working on the server-side aspects of our project. Having replaced the fake data
provider with a real one, we made good use of it by implementing the Put, Post, and
Delete action methods within our .NET Web API Controllers, mapping our Entities to
their respective ViewModels--and the other way around--with the help of the Mapster
package library. However, we shortly acknowledged the fact that we were writing a lot of
duplicate code; in order to reduce this, we implemented a BaseApiController class that
we used to do some common and repeating tasks, such as making the DbContext available
through dependency injection and providing a handy JsonSettings property. We then
derived all our web API controllers from that class and trimmed their source code
accordingly.

Right after that, we switched to the client side and implemented the components required
to run the new APIs within our Angular app; we started with the QuizEditComponent, on
which we put a lot of effort to make it able to spin in two ways--Create mode and Edit
mode--so that we could use it to add new quizzes as well as update the existing ones. We
also updated the AppModule to add the required references, dependencies, and routes.

After a quick client-server test, we moved to the QuestionListComponent, where we also
spent some time to understand the capabilities of the ngOnChanges() life cycle hook and
learn how to better use it to suit our present and future needs; then, we switched to the
QuestionEditComponent, where we were able to leverage the knowledge previously
acquired when working with the quiz counterpart.

From there, it wasn't much more than a walk in the park, as we already knew what to do
with the missing Angular components: AnswerListComponent, AnswerEditComponent,
ResultListComponent, and ResultEditComponent; although they did have something
unique, such as <select> elements and nullable values, implementing these components
was mostly an opportunity to retrace our steps and get a good grip on what we previously
did.

After all these changes, we felt the urge to do another round of client-server tests; we spent
some good time playing with our SPA, adding, updating, and deleting our entities. After all
the hardwork, we can definitely say that we did a good job; our application is working fine,
and it's already packed with interesting features built upon a consolidated set of client-
server interactions. If only the UI wasn't so ugly. Luckily enough, the following chapter will
greatly help us overcome that.

www.EBooksWorld.ir

6
Style Sheets and UI Layout

Up to this point, we have done our best to keep the layout as simple as we could so that we
could focus entirely on the server-side and client-side coding aspects of our app: .NET Core
Web API Controllers, Angular components, C#, and TypeScript. Keeping the layout to a
minimum is generally a wise approach when we're learning something new; it also has a
few downsides though, the biggest one being the blatant fact that our application is rather
unattractive, to say the least: there is no user, client, or customer who wouldn't say that... or
worse.

How bad is it, doc?
It almost entirely depends on what we're planning to do with the project we've been
working on; as we just said, while we're working our way through tutorials, demos, or
sample projects, it's not bad at all, for at least a couple of good reasons:

We will greatly benefit from keeping our focus on .NET and Angular, leaving the
rest for later; applying styles is something that we can easily do whenever we feel
like it, even if we don't have a decent grip on style sheet language already
It's generally a good idea to restrain ourselves from doing any relevant style
implementation until we can fully understand where and how to do that
conveniently; to put it in other words, we shouldn't do styles until we find a
suitable approach for doing that within the given scenario and/or environment

That's why we chose to take this path in the first place; we're definitely in the learning
phase, after all. On top of that, we gladly sat upon the minimalistic, yet rather functional
layout shipped with the .NET MVC with Angular Visual Studio template that we chose to
adopt.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[262]

However, since we planned to build a production-ready native web application, we can't
restrain ourselves from applying some custom styling any longer; there's no way that our
imaginary product owner will be satisfied otherwise. It's time to dress our (mostly) naked
doll and make it as pretty as we can.

Introducing LESS
If you've worked with style sheets within the last few years, there's no chance you won't
have heard of LESS; however, for the sake of those who didn't, let's take a few words to talk
about it. Before getting to that though, we must briefly introduce the concepts of style sheet
language and Cascading Style Sheets (CSS).

This paragraph is mostly aimed at those who have never used LESS
before. If you have some experience with LESS already or feel like you
don't need to know anything else about why we'll use it, you might as well
skip it entirely and jump to the next paragraph: Install and Configure
LESS.

Style sheet languages
A style sheet language, also known as style language, is a programming language used to
define the presentation layer's UI design rules of a structured document. We can think of it
as a skin or a theme that we can apply to a logical item (the structured document) to change
its appearance. For example, we can make it look blue, red, or yellow; we can make the
characters bigger or smaller and thinner or wider; we can change the text spacing,
alignment, and flow; and so on.

Using dedicated style sheet languages gives developers the chance to separate the
presentation layer's code and structure (respectively JavaScript and HTML) from the UI
design rules, thus enforcing the separation of concerns (SoC) principle within the
presentation layer itself.

When it comes to web pages, web applications, and anything else that mostly uses HTML,
XHTML, XML, and other markup language-based documents, the most important style
sheet language undoubtedly is CSS.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[263]

CSS
It was December 17, 1996, when the World Wide Web Consortium (W3C) released the
official W3C CSS Recommendation for the style sheet language that would be known as
CSS1. CSS2 came less than two years later (May 1998), while its revised version, CSS2.1,
took considerably more time (June 2011).

Starting from CSS3, things started to become more complex, since the W3C ditched the
single, monolithic specification approach by splitting it into separate documents called
modules, each one of them following its very own publishing, acceptance, and
recommendation history. Starting in 2012, with four of these (Media Queries, Namespaces,
Selectors, and Color) being published as formal recommendations and full CSS2.1
backward-compatibility, CSS3 quickly became the most adopted style sheet language
standard for the development of new websites.

CSS code sample
Regardless of their version, each adding new features while maintaining backward
compatibility with the previous one(s), CSS sticks to the following syntax:

<selector> [sub-selector] [sub-sub-selector] {
 <property>: <value>;
 <another-property>: <value>;
 <yet-another-property>: <value>;
 [...]
}

This translates as follows:

.quiz {
 margin: 5px;
 padding: 5px 10px;
 border: 1px solid black;
 background-color: #dddddd;
 width: 300px;
}

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[264]

We've seen this code before; it's a class we added in our application's quiz.component.ts
file in a previous chapter. It basically says that any HTML element with the quiz CSS class
assigned will have a light-gray background color, a black, solid, and pixel-wide border, no
margin against the surrounding elements, and a certain amount of padding between its
borders and the content. To assign a CSS class to an HTML element, use the class attribute
in the following way:

<div class="quiz"> [...some content...] </div>

If the attribute already exists, additional CSS classes can be assigned by separating them
with a single space:

<div class="quiz otherClass someOtherClass"> [...some content...] </div>

Simple enough, isn't it?

What is LESS and why use it?
LESS is a cascading style sheet preprocessor; we can think of it as a server-side script for
CSS files, enabling us to do a number of things that CSS doesn't support (yet), just like PHP
and/or ASP can do for an HTML page. The following diagram should help us better
understand the concept:

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[265]

These are the main advantages of using a hypertext preprocessor instead of writing raw
HTML pages; we're talking about PHP, but the same goes for ASP.NET Web Forms, Razor,
and basically everything else.

The following are the advantages of using LESS instead of writing raw CSS files:

As we can see, they serve the exact same purpose in terms of assisting, improving, and
enhancing the development effort.

Making the switch from static style sheets to dynamic style sheets is just as easy as
switching from static HTML pages to PHP or ASP dynamic pages; they both feature a
nested metalanguage that can extend the base static language in a pure backward-
compatible fashion. This means that a valid CSS file is also a valid LESS file, just as a valid
HTML file is also a valid PHP or ASP file.

There are also some key differences between hypertext preprocessors and style sheet
preprocessors, the most important being how web servers deal with them. Hypertext
preprocessors such as PHP and ASP are compiled by the web server upon each request; the
web server compiles them on the fly and then serves the resulting HTML for each request-
response flow. Conversely, style sheet preprocessor files are usually compiled into standard
CSS files before being published; in other words, the web service doesn't know about the
existence of these files, as it just serves the resulting CSS-compiled result.

This also means that using a style sheet preprocessor will have no performance impact on
the server, unless we choose to install some experimental and still highly inefficient
handlers, extensions, modules, or client-side scripts that will compile the source files on the
fly.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[266]

IMPORTANT NOTE: From now on, we'll take for granted that the reader
has a decent knowledge of CSS files, syntax, selectors, and their common
use within HTML pages. If this is not the case, we strongly suggest that
you learn the core CSS concepts before going further, using the Learning
CSS website, maintained and hosted by W3C, featuring a massive number
of useful guides, tutorials, and articles:

https://www.w3.org/Style/CSS/learning .

Variables
Among the most valuable LESS features, there is variable support. This is a brief example of
what we can do with it:

// Variables can be declared as such:
@link-color: #red;
@link-color-hover: lightcoral;

// And then they can be referenced like this:
a, span. link {
 color: @link-color;
}

a:hover, span.link:hover {
 color: @link-color-hover;
}

As you might have noticed, double-slash style (//) inline comments are supported as well,
while CSS only allows the slash-asterisk (/**/) syntax.

Import directives
Another LESS key feature is the capability of importing other CSS and LESS files. If we're
familiar with the standard CSS @import, we know that it can only be used at the beginning
of the file to issue the loading of an external CSS file. With LESS, we can do the following:

// look for a style.less file and process + import its contents.
@import "style";

// look for a style.less file and process + import its contents.
@import "style.less";

// look for a style.css file and import its contents (no processing).
@import "style.css";

www.EBooksWorld.ir

https://www.w3.org/Style/CSS/learning

Style Sheets and UI Layout Chapter 6

[267]

Note that the behavior depends on the imported file extension. These defaults can be
overridden with the following options switches:

// link/use a Less file without including it in the output.
@import (reference) "something.less";

// include the file in the output without processing it.
@import (inline) "something.less";

// pretend this is a LESS file, regardless of the extension.
@import (less) "something.css";

// pretend this is a CSS file, regardless of the extension.
@import (css) "something.less";

// never include this file more than once (default behavior).
@import (once) "something.less";

// always include this file in the output, even multiple times.
@import (multiple) "something.less";

// do not break the compile operation if the file is not found.
@import (optional) "something.less";

If we need to specify multiple options within a single @import statement, we can do that
by separating each one of them with a comma:

// take it as a LESS file, import once, skip if not found.
@import (less,once,optional) "something.css";

Nested selectors
We will be able to nest selectors within other selectors, thus making our code more succinct
and readable. Just to use a quick example, consider this:

quiz-list {
 border: 0;
 margin: 0;
 padding: 0;
 vertical-align: top;
 display: block;
}

quiz-list.latest {
 background-color: #f6f6f6;
}

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[268]

quiz-list.latest h3 {
 background-image: url(/img/latest-icon.png);
}

We can shrink this into something like the following:

quiz-list {
 border: 0;
 margin: 0;
 padding: 0;
 vertical-align: top;
 display: block;
 &.latest {
 // the & char represents the current selector parent.
 // in this scenario, it stands for: item-list.latest.
 background-color: #f6f6f6;
 h3 {
 background-color: @color-latest;
 background-image: url(/img/latest-icon.png);
 }
 }
}

It might not be such a big deal for small-scale CSS files, yet it's a great readability
improvement for big ones.

Mixins
Being able to not repeat ourselves is a key principle of all computer programming
languages; however, it's not easy to respect that within standard CSS files, because we will
often be forced to write something like this:

.button-s {
 background-color: blue;
 border: 1px solid black;
 border-radius: 5px;
 font-family: Verdana;
 font-size: 0.8em;
 width: 100px;
}

.button-m {
 background-color: blue;
 border: 1px solid black;
 border-radius: 5px;
 font-family: Verdana;
 font-size: 1em;

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[269]

 width: 200px;
}

.button-l {
 background-color: blue;
 border: 1px solid black;
 border-radius: 5px;
 font-family: Verdana;
 font-size: 1.2em;
 width: 300px;
}

With LESS, we can shrink it into this:

.button-s {
 background-color: blue;
 border: 1px solid black;
 border-radius: 5px;
 font-family: Verdana;
 font-size: 0.8em;
 width: 100px;
}

.button-m {
 .button-s;
 font-size: 1em;
 width: 200px;
}

.button-l {
 .button-s;
 font-size: 1.2em;
 width: 300px;
}

In other words, a mixin is a selector reference within another selector. That's another great
feature that can save us a lot of time whenever we're dealing with large CSS files.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[270]

Extend pseudo-class
Another great feature is the LESS :extend pseudo-class, which can be used to apply all
properties of a class to another class, optionally including, using the all keyword, all the
child classes and pseudo-classes. To use a quick example, take the following CSS code:

.link {
 color: white;
 background-color: blue;
}

.link:before {
 content: ">";
}

.link-red {
 color: white;
 background-color: red;
}

.link-red:before {
 content: ">";
}

This can be conveniently written this way using LESS:

.link {
 color: white;
 background-color: blue;
 :before {
 content: ">";
 }
}

.link-red {
 &:extend(.link all);
 background-color: red;
}

Note how, since we've used the all keyword, we don't have to repeat the :before pseudo-
class of the base .link selector, as it will be applied to .link-red as well.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[271]

LESS docs and support
We won't go any further than that with LESS, as it will take us far from the scope of this
book. From now on, we'll take for granted that everything that we'll do with it will be
acknowledged and understood.

For the sake of simplicity, we won't use anything different from what we briefly introduced
in the previous chapters; however, we strongly suggest that you take a look at the advanced
features (parametric mixins, functions, loops, guards, and more) as soon as you have the
chance; they can hardly fail to pay off. You can learn more about them from the LESS
official webpage at http:/ / lesscss. org/ .

SASS, Stylus, and other alternatives
As most readers probably know, or can easily imagine, LESS is not the only style sheet
preprocessor language out there. As a matter of fact, it was released more than two years
after Systematically Awesome Style Sheets (Sass), also known as SCSS, which had served
the exact same purpose since 2007. Sass can offer basically the same set of features as LESS
and came out first, so why shouldn't it be used instead?

Truth be told, no one will ever get fired for picking Sass or other viable alternatives, such as
Stylus and Switch CSS, instead of LESS. We're free to choose the style sheet preprocessor we
like the most, as long as we can use it without issues, meaning that our development
framework--Visual Studio, for example--is able to support it. Luckily enough, all of them
are now widely supported by many Visual Studio Extensions, so it won't make any
significant difference.

Here's a list of some of the best extension tools that will provide support for LESS, Sass
and/or other preprocessors:

Web Compiler by Mads Kristensen, an all-around tool to compile LESS, Sass,
Stylus, JSX and CoffeeScript directly within the Visual Studio Solution Explorer
(right-click | Web Compiler | Compile File).
LESS Compiler by Mads Kristensen, a lightweight alternative to the above which
uses the official Node.js-based LESS compiler with no setup. Once installed, it
will show a neat overlay in the lower-right corner of any LESS file opened with
Visual Studio giving the developer the chance to turn the compile feature ON or
OFF for the whole project and/or for the current file only; it doesn't support Sass.
CompileSass by Sam Rueby, another lightweight alternative that looks for all files
with the .scss extension and compiles them in the background using LibSass,
resulting in fast compile times; it doesn't support LESS.

www.EBooksWorld.ir

http://lesscss.org/
http://lesscss.org/
http://lesscss.org/
http://lesscss.org/
http://lesscss.org/
http://lesscss.org/
http://lesscss.org/
http://lesscss.org/

Style Sheets and UI Layout Chapter 6

[272]

Any of these tools will do, as long as it supports the standard you want to use; that said, for
the purpose of this book, we'll pick LESS over Sass and other alternatives because we find it
more straightforward, easy to use, and slightly more suited for a Windows environment
than its counterparts, at least for now; we'll also install the LESS Compiler tool, so our LESS
sources will be automatically compiled into CSS files on each build in the most lightweight
way.

Implementing LESS
LESS happens to be written in JavaScript, so installing it can be as easy as downloading the
official less.js JavaScript library, linking it to our /Views/Home/Index.cshtml page,
and letting its magic work without having to set up anything else.

Should we do that, then? Not a chance. As we said earlier, delegating the compilation task
on the client side will be highly inefficient, especially in a client-intensive Angular-based
SPA. Not to mention the fact that we already have Webpack that will automatically
compile, optimize, and pack all our CSS classes together in a single file.

Given our scenario, the best thing we can possibly do without changing our current
Angular files and Webpack configuration is the following:

Install the aforementioned LESS Compiler extension tool and configure it to1.
automatically build LESS files.
Rename all our existing CSS files with LESS files with the same name, as CSS files2.
are also LESS files.
Update the existing code to take full advantage of the features and syntax3.
provided by LESS.

That's it, we won't have to change anything in Angular, as our components will always
point to the compiled file, the one ending with the .css prefix. We also don't have to worry
about minify, uglify, and/or merge these files, as these tasks are already handled by
Webpack using our current configuration.

That said, let's get to work.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[273]

Installing LESS compiler
Installing an extension tool on Visual Studio is quite easy; from the topmost menu, select
Tools | Extensions and Updates, and then click to the Online item tree to the left. Once
there, start a search using the LESS Compiler keyword and locate the LESS Compiler by
Mads Kristensen:

During the installation phase, you will be asked to quit and restart Visual Studio, so be sure
to save everything before doing it.

Starting with the 2017 release, Visual Studio won't prompt you for an
immediate restart like it used to do in the past; it will just inform you that
the new tool(s) will be installed once all VS windows are closed, meaning
that you will need to manually close all the active Visual Studio instances
to launch the VSIX installer and perform the setup. Although this is
perfectly understandable behavior, it might be negatively affected by
some blocking VS-related processes--commonly MSBuild.exe--that can
manage to survive even after a full Visual Studio shutdown. If that's the
case, use the Task Manager to locate the offending processes within the
process list and manually kill them to release the VSIX lock.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[274]

Once done, use the Solution Explorer to navigate to the
/AppClient/app/components/app/app.component.css file and rename it to
app.component.less. A warning popup will appear, informing you that the file can
become unusable and asking for a confirm; choose YES, and then open the new file.

You should see something like the following:

See the HUD-like screen near the lower-right corner? This is how the LESS Compiler tells
us about what it will do upon build, either globally and for the currently opened file; both
settings can be changed by clicking on them. For our specific purposes, we just need to
change the Project settings value from Off to On. Do that, and then update the file content
by adding a single comment on top in the following way:

// our first LESS file

@media (max-width: 767px) {
 /* On small screens, the nav menu spans the full width of the screen.
Leave a space for it. */
 .body-content {
 padding-top: 50px;
 }
}

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[275]

Once done, Save your file and look at the Solution Explorer to see what happens. The LESS
compiler should automatically detect the updated content and compile the file accordingly;
after a couple seconds, you should see something like this:

That's it, our .less source file has been compiled into its corresponding .css and
.min.css files. If we open them, we can see how the first one hosts the human-readable
version of the CSS-compatible code, while the latter contains the minified version. From
now on, it will happen automatically upon Save, so we can just forget about it and
concentrate on our styling.

Before continuing, rename all the other component's CSS files to give them the .less
extension like we just did with the app.component.css file; we'll do that anyway sooner
or later, hence it's better to get it over and done with.

Compiling LESS files with Webpack
Alternatively, we can also change our existing Webpack configuration to make it compile
the LESS files into CSS. This can be done in the following way:

Add a less loader to our existing Webpack configuration file.1.
Rename all our existing CSS files with LESS files with the same name.2.
Reference the less files in the components instead of the css ones.3.

Choosing this path will require installing the Webpack less-loader using NuGet:

npm install --save-dev less-loader less

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[276]

Then, it will require adding the appropriate rule in the webpack.config.js file in the
following way:

[...]

 module: {
 rules: [

[...]

 {
 test: /\.less$/,
 use: [{
 loader: "style-loader" // creates style nodes from JS
 strings
 }, {
 loader: "css-loader" // translates CSS into CommonJS
 }, {
 loader: "less-loader" // compiles Less to CSS
 }]
 }

[...]

Such a method is absolutely viable; on top of that, since it will seamlessly integrate with the
Webpack workflow, it will even save us the trouble of installing a separate tool. However,
we didn't choose it because we wanted to actually be able to see the transformation between
LESS and CSS syntax, which is a great deal for learning purposes.

DIY versus framework-based styling
Now that we have converted all our static CSS files into dynamic LESS scripts, we can
definitely take the chance to replace the quick'n'dirty styling that we put together for
demonstration purposes, only with something better. However, before doing that, we need
to choose which of these we want to do:

Keep the Bootstrap framework that was shipped by our ASP.NET Core MVC1.
with Angular template.
Replace it with another frontend framework such as Foundation, Pure, Skeleton,2.
UIKit, and Materialize.
Remove it and also avoid any framework-based alternative, thus adopting a pure3.
do-it-yourself approach.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[277]

The first two options share the same approach: leverage our styling on a consolidated
environment used by thousands of developers; no matter which variant we'll choose, we'll
end up walking on solid ground. The latter, however, is an entirely different pair of shoes.
Anyone who is into CSS design is well aware of such a debate, which we can summarize in
the following single phrase:

Should we build our own grid-based responsive layout or use a responsive design
framework instead?

The answer is not that simple because either alternative has its set of advantages. Let's try to
perform a quick recap of the most relevant arguments.

Do-it-yourself approach
The most classic approach: we build our very own grid-based layout, featuring a custom set
of resizing faster and/or vector set of images and icon files, following the responsive design
good practices and guidelines as issued by the famous Ethan Marcotte 2010 article published
in the A List Apart blog:

http://alistapart. com/ article/ responsive- web- design.

Also follow the subsequent, improved theories and patterns described in his following brief
book (Responsive Web Design, A Book Apart, 2011).

Pros
Faster loading times, as we will be able to only code, add, and/or include what
we need
Unique design (all framework-based websites are supposed to look the same)

Cons
Can be quite hard to handle, unless we're true CSS3/MediaQuery experts
Slow development, due to the massive amount of required tests for all the
existing platforms (browsers, operating systems, and mobile devices)
Hard to keep it updated to the latest standards since there will be no one who
will bother to test or improve that code other than us

www.EBooksWorld.ir

http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design

Style Sheets and UI Layout Chapter 6

[278]

Framework-based approach
This is the common approach nowadays, where we start from a consolidated, widely-
accepted UI frontend framework such as Bootstrap, Foundation, Pure or Materialize, and
customize it to suit our needs. The word customizing can mean a number of things here,
from picking a skin to completely changing the structural behavior of most classes,
depending on how much we want to customize the results and/or how much time we are
allowed to spend doing that.

Pros
Development speed: These frameworks are a time-saver, as we will be able to
use reliable, cross-browser compatible code blocks instead of coding everything
from scratch.
Consistency: One of the biggest frontend framework achievements is that they
make designers and developers speak the same language, as they will both be
able to acknowledge, understand, and apply their changes to the project in a
consistent way.
Community support: Each framework has a huge support community, meaning
that we'll receive free code samples, support, and updates for as long as we need
to. This can be huge, especially if we want to achieve good results without having
to commit too much into cross-browser, responsive CSS design.

Cons
Limited knowledge: We didn't write that code, so we won't always be able to
understand what we're doing and why the stuff we're using behaves like that
Performance heavy: Even the most lightweight and modular framework will
undoubtedly be packed with a lot of stuff we won't be using in our project; these
contents will be sent by the web server and loaded by the client anyway
Updating issues: Whenever an improved build of the framework is out, we will
have to choose between updating it and taking the risk of breaking something,
and not updating it and risking losing the bug fixes and the added/improved
support for the new CSS standards

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[279]

Conclusions
As we can see, both ways can be viable depending on our specific scenario; therefore, the
decision between going with a custom grid and adopting a framework-based one should be
made on a case-by-case basis.

That said, after our non-exhaustive analysis, we think that adopting a frontend framework
might be a good call for our project; we'll also keep Bootstrap for the task, since it happens
to be one of the most suited ones for native web applications based on Angular, as we'll be
able to see in the following paragraphs.

It's worth noting that by choosing Bootstrap, we're ditching a great
alternative that will surely pave its way in the upcoming months; we're
talking about material2, also known as Angular Material, a top-notch
component library based upon material design. The only reason we didn't
pick it is that the project is still in beta in Q3 2017. Whoever is bold enough
to try that can ditch this chapter entirely and step into that pair of shoes by
looking at the official project page at https:/ /material. angular. io/ or
look at their source code repository on GitHub, at https:/ / github. com/
angular/ material2.

Working with Bootstrap
Luckily enough, Bootstrap 3.3.7--the latest stable release at the time of writing--is already
installed in our project, thanks to the ASP.NET Core MVC with Angular template we chose to
use back in Chapter 1, Getting Ready. Whoever knows how it looks can easily understand
how it couldn't be otherwise, since its classes are being used anywhere in our Angular
HTML templates!

For those who'll ask why we didn't use Bootstrap 4 here, at the time of
writing, the v4 is still in alpha (4.0.0.alpha6) and is still subject to a
relevant amount of breaking API changes. Although there are a lot of early
adopters willing to use it these days, there's no way we can adopt it within
this book. The reader is encouraged to try it out as soon as he'll think it's
time, as long as he won't forget the disclaimers we wrote back in Chapter
1, Getting Ready.

www.EBooksWorld.ir

https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/material2

Style Sheets and UI Layout Chapter 6

[280]

Changing the theme
To be precise, we're currently using the Bootstrap default theme; the first thing we can do is
to change it with something slightly less common all over the world. There's a ton of free
and commercial alternatives available; however, it will be wise to stick to the open source
world, at least for now; luckily enough, there's a great open source Bootstrap theme
collection available as an NPM package that we can easily use.

From Solution Explorer, open the package.json file and add the following highlighted
one right below the reference to the bootstrap package:

[...]

"bootstrap": "3.3.7",
"bootswatch": "3.3.7",
"css": "2.2.1",

[...]

As soon as we click on Save, Visual Studio will download the package through NPM into
the project's /node_modules/ folder.

To actually change the theme, we need to change the bootstrap.css file that will be
fetched by Webpack and used to compile the distribution files. To do that, use the Solution
Explorer to expand the tree node to the left of the webpack.config.js file to show the
nested webpack.config.vendor.js file:

Open that nested file and change this single highlighted line:

const nonTreeShakableModules = [
 'bootstrap',
 'bootswatch/flatly/bootstrap.css',
 'es6-promise',
 'es6-shim',

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[281]

 'event-source-polyfill',
 'jquery',
];

From that line, we can see how we're committing to the Bootswatch's
Flatly theme; in case we don't like it, or if we want to try a different one
before choosing, we can go to the Bootswatch project's official site and take
a look at the other available themes at https:/ /bootswatch. com/ .

Rebuild the Webpack vendor config file
Now we need to force Webpack to recompile the vendor configuration file, because that's
not something it does automatically. To do that, we have three options:

Delete the /wwwroot/dist/ folder
Update the .csproj project configuration file to do that on each build
Create a batch file

Let's see each one of them in detail.

Delete the /wwwroot/dist/ folder
If we take a look at our project configuration file--the projectName.csproj in the project's
root folder--we can see that the Webpack vendor configuration file is built in debug mode
only if the /wwwroot/dist/ folder doesn't exist:

[...]

<Target Name="DebugRunWebpack" BeforeTargets="Build" Condition="
'$(Configuration)' == 'Debug' And !Exists('wwwroot\dist') ">
 <!-- Ensure Node.js is installed -->
 <Exec Command="node --version" ContinueOnError="true">
 <Output TaskParameter="ExitCode" PropertyName="ErrorCode" />
 </Exec>
 <Error Condition="'$(ErrorCode)' != '0'" Text="Node.js is required to
build and run this project. To continue, please install Node.js from
https://nodejs.org/, and then restart your command prompt or IDE." />

 <!-- In development, the dist files won't exist on the first run or when
cloning to
 a different machine, so rebuild them if not already present. -->
 <Message Importance="high" Text="Performing first-run Webpack build..."
/>
 <Exec Command="node node_modules/webpack/bin/webpack.js --config

www.EBooksWorld.ir

https://bootswatch.com/
https://bootswatch.com/
https://bootswatch.com/
https://bootswatch.com/
https://bootswatch.com/
https://bootswatch.com/
https://bootswatch.com/
https://bootswatch.com/

Style Sheets and UI Layout Chapter 6

[282]

webpack.config.vendor.js" />
 <Exec Command="node node_modules/webpack/bin/webpack.js" />
</Target>

[...]

Therefore, we can just delete the /dist/ folder to trigger the build.

Update the .csproj file
In case we're looking for a more automatic way of doing the same thing, we can always
remove the second condition within the .csproj file to always compile the file:

[...]

<Target Name="DebugRunWebpack" BeforeTargets="Build" Condition="
'$(Configuration)' == 'Debug' ">

[...]

However, that will definitely have a negative impact on the project's overall build time
during debug.

Create the update-webpack.bat file
The batch file can be a viable alternative if we don't want to delete the /dist/ folder while
also avoiding to slowing down our build process.

From Solution Explorer, create a new file within the project's root folder, name it as
update-webpack.bat, and fill it with the following contents:

cd %~dp0
node node_modules/webpack/bin/webpack.js --config webpack.config.vendor.js

The first line tells the file to change the execution folder to the directory hosting the batch
file itself; that will allow the batch file to be executed from anywhere, including the
Windows GUI with a double-click. The second and last line executes Webpack, passing the
webpack.config.vendor.js configuration file as a parameter.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[283]

Once done, navigate through the project's root folder and type the following to execute the
file:

> update-webpack

You should be able to tell that everything went okay by looking at the white, green, and
yellow output lines:

That's it, the only downside is that we'll have to rerun the batch file everytime we change
something in the webpack.config.vendor.js file; luckily enough, that won't happen
much.

If you don't like the Command Prompt and/or you're looking for a
shortcut to run scripts, batches, and executable files within the Visual
Studio GUI, check out the great and free Command Task Runner tool by
Mads Kristensen available through NuGet. For additional information, visit
https:/ /marketplace. visualstudio. com/items? itemName=
MadsKristensen. CommandTaskRunner.

www.EBooksWorld.ir

https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.CommandTaskRunner

Style Sheets and UI Layout Chapter 6

[284]

Testing the new theme
Now that we changed and (re)compiled the vendor file, we are entitled to give our project a
Run and test our new Bootstrap "Flatly" theme:

It seems like it works. Don't worry, we know it's still ugly! That was just the first step.

Revising the UI structure
Before diving into the UI layout of each component, we should now spend some valuable
time to revise our app's overall UI structure; it basically means that we'll add some HTML
elements and also take the chance to apply or update some bootstrap default classes.

AppComponent
Let's start with some small changes in the app.component.html template file, which hosts
the main skeleton (new/updated lines are highlighted):

<div class='container-fluid'>
 <div class='row'>
 <nav class="navbar header-content">
 <div class="container-fluid">
 <div class="navbar-header">
 <a [routerLink]="['/home']">
 <img src="/dist/res/img/logo.svg"
 alt="TestMakerFree" />

 </div>
 <quiz-search class="search-header" placeholder="Search
 for a quiz..."></quiz-search>

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[285]

 </div>
 </nav>
 </div>
 <div class='row'>
 <div class='col-sm-3'>
 <nav-menu></nav-menu>
 </div>
 <div class='col-sm-9 body-content'>
 <router-outlet></router-outlet>
 </div>
 </div>
</div>

Also, in its LESS style sheet file:

.header-content {
 position: fixed;
 top: 0;
 left: 0;
 right: 0;
 z-index: 1;
 height: 85px;
 background-color: #f4f4f4;
 border-bottom: 1px solid #dedede;

 .navbar-header {
 text-align: left;
 }

 img {
 height: 80px;
 margin: 3px 0 0 8px;
 }
}

.body-content {
 margin-top: 100px;
}

@media (max-width: 767px) {
 .header-content {
 .navbar-header {
 text-align: center;
 }
 }

 .body-content {
 padding-top: 50px;

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[286]

 }
}

We can easily see that we added a new <div class="row"> element here, which contains
some header-related content. Among the sub-elements, there are two new items that we've
never seen before; the logo.svg file and the <quiz-search> element, which obviously
refers to a QuizSearchComponent that doesn't even exist yet. Worry not, as we'll introduce
them both in a short while.

NavMenuComponent
Moving on to the NavMenuComponent, here's the updated part of the
navmenu.component.html template file:

[...]

<div class='navbar-header'>
 <button type='button' class='navbar-toggle'
 data-toggle='collapse' data-target='.navbar-collapse'>
 Toggle navigation

 </button>
 <quiz-search class="search-navmenu" placeholder="Type here..."></quiz-
search>
</div>

[...]

Note how we just changed a single line, replacing the previous <a> link to the Home view
with another instance of that still non-existent QuizSearchComponent.

As for the navmenu.component.less style sheet file, here's the updated content:

.main-nav {
 position: fixed;
 top: 85px;
 left: 0;
 right: 0;
 z-index: 1;

 li {
 a {
 cursor: pointer;
 }

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[287]

 .glyphicon {
 margin-right: 10px;
 }

 &.link-active a,
 &.link-active a:hover,
 &.link-active a:focus {
 background-color: #4189C7;
 color: white;
 }
 }
}

@media (min-width: 768px) {
 .main-nav {
 top: 100px;
 width: calc(~"25% - 30px");
 min-width: 180px;

 .navbar {
 border-radius: 0 15px 15px 0;
 border-width: 0px;
 height: 100%;

 a {
 width: 100%;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 }

 ul {
 float: none;
 }

 li {
 float: none;
 font-size: 15px;
 margin: 6px;

 a {
 padding: 10px 16px;
 border-radius: 4px;
 }
 }
 }

 .navbar-header {

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[288]

 float: none;
 }

 .navbar-collapse {
 padding: 0px;
 }
 }
}

There's nothing relevant here, except for some minor restyling. For obvious reasons, we
can't waste more pages explaining what these CSS lines actually do; we'll be able to see the
results soon enough.

QuizSearchComponent
The time has come to unveil QuizSearchComponent. As you would expect, it's nothing
more than a new Angular component that we can add within the already existing
/ClientApp/app/components/quiz/ folder.

Here's the quiz-search.component.ts class file:

import { Component, Input } from "@angular/core";

@Component({
 selector: "quiz-search",
 templateUrl: './quiz-search.component.html',
 styleUrls: ['./quiz-search.component.css']
})

export class QuizSearchComponent {
 @Input() class: string;
 @Input() placeholder: string;
}

Also, here's the quiz-search.component.html template file:

<form class="navbar-form navbar-left {{class}}" role="search">
 <div class="form-group">
 <input type="text" class="form-control"
placeholder="{{placeholder}}">
 </div>
 <button type="submit" class="btn btn-default">Submit</button>
</form>

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[289]

As we can see, the class and template files are nothing new; we should already know how
these class and placeholder input properties work and how they will be used to
programmatically give custom values to the {{class}} and {{placeholder}}
interpolation endpoints in the template file.

The real deal here is the quiz-search.component.less style sheet file:

.navbar-form {
 &.search-header {
 display: none;
 }

 &.search-navmenu {
 display: block;
 border: 0;
 margin: 2px 0 0 0;
 padding: 5px;
 float: left;
 width: calc(~"100% - 80px");
 max-width: calc(~"100% - 80px");
 min-width: 250px;

 .form-group {
 float: left;
 margin: 0 10px 0 0;

 input[type="text"] {
 width: 180px;
 }
 }
 }
}

@media (min-width: 768px) {
 .navbar-form {
 &.search-header {
 display: block;
 margin: 20px 0 0 20px;
 }

 &.search-navmenu {
 display: none;

 input[type="text"] {
 width: 180px;
 }
 }

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[290]

 }
}

Note how we used the LESS selector-nesting feature to define two very different behaviors
for the search-header and search-navmenu classes; we did that because we wanted the
two QuizSearchComponent instances to have their own distinctive layout and behavior.
We'll see more about them in a short while.

Registering QuizSearchComponent
As always, don't forget to register the QuizSearchComponent within the
app.module.shared.ts file:

[...]

import { QuizSearchComponent } from './components/quiz/quiz-
search.component';

[...]

@NgModule({
 declarations: [

[...]

 QuizSearchComponent,

[...]

The logo SVG file
Last but not least, let's spend a couple of words on that logo.svg file, that we used as
source of the element that we placed within the header container of AppComponent.

Truth be told, it's just something that we put together with Inkscape to give our app a
distinctive branding style. You can find it at http:/ /www. testmakerfree. com/dist/ res/
img/logo. svg.

www.EBooksWorld.ir

http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg
http://www.testmakerfree.com/dist/res/img/logo.svg

Style Sheets and UI Layout Chapter 6

[291]

Alternatively, you can find it in this book's GitHub official repository. Anyway, here it is:

The font we used here is called White Pine and was released back in 2015 under the SIL
Open Fonts license by its maker, Anna London, whom we would like to thank for the
awesome work. You can download it for free from her official blog at http:/ /www.
annalondon. com/blog/ design/ whitepine/ .

If you do, don't forget to thank her with a tweet or a Facebook share!

A quick test
Let's take a quick break to see the result of our work until now. Press F5 to run the project in
debug mode and get ready to see something like this:

www.EBooksWorld.ir

http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/
http://www.annalondon.com/blog/design/whitepine/

Style Sheets and UI Layout Chapter 6

[292]

Not bad at all! We'll not win a prize for this layout, that's for sure, yet we came up with
something more original than the Bootstrap defaults. However, we're still far from done; in
the upcoming chapters, we'll bring the party to the inner components as well.

Styling the components
Before diving into the depths of our Angular app, it might be the case to ask ourselves a
quick question about what we just did in the style sheet file of QuizSearchComponent. Is
there a reason why we put the search-header and search-navmenu classes there?
Couldn't we place them in the AppComponent and NavMenuComponent LESS files to handle
everything from the parents, thus leaving the child without a dedicated style sheet?

To properly answer such questions, we need to understand how Angular handles its
components and their style sheet files; the best way to do that is to introduce a whole new
concept called CSS Encapsulation, which will greatly help us in styling our components.

CSS encapsulation
What is encapsulation? Among the many good answers that can be easily found around the
web, the one given by the software engineer Edward V. Berard is perhaps the most
exhaustive one:

The concept of encapsulation as used in an object-oriented context is not essentially
different from its dictionary definition. It still refers to building a capsule, in the case a
conceptual barrier, around some collection of things.

The quote comes from the "Abstraction, Encapsulation, and Information
Hiding article by Edward V. Berard." The whole article text can be found at
http:/ / www. tonymarston. co. uk/php- mysql/ abstraction. txt.

When thinking about encapsulation in object-oriented programming, the best example we
can come up with is probably the concept of namespacing. Namespaces are a basic form of
encapsulation that allows us to recycle/reuse the same property, method, and function
names without the risk of hitting name conflicts; other good examples are the local variables
within a method, the class instances built within a using statement block, the threading
isolation strategies, and so on.

www.EBooksWorld.ir

http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt

Style Sheets and UI Layout Chapter 6

[293]

CSS encapsulation has always been one of the web developer's most wanted dreams. The
reason for that is simple to understand: the ability to style a specific component without
affecting the others, or to restrict the scope of some CSS selectors without the risk of
overwriting something more general, is definitely something that will save a lot of work.

The great news here is that Angular provides CSS encapsulation as a built-in feature. That's
it. There's nothing we need to do, it's already there, in our current components. We can
easily confirm that by launching our project in debug mode and looking at the generated
HTML code using a DOM inspector--such as the one shipped with Edge, that can be
activated by pressing F12.

Here's the evidence:

As we can see, Angular automatically inserts a custom HTML5 attribute to all the elements
within the component; that attribute will then be prepended to each CSS selector, thus
acting like a pseudo-namespace that will restrict the scope of those styles to that component
only.

It goes without saying that these custom attributes should never be used
by the developer, as their names are autogenerated by Angular, and thus
are often subject to changes.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[294]

Native encapsulation using Shadow DOM
As an alternative to the CSS Encapsulation, Angular also features another great namespace-
like feature using its unique Shadow DOM implementation.

Explaining what the Shadow DOM actually is in a few words is another impossible task, yet
we'll try to do that nonetheless; Shadow DOM is one of the four Web Component
standards, along with HTML Templates, Custom Elements, and HTML Imports. It allows
whoever uses it (the developer or the underlying framework) to hide DOM logic behind
other elements, thus enabling--among many other things--CSS scoping and DOM
encapsulation.

If you want to know more about Web Component and Shadow DOM, we
strongly suggest that you read this awesome article by Eric Bidelman at
https:/ /developers. google. com/web/ fundamentals/ architecture/
building- components/ shadowdom.

To cut it short, Angular can (optionally) use the Shadow DOM to wrap any given
component into a dedicated rendering context, thus isolating it from the rest of the DOM; as
a result, all the CSS stylings will also be encapsulated into that limited scope.

This optional feature is called Native Encapsulation and can be activated using the
ViewEncapsulation enum within the @Component part of the component class file.

Let's give it a try within our quiz-search.component.ts file (new lines are highlighted):

import { Component, Input, ViewEncapsulation } from "@angular/core";

@Component({
 selector: "quiz-search",
 templateUrl: './quiz-search.component.html',
 styleUrls: ['./quiz-search.component.css'],
 encapsulation: ViewEncapsulation.Native
})

export class QuizSearchComponent {
 @Input() class: string;
 @Input() placeholder: string;
}

www.EBooksWorld.ir

https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom
https://developers.google.com/web/fundamentals/architecture/building-components/shadowdom

Style Sheets and UI Layout Chapter 6

[295]

We can see the results by giving our project another run and inspecting the HTML, like we
did earlier:

It's worth noting that this time we had to use Google Chrome, since it's the
only web browser supporting native Shadow DOM as of today. Trying to
do that with Edge will result in the following error:

TypeError: Object doesn't support property or method
'createShadowRoot'

We can see how the rendering engine wrapped our component's contents within a
#shadow-root pseudo-element containing all the stylings. By looking at the rendering
results, we can easily note that this alternative approach is way more drastic than the
default one; the component is completely isolated, hence it doesn't inherit the Bootstrap
default styles and just outputs as standard HTML.

We definitely don't want to use this behavior, hence we will need to rollback the changes we
made on our QuizSearchComponent class; however, before doing that, let's do one more
quick test.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[296]

Disable encapsulation
Both of these encapsulation features can be disabled on a per-component basis using the
ViewEncapsulation.None switch in the following way:

import { Component, Input, ViewEncapsulation } from "@angular/core";

@Component({
 selector: "quiz-search",
 templateUrl: './quiz-search.component.html',
 styleUrls: ['./quiz-search.component.css'],
 encapsulation: ViewEncapsulation.None
})

export class QuizSearchComponent {
 @Input() class: string;
 @Input() placeholder: string;
}

With ViewEncapsulation.None, neither the HTML5 attribute nor the #shadow-root
element will be used; this basically means that all the CSS classes defined for that
component will be shared among all the other components and applied globally, just like
the good old CSS cascading rules we're well aware of.

This behavior can be useful to propagate some general-purpose CSS styling from high-level
components; that's not the case of our QuizSearchComponent, so let's perform a quick
source code rollback by deleting all the references to the ViewEncapsulation enum from
the class file's import list and @Component section and deep dive into our inner
components' restyling task.

HomeComponent
The next thing to do is to give a quick restyling to the HomeComponent.

Let's start with the home.component.html template file:

<div class="row">
 <div class="col-lg-4">
 <quiz-list class="latest"></quiz-list>
 </div>
 <div class="col-lg-4">
 <quiz-list class="byTitle"></quiz-list>
 </div>
 <div class="col-lg-4">
 <quiz-list class="random"></quiz-list>

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[297]

 </div>
</div>

We removed the sample title/subtitle we used back in Chapter 1, Getting Ready, and added
some Bootstrap's grid system classes to ensure that the quiz-list elements will be properly
stacked when using smaller-resolution devices.

For additional information on the Bootstrap grid system, check out
https:/ /getbootstrap. com/docs/ 3.3/ css/ #grid.

Once done, jump to the home.component.less style sheet file and remove everything,
leaving only a brief comment to remember why the file is empty:

// nothing to do here

That's it.

QuizListComponent
This component plays a key role in our Angular app and desperately needs a better layout;
we'll change a lot of things here to make it more enjoyable.

Open the quiz-list.component.html template file and perform the following changes
(new/updated lines are highlighted):

<div class="panel panel-primary {{class}}">
 <div class="panel-heading">

 <h4>{{title}}</h4>
 </div>
 <div class="panel-body">
 <ul class="list-group">
 <li class="list-group-item"
 *ngFor="let quiz of quizzes"
 [class.selected]="quiz === selectedQuiz"
 (click)="onSelect(quiz)">
 <img src="https://lorempixel.com/50/50/?random=
 {{quiz.Id}}"
 alt="{{quiz.Title}}" class="img-circle" />
 {{quiz.Title}}

 </div>
</div>

www.EBooksWorld.ir

https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid

Style Sheets and UI Layout Chapter 6

[298]

As we can see, the underlying logic didn't change; we still have a *ngFor cycle that iterates
through the quizzes array, pulls out a quiz object ent, and uses its properties to build an
HTML unordered list. We just wrapped it with a Bootstrap panel to ensure that it will have
a properly-styled container; if we take a closer look at line 1, we can see how we also added
the {{class}} interpolation directive to ensure that the container panel will have the same
class attribute value given to that QuizListComponent instance by its parent component,
as previously seen in the HomeComponent template file.

Other than that, we also added a random image using lorempixel.com, a free-of-charge web
service that can be used to fetch placeholders images for sample layouts.

Note how we're adding a random GET parameter to each HTTP request to
the lorempixel.com service with the {{quiz.Id}} as value; we did that
to prevent the web browser from caching these images, which is a
common scenario when requesting the same URL multiple times from the
same page.

Also, here's the quiz-list.component.less style sheet file:

.panel {
 margin-bottom: 12px;

 .panel-heading {
 color: #fefefe;

 .glyphicon {
 float: right;
 font-size: 41px;
 color: #d6d6d6;
 }
 }

 .panel-body {
 padding: 0;

 .list-group {
 margin: 0;

 .list-group-item {
 padding: 6px;
 overflow: auto;
 cursor: pointer;

 &:hover {
 background-color: #dae9f5;

www.EBooksWorld.ir

http://lorempixel.com
http://lorempixel.com

Style Sheets and UI Layout Chapter 6

[299]

 &:before {
 display: inline-block;
 font-family: 'Glyphicons Halflings';
 content: "\e013";
 float: right;
 font-size: 30px;
 margin: 4px 5px 0 0;
 color: #60a777;
 }
 }

 img {
 display: block;
 float: left;
 width: 50px;
 height: 50px;
 background-color: #ffffff;
 border: 1px solid #707d8c;
 padding: 2px;
 margin: 0 6px 0 0;
 }
 }
 }
 }

 &.latest {
 border-color: #384a5d;

 .panel-heading {
 background-color: #384a5d;

 .glyphicon:before {
 content: "\e162";
 }
 }
 }

 &.byTitle {
 border-color: #4b657f;

 .panel-heading {
 background-color: #4b657f;

 .glyphicon:before {
 content: "\e151";
 }
 }
 }

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[300]

 &.random {
 border-color: #617992;

 .panel-heading {
 background-color: #617992;

 .glyphicon:before {
 content: "\e104";
 }
 }
 }
}

These style sheet rules are quite complex, so it might be worthwile spending a couple of
words on them; again, we used the LESS nested selectors feature, which allows us to
encapsulate children selectors within their parent set of rules. We defined a single "main"
.panel selector, which basically contains the following things:

A very limited set of rules that will be applied to the selector itself (the "margin-
bottom" single line)
A .panel-heading child selector, containing the generic configuration for the
panel heading DIV element; these rules will be applied to any
QuizListComponent instance's template, regardless of the class attribute value
A .panel-body child selector, containing the generic configuration for the panel
body DIV element; again, these rules will be applied to all QuizListComponent
instances
A set of selectors relative by itself--&.latest , &.byTitle, and
&.random; these rules will be applied only to the QuizListComponent
instance with that specific class , thus ensuring a different styling for each
different class

The last bullet might be quite difficult to get; to better understand it, let's perform a quick
recap to understand how the & ampersand selector actually works. If we recall
correctly, it represents the current selector's parent, meaning that the &.latest ,
&.byTitle, and &.random selectors--along with their "children" --will be CSS-
compiled to .panel.latest, .panel.byTitle, and .panel.random , and so on, right?

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[301]

That's right, we can easily confirm that by looking at the autogenerated quiz-
list.component.css file:

[...]

.panel.latest {
 border-color: #384a5d;
}
.panel.latest .panel-heading {
 background-color: #384a5d;
}
.panel.latest .panel-heading .glyphicon:before {
 content: "\e162";
}
.panel.byTitle {
 border-color: #4b657f;
}

[...]

.panel.random {
 border-color: #617992;
}

[...]

By looking at that, we can acknowledge that only one of these selectors will be applied to
each single QuizListComponent instance, depending on the class specified upon their
initialization in the HomeComponent template file:

[...]
<quiz-list class="latest"></quiz-list>
[...]
<quiz-list class="byTitle"></quiz-list>
[...]
<quiz-list class="random"></quiz-list>
[...]

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[302]

This is certain since we explicitly put that same class in the quiz-list.component.html
template file's container <div> element using the {{class}} interpolation directive:

<div class="panel panel-primary {{class}}">

[...]

This concludes our journey through the QuizListComponent files, at least for now.

We would like to talk a bit more about the other styling rules we used
within the LESS file, but we can't do that without compromising on the
book length; the reader can easily understand their purpose by tracking
their respective selectors using the browser's DOM inspector.

Another UI test
Performing a quick test after all this hardwork is more than advisable. Press F5 to run the
project in debug mode and check out the greatly-revised Home view:

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[303]

We're finally getting something decent out there; we even added a not-so-terrible mouseover
effect showing a green check to the right of each quiz whenever the pointer goes on it.

The technique we used to fetch the autogenerated images works so well
that all the repeating quizzes share the same image, just like they were
actually related to that quiz! This is precisely why we used the quiz.Id
property value to seed the random GET parameter that we used to trick the
browser's cache; that way, any repeating quiz will have the same image
URL used before, which will be hit by the browser's cache and served
instead of a new one.

The UI layout is viable enough even if we reduce the browser's window size to 1,024 pixels,
emulating the viewport of a common tablet:

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[304]

The Bootstrap grid-system keeps scaling well down to smartphone-like resolutions, where
the second QuizSearchComponent kicks its way in and the NavMenu collapses to the top,
with the panels stacked right below it:

Given these results, we can't be anything but happy; however, our job isn't done yet, as we
still have a lot of components requiring immediate attention; let's move on to the next one.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[305]

QuizComponent
Here's another component with a terrible layout; let's do our best to improve it.

Here's the new quiz.component.html template file:

<div class="quiz">
 <div class="quiz-details">
 <div class="quiz-image">
 <img src="https://lorempixel.com/150/150/?random=
 {{quiz.Id}}"
 alt="{{quiz.Title}}" class="img-circle">
 </div>
 <div class="quiz-info-block">
 <div class="quiz-heading">
 <h2>{{quiz.Title}}</h2>
 {{quiz.Description}}
 <!--Created by User # on
 {{quiz.CreatedDate}}-->
 </div>

 <ul class="navigation">
 <li class="active">
 <a data-toggle="tab" href="#description">

 &nbsp; Description

 <a data-toggle="tab" href="#stats">

 &nbsp; Stats

 <a data-toggle="tab" href="#share">

 &nbsp; Share

 <div class="quiz-body">
 <div class="tab-content">
 <div id="description" class="tab-pane active">
 {{quiz.Text}}
 </div>
 <div id="stats" class="tab-pane">

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[306]

 TO-DO
 </div>
 <div id="share" class="tab-pane">
 TO-DO
 </div>
 </div>
 </div>

 <div class="commands">
 <a [routerLink]="['/quiz', quiz.Id, 'take']"
 class="btn btn-success">

 &nbsp; Take the Test!

 <a [routerLink]="['/home']"
 class="btn btn-default">

 &nbsp; Back

 <div class="edit">
 <input type="button" value="Edit"
 (click)="onEdit()"
 class="btn btn-sm btn-warning" />
 <input type="button" value="Delete"
 (click)="onDelete()"
 class="btn btn-sm btn-danger" />
 </div>
 </div>
 </div>
 </div>
</div>

Also, here's the quiz.component.less style sheet file:

.quiz {
 position: relative;
 padding: 0;
 text-align: center;
 width: 80%;

 @media (max-width: 767px) {
 width: 100%;
 }

 .quiz-details {
 .quiz-image {
 position: relative;
 z-index: 1;

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[307]

 width: 100%;
 text-align: center;

 img {
 width: 150px;
 height: 150px;
 clear: both;
 margin: auto;
 position: relative;
 background-color: #ffffff;
 border: 1px solid #707d8c;
 padding: 2px;
 }
 }

 .quiz-info-block {
 width: 100%;
 border-radius: 20px;
 position: absolute;
 top: 80px;
 background: #f0f0f0;
 z-index: 0;
 padding: 60px 0 30px 0;

 .quiz-heading {
 width: 100%;
 text-align: center;
 margin: 10px 0 0;
 }

 .navigation {
 margin: 20px 15px 0px 15px;
 padding: 0;
 list-style: none;
 border-bottom: 1px solid #a3aab1;

 li {
 display: inline-block;
 margin: 0 0 -6px 0;
 padding: 0;

 a {
 background: transparent;
 border-radius: 10px 10px 0 0;
 padding: 10px 30px;
 float: left;
 }

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[308]

 &.active a {
 background: #4189C7;
 color: #fff;
 }
 }
 }

 .quiz-body {
 padding: 20px 20px 30px 20px;

 .tab-content {
 h4 {
 width: 100%;
 margin: 10px 0;
 color: #333;
 }
 }
 }

 .commands {
 border-top: 1px solid #dddddd;
 width: 80%;
 padding: 15px 0 0 0;
 margin: 15px auto 0 auto;

 .btn {
 min-width: 140px;
 margin: 0 10px;
 }

 .edit {
 border-top: 1px solid #dddddd;
 width: 80%;
 padding: 15px 0 0 0;
 margin: 15px auto 0 auto;
 }
 }
 }
 }
}

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[309]

There's nothing new here; as usual, we dropped some Bootstrap default classes and added a
couple of new things here and there, such as the Back button--to route back our users to the
Home view. We also took the chance to implement the lorempixel.com placeholder image
here, this time with a bigger size (150 px), as expected for a detail page.

Testing it up
Let's test it without further ado by pressing F5:

www.EBooksWorld.ir

http://lorempixel.com

Style Sheets and UI Layout Chapter 6

[310]

The page seems to be looking good! Let's check out the lower resolutions as well:

Not bad at all, it's time to proceed to the next task.

QuizEditComponent
Here's the most complex Angular component we made so far; luckily enough, we can get it
over with a handful of default Bootstrap styles.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[311]

As always, let's start with the quiz-edit.component.html template file:

<div class="quiz-edit">
 <h2>{{title}}</h2>
 <div class="form-group">
 <label for="title">Quiz title:</label>

 <input type="text" id="title"
 [(ngModel)]="quiz.Title"
 placeholder="choose a title..."
 class="form-control"
 />
 </div>
 <div class="form-group">
 <label for="description">Quiz description:</label>

 <input type="text" id="description"
 [(ngModel)]="quiz.Description"
 placeholder="enter a description..."
 class="form-control"
 />
 </div>
 <div class="form-group">
 <label for="text">Quiz informative text:</label>

 <textarea id="text"
 [(ngModel)]="quiz.Text"
 placeholder="enter a text..."
 class="form-control"
 ></textarea>
 </div>
 <div class="form-group commands">
 <input *ngIf="editMode" type="button"
 value="Apply Changes"
 (click)="onSubmit(quiz)"
 class="btn btn-success"
 />
 <input *ngIf="!editMode" type="button"
 value="Create the Quiz!"
 (click)="onSubmit(quiz)"
 class="btn btn-success"
 />
 <input type="button"
 value="Cancel"
 (click)="onBack()"
 class="btn btn-default"
 />
 </div>

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[312]

 <question-list *ngIf="editMode" [quiz]="quiz"></question-list>

 <result-list *ngIf="editMode" [quiz]="quiz"></result-list>

</div>

Then, we'll follow up with the quiz-edit.component.less style sheet file:

.quiz-edit {
 width: 80%;

 @media (max-width: 767px) {
 width: 100%;
 }

 textarea {
 min-height: 100px;
 }

 .commands {
 margin-top: 20px;
 }
}

Question, answer, and result components
The QuizEditComponent features a lot of subcomponents that deserve some love as well;
however, we don't want to waste more and more book pages on them, hence we'll just give
some the most relevant tips here about what needs to be done, leaving the actual styling to
the reader; trying to emulate the following screenshots can be a great exercise to try our
LESS-based skills on the field.

As always, those who really don't want to bother with that can always pull
the Chapter 6, Style Sheets and UI Layout, source code from the official
GitHub repository of this book. That's entirely up to the reader.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[313]

Buttons and icons
As we could easily see, one of the most important things to do in order to de-uglify our
components is applying the default Bootstrap classes to our <input type="button">,
<input type="submit">, <button>, and <a> elements. Let's take the following template:

[...]

<div *ngIf="questions.length == 0">
 This quiz has no questions (yet):
 click the Add a new Question button to add the first
one!
</div>
<input type="button"
 value="Add a new Question"
 (click)="onCreate()"
 class="btn btn-sm btn-primary"
 />

The above code is taken from the question-list.component.html template file: as we
can see, we're using the btn-sm and btn-primary button classes here, as we want the
button to be smaller than the Apply Changes and Cancel main buttons within the parent
component; for buttons and button-like links placed within a table row it's generally wise to
use the btn-xs class to save even more space.

Also, as per our internal convention, we're going to use the btn-primary class when adding
something new, btn-warning and btn-danger for edit and delete operations and btn-
success for saving our stuff; that said, you're free to change it and do as you wish: just
remember that repeating the same colors for the same editing tasks will greatly help our
users to understand what they need to do while navigating through the various views.

Another thing we can do to improve our button's look and feel is decorate them with some
fancy icons, just like we did a number of times already: Bootstrap allows us to easily
achieve such result thanks to the Glyphicon Halfling set, a great icon library that is available
free of charge--as long as we use it through Bootstrap. Using these icons is just as simple as
adding a single element with the appropriate glyphicon class.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[314]

If we need to do that on <input> elements, that can't contain children:

<input type="button" value="Add a new Question"
 (click)="onCreate()" class="btn btn-sm btn-primary" />

We can replace them with <button> elements in the following way:

<button (click)="onCreate()" class="btn btn-sm btn-primary">

 Add a new Question
</button>

Repeat these tricks for all the input and button elements throughout all the various
question, answer and result control's templates and you should be good to go.

Tables and DIVs
Other than buttons, we also have to apply the proper Bootstrap styles to our <table>
elements:

<h3>Questions</h3>
<div *ngIf="questions.length > 0">
 <div class="table-responsive">
 <table class="table table-hover questions">

[...]

Here we added the .table and .table-hover classes to the <table> element, and also
wrapped it up within a new <div class="table-responsive"> element: the classes will
affect the table look and feel, while the container element--as the name implies --will give
responsive features to our table; more specifically, the table will scroll horizontally on small
devices (under 768 px) if there's no way to resize its contents within the browser's viewport.

The Bootstrap default table requires little or no styling: however since our Bootstrap
template hides the <th> borders by default, it's not a bad idea to restore them to improve
their readability. We can do that with a simple CSS rule:

.table thead tr th {
 border-bottom: 2px solid #ecf0f1;
}

No need to use LESS for this, unless we don't want to apply more custom rules on these
tables.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[315]

Forms and inputs
Styling a form in Bootstrap is also very easy, we just have to add the .form-group class to
the container <form> or <div> and the .form-control class to each input-type element:

<h2>{{title}}</h2>
<div class="question-edit">
 <div class="form-group">
 <label for="text">Question text:</label>

 <textarea id="text"
 [(ngModel)]="question.Text"
 placeholder="enter a suitable text..."
 class="form-control"
 ></textarea>
 </div>

[...]

Jumping to the LESS style sheet file, it won't hurt to increase the height of the text areas-- to
increase their overall usability--and also put a limit to the horizontal spanning of some
specific elements, such as the right panel (for high-res viewports) and the <select>:

.answer-edit {
 width: 80%;

 @media (max-width: 767px) {
 width: 100%;
 }

 textarea {
 min-height: 100px;
 }

 select {
 max-width: 200px;
 }

 .commands {
 margin-top: 20px;
 }
}

That's about it.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[316]

If we want to further improve what we've done, or test some more
Bootstrap classes, we can always take a look at the official Bootstrap form-
styling documentation at the Bootstrap official site:

http:/ / getbootstrap. com/ .

Full-scale layout test
Restyling our app components will take a considerable amount of time, but the rules to
follow are few and easy to implement, so we should have no issues--as long as we
understood how to properly use LESS.

As soon as we think we're done, we should definitely perform a full-scale test to ensure that
the new layout is working well. If we followed our rules, we should be able to see
something close to the following screenshots:

www.EBooksWorld.ir

http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/

Style Sheets and UI Layout Chapter 6

[317]

You can find the source code for all these screenshots in the official
GitHub repo shipped with this book. That said, those who came up with a
different outcome are encouraged to keep their own result for the
following chapters and try to make it work with the new stuff that will
come, as it would definitely translate into a better learning experience.

This puts an end to our work; we're done with the restyling, at least for the time being.
From now on, we'll use the acquired knowledge to properly style our components while
adding and/or implementing them.

Suggested topics
Style sheet language, SoC, CSS, CSS3, LESS, Sass , Stylus, Switch CSS, Material Design,
Bootstrap, Bootswatch, CSS3 Parent Selector, grid system, SVG, mobile-friendly, mobile-
first, CSS encapsulation, and Shadow DOM

Summary
We started this chapter admitting that our ultra-minimalistic UI/UX approach wouldn't
work for a potentially shippable product that our Native Web Application should
eventually become. Having acknowledged that fact, we added a LESS-based custom style
sheet file to our project. Before doing that, for the benefit of those not familiar with the style
sheet preprocessor approach, we spent some time enumerating some of the LESS main
advantages.

Right after adding the first .less file to our project, we had to choose between keeping
Bootstrap, switching it for an alternative client-side framework such as Foundation or Pure,
or adopting to a full do-it-yourself approach. We briefly enumerated some pros and cons of
each alternative, then we opted for keeping Bootstrap 3, mostly because of its great mobile-
friendly grid system and ease of use.

www.EBooksWorld.ir

Style Sheets and UI Layout Chapter 6

[318]

In an attempt to distinguish our SPA look and feel from the default Angular template we
replaced the default bootstrap skin with a bootswatch theme: in order to do that we had to
perform some modifications on our NPM and Webpack configuration files to download
and compile the new theme in the most appropriate way.

We then started to apply some Bootstrap and custom styling to the existing components.
We started with the main app and NavMenu components, then quickly moved to the Home
view and the QuizListComponent instances contained there; we also spent some valuable
time learning the basics of CSS Encapsulation and Shadow DOM and how they can be
enabled and disabled in Angular to set a limited scope on our styling rules.

Right after the Home view we focused on the QuizComponent and QuizEditComponent:
once done, we chose to let the reader do the rest, not before giving him some useful advise
about the styling rules to follow.

Now that our SPA finally got a decent look we can continue our journey into .NET Core
and Angular, dealing with some advanced concepts such as data validation, authentication,
unit testing and more: these will be the topics of the upcoming chapters.

www.EBooksWorld.ir

7
Forms and Data Validation

In this chapter, we'll mostly deal with Forms. As we most certainly know, HTML forms are
one of the most important and delicate aspects of any business application. Nowadays,
forms are used to fulfill almost any task involving user-submitted data, such as registering
or logging in to a website, issuing a payment, reserving a hotel room, ordering a product,
performing, and retrieving search results, and more.

If we were asked to define a form from a developer's perspective, we would come out with
the statement a form is a UI-based interface that allows authorized users to enter data that will be
sent to a server for processing. The moment we accept this definition, two additional
considerations should come into mind:

Each form should provide a data-entry experience good enough to efficiently
guide our users through the expected workflow, otherwise they won't be able to
properly use it
Each form, as long as it brings potentially insecure data to the server, can have a
major security impact in terms of data integrity, data security, and system
security, unless the developer possesses the required know-how to adopt and
implement the appropriate countermeasures

These two phrases provide a good summary of what we'll do in this chapter; we'll do our
best to guide our users into submitting the data in the most appropriate way, and we'll also
learn how to properly check these input values to prevent, avoid, and/or minimize a wide
spectrum of integrity and security threats. It's also important to understand that these two
topics are frequently intertwined with each other; hence, we'll often deal with them at the
same time.

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[320]

Data validation
If we take a look at our current .NET Core with Angular project, we can see how there's
good news and there's bad news: the good news is that we already have some decent forms
in place--the QuizEditComponent, QuestionEditComponent, AnswerEditComponent,
and ResultEditComponent are nothing more, nothing less than wrappers for forms. They
also provide a rather good-looking user experience since the restyling performed in Chapter
6, Style Sheets and UI Layout, do we really need anything else?

The answer is yes. When we first laid down these forms back in Chapter 5, Client-Server
Interactions, we entirely skipped the part in which we were supposed to validate the user-
submitted data, postponing that task to a not-so-distant future; we don't even have a proper
<form> element in our templates! Well, guess what? The time has finally come.

Forms in Angular
Let's try to summarize the most blatant shortages of our current form-less approach:

We cannot keep track of the global form state, there's no way we can tell whether
the form is valid or not, if some required fields are missing and so on
We have no easy way to display error messages to the user to let them know
what they have to do to make the form valid
We do not verify the input data, we just collect them into objects, and then
serialize and toss them to the server without thinking twice

Sure, we can easily work around most of these issues by implementing some custom
methods within our form-based components; we can throw some isValid(), isNumber()
and so on here and there, and then hook them up to our template syntax and show/hide the
validation messages with the help of *ngIf, *ngFor, and the likes. However, it will
definitely be a horrible way to address our problem; we didn't choose a feature-rich client-
side framework such as Angular to work that way.

Luckily enough, we have no reason to do that, since Angular provides us with a couple of
alternative strategies to deal with these common form-related scenarios: Template-Driven
Forms and Model-Driven (or Reactive) Forms. Both of them are thigh-coupled with the
framework and thus extremely viable; they both belong to the @angular/forms library
and also share a common set of form control classes. However, they also have their own
specific sets of features, along with their pros and cons, that can ultimately lead us to choose
one of them. Let's try to quickly summarize these differences.

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[321]

Template-Driven forms
If you come from AngularJS, there's a high chance that the Template-Driven approach will
ring a bell or two. As the name implies, Template-Driven forms host most of the logic in the
template code; working with a Template-Driven form means to build the form in the .html
template file, to data bind the various input fields to a ngModel instance, and use a
dedicated ngForm object, related to the whole form and containing all the inputs, each one
of them being accessible through their name, to perform the required validity checks.

To better understand it, here's how a Template-Driven form looks:

<form novalidate autocomplete="off" #form="ngForm">
 <input type="text" name="title" value="" required
 placeholder="Insert a title..."
 [(ngModel)]="quiz.Title" #title="ngModel"
 />

 <span *ngIf="(title.touched || title.dirty) &&
 title.errors?.required">
 Title is a required field: please enter a valid title.

 <button name="btnSubmit"
 (click)="onSubmit()"
 [disabled]="form.invalid">
 Submit
 </button>

</form>

As we can see, we can access any element, including the form itself, with some convenient
aliases--the attributes with the # sign--and check for their current states to create our own
validation workflow. These states are provided by the framework and will change in real
time depending on various things; touched, for example, becomes TRUE when the control
has been visited at least once, dirty, as opposite of pristine, means that the control value has
changed, and so on. We used both of them in the preceding example, because we want our
validation message to be shown only if the user moves his focus to the <input
name="qName"> and then goes away, leaving it blank by either deleting its value or not
setting it.

These are Template-Driven forms in a nutshell; let's try to summarize the pros and cons of
this approach:

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[322]

The pros

Template-Driven forms are very easy to write. We can recycle most of our HTML
knowledge (assuming that we have any); on top of that, if we came from
AngularJS, we already know how well we can make them work once we've
mastered the technique.
They are also rather easy to read and understand, at least from an HTML point of
view; we have a plain, understandable HTML structure containing all the input
fields and validators, one after another. Each element will have a name, a two-
way binding with the underlying ngModel, and (possibly) a Template-Driven
logic built upon aliases hooked to other elements that we can also see, or to the
form itself.

The cons

Template-Driven forms require a lot of HTML code, which can be rather difficult
to maintain and is generally more error-prone than pure TypeScript.
For the same reason, these forms cannot be unit tested. We have no way to test
their validators or to ensure that the logic we implemented will work, other than
running an end-to-end test with our browser, which is hardly ideal for complex
forms.
Their readability will quickly drop as we add more and more validators and
input tags; keeping all their logic within the template might be fine for small
forms, but it doesn't scale well when dealing with complex data items.

Ultimately, we can say that Template-Driven forms might be the way to go when we need
to build small forms with simple data validation rules, where we can benefit more from
their simplicity. On top of that, they are quite similar to the template code we already have
in place; we can replace our container DIVs with <form> elements, decorate our input fields
with aliases, throw in some validators handled by *ngIf statements, and we will be set in
(almost) no time.

However, the lack of unit testing and the HTML code bloat that they will eventually
produce will eventually lead us toward the alternative approach.

For additional information on Template-Driven forms, we highly
recommend you to read the official Angular documentation at https://
angular. io/ guide/ forms.

www.EBooksWorld.ir

https://angular.io/guide/forms
https://angular.io/guide/forms
https://angular.io/guide/forms
https://angular.io/guide/forms
https://angular.io/guide/forms
https://angular.io/guide/forms
https://angular.io/guide/forms
https://angular.io/guide/forms
https://angular.io/guide/forms
https://angular.io/guide/forms

Forms and Data Validation Chapter 7

[323]

Model-Driven/Reactive forms
The Model-Driven approach was specifically added in Angular 2+ to address the known
limitations of the Template-Driven forms; the forms implemented with this alternative
method are known as Model-Driven forms or Reactive forms.

The main difference here is that (almost) nothing happens in the template, which acts as a
mere reference of a TypeScript object--the form model--that gets instantiated and
configured programmatically within the component class.

To better understand the overall concept, let's try to rewrite the previous form in a Model-
Driven/Reactive way (the relevant parts are highlighted):

<form [formGroup]="form" (ngSubmit)="onSubmit()">

 <input formControlName="title" required />

 <span *ngIf="(form.get('title').touched || form.get('title').dirty)
 && form.get('title').errors?.required">
 Title is a required field: please enter a valid title.

 <button type="submit" name="btnSubmit"
 [disabled]="form.invalid">
 Submit
 </button>

</form>

Here's the underlying form model that we will define in the component class file (the
relevant parts are highlighted):

import { FormGroup, FormControl, ReactiveFormsModule, Validators } from
'@angular/forms';

class ModelFormComponent implements OnInit {
 form: FormGroup;

 ngOnInit() {
 this.form = new FormGroup({
 title: new FormControl()
 });
 }
}

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[324]

Let's try to understand what's happening here:

The form property is an instance of FormGroup and represents the form itself
FormGroup, as the name suggests, is a container of form controls sharing the
same purpose; as we can see, the form itself acts as a FormGroup, which means
that we can nest FormGroup objects inside other FormGroups (we didn't do that
in our sample, though)
Each data input element in the form template--in the preceding code, name--is
represented by an instance of FormControl
Each FormControl instance encapsulates the related control's current state, such
as valid, invalid, touched, and dirty, including its actual value
Each FormGroup instance encapsulates the state of each child control, meaning
that it will be valid only if/when all its children are also valid

Also note that we have no way to access the FormControls directly, like we were doing in
Template-Driven forms; we have to retrieve them using the .get() method of the main
FormGroup, which is the form itself.

At first glance, the Model-Driven template doesn't seem much different from the
Template-Driven one; we still have a form element, an input element hooked to a span
validator, and a submit button; on top of that, checking the state of the input elements takes
a bigger amount of source code, as they have no aliases we can use. Where's the real deal?

To help us visualize the difference, let's look at the following diagrams; here's a scheme
depicting how Template-Driven Forms work:

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[325]

By looking at the arrows we can easily see that, in Template-Driven Forms, everything
happens in the template; the HTML form elements are directly bound to the component
Data Model represented by a property filled with an asynchronous HTML request to the
web server, such as the quiz: Quiz in our QuizEditComponent file. That Data Model will
get updated as soon as the user changes something, unless some validator prevents them
from doing that. If we think about it, we can easily understand how there isn't a single part
of the whole workflow that happens to be under our control; Angular handles everything
by itself, using the information found in the data bindings defined within our template. This
is what Template-Driven actually means.

Let's now take a look at the Model-Driven Forms (or Reactive Forms) approach:

As we can see, the arrows depicting the Model-Driven Forms workflow tell a whole
different story. They show how the data flows between the component Data Model--which
we get from the web server--and a UI-oriented form model that retains the states and the
values of the HTML form (and its children input elements) presented to the user. This
means that we'll be able to get in the middle between the data and the form control objects
and perform a number of tasks firsthand: push and pull data, detect and react to user
changes, implement our own validation logic, perform unit tests, and so on.

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[326]

Instead of being superseded by a template that's not under our control, we can track and
influence the workflow programmatically, since the form model that calls the shots is also a
TypeScript class; that's what Model-Driven is about. This also explains why they are also
called Reactive Forms--an explicit reference to the Reactive programming style that favors
explicit data handling and change management throughout the workflow.

For additional information on Model-Driven/Reactive Forms, we highly
recommend you to read the official Angular documentation at https://
angular. io/ guide/ reactive- forms.

Enough with the theory; it's time to empower our components with some Reactive forms.

Our first Reactive form
The first thing we have to do to start working with Reactive Forms is to add a reference to
the ReactiveFormsModule in the AppModule class.

Adding ReactiveFormsModule
From Solution Explorer, open the app.module.shared.ts file and add the following
(new lines are highlighted):

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { FormsModule, ReactiveFormsModule } from '@angular/forms';

[...]

 imports: [
 CommonModule,
 HttpClientModule,
 FormsModule,
 ReactiveFormsModule,

[...]

That's it, now we're good to go.

www.EBooksWorld.ir

https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms

Forms and Data Validation Chapter 7

[327]

Updating QuizEditComponent
The QuizEditComponent features a very simple yet perfectly working form, hence it's
perfect to become our guinea pig.

Open the quiz-edit.component.ts file and update it in the following way (new lines are
highlighted):

import { Component, Inject, OnInit } from "@angular/core";
import { FormGroup, FormControl, FormBuilder, Validators } from
'@angular/forms';

[...]

export class QuizEditComponent {
 title: string;
 quiz: Quiz;
 form: FormGroup;

[...]

 constructor(private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient,
 private fb: FormBuilder,
 @Inject('BASE_URL') private baseUrl: string) {

 // create an empty object from the Quiz interface
 this.quiz = <Quiz>{};

 // initialize the form
 this.createForm();

 var id = +this.activatedRoute.snapshot.params["id"];
 if (id) {
 this.editMode = true;

 // fetch the quiz from the server
 var url = this.baseUrl + "api/quiz/" + id;
 this.http.get<Quiz>(url).subscribe(result => {
 this.quiz = result;
 this.title = "Edit - " + this.quiz.Title;

 // update the form with the quiz value
 this.updateForm();

[...]

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[328]

Here's a summary of what we did here:

We added a reference to the @angular/form components we'll use within the
class
We added the form: FormGroup class property that will host our Form Model
We injected the fb: FormBuilder object that will be used to create and update
the Form Model
We added two calls to a couple of new internal methods--createForm() and
updateForm()--which will respectively initialize and update the Form Model

Now we need to add these two new methods; scroll down until you reach the onSubmit()
method and put these code lines right before it:

createForm() {
 this.form = this.fb.group({
 Title: ['', Validators.required],
 Description: '',
 Text: ''
 });
}

updateForm() {
 this.form.setValue({
 Title: this.quiz.Title,
 Description: this.quiz.Description || '',
 Text: this.quiz.Text || ''
 });
}

These two methods are quite self-explanatory; they both use the FormBuilder instance to
respectively initialize the Form Model and set its values using the Data Model. As we can
see by looking at the updated constructor source code, the createForm() method is called
before the Data Model is retrieved from the web server, while updateForm() is executed as
soon as the HttpClient gets the job done.

We're not done yet; we also need to perform some minor, yet very important changes to the
onSubmit() method itself. Here's the updated code (new/updated lines are highlighted):

[...]

onSubmit() {

 // build a temporary quiz object from form values
 var tempQuiz = <Quiz>{};
 tempQuiz.Title = this.form.value.Title;

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[329]

 tempQuiz.Description = this.form.value.Description;
 tempQuiz.Text = this.form.value.Text;

 var url = this.baseUrl + "api/quiz";

 if (this.editMode) {

 // don't forget to set the tempQuiz Id,
 // otherwise the EDIT would fail!
 tempQuiz.Id = this.quiz.Id;

 this.http
 .post<Quiz>(url, tempQuiz)
 .subscribe(res => {
 this.quiz = res;
 console.log("Quiz " + this.quiz.Id + " has been
 updated.");
 this.router.navigate(["home"]);
 }, error => console.log(error));
 }
 else {
 this.http
 .put<Quiz>(url, tempQuiz)
 .subscribe(res => {
 var v = res;
 console.log("Quiz " + v.Id + " has been created.");
 this.router.navigate(["home"]);
 }, error => console.log(error));
 }
}

[...]

The source code comments should help understand what we just did. However, let's
quickly review the changes we made:

We removed the quiz parameter from the onSubmit() method signature, as we
won't need it anymore; in Model-Driven Forms, we need to work with the Form
Model, leaving the Data Model immutable.
We created a tempQuiz local instance, filling it with the values retrieved by the
Form Model. It's worth noting that we also had to set its Id in case of
this.editMode, otherwise the PUT request would fail, being the Id field
obviously required for edits; we retrieved it directly from the Data Model, since
we never put it in the Form Model, as we don't need it there.

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[330]

We passed the new tempQuiz instance as the new source parameter for our PUT
and POST HTTP request calls.

We're done with the class file. Now we need to change the quiz-edit.component.html
template file as well (new/updated lines are highlighted):

<div class="quiz-edit">
 <h2>{{title}}</h2>
 <form [formGroup]="form" (ngSubmit)="onSubmit()">
 <div class="form-group">
 <label for="title">Quiz title:</label>

 <input type="text" id="title"
 formControlName="Title" required
 placeholder="choose a title..."
 class="form-control" />
 </div>
 <div class="form-group">
 <label for="description">Quiz description:</label>

 <input type="text" id="description"
 formControlName="Description"
 placeholder="enter a description..."
 class="form-control" />
 </div>
 <div class="form-group">
 <label for="text">Quiz informative text:</label>

 <textarea id="text"
 formControlName="Text"
 placeholder="enter a text..."
 class="form-control"></textarea>
 </div>
 <div class="form-group commands">
 <button *ngIf="editMode" type="submit"
 [disabled]="form.invalid"
 class="btn btn-success">
 Apply Changes
 </button>
 <button *ngIf="!editMode" type="submit"
 [disabled]="form.invalid"
 class="btn btn-success">
 Create the Quiz!
 </button>
 <button *ngIf="!editMode" type="submit"
 (click)="onBack()"
 class="btn btn-default">

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[331]

 Cancel
 </button>
 </div>
 </form>

 <question-list *ngIf="editMode" [quiz]="quiz"></question-list>

 <result-list *ngIf="editMode" [quiz]="quiz"></result-list>

</div>

We wrapped our DIVs within a <form> element and used the [formGroup] and
formControlName template attributes to connect the form and its input fields to the Form
Model. We also made some important modification to our buttons, removing
(click)="onSubmit(quiz)"--which is called by the form itself without the attribute--and
adding [disabled]="form.invalid" to prevent the user from performing a submit
when the form has an invalid state.

That's it, we just upgraded our previous Template-Driven form into a brand-new Model-
Driven form; now that we took the first steps into the Reactive path, we can add some
validators to further improve its usability, consistency, and robustness.

Adding validators
As a matter of fact, we already added a basic validator to the createForm():

[...]
 Title: ['', Validators.required],
[...]

This will definitely make Angular aware of the fact that the quiz Form Model will never be
valid as long as there's an empty Title, which is precisely what we want since Title is a
required field.

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[332]

Let's quickly test it out. Launch the project in debug mode, navigate through a quiz, click on
the Edit button, and try to entirely remove the existing Title:

It works! It seems that we're unable to submit the form as long as the Title textbox is empty.

The only missing thing here is a visual warning of some sort, otherwise there's a high
chance that the user won't understand what he has to do. We can easily fill the gap with the
help of some neat Bootstrap classes; open the quiz-edit.component.html template file
and update it with the following highlighted lines:

[...]

<div class="form-group"
 [ngClass]="{ 'has-error has-feedback' :
form.get('Title').errors?.required }">
 <label for="title">Quiz title:</label>

 <input type="text" id="title"
 formControlName="Title" required
 placeholder="choose a title..."
 class="form-control"
 />
 <span *ngIf="form.get('Title').errors?.required"

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[333]

 class="glyphicon glyphicon-remove form-control-feedback"
 aria-hidden="true">
 <div *ngIf="(form.get('Title').dirty
 || form.get('Title').touched)
 && form.get('Title').errors?.required"
 class="help-block">
 Title is a required field: please insert a valid title.
 </div>
</div>

[...]

Once done, if we repeat our previous test, we should see something like this:

We're definitely sending some relevant signals here; now we can be sure that our users will
find out what to do.

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[334]

Adding shortcuts
If we take another look at our brand new validator template, we can see a certain amount of
code bloat; the form.get('Title') method is called no less than five times, and all those
long lines pose a serious threat to our template's readability. Is there a way to address that?

As a matter of fact, there is--whenever we feel like we're writing too much code or repeating
a complex task too many times, we can create one or more helper methods within our
component class to centralize the underlying logic. In our specific scenario, we can add
these methods to the QuizEditComponent class:

// retrieve a FormControl
getFormControl(name: string) {
 return this.form.get(name);
}

// returns TRUE if the FormControl is valid
isValid(name: string) {
 var e = this.getFormControl(name);
 return e && e.valid;
}

// returns TRUE if the FormControl has been changed
isChanged(name: string) {
 var e = this.getFormControl(name);
 return e && (e.dirty || e.touched);
}

// returns TRUE if the FormControl is invalid after user changes
hasError(name: string) {
 var e = this.getFormControl(name);
 return e && (e.dirty || e.touched) && !e.valid;
}

The comments are self-explanatory, so there's nothing more to say. These helper methods
grant us the chance to shrink our previous validation code, as follows:

<div class="form-group"
 [ngClass]="{ 'has-error has-feedback' : hasError('Title') }">
 <label for="title">Quiz title:</label>

 <input type="text" id="title"
 formControlName="Title" required
 placeholder="choose a title..."
 class="form-control" />
 <span *ngIf="hasError('Title')
 class="glyphicon glyphicon-remove form-control-feedback"

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[335]

 aria-hidden="true">
 <div *ngIf="hasError('Title')"
 class="help-block">
 Title is a required field: please insert a valid title.
 </div>
</div>

Much better.

Our first Reactive form is now complete; from now on, this will be our standard approach
whenever we need to implement a form. However, we still have to bring the remaining
form-based components--QuestionEditComponent, AnswerEditComponent, and
ResultEditComponent--up to Reactive speed. Luckily enough, we'll just have to play the
same music, at least for the most part.

Upgrading components
In this section, we will upgrade the other Angular components, providing them with the
Reactive forms they need.

QuestionEditComponent
The QuestionEditComponent poses no threat; its form structure is even simpler than
QuizEditComponent. For this very reason, it can be a perfect exercise for the reader; all it
takes is to retrace the steps of what we already did and repeat the exact same tasks. The
form property, the injected fb: FormBuilder, the createForm(), and updateForm()
methods, the tempQuestion instance to use within the onSubmit() method, and so on.

Just remember to set the QuizId variable to the tempQuestion instance, as the Entity
Framework Data Provider will need it to create and/or update the question:

[...]

onSubmit() {

 // build a temporary question object from form values
 var tempQuestion = <Question>{};
 tempQuestion.Text = this.form.value.Text;
 tempQuestion.QuizId = this.question.QuizId;

[...]

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[336]

Moving to the template file, it's all about adding the <form> element, changing the submit
buttons, and using the [formGroup] and formControlName accordingly, instead of the
existing [(ngModel)]. The only significant difference is the fact that we'll have a required
<textarea> element instead of an <input type="text">, yet the things to do are still the
same.

Last but not least, remember to append the helper methods to the component class:
getFormControl(), isValid(), and so on; otherwise, we won't be able to use the
shortcuts in the template file.

As always, those who don't feel like practicing with the Angular code by
themselves can just download the Chapter 7, Forms and Data Validation,
source code from the book's official GitHub repository.

At the end of the day, we should be able to see something like this:

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[337]

AnswerEditComponent
The same recommendation will also work for the AnswerEditComponent upgrade; the
only real difference here is the answer's Value numeric property, which will require some
specific code in the component's class file:

[...]

createForm() {
 this.form = this.fb.group({
 Text: ['', Validators.required],
 Value: [0,
 [Validators.required,
 Validators.min(-5),
 Validators.max(5)]
]
 });
}

[...]

Also, it will require some specific code in the template file:

[...]

<div class="form-group"
 [ngClass]="{ 'has-error has-feedback' : hasError('Value') }">
 <label for="value">Score Value:</label>

 <select id="value"
 formControlName="Value" required
 class="form-control">
 <option *ngFor="let num of [-5,-4,-3,-2,-1,0,1,2,3,4,5]"
 [value]="num">
 {{num}}
 </option>
 </select>
 <div *ngIf="hasError('Value')"
 class="help-block">
 Please select a valid number between -5 and 5.
 </div>
</div>

[...]

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[338]

As we can see, we added three different validators within the Form Model's Value property;
we did that because we want to receive a required value that is also not smaller than -5 and
not bigger than 5. Whenever any of these conditions fails, the Form Model will become
invalid.

Wait a minute, we already provide the user with a <select> element filled with
predetermined values from -5 to +5; should we really lose our valuable time in validating
such input?

As a matter of fact, we should; validation isn't something that can be delegated to input
elements, regardless of how they're supposed to work. That <select> can be replaced with
another input type, and/or be rendered as something that can also accept empty or different
values; we chose the Reactive pattern because we want to perform the validation logic to
our Form Model, right? The HTML form elements have nothing to do with it, and they
definitely can't give us the control that we crave for.

Anyway, since we added that validator, we can take the chance to improve the form UX by
adding a Pick a value option to the <select> itself:

<select id="value"
 formControlName="Value" required
 class="form-control">
 <option value="">Pick a value...</option>
 <option *ngFor="let num of [-5,-4,-3,-2,-1,0,1,2,3,4,5]"
 [value]="num">
 {{num}}
 </option>
</select>

We put the new option on top of the other ones to ensure that it will be shown when the
user creates a new answer. However, for that to happen, we also need to change the new
answer's default value from zero to empty string:

createForm() {
 this.form = this.fb.group({
 Text: ['', Validators.required],
 Value: ['',
 [Validators.required,
 Validators.min(-4),
 Validators.max(5)]
]
 });
}

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[339]

The last thing to do is perform a minor update to the Answer interface to make it able to
handle a nullable number:

interface Answer {
 Id: number;
 QuestionId: number;
 Text: string;
 Value?: number;
}

Truth be told, updating the Answer interface is not strictly necessary;
TypeScript 2.x doesn't enforce strict null-checking in variables, unless we
explicitly enable it by adding the "strictNullChecks": true directive
to the compilerOptions section of tsconfig.json. However, learning
how to properly handle nullable and non-nullable types can be a great
way to better understand the various implications of what we're doing.

As soon as we have done everything, we can run our project in debug mode, navigate
through an existing question, and click on the Add a new Answer button; once there, give
focus and leave focus to the form controls to see the results of our hard work:

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[340]

ResultEditComponent
The ResultEditComponent can also be upgraded just like the previous ones; yet, it
features another slightly different logic--the MinValue and MaxValue properties, both of
them having a nullable number type. The scenario is similar to the AnswerEditComponent
Value property, which we faced in the previous paragraph, except that we now have two
<input type="number"> instead of a single <select>.

Luckily enough, it doesn't change how we can handle it in the component template file:

[...]

<div class="form-group"
 [ngClass]="{ 'has-error has-feedback' : hasError('MinValue')
 }">
 <label for="MinValue">Minimum Score Value:</label>

 <input type="number" id="MinValue" name="MinValue"
 formControlName="MinValue"
 class="form-control"
 />
 <span *ngIf="hasError('MinValue')"
 class="glyphicon glyphicon-remove form-control-feedback"
 aria-hidden="true">
 <div *ngIf="hasError('MinValue')"
 class="help-block">
 Insert a numeric value, or leave it blank to match everything
 up to MaxValue.
 </div>
</div>

<div class="form-group"
 [ngClass]="{ 'has-error has-feedback' : hasError('MaxValue') }">
 <label for="MaxValue">Maximum Score Value:</label>

 <input type="number" id="MaxValue" name="MaxValue"
 formControlName="MaxValue"
 class="form-control"
 />
 <span *ngIf="hasError('MaxValue')"
 class="glyphicon glyphicon-remove form-control-feedback"
 aria-hidden="true">
 <div *ngIf="hasError('MaxValue')"
 class="help-block">
 Insert a numeric value, or leave it blank to match everything
 up to MinValue.
 </div>

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[341]

</div>

[...]

Also, in the class file (relevant lines are highlighted):

[...]

createForm() {
 this.form = this.fb.group({
 Text: ['', Validators.required],
 MinValue: ['', Validators.pattern(/^\d*$/)],
 MaxValue: ['', Validators.pattern(/^\d*$/)]
 });
}

updateForm() {
 this.form.setValue({
 Text: this.result.Text,
 MinValue: this.result.MinValue || '',
 MaxValue: this.result.MaxValue || ''
 });
}

[...]

The only new thing here is the Validator.pattern, which accepts a string or a regex that
will be matched against the control value, to give it a valid or invalid status accordingly.

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[342]

If we want to test these validators, we can temporarily change the MinValue and/or
MaxValue input type to text, then go back to the form, insert a non-numeric value, and see
what happens:

This was the last form-based component requiring attention; now that we've learned the
technique, we'll use it for all of our future forms.

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[343]

Debugging and testing
Before moving on to the next big topic, we should really spend some of our valuable time to
understand some key concepts related to form debugging. As said before, one of the
advantages granted by the Model-Driven approach is the fact that it allows us to have
granular control on our form elements; how can we use these features to our advantage and
translate them into writing a more robust code? In the following paragraphs, we'll try to
address this question by showing some useful techniques that can be used to gain more
control over our forms.

A look at the Form Model
We've talked a lot about the Form Model lately, yet we still haven't seen it once. It would
greatly help to have it on screen while developing the form templates, especially if it can be
updated in real time as we play with the form inputs and controls.

Here's a convenient HTML snippet containing the Template Syntax required to let it
happen:

<div class="panel panel-info"
 style="margin-top: 20px;">
 <div class="panel-heading">Form debug info</div>
 <div class="panel-body">
 <p>Form value:</p>
 <div class="help-block">
 {{ form.value | json }}
 </div>
 <p>Form status:</p>
 <div class="help-block">
 {{ form.status | json }}
 </div>
 </div>
</div>

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[344]

We can put this snippet below any of our form-based components, for example, the
QuestionEditComponent, to obtain the following result:

Pretty useful, right? If we play with the form a bit, we can see how the values contained in
the Form debug info panel will change as we change the input controls; something like that
will definitely come in handy when dealing with complex forms.

The pipe operator
By looking at the highlighted lines of the preceding source code, we can see how we used
the pipe operator (|), which is another useful tool coming from the Angular Template
Syntax.

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[345]

To quickly summarize what it does, we can say the following: the pipe operator allows the
use of some transformation functions that can be used to perform various tasks such as
format strings, join array elements into a string, uppercase/lowercase a text, and sort a list.
Here are the pipes that come built-in with Angular: DatePipe, UpperCasePipe,
LowerCasePipe, CurrencyPipe, PercentPipe, and JsonPipe; these are all available for
use in any template. Needless to say, we used the latter in the preceding script to transform
the form.value and form.status objects into readable JSON strings.

It's worth noting that we can also chain multiple pipes and define custom
pipes; however, we don't need to do that for the time being and talking
about such a topic will bring us far from the scope of this chapter. If you
want to know more about pipes, we strongly suggest you to read the
official Angular documentation at https:/ / angular. io/ guide/pipes.

Reacting to changes
One of the reasons we chose the Reactive approach was to be able to react to the changes
issued by the user. We can do that by subscribing to the valueChanges property exposed
by the FormGroup and FormControl classes, which returns a RxJS Observable that emits
the latest values.

Truth be told, we've been using Observables since Chapter 3, Frontend with Angular, when
we did subscribe to the get() method of HttpClient to handle the HTTP response
received by the web server for the first time; we extensively used them again in Chapter 5,
Client-Server Interactions, when we had to implement the support for the put() and post()
methods as well, and we still use them wherever and whenever we need to fetch the JSON
data that feeds our Data Model interfaces and Form Model objects. Now, we'll use them to
demonstrate how we can perform custom operations whenever the user changes something
within a form.

Observing the Observable
Once again the QuestionEditComponent will be our lab rat; open its TypeScript class file
and update it with the following highlighted lines:

[...]

export class QuestionEditComponent {
 title: string;
 question: Question;
 form: FormGroup;

www.EBooksWorld.ir

https://angular.io/guide/pipes
https://angular.io/guide/pipes
https://angular.io/guide/pipes
https://angular.io/guide/pipes
https://angular.io/guide/pipes
https://angular.io/guide/pipes
https://angular.io/guide/pipes
https://angular.io/guide/pipes
https://angular.io/guide/pipes
https://angular.io/guide/pipes
https://angular.io/guide/pipes

Forms and Data Validation Chapter 7

[346]

 activityLog: string;

[...]

createForm() {
 this.form = this.fb.group({
 Text: ['', Validators.required]
 });

 this.activityLog = '';
 this.log("Form has been initialized.");

 // react to form changes
 this.form.valueChanges
 .subscribe(val => {
 if (!this.form.dirty) {
 this.log("Form Model has been loaded.");
 }
 else {
 this.log("Form was updated by the user.");
 }
 });
}

log(str: string) {
 this.activityLog += "["
 + new Date().toLocaleString()
 + "] " + str + "
";
>}

[...]

In the preceding code, we provided our Form Model with a simple, yet effective logging
feature that will register any change activity performed by the framework and/or by the
user.

As we can see, all the logic has been put within the createForm() function, because this is
where the Form Model gets initialized--along with the Observable we need to monitor. The
log() function is just a shortcut to append a basic timestamp to the log activity string and
add it to the activityLog local variable in a centralized way.

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[347]

In order to enjoy our new logging feature to the fullest, we have to find a way to put the
activityLog on screen. To do that, open the QuestionEditComponent template file and
add the following highlighted lines to our existing Form debug info panel:

<div class="panel panel-info"
 style="margin-top: 20px;">
 <div class="panel-heading">Form debug info</div>
 <div class="panel-body">
 <p>Form value:</p>
 <div class="help-block">
 {{ form.value | json }}
 </div>
 <p>Form status:</p>
 <div class="help-block">
 {{ form.status | json }}
 </div>
 <p>Form activity log:</p>
 <div class="help-block">
 <span *ngIf="activityLog"
 [innerHTML]="activityLog">
 </div>
 </div>
</div>

That's it, now the activity log will be shown in a truly Reactive way.

It's worth noting that we didn't use the double-curly braces of
interpolation here, but we went straight for the [innerHTML] directive
instead. The reason for that is very simple--the interpolation strips the
HTML tags from the source string; hence, we would've lost the

tag that we used in the log() function to separate all log lines with a line
feed. If not for that, we would have used the {{ activityLog }} syntax
instead.

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[348]

All we need to do now is to test our new activity log. To do so, run the project in debug
mode, go straight to QuestionEditComponent by editing an already-existing question,
play with the form fields, and see what happens in the Form debug info panel:

The first log should trigger automatically right after the Form Model initialization, which
should happen quite fast; the second log should also trigger automatically as soon as the
HttpClient retrieves the question JSON and the Form Model gets updated. Then, the form
will log any update performed by the user; all we can do is change the text area, yet that's
more than enough for our humble reactivity test to complete successfully.

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[349]

Extending the activity log
Reacting to the Form Model changes is not the only thing we can do; we can extend our
subscriptions to observe any form control as well. Here's a further upgrade we can perform
on our current activity log implementation to demonstrate that:

[...]

// react to changes in the form.Text control
this.form.get("Text")!.valueChanges
 .subscribe(val => {
 if (!this.form.dirty) {
 this.log("Text control has been loaded with initial
 values.");
 }
 else {
 this.log("Text control was updated by the user.");
 }
 });

[...]

Place the preceding code at the end of the createForm() method, right below the Form
Model subscription we implemented early on; this will add further log lines within the
Form activity log, all related to the changes occurred in the Text component.

What we just did here is more than enough to demonstrate the wonders of the
valueChanges Observable property; let's move on to the next topic.

We can definitely keep the Form debug info panel in the
QuestionEditComponent template for further reference, yet there's no
need to copy/paste it within the other form-based components' templates
or anywhere else.

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[350]

Client-side debugging
Another great advantage of Observables is that we can use them to debug a good part of the
whole Reactive workflow by placing breakpoints within our subscriptions source code. To
quickly demonstrate this, just add a Visual Studio breakpoint on our latest subscription, as
follows:

Once done, run the project in debug mode and navigate to the QuestionEditComponent;
the breakpoint will be hit as soon as the Form Module will be loaded, since the Text control
will be updated as well, and also every time we perform a change to that control. Whenever
it happens, we'll be able to use all the Visual Studio debugging tools and features that are
available on client-side debugging, such as Watch, Local, Immediate Window, Call Stack,
and more.

As of today, client-side debugging isn't supported by Microsoft Edge
browser; you can do that natively in Internet Explorer and, starting with
Visual Studio 2017, Google Chrome. For additional information about
client-side debugging with Google Chrome, we strongly suggest that you
read the following post on the official MSDN blog:

https:/ /blogs. msdn. microsoft. com/ webdev/ 2016/ 11/21/ client- side-
debugging- of- asp- net- projects- in- google- chrome/

www.EBooksWorld.ir

https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/

Forms and Data Validation Chapter 7

[351]

Forms unit testing
The Form debug info panel can be very useful during development, especially if we adapt
the activity log feature from time to time to better suit our needs; the client-side debugging
feature powered by Visual Studio is even better, because this allows us to scope into
TypeScript variables, subscriptions, and initializers in a truly efficient way. Not to mention
the fact that the server-side compilation provided by TypeScript + WebPack +
WebPackMiddleware will shield us from most syntax, semantic, and logical programming
errors, freeing us from the pests of script-based programming, at least for the most part.

However, what about test-driven development? What if we want to test our forms against
some specific use cases? Is there a way we can mock our control's and model's behavior and
perform Unit Tests?

The answer is yes; more specifically, thanks to the Reactive approach we chose, we'll be able
to unit test our forms just like the rest of our client app using the various open source
testing frameworks shipped and/or supported by Angular--Jasmine, Karma, and Protractor-
-as well as its very own native test environment called Angular testing utilities. We'll talk
more about that in Chapter 9, Advanced Topics.

Suggested topics
Template-Driven Forms, Model-Driven Forms, Reactive Forms, Data Validation, Angular
Validators, Angular Pipes, Double-curly Braces of Interpolation, RxJS, Observables, Client-
Side Debugging, Test-Driven Development (TDD), Unit Testing, Jasmine, Karma,
Protractor, and Angular testing utilities

www.EBooksWorld.ir

Forms and Data Validation Chapter 7

[352]

Summary
This chapter was entirely dedicated to Angular forms. We started clarifying what a form
actually is and enumerated the features it needs to have in order to fulfill its duties,
grouping them into two main requirements: providing a good user experience and properly
handling the submitted data.

We then turned our focus to the Angular framework and to the two form design models it
offers: the Template-Driven approach, mostly inherited from AngularJS, and the Model-
Driven or Reactive alternative. We took some valuable time to analyze the pros and cons
provided by both of them, and then we performed a detailed comparison of the underlying
logic and workflow. At the end of the day, we chose to embrace the Reactive way of doing
things, as it gives more control to the developer and enforces a more consistent separation
of duties between the Data Model and the Form Model.

Right after that, we went from theory to practice by testing our acquired knowledge on our
client app's QuizEditComponent: we upgraded our previous, loosely Template-Driven
form with a brand new Reactive form with improved UI and UX; we also added the data
validation logic by making good use of the Angular Template Syntax in conjunction with
the classes and directives granted by Angular's ReactiveFormsModule. Once done, we did
the same with all our other form-based components--QuestionEditComponent,
AnswerEditComponent, and ResultEditComponent--leaving the implementation to the
reader, yet highlighting all the noticeable differences between them.

At the end of the upgrade process, we moved our first steps toward the world of form
debugging and testing, using some of the most interesting features of the Model-Driven
approach to fulfill a number of useful tasks: showing the JSON-serialized Form Model and
form status on screen, subscribing to the Observables exposed by the form to react to user
changes, using these subscriptions to hook the Visual Studio client-side debugger to the
Reactive workflow, and so on.

Eventually, we spent a few words introducing the concepts of unit testing and test-driven
development, which will be addressed in Chapter 9, Advanced Topics.

www.EBooksWorld.ir

8
Authentication and

Authorization
Generally speaking, the term authentication refers to any process of verification that
someone, be it a human being or an automated system, is who (or what) it claims to be. This
is also true within the context of the World Wide Web (WWW), where that same word is
mostly used to denote any technique used by a website or service to collect a set of login
information from a user agent, typically a web browser, and authenticate them using a
membership and/or identity service.

Authentication should never be confused with authorization, as it is a different process and
is in charge of a very different task. To give a quick definition, we can say that the purpose
of authorization is to confirm that the requesting user is allowed to have access to the action
they want to perform. In other words, while authentication is about who they are,
authorization is about what they're allowed to do.

To better understand the distance between these two apparently similar concepts, we can
think of two real-world scenarios:

A free, yet registered account trying to gain access to a paid or premium only
service or feature; this is a common example of authenticated, yet not authorized
access; we know who they are, yet they're not allowed to go there
An anonymous user trying to gain access to a publicly available page or file; this
is an example of non-authenticated, yet authorized access; we don't know who
they are, yet they can access public resources just like everyone else

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[354]

To auth, or not to auth
As a matter of fact, implementing authentication and/or authorization logic isn't
mandatory for most web-based applications or services; there are a number of websites that
still don't do that, mostly because they serve contents that can be accessed by anyone at any
time. This used to be pretty common among most corporate, marketing, and informative
websites until some years ago; that was before their owners learned how important it is to
build a network of registered users and how much these loyal contacts are worth
nowadays.

We don't need to be experienced developers to acknowledge how much the WWW has
changed in the last few years; each and every website, regardless of its purpose, has an
increasing and more or less legitimate interest in tracking their users nowadays, giving
them the chance to customize their navigation experience, interacting with their social
networks, collecting email addresses, and so on. None of the preceding can be done without
an authentication mechanism of some sort.

There are billions of websites and services that require authentication to work properly, as
most of their content and/or intents depend upon the actions of registered users: forums,
blogs, shopping carts, subscription-based services, and even collaborative tools such as
wikis (including ours).

Long story short, the answer is yes; as long as we want to have users performing CRUD
operations within our client app, there is no doubt that we should implement some kind of
authentication and authorization procedure. If we're aiming for a production-ready SPA
with, we definitely want to know who our users are in terms of name and email address. It
is the only way to determine who will be able to view, add, update, or delete our valued
quizzes, not to mention perform administrative-level tasks, keep track of our users, and so
on.

Authentication
Since the origin of the WWW, the vast majority of authentication techniques rely upon
HTTP/HTTPS implementation standards, and all of them work more or less in the
following way:

A non-authenticated user-agent asks for a content that cannot be accessed1.
without some kind of permissions.
The web application returns an authentication request, usually in form of an2.
HTML page containing an empty web form to complete.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[355]

The user-agent fills up the web form with their credentials, usually a username3.
and a password, and then sends it back with a POST command, which is most
likely issued by a click on a Submit button.
The web application receives the POST data and calls the aforementioned server-4.
side implementation that will try to authenticate the user with the given input
and return an appropriate result.
If the result is successful, the web application will authenticate the user and store5.
the relevant data somewhere, depending on the chosen authentication method:
sessions/cookies, tokens, signatures, and so on (we'll talk about it later on).
Conversely, the result will be presented to the user as a readable outcome inside
an error page, possibly asking them to try again, contact an administrator, or
something else.

This is still the most common approach nowadays. Almost all websites we can think of are
using it, albeit with a number of big or small differences regarding security layers, state
management, JWT, or other RESTful tokens, basic or digest access, single sign-on
properties, and more.

Third-party authentication
Being forced to have a potentially different username and password for each website visit
can be frustrating, other than requiring the users to develop custom password storage
techniques that might lead to security risks. In order to overcome this issue, a wide amount
of IT developers started to look around for an alternative way to authenticate users that
could replace the standard authentication technique based upon usernames and passwords
with an authentication protocol based upon trusted third-party providers.

The rise and fall of OpenID
Among the first successful attempts to implement a thid-party authentication mechanism
was the first release of OpenID, an open and decentralized authentication protocol
promoted by the non-profit OpenID Foundation. Available since 2005, it was quickly and
enthusiastically adopted by some big players such as Google and StackOverflow, who
originally based their authentication providers upon it.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[356]

Here's how it works in a few words:

Whenever our application receives an OpenID authentication request, it opens a
transparent connection interface through the requesting user and a trusted, third-
party authentication provider (for example, the Google Identity Provider); the
interface can be a popup, an AJAX, populated modal windows, or an API call,
depending on the implementation
The user sends his username and password to the aforementioned third-party
provider, who performs the authentication accordingly and communicates the
result to our application by redirecting the user to where he came from, along
with a security token that can be used to retrieve the authentication result
Our application consumes the token to check the authentication result,
authenticating the user in case of success or sending an error response in case of
failure

Despite the great enthusiasm between 2005 and 2009, with a good amount of relevant
companies publicly declaring their support for OpenID and even joining the foundation--
including PayPal and Facebook--the original protocol didn't live up to the great
expectations: legal controversies, security issues and, most importantly, the massive
popularity surge of the social networks with their improper--yet working--OAuth-based
social logins within the 2009-2012 period basically killed it.

Those who don't know what OAuth is, have some patience; we'll get there
soon enough.

OpenID Connect
In a desperate attempt to keep their flag alive after the takeover of the OAuth/OAuth2 social
logins, the OpenID foundation released the "third generation" of the OpenID technology in
February 2014; this was called OpenID Connect.

Despite the name, the new installment has little or nothing to do with their ancestors; it's
merely an authentication layer built upon the OAuth2 authorization protocol. In other
words, it's little more than a standardized interface to help developers using OAuth2 as an
authentication framework in a less improper way, which is kind of funny, considering that
OAuth2 played a major role in taking out OpenID 2.0 in the first place.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[357]

The choice to move to OpenID Connect was quite sad in 2014 and it still is as of today;
however, after more than three years, we can definitely say that--despite its undeniable
limitations--OpenID Connect can still provide a useful, standardized way to obtain user
identity. It allows developers to request and receive information about authenticated users
and sessions using a convenient, RESTful-based JSON interface; it features an extensible
specification that also supports some promising optional features such as encryption of
identity data, auto discovery of OpenID providers, and even session management. In short,
it's still useful enough to be used instead of relying on pure OAuth2.

For additional information about OpenID, we strongly suggest that you
read the following specifications from the OpenID Foundation official
website:

OpenID Connect
http:/ / openid. net/ specs/ openid- connect- core- 1_ 0.html.

OpenID 2.0 to OpenID Connect migration guide
http:/ / openid. net/ specs/ openid- connect- migration- 1_ 0.html.

Authorization
In most standard implementations, including those featured by ASP.NET, the authorization
phase kicks in right after the authentication, and it's mostly based on permissions or roles;
any authenticated user might have their own set of permissions and/or belong to one or
more roles, and thus be granted access to a specific set of resources. These role-based checks
are usually set by the developer in a declarative fashion within the application source code
and/or configuration files.

Authorization, like we said, shouldn't be confused with authentication, despite the fact that
it can be easily exploited to perform an implicit authentication as well, especially when it's
delegated to a third-party actor.

Third-party authorization
The best known third-party authorization protocol nowadays is the 2.0 release of OAuth,
also known as OAuth2, which supersedes the former release (OAuth 1 or simply OAuth)
originally developed by Blaine Cook and Chris Messina in 2006.

www.EBooksWorld.ir

http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html

Authentication and Authorization Chapter 8

[358]

We already talked a lot about it for good reasons; OAuth 2 has quickly become the
industry-standard protocol for authorization and is currently used by a gigantic amount of
community-based websites and social networks, including Google, Facebook, and Twitter.
It basically works like this:

Whenever an existing user requests a set of permissions to our application via
OAuth, we open a transparent connection interface between them and a third-
party authorization provider that is trusted by our application (for example,
Facebook)
The provider acknowledges the user and, if they have the proper rights, responds
by entrusting them with a temporary, specific access key
The user presents the access key to our application and will be granted access

We can clearly see how easy it is to exploit this authorization logic for authentication
purposes as well; after all, if Facebook says I can do something, shouldn't it also imply that I
am who I claim to be? Isn't that enough?

The short answer is no. It might be the case for Facebook, because their OAuth 2
implementation implies that the subscriber receiving the authorization must have
authenticated himself to Facebook first; however, this assurance is not written anywhere.
Considering how many websites are using it for authentication purposes, we can assume
that Facebook won't likely change their actual behavior, yet we have no guarantees about it.

Theoretically speaking, these websites can split their authorization system from their
authentication protocol at any time, thus leading our application's authentication logic to an
unrecoverable state of inconsistency. More generally, we can say that presuming something
is from something else is almost always a bad practice, unless that assumption lies upon
very solid, well-documented, and (most importantly) highly guaranteed grounds.

Proprietary versus third-party
Theoretically speaking, it's possible to entirely delegate the authentication and/or
authorization tasks to existing external, third-party providers such as those we mentioned
before; there are a lot of web and mobile applications that proudly follow this route
nowadays. There are a number of undeniable advantages in using such an approach,
including the following:

No user-specific DB tables/data models, just some provider-based identifiers to
use here and there as reference keys.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[359]

Immediate registration, since there's no need to fill in a registration form and
wait for a confirmation email--no username, no password. This will be
appreciated by most users and will probably increase our conversion rates as
well.
Little or no privacy issues, as there's no personal or sensitive data on the
application server.
No need to handle usernames and passwords and implement automatic
recovery processes.
Fewer security-related issues such as form-based hacking attempts or brute-force
login attempts.

Of course, there are also some downsides:

There won't be an actual user base, so it will be difficult to get an overview of
active users, get their email address, do statistics, and so on
The login phase might be resource-intensive, since it will always require an
external, back and forth secure connection with a third-party server
All users will need to have (or open) an account with the chosen third-party
provider(s) in order to log in
All users will need to trust our application because the third-party provider will
ask them to authorize it for accessing their data
We will have to register our application with the provider in order to be able to
perform a number of required or optional tasks, such as receiving our public and
secret keys, authorizing one or more URI initiators, and choosing the information
we want to collect

Taking all these pros and cons into account, we can say that relying on third-party
providers might be a great time-saving choice for small-scale apps, including ours;
however, building our own account management system seems to be the only way to
overcome the aforementioned governance and control-based flaws undeniably brought by
that approach.

In this book, we'll explore both these routes, in an attempt to get the most--if not the best--of
both worlds. In this chapter, we'll create an internal membership provider that will handle
authentication and provide its very own set of authorization rules; in the following chapter,
we'll further leverage that same implementation to demonstrate how we can give our users
the chance to log in using a sample third-party auth provider (Facebook) and use its SDK
and API to fetch the data that we need to create our corresponding internal users, thanks to
the built-in features provided by the ASP.NET Core Identity package.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[360]

Proprietary auth with .NET Core
The authentication patterns made available by ASP.NET Core are basically the same as
supported by the previous versions of ASP.NET:

No authentication, if we don't feel like implementing anything or if we want to
use (or develop) a self-made auth interface without relying upon the ASP.NET
Core Identity system
Individual user accounts, when we set up an internal database to store user data
using the standard ASP.NET Identity interface
Azure Active Directory, which implies using a token-based set of API calls
handled by the Azure AD Authentication Library (ADAL)
Windows authentication, only viable for local-scope applications within
Windows domains or Active Directory trees

All these approaches--excluding the first one--are handled by ASP.NET Core Identity, a
membership system that allows us to add authentication and authorization functionalities
to our application. With ASP.NET Core Identity, we can easily implement a login
mechanism that will allow our users to create an account and login with a username and a
password. On top of that, we can also give them the chance to use an external login
provider--as long as it's supported by the framework; as of today, the list of available
providers includes Facebook, Google, Microsoft Account, Twitter, and more.

Setting up the .NET Core Identity
In Chapter 1, Getting Ready, when we created our .NET Core project, we made the choice to
go with an empty project featuring no authentication. That was because we didn't want
Visual Studio to install the ASP.NET Core Identity within our application's startup files
right from the start. However, now that we'll use it, we need to manually perform the
required setup steps.

Configuring the Identity service
Enough with the theory, let's put the plan into action. Open the Startup.cs file and add
the following highlighted lines:

[...]

// This method gets called by the runtime. Use this method to add services
to the container.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[361]

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 // Add EntityFramework support for SqlServer.
 services.AddEntityFrameworkSqlServer();

 // Add ApplicationDbContext.
 services.AddDbContext<ApplicationDbContext>(options =>
options.UseSqlServer(Configuration["Data:DefaultConnection:ConnectionString
"])
);

 // Add ASP.NET Identity support
 services.AddIdentity<ApplicationUser, IdentityRole>(
 opts =>
 {
 opts.Password.RequireDigit = true;
 opts.Password.RequireLowercase = true;
 opts.Password.RequireUppercase = true;
 opts.Password.RequireNonAlphanumeric = false;
 opts.Password.RequiredLength = 7;
 })
 .AddEntityFrameworkStores<ApplicationDbContext>();
}

[...]

It's just like we did in Chapter 4, Data Model with Entity Framework Core, when we added the
support for Entity Framework and registered the ApplicationDbContext in the
Dependency Injection (DI) container; while we were there, we also took the chance to
override some of the default password policy settings to demonstrate how we can configure
the Identity service to suit our needs.

Note that the use of the IdentityRole class will require a reference to the
Microsoft.AspNetCore.Identity namespace near the top of the file:

[...]

using Microsoft.Extensions.DependencyInjection;
using TestMakerFreeWebApp.Data;
using Microsoft.AspNetCore.Identity;

[...]

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[362]

Extending the ApplicationUser
The next thing to do is to empower our ApplicationUser model class with all the features
required by the ASP.NET Core Identity service to use it for auth purposes. Luckily enough,
the package comes with a built-in IdentityUser base class that can be used to extend our
own, thus granting it all that we need.

To do that, navigate to the /Data/Models/ folder, edit the ApplicationUser.cs file, and
update it in the following way:

[...]

public class ApplicationUser : IdentityUser

[...]

Again, this will require a using Microsoft.AspNetCore.Identity on top.

As soon as we apply the changes and save the file, the Visual Studio Error List panel should
show three warnings about the UserName, Id, and Email properties of our new model;
apparently, these properties are now in conflict with three members already existing in the
base class with the same names. As a matter of fact, we did that on purpose when we first
created the model back in Chapter 4, Data Model with Entity Framework Core; we knew that
this moment would eventually come, hence we named these properties with the exact same
names of those being in the UserIdentity base class. Thanks to that decision, we can now
fix our model by simply commenting out the offending properties in the following way:

[...]

#region Properties
//[Key]
//[Required]
//public string Id { get; set; }

//[Required]
//[MaxLength(128)]
//public string UserName { get; set; }

//[Required]
//public string Email { get; set; }

public string DisplayName { get; set; }

[...]

Alternatively, we can also entirely delete them; they won't be needed anymore.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[363]

Upgrading the DbContext
In order to support the ASP.NET Core Identity service, our ApplicationDbContext class
needs to be updated as well.

Open the Data/ApplicationDbContext.cs class file and perform the following changes:

Add a using reference to1.
Microsoft.AspNetCore.Identity.EntityFrameworkCore, as required by
the new base class:

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

Change the base class from DbContext to2.
IdentityDbContext<ApplicationUser>:

[...]

public class ApplicationDbContext :
IdentityDbContext<ApplicationUser>

[...]

Remove the DbSet<ApplicationUser> Users property, as the3.
IdentityDbContext base class that we just inherited already has it built in:

[...]

#region Properties
// public DbSet<ApplicationUser> Users { get; set; }
public DbSet<Quiz> Quizzes { get; set; }

[...]

Revising the DbSeeder
Now that our ApplicationUser model class is inheriting the IdentityUser base class,
we most likely broke the seeding mechanism we set up back in Chapter 4, Data Model with
Entity Framework Core. However, it's not a big deal; we can take the chance to create some
sample roles, since we can now make good use of them.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[364]

The first thing we need to do is to provide our DbSeeder class with a UserManager and a
RoleManager, as they are the required Microsoft.AspNetCore.Identity handler
classes to properly work with users and roles. We can inject them using DI within the
service scope we defined in the Startup.cs file back in Chapter 4, Data Model with Entity
Framework Core, and then pass them to the DbSeed.Seed() method, just like we did with
the DbContext.

These are the changes to apply to the Startup.cs file (new and changed parts are
highlighted):

[...]

// Create a service scope to get an ApplicationDbContext instance using DI
using (var serviceScope =
app.ApplicationServices.GetRequiredService<IServiceScopeFactory>().CreateSc
ope())
{
 var dbContext =
 serviceScope.ServiceProvider.GetService<ApplicationDbContext>();
 var roleManager =
 serviceScope.ServiceProvider.GetService<RoleManager<IdentityRole>>
 ();
 var userManager =
 serviceScope.ServiceProvider.GetService<UserManager<ApplicationUser>>
 ();
 // Create the Db if it doesn't exist and applies any pending
 migration.
 dbContext.Database.Migrate();
 // Seed the Db.
 DbSeeder.Seed(dbContext, roleManager, userManager);
}

[...]

Once done, we can open our /Data/DbSeeder.cs file and update the Seed() method
accordingly:

[...]

public static Seed(
 ApplicationDbContext dbContext,
 RoleManager<IdentityRole> roleManager,
 UserManager<ApplicationUser> userManager
)
{

 // Create default Users (if there are none)

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[365]

 if (!dbContext.Users.Any())
 {
 CreateUsers(dbContext, roleManager, userManager)
 .GetAwaiter()
 .GetResult();
 }

 // Create default Quizzes (if there are none) together with their
 set of Q&A
 if (!dbContext.Quizzes.Any()) createQuizzes(dbContext);
}

[...]

Other than the expected references to the RoleManager and UserManager, we can easily
see that we did something else. Specifically, we changed the way we're executing the
CreateUsers() method; instead of simply invoking it, we're now using GetAwaiter() to
get an awaiter object that will await the completion of its task, followed by a GetResult()
that will end the wait and return the resulting value (which is null in our case) and return
to the main execution context.

This is a rather common way to deal with async tasks from a synchronous context; that's
good to know, yet why did we do? Are we planning to change CreateUsers() into an
async method returning a Task?

The answer is yes, that's precisely what we're about to do. The reason is simple--since most
of the roleManager and userManager method are asynchronous, the best way to invoke
them would be from an async method. This leaves us with two possible routes: go async all
the way up to the Configure() method within the Startup.cs file, or block it somehow.
We went for the latter options, along with some important caveats that we'll briefly
introduce at the end of this section.

The next step involves upgrading the CreateUsers method:

[...]

private static async Task CreateUsers(
 ApplicationDbContext dbContext,
 RoleManager<IdentityRole> roleManager,
 UserManager<ApplicationUser> userManager)
{
 // local variables
 DateTime createdDate = new DateTime(2016, 03, 01, 12, 30, 00);
 DateTime lastModifiedDate = DateTime.Now;

 string role_Administrator = "Administrator";

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[366]

 string role_RegisteredUser = "RegisteredUser";

 //Create Roles (if they doesn't exist yet)
 if (!await roleManager.RoleExistsAsync(role_Administrator))
 {
 await roleManager.CreateAsync(new
 IdentityRole(role_Administrator));
 }
 if (!await roleManager.RoleExistsAsync(role_RegisteredUser))
 {
 await roleManager.CreateAsync(new
 IdentityRole(role_RegisteredUser));
 }

 // Create the "Admin" ApplicationUser account
 var user_Admin = new ApplicationUser()
 {
 SecurityStamp = Guid.NewGuid().ToString(),
 UserName = "Admin",
 Email = "admin@testmakerfree.com",
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 };
 // Insert "Admin" into the Database and assign the "Administrator"
 and "RegisteredUser" roles to him.
 if (await userManager.FindByNameAsync(user_Admin.UserName) == null)
 {
 await userManager.CreateAsync(user_Admin, "Pass4Admin");
 await userManager.AddToRoleAsync(user_Admin,
 role_RegisteredUser);
 await userManager.AddToRoleAsync(user_Admin,
 role_Administrator);
 // Remove Lockout and E-Mail confirmation.
 user_Admin.EmailConfirmed = true;
 user_Admin.LockoutEnabled = false;
 }

#if DEBUG
 // Create some sample registered user accounts
 var user_Ryan = new ApplicationUser()
 {
 SecurityStamp = Guid.NewGuid().ToString(),
 UserName = "Ryan",
 Email = "ryan@testmakerfree.com",
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 };

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[367]

 var user_Solice = new ApplicationUser()
 {
 SecurityStamp = Guid.NewGuid().ToString(),
 UserName = "Solice",
 Email = "solice@testmakerfree.com",
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 };

 var user_Vodan = new ApplicationUser()
 {
 SecurityStamp = Guid.NewGuid().ToString(),
 UserName = "Vodan",
 Email = "vodan@testmakerfree.com",
 CreatedDate = createdDate,
 LastModifiedDate = lastModifiedDate
 };

 // Insert sample registered users into the Database and also assign
 the "Registered" role to him.
 if (await userManager.FindByNameAsync(user_Ryan.UserName) == null)
 {
 await userManager.CreateAsync(user_Ryan, "Pass4Ryan");
 await userManager.AddToRoleAsync(user_Ryan,
 role_RegisteredUser);
 // Remove Lockout and E-Mail confirmation.
 user_Ryan.EmailConfirmed = true;
 user_Ryan.LockoutEnabled = false;
 }
 if (await userManager.FindByNameAsync(user_Solice.UserName) ==
 null)
 {
 await userManager.CreateAsync(user_Solice, "Pass4Solice");
 await userManager.AddToRoleAsync(user_Solice,
 role_RegisteredUser);
 // Remove Lockout and E-Mail confirmation.
 user_Solice.EmailConfirmed = true;
 user_Solice.LockoutEnabled = false;
 }
 if (await userManager.FindByNameAsync(user_Vodan.UserName) == null)
 {
 await userManager.CreateAsync(user_Vodan, "Pass4Vodan");
 await userManager.AddToRoleAsync(user_Vodan,
 role_RegisteredUser);
 // Remove Lockout and E-Mail confirmation.
 user_Vodan.EmailConfirmed = true;
 user_Vodan.LockoutEnabled = false;
 }

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[368]

#endif
 await dbContext.SaveChangesAsync();
}

[...]

As we can see, we made some relevant changes here:

As expected, we added the async modifier to the method signature and changed
the return type from void to Task; we already know the reason, and we'll tell
more about that in a short while, so let's go ahead for now.
We used the newly-added roleManager object instance to create two sample
roles: Administrator and RegisteredUser.
We replaced the existing DbContext.Add and DbContext.AddRange method
calls with those provided by the userManager object instance; this allowed us to
specify a password that will be automatically hashed.
We removed the programmatic Id</kbd> Guid assignment for each
user, as the Guid will be autogenerated by the
userManager.CreateUserAsync() method, and replaced it with a
new SecurityStamp property, also accepting a Guid. This is one
of the many properties shipped by the IdentityUser base class,
and it's required when creating a new user.

The Administrator and RegisteredUser roles we just implemented
here will be the core of our authorization mechanism; all of our users will
be assigned to at least one of them. Note how we assigned both of them to
the admin user, to make him be able to do everything a standard user can
do, plus more: all the other users only have the latter, so they'll be unable
to perform any administrative-level task--as long as they're not provided
with the Administrator role.

With this, we're done updating our project's classes. Before going further, it might be wise
to issue a whole project rebuild to ensure that we're not getting build errors within our
code.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[369]

A word on async tasks, awaits, and deadlocks
To better explain what we did with the CreateUsers() method of the DbSeeder class, we
should spend a few words about the concept async tasks.

Whoever knows the basics of thread programming within legacy ASP.NET knows well that
you should never even think about blocking an async task. The reason isn't always
immediate to explain and understand, yet we'll try to give it a shot. One of the first thing
you should learn when working with sync methods invoking async tasks in ASP.NET is
that when the top-level method awaits a task, its current execution context gets blocked
until the task completes. This won't be a problem, unless that context allows only one
thread to run at a time, which is precisely the case of the
AspNetSynchronizationContext. If we combine these two things together, we can easily
see that blocking an async method returning a task will expose our application to a high
risk of deadlock. A deadlock, from a software development perspective, is a dreadful
situation that occurs whenever a process or thread enters a waiting state indefinitely,
usually because the resource it's waiting for is held by another waiting process. In any
legacy ASP.NET web application, we'll face a deadlock every time we're blocking a task,
simply because that task, in order to complete, will require the same execution context of
the invoking method, which is kept blocked by that method until the task completes!

After hearing this terrifying story, there's definitely something that we should ask
ourselves: why in the hell have we chosen to block the CreateUsers() method in the first
place! Are we nuts or what?

As a matter of fact, we're not using legacy ASP.NET here; we're using .NET Core. Luckily
enough, .NET Core dropped the former pattern based upon the
SynchronizationContext for a contextless approach layered upon a versatile, deadlock-
resilient thread pool. To keep it simple, we have nothing to worry about when using
GetAwaiter().GetResult(), .Wait, .Result, or any other blocker; the only real
downside in doing so is that we will lose all the benefits brought by asynchronous
programming, such as performances and scalability. However, we can definitely live
without them within the single request that will trigger the execution of our DbSeeder class
in the whole application's lifetime.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[370]

For additional information regarding threads, async tasks, awaits, and
asynchronous programming in ASP.NET we highly recommend that you
check out the outstanding articles written by Stephen Cleary on the topic,
which will greatly help you understand some of the most tricky and
complex scenarios that can fall upon our heads when developing with
these technologies. Some of them have been written a while ago, yet they
never really age:

https:/ /blogs. msdn. microsoft. com/ pfxteam/ 2012/ 04/12/asyncawait-
faq/ .
http:/ / blog. stephencleary. com/2012/ 07/dont- block- on-async- code.
html.
https:/ /msdn. microsoft. com/ en-us/ magazine/ jj991977. aspx.
https:/ /blog. stephencleary. com/ 2017/ 03/aspnetcore-
synchronization- context. html.

Updating the database
It's time to create a new migration and reflect the code changes to the database by taking
advantage of the code-first approach we chose in Chapter 4, Data Model with Entity
Framework Core.

Adding the identity migration
To do that, open a command line or Powershell prompt and go to our project's root folder,
then write the following:

dotnet ef migrations add "Identity" -o "Data\Migrations"

www.EBooksWorld.ir

https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
https://blogs.msdn.microsoft.com/pfxteam/2012/04/12/asyncawait-faq/
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://msdn.microsoft.com/en-us/magazine/jj991977.aspx
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html

Authentication and Authorization Chapter 8

[371]

A new migration should then be added to the project:

The new migration files will be autogenerated in the \Data\Migrations\ folder.

Applying the migration
The next thing to do is to apply the new migration to our Database and update the existing
data accordingly. Since we updated our DbSeeder class to support the new changes, the
best thing we can do is to let it repopulate our database accordingly. Unfortunately, we
know perfectly well that as long as there are some existing users in the database tables, the
CreateUsers() method won't even run. This leaves us with two options:

Upgrade the existing database, then manually delete all users; if we do that, the
DbSeeder will recreate them all on the first run using the ASP.NET Core Identity
interface
Drop and recreate the database entirely, so the DbSeeder will kick in and
repopulate everything--users, quizzes, questions, and so on--on the first run

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[372]

Option #1 - update
The former route should be the most reasonable one, except it can cause some data loss or
other consistency issues due to the fact that our ApplicationDbContext and
ApplicationUser classes experienced some major changes. Although Entity Framework
should be able to handle everything properly, it will mostly depend on what we did to our
data during the various CRUD tests we performed in the last three chapters.

The risk of data loss is also stated by the yellow message "An operation was
scaffolded that may result in the loss of data..." shown by the Command
Prompt upon completing the migration task; if we look at the preceding
screenshot, we can clearly see it (third line from the bottom).

If we want to take this route, we can start issuing this command:

dotnet ef database update

Once done, without running the project, do the following:

Open the SQL Server Object Explorer in Visual Studio.1.
Navigate to the TestMakerFree database and expand it.2.
Right-click on the dbo.Users table and select View Data.3.
Delete all the existing rows (select them all, and then right-click | Delete).4.

Option #2 - drop and recreate
If we go for option #2, we will lose all our existing data; however, it will be recreated by the
DbSeeder at the first run, so we'll only lose what we did during our CRUD-based tests
during the last three chapters.

Although it might seem a horrible way to fix things, that's definitely not
the case; we're still in the development phase, hence we can definitely
allow a full database refresh.

Should we choose to take this bus, here are the commands to use:

dotnet ef database drop
dotnet ef database update

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[373]

The drop command should ask for a Y/N confirmation before proceeding; when it does, hit
the y key and let it happen. When the drop and the update tasks are both done, we can run
our project in debug mode and wait for the DbSeeder to kick in and do its magic; once
done, we should have an updated database with .NET Core Identity support.

Seeding the data
Regardless of the option we chose to update the database, we now have to repopulate it.
Run the project in debug mode and let the DbSeeder work its magic; as soon as you're able
to see the Home view full of quizzes, go to the SQL Server Object Explorer in Visual
Studio, navigate to the TestMakerFree database, and check for the presence of the
following:

Six new DB tables: AspNetRoleClaims, AspNetRoles, AspNetUserClaims,
AspNetUserLogins, AspNetUserRoles, and AspNetUserTokens
Four rows within the Users table: Solice, Vodan, Ryan, and of course, Admin
A whole lot of new columns in the Users table: from AccessFailedCount to
TwoFactorEnabled:

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[374]

Bingo! Our ASP.NET Core Identity service is up, running, and fully integrated with our data
model; now we just need to implement it within our controllers and hook it up with our
Angular client app.

Authentication methods
Now that we have updated our database to support the .NET Core Identity authentication
workflow and patterns, we should choose which authentication method to implement.

As we most certainly know, the HTTP protocol is stateless, meaning that whatever we do
during a request/response cycle will be lost before the subsequent request, including the
authentication result. The only way we have to overcome this is to store that result
somewhere, along with all its relevant data, such as user ID, login date/time, and last
request time.

Sessions
Since a few years ago, the most common and traditional method to do that was to store this
data on the server using either a memory-based, disk-based, or external session manager.
Each session can be retrieved using a unique ID that the client receives with the
authentication response, usually inside a session cookie, that will be transmitted to the
server on each subsequent request.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[375]

Here's a brief diagram showing the Session-Based Authentication Flow:

This is still a very common technique used by most web applications. There's nothing
wrong with adopting this approach, as long as we are okay with its widely acknowledged
downsides, such as the following:

Memory issues: Whenever there are many authenticated users, the web server
will consume more and more memory. Even if we use a file-based or external
session provider, there will nonetheless be an intensive IO, TCP, or socket
overhead.
Scalability issues: Replicating a session provider in a scalable web farm might
not be an easy task and will often lead to bottlenecks or wasted resources.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[376]

Cross-domain issues: Session cookies behave just like standard cookies, so they
cannot be easily shared among different origins/domains. These kinds of
problems can often be solved with some workarounds, yet they will often lead to
insecure scenarios to make things work.
Security issues: There is a wide and detailed literature of security-related issues
involving sessions and session cookies: XSS attacks, cross-site request forgery,
and a number of other threats that won't be covered here for the sake of
simplicity. Most of them can be mitigated by some countermeasures, yet they can
be difficult to handle for first-hand developers.

As these issues arose over the years, there's no doubt that most analysts and developers put
effort into figuring out different approaches.

Tokens
Token-based authentication has been increasingly adopted by single-page applications and
mobile apps in the last few years for a number of undeniably good reasons that we'll try to
briefly summarize here.

The most important difference between session-based authentication and token-based
authentication is that the latter is stateless, meaning that we won't be storing any user-
specific information on the server memory, database, session provider, or other data
containers of any sort.

This single aspect solves most of the downsides that we pointed out earlier for session-
based authentication. We won't have sessions, so there won't be an increasing overhead; we
won't need a session provider, so scaling will be much easier. Also, for browsers supporting
LocalStorage, we won't be even using cookies, so we won't get blocked by cross-origin
restrictive policies and, hopefully, we'll get around most security issues.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[377]

Here's a typical Token-Based Authentication Flow:

In terms of client-server interaction, these steps don't seem much different to the preceding
diagram; apparently, the only difference is that we'll be issuing and checking tokens instead
of creating and retrieving sessions. The real deal is happening (or not happening) at server-
side level. We can immediately see that the token-based auth flow does not rely upon a
stateful session-state server, service or manager. This will easily translate into a
considerable boost in terms of performance and scalability.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[378]

Signatures
This is a method used by most modern API-based cloud-computing and storage services,
including Amazon Web Services (AWS). In contrast with session-based and token-based
approaches, that rely upon a transport layer that can be theoretically accessed by/exposed to
a third-party attacker, signature-based authentication performs a hash of the whole request
using a previously shared private key. This ensures that no intruder or man-in-the-middle
can ever act as the requesting user, as they won't be able to sign the request.

Two-factor
This is the standard authentication method used by most banking and financial
accounts, being arguably the most secure one. The implementation may vary, but it always
relies upon the following base workflow:

The user performs a standard login with a username and password
The server identifies the user and prompts them with an additional, user-specific
request that can be only satisfied by something obtained or obtainable through a
different channel: an OTP password sent by SMS, a unique authentication card
with a number of answer codes, a dynamic PIN generated by a proprietary
device or a mobile app, and so on
If the user gives the correct answer, they get authenticated using a standard
session-based or token-based method

Conclusions
After reviewing all these authentication methods, we'll use a token-based authentication
approach featuring JSON Web Tokens (JWT), as it seems the most viable one for our
specific scenario.

JWT is a JSON-based open standard explicitly designed for native web applications,
available in multiple languages, such as .NET, Python, Java, PHP, Ruby, JavaScript/NodeJS,
and PERL. We're choosing it because it's becoming a de facto standard for token
authentication, as it's natively supported by most technologies.

For specific details about JWT, we recommend reading https://jwt.io/.

www.EBooksWorld.ir

https://jwt.io/

Authentication and Authorization Chapter 8

[379]

Implementing JWT authentication
In order to handle JWT-based token authentication, we need to properly set up the
ASP.NET Core Identity service to ensure that it will handle these tasks:

Generate a JWT token upon each username/password POST request coming from
our clients
Validate any JWT token coming with HTTP requests by looking at the headers of
the request itself

That said, the first thing to do is define the required steps we need to take care of:

Add and configure the authentication service in the Startup.cs file.1.

Update the appsettings.json and appsettings.Development.json files to2.
store the required JWT security information (issuer and security key).

Create a TokenController that will accept POST requests carrying the user3.
credentials (username and password), validate them, and generate JWT tokens
accordingly.

Create an Angular LoginComponent with a Model-Driven login form to allow4.
our users to perform the login.

Create an Angular AuthService that will handle login/logout and store the JWT5.
token so it can be reused.

Find a way to add the JWT Bearer token (if present) to the headers block of each6.
request.

Sounds like a plan...let's do this! It goes without saying that the first three tasks affect the
server-side part of our web application and are therefore meant to be done using .NET
Core, while the remaining three are mostly related to our client-side Angular app.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[380]

Add the auth service to the .NET Core Startup
class
Those coming from ASP.NET Core 1.x should remember that in order to configure
authorization, we had to register and configure the auth middleware within the Configure
method in the Startup class; each authentication scheme did require its own dedicated
section to initialize and configure with the relevant settings--cookie names, URI endpoints,
and so on.

In ASP.NET Core 2.x, the approach is slightly different: the authentication process is now
configured via services, hence we have to register each scheme--along with its configuration
settings--in the ConfigureServices method within the Startup.cs file. We still have to
add the AuthenticationMiddleware to the HTTP request pipeline, but it's the only thing
we have to do there.

From Solution Explorer, open the Startup.cs file, navigate through the
ConfigureServices method and append the following lines, just below the Add ASP.NET
Identity support block:

[...]

using Microsoft.AspNetCore.Authentication.JwtBearer;
using Microsoft.IdentityModel.Tokens;
using System.Text;

[...]

// Add Authentication with JWT Tokens
services.AddAuthentication(opts =>
{
 opts.DefaultScheme = JwtBearerDefaults.AuthenticationScheme;
 opts.DefaultAuthenticateScheme =
JwtBearerDefaults.AuthenticationScheme;
 opts.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;
})
.AddJwtBearer(cfg =>
{
 cfg.RequireHttpsMetadata = false;
 cfg.SaveToken = true;
 cfg.TokenValidationParameters = new TokenValidationParameters()
 {
 // standard configuration
 ValidIssuer = Configuration["Auth:Jwt:Issuer"],
 ValidAudience = Configuration["Auth:Jwt:Audience"],
 IssuerSigningKey = new SymmetricSecurityKey(

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[381]

 Encoding.UTF8.GetBytes(Configuration["Auth:Jwt:Key"])),
 ClockSkew = TimeSpan.Zero,

 // security switches
 RequireExpirationTime = true,
 ValidateIssuer = true,
 ValidateIssuerSigningKey = true,
 ValidateAudience = true
 };
});

[...]

What we did here was to add the authentication support, configuring the default
authentication schemes, and added the JWT authentication type. Note how we split the JWT
Bearer configuration settings into two parts: the standard configuration, where we have set
up the required settings, and the security switches, which can be optionally set to false to
ease the debug process--in case the token fails to validate--to quickly understand the failure
reason(s).

Note that in ASP.NET Core 2.x, multiple auth types can now be chained
using fluent code syntax, so we can even accept something else beside
JWT tokens; we'll make good use of this convenient feature later on.

Don't miss the highlighted lines in the preceding code; they're supposed to fetch something
from the AppSettings configuration file that doesn't exist yet, but will do soon.

We're not done with the Startup.cs file; we still need to add the authentication
middleware to the HTTP pipeline. Scroll down to the Configure method and add the
following highlighted lines right before the MVC middleware:

[...]

// Add the AuthenticationMiddleware to the pipeline
app.UseAuthentication();

app.UseMvc(routes =>

[...]

Now we're done.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[382]

Updating the AppSettings files
The next thing to do is to add those missing AppSettings values that we're already
looking for in the Startup class. Open the appsettings.json file and add the following
lines to the existing JSON configuration object (new lines are highlighted):

[...]

{
 "Data": {
 "DefaultConnection": {
 "ConnectionString": "Data Source=(localdb)\\MSSQLLocalDB;Initial
Catalog=TestMakerFree;Integrated Security=True;
MultipleActiveResultSets=True"
 }
 },
 "Auth": {
 "Jwt": {
 "Issuer": "http://www.testmakerfree.com/",
 "Audience": "http://www.testmakerfree.com/",
 "Key": "---insert-your-own-key-here---"
 "TokenExpirationInMinutes": 86400
 }
 },
 "Logging": {

[...]

For demonstration purposes, we did set the
TokenExpirationInMinutes with a value of 60 days; you're highly
encouraged to opt for a shorter value for any production-wise scenario!

These settings will be good for the published version of our app, but won't work in our
local development environment. To fix that, open the appsettings.Development.json
file and add the alternative configuration:

[...]

 "Auth": {
 "Jwt": {
 "Issuer": "http://localhost:14600/",
 "Audience": "http://localhost:14600/",
 }
 },

[...]

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[383]

This uses the same keys, but different issuer.

The TokenController
The next step will be to add a TokenController to issue and refresh tokens. Ideally
speaking, it will be a good idea to inherit it from the BaseApiController base class we
put together back in Chapter 5, Client-Server Interactions, so we can access our
ApplicationDbContext. However, we will definitely need even more than that; since
we'll be working with users, it would be nice to also have an (injected) instance of that
UserManager class we did use when working on our DbSeeder class. On top of that, we'll
definitely need to access the JWT configuration values we put in the AppSettings files a
moment ago.

In order to have access to all these objects, we can choose between three possible
approaches:

Inject all this stuff in the TokenController constructor.1.
Upgrade our existing BaseApiController class, empowering it with the DI2.
object instances we need.
Create another base controller class, similar to BaseApiController but with3.
more stuff, and inherit the TokenController from it.

The former approach is viable enough, yet it has a minor issue--if we work on the
TokenController only, we'll lose the chance to get the job done in advance for all the
other controllers who will need that new stuff later on. For this very reason, the other two
approaches seem to be more efficient; with that in mind, in order to keep our code base as
thin as possible, we'll go with option #2.

Upgrading the BaseApiController
Here's the new source code with the new DI-injected instances (new/updated lines are
highlighted):

using System;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using System.Collections.Generic;
using System.Linq;
using TestMakerFreeWebApp.Data;
using Mapster;
using Microsoft.AspNetCore.Identity;

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[384]

using Microsoft.Extensions.Configuration;

namespace TestMakerFreeWebApp.Controllers
{
 [Route("api/[controller]")]
 public class BaseApiController : Controller
 {
 #region Constructor
 public BaseApiController(
 ApplicationDbContext context,
 RoleManager<IdentityRole> roleManager,
 UserManager<ApplicationUser> userManager,
 IConfiguration configuration
)
 {
 // Instantiate the required classes through DI
 DbContext = context;
 RoleManager = roleManager;
 UserManager = userManager;
 Configuration = configuration;

 // Instantiate a single JsonSerializerSettings object
 // that can be reused multiple times.
 JsonSettings = new JsonSerializerSettings()
 {
 Formatting = Formatting.Indented
 };

 }
 #endregion

 #region Shared Properties
 protected ApplicationDbContext DbContext { get; private set; }
 protected RoleManager<IdentityRole> RoleManager { get; private
 set; }
 protected UserManager<ApplicationUser> UserManager { get;
 private set; }
 protected IConfiguration Configuration { get; private set; }
 protected JsonSerializerSettings JsonSettings { get; private
 set; }
 #endregion
 }
}

After all the DI we've been through, we can easily understand what we did here, so let's go
ahead.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[385]

Reflecting the upgrade on the affected controllers
Needless to say, these changes to the BaseApiController will break all the derived
controllers; in order to fix that, replace their constructor in the following way (new/changed
lines are highlighted):

[...]

#region Constructor
public QuizController(
 ApplicationDbContext context,
 RoleManager<IdentityRole> roleManager,
 UserManager<ApplicationUser> userManager,
 IConfiguration configuration
)
 : base(context, roleManager, userManager, configuration) { }
#endregion

[...]

These changes are valid for the QuizController class; the same exact code will also fix the
AnswerController, QuestionController, and ResultController code, as long as we
remember to change the controller name in the constructor. Once done, our code will be
able to compile again, and we'll be free to proceed with the main dish.

Adding the TokenController
From Solution Explorer, right-click on the /Controllers/ folder and select Add | New
Item, expand the ASP.NET Core node to the left, pick the Web API Controller class, call
it TokenController.cs, and click on OK to create it. Here's the full source code of the
new controller class (relevant lines are highlighted):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using System.Reflection.Metadata;
using TestMakerFreeWebApp.ViewModels;
using TestMakerFreeWebApp.Data;
using Microsoft.AspNetCore.Identity;
using System.IdentityModel.Tokens.Jwt;
using System.Security.Claims;
using Microsoft.Extensions.Configuration;
using Microsoft.IdentityModel.Tokens;

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[386]

using System.Text;

namespace TestMakerFreeWebApp.Controllers
{
 public class TokenController : BaseApiController
 {
 #region Private Members
 #endregion Private Members

 #region Constructor
 public TokenController(
 ApplicationDbContext context,
 RoleManager<IdentityRole> roleManager,
 UserManager<ApplicationUser> userManager,
 IConfiguration configuration
)
 : base(context, roleManager, userManager, configuration) {
 }
 #endregion

 [HttpPost("Auth")]
 public async Task<IActionResult>
 Jwt([FromBody]TokenRequestViewModel model)
 {
 // return a generic HTTP Status 500 (Server Error)
 // if the client payload is invalid.
 if (model == null) return new StatusCodeResult(500);

 switch (model.grant_type)
 {
 case "password":
 return await GetToken(model);
 default:
 // not supported - return a HTTP 401 (Unauthorized)
 return new UnauthorizedResult();
 }
 }

 private async Task<IActionResult>
 GetToken(TokenRequestViewModel model)
 {
 try
 {
 // check if there's an user with the given username
 var user = await
 UserManager.FindByNameAsync(model.username);
 // fallback to support e-mail address instead of
 username

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[387]

 if (user == null && model.username.Contains("@"))
 user = await
 UserManager.FindByEmailAsync(model.username);

 if (user == null
 || !await UserManager.CheckPasswordAsync(user,
 model.password))
 {
 // user does not exists or password mismatch
 return new UnauthorizedResult();
 }

 // username & password matches: create and return the
 Jwt token.

 DateTime now = DateTime.UtcNow;

 // add the registered claims for JWT (RFC7519).
 // For more info, see
 https://tools.ietf.org/html/rfc7519#section-4.1
 var claims = new[] {
 new Claim(JwtRegisteredClaimNames.Sub, user.Id),
 new Claim(JwtRegisteredClaimNames.Jti,
 Guid.NewGuid().ToString()),
 new Claim(JwtRegisteredClaimNames.Iat,
 new
 DateTimeOffset(now).ToUnixTimeSeconds().ToString())
 // TODO: add additional claims here
 };

 var tokenExpirationMins =
 Configuration.GetValue<int>
 ("Auth:Jwt:TokenExpirationInMinutes");
 var issuerSigningKey = new SymmetricSecurityKey(
 Encoding.UTF8.GetBytes(Configuration["Auth:Jwt:Key"]));

 var token = new JwtSecurityToken(
 issuer: Configuration["Auth:Jwt:Issuer"],
 audience: Configuration["Auth:Jwt:Audience"],
 claims: claims,
 notBefore: now,
 expires:
 now.Add(TimeSpan.FromMinutes(tokenExpirationMins)),
 signingCredentials: new SigningCredentials(
 issuerSigningKey,
 SecurityAlgorithms.HmacSha256)
);

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[388]

 var encodedToken = new
 JwtSecurityTokenHandler().WriteToken(token);

 // build & return the response
 var response = new TokenResponseViewModel()
 {
 token = encodedToken,
 expiration = tokenExpirationMins
 };
 return Json(response);
 }
 catch (Exception ex)
 {
 return new UnauthorizedResult();
 }
 }
 }
}

Despite the remarkable amount of code, the TokenController does nothing really special.
The comments already explain most of the tasks, yet it can't hurt to quickly summarize
what we did:

The whole workflow is triggered by the Auth() action method, which will
intercept a POST HTTP request containing a set of parameters depicted in the
TokenRequestViewModel class, which we'll see in a short while. This is the
information that we expect when a client service is asking for a JWT token; we'll
talk more about it later on.
The Jwt method will check the GrantType parameter value; in case of the
password, it will execute the GetToken internal method that will generate a new
token, otherwise it will respond with a HTTP error 500 and quit.
The GetToken method is where most of the magic takes place; it checks the
username and password that came with the POST request against our identity
data and, depending on the result, either generates a token and returns it within a
JSON object built upon the TokenResponseViewModel class--which we'll be
seeing shortly--or quits with an HTTP error 401 Unauthorized.

As we can easily guess, our new TokenController won't compile unless we add the two
ViewModel classes that we mentioned as well for this very reason; the next step will be to
add them.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[389]

The TokenRequestViewModel
Let's start adding the former one, that contains the parameters that will come from the client
when trying to authenticate itself. From Solution Explorer, right-click on the
/ViewModels/ folder and add a new TokenRequestViewModel.cs file with the following
content:

using Newtonsoft.Json;

namespace TestMakerFreeWebApp.ViewModels
{
 [JsonObject(MemberSerialization.OptOut)]
 public class TokenRequestViewModel
 {
 #region Constructor
 public TokenRequestViewModel()
 {

 }
 #endregion

 #region Properties
 public string grant_type { get; set; }
 public string client_id { get; set; }
 public string client_secret { get; set; }
 public string username { get; set; }
 public string password { get; set; }
 #endregion
 }
}

The TokenResponseViewModel
Once done, perform the same steps to add the TokenResponseViewModel, which is the
POCO class hosting the parameters returned to the client by the server after a successful
login:

using Newtonsoft.Json;

namespace TestMakerFreeWebApp.ViewModels
{
 [JsonObject(MemberSerialization.OptOut)]
 public class TokenResponseViewModel
 {
 #region Constructor
 public TokenResponseViewModel()

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[390]

 {

 }
 #endregion

 #region Properties
 public string token { get; set; }
 public int expiration { get; set; }
 #endregion
 }
}

This concludes the ASP.NET Core part of our job. Before switching to Angular, we can
spend some valuable time to briefly test it using Postman.

Testing with Postman
For those who don't know it, Postman is a lightweight REST client that can be used to test
basically any HTTP API; in our specific scenario, we can use it to send custom GET, POST,
PUT, or DELETE HTTP requests to our app and see how our server-side .NET Core
controllers will handle them.

Postman can be installed either as a standalone app or a Chrome
extension; both versions have the same features and will work in the same
way, so we're free to choose what we like the most. In this example, we'll
use the stand-alone app that can be downloaded from the https:/ / www.
getpostman. com/ official website. If you prefer to use the Chrome
extension, you can find it at https:/ /chrome. google. com/webstore/
detail/ postman/ fhbjgbiflinjbdggehcddcbncdddomop.

Once installed, run the application (or the Chrome extension) and wait for the animated
splash screen to take its course; right after that, you'll be presented with a welcome screen,
when you'll be asked to sign up for a free account or go straight to the app. Registration
isn't mandatory to do what we have to do, so we're free to choose what we want; both
routes will eventually take us to the main application screen.

From there, we can set up a basic POST HTTP request to test our TokenController in the
following way:

Select the Builder tab from the top of the main screen; a multi-panel, browser-like
window should appear, with something resembling an address bar near the
upper panel's top and a flat tab panel right below it.

www.EBooksWorld.ir

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop

Authentication and Authorization Chapter 8

[391]

Select POST from the drop-down list to the left of the address bar, then type in
the following address to the immediate right:
http://localhost:<port>/api/token/auth. Do not press Enter and don't
click on the Send button yet.
Select Body from the tab panel just below the address bar; a checkbox list should
appear. Activate the raw checkbox, and then select JSON (application/json) from
the drop-down list to the right.
Type the following code within the text area right below the checkbox list:

{
 "username":"Admin",
 "password":"Pass4Admin",
 "grant_type":"password"
}

If we did everything correctly, our Postman screen should look just like the one depicted in
the following screenshot:

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[392]

If everything is looking good, switch to Visual Studio, run the project in debug mode, and
wait for the Home view to appear; as soon as you see the quiz listings, switch back to
Postman and click on the blue Send button to the right of the address bar and look to the
Response panel. If everything worked out well, we should be able to see our JWT Token
wrapped in a JSON object:

{
 "token":
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJsb2NhbGhvc3QiLCJzdWIiOiJBZ
G1pbiIsImp0aSI6ImViMTQxOGFiLTRhMzgtNGIxNS1iMzA4LWY0ZmIwODI2NDZiZiIsImlhdCI6
MTUwNDUwMDM3NSwibmJmIjoxNTA0NTAwMzc1LCJleHAiOjE1MDQ1MDM5NzV9.2XFA3Y243Tpfr_
c_NusduQvdHLztt2vevzttd_Y5YnI",
 "expiration": 60
}

This is the HTTP response body returned by the Auth() action method of our
TokenController; we can also take a look at the headers by selecting the appropriate tab
within that screen.

In the unlikely case that we're not getting the expected result, we can use the server-side
debug features of Visual Studio to see what happens behind the scenes until we figure it
out.

As soon as we're done with Postman, we can finally switch to the other REST client we're
expected to connect our ASP.NET Identity service with--our beloved Angular SPA.

Angular login form
Ideally, the next step would be to add a proper login form to the currently not
implemented-yet LoginComponent, which has been around as an empty skeleton since
Chapter 3, Frontend with Angular. However, before doing that, we need to provide our
Angular SPA with a TokenResponse interface--to handle the TokenResponseViewModel
in a strongly-typed fashion--and an AuthService class where we will centralize all the
auth-related methods, such as login, logout, and isLoggedIn.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[393]

The TokenResponse interface
From Solution Explorer, right-click on the /ClientApp/app/services/ folder and add a
token.response.ts TypeScript file with the following content:

interface TokenResponse {
 token: string,
 expiration: number
}

The AuthService class
This will be our first Angular service; we should be excited!

From Solution Explorer, navigate to the /ClientApp/app/ folder and create a
/services/ subfolder within it. Right-click on the new folder and add an
auth.service.ts TypeScript file; then, fill it with the following code (relevant lines are
highlighted):

import { EventEmitter, Inject, Injectable, PLATFORM_ID } from
"@angular/core";
import { isPlatformBrowser } from '@angular/common';
import { HttpClient, HttpHeaders } from "@angular/common/http";
import { Observable } from "rxjs";
import 'rxjs/Rx';

@Injectable()
export class AuthService {
 authKey: string = "auth";
 clientId: string = "TestMakerFree";

 constructor(private http: HttpClient,
 @Inject(PLATFORM_ID) private platformId: any) {
 }

 // performs the login
 login(username: string, password: string): Observable<boolean> {
 var url = "api/auth/jwt";
 var data = {
 username: username,
 password: password,
 client_id: clientId,
 // required when signing up with username/password
 grant_type: "password",
 // space-separated list of scopes for which the token is
 issued

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[394]

 scope: "offline_access profile email"
 };

 return this.http.post<TokenResponse>(url, data)
 .map((res) => {
 let token = res && res.token;
 // if the token is there, login has been successful
 if (token) {
 // store username and jwt token
 this.setAuth(res);
 // successful login
 return true;
 }

 // failed login
 return Observable.throw('Unauthorized');
 })
 .catch(error => {
 return new Observable<any>(error);
 });
 }
}

The highlighted lines do reveal the hot stuff here:

The isPlatformBrowser is an Angular function that, when feeded with an
instance of the PLATFORM_ID token obtained through DI, returns true if the
execution context represents a browser platform: this is something we'll need to
know very soon.
The real magic happens within the login() method, which is in charge of
issuing the HTTP POST request to the Auth method of our TokenController
and performing the authentication using the username and password received by
the caller. If the login happens, the relevant data (username and token) will be
saved in the browser's localStorage--via the setAuth() method, which we'll
see in a while--and the method will return true, otherwise it will throw an error
that that will be handled by the caller accordingly.

Now that we understand how the login() method works, we can add the remaining logic.
Append the following content below the previous code, just before the end of the class:

[...]

// performs the logout
logout(): boolean {
 this.setAuth(null);
 return true;

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[395]

}

// Persist auth into localStorage or removes it if a NULL argument is given
setAuth(auth: TokenResponse | null): boolean {
 if (isPlatformBrowser(this.platformId)) {
 if (auth) {
 localStorage.setItem(
 this.authKey,
 JSON.stringify(auth));
 }
 else {
 localStorage.removeItem(this.authKey);
 }
 }
 return true;
}

// Retrieves the auth JSON object (or NULL if none)
getAuth(): TokenResponse | null {
 if (isPlatformBrowser(this.platformId)) {
 var i = localStorage.getItem(this.authKey);
 if (i) {
 return JSON.parse(i);
 }
 }
 return null;
}

// Returns TRUE if the user is logged in, FALSE otherwise.
isLoggedIn(): boolean {
 if (isPlatformBrowser(this.platformId)) {
 return localStorage.getItem(this.authKey) != null;
 }
 return false;
}

[...]

As we can see by looking at the preceding code, we added three methods that will actually
access the localStorage: setAuth(), getAuth(), and isLoggedIn(). The first one is in
charge of the insert, update, and delete operations; the second will retrieve the auth
JSON object (if any); and the last one can be used to check whether the current user is
authenticated or not without having to JSON.parse the entire object again. There's also a
fourth method--logout()--which is basically a shortcut for setAuth(null).

It's worth noting how all these methods will only provide access to the localStorage if
the executing context is a browser platform: this is what isPlatformBrowser and

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[396]

PLATFORM_ID are there for. This is just a safety net that prevents our code from creating
potential issues with the server-side prerendering of our angular app performed by ASP.NET
Core, which won't be able to deal properly with browser-specific features and browser types.
This JavaScript coding approach is called isomorphic and it's a required pattern when
developing an Angular Universal application, which is expected to run on client-side and
server-side.

For more info about Angular Universal and isomorphic JavaScript check
out the following resources:
https://universal.angular.io
http://isomorphic.net/javascript
https:/ /github. com/ angular/ universal#angular- universal

For those who have never heard of it, the localStorage object is part of HTML5's Web
Storage API; more specifically, it's a local caching object that keeps its content with no given
expiration date. That's a great way to store our JWT-related JSON response, as we want to
keep it even when the browser is closed. Before doing that, we choose to convert it into a
string using JSON.stringify, since not all localStorage browser implementations can
store JSON-type objects flawlessly. It's also worth mentioning that, instead of relying on the
localStorage, we can use the sessionStorage object, that stores data only until the
currently active session ends. However, that will mean deleting the token whenever the
user closes the specific browser tab, which is hardly a desirable behavior for a SPA.

It's worth noting how all these methods will only provide access to the localStorage if
the executing context is a browser platform: this is what isPlatformBrowser and
PLATFORM_ID are there for. This is just a safety net that prevents our code from creating
potential issues with the server-side prerendering of our angular app performed by ASP.NET
Core, which won't be able to deal properly with browser-specific features and browser types.
For more info about this specific topic, check out the Angular Universal paragraph in
Chapter 9, Advanced Topics.

This quick localStorage implementation might be good for our sample SPA, but it could
raise some performance issues in request-intensive scenarios as it gets the job done in a
synchronous way, just like the localStorage API natively does. In case we want to adopt a
better approach we can use the clever angular-async-local-storage NPM package by
Cyrille Tuzi, which wraps the whole API into RxJS Observables to be homogeneous with the
Angular way of doing things. For more info about this brilliant project, check out the
following URL: https:/ / www. npmjs. com/ package/ angular- async- local- storage

www.EBooksWorld.ir

https://universal.angular.io
http://isomorphic.net/javascript
https://github.com/angular/universal#angular-universal
https://github.com/angular/universal#angular-universal
https://github.com/angular/universal#angular-universal
https://github.com/angular/universal#angular-universal
https://github.com/angular/universal#angular-universal
https://github.com/angular/universal#angular-universal
https://github.com/angular/universal#angular-universal
https://github.com/angular/universal#angular-universal
https://github.com/angular/universal#angular-universal
https://github.com/angular/universal#angular-universal
https://github.com/angular/universal#angular-universal
https://github.com/angular/universal#angular-universal
https://github.com/angular/universal#angular-universal
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage
https://www.npmjs.com/package/angular-async-local-storage

Authentication and Authorization Chapter 8

[397]

Updating the AppModule
As always, we won't be able to use the AuthService unless we add the required reference
to the AppModule class. Open the app.module.shared.ts file and update it by adding the
following highlighted lines:

[...]

import { RouterModule } from '@angular/router';
import { AuthService } from './services/auth.service';
import { AppComponent } from './components/app/app.component';

[...]

imports: [
 CommonModule,
 HttpClientModule,
 FormsModule,
 ReactiveFormsModule,
 RouterModule.forRoot([
 { path: '', redirectTo: 'home', pathMatch: 'full' },
 { path: 'home', component: HomeComponent },
 { path: 'quiz/create', component: QuizEditComponent },
 { path: 'quiz/edit/:id', component: QuizEditComponent },
 { path: 'quiz/:id', component: QuizComponent },
 { path: 'question/create/:id', component: QuestionEditComponent
 },
 { path: 'question/edit/:id', component: QuestionEditComponent
 },
 { path: 'answer/create/:id', component: AnswerEditComponent },
 { path: 'answer/edit/:id', component: AnswerEditComponent },
 { path: 'result/create/:id', component: ResultEditComponent },
 { path: 'result/edit/:id', component: ResultEditComponent },
 { path: 'about', component: AboutComponent },
 { path: 'login', component: LoginComponent },
 { path: '**', component: PageNotFoundComponent }
])
],
providers: [
 AuthService
]

[...]

That's it.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[398]

The new LoginComponent
From Solution Explorer, navigate to the /ClientApp/app/components/login/ folder
and open the login.component.ts file; replace the current content with this brand-new
login form:

<div class="login-container">
 <img id="login-img" class="login-img"
 src="//ssl.gstatic.com/accounts/ui/avatar_2x.png" />
 <h2 class="login-title">{{title}}</h2>
 <form [formGroup]="form"
 (ngSubmit)="onSubmit()"
 class="login-form">
 <div *ngIf="form.errors?.auth"
 class="error-panel help-block">
 {{form.errors.auth}}
 </div>
 <div class="form-group"
 [ngClass]="{ 'has-error has-feedback' :
 hasError('Username') }">
 <input type="text" required
 formControlName="Username"
 class="form-control"
 placeholder="Username or Email address" />
 <span *ngIf="hasError('Username')"
 class="glyphicon glyphicon-remove form-control-
 feedback"
 aria-hidden="true">
 <div *ngIf="hasError('Username')"
 class="help-block">
 Please insert a valid username or e-mail address.
 </div>
 </div>
 <div class="form-group"
 [ngClass]="{ 'has-error has-feedback' :
 hasError('Password') }">
 <input type="password" required
 formControlName="Password"
 class="form-control"
 placeholder="Password" />
 <span *ngIf="hasError('Password')"
 class="glyphicon glyphicon-remove form-control-
 feedback"
 aria-hidden="true">
 <div *ngIf="hasError('Password')"
 class="help-block">
 Please insert a password.
 </div>

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[399]

 </div>
 <div class="checkbox">
 <label><input type="checkbox" name="remember"
 value="remember" />Remember me</label>
 </div>
 <button type="submit"
 [disabled]="form.invalid"
 class="btn btn-md btn-success btn-block btn-signin">
 Sign in
 </button>
 </form>
 <div class="login-link">

 Forgot the password?

 </div>
</div>

The preceding source code resembles the other form-based templates, with a small
difference: we added a validation message for the whole form, that will trigger in case of
this.form.error?.auth. We'll understand it better in a short while, when we'll take a
look at the TypeScript class file; for now, let's just take for granted that it will be shown
whenever that error will be raised, making the form invalid.

Here's the login.component.ts class file (relevant lines are highlighted):

import { Component, Inject } from "@angular/core";
import { FormGroup, FormControl, FormBuilder, Validators } from
'@angular/forms';
import { Router } from "@angular/router";
import { AuthService } from '../../services/auth.service';

@Component({
 selector: "login",
 templateUrl: "./login.component.html",
 styleUrls: ['./login.component.css']
})

export class LoginComponent {
 title: string;
 form: FormGroup;

 constructor(private router: Router,
 private fb: FormBuilder,
 private authService: AuthService,
 @Inject('BASE_URL') private baseUrl: string) {

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[400]

 this.title = "User Login";

 // initialize the form
 this.createForm();

 }

 createForm() {
 this.form = this.fb.group({
 Username: ['', Validators.required],
 Password: ['', Validators.required]
 });
 }

 onSubmit() {
 var url = this.baseUrl + "api/token/auth";
 var username = this.form.value.Username;
 var password = this.form.value.Password;

 this.authService.login(username, password)
 .subscribe(res => {
 // login successful

 // outputs the login info through a JS alert.
 // IMPORTANT: remove this when test is done.
 alert("Login successful! "
 + "USERNAME: "
 + username
 + " TOKEN: "
 + this.authService.getAuth()!.token
);

 this.router.navigate(["home"]);
 },
 err => {
 // login failed
 console.log(err)
 this.form.setErrors({
 "auth": "Incorrect username or password"
 });
 });
 }

 onBack() {
 this.router.navigate(["home"]);
 }

 // retrieve a FormControl

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[401]

 getFormControl(name: string) {
 return this.form.get(name);
 }

 // returns TRUE if the FormControl is valid
 isValid(name: string) {
 var e = this.getFormControl(name);
 return e && e.valid;
 }

 // returns TRUE if the FormControl has been changed
 isChanged(name: string) {
 var e = this.getFormControl(name);
 return e && (e.dirty || e.touched);
 }

 // returns TRUE if the FormControl is invalid after user changes
 hasError(name: string) {
 var e = this.getFormControl(name);
 return e && (e.dirty || e.touched) && !e.valid;
 }
}

The highlighted lines show how we're using our new AuthService object instance--which
we inject through DI--to attempt the login tasks and returning the result. Note that we also
implemented a temporary JavaScript alert() to show the successful login information
right before routing back the user to the Home view; we'll remove it as soon as we see that
everything works as expected.

It's worth noting that the authService.login() method is returning an
Observable with a value of true or false depending on result; by
subscribing to that Observable, the LoginComponent class is able to tell
how the login went and set the form.errors.auth value accordingly;
that's precisely the error that will trigger the global validator message we
configured earlier.

Last but not least, here's the new content of the LESS file. Note that we never added a
login.component.less file to the project before, hence we'll have to create it from
scratch:

.login-container {
 max-width: 600px;
 padding: 40px 40px;
 background-color: #F7F7F7;
 margin: 0 0 25px 0;
 border-radius: 10px;

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[402]

 border: 1px solid #eee;

 .login-img {
 width: 96px;
 height: 96px;
 margin: 0 auto 10px;
 display: block;
 border-radius: 50%;
 }

 .login-title {
 margin: 15px 0;
 text-align: center;
 font-size: 1.5em;
 color: #444;
 }

 .login-link {
 margin-top: 10px;
 text-align: center;
 }

 .login-form {
 .form-group {
 margin-bottom: 8px;
 }

 .error-panel {
 color: #e74c3c;
 text-align: center;
 }
 }
}

@media (max-width: 767px) {
 .login-container {
 width: 100%;
 }
}

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[403]

First login test
Although we're not done yet, it's now a good time to perform a first login test. This will
definitely help us better visualize what we're doing and also understand what we're still
missing.

Before proceeding with the login, it's strongly advisable to place some debugging
breakpoints to cover the following key spots of our app:

At the beginning of the onSubmit method of LoginComponent, that occurs when1.
the <form> is submitted (Angular).
At the beginning of the Login method of AuthService, that will issue the HTTP2.
POST request (Angular).
At the beginning of the Auth() method of TokenController, that will receive3.
the POST, validate the credentials against the ASP.NET Identity DB tables and
respond accordingly (ASP.NET).
Within the map method of AuthService, which will handle the result of the4.
HTTP POST asynchronously (Angular).
Within the subscribe method of LoginComponent, which will redirect the user5.
to the Home view or set up a form validation error depending on the login result
(Angular).

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[404]

Once done, run the project in debug mode and click on the Login menu item in the panel to
the left; you should see something like the following:

To be completely honest, the Remember me and Forgot the password? functions are not
working yet, but we'll fix those in due time. For now, let's focus on the actual login phase.
Start with a non-existing username, such as TestUser; type in any password, click on the
Sign in button and get ready to go through all the breakpoints. In this phase, we need to do
our best to check each single variable to ensure that everything is working fine.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[405]

At the end of the whole process, we should receive an error message just like the following
one:

That's perfectly fine, since we used a non-existing user! Right after that, repeat the whole
cycle, this time with an existing user--such as Admin--yet with a wrong password.
Carefully watch what happens as the underlying code goes on and checks that the
password mismatch scenario will be properly handled by each one of our server-side and
client-side actors.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[406]

Eventually, repeat the same task, this time using a valid username/password combination
from those we've put into the DbSeeder , such as: username Vodan, password
Pass4Vodan. This time you should be able to see the following JavaScript popup, which
means that everything is fine up to this point:

As soon as we see that it works, it could be wise to go back to the login.component.ts
file and remove the annoying JavaScript alert(), which we only used for demonstration
purposes; we don't need it anymore.

If something goes wrong and we don't get the expected result, we can use
the debug features of Visual Studio to find out the issue. Once done, we
can check the offending code against the sources contained in this book--
or, even better, in the official GitHub repo--and fix it accordingly.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[407]

Adding the token to the HTTP request header
Like we said, we're not done yet; now that we've got the token, we need to find the proper
way to pass it along with each HTTP request, otherwise our server-side ASP.NET controllers
wouldn't be able to know that we did authenticate ourselves and that we're authorized to
access some potentially restricted resources. To put it in other words, we need to tweak our
current HTTP service to make it add our JWT token in the header portion of all our HTTP
calls.

There are at least three possible ways to obtain that:

Update all of our Angular Components that issue HTTP requests to make them1.
add the JWT token to the request header before each call.
Create a custom service that wraps the Angular HttpClient and make it append2.
the JWT token to the headers before performing the requests.
Implement a HTTP interceptor that will act right before any request will be3.
sent and make it append the JWT token to the headers before releasing it.

The latter option has been made available since Angular 4.3 with the release of the new
HttpClient--which we've been proudly using since Chapter 3, Frontend with Angular, --
and is probably the most elegant, robust, and effective way to do what we want.

The AuthInterceptor class
In a nutshell, HttpInterceptors are something that we can use to perform modifications
to our HTTP requests in a global, centralized way. The most common use case for that
pattern is to automatically attach auth information to requests before they're being sent,
which is definitely our scenario.

Intercepting HTTP requests has always been possible in AngularJS, yet it has been a
missing feature of the new Angular 2+, thus forcing most developers into working, yet
unsatisfying workarounds such as the aforementioned HTTP wrappers, helper functions
returning custom Headers, and so on. With the release of Angular 4.3, the gap has been
filled, thanks to the introduction of the HttpInterceptor interface, which is what we'll
use to create our own AuthInterceptor class.

From Solution Explorer, right-click on the /ClientApp/app/services/ folder, add the
auth.interceptor.ts TypeScript file, and fill it with the following contents:

import { Injectable, Injector } from "@angular/core";
import { HttpHandler, HttpEvent, HttpInterceptor, HttpRequest } from
"@angular/common/http";
import { AuthService } from "./auth.service";

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[408]

import { Observable } from "rxjs/Observable";

@Injectable()
export class AuthInterceptor implements HttpInterceptor {

 constructor(private injector: Injector) { }

 intercept(
 request: HttpRequest<any>,
 next: HttpHandler): Observable<HttpEvent<any>> {

 var auth = this.injector.get(AuthService);
 var token = (auth.isLoggedIn()) ? auth.getAuth()!.token : null;
 if (token) {
 request = request.clone({
 setHeaders: {
 Authorization: `Bearer ${token}`
 }
 });
 }
 return next.handle(request);
 }
}

As we can see, our custom interceptor implements the HttpInterceptor interface and its
intercept method, accepting the HttpRequest and HttpHandler parameters; inside the
method, we clone the original request--which is immutable, thus can't be altered directly--
and add the authorization header containing our token, which we retrieve through the
getToken() method of our AuthService class. Note how, once we're done, we pass the
request to the next handler in the stack; a great feature of HttpInterceptor is that they
can be easily chained, as we'll see in the next paragraph.

Adding the HttpInterceptor in the AppModule
It goes without saying that our AuthInterceptor class will only work if we properly
configure it within our AppModule class. To do that, open the app.module.shared.ts file
and add the following (new code highlighted):

[...]

import { HttpClientModule, HTTP_INTERCEPTORS } from '@angular/common/http';
import { RouterModule } from '@angular/router';

import { AuthService } from './services/auth.service';
import { AuthInterceptor } from './services/auth.interceptor';

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[409]

[...]

providers: [
 AuthService,
 {
 provide: HTTP_INTERCEPTORS,
 useClass: AuthInterceptor,
 multi: true
 }
]

[...]

If we did everything correctly, now the token should be automatically added to each HTTP
request. We can easily test it from the server side by placing a breakpoint at the start of the
QuizController.GetLatest() method, that gets called each time the Home view is
accessed:

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[410]

We can then run our application in debug mode and see what happens upon the first HTTP
request:

By looking into the Request.Headers.HeaderAuthorization property--using the Visual
Studio's Watch window--we should be able to see our token, the same that we got back
from our TokenController a short while ago, unless we cleared our browser's
localStorage; in case we did that, all we need to do is visit the Login view again and
perform a new login to get another token, and then try again.

As soon as we see the Bearer token, before leaving that breakpoint and ending the debug
session, we should also check out the this.User.Identity.IsAuthenticated property,
which should be set to true --meaning that our user has been successfully authenticated
using the token.

Enforcing authorization
Now that we can be sure that our JWT-based auth implementation is working as expected,
we need to define some testable auth-based navigation patterns and access rules that will
allow us to differentiate the logged-in user from the anonymous one, preventing the latter
from either seeing and doing something that he shouldn't be allowed to. Needless to say,
we need to handle them on the client side and also on the server side.

It's actually easy to do that, since we already have some Angular components that should
be made accessible to authenticated users only and vice versa--along with the .NET Core
controllers they use under the hood; let's see how we can pull off that task.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[411]

Adapting the client
Let's start by updating the main menu navigation bar.

NavMenuComponent
From the /ClientApp/app/components/navmenu/ folder, open the
navmenu.component.ts file and update it in the following way:

import { Component } from '@angular/core';
import { AuthService } from '../../services/auth.service';

@Component({
 selector: 'nav-menu',
 templateUrl: './navmenu.component.html',
 styleUrls: ['./navmenu.component.css']
})
export class NavMenuComponent {
 constructor(public auth: AuthService) {
 }
}

This will give us access to the authService instance (obtained through DI), which we can
use to determine whether the current user is logged in or not.

It's worth noting that we made the auth instance member public instead
of private. We did that because we plan to use it within the component's
template file, like we'll see in a short while. Although the template is part
of the component, it will be compiled as a separate class in the Ahead-of-
Time (AOT) compilation scenario, which will be the case whenever we'll
want to deploy our web app in production. For this very reason, as a
general rule-of-thumb, it's always wise to set a public access level to these
members--as long as we'll use them within the template file.

Right after that, open the navmenu.component.html template file and change its content
accordingly:

[...]

<li *ngIf="!this.auth.isLoggedIn()"
 [routerLinkActive]="['link-active']">
 <a [routerLink]="['/login']">
 Login

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[412]

<li *ngIf="this.auth.isLoggedIn()"
 [routerLinkActive]="['link-active']">
 <a [routerLink]="['/quiz/create']">
 Create a Quiz

[...]

What we did here was to use a couple of *ngIf directives to selectively show or hide our
content depending on whether the currently active user is logged in or not. More
specifically, we don't want to display the Login link to an already logged-in user, and we
also want to prevent anonymous users from accessing the Create a Quiz view.

While we are here, we can take the chance to give our logged-in users the chance to log out
by adding a dedicated Logout button in the following way:

[...]

<li *ngIf="this.auth.isLoggedIn()">
 <a (click)="logout()">
 Logout

[...]

We can put that element anywhere within the unordered list; however, the most
logical place would be just below the sibling element hosting the Login button link. Once
done, we need to go back to the navmenu.component.ts file and add an appropriate
method to handle the newly-added logout feature:

import { Component } from '@angular/core';
import { Router } from "@angular/router";
import { AuthService } from '../../services/auth.service';

@Component({
 selector: 'nav-menu',
 templateUrl: './navmenu.component.html',
 styleUrls: ['./navmenu.component.css']
})
export class NavMenuComponent {
 constructor(
 public auth: AuthService,
 private router: Router
) {

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[413]

 }

 logout(): boolean {
 // logs out the user, then redirects him to Home View.
 if (this.auth.logout()) {
 this.router.navigate([""]);
 }
 return false;
 }
}

By looking at the highlighted code, we can see how we also had to retrieve the Router class
(as always, through DI) to be able to redirect the logged-out user back to the Home view.

QuizComponent
The QuizComponent also features some Edit and Delete buttons that we should definitely
hide from the sight of any non-logged in user.

Again, we need to open the quiz.component.ts file and do what it takes to add the
AuthService class to the loop:

[...]

import { AuthService } from '../../services/auth.service';

[...]

constructor(private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient,
 public auth: AuthService,
 @Inject('BASE_URL') private baseUrl: string) {

[...]

We then use it to conditionally hide the Edit and Delete buttons in the
quiz.component.html template file:

[...]

<div *ngIf="auth.isLoggedIn()" class="edit">
 <input type="button" value="Edit"
 (click)="onEdit()"
 class="btn btn-sm btn-warning" />
 <input type="button" value="Delete"

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[414]

 (click)="onDelete()"
 class="btn btn-sm btn-danger" />
</div>

[...]

That's basically it.

Again, we chose to make the auth instance member public instead of private, since
we're also using it in the template file; that way, we can ensure that it will be found even in
an AOT compilation scenario.

Before moving on to the server-side part, it would be wise to perform a
quick UI test to ensure that everything is working properly. This can be
easily done by launching the application in debug mode, perform some
login and logout tasks using our existing users--Admin, Solice, Ryan, and
Vodan--and see how the NavMenuComponent and QuizComponent will
react.

Shielding the server
Now that our client is more or less ready, it's time to shield our .NET API controllers from
unauthorized requests as well. We can easily do that using the [Authorize] attribute,
which can be used to restrict access to any controller and/or controller method we don't
want to open to unauthorized access.

To implement the required authorization behavior, it can be wise to use it on the Put, Post
and Delete methods of all our BaseApiController extended classes, as follows:

[...]

[HttpPut]
[Authorize]
public IActionResult Put([FromBody]QuizViewModel model)

[...]

[HttpPost]
[Authorize]
public IActionResult Post([FromBody]QuizViewModel model)

[...]

[HttpDelete("{id}")]

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[415]

[Authorize]
public IActionResult Delete(int id)

[...]

The preceding code is taken from the QuizController, but we need to perform the exact
same upgrade on QuestionController, AnswerController, and ResultController as
well. Don't forget to add the following required namespace reference at the beginning of
each of these files:

using Microsoft.AspNetCore.Authorization;

Now all these action methods are protected against unauthorized access, as they will accept
only requests coming from logged-in users/clients with a valid JWT token; those who don't
have it will receive a 401 - Unauthorized HTTP error response.

Retrieving the current user ID
Before closing the QuizControllerfile, we should take the chance to remove that phony
item.UserId value override we defined back in Chapter 5, Client-Server Interactions, when
we had no authentication mechanism in place. The offending lines are still lying within the
Put() method implementation:

[...]
// Set a temporary author using the Admin user's userId
// as user login isn't supported yet: we'll change this later on.
quiz.UserId = DbContext.Users.Where(u => u.UserName == "Admin")
 .FirstOrDefault().Id;

[...]

Now that we're working with real authenticated accounts, we can easily retrieve the current
userID; if we remember correctly, we did actually put it in the JWT token claims, as we can
see by taking another quick look at the GetToken() method of the TokenController
class:

[...]

var claims = new[] {
 new Claim(JwtRegisteredClaimNames.Sub, user.Id),
 new Claim(JwtRegisteredClaimNames.Jti, Guid.NewGuid().ToString()),

[...]

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[416]

This means that we can retrieve it in the following way (updated code is highlighted):

[...]

// retrieve the current user's Id
quiz.UserId = User.FindFirst(ClaimTypes.NameIdentifier).Value;

[...]

Let's perform this change and move on.

This minor update should be enough for now. However, it won't work
when dealing with external providers, as they will put their own data in
these claims. Retrieving our local UserId in such scenarios will require
some additional work, such as querying a dedicated lookup table; we'll see
more about this later on.

Client-server auth test
Before moving further, it's definitely time to perform a client/server interaction test to
ensure that our authorization pattern is working as expected.

From the Visual Studio source code editing interface, we can put a breakpoint right below
the Put method of QuizController:

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[417]

Once done, we can launch the application in debug mode, navigate from the Home view to
the Login view, and authenticate ourselves. Right after that, the Create a Quiz menu
element should appear, allowing us to click on it.

From there, we can fill in the form with some random text and click on the Save button. The
form will consequently call the Put method of QuizController, hopefully triggering our
breakpoint. When it happens, open a Watch window (Debug | Windows | Watch | Watch
1) and check the this.User.Identity.IsAuthenticated property value:

If it's true, it means that we've been successfully authenticated. That shouldn't be
surprising, since our request already managed to get inside a method protected by an
[Authorize] attribute.

Suggested topics
Authentication, Authorization, HTTP protocol, Secure Socket Layer, Session State
Management, Indirection, Single Sign-On, Azure AD Authentication Library (ADAL),
AspNetCore Identity, OpenID, OAuth, IdentityUser, Stateless, Cross-Site Scripting (XSS),
Cross-Site Request Forgery (CSRF), Angular HttpClient, Angular HttpInterceptors,
LocalStorage, Web Storage API, Server-side prerendering, Angular Universal, Browser
Types, Generic Types, JWT Tokens, Claims, Refresh Tokens, and Sliding Sessions.

www.EBooksWorld.ir

Authentication and Authorization Chapter 8

[418]

Summary
At the start of this chapter, we introduced the concepts of authentication and authorization,
acknowledging the fact that most applications, including ours, do require a mechanism to
properly handle authenticated and non-authenticated clients as well as authorized and
unauthorized requests.

We took some time to properly understand the similarities and differences between
authentication and authorization as well as the pros and cons of handling these tasks using
our own internal provider or delegating them to third-party providers such as Google,
Facebook, and Twitter. We also found out that, luckily enough, the
Microsoft.AspNetCore.Identity framework can be configured to achieve the best of
both worlds. To be able to use it, we added the required packages to our project and did
what was needed to properly configure them, such as performing some changes in our
ApplicationUser and ApplicationDbContext classes and then adding a new
EntityFrameworkCore migration to update our database accordingly.

We briefly enumerated the various web-based authentication methods available nowadays:
sessions, tokens, signatures, and two-factor strategies of various sorts. After careful
consideration, we chose to implement a token-based approach using JSON Web Tokens
(JWT), a solid and well-known standard for native web applications.

Implementing JWT within our application took us some time, as we had to take care of a
number of steps: writing a dedicated TokenController to generate the tokens; set up and
configure the required ASP .Net Core middleware needed to validate them; and finally,
moving to our Angular client app, creating a Login form, an AuthService class, and a
dedicated HttpInterceptor to handle everything on the client side.

Right after that, we implemented the required client-side and server-side authorization
rules to protect some of our application views, routes, and APIs from unauthorized access.

All in all, the hand-made authentication and authorization flow we put together in this
chapter is pretty much working. However, it lacks some very important features required
for a production-ready environment, the most important ones being token expiration and
token refresh. We'll learn how to do that in the upcoming chapter, along with other
important stuff.

www.EBooksWorld.ir

9
Advanced Topics

Our web application is starting to show its true colors. However, there are still some
missing features we would like to implement, such as the following ones:

Token expiration and refresh tokens
New user registration
Third-party authentication

In this chapter, we'll do our best to clear all these topics as well.

Token expiration and refresh tokens
When we implemented JWT token authentication in Chapter 8, Third-Party Authentication
and External Providers, we didn't bother much about the token expiration time. We just set its
value to an insanely high amount (86,400 minutes, which corresponds to 2 months) and
went ahead with the coding. That was great for demonstration purposes, yet it won't be
ideal when publishing our project into production. Issuing tokens with such a broad
lifespan outside of a test environment will definitely pose a serious security threat.
However, we don't want our users to be kicked out and/or lose their auth privileges
because the token expires before they're done with their login session; is there a way to
drastically reduce the token lifespan while also avoiding the risk of kicking active users out?

The answer is yes; to do so, we have to implement refresh tokens in our existing
authentication pattern and learn how to properly use them to let our clients renew their
tokens in a transparent way. However, before we start working on them, let's spend some
valuable time to understand why we need to do that.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[420]

A small terminology clarification before we start; from now on, we will
refer to the JWT tokens we implemented in Chapter 8, Authentication and
Authorization, as access tokens, to distinguish them from the refresh tokens
that we'll implement now.

What's a refresh token?
As the name implies, a refresh token is a special kind of token that can be used to obtain a
new access token; the most logical way to use it is when the former access token expires and
the client needs a new one to avoid having to perform the login again. Refresh tokens never
expire, although they can--and should--be invalidated as soon as they are consumed, for
obvious security reasons; on top of that, they also need to be stored properly to ensure that
they are not leaked.

Implementing refresh tokens in our current web application won't be hard at all, as long as
we perform the following steps:

Find a proper way to persist response tokens so that we can add, check, and1.
invalidate them as needed.
Add a refresh_token property to our TokenRequestViewModel and2.
TokenResponseViewModel classes, which will be used by the client and the
TokenController to exchange the refresh token(s) when needed.
Update our existing TokenController so that it can handle a refresh_token3.
request from the client.
Update our existing token.response.ts TypeScript interface to handle the4.
refresh_token property that will be issued by the server.
Add a refreshToken() method to our Angular client's AuthService that we5.
can use to issue a refresh token HTTP request from within our SPA.
Add a new HttpInterceptor to our Angular client that will automatically6.
understand when the old access token expired and issue a refresh_token
request to obtain a new one.

As we can easily guess, the first three steps are meant to be done on the
server-side part of our web application, while the last three steps are
related to the client side.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[421]

Choosing an appropriate place to store refresh tokens is mandatory, because we need to
invalidate them as soon as they are consumed; if we don't, a single refresh token can be
used to generate an infinite amount of valid access tokens--each one of them coming with
its own refresh token--and we certainly don't want to allow that. We can persist refresh
tokens in a number of ways, but--in our specific scenario--the most logical place to save
them would be our current database--with a dedicated data model entity.

Server-side tasks
Let's start with the server-side tasks: adding the new entity will also require us to adapt our
existing data model accordingly and--once we're done--update our database using another
EF Core migration.

Adding the token entity
From Solution Explorer, right-click on the /Data/Models/ folder and add a new
Token.ts C# class file, filling it with the following content:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace TestMakerFreeWebApp.Data
{
 public class Token
 {
 #region Constructor
 public Token()
 {

 }
 #endregion

 #region Properties
 [Key]
 [Required]
 public int Id { get; set; }

 [Required]
 public string ClientId { get; set; }

 [Required]

www.EBooksWorld.ir

Advanced Topics Chapter 9

[422]

 public string Value { get; set; }

 public int Type { get; set; }

 [Required]
 public string UserId { get; set; }

 [Required]
 public DateTime CreatedDate { get; set; }
 #endregion

 #region Lazy-Load Properties
 /// <summary>
 /// The user related to this token
 /// </summary>
 [ForeignKey("UserId")]
 public virtual ApplicationUser User { get; set; }
 #endregion
 }
}

There's nothing new here, just the minimum amount of properties to store the relevant
information about the token: the ClientId, where it comes from, its Type(we'll use a value
of zero for refresh tokens), its Value, the UserId it was issued to, and the creation date.

Last but not least, we also implemented the User property to take advantage of the EF Core
Lazy-Load feature, just like we did with the other entities back in Chapter 4, Data Model with
Entity Framework Core. This will require updating the user entity as well.

Upgrading the user entity
Open the /Data/Models/ApplicationUser.cs file and add the following Lazy-Load
property to the end:

[...]

#region Lazy-Load Properties
/// <summary>
/// A list of all the quiz created by this users.
/// </summary>
public virtual List<Quiz> Quizzes { get; set; }

/// <summary>
/// A list of all the refresh tokens issued for this users.
/// </summary>
public virtual List<Token> Tokens { get; set; }

www.EBooksWorld.ir

Advanced Topics Chapter 9

[423]

#endregion

[...]

Upgrading ApplicationDbContext
The next thing to do is to update the ApplicationDbContext to properly handle the new
entity; open the /Data/ApplicationDbContext.cs file and add the following lines to the
end of the OnModelCreating() method:

[...]

modelBuilder.Entity<ApplicationUser>().ToTable("Users");
modelBuilder.Entity<ApplicationUser>().HasMany(u => u.Quizzes).WithOne(i =>
i.User);
modelBuilder.Entity<ApplicationUser>().HasMany(u => u.Tokens).WithOne(i =>
i.User);

[...]

modelBuilder.Entity<Result>().ToTable("Results");
modelBuilder.Entity<Result>().Property(i => i.Id).ValueGeneratedOnAdd();
modelBuilder.Entity<Result>().HasOne(i => i.Quiz).WithMany(u => u.Results);

modelBuilder.Entity<Token>().ToTable("Tokens");
modelBuilder.Entity<Token>().Property(i => i.Id).ValueGeneratedOnAdd();
modelBuilder.Entity<Token>().HasOne(i => i.User).WithMany(u => u.Tokens);

[...]

#region Properties
// public DbSet<ApplicationUser> Users { get; set; }
public DbSet<Quiz> Quizzes { get; set; }
public DbSet<Question> Questions { get; set; }
public DbSet<Answer> Answers { get; set; }
public DbSet<Result> Results { get; set; }
public DbSet<Token> Tokens { get; set; }
#endregion Properties

[...]

www.EBooksWorld.ir

Advanced Topics Chapter 9

[424]

Applying the EF core migration
It's time to use the dotnet-ef command-line tool to update our database with the latest
changes. Open a command line, navigate to the project's root folder, and type the following
commands:

dotnet ef migrations add "RefreshTokens" –o "Data\Migrations"
dotnet ef Database update

This will create the Tokens table and pave the way for all that's yet to come.

Implementing the refresh token
Now that our data model can properly store the refresh tokens, we can move our focus to
the Web API, starting with the ViewModels that will carry the refresh token from the server
to the client and vice versa.

Upgrading TokenResponseViewModel
Open the /ViewModels/TokenResponseViewModel.cs file and update it in the following
way:

[...]

#region Properties
public string token { get; set; }
public int expiration { get; set; }
public string refresh_token { get; set; }
#endregion

[...]

This property will be used by our TokenController to send the refresh token to the client
--along with the access token--upon a successful login.

Upgrading TokenRequestViewModel
Once done, open the /ViewModels/TokenRequestViewModel.cs file and perform the
following changes:

[...]

#region Properties
public string grant_type { get; set; }
public string client_id { get; set; }

www.EBooksWorld.ir

Advanced Topics Chapter 9

[425]

public string client_secret { get; set; }
public string username { get; set; }
public string password { get; set; }
public string refresh_token { get; set; }
#endregion

[...]

This property will be used by our client to send the refresh token back to the web server--
with the corresponding grant_type--to receive a new access token.

Upgrading TokenController
Now, we're all set to generate, store, and send the refresh tokens to the clients, and also
receive them back. All these tasks will be done within our TokenController, which we
need to upgrade in a number of ways.

The first thing to do is to handle the refresh_token grant-type by upgrading the existing
Auth() action method:

[...]

switch (model.grant_type)
{
 case "password":
 return await GetToken(model);
 case "refresh_token":
 return await RefreshToken(model);
 default:
 // not supported - return a HTTP 401 (Unauthorized)
 return new UnauthorizedResult();
}

[...]

Right after that, we need to implement the RefreshToken() private method we're
referencing to:

[...]

private async Task<IActionResult> RefreshToken(TokenRequestViewModel model)
{
 try
 {
 // check if the received refreshToken exists for the given
 clientId
 var rt = DbContext.Tokens

www.EBooksWorld.ir

Advanced Topics Chapter 9

[426]

 .FirstOrDefault(t =>
 t.ClientId == model.clientId
 && t.Value == model.refreshToken);

 if (rt == null)
 {
 // refresh token not found or invalid (or invalid clientId)
 return new UnauthorizedResult();
 }

 // check if there's an user with the refresh token's userId
 var user = await UserManager.FindByIdAsync(rt.UserId);

 if (user == null)
 {
 // UserId not found or invalid
 return new UnauthorizedResult();
 }

 // generate a new refresh token
 var rtNew = CreateRefreshToken(rt.ClientId, rt.UserId);

 // invalidate the old refresh token (by deleting it)
 DbContext.Tokens.Remove(rt);

 // add the new refresh token
 DbContext.Tokens.Add(rtNew);

 // persist changes in the DB
 DbContext.SaveChanges();

 // create a new access token...
 var response = CreateAccessToken(rtNew.UserId, rtNew.Value);

 // ... and send it to the client
 return Json(response);
 }
 catch (Exception ex)
 {
 return new UnauthorizedResult();
 }
}

[...]

www.EBooksWorld.ir

Advanced Topics Chapter 9

[427]

The tasks fulfilled by this new method are well explained in the source code comments; to
quickly summarize it, it checks for the existence of the refresh token and--if there's nothing
odd--proceeds with creating a new one, sending it back to the client as part of a new access
token.

Needless to say, we also need to implement the CreateRequestToken() and
CreateAccessToken() method mentioned there as well. Here's the first one:

[...]

private Token CreateRefreshToken(string clientId, string userId)
{
 return new Token()
 {
 ClientId = clientId,
 UserId = userId,
 Type = 0,
 Value = Guid.NewGuid().ToString("N"),
 CreatedDate = DateTime.UtcNow
 };
}

[...]

Also, here's the CreateAccessToken() method:

[...]

private TokenResponseViewModel CreateAccessToken(string userId, string
refreshToken)
{
 DateTime now = DateTime.UtcNow;

 // add the registered claims for JWT (RFC7519).
 // For more info, see https://tools.ietf.org/html/rfc7519#section-
 4.1
 var claims = new[] {
 new Claim(JwtRegisteredClaimNames.Sub, userId),
 new Claim(JwtRegisteredClaimNames.Jti,
 Guid.NewGuid().ToString()),
 new Claim(JwtRegisteredClaimNames.Iat,
 new DateTimeOffset(now).ToUnixTimeSeconds().ToString())
 // TODO: add additional claims here
 };

 var tokenExpirationMins =
 Configuration.GetValue<int>

www.EBooksWorld.ir

Advanced Topics Chapter 9

[428]

 ("Auth:Jwt:TokenExpirationInMinutes");
 var issuerSigningKey = new SymmetricSecurityKey(
 Encoding.UTF8.GetBytes(Configuration["Auth:Jwt:Key"]));

 var token = new JwtSecurityToken(
 issuer: Configuration["Auth:Jwt:Issuer"],
 audience: Configuration["Auth:Jwt:Audience"],
 claims: claims,
 notBefore: now,
 expires: now.Add(TimeSpan.FromMinutes(tokenExpirationMins)),
 signingCredentials: new SigningCredentials(
 issuerSigningKey, SecurityAlgorithms.HmacSha256)
);
 var encodedToken = new JwtSecurityTokenHandler().WriteToken(token);

 return new TokenResponseViewModel()
 {
 token = encodedToken,
 expiration = tokenExpirationMins,
 refresh_token = refreshToken
 };
}

[...]

Note how the CreateAccessToken() has strong similarities with the source code we used
within the GetToken() method when we implemented it, back in Chapter 8, Authentication
and Authorization; that's pretty obvious, since it does the same job--minus adding the
refresh_token, which we need to support now.

We can easily take two birds with one stone by updating the GetToken() method in the
following way (updated lines are highlighted):

[...]

private async Task<IActionResult> GetToken(TokenRequestViewModel model)
{
 try
 {
 // check if there's an user with the given username
 var user = await UserManager.FindByNameAsync(model.username);
 // fallback to support e-mail address instead of username
 if (user == null && model.username.Contains("@"))
 user = await UserManager.FindByEmailAsync(model.username);

 if (user == null
 || !await UserManager.CheckPasswordAsync(user,

www.EBooksWorld.ir

Advanced Topics Chapter 9

[429]

 model.password))
 {
 // user does not exists or password mismatch
 return new UnauthorizedResult();
 }

 // username & password matches: create the refresh token
 var rt = CreateRefreshToken(model.client_id, user.Id);

 // add the new refresh token to the DB
 DbContext.Tokens.Add(rt);
 DbContext.SaveChanges();

 // create & return the access token
 var t = CreateAccessToken(user.Id, rt.Value);
 return Json(t);
 }
 catch (Exception ex)
 {
 return new UnauthorizedResult();
 }
}

[...]

What we did was to replace the duplicate code with a reference to our new
CreateRefreshToken() and CreateAccessToken() methods. As a result, we gave a
trim to the GetToken() code bloat and also upgraded it to issue the refresh token together
with the access token.

Client-side tasks
It's time to move to our Angular client and seize the deal; we need to add the
refresh_token property to our existing TokenResponse interface, update our existing
AuthService to give it the ability to refresh tokens, and add a new HttpInterceptor to
be able to understand when we actually need to do that.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[430]

Updating the TokenResponse interface
From Solution Explorer, navigate to the /ClientApp/app/interface/ folder, open the
token.response.ts file, and add the token_refresh property, as shown:

interface TokenResponse {
 token: string,
 expiration: number,
 refresh_token: string
}

This new property is precisely what we need to store the refresh_token sent by the
server.

Upgrading AuthService
From Solution Explorer, navigate to the /ClientApp/app/services/ folder, open the
auth.service.ts file, and add the following code to the existing content, after the
login() method:

[...]

// try to refresh token
refreshToken(): Observable<boolean> {
 var url = "api/token/auth";
 var data = {
 client_id: this.clientId,
 // required when signing up with username/password
 grant_type: "refresh_token",
 refresh_token: this.getAuth()!.refresh_token,
 // space-separated list of scopes for which the token is issued
 scope: "offline_access profile email"
 };

 return this.getAuthFromServer(url, data);
}

// retrieve the access & refresh tokens from the server
getAuthFromServer(url: string, data: any): Observable<boolean> {
 return this.http.post<TokenResponse>(url, data)
 .map((res) => {
 let token = res && res.token;
 // if the token is there, login has been successful
 if (token) {
 // store username and jwt token
 this.setAuth(res);

www.EBooksWorld.ir

Advanced Topics Chapter 9

[431]

 // successful login
 return true;
 }

 // failed login
 return Observable.throw('Unauthorized');
 })
 .catch(error => {
 return new Observable<any>(error);
 });
}

[...]

As we can see, the new refreshToken() method features a strong resemblance with the
login() method we implemented back in Chapter 8, Authentication and Authorization,
except for some minor differences; it asks for a different grant_type, which also requires
sending the refresh_token instead of username and password, and it invokes a new
getAuthFromServer() method to actually retrieve the auth info from the server.

By taking a closer look at the getAuthFromServer() implementation, we can see how we
can easily call it from the login() method as well and get rid of a fair amount of repeating
code:

[...]

login(username: string, password: string): Observable<boolean> {
 var url = "api/token/auth";
 var data = {
 username: username,
 password: password,
 client_id: this.clientId,
 // required when signing up with username/password
 grant_type: "password",
 // space-separated list of scopes for which the token is issued
 scope: "offline_access profile email"
 };

 return this.getAuthFromServer(url, data);
}

[...]

www.EBooksWorld.ir

Advanced Topics Chapter 9

[432]

Our improved AuthService is now ready to refresh tokens; we just need to find a way to
use the new feature.

Adding AuthResponseInterceptor
We're almost done; the last thing we need to do is to provide our client with a
HttpInterceptor that will capture the Http 401 - Unauthorized errors and try to refresh
the access token accordingly. It goes without saying that we need to find a way to have it
trigger only once--to avoid endless attempts--and to resend the failed request in case of
success.

From Solution Explorer, right-click to the /ClientApp/app/services/ folder and add a
new auth.response.interceptor.ts TypeScript file, filling it with the following
content:

import { Injectable, Injector } from "@angular/core";
import { Router } from "@angular/router";
import {
 HttpClient,
 HttpHandler, HttpEvent, HttpInterceptor,
 HttpRequest, HttpResponse, HttpErrorResponse
} from "@angular/common/http";
import { AuthService } from "./auth.service";
import { Observable } from "rxjs";

@Injectable()
export class AuthResponseInterceptor implements HttpInterceptor {

 currentRequest: HttpRequest<any>;
 auth: AuthService;

 constructor(
 private injector: Injector,
 private router: Router
)
 { }

 intercept(
 request: HttpRequest<any>,
 next: HttpHandler): Observable<HttpEvent<any>> {

 this.auth = this.injector.get(AuthService);
 var token = (this.auth.isLoggedIn()) ?
 this.auth.getAuth()!.token : null;

www.EBooksWorld.ir

Advanced Topics Chapter 9

[433]

 if (token) {
 // save current request
 this.currentRequest = request;

 return next.handle(request)
 .do((event: HttpEvent<any>) => {
 if (event instanceof HttpResponse) {
 // do nothing
 }
 })
 .catch(error => {
 return this.handleError(error)
 });
 }
 else {
 return next.handle(request);
 }
 }

 handleError(err: any) {
 if (err instanceof HttpErrorResponse) {
 if (err.status === 401) {
 // JWT token might be expired:
 // try to get a new one using refresh token
 console.log("Token expired. Attempting refresh...");
 this.auth.refreshToken()
 .subscribe(res => {
 if (res) {
 // refresh token successful
 console.log("refresh token successful");

 // re-submit the failed request
 var http = this.injector.get(HttpClient);
 http.request(this.currentRequest).subscribe(
 result => {
 // do something
 }, error => console.error(error)
);
 }
 else {
 // refresh token failed
 console.log("refresh token failed");

 // erase current token
 this.auth.logout();

 // redirect to login page
 this.router.navigate(["login"]);

www.EBooksWorld.ir

Advanced Topics Chapter 9

[434]

 }
 }, error => console.log(error));
 }
 }
 return Observable.throw(err);
 }
}

That's an impressive amount of TypeScript code, but the included comments should help us
properly understand what we did:

In the intercept() method, the first thing we do is check whether there's a
token or not; if we don't, there's no need to do anything, otherwise we do two
things:

Store a reference to the current request in an internal property that
can be useful later on
Set up an event handler that will call the handleError() method
in case of HTTP errors

In the handleError() method, we check whether we're dealing with an
HttpErrorResponse with a status code of 401 - Unauthorized, which is what
we get whenever we attempt to access a controller's action method shielded with
the [Authorize] attribute using an invalid (expired) access token. If the
conditions match, we attempt to refresh the token using the refreshToken()
method of AuthService we implemented a short while ago and subscribe to it,
waiting for the outcome:

In case of success, we resubmit the request that triggered the
response error--which we stored in the this.currentRequest
local property
In case of failure, we perform the logout to clear all the expired
tokens from the local storage and then redirect the user back to the
login screen

www.EBooksWorld.ir

Advanced Topics Chapter 9

[435]

Add the AuthResponseInterceptor in the AppModule
As always, the new interceptor has to be added in the app.module.shared.ts file right
below the existing one:

[...]

import { AuthInterceptor } from './services/auth.interceptor';
import { AuthResponseInterceptor } from
'./services/auth.response.interceptor';

[...]

 providers: [
 AuthService,
 {
 provide: HTTP_INTERCEPTORS,
 useClass: AuthInterceptor,
 multi: true
 },
 {
 provide: HTTP_INTERCEPTORS,
 useClass: AuthResponseInterceptor,
 multi: true
 }
]

[...]

Testing it up
In order to test up the token refresh feature, we need to (drastically) reduce the access token
ExpirationInMinutes that we set in the appsettings.json and
appsettings.Development.json files. We can start with a value of 60 for the
appsettings.json file--as it will be an appropriate time for production--and a temporary
1 value for the appsettings.Development.json file so that we'll be able to quickly check
out whether what we did actually works.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[436]

Once done, we can launch the application in debug mode and wait until we see the Home
view; from there, it's mandatory that we perform a logout/login before everything else, to
ensure that the refresh token will be added to our localStorage. As soon as we do that,
we can pick an existing quiz from the Home view and access the QuizEditComponent by
clicking on the Edit button. Wait a little more than one minute, and then click on the Apply
Changes button; that should trigger the whole token refresh workflow, which we can easily
debug with the Visual Studio interface by placing the appropriate breakpoints within the
various .NET Core and Angular methods we have added.

New user registration
Our web application can now authenticate and authorize users just fine, assuming that they
are already present in the data model; this can be enough for a testing environment, yet it
won't work if we want to put our efforts into production. What if we want to register new
users and have them added to the data model along with the sample ones created by the
DbSeeder class?

In order to implement that, we'll need the following:

On the server-side, add a UserController--with a corresponding
UserViewModel--to handle user registration requests
On the client-side, add a new RegisterComponent to our Angular app--with a
corresponding account interface--to send these requests, receive the server-side
response, and act accordingly

That said, let's see how we can pull it off.

Server-side tasks
We'll start creating the UserController and UserViewModel on the server side.

UserController
From Solution Explorer, right-click to the /Controllers/ folder, add a new
UserController.cs C# class, and fill it with the following content:

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;

www.EBooksWorld.ir

Advanced Topics Chapter 9

[437]

using Microsoft.AspNetCore.Identity;
using Microsoft.Extensions.Configuration;
using TestMakerFreeWebApp.ViewModels;
using TestMakerFreeWebApp.Data;
using Mapster;

namespace TestMakerFreeWebApp.Controllers
{
 public class UserController : BaseApiController
 {
 #region Constructor
 public UserController(
 ApplicationDbContext context,
 RoleManager<IdentityRole> roleManager,
 UserManager<ApplicationUser> userManager,
 IConfiguration configuration
)
 : base(context, roleManager, userManager, configuration) {
 }
 #endregion

 #region RESTful Conventions
 /// <summary>
 /// POST: api/user
 /// </summary>
 /// <returns>Creates a new User and return it accordingly.
 </returns>
 [HttpPost()]
 public async Task<IActionResult> Add([FromBody]UserViewModel
 model)
 {
 // return a generic HTTP Status 500 (Server Error)
 // if the client payload is invalid.
 if (model == null) return new StatusCodeResult(500);

 // check if the Username/Email already exists
 ApplicationUser user = await
 UserManager.FindByNameAsync(model.UserName);
 if (user != null) return BadRequest("Username already
 exists");

 user = await UserManager.FindByEmailAsync(model.Email);
 if (user != null) return BadRequest("Email already
 exists.");

 var now = DateTime.Now;

 // create a new Item with the client-sent json data

www.EBooksWorld.ir

Advanced Topics Chapter 9

[438]

 user = new ApplicationUser()
 {
 SecurityStamp = Guid.NewGuid().ToString(),
 UserName = model.UserName,
 Email = model.Email,
 DisplayName = model.DisplayName,
 CreatedDate = now,
 LastModifiedDate = now
 };

 // Add the user to the Db with the choosen password
 await UserManager.CreateAsync(user, model.Password);

 // Assign the user to the 'RegisteredUser' role.
 await UserManager.AddToRoleAsync(user, "RegisteredUser");

 // Remove Lockout and E-Mail confirmation
 user.EmailConfirmed = true;
 user.LockoutEnabled = false;

 // persist the changes into the Database.
 DbContext.SaveChanges();

 // return the newly-created User to the client.
 return Json(user.Adapt<UserViewModel>(),
 JsonSettings);
 }
 #endregion
 }
}

There's nothing really new here, as we used the same approach for adding quizzes,
questions, answers, and results.

UserViewModel
From Solution Explorer, right-click to the /ViewModels/ folder, add a new
UserViewModel.cs C# class, and fill it with the following content:

using Newtonsoft.Json;

namespace TestMakerFreeWebApp.ViewModels
{
 [JsonObject(MemberSerialization.OptOut)]
 public class UserViewModel
 {

www.EBooksWorld.ir

Advanced Topics Chapter 9

[439]

 #region Constructor
 public UserViewModel()
 {

 }
 #endregion

 #region Properties
 public string UserName { get; set; }
 public string Password { get; set; }
 public string Email { get; set; }
 public string DisplayName { get; set; }
 #endregion
 }
}

The view model is also pretty standard; it just contains the fields that we need to create the
new user entity and save it to the database.

Client-side tasks
We already know what we need to do in Angular: define a new user interface to reflect the
UserViewModel we added on the server side, create the RegisterComponent, reference it
in the AppModule, add a route to handle user registration and place a link somewhere to
make non-logged in users aware about the fact they can create an account if they want to.

Let's do this.

The user interface
From Solution Explorer, right-click to the /ClientApp/app/interfaces/ folder and add
a user.ts TypeScript file with the following content:

interface User {
 Username: string;
 Password: string;
 Email: string;
 DisplayName: string;
}

www.EBooksWorld.ir

Advanced Topics Chapter 9

[440]

RegisterComponent
From Solution Explorer, right-click to the /ClientApp/app/components/ folder and
create a new /user/ subfolder; right-click to the new folder, add a
register.component.ts file, and fill it with the following content (the relevant lines are
highlighted):

import { Component, Inject } from "@angular/core";
import { FormGroup, FormControl, FormBuilder, Validators } from
'@angular/forms';
import { Router } from "@angular/router";
import { HttpClient } from "@angular/common/http";

@Component({
 selector: "register",
 templateUrl: "./register.component.html",
 styleUrls: ['./register.component.css']
})

export class RegisterComponent {
 title: string;
 form: FormGroup;

 constructor(private router: Router,
 private fb: FormBuilder,
 private http: HttpClient,
 @Inject('BASE_URL') private baseUrl: string) {

 this.title = "New User Registration";

 // initialize the form
 this.createForm();

 }

 createForm() {
 this.form = this.fb.group({
 Username: ['', Validators.required],
 Email: ['',
 [Validators.required,
 Validators.email]
],
 Password: ['', Validators.required],
 PasswordConfirm: ['', Validators.required],
 DisplayName: ['', Validators.required]
 }, {
 validator: this.passwordConfirmValidator

www.EBooksWorld.ir

Advanced Topics Chapter 9

[441]

 });
 }

 onSubmit() {
 // build a temporary user object from form values
 var tempUser = <User>{};
 tempUser.Username = this.form.value.Username;
 tempUser.Email = this.form.value.Email;
 tempUser.Password = this.form.value.Password;
 tempUser.DisplayName = this.form.value.DisplayName;

 var url = this.baseUrl + "api/user";

 this.http
 .put<User>(url, tempUser)
 .subscribe(res => {
 if (res)
 {
 var v = res;
 console.log("User " + v.Username + " has been
 created.");
 // redirect to login page
 this.router.navigate(["login"]);
 }
 else {
 // registration failed
 this.form.setErrors({
 "register": "User registration failed."
 });
 }
 }, error => console.log(error));
 }

 onBack() {
 this.router.navigate(["home"]);
 }

 passwordConfirmValidator(control: FormControl):any {
 let p = control.root.get('Password');
 let pc = control.root.get('PasswordConfirm');
 if (p && pc) {
 if (p.value !== pc.value) {
 pc.setErrors(
 { "PasswordMismatch": true }
);
 }
 else {
 pc.setErrors(null);

www.EBooksWorld.ir

Advanced Topics Chapter 9

[442]

 }
 }
 return null;
 }

 // retrieve a FormControl
 getFormControl(name: string) {
 return this.form.get(name);
 }

 // returns TRUE if the FormControl is valid
 isValid(name: string) {
 var e = this.getFormControl(name);
 return e && e.valid;
 }

 // returns TRUE if the FormControl has been changed
 isChanged(name: string) {
 var e = this.getFormControl(name);
 return e && (e.dirty || e.touched);
 }

 // returns TRUE if the FormControl is invalid after user changes
 hasError(name: string) {
 var e = this.getFormControl(name);
 return e && (e.dirty || e.touched) && !e.valid;
 }
}

We already know how most of the preceding code actually works, as we effectively used it
in a number of Model-Driven forms back in Chapter 7, Forms and Data Validation; however,
there are a couple of things that require further analysis.

Custom validator
As we can see by looking at the highlighted lines, there are two new validators that we used
to check the email and password given by the user: the Validators.email--which has
obviously been attached to the Email form control--and the
passwordConfirmValidator(), which we attached to the whole FormGroup.

The first one is built-in in Angular, while the latter is a custom validator that we put
together to compare the Password and PasswordConfirm fields and keep the user
informed of their respective value. As we can see, we chose to attach it to the whole form
group, because it needs to check two controls at the same time; hence, we need it to trigger
whenever either of them changes its value.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[443]

The validator itself does nothing fancy; it retrieves the two form controls using the get()
method, then--if both of them exist--compare their values; if they do match, it sets an error
to the PasswordConfirm control, otherwise it clears it. Note how we could've set the error
globally by adding it on the root form control instead, yet we preferred to turn on the red
light over the PasswordConfirm control instead; that way, our users will have a better
visual hint on what they need to do.

Template and style sheet files
In an effort to keep this chapter small, we'll restrain ourselves from pasting the full contents
of the register.component.html and register.component.less files here; they can
be easily downloaded from the book's official GitHub repository.

AppModule
As always, we need to put our new component's references within the
app.module.shared.ts file. A good place for them would be just below the
LoginComponent ones:

[...]

import { LoginComponent } from './components/login/login.component';
import { RegisterComponent } from './components/user/register.component';

[...]

declarations: [
 [...]
 LoginComponent,
 RegisterComponent,

[...]

RouterModule.forRoot([
 { path: 'login', component: LoginComponent },
 { path: 'register', component: RegisterComponent },

[...]

www.EBooksWorld.ir

Advanced Topics Chapter 9

[444]

LoginComponent
Now that our RegisterComponent is ready, we need to find a proper way to tell that to
our users. A good place to start might be adding a Don't have an account? Click here to
create one! link in the LoginComponent. Open the login.component.html file and add
the following:

[...]

<div class="login-link">

 Forgot the password?

</div>
<div class="login-link">
 <a [routerLink]="['/register']">
 Don't have an account? Click here to create one!

</div>

[...]

NavMenu
Last but not least, we need to let our users know that they have to navigate to the
LoginComponent even if they want to create a new account. To do that, open the
navmenu.component.html template file and update the Login label as follows:

[...]

<li *ngIf="!auth.isLoggedIn()"
 [routerLinkActive]="['link-active']">
 <a [routerLink]="['/login']">
 Login /
 Register

[...]

www.EBooksWorld.ir

Advanced Topics Chapter 9

[445]

Testing it up
To properly test what we just did, we can now launch the application in debug mode,
perform a Logout (if needed) and then click on the Login/Register link to access the Login
view:

www.EBooksWorld.ir

Advanced Topics Chapter 9

[446]

From there, click on the Don't have an account? Click here to create one! link to load the
RegisterComponent form:

We can then try to fill the form fields, click on the Register button, and see what happens;
again, in the (un)likely case that we don't get the expected results, we can use the Visual
Studio debugging interface to inspect both the .NET Core and Angular workflows--with the
help of a bunch of breakpoints in the right places.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[447]

Third-party authentication
Allowing users to sign in using their existing credentials is often a great way to drive
additional traffic to our applications, as demonstrated by a number of case studies by
Google, Facebook, and Twitter.

As you might already know, ASP.NET Core Identity comes with a set of handy packages
that will take care of that, saving ourselves from dealing with the relevant amount of
complexity of the OAuth2 authentication flow that we saw back in Chapter 8, Authentication
and Authorization. In this section, we'll demonstrate how we can use its built-in features to
implement some external authentication mechanism using a widely known third-party
provider such as Facebook.

OAuth2 authorization flow
Before we start, let's do a quick recap of how the OAuth2 authorization flow actually works
for a standard web application:

The user asks the web application to login with the external provider X.1.
The web application prompts the user with a pop-up window containing a page2.
directly hosted by the external provider X, from which they can do the following:

Login to X to authenticate themselves there, unless they're not logged
in there
If/when logged in, authorize the web application to use X as the third-
party authentication provider, thus giving it access to the minimum
amount of required user information (name, email, and so on) to allow
that

If the user refuses to either log in to X or to give X the authorization, the popup3.
will close and the authentication process will fail; if they accept, X will send back
an OAuth2 access token.
The web application will immediately consume that OAuth2 access token to fetch4.
the mentioned user information and use them to either create a new account or
login with an existing one, depending on whether this information corresponds
to an existing user or not.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[448]

This is what happens under the hood, regardless of X being Facebook, Google, Twitter, or
anything else. That said, such workflow can be implemented in a number of alternative
ways, which can be grouped into two significant approaches (or, to better say, grant types):

Using an implicit flow, often handled by a client-side SDK written in JavaScript
and made available by the external provider itself
Using an explicit flow, with the help of a set of server-side tools, packages, or
libraries made available by the chosen development framework (such as
ASP.NET Core), third-party packages, or the external provider itself

The explicit flow grant type is also called authorization code flow, because it returns a
unique authorization code that must be used to retrieve the OAuth2 access token, preventing
the latter from being directly exposed to the user and to applications that might have access
to the user's user agent (such as browsers extensions, installed software, and packet
sniffers).

To learn more about the OAuth2 authorization framework, we strongly
suggest reading the following URLs:
Official Page: http:/ /oauth. net/ 2/ .
RFC 6749: https:/ /tools. ietf.org/html/ rfc6749.

Implicit flow versus explicit flow
The main difference between the two grant types is all about how the aforementioned
OAuth2 access token is requested, obtained and handled; in short, how steps 2 and 3 are
actually performed.

In a standard implicit flow, these steps are entirely performed by the client-side part of our
web app--often using a client-side SDK such as the Facebook JavaScript SDK--and the external
provider servers. More specifically:

The pop-up window (step 2) will directly point to the external provider
login/authorization page
After the login and auth, the OAuth2 access token (step 3) will be directly fetched
by the client-side part of our web application and then sent to a dedicated server-
side API controller, which will use it to retrieve the user data and perform the
account creation/login (step 4)

www.EBooksWorld.ir

http://oauth.net/2/
http://oauth.net/2/
http://oauth.net/2/
http://oauth.net/2/
http://oauth.net/2/
http://oauth.net/2/
http://oauth.net/2/
http://oauth.net/2/
http://oauth.net/2/
http://oauth.net/2/
http://oauth.net/2/
http://oauth.net/2/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
http://oauth.net/2/

Advanced Topics Chapter 9

[449]

Conversely, when using an explicit flow grant type such as those provided by
AspNet.Security.OAuth.Providers, Windows SDK for Facebook, or OpenIddict,
these same steps take place in the following way:

The pop-up window (step 2) will point to a server-side intermediate page of our
app, which will then redirect the user to the external provider login/authorization
page
After the login and auth, the external provider will redirect the user to a specific
callback URL along with an authorization code that will be used by the server-side
part of our application to retrieve the actual OAuth2 access token (step 3) and
then immediately use it to retrieve the user data and perform the account
creation/login (step 4)

Either of these approaches is viable enough; however, they both have their pros and cons in
terms of security and versatility, depending on the given scenario.

Implicit flow pros and cons
Implementing an implicit flow with an official client-side SDK released by the third-party
provider is almost a walk in the park, even in Angular; we just have to find a way to
implement a small, yet required amount of external JavaScript within our client-side code
and load the external JS libraries without messing up the Angular components life cycle--or
the page DOM--and we're set.

On top of that, the overall results will most likely look great; the required pop-up window
will open (and close) in the best possible way, without size mismatches or other UI/UX
issues, and without any hack (that we're aware of).

However, such an approach also comes with a few downsides: our users will be able to
receive their access tokens, along with whatever can spy, hack, sniff, or impersonate them;
additionally, it will also force us to write a certain amount of dedicated client-side code for
each supported provider, which might be far from ideal if we want to support a whole lot of
them.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[450]

Explicit flow pros and cons
The explicit flow approach is the most commonly used in server-side web applications for a
number of good reasons: the auth source code is not publicly exposed, the client SecretC
confidentiality can be maintained, and the whole process is definitely more secure due to
the presence of the authorization code, that is nothing less than an additional security layer.

On top of that, in our given scenario, we can rely on an excellent server-side tool--the
Microsoft.AspNetCore.Identity service--which natively supports a wide bunch of
external providers, including Facebook, Google, Twitter, and so on. All we need to do is
implement a couple of action methods in our existing TokenController.

The only real downside about that is the fact that it is still a flow based upon browser
redirection, which means that the application must be capable of interacting with the user
agent (also known as the web browser); open the login/auth pop-up (with a proper size),
receive API authorization codes that are routed through the browser, close that pop-up, and
so on. Although this is hardly an issue in standard MVC web applications, it's definitely
way more complicated when dealing with Angular and single-page applications; although
it can be definitely forced into that, the developer will eventually have to pull off a small,
yet consistent number of nasty workarounds; it won't be an out-of-the-box experience, that's
for sure.

Conclusions
There's not much to say; both approaches have their pros and cons, hence they're equally
useful for the tutorial purposes of this book. That's why we'll implement both of them in
order to give the reader the best possible learning experience.

Logging in with Facebook
Let's start with the big whale of the social networks. As we might already know, the Login
with Facebook feature requires us to create a dedicated Facebook app and connect it to our
web application using secure endpoints; by doing that, we'll also obtain the AppId and
AppSecret that we can use to perform our first request against Facebook's OAuth2
authentication workflow.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[451]

Creating the Facebook app
The first thing we need to do is to create the Facebook app. Doing that is just as easy as
following the mentioned steps:

Go to the Facebook Developer page at https://developers.facebook.com/.1.

In order to access most of the Facebook Developer page's features, we
need to log in using a Facebook Developer Account; to achieve such
status, depending on the Facebook policies for your country, you might be
asked to verify your identity using a mobile number or a credit card. For
detailed information about upgrading your account to a Facebook
Developer Account, you can take a look at https:/ /www. facebook. com/
help/ 167551763306531.

Once inside, click on Add a New App:, select Website, fill in the required fields,2.
and click on Create App ID:

www.EBooksWorld.ir

https://developers.facebook.com/
https://www.facebook.com/help/167551763306531
https://www.facebook.com/help/167551763306531
https://www.facebook.com/help/167551763306531
https://www.facebook.com/help/167551763306531
https://www.facebook.com/help/167551763306531
https://www.facebook.com/help/167551763306531
https://www.facebook.com/help/167551763306531
https://www.facebook.com/help/167551763306531
https://www.facebook.com/help/167551763306531
https://www.facebook.com/help/167551763306531
https://www.facebook.com/help/167551763306531
https://www.facebook.com/help/167551763306531

Advanced Topics Chapter 9

[452]

It's worth saying that external provider web platforms are subject to
frequent and major changes; the actual pages and forms might be different
from those depicted by the screenshots made at the time of writing.

As soon as we get past the CAPTCHA, a new Facebook app will be added to our3.
account, and we'll be automatically brought to the Add Products selection screen.
Once there, we should be able to add a new Facebook Login product by selecting4.
the appropriate card and clicking on the Set Up button:

We should then be prompted by a wizard-like view where you can choose between various
platforms: iOS, Android, Web, and Other; we can choose Web and go ahead.

In the following wizard-like screen, we'll be asked for our main website URL. Ensure that
you specify the development URL there, including the port:

http://localhost:14600/

This step is very important for both implicit and explicit flows; all the
HTTP requests coming from any other URL will be rejected by Facebook.
It goes without saying that we'll have to change it as soon as we'll publish
our app, but that will go for now.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[453]

In the subsequent parts of the wizard, we'll be given the chance to read about the Facebook
JavaScript SDK, which is the client-side framework made by Facebook with the intent to
provide web developers a standard, easy-to-use interface to implement the whole auth
process to their website. Take a good look at those sample code lines, because that's
precisely what we'll use when implementing our implicit flow, with some minor changes to
make them work in Angular.

Once done, select the Facebook Login | Settings link from the left menu. From there, we
can enter our production and development URIs with the /auth/signin-facebook route
suffix in the Valid OAuth Redirect URIs input field:

We're free to chose a different route if we prefer to, as long as we'll configure it within our
web application later on. Anyway, when we're done, we can click on Save Changes and go
ahead.

Again, this is a very important step for explicit flow only, as implicit flow
won't use them; the good news here is that we can specify multiple URIs;
hence, we can add the development and production host names right from
the start.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[454]

By clicking on the Settings link in the left navigation menu, we can retrieve the AppId and
AppSecret of our Facebook App--ensure that you write them down--and configure some
additional information regarding our Facebook App: the Display Name, the App Icon, the
WebSite URL we entered a short while ago, and so on. None of them are required, so we
can skip everything and click on the App Review link, where we have the chance to make
our app available to the public. All we need to do here is to turn the switch on:

As soon as we do that, we will see a list of Approved Items, containing the default
information we'll be able to access when our users will confirm their choice to log in to our
site with Facebook; as we can see, the first one among them is the user email address, which
we'll need soon enough.

Implicit flow
Let's start with implementing our implicit flow. Here's a brief list of what we need to do:

Add a Facebook() action method to our existing TokenController where we'll
use the access token to fetch the user data from the Facebook API and use it to
perform the login or registration accordingly
Create a login.facebook.ts component--and its .html template file--to load
the Facebook SDK in our Angular SPA and create the required UI stuff

www.EBooksWorld.ir

Advanced Topics Chapter 9

[455]

Updating TokenController
From Solution Explorer, navigate to the /Controllers/ folder; then, open the
TokenController.cs file and add the following action method:

[HttpPost("Facebook")]
public async Task<IActionResult>
Facebook([FromBody]ExternalLoginRequestViewModel model)
{
 try
 {
 var fbAPI_url = "https://graph.facebook.com/v2.10/";
 var fbAPI_queryString = String.Format(
 "me?scope=email&access_token={0}&fields=id,name,email",
 model.access_token);
 string result = null;

 // fetch the user info from Facebook Graph v2.10
 using (var c = new HttpClient())
 {
 c.BaseAddress = new Uri(fbAPI_url);
 var response = await c
 .GetAsync(fbAPI_queryString);
 if (response.IsSuccessStatusCode)
 {
 result = await response.Content.ReadAsStringAsync();
 }
 else throw new Exception("Authentication error");
 };

 // load the resulting Json into a dictionary
 var epInfo = JsonConvert.DeserializeObject<Dictionary<string,
 string>>(result);
 var info = new UserLoginInfo("facebook", epInfo["id"],
 "Facebook");

 // Check if this user already registered himself with this
 external provider before
 var user = await UserManager.FindByLoginAsync(
 info.LoginProvider, info.ProviderKey);
 if (user == null)
 {
 // If we reach this point, it means that this user never
 tried to logged in
 // using this external provider. However, it could have
 used other providers
 // and /or have a local account.
 // We can find out if that's the case by looking for his e-

www.EBooksWorld.ir

Advanced Topics Chapter 9

[456]

 mail address.

 // Lookup if there's an username with this e-mail address
 in the Db
 user = await UserManager.FindByEmailAsync(epInfo["email"]);
 if (user == null)
 {
 // No user has been found: register a new user using
 the info
 // retrieved from the provider
 DateTime now = DateTime.Now;
 var username = String.Format("FB{0}{1}",
 epInfo["id"],
 Guid.NewGuid().ToString("N"));
 user = new ApplicationUser()
 {
 SecurityStamp = Guid.NewGuid().ToString(),
 // ensure the user will have an unique username
 UserName = username,
 Email = epInfo["email"],
 DisplayName = epInfo["name"],
 CreatedDate = now,
 LastModifiedDate = now
 };

 // Add the user to the Db with a random password
 await UserManager.CreateAsync(user,
 DataHelper.GenerateRandomPassword());

 // Assign the user to the 'RegisteredUser' role.
 await UserManager.AddToRoleAsync(user,
 "RegisteredUser");

 // Remove Lockout and E-Mail confirmation
 user.EmailConfirmed = true;
 user.LockoutEnabled = false;

 // Persist everything into the Db
 DbContext.SaveChanges();
 }
 // Register this external provider to the user
 var ir = await UserManager.AddLoginAsync(user, info);
 if (ir.Succeeded)
 {
 // Persist everything into the Db
 DbContext.SaveChanges();
 }
 else throw new Exception("Authentication error");

www.EBooksWorld.ir

Advanced Topics Chapter 9

[457]

 }

 // create the refresh token
 var rt = CreateRefreshToken(model.client_id, user.Id);

 // add the new refresh token to the DB
 DbContext.Tokens.Add(rt);
 DbContext.SaveChanges();

 // create & return the access token
 var t = CreateAccessToken(user.Id, rt.Value);
 return Json(t);
 }
 catch (Exception ex)
 {
 // return a HTTP Status 400 (Bad Request) to the client
 return BadRequest(new { Error = ex.Message });
 }
}

Don't forget to add the following required reference at the start of the file:

using System.Net.Http;

The included comments should explain it all; however, it can't hurt to briefly summarize
what we did:

We use the OAuth2 access token--which we plan to receive from our Angular app--
to request the user ID, name, and email address from the Facebook API.
Once we retrieve the information, we use the user email address to check
whether the user already exists in our identity data model or not. If it doesn't, we
create a new user, register the external provider, and perform the login;
otherwise, we just register the external provider and perform the login.

As we might note, when we create a new user, we're forced to create a "unique" username,
as it's a required field; the method we used--the "FB" string prefix + the facebook unique ID
+ a random Guid without the dashes--will ensure its uniqueness among the database. Other
than that, there are no surprises--the code lines that generate the access/refresh JWT tokens
and return the TokenResponseViewModel are nothing new.

However, there's a single line--the highlighted one--that will raise an exception; there's no
DataHelper.GenerateRandomPassword() method out there. As a matter of fact, there is
no DataHelper class as well! That's definitely true; we still need to add it.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[458]

Adding the GenerateRandomPassword() method
The username isn't the only "missing" required field we need to take care of when a user
registers themselves with a third-party provider, and we want to create their account to our
existing identity data model; we also need to generate a password.

Such a task is not trivial as it might seem, for at least two reasons:

We cannot set up a weak password, otherwise other users might be able to break
into that user's account
We cannot set up a weak password, because the ASP.NET Core Identity will
refuse it

More specifically, if we recall correctly, what we did back in Chapter 8, Authentication and
Authorization, when we added the Identity service to the Startup.cs file, we need a
password with at least a digit, a lowercase character, an uppercase character, and a
minimum length of seven. The uppercase/lowercase requirements will even cut out our
usual "random GUIDs" way of doing (sample) things, unless we want to add or replace
some characters manually.

Long story short, the best thing we can do is to implement a quick-and-simple password
generator helper function that will generate them according to our standards. From
Solution Explorer, right-click on the /Data/ folder, add a new DataHelper.cs file, and
fill it with the following content:

using Microsoft.AspNetCore.Identity;
using System;
using System.Collections.Generic;
using System.Linq;

namespace TestMakerFreeWebApp.Data
{
 public static class DataHelper
 {
 /// <summary>
 /// Generates a Random Password
 /// respecting the given strength requirements.
 /// </summary>
 /// <param name="opts">A valid PasswordOptions object
 /// containing the password strength requirements.</param>
 /// <returns>A random password</returns>
 public static string GenerateRandomPassword(PasswordOptions
 opts = null)
 {
 if (opts == null) opts = new PasswordOptions()
 {

www.EBooksWorld.ir

Advanced Topics Chapter 9

[459]

 RequiredLength = 7,
 RequiredUniqueChars = 4,
 RequireDigit = true,
 RequireLowercase = true,
 RequireNonAlphanumeric = false,
 RequireUppercase = true
 };

 string[] randomChars = new[] {
 "ABCDEFGHJKLMNOPQRSTUVWXYZ", // uppercase
 "abcdefghijkmnopqrstuvwxyz", // lowercase
 "0123456789", // digits
 "!@$?_-" // non-alphanumeric
 };
 Random rand = new Random(Environment.TickCount);
 List<char> chars = new List<char>();

 if (opts.RequireUppercase)
 chars.Insert(rand.Next(0, chars.Count),
 randomChars[0][rand.Next(0,
 randomChars[0].Length)]);

 if (opts.RequireLowercase)
 chars.Insert(rand.Next(0, chars.Count),
 randomChars[1][rand.Next(0,
 randomChars[1].Length)]);

 if (opts.RequireDigit)
 chars.Insert(rand.Next(0, chars.Count),
 randomChars[2][rand.Next(0,
 randomChars[2].Length)]);

 if (opts.RequireNonAlphanumeric)
 chars.Insert(rand.Next(0, chars.Count),
 randomChars[3][rand.Next(0,
 randomChars[3].Length)]);

 for (int i = chars.Count; i < opts.RequiredLength
 || chars.Distinct().Count() < opts.RequiredUniqueChars;
 i++)
 {
 string rcs = randomChars[rand.Next(0,
 randomChars.Length)];
 chars.Insert(rand.Next(0, chars.Count),
 rcs[rand.Next(0, rcs.Length)]);
 }

 return new string(chars.ToArray());

www.EBooksWorld.ir

Advanced Topics Chapter 9

[460]

 }
 }
}

That will do for now.

Adding LoginFacebookComponent
It's time to switch to Angular. From Solution Explorer, right-click to the
/ClientApp/app/components/login/ folder, add a new
login.facebook.component.ts file, and fill it with the following content:

import { Component, Inject, OnInit, NgZone, PLATFORM_ID } from
"@angular/core";
import { isPlatformBrowser } from '@angular/common';
import { HttpClient } from "@angular/common/http";
import { Router } from "@angular/router";
import { AuthService } from '../../services/auth.service';

// declare these vars here
// to let the TS compiler know that they exist
declare var window: any;
declare var FB: any;

@Component({
 selector: "login-facebook",
 templateUrl: "./login.facebook.component.html"
})

export class LoginFacebookComponent implements OnInit {

 constructor(
 private http: HttpClient,
 private router: Router,
 private authService: AuthService,
 // inject the local zone
 private zone: NgZone,
 @Inject(PLATFORM_ID) private platformId: any,
 @Inject('BASE_URL') private baseUrl: string) {
 }

 ngOnInit() {
 if (!isPlatformBrowser(this.platformId)) {
 return;
 }

www.EBooksWorld.ir

Advanced Topics Chapter 9

[461]

 if (typeof (FB) === 'undefined') {

 // if the FB oject is undefined,
 // it means that it's the first time
 // we visit this page, hence we need
 // to initialize the Facebook SDK
 window.fbAsyncInit = () =>

 // be sure to do this within
 // the local zone, or Angular will be
 // unable to find the local references
 this.zone.run(() => {
 FB.init({
 appId: '---YOUR-APP-ID---',
 xfbml: true,
 version: 'v2.10'
 });
 FB.AppEvents.logPageView();

 // this will trigger right after the user
 // completes the FB SDK Auth roundtrip successfully
 FB.Event.subscribe('auth.statusChange', (
 (result: any) => {
 console.log("FB auth status changed");
 console.log(result);
 if (result.status === 'connected') {
 // login successful
 console.log('Connected to Facebook.');
this.onConnect(result.authResponse.accessToken);
 }
 })
);
 });

 // Load the SDK js library (only once)
 (function (d, s, id) {
 var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) { return; }
 js = d.createElement(s); js.id = id;
 (<any>js).src = "//connect.facebook.net/en_US/sdk.js";
 fjs.parentNode!.insertBefore(js, fjs);
 }(document, 'script', 'facebook-jssdk'));

 }
 else {

 // Reload the FB login button
 window.FB.XFBML.parse();

www.EBooksWorld.ir

Advanced Topics Chapter 9

[462]

 // if the user is still connected, log him off.
 FB.getLoginStatus(function (response: any) {
 if (response.status === 'connected') {
 FB.logout(function (res: any) {
 // do nothing
 });
 }
 });

 }
 }

 // this method will be executed
 // upon the user FB SDK Auth roundtrip completion
 // to create/login the local user
 onConnect(accessToken: string) {
 // call TokenController and register/login
 var url = this.baseUrl + "api/token/facebook";
 var data = {
 access_token: accessToken,
 client_id: this.authService.clientId
 };
 this.http.post<TokenResponse>(
 url, data)
 .subscribe(res => {
 if (res) {
 console.log('Login successful.');
 console.log(res);
 // store user login data
 this.authService.setAuth(res);

 // redirect user to home
 this.router.navigate(["home"]);
 }
 else {
 console.log("Authentication failed");
 }
 }, error => console.log(error));
 }
}

www.EBooksWorld.ir

Advanced Topics Chapter 9

[463]

There are four highlighted blocks of code here. Let's see what they do:

Block #1: We declare two variables of any type here, so we can use them within
the rest of the component without triggering the compiler. Alternatively, we can
have the Facebook SDK typings added to our project or (even better) use one of
the many Facebook SDK TypeScript wrappers that can be easily found on GitHub.
We didn't do that because we want to be as lightweight and unobtrusive as
possible; it's just a demonstration of how we can implement it, after all. We'll
leave the reader the chance and the fun to further improve it.
Block #2: This is where we put the Facebook SDK official code that we've seen
when we created the Facebook App; since it will have a permanent effect on the
client, it will be executed only upon the first load; otherwise, Block #3 will be
executed instead. If we don't consider the comments, the source code is almost
identical to the suggested one, except for a couple of small modifications to make
it compatible with our Angular application:

The whole fbAsyncInit event handler has been wrapped within
the main Angular zone so that the component context will be
preserved and the local function references will work. Okay, that's
good to hear...except that we don't know what an Angular zone is
yet! Don't worry, we'll talk more about that later on.
We added a subscription to the auth.statusChange FB event,
that will trigger every time the user status changes from connected
to disconnected (and vice versa) to our Facebook app using the
Facebook SDK. That's the most convenient way to know when the
login round trip has been concluded successfully and we can
proceed with registering and/or authenticating the user locally.

Block #3: This is what happens when the user comes back here after a successful
(or not successful) login; we refresh the Facebook button skin, and we log out the
user from our FB App if he's still logged in. The logic behind this conditional
logout is very simple--the login page is unaccessible by design for our local
logged-in users, hence if a user comes here, it should always be treated as
anonymous, even by the FB app.
Block #4: The onConnect() method gets called upon each successful login to the
FB app, and it's entrusted with three main tasks: passing the OAuth2 access token
to the server, receiving the JWT access and refreshing tokens in exchange, and
using them to locally perform the login.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[464]

IMPORTANT: Don't forget to replace the ---YOUR-APP-ID--- placeholder
with your Facebook AppID within the Block #2 source code!

It's plain and simple, isn't it? Well, except for that short, yet rather obscure, piece of code
where we execute a function within a given zone. Let's try to understand what we're doing
there.

Understanding zones
If we take another look at the constructor source code, we can see that we're injecting
something new here: a zone instance of NgZone type, that we can use thanks to the
reference to the NgZone class we put in the first import code line. What are these zones,
and how do they work in Angular?

To get straight to the point, zones are execution contexts for encapsulating and intercepting
JavaScript-based asynchronous activities. Each zone acts as a separate, persisting execution
context that can be used to trace each asynchronous activity back to its originating source.

For a short yet enlightening definition of what zones are, we can use the words of Brian
Ford of the Angular team during the presentation of the Zone.js library at Ng-Conf 2014:

"You can think of it as thread-local storage for JavaScript VMs."

The full talk is available at https:/ / www.youtube. com/watch? v=
3IqtmUscE_ U.

As we already know, most modern JavaScript libraries execute a lot of asynchronous
activities, such as DOM events, promises, and XHR calls. Being able to track these activities
back to their issue will allow them to take action before and after each activity completes,
thus providing great control over the whole execution flow.

This is most likely the reason that led Angular developers to integrate the Zone.js within
their framework. As a matter of fact, Angular runs the application and all of its components
in a specific zone, so it can listen to its own asynchronous events and react accordingly,
checking for data changes, updating the information shown on screen via data binding, and
so on.

www.EBooksWorld.ir

https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U
https://www.youtube.com/watch?v=3IqtmUscE_U

Advanced Topics Chapter 9

[465]

We won't go further than that, as it will take us far from the scope of this book. The only
thing we need to understand here is that whenever we need to call one of our application's
methods from outside, we also need to run it within the Angular zone; if we don't do that,
Angular won't be able to track the originating source, meaning that it won't react to model
changes, won't be able to track the references to the component methods, and so on.

In our specific scenario, since we're using the this.onConnect() method--which also
plays with Angular services such as HttpClient and Routing--we definitely need to run
our job within the same execution context used by our application.

This is precisely what we did within our OnInit() method (zone-encapsulation lines are
highlighted):

[...]

window.fbAsyncInit = () =>
 // be sure to do this within
 // the local zone, or Angular will be
 // unable to find the local references
 this.zone.run(() => {

 // ... async code within the Angular zone ...

 });

[...]

For more information about the NgZone class and zone concept in general,
we strongly suggest to read the related content within the official Angular
documentation website, at https:/ /angular. io/ api/ core/ NgZone.

Adding the template file
Let's now add the component's template file, that contains the Login with Facebook button.
Create a new login.facebook.component.html file in the same folder of the preceding
.ts file and fill it with the following content:

<div class="fb-login-button"
 data-max-rows="1"
 data-size="medium"
 data-button-type="login_with"
 data-show-faces="false"
 data-auto-logout-link="false"
 data-use-continue-as="false"

www.EBooksWorld.ir

https://angular.io/api/core/NgZone
https://angular.io/api/core/NgZone
https://angular.io/api/core/NgZone
https://angular.io/api/core/NgZone
https://angular.io/api/core/NgZone
https://angular.io/api/core/NgZone
https://angular.io/api/core/NgZone
https://angular.io/api/core/NgZone
https://angular.io/api/core/NgZone
https://angular.io/api/core/NgZone
https://angular.io/api/core/NgZone
https://angular.io/api/core/NgZone
https://angular.io/api/core/NgZone

Advanced Topics Chapter 9

[466]

 data-scope="public_profile,email"
 ></div>

In case we don't like how it looks, we can generate our very own Facebook Login button
from https://developers. facebook. com/ docs/ facebook- login/ web/ login- button/ .

Just ensure to respect the value of the data-scope attribute, as these are the user
information relevant fields that our TokenController will need to retrieve in order to
perform its stuff.

Updating AppModule
Once done, we have to register the new component within the app.module.shared.ts
file, just like we did a hundred times already (new lines are highlighted):

[...]

import { LoginComponent } from './components/login/login.component';
import { LoginFacebookComponent } from
'./components/login/login.facebook.component';

@NgModule({
 declarations: [

[...]

 LoginComponent,
 LoginFacebookComponent,

[...]

Linking LoginFacebookComponent
Last but not least, we need to edit the login.component.html file and add the <login-
facebook></login-facebook> element to the end of our existing login form:

[...]

<div class="login-link">
 <a [routerLink]="['/register']">
 Don't have an account? Click here to create one!

</div>
<login-externalproviders></login-externalproviders>

[...]

www.EBooksWorld.ir

https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/
https://developers.facebook.com/docs/facebook-login/web/login-button/

Advanced Topics Chapter 9

[467]

That way, the Login with Facebook button will be shown immediately after the standard
login UI interface.

Testing it up
We can now launch the application in debug mode, wait until we see the Home view, and
then perform the logout (in case we're still logged in from before).

Once done, we can navigate to the Login/Register view and try to use the new Login with
Facebook button--assuming that we have a valid FB account--to see what happens.
Needless to say, we can follow the whole authentication workflow with the Visual Studio
interface by placing the appropriate breakpoints within the various .NET Core and Angular
methods we just added.

The Visual Studio client-side debugger isn't always reliable within non-
angular async JS code, even when encapsulated within the Angular zone.
There's a high chance to run into some issues here and there; if it happens,
try to restart Visual Studio, maybe after having cleaned up some system
resources.

Explicit flow
Here's the summary of the required tasks to set up our explicit flow:

Install the Microsoft.AspNetCore.Authentication.Facebook package
using NuGet
Set up and configure the Facebook Authentication service in the Startup class
Include the Facebook Client ID and Client Secret keys in our appsettings.json
file
Add the required action methods to our existing TokenController class
Create a login.externalproviders.component.ts Angular component--and
its .html template file--to perform the required client-side tasks that will trigger
the whole thing

Let's do this.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[468]

Installing the Authentication.Facebook package
As always, the best way to install the package is using the NuGet command-line interface
within the Visual Studio's Package Manager Console. From there, type the following:

add package Microsoft.AspNetCore.Authentication.Facebook

At the time of writing, the package's latest stable version is 2.0.0. As
always, the reader is free to either stick to the recommended release or to
try a newer version, as long as he can handle the upgrade.

Setting up the Facebook Authentication service
Once NuGet is done, open the Startup.cs file, scroll down until we reach the
ConfigureServices method, and add the Facebook service in the following way (relevant
lines are highlighted):

[...]

// Add Authentication
services.AddAuthentication(opts =>
{
 opts.DefaultScheme = JwtBearerDefaults.AuthenticationScheme;
 opts.DefaultAuthenticateScheme =
JwtBearerDefaults.AuthenticationScheme;
 opts.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;
})
// Add Jwt token support
.AddJwtBearer(cfg =>
{
 cfg.RequireHttpsMetadata = false;
 cfg.SaveToken = true;
 cfg.TokenValidationParameters = new TokenValidationParameters()
 {
 // standard configuration
 ValidIssuer = Configuration["Auth:Jwt:Issuer"],
 IssuerSigningKey = new SymmetricSecurityKey(
 Encoding.UTF8.GetBytes(Configuration["Auth:Jwt:Key"])),
 ValidAudience = Configuration["Auth:Jwt:Audience"],
 ClockSkew = TimeSpan.Zero,

 // security switches
 RequireExpirationTime = true,
 ValidateIssuer = true,
 ValidateIssuerSigningKey = true,

www.EBooksWorld.ir

Advanced Topics Chapter 9

[469]

 ValidateAudience = true
 };
 cfg.IncludeErrorDetails = true;
})
// Add Facebook support
.AddFacebook(opts =>
{
 opts.AppId = Configuration["Auth:Facebook:AppId"];
 opts.AppSecret = Configuration["Auth:Facebook:AppSecret"];
});

[...]

We already knew that the authentication services can be chained; we already did that with
our JwtBearer service back in Chapter 8, Authentication and Authorization. While we were
there, we also took the chance to update the source code comments to better explain what's
going on.

Note that we only used a small set of the available FacebookOptions
supported by the service; to know more about them, we strongly suggest
to take a look at the official API reference at https:/ / docs. microsoft.
com/ aspnet/ core/ api/ microsoft. aspnetcore. builder.
facebookoptions.

Updating the appsettings.json file
The next thing to do is to define the Configuration keys we just added within the
Startup.cs file in the appsettings.json file, just after the already existing Jwt entry:

"Auth": {
 "Jwt": {
 "Issuer": "http://www.testmakerfree.com/",
 "Audience": "http://www.testmakerfree.com/",
 "Key": "---your-jwt-key---",
 "TokenExpirationInMinutes": 120
 },
 "Facebook": {
 "AppId": "---your-app-id---",
 "AppSecret": "---your-app-secret---"
 }
},

www.EBooksWorld.ir

https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions
https://docs.microsoft.com/aspnet/core/api/microsoft.aspnetcore.builder.facebookoptions

Advanced Topics Chapter 9

[470]

IMPORTANT: Storing these values in plain text inside the
appsettings.json file is not recommended, because they can be easily
accessed by unauthorized people (network admins, server admins, and so
on) or even checked into some public source control repositories by some
developer's mistake. There are better alternatives nowadays, such as the
Secret Manager Tool, granting a better level of security. For more
information about how to use it, it's highly advisable to carefully read the
following guide from the official ASP.NET Core documentation website,
at https:/ / docs. asp. net/ en/ latest/ security/ app- secrets. html.

Upgrading TokenController
Now that we have all the relevant stuff ready, we need to implement the only server-side
part of the explicit flow that isn't managed by ASP.NET Core Identity: two brand-new action
methods that will do as follows, respectively:

Redirect the user to the external provider login page with the appropriate
ReturnURL, where they can login and/or give the required permissions
Respond to the ReturnURL HTTP request when the user will be redirected back
by the external provider to our web application--along with the authorization code
that will be used to retrieve their information and login/register them accordingly

Since both of these methods will eventually need to generate our JWT access and refresh
tokens, the best place to add them is definitely the TokenController.

The ExternalLogin method
Let's start with the first one:

[HttpGet("ExternalLogin/{provider}")]
public IActionResult ExternalLogin(string provider, string returnUrl =
null)
{
 switch (provider.ToLower())
 {
 case "facebook":
 // case "google":
 // case "twitter":
 // todo: add all supported providers here

 // Redirect the request to the external provider.
 var redirectUrl = Url.Action(
 nameof(ExternalLoginCallback),

www.EBooksWorld.ir

https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html
https://docs.asp.net/en/latest/security/app-secrets.html

Advanced Topics Chapter 9

[471]

 "Token",
 new { returnUrl });
 var properties =
 SignInManager.ConfigureExternalAuthenticationProperties(
 provider,
 redirectUrl);
 return Challenge(properties, provider);
 default:
 // provider not supported
 return BadRequest(new {
 Error = String.Format("Provider '{0}' is not
 supported.", provider)
 });
 }
}

The code is quite straightforward. The first thing we're doing here is checking whether the
given provider is among those supported by our application; if that's the case, we redirect
the request to the external provider using a dedicated interface provided by the ASP.NET
Core Identity authentication service; otherwise, we return a Bad Request.

It's worth noting that this controller won't be limited to Facebook; as a matter of fact, it will
act as a common interface to deal with (almost) any external provider we might like to add
in the future, as long as it's supported by ASP.NET Core.

Adding SignInManager
If we try to compile our project, the preceding code will produce a warning due to the
SignInManager object reference being unknown. In order to fix that, we need to add
another object instance to our handlers team--the SignInManager--which provides the
aforementioned common interface to handle the external providers authentication flow.

We can do that on our BaseApiController, like we always did in the past; however,
considering the fact that it will likely be used within the TokenController only, it's
probably better to just add it there by tweaking the constructor method as shown (new lines
are highlighted):

#region Constructor
public TokenController(
 ApplicationDbContext context,
 RoleManager<IdentityRole> roleManager,
 UserManager<ApplicationUser> userManager,
 SignInManager<ApplicationUser> signInManager,
 IConfiguration configuration
)

www.EBooksWorld.ir

Advanced Topics Chapter 9

[472]

 : base(context, roleManager, userManager, configuration)
{
 SignInManager = signInManager;
}
#endregion

Also, by adding the following property right after:

#region Properties
protected SignInManager<ApplicationUser> SignInManager { get; private set;
}
#endregion

The ExternalLoginCallback method
It's now time to add the second action method--the one that will receive the HTTP
redirection from the external provider with the authorization code and act accordingly:

[HttpGet("ExternalLoginCallback")]
public async Task<IActionResult> ExternalLoginCallback(
 string returnUrl = null, string remoteError = null)
{
 if (!String.IsNullOrEmpty(remoteError))
 {
 // TODO: handle external provider errors
 throw new Exception(String.Format("External Provider error:
 {0}", remoteError));
 }

 // Extract the login info obtained from the External Provider
 var info = await SignInManager.GetExternalLoginInfoAsync();
 if (info == null)
 {
 // if there's none, emit an error
 throw new Exception("ERROR: No login info available.");
 }

 // Check if this user already registered himself with this external
 provider before
 var user = await UserManager.FindByLoginAsync(info.LoginProvider,
 info.ProviderKey);
 if (user == null)
 {
 // If we reach this point, it means that this user never tried
 to logged in
 // using this external provider. However, it could have used
 other providers
 // and /or have a local account.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[473]

 // We can find out if that's the case by looking for his e-mail
 address.

 // Retrieve the 'emailaddress' claim
 var emailKey =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress";
 var email = info.Principal.FindFirst(emailKey).Value;

 // Lookup if there's an username with this e-mail address in
 the Db
 user = await UserManager.FindByEmailAsync(email);
 if (user == null)
 {
 // No user has been found: register a new user
 // using the info retrieved from the provider
 DateTime now = DateTime.Now;

 // Create a unique username using the 'nameidentifier'
 claim
 var idKey =
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier";
 var username = String.Format("{0}{1}{2}",
 info.LoginProvider,
 info.Principal.FindFirst(idKey).Value,
 Guid.NewGuid().ToString("N"));

 user = new ApplicationUser()
 {
 SecurityStamp = Guid.NewGuid().ToString(),
 UserName = username,
 Email = email,
 CreatedDate = now,
 LastModifiedDate = now
 };

 // Add the user to the Db with a random password
 await UserManager.CreateAsync(
 user,
 DataHelper.GenerateRandomPassword());

 // Assign the user to the 'RegisteredUser' role.
 await UserManager.AddToRoleAsync(user, "RegisteredUser");

 // Remove Lockout and E-Mail confirmation
 user.EmailConfirmed = true;
 user.LockoutEnabled = false;

 // Persist everything into the Db

www.EBooksWorld.ir

Advanced Topics Chapter 9

[474]

 await DbContext.SaveChangesAsync();
 }
 // Register this external provider to the user
 var ir = await UserManager.AddLoginAsync(user, info);
 if (ir.Succeeded)
 {
 // Persist everything into the Db
 DbContext.SaveChanges();
 }
 else throw new Exception("Authentication error");
 }

 // create the refresh token
 var rt = CreateRefreshToken("TestMakerFree", user.Id);

 // add the new refresh token to the DB
 DbContext.Tokens.Add(rt);
 DbContext.SaveChanges();

 // create & return the access token
 var t = CreateAccessToken(user.Id, rt.Value);

 // output a <SCRIPT> tag to call a JS function
 // registered into the parent window global scope
 return Content(
 "<script type=\"text/javascript\">" +
 "window.opener.externalProviderLogin(" +
 JsonConvert.SerializeObject(t, JsonSettings) +
 ");" +
 "window.close();" +
 "</script>",
 "text/html"
);
}

This is where all the magic takes place, as we'll be checking for a number of things and take
action accordingly. Although we did our best to fill the preceding code with a relevant
amount of comments that should explain well what happens line after line, let's try to
summarize everything:

We check the external provider error message (if any) by looking at the1.
remoteError parameter value. If something went bad, we throw an Exception
here, otherwise, we go ahead.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[475]

We extract the ExternalLoginInfo object using the SignInManager. This is a2.
strongly-typed .NET object containing the response data sent by the external
provider and decrypted by the Authentication.Facebook package of the
ASP.NET Core Identity service. In the unlikely case that it happens to be null, we
throw an Exception, otherwise, we go ahead.
We check whether the user already authenticated himself with this external3.
provider before using the UserManager.FindByLoginAsync method; if that's
the case, we skip to step 8; otherwise, we need to do additional checks. It's the
same approach we used within the Facebook() action method when we
implemented our implicit flow.
We need to check whether the user registered themselves before using different4.
providers. To do so, we retrieve the user email from the ExternalLoginInfo
object so that we can perform a database lookup to see whether we already have
it. If that's the case, we skip to step 7; otherwise, we need to create it.
We create a new user using the data we can retrieve from the relevant5.
ExternalLoginInfo claims, including a temporary (yet unique) username and a
random password that they'll be able to change in the future. We also assign
them the registered user role.
We associate the user with this external provider, so we'll be ready to handle6.
further authentication attempts (skipping steps 5 to 7).
We create our usual TokenResponseViewModel JSON object with the JWT auth7.
and refresh tokens.
However, instead of returning it like we always did before, we output a8.
text/html response containing a <SCRIPT> tag with some JavaScript code that
will be immediately executed by the user agent--arguably within the external
provider pop-up window--to finalize the authentication cycle and close the
popup.

The last step is very important and deserves some explanation. As we've already said more
than once, the OAuth2 explicit flow is an interactive, redirection-driven process where the
user has to manually interact with a consent form. In order to support that, we'll need to call
these controller routes from a client-side pop-up window. That's why we need to call a
function registered within the parent window--the window.opener--and also close the
current one using window.close().

www.EBooksWorld.ir

Advanced Topics Chapter 9

[476]

Wait a minute, are we really sending pure JavaScript code from within an
API controller? Isn't that some kind of a quick-and-dirty hack to make
everything look smooth instead of doing it in a proper way?

As a matter of fact, it definitely is! However, since there's no "proper way"
of doing that in Angular, at least for the time being, we thought that it
would still work for this quick implementation sample. Although there are
some third-party packages in GitHub that can be used to provide Angular
with some sort of native pop up/DOM pop up /modal pop up support, we
restrained ourselves to integrate them here in an attempt to keep our code
base as dry as possible. As always, the reader is highly encouraged to find
a better and more robust solution than the one provided with our sample.

The LoginExternalProvider component
It's time to hop into Angular. From Solution Explorer, right-click to the
/ClientApp/app/components/login/ folder and add a new
login.externalproviders.component.ts file with the following content:

import { Component, Inject, OnInit, NgZone, PLATFORM_ID } from
"@angular/core";
import { isPlatformBrowser } from '@angular/common';
import { HttpClient } from "@angular/common/http";
import { Router } from "@angular/router";
import { AuthService } from '../../services/auth.service';

declare var window: any;

@Component({
 selector: "login-externalproviders",
 templateUrl: "./login.externalproviders.component.html"
})

export class LoginExternalProvidersComponent implements OnInit {

 externalProviderWindow :any;

 constructor(
 private http: HttpClient,
 private router: Router,
 private authService: AuthService,
 // inject the local zone
 private zone: NgZone,
 @Inject(PLATFORM_ID) private platformId: any,

www.EBooksWorld.ir

Advanced Topics Chapter 9

[477]

 @Inject('BASE_URL') private baseUrl: string) {
 }

 ngOnInit() {
 if (!isPlatformBrowser(this.platformId)) {
 return;
 }

 // close previously opened windows (if any)
 this.closePopUpWindow();

 // instantiate the externalProviderLogin function
 // (if it doesn't exist already)
 var self = this;
 if (!window.externalProviderLogin) {
 window.externalProviderLogin = function (auth:
 TokenResponse) {
 self.zone.run(() => {
 console.log("External Login successful!");
 self.authService.setAuth(auth);
 self.router.navigate([""]);
 });
 }
 }
 }

 closePopUpWindow() {
 if (this.externalProviderWindow) {
 this.externalProviderWindow.close();
 }
 this.externalProviderWindow = null;
 }

 callExternalLogin(providerName: string) {
 if (!isPlatformBrowser(this.platformId)) {
 return;
 }

 var url = this.baseUrl + "api/Token/ExternalLogin/" +
 providerName;
 // minimalistic mobile devices support
 var w = (screen.width >= 1050) ? 1050 : screen.width;
 var h = (screen.height >= 550) ? 550 : screen.height;
 var params = "toolbar=yes,scrollbars=yes,resizable=yes,width="
 + w + ", height=" + h;
 // close previously opened windows (if any)
 this.closePopUpWindow();
 this.externalProviderWindow = window.open(url,

www.EBooksWorld.ir

Advanced Topics Chapter 9

[478]

 "ExternalProvider", params, false);
 }
}

Also, here's the login.externalproviders.component.html template file:

<button class="btn btn-sm btn-primary btn-block"
 type="submit"
 (click)="callExternalLogin('Facebook')">

 Login with Facebook
</button>

As we can see, there are many relevant differences between this component and the
login.facebook.component.ts that we added when we implemented our implicit flow.
Let's try to enumerate them:

Instead of relying on an SDK UI button, we're back to a homemade, Angular-
driven, Bootstrap-styled button with a generic callExternalLogin event
handler method. That's not a surprise, we already know that the explicit flow
doesn't require a client-side SDK, since the OAuth2 cycle will be entirely handled
with the server-side API endpoints we added to the TokenController early on.
The great stuff here is that the event handler, just like these APIs, can act as a
common interface with multiple external providers. Theoretically, we can add a
Login with Google and/or a Login with Twitter button with the same
identical approach.
By looking at the callExternalLogin function itself, we can see that it just
opens a pop-up window using plain JavaScript with an HTTP request call to the
ExternalLogin action method. That's also expected; we knew we had to work
around such tasks by ourselves--we addressed it as one of the most relevant flaws
of the explicit flow approach. That said, we did what we could to give a decent
size to that popup for desktop environments, yet it will hardly work well in
mobile browsers; that's definitely an open issue that needs to be fixed.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[479]

The most relevant stuff in the preceding code lies within the ngOnInit()
method; again, we made good use of the Angular zone to include the new
externalProviderLogin function that we attached to the main window object
instance--along with all the internal references--within the Angular context. This
is the cornerstone of the workaround we used to manage the communication
between the pop-up window and the main page. The pop-up window--when
executing the <SCRIPT> tag received from the TokenController's
ExternalLoginCallback response--will look up for that function within its
window.opener, which will reference to the window object instance of our
Angular app.

Updating AppModule
Again, we have to register the new component within the app.module.shared.ts file:

[...]

import { LoginFacebookComponent } from
'./components/login/login.facebook.component';
import { LoginExternalProvidersComponent } from
'./components/login/login.externalproviders.component';

@NgModule({
 declarations: [

[...]

 LoginFacebookComponent,
 LoginExternalProvidersComponent,

[...]

Linking LoginFacebookComponent
Before launching the application in debug mode, ensure to edit the
login.component.html file and replace the <login-facebook></login-facebook>
tag we put there when we implemented the implicit flow with the new component tag:

[...]

<div class="login-link">
 <a [routerLink]="['/register']">
 Don't have an account? Click here to create one!

www.EBooksWorld.ir

Advanced Topics Chapter 9

[480]

</div>
<login-externalproviders></login-externalproviders>

[...]

It's very important to not keep both of them, as these components perform different--yet
intensive--tasks within the page DOM that shouldn't be applied at the same time.

Testing it up
Since the explicit flow runs on the server side for the most part, it can be easily tested by
placing the appropriate breakpoints within the TokenController's new methods; however,
since the client-side app will play a relevant role, it's advisable to keep our eyes open to the
Angular component as well.

The most critical part to debug there will definitely be the externalProviderLogin
function, which is instantiated from the Angular component and then executed by the pop-
up window through the <SCRIPT> tag returned by the server-side API; that's definitely
something we've been doing the unorthodox way, to say the least.

Suggested topics
Token Expiration, Refresh Token, Http Interceptor, Password Validator, Third-Party
Authentication, OAuth2, Implicit Authentication Flow, Explicit Authentication Flow,
Access Token, RFC 6749, OpenID Connect, OpenIddict, Facebook Developer, Facebook
SDK, Angular Zone, NgZone, ASP.NET Core SignInManager, LocalStorage, and Secret
Manager.

Summary
The native web app we developed in the previous chapters was working fine, yet it lacked
some important and rather advanced features that had to be implemented as well in order
to use it in a production-ready application such as the one we're aiming to build. In this
chapter, we took care of some of them, such as token expiration, new user registration, and
third-party authentication.

www.EBooksWorld.ir

Advanced Topics Chapter 9

[481]

Fulfilling the first task took a reasonable amount of time, as we had to perform some
relevant changes within every part of our app: the server-side and the client-side, not to
mention the data model. We had to create a whole new table, expand our current Web API
classes--the TokenController and TokenResponseViewModel--and add another Angular
HttpInterceptor class--similar to the one we already used in Chapter 8 to interact with
our HTTP requests--to deal with the HTTP responses and react accordingly.

Adding the new user registration feature was a rather straightforward process, even though
it also required several server-side and client-side tasks; more specifically, we had to
develop a new UserController web API containing the required logic to add new users
to the ASP.NET Core Identity service, and then consume it with a brand new User
Registration view with a new set of validators--including a custom one to deal with
password checks. While we were there, we also made some cosmetic changes to the
navigation menu items to grant our visitors a better user experience.

Eventually, we tried to use the built-in capabilities of the ASP.NET Core Identity service to
implement some external, OAuth2-based authentication mechanism using a widely-known
third-party provider such as Facebook. We started with carefully evaluating the pros and
cons of the two main authentication flows supported by the OAuth2 protocol and then
further leveraged through the OpenID Connect interface: the implicit flow and the explicit
flow. Right after that, we performed the required steps to implement them both in order to
give the reader the best possible learning experience.

www.EBooksWorld.ir

10
Finalization and Deployment

Our valuable journey through ASP.NET Core and Angular development is coming to an
end. The native web application we've been working on since Chapter 2, Backend with .NET
Core, is now a potentially shippable product, ready to be published in a suitable
environment for evaluation purposes.

However, in order to do that, we need to give our project some finishing touches.

Switching to SQL Server
Although localDB proved itself to be a great development choice, it's not a good idea to
use it in production as well. That's why we'll replace it with SQL Server. As for the chosen
edition, we can either go for Express, Web, Standard, or Enterprise, depending on what we
need and/or can afford.

For the sake of simplicity, we'll use SQL Server 2017 Express Edition, which can be
downloaded for free from https:/ /www. microsoft. com/ en-us/ sql- server/ sql-server-
editions- express.

Needless to say, we need to install it on a machine that is reachable from our web server via
a Local Area Network (LAN) or within the web server itself, although this is definitely not
a recommended choice; both IIS and SQL Server are resource-intensive; hence, it's advisable
to keep them in two separate environments.

www.EBooksWorld.ir

https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express

Finalization and Deployment Chapter 10

[483]

Installing SQL Server 2017 Express
The installation process is pretty straightforward. Unless we don't need anything specific,
we can just go for the basic type:

Eventually, we'll be prompted with an Installation has completed successfully! window,
which will also give us some useful information, including the Database instance name and
a default connection string ready for a connection test:

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[484]

Installing SQL Server Management Studio
From here, we can click on the Install SSMS button and download SQL Server
Management Studio, a tool that we can use to create the TestMakerFree Database and also
a dedicated user to access it.

SQL Server Management Studio is a separate product and can also be
downloaded for free from https:/ / docs. microsoft. com/ en-us/ sql/
ssms/ download- sql- server- management- studio- ssms.

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

Finalization and Deployment Chapter 10

[485]

Configuring the database
Once we've downloaded and installed it, launch the SQL Server Management Studio. We
will be prompted by a Connect to Server modal window that will allow us to connect to
our local SQL Server instance.

To do this, select the Database Engine server type and then, from the Server name drop-
down list, choose <Browse for more...>. Another pop-up window will appear, from which
we'll be able to select the database engine we just installed on our server:

As for the Authentication part, we can leave Windows Authentication for now, it being the
default SQL Server authentication mode; however, we'll change it soon enough.

When we're done, click on the Connect button and a Server Explorer window will appear,
containing a tree view representing the structure of your SQL Server instance. This is the
interface we'll use to create our database and also the user/password that our application
will use to access it.

If you have strong knowledge of SQL Server, you might want to skip the
following steps and configure your instance as you prefer; otherwise, keep
reading.

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[486]

Changing the authentication mode
The first thing we need to do is to change the default SQL Server authentication mode so
that we won't be forced to use an existing Windows account. To do so, right click on the
root tree view node, which represents our SQL Server instance, and select Properties from
the contextual menu. From the modal window that appears, select the Security page and
then switch from Windows Authentication mode to SQL Server and Windows
Authentication mode:

Adding the TestMakerFree database
Now, we can create the Database that will host our application's tables. Right click on the
Databases folder and choose Add Database from the contextual menu. Give it the
TestMakerFree name and click on OK.

Adding the TestMakerFree login
Go back to the root Databases folders, and then expand the Security folder, which
should be just below it. From there, right click on the Logins subfolder and choose New
Login. Again, give it the TestMakerFree name. From the radio button list below, select
SQL Server Authentication, set a suitable password (for example, SamplePassword123),
and then click on OK.

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[487]

If you want a simpler password, such as OpenGameList, you might have
to also disable the enforce password policy option. However, we advise
against doing that; choosing a weak password is never a wise choice,
especially if we do that in a production-ready environment. Instead,
replace the sample password we used earlier with a custom one and store
it carefully, we'll need it later on.

Mapping the login to the database
The next thing we need to do is to properly map this login to the TestMakerFree database
we added earlier. From the navigation menu to the left, switch to the User Mapping tab.
Click on the checkbox to the right of the TestMakerFree database, and then write
TestMakerFree in the User cell and assign the db_owner membership role:

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[488]

As soon as we click on the OK button, a new TestMakerFree user will be added to the
TestMakerFree Database with full administrative rights.

We can easily confirm that by going back to the root Databases folder and expanding it to
TestMakerFree | Security | Users:

That's it! Now we'll be able to access our brand new TestMakerFree database with a
standard connection string using the credentials we just created.

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[489]

Adding a SQL Server connection string
Now that the SQL Server Database has been set up, we need to tell our application to use it
instead of localDb while in production. We can easily do that by leveraging the ASP.NET
Core default pattern for configuring application behavior across multiple environments.

To implement it within our project, we need to perform the following steps:

Copy the existing connection string from the appsettings.json file to the1.
appsettings.Development.json file so that we'll still be able to connect to the
localDb instance when we run the project in debug/development mode. Then,
replace the appsettings.json connection string with a new one, pointing to the
new SQL Server instance so that the web app will connect there when deployed
into production.
Add the production domain URL to the External Providers management panels, so2.
that they'll be able to authorize it for external logins using the OAuth2 protocol.
Update the launchSettings.json file to ensure that the Production3.
environment will be set whenever we publish our project.

Working with the Connection Strings
Open the appsettings.json file, select the ConnectionStrings JSON key (refer to the
following) and copy it to the clipboard:

[...]

"ConnectionStrings": {
 "DefaultConnection": "Data Source=(localdb)\\MSSQLLocalDB;Initial
Catalog=TestMakerFree;Integrated Security=True;
MultipleActiveResultSets=True"
},

[...]

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[490]

Right after that, open the appsettings.Development.json file and paste it right before
the Auth key, as follows:

{
 "ConnectionStrings": {
 "DefaultConnection": "Data Source=(localdb)\\MSSQLLocalDB;Initial
Catalog=TestMakerFree;Integrated Security=True;
MultipleActiveResultSets=True"
 },
 "Auth": {

[...]

Once done, go back to the appsettings.json file and replace the now copied
ConnectionStrings > DefaultConnection value with the following:

"Server=localhost\\SQLEXPRESS;Database=TestMakerFree;User
Id=TestMakerFree;Password=SamplePassword123;Integrated
Security=False;MultipleActiveResultSets=True"

Needless to say, replace SamplePassword123 with the password you've set for the
TestMakerFree login a short while ago.

Adding production URL to External Providers
If we implemented one or more external providers, as described in Chapter 9, Advanced
Topics, and we want them to be working with our production app, we'll most likely have to
add our public facing URL such as www.our-website-url.com, for example to the
allowed JavaScript origins URL list.

If the external provider doesn't allow multiple URLs, we will need to create a whole new
app there--such as TestMakerFree_Production--and set the new keys in the
appsettings.json file as well, leaving the old one configured within the
appsettings.Development.json file.

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[491]

Creating two different apps for development/test and for production is
always a good practice, even if the external provider allows us to set
multiple origin URLs. Whenever we do that, we can ensure that our login
tests--or other tests against user accounts--won't affect our development
environment.

Updating the launchSettings.json file
Last but not least, we need to set up our app so that it will run in Production mode
whenever we publish it.

To do that, open the /properties/launchSettings.json file and change the
ASPNETCORE_ENVIRONMENT variable within our application's profile from Development to
Production in the following way:

[...]

"TestMakerFree": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Production"
 },
 "applicationUrl": "http://localhost:27240/"
}

[...]

This will ensure that the appsettings.Development.json file won't be loaded whenever
our web app will be deployed into production.

It's worth noting that the preceding update will also allow the
appsettings.Production.json to be loaded instead, if only there were
one; it can be used to overwrite some default values in production mode.
However, in our specific scenario, we didn't need to add it, as the
appsettings.json file already has everything we need.

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[492]

Publishing our native web application
Installing and/or configuring a production-ready web server, such as Internet Information
Services (IIS) or Apache, can be a very complex task depending on a number of things that
we can't address now, as they will easily bring us far beyond the scope of this book.

To keep things simple, we'll just assume that we already have access to an up and running,
physical or virtualized Windows Server machine featuring a running IIS instance (we'll call
it as web server from now on) that we can configure to suit our needs. Ideally, we'll be able
to do that via a dedicated management interface such as Remote Desktop, IIS Remote
Configuration, Plesk, or any other remote administration mechanism made available by our
web farm and/or service provider.

Windows 7 or Windows Server 2008 R2 (or newer), along with IIS 7.5 (or
later), are required to host a .NET Core web application, as stated by the
official Microsoft publishing and deployment documentation available at
https:/ /docs. microsoft. com/ en-us/ aspnet/ core/ publishing/ iis?
tabs= aspnetcore2x.

Last but not least, we'll also assume that our web server provides FTP-based access to the
/inetpub/ folder that we can use to publish our web projects. If we're facing a different
scenario, it can be advisable to skip this chapter entirely and follow the instructions given
by our chosen web hosting provider instead.

Creating a Publish profile
The most convenient way to deploy a web-based project in Visual Studio is by creating one
or more Publish profiles. Each one of them is basically an XML configuration file with a
.pubxml extension that contains a set of deployment-related information, most of which
depends on the server/target we're deploying our application into--Azure, FTP, filesystem,
and more.

We can easily set up one or more Publish profile files using the Publish profile wizard. As
soon as we have at least one ready, we'll be able to execute it with a single mouse click and
have our application published.

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x

Finalization and Deployment Chapter 10

[493]

To open the Publish profile wizard, right click on the project's root node--
TestMakerFreeWebApp in our case--and select the Publish option from the contextual
menu. A modal window should open, showing the following screen:

Don't get fooled by that odd, dashboard-like interface; there are more options you can
choose from, accessible by clicking on the right arrow. Among them, the most useful in our
scenario will be the following:

IIS, FTP, etc: These can be used to create an FTP-based publish profile to update
our web app in real time, as the new version will be uploaded to the web server
in place of the previous one
Folder: We can use this to build and develop our project through the local File
System and then take care of the upload manually

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[494]

FTP Publish Profile
If our web server can accept FTP (or FTPS) connections, the best way to publish our project
is to create a FTP-based Publish Profile that will automatically upload our web project to
our web server using the FTP/FTPS protocol. All we need to do is link the FTP destination
folder to a new website project using IIS, and we'll be able to publish/update our website in
a real-time fashion, as everything will be put online as soon as the publishing task will be
done.

As we said earlier, we're doing all this assuming that we have a web
server accessible through FTP, since it's one of the most common
deployment scenarios. If that's not the case, we might as well skip this
paragraph and configure a different publishing profile, such as the Folder
one.

To set up the FTP publishing profile, select the IIS, FTP, etc icon, wait for the wizard-like
modal window to appear, and then do the following:

Publish method: Select FTP.1.
Server: Specify the FTP server URL, such as ftp.your-ftp-server.com.2.
Site path: Insert the target folder from the FTP server root, such as3.
/TestMakerFree/. You can also avoid the slashes if you prefer, as the tool will
automatically handle them.
Passive Mode, Username, Password: Set these values according to our FTP4.
server settings and given credentials. Activate Save Password if you want to let
Visual Studio store it, so you won't have to write it upon each publishing attempt.
Destination URL: This URL will be automatically launched as soon as the5.
publishing task successfully ends using the default browser. It's often wise to set
it to our web application's base domain, such as www.our-website-url.com, or
to leave it empty.

Once done, click on the Validate connection button to check the preceding settings and
ensure that we're able to reach the server through FTP. In case we don't, it might be wise to
perform a full-scale network check looking for firewalls, proxies, antivirus, or other
software that can prevent the FTP connection from being established.

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[495]

Once done, the wizard's Connection tab should look just like the following screenshot:

Folder Publish Profile
If our web server doesn't support FTP, we can make good use of the Folder Publish Profile
to build everything into a dedicated directory within our local filesystem. To do that, select
the Folder icon and specify the path of the folder that will contain the published application
in the textbox that will appear, just as shown in the following screenshot:

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[496]

Visual Studio will suggest a path located within the application's /bin/Release/
subfolder; we can either use that or choose another folder of our choice.

Publishing our web app
As soon as we're done configuring the Publish Profile we chose, we can click on the Publish
button to start the publishing process; from now on, that button will be all that we need to
press to trigger the task.

If the process ends with a success, our site will be immediately available, except for the
Folder Publish Profile, which will also require us to manually upload the generated
contents to the web server.

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[497]

Configuring the web server and IIS
We should now connect to our web server and set up our web application within IIS.

As we said earlier, configuring a web application can be either a very easy
or an insanely complex task, depending on a number of things, such as
caching, load balancing, CPU optimization, database load, and security
issues. Although the most common issues will be briefly handled within
this chapter, it's advisable to follow a dedicated guide to properly handle
each one of them.

Installing the ASP.NET Core module for IIS
We might think that IIS is the ideal platform for hosting ASP.NET Core applications, as it
always has been since the first release of ASP.NET. As a matter of fact, it's not that ASP.NET
Core web applications run via the highly optimized Kestrel server. Whenever we choose to
host one of them with IIS, we basically need it to act as a reverse proxy for the underlying
Kestrel server.

This is confirmed by the official documentation at the following URL:
https:/ /docs. microsoft. com/ en-us/ aspnet/ core/ hosting/ iis-modules
, where we can read the following:

ASP.NET Core applications are hosted by IIS in a reverse-proxy
configuration. Some of the native IIS modules and all of the IIS managed
modules are not available to process requests for ASP.NET Core apps. In
many cases, ASP.NET Core offers an alternative to the features of IIS
native and managed modules.

The good news is that we don't need to configure anything by ourselves within our web
app project, because the .NET Core IIS module will do everything by itself, assuming that it
is installed on the Web Server! Since ASP.NET Core is a rather new technology, this might
as well not be the case, so we'll most likely need to download and install it.

At the time of writing, we need to obtain the .NET Core Windows Server Hosting bundle,
which conveniently includes all the required packages to host a .NET Core application on a
IIS powered server machine: the .NET Core runtime, the .NET Core Library and the
ASP.NET Core module; upon installation, it will create the aforementioned reverse proxy
between IIS and the Kestrel server in a transparent way, thus allowing the former to serve
our app.

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules
https://docs.microsoft.com/en-us/aspnet/core/hosting/iis-modules

Finalization and Deployment Chapter 10

[498]

The bundle can be downloaded from https:/ /aka. ms/dotnetcore- 2- windowshosting

IMPORTANT: the bundle comes with its own version number, wich
needs to match the .NET Core version used to build the project. In our
scenario it will be 2.0.3, unless we changed it with a newer one - at our
own risk - back in chapter 1, Getting Ready.

In the unlikely case that the web server machine doesn't have an internet connection
available, we will also need to obtain and install the Microsoft Visual C++ 2015
Redistributable before installing the .NET Core Windows Server Hosting bundle, which we
can get from https:/ /www. microsoft. com/download/ details. aspx? id=53840.

For further references regarding ASP.NET Core IIS publishing settings, it's
strongly advised to check out the official guide at https:/ / docs. asp.net/
en/ latest/ publishing/ iis.html#iis- configuration. A (mostly)
complete list of all the available .NET Core related packages (SDK, IIS
module, and more) is also available at https:/ /www. microsoft. com/net/
download.

Adding the website
As soon as we install the .NET Core Windows Server Hosting bundle, we'll be able to
configure our IIS instance to host our application.

As we said earlier in this chapter, to host ASP.NET Core web applications,
we'll need IIS 7.5 or later.

From the IIS Manager interface, right click on Sites and choose the Add New Website
option. Name it with your solution name, project name, domain name, or anything you like,
depending on the naming convention we chose to adopt for our IIS website entries. In this
book example, we went with www.testmakerfree.com, since that's the domain we were
to use.

By looking at the read-only textbox to the immediate right, we can see that a new
Application Pool will also be created with that same name. Take a mental note of it, as we'll
need to configure it soon enough.

Set the physical path of the Content Directory to the folder we targeted for FTP publishing.

www.EBooksWorld.ir

https://aka.ms/dotnetcore-2-windowshosting
https://aka.ms/dotnetcore-2-windowshosting
https://aka.ms/dotnetcore-2-windowshosting
https://aka.ms/dotnetcore-2-windowshosting
https://aka.ms/dotnetcore-2-windowshosting
https://aka.ms/dotnetcore-2-windowshosting
https://aka.ms/dotnetcore-2-windowshosting
https://aka.ms/dotnetcore-2-windowshosting
https://aka.ms/dotnetcore-2-windowshosting
https://aka.ms/dotnetcore-2-windowshosting
https://aka.ms/dotnetcore-2-windowshosting
https://aka.ms/dotnetcore-2-windowshosting
https://aka.ms/dotnetcore-2-windowshosting
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://www.microsoft.com/download/details.aspx?id=53840
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://docs.asp.net/en/latest/publishing/iis.html#iis-configuration
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download

Finalization and Deployment Chapter 10

[499]

In our example, it should be something like C:\inetpub\TestMakerFree\, assuming that
the FTP root for the web admin user points to C:\inetpub\. Just ensure that you target the
application's root folder, not the \wwwroot\ subdirectory.

Needless to say, we need to grant read/write permissions for that folder to
the IUSR and/or IIS_IUSRS accounts, or any other identity our
Application Pool is using.

As for the bindings, either choose a specific IP address or leave the All Unassigned option
and choose a Host name that is already configured to redirect to our web server via DNS; in
our example, since we already set up the www.testmakerfree.com domain name with a
DNS redirect to our web server's public IP address, we'll just use that:

www.EBooksWorld.ir

http://www.testmakerfree.com/

Finalization and Deployment Chapter 10

[500]

Before clicking on the OK button, ensure that the Start Website immediately option is
checked, so the website will immediately be available.

We're assuming that the server comes with the .NET Framework installed,
as it's a default package with all the latest Windows Server versions. In
case it doesn't, we can manually install it via Server Manager, Web
Platform Installer, or Windows Update.

Configuring the Application Pool
We can now switch to the Application Pools node. Select the one with the same name as
the website we created earlier and set the .NET CLR version to No Managed Code:

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[501]

This might seem rather counter intuitive, as it looks like we're ruling out ASP.NET. As a
matter of fact, that's the exact opposite; since we're publishing an ASP.NET Core
application, we need to ensure that the soon-to-be-outdated .NET 4 CLR won't get in the
way. Since the former is still (at the time of writing) in a pre-release state, it isn't available
yet within the GUI, leaving us with only the option to remove any reference here. We
already configured the .NET Core module for IIS to do the required job anyway.

This is one of the many things that will surely change in the future. There
is a good chance that, by the time you're reading this book, the new CLR
will be integrated within the Application Pool GUI settings.

Firing up the engine
It's time to publish our native web application. Before doing that, ensure that the Task
Runner default task is running, as we want to upload the latest version of our client files.

Right click on the project's root node and then left-click on Publish. Select the Production-
FTP profile and click on the Publish button to start the build and upload process.

The whole publishing process flow can be checked in real time within the Visual Studio
Output window. As soon as the FTP connection will be attempted, we'll be asked for
username and password, unless we gave our consent to store our login credentials within
our publish profile's .pubxml file:

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[502]

The publishing task might require some time, as Webpack will have to work its magic. Once
done, our default web browser will be automatically launched against the URL we specified
within the Publish profile settings.

If everything has been set up properly, our native web application will show itself in all its
splendor:

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[503]

As expected, there are only three quizzes; we know from Chapter 4, Data Model with Entity
Framework Core, that we wrapped the function that creates the other 47 within a #if DEBUG
block in the DbSeeder class, to prevent them from being created in the production
environment. If we don't see them, it just means that everything is working as planned.

Troubleshooting
The deployment task isn't always easy, as there can be a number of issues (mostly
depending on the server machine state) that can prevent it from going well. This statement
is particularly true for ASP.NET Core application IIS-based deployments, as the reverse
proxy mechanism undeniably adds an additional level of complexity.

Luckily enough, there are a lot of things we can do to diagnose the most common problems.
Here are the most relevant ones:

Read the browser output messages, optionally setting the1.
ASPNETCORE_ENVIRONMENT variable to Development to print out the stack trace
and/or the exception(s) details.
Examine the Windows Event Viewer's application log.2.
Enable the ASP.NET Core module stdout logging feature.3.
Try to reproduce the error(s) on Kestrel.4.

Let's see each one of them in detail.

Browser output message
The first one is rather obvious; who doesn't look at the browser output? However, for
ASP.NET Core applications, it's far less effective than it used to be, since most errors are still
unhandled and won't appear there. Since the application is running in Production mode by
default, it will hide--for security reasons--most of the error details. That's a common
production-level error message that doesn't tell us anything useful:

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[504]

In order to get a more useful error message, we need to follow the suggestion printed out at
the end of the error page and set up the ASPNETCORE_ENVIRONMENT environment variable--
which defaults to Production when not set--to Development instead. We can do that in
two ways:

On server-level scope, by actually setting a system-wide environment variable,1.
using the Control Panel | System | Advanced Settings | Environment
Variables GUI interface.
On app-level scope, by altering our web app's Web.config file and overriding2.
that value there.

The latter method is definitely preferable, as it will only change that behavior for our web
app, without affecting the whole web server.

Hey, wait a minute! Did we just say "our web app's Web.config file"? What happened to
the "no Web.config file required" statement we said back in Chapter 1, Getting Ready?

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[505]

As a matter of fact, although that's true for the application settings--which are now stored in
the appsettings.json files--the Web.config file is still used whenever we host our app
with IIS. To say it better, the <system.webServer> section of Web.config is still required to
configure most IIS features, regardless of the server-side and client-side technologies we've
been using--including those that apply to a reverse proxy configuration such as the one we
need to implement.

To understand this better, it can be useful to take a close look at the official docs at https:/ /
docs.microsoft. com/ en- us/ aspnet/ core/ publishing/ iis? tabs= aspnetcore2x ,
explaining how .NET Core apps are hosted (reverse-proxy between IIS and Kestrel) and how
the IIS behavior is still influenced by the Web.config file.

The Web.Config file
If the Web.config file is not present upon the application first run, it will be autogenerated
in the root-level folder with the default settings that will best suit the application. In our
sample scenario, we should find something like this:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.webServer>
 <handlers>
 <add name="aspNetCore" path="*" verb="*"
 modules="AspNetCoreModule" resourceType="Unspecified" />
 </handlers>
 <aspNetCore processPath="dotnet"
arguments=".\TestMakerFreeWebApp_Chapter_10.dll" stdoutLogEnabled="false"
stdoutLogFile=".\logs\stdout" />
 </system.webServer>
</configuration>

Here's how we can tweak it to set up the ASPNETCORE_ENVIRONMENT environment variable
(updated lines are highlighted):

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.webServer>
 <handlers>
 <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModule"
resourceType="Unspecified" />
 </handlers>
 <aspNetCore processPath="dotnet"
 arguments=".\TestMakerFreeWebApp_Chapter_10.dll"
 stdoutLogEnabled="false" stdoutLogFile=".\logs\stdout">
 <environmentVariables>

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x

Finalization and Deployment Chapter 10

[506]

 <environmentVariable name="ASPNETCORE_ENVIRONMENT"
 value="Development" />
 </environmentVariables>
 </aspNetCore>
 </system.webServer>
</configuration>

However, performing such change will raise an additional problem in our specific scenario:
the Development environment will bring the WebpackDevMiddleware module into action,
as clearly stated by our Startup.cs file:

[...]

if (env.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
 app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions
 {
 HotModuleReplacement = true
 });
}

[...]

That being the case, the first error we'll receive would be the "failed to start Node process"
one, just like in this screenshot:

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[507]

The best thing we can do to avoid such issue is to rework the middleware loading strategy
in the following way (new lines highlighted):

if (env.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
#if DEBUG
 app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions
 {
 HotModuleReplacement = true
 });
#endif
}

That way we can set the ASPNETCORE_ENVIRONMENT value to Development and also
prevent the WebpackDevMiddleware from being loaded: we should then be able to refresh
the home page and retrieve some detailed information regarding our error that will most
likely help us understand what's going on.

IMPORTANT: Remember to set the ASPNETCORE_ENVIRONMENT
value back to Production once the issue has been fixed! Exposing these
error details will leak potentially dangerous information regarding your
web server configuration settings, thus opening it to harmful attacks. To
get a better idea of that, just take a look at the preceding screenshot to see
how much information can be retrieved from these few lines; we get a
great view of the PATH environment variable contents, showing a lot of
software--PHP 5.6, MySQL Server 5.6, TortoiseHg, FtpUse and so on--
which is most likely installed within the web server, not to mention all this
precise information about the native software versions in use.

What to do with this crippled, yet still somewhat required, Web.config file? We can either
leave it on the server or keep a copy within our project other files. Those who prefer to keep
the IIS configuration separated from the development will probably want to leave on the
Web Server; however, our suggestion is to follow the other route and store a copy of that
file in our project's root folder, so we'll be able to keep a record of the performed changes
we had to do and have them under source control along with the other files: we still feel
that this is the better way to deal with it, at least from a Full-stack perspective. Just be sure
to rename it with a harmless extension - such as Web.config.IIS - to prevent it from mess
with the Development environment.

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[508]

Event Viewer
The Windows Event Viewer is often underestimated, yet it's very important for debugging
ASP.NET Core application for the same reason as before--we will find most of the relevant
stuff there.

To access it, open the Windows Control Panel, then go to Administrative Tools and click
on the Event Viewer icon. You will find your errors--if any--within the Windows Logs |
Application node:

ASP.NET Core Module logging
The ASP.NET Core Module logging feature is a new capability brought by the new CLR.
However, when it comes to troubleshooting issues, it happens to be the real deal. Activating
it is just as easy as opening the web.config file and change the stdoutLogEnabled
attribute from false to true in the following way:

[...]

<aspNetCore processPath="dotnet"
arguments=".\TestMakerFreeWebApp_Chapter_10.dll" stdoutLogEnabled="true"
stdoutLogFile=".\logs\stdout">

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[509]

[...]

We also need to manually create a /logs/ folder inside the root application folder on the
web server, otherwise the logs won't be generated.

The log folder, location, and filename prefix can be configured by
changing the stdoutLogFile attribute value. Remember to manually
create the chosen folder whenever you change it and also to grant
read/write permissions to the identity used by the Application Pool.

The Kestrel test
A quick and effective way to check whether the application is working properly is to skip
IIS entirely and run it directly on Kestrel. Doing this is just as easy as opening the
application root folder on the Web Server, locating the <ProjectName>.dll file, and
executing it with (or without) administrative rights using the following command:

> dotnet <ProjectName>.dll

As soon as we do this, the web application will bootstrap from the command-line; once it
completes, we should be able to test the application by opening a web browser and pointing
it to http://localhost:5000/, 5000 being the default TCP listening port for Kestrel:

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[510]

If the application completes its boot phase and starts running, the issue is most likely
related to the IIS configuration and/or the ASP.NET Core module; otherwise, there's a good
chance that our problem lies within the application code itself.

If that's the case, checking the Event Viewer and the aforementioned stdout logs will be
our best weapons to identify and overcome the issue.

Kestrel Test from Visual Studio
The Kestrel Test can be also performed within the Visual Studio development environment:
to do so we have to change the active running profile from IISExpress to TestMakerFree:
such task can be easily done within the Visual Studio GUI by left-clicking to the right
handle of the Select Startup Item button:

The settings for all the profiles listed there can be customized by editing the
launchSettings.json file within the Properties solution folder. Being able to test the
Production profile within Visual Studio can be very useful to successfully debug some
specific angular issues, such as those related to AoT compilation and/or server-side
prerendering: we just have to configure our project's appsettings.json file(s) accordingly
and ensure that Webpack will build our app client and vendor files in Production mode.
Doing that is just as easy as executing a couple command-line instructions from the project's
root folder:

> node node_modules/webpack/bin/webpack.js --env.prod

> node node_modules/webpack/bin/webpack.js --config
webpack.config.vendor.js --env.prod

The first one will rebuild the client bundle, while the latter will take care of the vendor
bundle.

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[511]

Disable server-side rendering
If the problem persists, turning off the server-side rendering feature of the
Microsoft.AspNetCore.SpaServices package could also help to understand the root of
the issue. To disable such feature, perform the following changes to the
/Views/Home/Index.cshtml file (updated lines are highlighted):

@{
 ViewData["Title"] = "Home Page";
}

@* Enable server-side rendering *@
@* <app asp-prerender-module="ClientApp/dist/main-server">Loading...</app>
*@

@* Disable server-side rendering *@
<app>Loading...</app>

<script src="~/dist/vendor.js" asp-append-version="true"></script>
@section scripts {
 <script src="~/dist/main-client.js" asp-append-version="true"></script>
}

As we can see, removing the asp-prerender-module tag helper is all it takes to turn off
the server side prerendering feature. Doing that on a temporary basis can be useful to see if
the problem lies within our application code or not: if the application is running fine
without that it most likely means that our code is fine, yet our environment is experiencing
some compatibility issues between the .NET Core libraries, the NPM packages and the
Node.js instance.

Suggested topics
SQL Server 2017, SQL Server Management Studio, Windows Server, IIS, Apache, FTP
server, Publish Profiles, IIS, ASP.NET Core module for IIS, ASP.NET 5, .NET CLR v4,
Kestrel, reverse proxy, Windows Event Viewer, stdout log, AOT compilation, Server-Side
render, Node.js, Microsoft.AspNetCore.SpaServices and WebpackDevMiddleware.

www.EBooksWorld.ir

Finalization and Deployment Chapter 10

[512]

Summary
Eventually, our journey through ASP.NET Core and Angular has come to an end. Our last
effort was to get our native web application ready to be published into a production
environment, where it can be checked by the product owner as the potentially shippable
product it now definitely is.

The first thing we did was to change the underlying database from localDb to a real SQL
Server instance. For the sake of simplicity, we chose to install SQL Server 2017 Express,
which is freely available for download from the Microsoft Download Center. We briefly
installed it, along with the SQL Server Management Studio tools and then we used the latter
to properly configure the former: creating the database, adding the login credentials and
doing what it takes to make our application able to connect using a standard connection
string. We also took advantage of the ASP.NET Core default pattern to handle multiple
environments--Development and Production--which we used to conditionally replace the
localDb connection string with the SQL Server one.

The next step was to create a Publish profile for our Visual Studio project. We evaluated
two alternatives--FTP and File System--each one of them being viable or not depending on
our own deployment scenario.

Eventually, we switched to the Web Server, where we found out that configuring IIS was
not as easy as it used to be for ASP.NET 4 and earlier, because the new CLR isn't fully
integrated within the GUI yet. We had to install the .NET Core Windows Server Hosting
bundle, which does all the required jobs, making IIS act like a reverse proxy for the
underlying Kestrel server. Right after that, we were able to create our website entry along
with its related Application Pool.

Once we did all that, we were able to actually publish our native web application and watch
the result on the web browser. In the event that something didn't go as expected, we took
some time to analyze the most common troubleshooting issues and give some useful advice
to overcome them.

www.EBooksWorld.ir

Index

A
action methods, QuizController
 ByTittle() method 79
 Random() method 79
additional lists
 adding 119
Ahead-of-Time (AOT) 411
Amazon Web Services (AWS) 378
Angular 5.0.0 40
Angular HttpClient
 comparing, with old standard 107
 Dependency Injection (DI) 109
 installing 108
 subscription 109
 using 109
Angular login form
 about 392
 AuthService class 393
 new LoginComponent 398
 token, adding to HTTP request header 407
 TokenResponse interface 393
Angular Material
 about 279
 references 279
Angular Modules 66
Angular packages 39
Angular Template Syntax
 reference 111
Angular Universal
 reference 54, 396
Angular
 features 11, 12
AnswerController
 adding 85
AnswerEditComponent
 implementing 247

 references and routes 249
 template file 248
answers 217
AnswerViewModel
 adding 84
API Controllers 20
AppComponent 284
Application Pool
 configuring 500
approaches, data modeling
 Code-First 155
 Database-First 155
 Model-First 155
 selecting 159
ASP.NET Core framework 10
ASP.NET Core Identity 360
ASP.NET Core module
 installing, for Internet Information Services (IIS)

497

ASP.NET Core MVC 9
ASP.NET Core Web Application project
 alternative setup, using command line 28
 client-side exercise 63
 exercises 56
 HTTP headers, modifying 58, 60
 reference 68
 setting up 24, 25, 26
 static file caching 56
 static files by caching, disabling 57
 strongly-typed approach(es) 62
 test run 29, 30
 testing 61
ASP.NET Core
 documentation, reference 470
 on Windows, reference 505
ASP.NET
 core revolution 10, 11

www.EBooksWorld.ir

[514]

 reference 11
Async Data Requests 72
async tasks
 about 369
 reference 369
attribute routing 78
Attribute-based routing 90, 92
authentication methods
 about 374
 sessions 374
 signatures 378
 Token-Based Authentication Flow 376
 two-factor 378
authentication
 implementing 354
 third-party authentication 355
 working 354
authorization
 about 357
 client, adapting 411
 client-server auth test 416
 enforcing 410
 implementing 354
 proprietary, versus third-party 358
 server, shielding 414
 third-party authorization 357, 358
AuthResponseInterceptor
 adding 432
 adding, in AppModule 435
AuthService class
 AppModule, updating 397
awaits
 about 369
 reference 369
Azure AD Authentication Library (ADAL) 360

B
backend 12
Bad Request 471
BaseApiController, upgrading
 upgrade, reflecting on affected controllers 385
Bootstrap theme
 modifying 280
 Webpack vendor config file, rebuilding 281
Bootstrap

 components, styling 292
 full-scale layout test 316, 317
 grid system, reference link 297
 new theme, testing 284
 UI structure, revising 284
 URL 316
 working with 279
Bootswatch
 reference link 281
breakpoints 350

C
C# pre-processor directives
 reference 95
Cascading Style Sheets (CSS)
 about 262
 reference 266
 sample 263
client, adapting
 about 203
 NavMenuComponent 411
 QuizComponent 413
 QuizEditComponent, adding 203, 208
client, Facebook app
 AppModule, updating 466
 LoginFacebookComponent, linking 466
 template file, adding 465
 zones 464
client-server test
 about 211, 213
 workflow 216
client-side code
 /ClientApp/app/ folder 54
 about 53
client-side debugging 350
client-side exercise
 about 63
 AppModule class(es) 66
 component list, trimming down 63
 NavMenu, updating 67, 68
client-side routing
 about 132
 AboutComponent 142
 app, refactoring 133
 AppModule, updating 144

www.EBooksWorld.ir

[515]

 LoginComponent 143
 new components, adding 142
 new route, registering 135
 PageNotFoundComponent 143
 PathLocationStrategy, versus

HashLocationStrategy 133
client-side tasks, new user registration
 about 439
 AppModule 443
 LoginComponent 444
 NavMenu 444
 RegisterComponent 440
 user interface 439
client-side tasks, refresh tokens
 about 429
 AuthResponseInterceptor, adding 432
 AuthService, upgrading 430
 testing 435
 TokenResponse interface, updating 430
client-side tasks
 about 233
 AnswerEditComponent, implementing 247
 AnswerListComponent, implementing 244
 interfaces, adding 234
 QuestionEditComponent, creating 241
 QuestionListComponent, implementing 234
 ResultEditComponent, implementing 252
 ResultListComponent, implementing 249
code and structure 262
Code-First approach
 about 158
 cons 159
 pros 159
Command Task Runner
 about 283
 reference link 283
CompileSass 271
components, upgrading
 AnswerEditComponent, using 337
 QuestionEditComponent 335
 ResultEditComponent, using 340
components
 CSS encapsulation 292
 HomeComponent 296
 QuizComponent 305, 309

 QuizEditComponent 310
 QuizListComponent 297, 301, 302
 styling 292
conditional compilation directive 183
configuration files, .NET Core SPA Template
 appsettings.json file 38
 package.json file 39
 Program.cs 32
 Startup.css file 34, 36, 37
 tsconfig.json file 43
 webpack.config.js file 45
controllers
 adding 81
 AnswerController, adding 85
 AnswerViewModel, adding 84
 QuestionController, adding 82
 QuestionViewModel, adding 81
 ResultController, adding 87
 ResultViewModel, adding 86
convention-based routing 90, 92
CoreCLR 10
counter 88
create, read, update, and delete (CRUD) 72
CSS encapsulation
 about 292
 disabling 296
 Shadow DOM, used for native encapsulation 294

D
data flow
 about 71, 72, 73
 ViewModel, role 74
Data Model 101, 152
Data Seed strategy
 adding, to Startup.cs 187
 database, seeding 189
 DbSeeder class, creating 180, 183, 187
 implementing 180
Data Structures 152
data validation
 about 320
 components, upgrading 335
 forms, in Angular 320
 Reactive form 326
database configuration, SQL Server Management

www.EBooksWorld.ir

[516]

Studio
 about 485
 authentication mode, modifying 486
 login, mapping to database 487, 488
 TestMakerFree database, adding 486
 TestMakerFree login, adding 486
database, updating
 about 370
 data, seeding 373
 identity migration, adding 370
 migration, applying 371
Database-First approach
 about 157
 benefits 157
 downsides 157
database
 creating 175
DbContext (Context)
 reference 187
 setting up 171, 173
DbInitializers 173
deadlocks 369
Debug Mode 80
debugging 343
Dependency Injection (DI)
 about 38, 91
 reference 109
do-it-yourself approach
 about 277
 conclusion 279
 cons 277
 pros 277
 versus framework-based approach 276, 277,

279

documentation tags
 reference 95
downsides, Session-Based Authentication Flow
 cross-domain issues 376
 memory issues 375
 scalability issues 375
 security issues 376
dynamic module bundler
 using, need for 49

E
ECMAScript 6 (ES6) 49
edit mode, QuizEditComponent
 activating 208
 Edit route, adding 209
 event handlers, versus router links 209
encapsulation
 about 292
 reference link 292
engine
 firing up 501, 502
 troubleshooting 503
entities
 answers, to question 165
 ApplicationUser, creating 160
 creating 159
 question 164
 quiz, creating 162, 164
 result 167
Entity Designer Model XML visual interface

(EDMX) 155
Entity Framework 6 16
Entity Framework 7 152
Entity Framework Core (EF Core)
 installing 152, 153, 155
 reference 153, 179
explicit flow
 about 448
 appsettings.json file, updating 469
 Authentication.Facebook package, installing 468
 cons 450
 Facebook Authentication service, setting up 468
 LoginExternalProvider component 476
 pros 450
 TokenController, upgrading 470

F
Facebook App
 creating 451
 keys, storing in appsettings.json file 470
Facebook Developer page
 reference 451
Facebook
 app, creating 451, 453

www.EBooksWorld.ir

[517]

 login button, reference 466
 used, for logging in 450
FacebookOptions Class
 reference 469
features, Single-Page Application (SPA)
 about 14
 Angular components 20
 authentication 20
 controllers 20
 data model 20
 efficient routing 14
 performance and flexibility 14
 routing 20
 UI styling 20
fetchdata 88
Five Factor Model (FFM) 19
Form Model
 about 343, 344
 pipe operator 345
forms unit testing 351
forms, Angular
 Model-Driven/Reactive forms 323
 shortages 320
 Template-Driven forms 321
Foundation framework 276
framework-based approach
 about 278
 conclusion 279
 cons 278
 pros 278
 versus do-it-yourself approach 276, 277
frontend 12
FTP Publish profile
 Folder Publish Profile 495
 FTP Publish Profile 494
full-scale layout test 316, 317
full-scale test 146, 147, 148, 149, 253, 255, 258,

259

full-stack approach 12, 13

G
GitHub project page
 reference 24
Glyphicon Halflings 146
Google Chrome

 reference 350
Google Identity Provider 356

H
Hashbang technique 14
Helicontech's SAPI Rewrite 89
History API usage 14
HomeController 50
HTML pages 265
HTTP/HTTPS implementation standards 354

I
IIS 21
IIS Express 21
IIS instance
 configuring 499
 website, adding 498
IIS URL Rewrite Module 89
implicit flow
 about 448
 cons 449
 GenerateRandomPassword() method, adding

458

 implementing 454
 LoginFacebookComponent, adding 460
 pros 449
 testing 467
 TokenController, updating 455
 versus explicit flow 448
Initial Migration
 about 179
 adding, to database 176
 No executable found matching command dotnet-

ef error 178
initialization strategies, database 176
 about 173
 appsettings.json file, updating 175
 Database Engine, selecting 174
 database, creating 175
internal membership provider 359
Internet Information Services (IIS)
 about 492
 ASP.NET Core module, installing for 497
 configuring 497
isomorphic JavaScript

www.EBooksWorld.ir

[518]

 reference 396

J
JSON Web Tokens (JWT)
 about 378
 reference 378
JWT authentication
 Angular login form 392
 AppSettings files, updating 382
 auth service, adding to .NET Core Startup class

380

 implementing 379
 TokenController 383

K
Karma 39
Kestrel test
 from Visual Studio 510
 using 509
Kestrel web server 33

L
LESS Compiler
 about 271, 272, 274
 installing 273, 274, 275
LESS
 about 262, 264
 advantages 265
 alternative, Systematically Awesome Style Sheets

(Sass) 271
 Cascading Style Sheets (CSS) 263
 CSS 263
 directives, importing 266
 docs and support 271
 extend pseudo-class 270
 files, compiling with Webpack 275, 276
 implementing 272
 mixins 268
 nested selectors 267
 reference link 271
 style sheet language 262
 using 264, 265
 variables 266
Login view 151
LoginExternalProvider component, explicit flow

480

 about 476
 AppModule, updating 479
 LoginFacebookComponent, linking 479
logo SVG file
 about 290, 291
 reference link 290
lorempixum
 reference link 298

M
Mapster 3.1.1 191
Mapster
 about 190
 basic usage 191
 installation 190
 reference 191
master/detail binding
 about 103
 Quiz client-side interface 104
 QuizComponent class 115
 QuizList component 105
Materialize framework 276
MetaPackages
 reference 33
Microsoft Edge browser 350
Microsoft publishing and deployment

documentation
 reference 492
Microsoft Visual C++ 2015 Redistributable
 installation link 498
Microsoft
 URL 24
migration, applying
 database, dropping 372
 database, recreating 372
 database, updating 371
model creation
 reference 163
Model-Driven/Reactive forms
 about 323, 324, 325
 reference 326
 working 324
Model-First approach 155
 benefits 156

www.EBooksWorld.ir

[519]

 downsides 156
MSSQLLocalDB instance 174
Multi-Page Application mindset (MPA) 14
multiple components instances
 about 120, 121
 debugging 123
 life cycle hooks, reference 126
 lifecycle hooks 125
 ngOnInit, implementing 126, 128
 OnInit interface 125
 testing 123, 129
MVC6 10
Myers-Briggs Type Indicator (MBTI) 19

N
native encapsulation 294
Native Web Applications (NWA)
 about 14
 Publish profile, creating 492
 publishing 492, 496
navigation pattern 102, 103
NavMenuComponent 286
new LoginComponent
 about 398
 login test, performing 403
new route registration
 about 135
 Master/Detail Routing test 141
 QuizComponent, upgrading 136
 QuizListComponent, updating 140
new user registration
 about 436
 client-side tasks 439
 server-side tasks 436
 testing 445
NgModules 66
ngOnChanges() life cycle hook
 reference 239
No executable found matching command dotnet-ef

error
 reference 179
Node Package Manager (NPM) 39
Node.js 39
npmJS
 reference 40

O
OAuth 357
OAuth 2 358
OAuth2 authorization flow
 explicit flows 448
 implicit flow 448
 reference 448
 working 447
Object Relational Mapper (ORM) 152
Object-to-Object Auto-Mapping Tools 190
observables 109, 211
Open Web Interface for .NET (OWIN)
 reference 34
OpenID 2.0 to OpenID Connect migration guide
 reference 357
OpenID Connect
 reference 357

P
package.json file
 about 39
 Angular, upgrading (or downgrading) 40
 other packages, upgrading (or downgrading) 41
PHP 265
Postman
 about 390
 reference 390
Product Owner expectations
 about 15
 adaptability 16
 early release(S) 15
 fast completion 16
 GUI over backend 16
Promises 211
Publish profile, native web application
 creating 492
Pure framework 276

Q
QuestionController
 adding 82
QuestionEditComponent
 creating 241, 243
 references and routes 244

www.EBooksWorld.ir

[520]

QuestionListComponent
 implementing 234
 ngOnChanges() life cycle hook 239
 ngOnChanges() method 237
 references, adding 240
 template file 239
questions 217
QuestionViewModel
 adding 81
quiz CSS class 264
QuizComponent class
 adding 117
 component files, adding 115
 testing 118, 309, 310
QuizComponent upgradation
 data, fetching 139
 HttpClient, adding 138
 ID parameter, obtaining 136
QuizController
 about 76, 77
 action methods, adding 78
 Data Provider, testing 195
 Mapster 190
 testing 80
 updating 190, 192, 199, 203
QuizEditComponent
 Delete feature, implementing 210
 Edit mode, activating 208
 subcomponents 312
QuizList component
 about 105
 adding 112
 adding, with AppModule file(s) 112
 adding, with HomeComponent template 114
 Angular HttpClient 107
 onSelect() method 110
 Stylesheet file 112
 template file 110
 testing 114
 UI test 302
QuizSearchComponent
 about 288
 registering 290
quizzes
 adding 198

 deleting 198
 updating 198

R
Reactive form
 about 326
 QuizEditComponent, updating 327, 329
 ReactiveFormsModule, adding 326
 shortcuts, adding to validators 334
 validators, adding 331
refresh token 420
refresh token, implementing
 TokenController, upgrading 424, 425
 TokenResponseViewModel, upgrading 424
RegisterComponent
 about 440
 custom validator 442
 template and style sheet files 443
relationships
 defining 168, 170
 one-to-many EF Lazy-Load pattern 170
Responsive Web Design
 reference link 277
RESTful conventions 92
ResultController
 adding 87
ResultListComponent
 implementing 249
 reference and routes 250
results 217
ResultViewModel
 adding 86
Roslyn 10
routes
 about 89
 adding 93, 95
 Dummy Data Provider 95
 handling, in .NET Core 91
routing
 about 88
 defining 89
 in ASP.NET Core MVC (aka MVC 6) 90
 in ASP.NET MVC 89
 in ASP.NET MVC5 90
 options 92

www.EBooksWorld.ir

[521]

RxJS
 reference 109
RyuJIT 10

S
SampleDataController 70
SCRUM
 about 15
 reference 16
SCSS 271
Search Engine Optimization (SEO) 89
SEO optimization and Server-Side Rendering

(SSR) 28
separation of concerns (SoC) 262
Separation of Concerns design principle 14
server, shielding
 about 414
 current user ID, retrieving 415
server-side code
 /Views/ folder 52
 about 50
 Controllers/HomeController.cs 50
 Controllers/SampleDataController.cs 51
Server-Side Rendering
 reference 54
server-side tasks, new registration
 UserController 436
 UserViewModel 438
server-side tasks, refresh token
 token entity, adding 421
server-side tasks
 about 217, 421
 AnswerController 222
 BaseApiController 231
 BaseApiController, implementing 232
 QuestionController 217
 refresh token, implementing 424
 ResultController 226
Shadow DOM
 about 294
 reference link 294
signatures 378
single entries
 dealing with 96, 98, 99
single-object entity property 170

Single-Page Application (SPA) project
 about 17
 core features 19
 Hello World, avoiding 18
 requisites 19
 TestMakerFree 18
 vision 17
Single-Page Application (SPA)
 about 13, 15
 reference 28
Skeleton framework 276
SQL Server 2016 Express Edition
 installing 483
 reference 482
SQL Server Data Tools 174
SQL Server Management Studio
 about 484
 database, configuring 485
 reference 484
SQL Server
 connection string, adding 489
 connection string, working with 489
 launchSettings.json, updating 491
 production URL, adding to external providers

490

 switching to 482
static files
 reference 37
strongly-typed approach(es)
 references 62
style sheet language 262
Subclasses 231
subcomponents
 buttons, customizing 313, 314
 forms, styling 315
 icons, customizing 313, 314
 tables, customizing 314
Superclass 231
Systematically Awesome Style Sheets (Sass) 271

T
Template-Driven forms
 about 321
 cons 322
 pros 322

www.EBooksWorld.ir

[522]

 reference 322
Test-Driven Development (TDD) 96
testing 343
TestMakerFree
 about 18, 373
 reference 19
third-party approach
 downsides 359
third-party authentication
 about 447
 explicit flow, setting up 467
 implicit flow 454
 logging in, with Facebook 450
 OAuth2 authorization flow 447
 OpenID Connect 356
 OpenID, rise and fall 355
third-party providers
 advantages 358
 downsides 359
token entity
 ApplicationDbContext, upgrading 423
 EF core migration, applying 424
 user entity, upgrading 422
token expiration 419
token, adding to HTTP request header
 AuthInterceptor class, using 407
 HttpInterceptor adding in AppModule 408
Token-Based Authentication Flow 376
TokenController upgradation, explicit flow
 ExternalLogin method, using 470
 ExternalLoginCallback method, using 472
 methods 470
 SignInManager, adding 471
TokenController, JWT authentication
 adding 385
 BaseApiController, upgrading 383
 Postman, used for testing 390
 TokenRequestViewModel 389
 TokenResponseViewModel 389
troubleshooting, engine
 ASP.NET Core Module logging 508
 browser output message 503
 Event Viewer, using 508
 Kestrel test 509
 server-side rendering, disabling 511

 Web.Config file 505
two-factor authentication mode 378
two-way data binding
 about 129, 130
 disabling 131
 features 103
type-defined listing property 170
TypeScript
 about 43
 reference 44

U
UI design rules 262
UI structure
 AppComponent 284
 logo SVG file 290, 291
 NavMenuComponent 286
 QuizSearchComponent 288, 290
 revising 284
 testing 291, 292
UIKit framework 276
user changes
 activity log, extending 349
 Observable, observing 345, 348
 reacting to 345

V
ViewModel
 about 74
 QuizController 76
 QuizViewModel 75
 role 74

W
Web Compiler 271
Web Component 294
Web Forms 89
Web Host
 about 32
 reference 32
web server
 configuring 497
Webpack Dev Middleware
 reference 47
Webpack vendor config file

www.EBooksWorld.ir

 .csproj file, updating 282
 /www/dist/ folder, deleting 281
 update-webpack.bat file, creating 282, 283
webpack.config.js file
 benefits 45
 using 45
Webpack
 about 37, 45, 272, 281
 benefits 47
 reference 46
 used, for compiling LESS files 275, 276
 vendor config file, rebuilding 281
WebpackDevMiddleware module 506
White Pine
 about 291
 reference link 291

workspace setup
 about 21
 awareness, creating 23
 broken code myth 21, 22
 disclaimer caution 21
 versions and builds 23
World Wide Web (WWW) 353
World Wide Web Consortium (W3C) 263

X
XML-based DataSet Schema (XSD) 155

Z
zones
 about 464
 reference 464

www.EBooksWorld.ir

